

$B = \{2, 4, 6, 8, \}$ f (1) = 2, f (2) = 4, f (3) = 6 and f (4) = 8, And f: A o B then f ⁻¹ is: (a) {(2,1), (4, 2), (6, 3), (8, 4)} (b) {(1, 2), (2, 4), (3, 6), (4, 8)} (c) {(1, 4), (2, 2), (3, 6), (4, 8)} (d) None of these (d) None of these (1 mark)	2008 - DECEMBER [3] If A = {1, 2, 3, 4, }	$f^{-7}(y) = \frac{2(y-1)}{y+1}$ Therefore, $f^{-1}(x) = \frac{2(x-1)}{(x+1)}$	$\frac{2-x}{2-x} = y$ 2 + x = 2y - xy x + xy = 2y - 2 x(1 + y) = 2(y - 1) x = $\frac{2(y - 1)}{1}$	(a) $\frac{-(x+1)}{x+1}$ (b) $\frac{-(x+1)}{x-1}$ (c) $\frac{x+1}{x-1}$ (d) $\frac{x-1}{x+1}$ (1 mark) (a) Let f (x) = y	[Chapter \rightarrow 7] Sets, Relations and Functions 2008. JUNE [2] $\frac{2+x}{2-x}$, then $f^{-1}(x)$
A \cap B = {q, s} C = {m, q, n} C - (A \cap B) = {m, n}	(a) {III, II} (c) {r, s} (d) {p, r} (a) A = {p, q, r, s} B = {q, s, t}	[5] If $A = \{p, q, r, s\}$ B = {q, s, t} C = {m, q, n} Find C - (A \ B)	4 f(x) = f(2x) 4 [x ² + x - 1] = (2x) ² + (2x) - 1; ⇒ 4x ² + 4x - 4 = 4x ² + 2x - 1 ⇒ 2x = 3 ⇒ x - a/a	(4) If $f(x) = x^2 + x - 1$ and 4i $(x) = f(2x)$ then find 'x'. (a) 4/3 (b) 3/2 (c) $= 3/4$ (d) None of these (1 mark) Answer: (b) $f(x) = x^2 + x - 1$	3.376 Solved Scanner CA Foundation Paper - 3A (New Syllabus) Answer: (a) $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$ When f : $A \rightarrow B$, $f = \{(1, 2), (2, 4), (3, 6), (4, 6)\}$ f ⁻¹ implies f : $B \rightarrow A$ f ⁻¹ - 100 +11 (A of

 $\hat{\mathbf{z}} \in \hat{\mathbf{z}}$

=

[8] If f (x) = 2x + h then find f(x + h) - 2f (x) (a) $h - 2x$ (b) $2x - h$ (c) $2x + h$ Answer: (a) f(x) = $2x + h$ f(x + h) - 2f(x) = [2(x + h) + h] - [2(2x + h)] = - 2x + h = h - 2x. (1 mark)	[7] Given the function $f(x) = (2x + 3)$, then the value of $f(2x) - 2f(x) + 3$ will be: (a) 3 (c) 1 (c) 1 (d) $f(x) = 2x + 3$ f(2x) - 2f(x) + 3 = [2(2x) + 3] - [2(2x + 3)] + 3 = 4x - 4x + 6 - 6.	 [6] X = { x, y, w, z}, y = {1,2,3,4} H = { (x, 1), (y, 2), (y, 3), (z, 4), (x, 4)}. (a) H is a function from X to Y (b) H is not a function from X to Y (c) H is a relation from Y to X (d) None of the above Answer: (b) Any relation from X to Y in which no two different ordered pairs have the same first element is called a FUNCTION. Therefore, in the given question; H is NOT a function from X to Y because the different ordered pairs of H have the same first element 	[Chapter - 7] Sets, Relations and Functions = 3.377
(a) R (c) R - (0) Answer: (c) f : A - + R f(x) = $\frac{1}{x}$ (d) R - N (d) R - N (f(x) R - N (f(x) R - N) (f(x) R - N)	B = {x: $x^2 + 4x - 12 = 0$ } $x^2 + 4x - 12 = 0$ $x^2 + 6x - 2x - 12 = 0$ (x - 2)(x + 6) = 0 B = {2, -6} B - A = All elements present in B but not in A = {-6} B - A = All elements present in B but not in A = {-6} If F : A \rightarrow R is a real valued function defined by f(x) = $\frac{1}{x}$, then A =	[9] If $A = \{x : x^2 - 3x + 2 = 0\},$ $B = \{x : x^2 + 4x - 12 \equiv 0\},$ then B - A is Equal to (a) $\{-6\}$ (b) $\{1\}$ (c) $\{1,2\}$ (d) $\{2,-6\},$ (e) $x^2 - 3x + 2 \equiv 0$ (f) $x^2 - 3x + 2 \equiv 0$ (g) $(x - 1)(x - 2) \equiv 0$ x = 1, 2	3.378 Solved Scanner CA Foundation Paper - 3A (New Syllabus)

A'UB =	 [12] For any two sets A and B, the compliment of the set A (a) A ∩ B (c) A'∪B Answer: (a) A∩(A'∪B) 	 (1) a/a .: Reflexive (2) a/b and b/a (3) a/b, b/c a/b is not a symmerelation. 	[11] In the set N of all natural n and only if, a divide b", then (a) Partial order relation (c) Symmetric relation Answer: (a) For a function to be a p (1) Reflexive (2) Antisymmetric and (3) Transitive a divides b satisfies the
	A∩(A' ∪ B) =, where A' represe (b) A∪B (d) None of these (1 mar	a = b Antisymmetric 	s, Relations and Functions ■ 3.379
(c) $f(x - 1) = x^2 - 4x + g$ $= (x^2 - 2x + 1)^2 - 1$ $= (x - 1)^2 - 1$ $= (x - 1)^2 - 1$ $= (x + 1)^2$	Answer: (a) A⊂B A∩B = B (as A is a si A∩B = B (as A is a si (a) x ² +8 (c) x ² +4	(a) $f(x) = x + 1$ (a) $f(x) = x + 1$ fog(-2) = f[g(-2)] = f(5) = 5 + 1 = 6 (a) $A \cap B = B$ (c) $A \cap B = A^1$	$\begin{array}{c} \textbf{3.380} \blacksquare \underline{Solrveð \; Scanner \; C} \\ \textbf{Solrveð Scanner C} \\ \textbf{Scanner C} \\ Scanne$
$B = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} + \frac{1}{7} - \frac{1}{2} + \frac{1}{7} + $	ubset of B) len t (x + 1) = (b) $x^{2}+7$ (c) $x^{2}-4x$ (1 ma)	$f(5) _{r_0}g(-2) = 5 _{r_0}g(-2) = 5 _{r_0}g(-2) = 10 \text{ for } 100 \text{ for } 10$	A Foundation Paper - 3A (New Synabu (b) 5 n

.•

.

.

•

•

[16] 2011 - JUNE Student has passed at least in one subject. How many student's There are 40 students, 30 of them passed in English, 25 of them passed in Maths and 15 of them passed in both. Assuming that every (a) 15 passed in English only but not in Maths. (a) Given : Answer: (c) 10 Therefore, required to Find: n(only E) = ?(a) One to one function from A into B. $F = \{(2, 4), (-2, 4), (3, 9), (-3, 4)\}$ then 'F' is defined as : $A = \{\pm 2, \pm 3\}, B = \{1, 4, 9\}$ and a No. of Students passed in Maths n-(M) = 25. I D and Ξ <u>c</u> No. of Students passed in Eng. h(E) = 30Total No. of Students $n(E \cup N) = 40$ = No. of Students passed in both $n(E \cap M) = 15$ One to one function from A onto B. Many to one function from A onto B. Many to one function from A into B. Chapter - 7] Sets, Relations and Functions 15 = 30 - 15 $n(only E) = n(E) - n(E \cap M)$ **G** 5 õ 5 A RE CONVERSE 「「「「「「「「「「「」」」」」」 ☆, (제 등 등),...(1 mark) いたいいい ひしゃわられたい ちんかか ちがいたい あいいろ しいい たいちゅうかい 4.1.1 3.381 (1 mark) [1,8] If $f(x) = \frac{x}{\sqrt{1+x^2}}$ and g (x) = $\frac{x}{\sqrt{1-x^2}}$ Find fog? 3.382 Solved Scanner CA Foundation Paper - 3A (New Syllabus) (191 - f(x) = 3 + x, for -3 < x < 0 and 3 - 2x for 0 < x < 3, then Value of f(2) will (a) Given : $f(x) = \frac{1}{\sqrt{1 + x^2}}$ and $g(x) = \frac{1}{\sqrt{1 + x^2}}$ 2011 - DECEMBER (d) This is a many one function since multiple elements in Set A have Answer: <u></u> (a) X Answer: <u></u> element "1" in Set B doesn't even have a single pre-image in Set the same image in Set B. Also, this is an into function because the A. Therefore, it is many one into function. <--> fog(x) = f[g(x)]ω し (い) い I X 3123 (b) 01450 11 - X2 4 10 1 A CONTRACTOR OF A (1 mark)

		(c) A' – B' (d) B' – A' Answer: (a) (A∪B) = B – A	 [21] For any two sets A and B the set (AUB')' is Equal to (where' denotes compliment of the set) (a) B - A (b) A - B 	(a) $\{(2, 2), (2, 4), (4, 2), (4, 4), (5, 2), (5, 4)\}$ (b) $\{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2), (5, 4)\}$ (c) $\{(2, 2), (4, 2), (4, 4), (4, 5)\}$ (d) $\{(2, 2), (2, 4), (4, 2), (4, 4)\}$ Answer: (d) $(A - C) = \{1, 2, 3, 4, 5\} - \{1, 3, 5,\} = \{2, 4\}$ (A - C) × B = (2, 4) × (2, 4) = ((2, 2), (2, 4), (4, 2), (4, 4))	f (x) = $3 - 2x$ f (2) = $3 - 2 \times 2 = 3 - 4 = -1$ [20] If A = (1, 2, 3, 4, 5), B = (2, 4) and C = (1, 3, 5) then (A - C) × B is	Answer: (a) $f(x) = 3 + x$ $\ f = 3 \le x < 0$ $\exists 3 - 2x$ $\ f = 0 \le x < 3$ 2 Lies $0 < x < 3$ Then	[Chapter → 7] Sets, Relations and Functions ■ 3.383
(c) 3 (d) 10 (1) (1) (1) (1) (d) (d) 10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	x = 3 f (3) = (-1) ²⁺¹ = 1 x = 4 f:(4) = (41) ⁴⁺¹ = - 1 Fange of function = {1, -1} [25] The minimum value of the function $x^2 - 6x + 10$ is (a) 1 (b) 2	(c) 11, 07 Answer: (b) Given f (x) = (-1) ^{x-1} $x = 1$ f (1) = (-1) ¹⁺¹ = 1 f = N \Rightarrow N x = 2 f (2) = (-1) ²⁺¹ = -1	Answer: (b) A set of lines, being perpendicular is a Symmetric Relation [24] The range of the function $f : N \rightarrow N$; $f(x) = (-1)^{x-1}$, is (a) {0, -1} (b) {1, -1} (c)	 = 2⁵ - 1 = 32 - 1 = 31 <	 (c) 30 (1 mark) (b) Given set A = {3, 4, 5, 6, 7} (b) Cardinal No n(A) = 5 No. of proper subset = 2ⁿ - 1 	2012 - JUNE [22] The number of proper sub set of the set (3, 4, 5, 6, 7) is	3384 Solved Scanner CA Foundation Paper - 3A (New Syllabus)

25 2012 - DECEMBER \sim Minimum value of function = 1 57 For a group of 200 persons, 100 are interested in music, 70 in (d) Let Photography → Answer: (c) 25 photography and swimming and 10 in all the three. How many are both music and photography, 30 in both music and swimming, 20 in photography and 40 in swimming, Further more 40 are interested in (a) 30 interested in photography but not in music and swimming? n(PUMUS) (a) Let x² - 6x + 10 = y Answer: a = 1, b = -6, c = (10 - y)For Real we get $ax^2 + bx + c = 0$ x² - 6x + (10 - y) = 0 $x^2 - 6x + 10 - y = 0$ n (S) Swimming Music $b^2 - 4ac \ge 0$ $36 - 40 + 4y \ge 0$ $(-6)^2 - 4 \times 1 \times (10 - y) \ge 0$ 4y ≥ 4 y ≥ 1 Chapter - 7] Sets, Relations and Functions $y = \{1, 2, 3, \dots, \infty\}$ = 200, n (m) = 100, n(p) = 70° ໂດສະໂຈດ ເປັນການຕ = 40, n (M ∩ P) = 40, n (M∩S) = 30, n (P∩S) = 20 11 10 ູ ໂ ł (d) 20 (b) 15 The all book when all Late we will be the first 「ないないない」を見るのというのにあったいな 「「「「「「「「「」」」」」」」 SALA DUCENSE -5.5 (1 mark) 3.385 [27] If $f: \mathbb{R} \to \mathbb{R}$ is a function, defined by f(x) = 10x - 7, if $g(x) = f^{-1}(x)$, then 3386 Softee Scanner CA Foundation Paper 3A (New Syllabus) ang(x) is equal to an weak a com-(c) Infinite represented by $f(x) = 10x + \frac{1}{2}$. Let $y = f(x) + \frac{1}{2}$. Answer: The number of elements in range of constant function is (a) The range set of a constant function is a singleton set. Therefore, (a) One <u></u> a $n(P \cap M \cap S) = n(P) - n(P \cap M) - n(P \cap S) + n(P \cap M \cap S), \quad (s, n) \in \mathbb{R}$ one. the number of elements in the range set of a constant function is 10 X+7 10x - 7 The value of $g(x) = f^{-1}(x) = \frac{x+7}{10}$ 1. (1.) (5, 3, 52,50 × (9) (1.)) (5, 3) (5, 10) = 70 - 40 - 20 + 10 $f^{-1}(\mathbf{x})$ f(x) = 10x - 10x $= \frac{x+7}{10}$ $= \frac{y+7}{10}$ = y + 7 11 <u>y</u> + 7 (b) Zero (d) Indetermined <u></u> 10x +17+ (8) 2 的小子做了多+的优化 $x = f^{-1}(y) - f^{-1}(y)$ Antonia the and the second and and an Contraction of the second of the second of the second of A Star Blank [trom eq (1)] i (1 mark) (1 mark)

 $[31]/4f f(x) = \log\left(\frac{1+x}{1-x}\right)$, then f ŝ [29] Let A = {1, 2, 3}, then the relation $R = \{1, 1\}, \{2, 3\}, (2, 2), (3, 3), (1, 2)\}$ 2013 - JUNE (b) If $f(x) = \log \left(\frac{1+x}{1-x}\right)$, then, i.e. (c) 49 (7^{*}) (c) 3f(x) (a) f(x)Answer: (c) If f(x) = x + 2, $g(x) = 7^{x}$ than (c) If A = {1, 2, 3} then m Answer-Answer: (c) Reflexive f(x) = x + 2, $g(x) = 7^{*}$, than $g_{0}of(x) = 1$) 7 . x + 2 . 7 (b) 7 + 2 (c) 7 . x + 2 . 7 (c) (c) 7 + 2 (c) None of these $R = \{(1, 1) (2, 3) (2, 2) (3, 3) (1, 2)\}$ Here, R = $\{(1, 1), (2, 2), (3, 3)\}$ shows reflexive g of(x) Chapter - 7] Sets, Relations and Functions - 3:387 1+x2 $= g \left(f(x) \right)$ 121-= g {x + 2} = 7* . (49) Iŀ ļI = 49 . (7*) 1212 Visit - UNU - Visit - Visit 1+ 1+ 2x 1+x² 01 - 22 - 00 $\left(\frac{2x}{1+x^2}\right)$ is equal to: 1+x2 (b) $f^{(2)}(x)$ (d) -f(x)(d) Equivalence 대회로마을 한 (()gmark) U 18, 10 H. F. W. . H NAUSS IN (c) | · · (£) (£) 1.6 WAR AR de PLA (1 mark) (1 mark) 3 [33] Of the 200 candidates who were interviewed for a position at 2 [32] If $f(x) = (a + x^n)^{t/n}$, a > 0 and 'n' is a positive integer, then f(f(x))3,388 2013 - DECEMBER (c) x^{1/n} (a) × Anşwer (a) 0 (c) 10 and a mobile phone, and 10 had all three. How many candidates had mobile phone, 40 of them had both a two-wheeler and a credit card. (a) If f(x)had both a credit card and a mobile phone, 60 had both a two-wheele centre, 100 had a two-wheeler, 70 had a credit card and 140 rat none of the three? $= \{a - (a - x^n)^{1/n} \}$ = $\{a - a + x^n\}^{1/n}$ veo.Scanner, CA Foundation Paper - 3A (New Syllabus) H = Xn In $= f\{(a - x^n)^{1/n}\}$ || × = (a - xⁿ)^{1/n}, $= 2 \log \left| \frac{1+x}{1-x} \right|$ $= \log \left\{ \frac{(1+x)^2}{(1+x)^2} \right\}$ $= \log \frac{1+x}{1-x}$ = 2 f(x)= log $(1 - x)^2$ $1 + x^2 + 2x$ 1 + x² - 2) , a > 0 E F H-X-(b) a (d) a^{1/n} (b) 20 (d) 18 M-mai - mail

[35] Let A_{π} {1,2,3} and $B = \{6,4,7\}$. Then, the relation $H = \{(2,4)\}$ (3,6) will be [34] If $f(x) = \frac{-x^2 - 25}{x - 5}$, then f(5) is 2014 - JUNE (d) Since the element "1" of Set A does not have an image in Set B, (a), Function from A to B (c) Both A and B Answer: (c) 10 (d) If $f(x) = \frac{x^2 - 25}{x^2 - 25}$ (a) 0 Answer: (c) $A \Rightarrow Two wheeler candidate$ therefore, this relation is not a function. Answer B 🕮 Crédit card candidate = ISU
No. of candidate who had none of the three C → Mobile phone candidate visation ion just evidentiat n(A∪B∪C) = n(A) + n (B) + n (C) - n(A∩B) – n(B∩C)∞n(Cn) = 100 + 70 + 140 - 40 - 30 - 60 + 10 = 190 $f(5) = \frac{(5)^2 - 25}{5 - 5} =$ = 10 = 200 - 190 = 320 - 130 Chapter +7] Sets, Relations and Functions x - 5 n(A) = 100,n(A ∩ B ∩ C) = 10 n(A ∩ B) = 40, n(B ∩ C) = 30,n(C ∩ A) = 60 = does not exis (b) Function from B to A (d) Not a function (d) not defined _n(B) = 70, ~/h(C) = 1400 / 14 (SA) test in Maria (u) (1 mark) A She Barren A (1 mark) 3.389 [38] Let N be the set of all Natural numbers; E be the set of all even natural [37] The range of {(1,0), (2,0), (3,0), (4,0), (0,0)} is: 36 2014 - DECEMBER 3.390 Solver Scanner CA Foundation Paper - 3A (New Syllabus) (a) {1,2,3,4,0} (c) {1,2,3,4} (c) Many-one into In a class of 50 students, 35 opted for Mathematics and 37 opted for (a) One-one into numbers then the function Answer: (c) 22 (b) The Range of {(1, 0), (2, 0), (3, 0), (4, 0), (5, 0)} (c) Given n(m∪c) = $f: \mathbb{N} \to \mathbb{E}$ defined as $f(x) = 2x + x \in \mathbb{N}$ is: Answer: Mathematics and Commerce are: (a) 13 Commerce. The number of such students who opted for both = [0] n(m()c) ອ ວ n(m) n(m∩c) n(m∪c) 1.36 n(m) + n(c) – n(ຫຼືເາີc) 🖾 72 - 50 35 + 37 - 50 35 + 37 - n(m)c) (d) 28 (b) {0} (d) None of these (d) Many-one onto (b) One-one onto ч. 2 ЧЕ 2 (1 mark) (1 mark) (1 mark)

 (40) If S = {1, 2, 3} then the relation {(1, 1), (2, 2), (1, 2), (2, 1)} is symmetric and (a) Reflexive but not transitive (b) Reflexive as well as transitive (c) Transitive but not reflexive (d) Neither transitive nor reflexive (1 mark) 	Answer: (b) $A = \{2, 3\}, B = \{4, 5\}, C = \{5, 6\}$ $B \cap C = \{5\}$ $A \times (B \cap C) = \{2, 3\} \times \{5\}$ $= \{(2, 5), (3, 5)\}$	[39] If A = {2, 3}, B = {4, 5}, C = {5, 6}, then A x (B \cap C) = (a) {(5, 2), (5, 3)} (c) {(2, 4), (3, 5)} (d) {(3, 5), (2, 6)}	at $f(x) = 2x_2$ $f(x) = 2x_2$ $f(x) = 2x_2$ f(x) is one-one $f(x) = 2x_2$	(b) N = Set of all Natural No. E = Set of all Even No. = $\{2, 4, 6, 8, 10, \dots\}$ f(x) = $2x$ f(x) = $f(x_{1}) = f(x_{2})$	[Chapter → 7] Sets, Relations and Functions 3.391
[42] If N be the set of all natural numbers and E be the set of all even natural numbers then the tunction $f: N \to E$, such that $f(x) = 2x$ for (a) one-one onto (b) one-one into (c) many-one onto (d) constant (1 ma	2015 - JUNE <u>y</u> (x - y)	$f(y x) = \frac{y x}{x} = \frac{x}{\frac{y}{-1}} = \frac{x}{\frac{y-x}{x}} = \frac{y}{y-x}$ $\frac{f(x y)}{f(y x)} = \frac{x(x-y)}{y/(y-x)} = \frac{x}{(x-y)} \cdot \frac{(y-x)}{y}$ $= \frac{-x(x-y)}{y}$	(c) If $f(x) = \frac{x}{x-1}$ $f(x/y) = \frac{x/y}{\frac{x}{y} - 1} = \frac{\frac{x}{x-y}}{\frac{x-y}{y}} = \frac{x}{\frac{x-y}{x-y}}$	(c) If S = {1, 2, 3} uter The Relation {(1, 1), (2, 2), (1, 2), (2, 1)} is symmetric an transitive but not reflexive [41] If $f(x) = \frac{x}{x-1}$ then $\frac{f(x/y)}{f(y/x)} \neq 1$ (a) $\frac{x}{y}$ (b) $\frac{y}{x}$ (c) $-\frac{x}{y}$ (1 mat	-3.392 Solved Scanner CA Foundation Paper - 3A (New Syllabus)

$= \{(x, a), (x, b), (x, c), (x, c), (x, c), (x, c), (y, d), (y, d), (y, d), (y, d), (z, a), (y, b), (z, b), (z, c), (z, d)\}$ Then $\{(x, a), (y, b), (z, d)\}$ is a functions. [44] In a class of 80 students, 35% students can play only cricket, 45% students can play only table tennis and the remaining students can play both the games. In all how many students can play cricket?	(c) $\{(x, a), (x, b), (y, c), (z, d)\}$ (b) $\{(x, a), (y, b), (z, d)\}$ (c) $\{(x, c), (z, b), (z, c)\}$ (d) $\{a, z\}, (b, y), (c, z), (d, x)\}$ Answer: (b) If A = $\{x, y, z\}$ B = $\{a, b, c, d\}$ -A × B = $\{x, y, z\} \times \{a, b, c, d\}$ (1 matk)	2015 - DECEMBER [43] If A = {x, y, z}, B = {a, b, c, d}, then which of the following relation from the set A to set B is a function?	$f(x) = 2x f(1) = 2 \times 1 = 2 f(2) = 2 \times 2 = 4 f(3) = 2 \times 3 = 6 (i) Range of function (R) \leq \mathbb{E}(ii) f(x_i) = f(x_2) thenfunction is one-one onto$	[Chapter -7] Sets, Relations and Functions Answer: (a) N = {1, 2, 3, 4,
$n(A \cup B) = n(A) + n(B) + n(B) - n(A \cap B)$ 80 = 64 + $\frac{1}{2}$ + 36 + $\frac{1}{2}$ + 36 + $\frac{1}{2}$ + 36 + $\frac{1}{2}$ + 36 + $\frac{1}{2}$ + 1	$\begin{array}{l} (B \cap \overline{A}) &= \frac{45}{100} \times 80 \\ n(B) - n(A \cap B) &= 36 \\ n(B) - x &= 36 \\ (B) &= 36 \\ (B) &= (36 + x) \end{array}$	$n(A \cap B) = 28$ $n(A) - n(A \cap B) = 28$ n(A) - x = 28 n(A) = 28 + x No. of students who play only Table Tennis	(b) Total students in the class = 80 $n(A \cup B) = 80$ Let no. of students whe play both Table Tennis and Cricket = x i.e. $n(A \cap B)$ = x No. of person who play only Cricket $n(A \cap B) = 80 \times \frac{35}{100} = 28$	3.394 Solved Scanner CA Foundation Paper - 3A (New Syllabus) (a) 55 (b) 44 (c) 36 (d) 28 (d) 28 (1 mark)

<u>الا</u> .

÷

乙

i di Kati di Per

and C = $\left[x: \frac{x}{3} \in \mathbb{N}, x \le 12\right]$ then A $\cap (B \cap C)$ is equal to (a) φ (b) Set B Answer: (c) Set B (c) Set B (c) Set B (c) Set B (c) Set C (c) Set	2016 - JUNE [46] If set A = [x: $\frac{x}{2} \in z$, $0 \le x \le 10$], - B = $ix : \dot{x}$ is one-digit prime number]	then $\log(4) = 2(4)^2 + 2$ $= 2(4)^2 + 2$ = 32 + 2 = 34	(a) 18 (b) 22 (c) 34 (c) 1(x) = 2x + 2 and $g(x) = x^2$ (d) 128 (d) 128 (d) 128 (in the second secon	-[Chapter = 7] Sets - Relations and Functions i.e. $n(A \cap B) = 16$ No. of students who play cricket n(A) = 28 + 18 = 44 = 28 + 16 = 44
(b) D = Integers, R = (0, 2) (c) D = Integers, R = ($-\infty, \infty$) (d) D = Real numbers, R = ($-\infty, 2$) (f) Given function (g) Domain = 2, -[(x+1)] = 3 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	A = {1, 2, 3, 4, 4, ∞ } A = {1, 4, 9, 16, ∞ } If x ∈ A, y ∈ A then xy ∈ A [48] The domain (D) and range (R) of the function f(x) = 2 - $ x_{+} $ (a) D = Real numbers, R = (2, ∞)	(a) $X + Y \in A$ (b) $X - Y \in A$ (c) $\frac{X}{Y} \in A$ (d) $xy \in A$ (d) Let A be the set of square of Natural No.	nark) = $\{1, 2, 3, 4\}$ BAC = $\{2, 3\}$ AA(BAC) = $\{0, 1, 2, 3, 4, 5\} \cap \{2, 3\}$ = $\{2, 3\}$ [47] Let A be the set of squares of natural numbers and let $x \in A$, $y \in A$	3.396 Solved Scanner. CA Foundation Paper - 3A (New Syllab B = {x : x is one digit prime number} and C = {x: $\frac{x}{3} \in \mathbb{N}$ x ≤ 12} = $\left(\frac{3}{3}, \frac{6}{3}, \frac{9}{3}, \frac{12}{3}\right)$

[50] The inverse function f^{t} of f(x) = 100x is: [49] If R is the set of all real numbers, then the function f. $R \rightarrow R$ defined by 2016 - DECEMBER (a) $\frac{x}{100}$ <u></u> (b) $f(x) = 2^x$ Answer: (c) many-one into (a) one-one onto (X) = 2 Domain = Real No, Range = $(-\infty, 2)$ So Range = $[-\infty, 2]$ + ve sign taking $2^{x_1} = 2^{x_2} \implies x_1 = x_2$ so, f(x) = 2^x is one-one Now, $f(x_1) = f(x_2)$ $f(x_1) = 2^{x_1}$ and $f(x_2) = 2^{x_2}$ ± (x + 1) $\log y = \log 2^{x}$ [X + 1] $\log y = x \log 2$ $f(x) = 2^{x}$ $y = 2^{x}$ <u>≥ , [Chapter 5: 7] Sets, Relations and Eurotions</u> | 3:397 So, range of function \neq B so it is into function. x + 1 = 2 - yx = log 2y [log is not valid value if y is negative] x = 1 - yx = 2 - y - 1. = 2 - y = 2 - y (5 (5)(b) (15) (7) x100x x (d) None of these (b) one-one into (d) many-one onto 💈 💉 (1 mark) ⁽⁾⁽¹⁾ (x⁺ 1) = 2 - 4 x=y-3 x=y-2-1 x + 1= - 2 + y - ve sign いいのなないないないないとなるない at One with the THE CONTRACTOR (Ar power 348 23 40 513 62 8. (1 mark) 3 [52] The range of function f defined by $f(x) = \frac{x_0}{x_1^2 + 1} \frac{x_0}{x_1^2}$ 2017 - JUNE 3:398 Solved Scanner CA Fou (c) $f(x) = \frac{x}{x^2 + 1}$ (a) 128 (c) $\{x: \frac{-1}{2} \le x' \le \frac{1}{2}\}$ (d) $\{x: x > \frac{1}{2} \text{ or } x < \frac{-1}{2}\}$ (1) $\text{that}()^{\frac{1}{2}}$ (a) $\{x: \frac{-1}{2} < x < \frac{1}{2}\}$ Answer Answer: (c) 32 (a) Given f(x) = 100 x Answer: The number of subsets of the set formed by the word Allahabad is: No: of subset = 2" x²+1 $f^{-1}(y) = \frac{y}{100}$ $f^{-1}(x) = \frac{x}{100}$ = 100 = 100 x125 II 32 10. n(B) = 30, x(신) 원) ~ 30 $(B^* A)h \to (B)h \to (A)h \to (A)h \to (B) \to (B)$ (d) 64 (b) $\{x: \frac{-1}{2} \le x < \frac{1}{2}\}$ (b) 16 の一日に、日本の Arr ogusfi(1 mark) 3A (New Syllabus) 12.20 14 オビス 1.2)1: 「「たちのか」 (a) 1. (a) 13 ÷.

(a) A = Hindi, B = English n(A) = 80, n(B) = 60, n(A∩B) = 40 n(A∪B) = n(A) + n(B) - n(A∩B) = 80 + 60 - 40 = 140 - 40 = 100 (54) If $f(x) = \frac{x+1}{x}$ and $g(x) = \frac{1}{1-x}$ then (fog) (x) is equal to: (a) $x = 1$ (b) x (c) $1 - x$ (d) $- x$ (1'mark)	$\frac{1}{4} \ge y^{2}$ Fange $\rightarrow \left\{x: -\frac{1}{2} \le x \le \frac{1}{2}\right\}$ [53] In a group of students 80 can speak Hindi, 60 can speak English and 40 can speak English and Hindi both, then number of students is: (a) 100 (b) 140 (c) 180 (d) 60 (1 mark)	$yx^{2} + y = x$ $yx^{2} - x + y = 0$ a = y, b = -1, c = y $x = \frac{-(-1) \pm \sqrt{(-1)^{2} - 4xyxy}}{2.y}$ $x = \frac{1 \pm \sqrt{1 - 4y^{2}}}{2y}$ $1 - 4y^{2} \ge 0$
$\begin{cases} f\left(\frac{1}{x}\right) \\ = \frac{1}{x} + \frac{1}{x} = \frac{1}{$	2017 - DECEMBER (a) $\frac{2x+3}{3x+5}$ (b) $\frac{2x+5}{5x+2}$ (c) $\frac{3x+2}{5x+3}$ (c) Given $f(x) = \frac{x+1}{5x+3}$	3:400 Solved Scatther CA Foundation Paper 34 (Mag Answer: (b) Given $f(x) = \frac{x-1}{x}$ and $g(x) = \frac{1}{1-x}$ $\log (x) = \frac{f(g(x))}{1}$ $= \frac{f(g(x))}{1}$ $= \frac{f(g(x))}{1}$ $= \frac{1}{(1-x)} - \frac{1}{1} = \frac{x-x+x}{1-x}$ (1-x) (1-x)

.

۰.

.

1

,

[56] nn a class of 35 students; 24 like to play cricket and 16 like to play [57] Let N be the set of all natural numbers, E be the set of all even natural 2018 - MAY (Chapter.th: 私)、Setsy Belations and Functions 副 [83:401] Answer: (a) 5 How many students like to play both cricket and football? $\beta_{-}(\mathbf{r})$ football. Also each student likes to play at least one of the two games. (c) 19 (a) Let A → Cricket $F:N \rightarrow E$ defined as $f(x) = 2x - V \times \in N$ is = (a) One-one-into (b) Many-one-into numbers then the function Answer: (c) One-one onto (c) Given 35 = 24 + 16 - n(A ິດ B) n(A∪B) = n(A) + n(B) _ n(A nB) $n(A \cap B) = 24 + 16 - 35$ n(A∩B) = ? fN→m n(A) = 24, n(B) = 16, n(AUB) = 35 B → Footbal N = {1, 2, 3, 4,5,6 E = {2, 4, 6, 8, f(\$)≦)2x 13.3 V X ∈ N $(2) = 2 \times 2 = 4$ $(1) = 2 \times 1 = 2$ $(3) = 2 \times 3 = 6$ 5 - 2 2 N (2) = 1 (2) N (b) 11 (d) 8 (d) Many-one-onto 1. = (8) - A)n 8 ie A -(0) C 11 VIEW PAR > iei. (1 mark) (1 mark) 53402 Solveo scanner CA Foundation Paper 13A (New Syllabus) of families which buy A only is: (a) 6600 (b) 6300 and require require to the Answer: In a town of 20,000 families it was found that 40% families buy (c) 5600 A and C if 2% families buy all the three newspapers, then the number newspaper C, 5% families buy A and B, 3% buy B and Cand 4% buy newspaper. A, 20% families buy newspaper B and 10%) (a) Total Families n(u) = 20000 No. of families who buy Newspapers A & B No. of families which buy Newspapers (A² only and a set of a No. of families who buy all newspapers No. of families who buy Newspapers C & A No. of families who buy Newspapers B & C No. of families who buy Newspaper C x So f(x) function is one-one and one to. $2x_1 = 2x_2 = x_2$ and $f(\mathbf{x}_1) = f(\mathbf{x}_2)$ Range of function = {2,4,6,..... $n (A \cap B) = 5\%$ of 20000 = 1000 n (A ∩ B ∩ C) = 2% of 20000 = 400 n (C ∩ A) = 4% of 20000 = 800 n(C) = 10% of 20000 = 2000 = n AnBhČ n (B ∩ C) = 3% of 20000 = 600 No. of families who buy Newspaper 'B' No. of families who buy Newspapers 'A' anaway as a set n(A) = 40% of 20000 = 8000 <u>н</u>Е (), (d) 600 2 8000 - 4 JAN - 7 P 1. S. M. . - W. O. S. 00000 , an (1 mark) lies buy

Range of $f = \{1, A, S, 16\}$ (2) = (2) ² = 4 (A)=(4)^{A12}(6) (4)^{A12}(6) (4)^{A	[60] A is {1,2,3,4} and B is {1,4,9,16,25} if a function f is defined from set A to B where f(x) = x^2 then the range of f is: (a) {1,2,3,4} (b) {1,4,9,16} (c) {1,4,9,16,25} Answer: (b) Given $A = \{1,2,3,4\}$ If f: A→ B and $f(x) = x^2$	$\begin{array}{c} \text{(b)} Given \\ A = [3, 4, 5, 6, 7] \\ \text{No. of proper subset} = 2^{n} \frac{1}{3} \\ \text{No. of proper subset} = 2^{n} \frac{1}{3} \\ \text{ODef} = 32^{-1} \\ = 32^{-1} \\ \text{Solution} \\ Soluti$	$= n (A) - n (A \cap B) - n(A \cap C) + n(A \cap B \cap C) = 8000 - 1000 - 800 + 400 = 6600$ [59] The numbers of proper sub set of the set (3,4,5,6,7) is: (a) 32 (b) 37 (c) 30 (c) 3
Answer: (a) Given A B $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,3,5,7\}$ $= \{1,3,5,7\}$ $= \{1,3,5,7\}$ $= \{2,4,6,8\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,2,3,4,5,6,7\}$ $= \{1,3,5,7\}$ $= \{$	B = {3,4}, n (B) = 2 No, of Relation from A and B = 2^{mxn} = 2^{2x2} [62] If A = {1,2,3,4,5,6,7} and B = {2,4,6,8}. Cardinal number of A-Bis (a) 4 (b) 3 (c) 9 (d) 7	(b) Given $B = [3]4]$ $A \times B = \{1, 2\} \times \{3, 4\}$ $= \{(1, 3), (1, 4), (2, 3), (2, 4)\}$ No: of relation from A and $B = 2^{n}$ $= 2^{4}$ A liter $A = \{1, 2\}, n (A) = 2$	[64] If $A = \{1, 2\}$ and $B = \{3, 4\}$. Determine the number of relations from A _a (a) 3 Bound 1 - Solution of the solution o

. · . .

.

63 [64] If 2019 - JUNE Identity the function from the following: (a) $\{(1,1), (1,2), (1,3)\}$ (b) $\{(1,1), (2,1), (2,3)\}$ (c) $\{(1,2), (2,2), (3,2), (4,2)\}$ (d) None of these A ways of (1 mark) (c) {(1,2) (2,2) (3,2) (4,2)} is the function â <u>َ</u> Ø (c) $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ Q $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ {2, 6, 8} {2, 6, 8, 9} [Chapter 🖛 7] Sets, Relations and Functions None **{2, 6}** $B = \{1, 3, 4, 5, 7, 8\}; C \equiv \{2, 6, 8\}$ then find $(A \in B)$ (C $B = \{1, 3, 4, 5, 7, 8\}, C = \{2, 6, 8\}$ Then (A – B): UC A-B = {2, 6, = {2, 6, 9} $= \{1, 2, 3, 4, 5, 6, 7, 8, 9\} - \{1, 3, 4, 5, 7, 8\}$ = [2, 6, 9} U {2, 6, 8} ,8,9} 1) 200/11 1.1 Many one func and a second a line - (V) NY 1 - - () を変を行う $(\Sigma) \sim i(3) + i^{-1}$ $\langle \psi_{i} \rangle = \langle \psi_{i} \rangle \langle \psi_{i} \rangle \langle \psi_{i} \rangle$ 101 - TV - 161 VUC NO 3:405 (1 mark) 3 í. 2 W BM [<u>6</u>5] [66] The no. of subsets of the set (3, 4, 5) is :: , o, the [67] If $f(x) = x^2$ and $g(x) = \sqrt{x}$ then 1 A = {1 2 3 410} a relation on A, B = {(x, y)/ x + y = $10, x \in A$, Y $\in A$. (b) 8 (c) 16 (a) {1, 2, 3, 4, 5} $x \ge Y$ then domain of R⁻¹ is (b) {0, 3, 5, 7, 9) (d) 32 <u>0</u> (a) 4 Answer: (b) Here, A = {3, 4, 5} (c) go f(9) = 3(b) go f(-3) = 9 (a) go f(3) = 3(d) go f(-9) = 3 Answer: (a) Given, $f(x) = x^2$ and $g(x) = \sqrt{x}$ {1, 2, 4, 5, 6, 7] n(A) = 3Solved Scanner CA Foundation Paper - 3A (New Syllabus) No of Subset = 2" fog (x) $\mathsf{R} = \{(5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\}, (1, 3) = \{7, 10\}$ $R = (x, y); x + y = 10, x \in A, y \in A, x \ge y, z = R (z)$ $\mathbf{R}^{1} = \{5, 5\} \ (4, 6) \ (3) \ (7) \ (2, 8) \ (1) \ 9) \ (3) \ (a = 1^{-1} \ (b)^{-1} \ (b)^{$ Domain of R⁻¹ = (5, 4, 3, 2, 1) = f { √x} $= (\sqrt{X})^2$ $= f \{g(x)\}$ 11 00 іі N2 (r)) (r (r) (c s) 1. 2. S= (1 1 1 The Harris Mark AND CONTROLLED 1991 - T.C. ALERCEN in an in the second sec 00 "IOVAL A 1.1.1 10 注 105. (N. 1) 1 mark)

69 89 2019 - NOVEMBER If $A = \{a, b, c, d\}$; $B = \{p, q, r, s\}$ which of the following relation is a (d) If ତ୍ରି ବି (c) $R_3 = \{(b, p), (d, s), (b, Y)\}^{s}$, $(c, \nabla, \nabla) = \{(b, p), (b, Y)\}^{s}$, $(c, \nabla, \nabla) = \{(a, p), (b, Y)\}^{s}$, $(c, Q), (d, S)\}^{s}$, $(c, \nabla, \nabla) = \{(a, p), (b, Y)\}^{s}$, (c, Q), (c, Q), (c, Q), (c, N)(a) $R_1 = \{(a, p), (b, q), (c, s) \\ (b) R_2 = \{(p, a), (b, 1), (d, s) \}$ Answer function from A to B a $(A^{T})^{T} = ?$ gof (3) got (x) P is a function from A to B R₄ = {a, p), (b, r), (c, q), (d, s)} x) Boi and go A = {a, b, c, d} * (d *)? (haya) to shade to B = {p, q, r, s} Chapter x), J) 6, ≂ (x) x = = g {x²} ш С ii × () X -With spanning the erus e 🔥 🐔 ons and Functions 5 U(10 م ÷. A RELEWAY 8 73 . Y. A. 44 RO) 140 -(1 mark) 3.407 (1 mark) 3.408 (a) 1/(x - 1)(b) 1/(y - 1)<u>ତ</u> $f(x) = \frac{x+1}{x}$ find (c) 8 (b) 5 (d) 13 (a) 3 Answer: **(a)** $(A^{T})^{T} = A^{T}$ Answer: (d) f(n) = f(n-1)I(1) = 1(n) = t(n - 1) + t(n - 2) when n = 2, 3,f(7) = [3 + 2 + 3] + [3 + 2]Similarly, (7) = 13Example A = (7) = [f(4) + f(3) + f(4)] + (f(4) + f(3)) $(1) \stackrel{\prime}{=} [f(5) + f(4)] + [f(4) + f(3)]$ (7) = f(6) + f(5)f(4) = f(3) + f(2) = 2 +(3) = f(2) + f(1) =(2) = f(1) + f(0) =,then t(7) =I Solved Scanner GA Foundation Papers 3A (New Syllabus) $(A^T)^T =$ A'=) + 1(n-2 <u>--</u> Ω 4 ω ω ß 1+0= 11 II S Ą 11 1 TIT NOT 2112á ¹⁸ i sautair i a m (0) = 0Bauth (#Mark) いいたいで、 (1 mark) 3 3

According the question $2^x = 2^y + 56$ Option (a) is satisfied eq (1) so x = 6, $y = 3$	 (b) 4 and 2 (c) 2 and 4 (d) 3 and 6 Answer: (a) Let A and B are two set Given n(A) = x and n (B) = y No. of subset of A = 2^x and No. of subset of B = 2^y 	2020 - November [72] Two finite sets respectively have x and y number of elements. The total number of subsets of the first is 56 more than the total number of subsets of the second. The value of x and y respectively. (a) 6 and 3	$xy - x = 1x(y-1) = 1r = 1r'(y) = \frac{1}{(y-1)}$ r'(x) = $\frac{1}{(y-1)}$ r'(x) = $\frac{1}{(x-1)}$ 8 x'(x)	(a) $T(x) = \frac{1}{x}$ Let $f(x) = y$ $x = f^{-1}(y)$ Further Solving $y = \frac{x+1}{x}$ xy = x + 1	Answer:
(c) -3y (d) 1/y (1 mark)	 (d) A finite set of three numbers (1 mark) Answer: (1 mark) (c) The set of cubes of the Natural Number is Infinite Set. because Natural Number is Infinite. [75] The inverse function f¹ of f(y) = 3y is: (a) 1/3y (b) y/3 	= 40 + 32 + 50 - 4 - 7 - 5 + 2 = 124 - 16 = 108 [74] The set of cubes of the natural number is: (a) A null set (b) A finite set (c) An infinite set	 (c) Given: n(A) = 40 h (A∩B) = 4 n(B) = 32 n (B∩C) = 7 n(C) = 50 n (C∩A) = 5 n (A∩B∩C) = 2 n(A∪B∪C) = ? We know that: n(A∪B∪C) = n (A) + n (B) + n (C) - n(A∩B) + h (A ∩ B) - n (B∩C) - n (C∩A) + n (A ∩ B) + h (A ∩ B) 	 (1) The number of items in the set A is 40; in the set B is 32; in the set C is 50; in both A and B is 4, in both A and C is 5; in both B and C is 7 in all the sets 2. How many are in only one set? (a) 110 (b) 65 (c) 108 (d) 84 (l mark) 	3.410 Solue Schner CA Foundation Paper - 3A (New Syllabus)

nark)

(c) 'Perpendicular to' is an equivalence relation' which is not true. [76] Let $F : R = R$ be defined by $f(x) = \begin{cases} 2x & \text{for } x > 3 \\ 3x & \text{for } x \le 1 \end{cases}$ 3x for $x \le 1$	 (a) Parallel to an equivalence relation (b) Perpendicular to is a symmetric relation (c) Perpendicular to is an equivalence relation (d) Parallel to a reflexive relation (1 mark) 	 (d) Singleton Set (1 mark) Answer: (c) The set of cubes of Natural Number is an infinite set because Natural Number is Infinite. [77] In the set of all straight lines on a plane which of the following is Not 	 [76] The set of cubes of natural number is (a) Null set (b) A finite set (c) An infinite set 	2021 - JANUARY	$\mathbf{f}_{1}(\mathbf{x}) = \mathbf{x}$ $\mathbf{y}_{1} = \mathbf{x}$ $\mathbf{y}_{2} = \mathbf{x}$ $\mathbf{y}_{2} = \mathbf{x}$ $\mathbf{y}_{2} = \mathbf{x}$ $\mathbf{y}_{2} = \mathbf{x}$	[Chapter - 7] Sets, Relations and Functions] Answer: (b) Given $f(y) = 3y$ Let $f(y) = x - y = f'(x)$
$n = 1 - a + u_{-} = \frac{34 - 24 + 2}{3} = 33$ let $n = n$ (a) = 33 Number which is divisible by 5 from 10 to 100 are 5; 10, 15100	(d) 33 Answer: (c) Numbers which is divisible by 3 from 1 to 100 are 3, 6, 9,99 Here $a = 3, d = 6-3 = 3, 1 = 99$ (1 mark)	(79) The number of integers from 1 to 100 which are neither divisible by 3 (a), 67, (b) 55 (c) 45	and 4 lies b/w n > 3 then $f(x) = 2x$ $f(4) = 2 \times 4 = 8$ Now $f(-1) + f(2) + f(4)$ = -3 + 4 + 8	(5x for $x \le 1$ (-1) lies $x \le 1$ then $f(x) = 3x$ $f(-1) = 3 \times (-1) = -3$ Now 2 lies b/w $1 \le x \le 3$ then $f(x) = x^2$ $f(2) = (2)^2 = 4$	(d) 6 Answer; (a) Here f: R = R {2x for x > 3 f (x)= {x² for 1≤ x ≤ 3	3.3.12 Solved Scanner CA. Foundation Raper- 3A (New Syllabus) The value of $f(-1) + f(2) + f(4)$ is (a) 9 (b) T4

÷

•

LU BY a. and Functions and Functions and Functions # 183.413.1 ~a(≐)5,'d.≑10લ5 ≞.5; હોય !=થ100 છે. હો તેણે વ્યુસેલ્ડ્રેલા હોય હતે ∪જિંદા દુ.છ are 7, 14, 21 ------98 Number which is divisible by 7 from 1 to 100 Number which is divisible by 3 and 5 (=15) $n(C\cap A) = 4$ Nos. which is divisible by 3, 5 and 7 (=105) at 1 is the product of the product o are 35, 70 Number which is divisible by 5 and 7 (=35) Number which is divisible by 7 and 3 (= 21) n = n(B) = 20 $n = \frac{1 - a + d}{d} = \frac{98 - 7 + 7}{7}$ a = 7, d= 14 - 7, = 7, l = 98 $\frac{1-a+d}{2} = \frac{100-5+5}{2} = 20$ n(B∩C) = 2 let n = n(C) = 14 (3.5) 15, 30, 45, 60, 75, 90 Automore and a faile (Catter of MA) = n (A · B · C) = n(u) - [n(A) + n (B) + n (c) - n(A∩B) - n (B∩C) - n (C∩A) = n(u) - n (AUBUC) - 1 = n' (AUBUC) = 45 + n (AnBnC)] 100 - 55 100 - [67-12] 100 - [33 + 20 + 14 - 6 - 2 - 4 + 0 ારા તેવાં પંચ સાહે સાથે જ પ્રાથમિક 11.14 Weiler - Die Carler 20151 · 00· W. W. [81] Let A = R-{3} and B = R-{1}. Let $f(x) \rightarrow B$ 3.414 Solved Scanner CA Foundation Paper - 3A (New Syllabus) 2021 - JULY (d) (c) -1 -1 (a) 2/3 (b) 3/4 (b) Here $f(x) = \sqrt{16 - x^2}$ defined by $f(x) = \frac{X-2}{X-3}$. What is the value of $f'\left(\frac{1}{2}\right)$? (c) Given $f(x) = \frac{x-2}{x-3}$ Answer: Answer: (d) [+4, 4] <u></u> (b) [-4, 4] (a) [-4, 0] The range of the function F defined by $f(x) = \sqrt{16-x^2}$ is on squaring both side Range of function = [-4, 4] $Let y = \frac{X-2}{X-3}$ [0, 4] = y(x - 3) = x - 2W. Chart $x = \sqrt{16 - y^2}$ $y^2 = 16 - x^2$ $x^2 = 16 - x^2$ $y = \sqrt{16 - x^2}$ 16 - y2 ≥ 0 ± 4' 2 y 16 > 1 (1 mark) (1 mark) 200

ark)

5

$f(-3) = (-3)^2 - 1 = 9 - 1 = 8$ Now, gof (-3) = g [f(-3)] = [[2 × {f(-3)}] + 3] gof (-3) = [(2 × 8) + 3] = [16 + 3] = [19] = 19 Therefore, fog(3) - gof(-3) = 80 - 19 = 61	(b) The function g(x) is a modulus function. It means that it can generate only positive values. fog(3) = f[g(3)] Let's calculate g(3). $g(3) = [(2 \times 3) + 3] = [6 + 3] = [9] = 9$ Now, $fog(3) = f[g(3)] = [(g, (3))^2 - 1.$ $\Rightarrow fog (3) = 9^2 - 1 = 81 - 1 = 80$ Similarly, $gof (-3) = g[f(-3)]$ Let's calculate $f(-3)$.	Therefore, $f^{-1}\left(\frac{1}{3}\right) = \frac{(3\times\frac{1}{2})^{-2}}{\frac{1}{2}-1} = 1$ [82] If F(x) = x ² - 1 and g(x) = [2x + 3], then Fog (3) - g of (-3) = ? (a) 71 (b) 61 (c) 41 (d) 51 Answer: (1 mark)	$\Rightarrow xy - 3y = x - 2$ $\Rightarrow xy - x = 3y - 2$ $\Rightarrow x(y - 1) = 3y - 2$ $\Rightarrow x = \frac{3y - 2}{y - 1}$ Therefore, $f'(x) = \frac{3x - 2}{x - 1}$
(a) Let the number of teachers teaching both Physics'and Chemistry	 [84] Out of a group of 20 teachers in a school, 10 teach Mathemalics, 9 teach Physics and 7 teach Chemistry. 4 teach Mathematics and Physics but none teach both Mathematics and Chémistry. How many teach Chemistry and Physics; how many teach only Physics? (a) 2, 3 (b) 3, 2 (c) 4, 6 (d) 6, 4 (l) mark 	Answer: (d) $n(A \cap B) = n(A \cup B)' = n(U) - n(A \cup B)$ $n(A \cup B) = n(A) + n (B) - n(A \cap B)$ $n(A \cup B) = 310 + 190 - 95 = 405$ $n(A \cap B) = n(U) - n(A \cup B) = 650 - 405 = 245$ $n(A \cap B) = 100$ $n(A \cap B) = n(U) - n(A \cup B) = 650$ $n(A \cap B) = 100$ $n(A \cap B) = 100$ n(3.416 Solved Scantder CA Foundation Paper - 3A (New Syllabus) [83] Let U be the universal set, A and B are the subsets of U. If n(U)= 650, n(A) = 310 n(A) = 310 n(A∩B) = 95 and n(B) = 190, then n(A∩B) is equal to (AardB are the complement of A and B respectively): (a) 400 (b) 200 (c) 300 (d) 245

Therefore, number of teachers teaching both Physics and Chemistry = 2. Number of teachers teaching only Physics = 9 - 2 - 4 = 3 [85]. If a is related to b if and only if the difference in a and b is an even integer. This relation is (a) symmetric, reflexive but not transitive (b) symmetric, transitive but not reflexive (c) transitive, reflexive but not symmetric (d) equivalence relation (1 mark)	In the absence of information, it is safe to assume that all the teachers teach at least one of the subjects. Therefore, 9 - x - 0 - 4 + x + 7 - x - 0 - 0 + 4 + 0 + 0 + 6 = 20 $\Rightarrow 22 - x = 20$ $\Rightarrow x = 22 - 20 = 2$	IChapter - 7] Sets, Relations and Functions = 3.417
 (b) Take the values of a. b. and c to be 2, 6, and 10 respectively. (c) Now, a = 2; b = 6; c = 10 (d) Clearly, (a, b) ∈ R as 2 - 6 = -4, which is an even integer. (e) Also, (b) c) ∈ R as 6 - 10 = -4, which is an even integer. (f) Also, (a, c) ∈ R as 2 - 10 = -4, which is an even integer. (g) Therefore, this relation is a transitive relation. Since this relation is a Reflexive, Symmetric, as well as a Transitive Relation; it is an Equivalence Relation. 	 (c) Take, for example, the number 2. Now, for this relation to be a reflexive relation, this element 2 would have to have a relation with itself. (d) 2 - 2 = 0, which is an even integer. (e) Therefore, any element can have a relation with itself, and hence, this is a reflexive relation. 2. Check for Symmetry: (a) A relation is symmetric if (a, b) ∈ R → (b, a) ∈ R. (b) Take two integers, 2 and 6. (c) Here, 2 - 6 = -4, which is an even integer. (d) Also, 6 - 2 = 4, which is an even integer. (e) Therefore, (2, 6) ∈ R and (6, 2) ∈ R. (f) Therefore, this is a symmetric relation. 3. Check for Transitive if (a, b) ∈ R, and (b, c) ∈ R → (a, c) ∈ R. (a) A relation is transitive if (a, b) ∈ R, and (b, c) ∈ R → (a, c) ∈ R. 	 3.418 Solved Scanner CA Foundation Paper - 3A (New Syllabus) Answer: (d) 1. Check for Reflexivity: (a) A relation is reflexive if every element has a relation with itself.

1000

S.

Ś

ο ν Υ

$2022 - June$ $[877] f(x) = \{(2,2) ; (3,3) ; (4,4)\}; (5,5) \} (6,6)\} be a relation of set$ $A = \{2,3,4,5,6\}$ It is a: (a) Reflexive and Transitive (b) Reflexive and Symmetric (c) Reflexive only (d) An equivalence relation (1 mark)	$u^{-1}(x) = \frac{x-1}{x}$ $= u^{-1}(x) = \frac{x-1}{x}$ $= u^{-1}(x) = \frac{x-1}{x}$ $= u^{-1}(x) = \frac{x-1}{x}$ $= u^{-1}(x) = 1 - \frac{1}{x}$ $= \frac{1}$	$y_{1}(1-x) = 1$ $y_{2}(1-x) = 1$ $y_{3}(1-x) = 1$ y_{3	(c) $1 - \frac{1}{x}$ (d) $\frac{1}{x} - 1$ (1 matk) Answer: (c) Let $y = u(x)$ and $y = \frac{1}{1 - x}$ and $y = \frac{1}{1 - x}$ (1 matk)	[Chapter \rightarrow 7] Sets, Relations and Functions 1 3.419 [86] If u(x) = $\frac{1}{1-x}$, then u ⁻¹ (x) is: (a) $\frac{1}{x-1}$ (b): 14x - 140 (c)
 [89] Two finite sets have x and y number of elements. The total number of subsets of first is 56 more than the total number of subsets of second. The value of x and y is: (a) 6 and 3 (b) 4 and 2 (c) 2 and 4 (d) 3 and 4 (1 mark) 	$y = \frac{-1}{(x-1)}$ $f^{-1}(x) = \frac{-1}{(x-1)}$ $f^{-1}(y) = \frac{-1}{(x-1)} = \frac{1}{1-y}$	Answer: (a) Given f(y) = $\left(\frac{y-1}{y}\right)$ Let f(y) = x = y = f ⁻¹ (x) x = $\frac{y-1}{y}$ xy = y - 1 xy = y = 1	[88] If $f(y) = \frac{y-1}{y}$, find $f^{1}(x)$. (a) $\frac{1}{1-y}$ (b) y (c) $\frac{y}{y-1}$ (d) $\frac{y}{1-y}$ (1 mark)	3.420 Solved Scanner CA Foundation Paper - 3A (New Syllabus) Answer: (c) If $f(x) = \{(2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$ be the Relation of A = {2, 3, 4, 5, 6} It is a Reflexive only.