PAST YEAR QUESTIONS AND ANSWERS

2006 - NOVEMBER

- [1] Out of 20 members in a family, 11 like to take tea and 14 like coffee. Assume that each one likes at least one of the two drinks. Find how many like both coffee and tea:
 - (a) 2 (b) 3 (d) 5
 - (c) 4

Answer

- (d) Let T: set of people who like tea, and C: set of people who like coffee. Then n (T) = 11, n(C) = 14 and n(TUC) = 20 $\therefore n(TUC) = n(T) + n(C) - n(T \cap C)$
 - $r_{\rm c}(T \cap C) = 11 + 14 20 = 5$

2007 - FEBRUARY

- [2] In a group of 70 people, 45 speak Hindi, 33 speak English and 10 speak neither Hindi nor English. Find how many can speak both English as well as Hindi
 - (a) 13 (b) 19 (c) 18 (d) 28 (1 mark)

Answer:

- (c) Let H : set of those people who speak Hindi and E : set of those people who speak English So, n(H) = 45, n(E) = 33, $n(E \cup H) = 70 - 10 = 60$. $\therefore n(E \cup H) = n(E) + n(H) - r_n(E \cap H)$ $60 = 45 + 33 - n(E \cap H)$

n(E∩H) = 45 + 33 - 60 = 18

- 3.420
 - [3] Let R is the set of real numbers, such that the function $f: R \rightarrow R_{and}$ Let H is the set of real numbers, set $R \rightarrow R$ are defined by $f(x) = x^2 + 3x + 1$ and g(x) = 2x - 3. Find $f(x_{oq})$. (c) $4x^2 - 6x + 1$ (d) $x^2 - 6x + 1$ (1 mar Answer (c) (fog)x = f(g(x))= f(2x - 3) $=(2x-3)^{2}+3(2x-3)+1$ $= 4x^{2} + 9 - 12x + 6x - 9 + 1$ $= 4x^2 - 6x + 1$

2007 - MAY

(1 mark)

[4] In a survey of 300 companies, the number of companies using different media - Newspapers (N), Radio (R) and Television (T) are as follows $n(N) = 200, n(R) = 100, n(T) = 40, n(N \cap R) = 50, n(R \cap T) = 20, n(N \cap R)$ = 25 and $n(N \cap R \cap T) = 5$. Find the numbers of companies using none of these media (a) 20 companies (b) 250 companies . (c) 30 companies (d) 50 companies (1 mark) Answer: (d) $n(NURUT) = n(N) + n(R) + n(T) - n(N \cap R)$ $-n(N \cap T) - n(R \cap T) + (N \cap R \cap T)$ = 200 + 100 + 40 - 50 - 25 - 20 + 5= 250Number of companies not using any media = n(S) - n(NURUT)= 300 - 250= 50[5] If R is the set of real numbers such that the function $f: R \rightarrow R$ is defined by $f(x) = (x + 1)^2$, then find (fof) : (a) $(x + 1)^2 + 1$ (b) $x^2 + 1$ (c) $\{(x + 1)^2 + 1\}^2$ (d) None (1 mark) Answer: (c) (fof) $x = f \{f(x)\} = f(x + 1)^2 = \{(x + 1)^2 + 1\}^2$

(1 mark)

[7] In a town of 20,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is:

(a)	6600	(b)	6300		
(c)	5600	(d)	600		
An	swer:				
(a)	n(s) = 20,000				
	n(A) = 40% of 20,00	0 = 8,000			
	n(B) = 20% of 20,00	0 = 4,000	•		
	n(C) = 10% of 20,00	0 = 2,000			
	n(A∩B) = 5% of 20,	000 = 1,000			

n(B∩C) = 3% of 20,000 = 600 n(C∩A) = 4% of 20.000 = 800 n(A∩B∩C) = 2% of 20,000 = 400 Now, we, have to find n $(A \cap B' \cap C)$ = \hat{n} (A) - [n (A \cap B) + n (A \cap C) - n (A \cap B \cap C)] = 8,000 - (1,000 + 800 - 400)

> Alternatively, through Venn-diauram (8000 - (600 + 400 + 400) = 6,600] ¢0 400 400 200

[8] Let $f: \mathbb{R} \to \mathbb{R}$ be such that $f(x) = 2^x$, then f(x + y) equals: (a) f(x) + f(y)

(c) $f(x) \div f(y)$

 $f(x + y) = 2^{x + y}$ $= 2^{x} 2^{y}$ = f(x) f(y)

Answer: (b) $f(x) = 2^x$ (b) f(x) . f(y)(d) None of these

3.424

2008 - FEBRUARY

[9] Out of total 150 students, 45 passed in Accounts, 30 in Economics and 50 in Maths, 30 in both Accounts and Maths, 32 in both Maths and Economics, 35 in both Accounts and Economics, 25 students passed in all the three subjects. Find the numbers who passed at least in any one of the subjects : (a) 63

(h) E0

(~)		(0)	55		· .		
(c)	73	(d)	None			(1 ma	rk)
An	swer:	• •				(,
(b)	n(A) = 45						
	n(M) = 50						
	n(E) = 30						
	n(A∩M) = 30						
	n(M∩E) = 32			•		1.0	
	n(A∩E) = 35				· · · ·	. : · ·	
	n(A∩M∩E) = 25						
	$n(A \cup M \cup E) = n(A) + n(M) + $	n(E)	- n(A∩N	1)	1		
	$-n(A\cap E) - n(M\cap E) + n$		I∩E)				
	= 45 + 50 + 30 - 30 - 3	5 – 3	2 + 25				. 1
	$p(A \cup M \cup E) = 53$						

2008 - JUNE
[10] If
$$f(x) = \frac{2+x}{2-x}$$
, then $f^{-1}(x)$:
(a) $\frac{2(x-1)}{x+1}$ (b) $\frac{2(x+1)}{x-1}$
(c) $\frac{x+1}{x-1}$ (d) $\frac{x-1}{x+1}$

Answer: (a) Let f(x) = y $\frac{2+x}{2-x} = y$ 2 + x = 2y - xyx + xy = 2y - 2x(1 + y) = 2(y - 1) $x=\frac{2(y-1)}{(y+1)}$ $f^{-7}(y) = \frac{2(y-1)}{y+1}$ Therefore, $f^{-1}(x) = \frac{2(x-1)}{(x+1)}$

2008 - DECEMBER

(1 mark)

[11] If A = {1, 2, 3, 4, } $B = \{2, 4, 6, 8\}$ f(1) = 2, f(2) = 4, f(3) = 6 and f(4) = 8, And $f: A \rightarrow B$ then f^{-1} is : (a) $\{(2,1), (4, 2), (6, 3), (8, 4)\}$ (b) $\{(1, 2), (2, 4), (3, 6), (4, 8)\}$ (c) $\{(1, 4), (2, 2), (3, 6), (4, 8)\}$ (d) None of these Answer: (a) $A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$ When $f : A \rightarrow B$, $f = \{(1, 2), (2, 4), (3, 6), (4, 8)\}$ f⁻¹ implies f : B→A $f^{-1} = \{(2, 1), (4, 2), (6, 3), (8, 4)\}$ [12] If $f(x) = x^2 + x - 1$ and 4f(x) = f(2x) then find 'x'. (a) 4/3 (b) 3/2 (c) - 3/4 (d) None of these

(1 m

(1 m

[Chapter = 7] Sets, Relations and Functions		3.425	l
---	--	-------	---

[13] If

3.426

Answer: (b) $f(x) = x^2 + x - 1$ 4 f(x) = f(2x) $4 [x^2 + x - 1] = (2x)^2 + (2x) - 1$ $\Rightarrow 4x^2 + 4x - 4 = 4x^2 + 2x - 1$ $\Rightarrow 2x = 3$	 Answer: (b) Any relation from X to Y in which no two different ordered pairs have the same first element is called a FUNCTION. Therefore, in the given question, H is NOT a function from X to Y because the different ordered pairs of H have the same first element. [15] Given the function f(x) = (2x + 3), then the value of f(2x) - 2f(x) + 3 will
$\Rightarrow x = 3/2$	be :
[13] If $A = \{p, q, J, s\}$ $B = \{q, s, t\}$ $C = \{m, q, n\}$ Find $C = (A \land B)$	(a) 3 (b) 2 (c) 1 (d) 0 (1 mark) (d) $f(x) = 2x + 3$ f(2x) - 2f(x) + 3 - [2(2x) + 3] - [2(2x + 3)] + 3
(a) {m, n} (b) {p, q} (c) {r, s} (d) {p, r} (1 ma Answer:	= [2(2x) + 3] - [2(2x + 3)] + 3 = 4x + 3 - 4x - 6 + 3 = 4x - 4x + 6 - 6. = 0.
(a) $A = \{p, q, r, s\}$ $B = \{q, s, t\}$	[16] If $f(x) = 2x + h$ then find $f(x + h) - 2f(x)$ (a) $h - 2x$ (b) $2x - h$
A ∩ B = {q, s} C = {m, q, n}	(c) 2x + h (d) None of these (1 mark) Answer:
$C - (A \cap B) = \{m, n\}$	(a) $f(x) = 2x + h$ f(x + h) - 2f(x) = [2(x + h) + h] = [2(2x + h)]
2009 - DECEMBER	= (2(x + 1) + 1) = (2(2x + 1)) = 2x + 2h + h - 4x - 2h = -2x + h = h - 2x.
[14] $X = \{x, y, w, z\}, y = \{1, 2, 3, 4\}$ H = { (x, 1), (y, 2), (y, 3), (z, 4), (x, 4)} (a) H is a function from X to Y (b) H is not a function from X to Y (c) H is a relation from Y to X (d) None of the above (1 m	(17) If $A = \{x : x^2 - 3x + 2 = 0\}$, B = $\{x : x^2 + 4x - 12 = 0\}$, then B - A is Equal to

(a) $\{-6\}$	(b) (d)	[1]		(1 r	nark)
Answer:	(0)	(-, 0)		· · ·	
(a) A = {x : $x^2 - 3x + 2 = 0$ }					
$x^2 - 3x + 2 = 0$					
$x^2 - 2x - x + 2 = 0$,			
(x-1)(x-2) = 0			1		
x = 1, 2					
A = {1, 2}					
$B = \{x : x^2 + 4x - 12 = 0\}$	}.				
$x^2 + 4x - 12 = 0$					
$x^2 + 6x - 2x - 12 = 0$					
(x-2)(x+6) = 0					
x = 2, -6					
$B = \{2, -6\}$					
B – A = All elements pres	ent in E	3 but not	in A = {- 6}		:

[18] If F : A \rightarrow R is a real valued function defined by f(x) = $\frac{1}{x}$, then A =

(a) R (b) $R - \{1\}$ (c) $R - \{0\}$ (d) R - N(1 mark) (c) $f : A \rightarrow R$ $f(x) = \frac{1}{x}$ If x = 0 f(x) will be undefined $A = R - \{0\}$

[19] In the set N of all natural numbers the relation R defined by a R b "if and only if, a divide b", then the relation R is:
(a) Partial order relation (b) Equivalence at the

(c) Symmetric relation

(b) Equivalence relation(d) None of these

(1 mark)

 $= A \cap B$

3.428

	Answer: (a) For a function to be a part (1) Reflexive (2) Antisymmetric and (3) Transitive a divides b satisfies the	artial or above	der Rela 3 relatior	tion, it should	ibe,
	 (1) a/a ∴ Reflexive (2) a/b and b/a (3) a/b, b/c a/b is not a symmetr relation. 	:. :: ic funct	a = b a/c ion and f	∴ Antisyn ∴ Transit nence, not ar	nmetric ive n equivalerq
20	10 - DECEMBER			•	
[20]	For any two sets A and B, A the compliment of the set A	ר (א ' U	B) =	, where	e A' represe
	(a) A ∩ B	(b)	AUB		
	(c) Aʻ∪B Answer:	(d)	None of	these	(1 m
	(a) A∩(A ∪B)				
	$\begin{array}{c} \therefore A' \cup B = \\ \hline \\ \hline \\ A \end{array}$				e.

$$\begin{array}{||c||} \hline [1] A \rightarrow B, I(x) = x + 1, \\ g: A \rightarrow F, g(x) = x^{2} +$$

Answer:

(d) This is a many one function since multiple elements in Set A have the same image in Set B. Also, this is an into function because the element "1" in Set B doesn't even have a single pre-image in Set A. Therefore, it is many one into function.

[26] If
$$f(x) = \frac{x}{\sqrt{1 + x^2}}$$
 and $g(x) = \frac{x}{\sqrt{1 - x^2}}$ Find fog?
(a) x (b) $\frac{1}{x}$
(c) $\frac{x}{\sqrt{1 - x^2}}$ (d) $x\sqrt{1 - x^2}$

Answer:

(a) Given :
$$f(x) = \frac{x}{\sqrt{1 + x^2}}$$
 and $g(x) = \frac{x}{\sqrt{1 - x^2}}$
 $\therefore fog(x) = f\{g(x)\}$
 $= 1 \quad \frac{x}{\sqrt{1 - x^2}}$
 $\sqrt{1 + \left(\frac{x^2}{\sqrt{1 + x^2}}\right)}$
 $= x$

2011 - DECEMBER

[27] f(x) = 3+x, for -3 < x < 0 and 3 - 2x for 0 < x < 3, then Value of f(2) will (a) -1(b) 1 (c) 3 (d) 5

(a)
$$f(x) = 3 + x$$
 if $-3 < x < 0$
= $3 - 2x$ if $0 < x < 3$
2 Lies $0 < x < 3$
Then
 $f(x) = 3 - 2x$
 $f(2) = 3 - 2 \times 2 = 3 - 4 = -1$

[29] For any two sets A and B the set (AUB')' is Equal to (where' denote compliment of the set)

(a) $B - A$ (c) $A' - B'$	(b)	A – B B' – A
Answer:	(0)	0 - 7
(a) $(A \cup B) = B - A$		

(1 mari

[Chapter → 7] Sets, Relations and Functions ■ 3.433 3.434 2012 - JUNE The number of proper sub set of the set {3, 4, 5, 6, 7} is (a) 32 (b) 31 (c) 30 (d) 25 (1 mark) Answer: (b) Given set A = {3, 4, 5, 6, 7} Cardinal No n(A) = 5 No, of proper subset $= 2^n - 1$ $= 2^5 - 1$ = 32 - 1 = 31 31] On the set of lines, being perpendicular is a _____ relation. (a) Reflexive (b) Symmetric (c) Transitive (d) None of these. (1 mark) Answer: (b) A set of lines, being perpendicular is a Symmetric Relation 12] The range of the function $f: N \rightarrow N$; $f(x) = (-1)^{x-1}$, is (b) {1, -1} (a) {0, -1} (d) {1, 0, -1} . $(c) \{1, 0\}$ (1 mark) Answer: (b) Given $f(x) = (-1)^{x-1}$ x = 1 f(1) = (-1)¹⁻¹ = 1 f = N \Rightarrow N $x = 2 f(2) = (-1)^{2-1} = -1$ x = 3 f (3) = $(-1)^{3-1} = 1$ x = 4 f (4) = (-1)⁴⁻¹ = -1 Range of function = $\{1, -1\}$ ^[33] The minimum value of the function x² - 6x + 10 is _____ (a) 1 (b) 2 (1 mark) (c) 3 (d) 10

```
Answer:
(a) Let x^2 - 6x + 10 = y
    x^2 - 6x + 10 - y = 0
    x^{2} - 6x + (10 - y) = 0
     ax^2 + bx + c = 0
     we get
     a = 1, b = -6, c = (10 - y)
     For Real
          D > 0
          b^2 - 4ac > 0
          (-6)^2 - 4 \times 1 \times (10 - y) \ge 0
          36 - 40 + 4y > 0
            4y > 4
              y \ge 1
              y = \{1, 2, 3, \dots, \infty\}
      Minimum value of function = 1
```

2012 - DECEMBER

[34] For a group of 200 persons, 100 are interested in music, 70 in photography and 40 in swimming, Further more 40 are interested in both music and photography, 30 in both music and swimming, 20 in photography and swimming and 10 in all the three. How many are interested in photography but not in music and swimming? (a) 30 (b) 15 (1 mark) (c) 25 (d) 20 Answer: (d) Let Photography \rightarrow P → M Music Swimming → S $n(P \cup M \cup S) = 200, n(m) = 100, n(p) = 70$ n (S) = 40, n (M \cap P) = 40, n (M \cap S) = 3(, n (P \cap S) = 20 $n(P \cap M \cap S) = 10$

3.436

			· ·
$n(P \cap M \cap S) = n(P) - n(P)$ = 70 - 40 - = 80 - 60	P∩ M) – n(P∩ S) + n(P∩ N 20 + 10	и∩ S)	2013 - JUN
= 20			
- 20		•	[37] Let A =
35] If $f: \mathbb{R} \to \mathbb{R}$ is a function, define	ied by <i>f</i> (x) = 10x – 7, if g(\mathbf{x}) = $f^{-1}(\mathbf{x})$, then	is:
g(x) is equal to			(a) Syr
(a) $\frac{1}{1}$	(b) <u>1</u>		(c) Ref
10x 7	10x + 7		Answe
(c) $\frac{x+7}{10}$	(d) $\frac{x-7}{10}$	(1 mark)	(c) If A
Answer:		·	
(c) If $f: R \rightarrow R$ is a function	defined by		
f(x) = 10x - 10x	7 Let $y = f(x)$		[38] If $f(x) =$
v = 10x -	$7 \qquad x = f^{-1}(y)$	(1)	(a) 7*.x
10x = y + 7		(1)	(c) 49 (7
v + 7			Answer:
$X = \frac{10}{10}$			(c) If f(x
614 X+7			g of (
$f''(y) = \frac{y''}{10}$	•	[from eq (1)]	
$f^{-1}(x) = \frac{x+7}{10}$			
The value of $q(x) = f^{-1}(x)$			
$=\frac{2}{10}$			[39] If $f(x) = \log (x)$
The number of elements in rang	e of constant function is		(a) = f(a)
(a) One	(b) Zero		(a) $f(x)$
(c) Infinite	(d) Indetermined	(1 mark)	(c) $3f(x)$
Answer:			Answer:
(a) The range set of a constant	function is a singleton set	. Therefore,	(b) If $f(x) =$

(a) The range set of a constant function is a singleton set. Therefore, the number of elements in the range set of a constant function is one.

36]

 $\{1, 2, 3\}$, then the relation R = $\{1, 1\}$, (2, 3), (2, 2), (3, 3), (1, 3) (b) Transitive mmetric flexive (d) Equivalence (1 mark) -- $= \{1, 2, 3\}$ then {(1, 1) (2, 3) (2, 2) (3, 3) (1, 2)} Here, R = {(1, 1) (2, 2) (3, 3)} shows reflexive x + 2, g (x) = 7^x , than g of (x) = ____ x + 2. 7^x (b) $7^x + 2$ 7×) (d) None of these (1 mark) $x = x + 2, q(x) = 7^{x}$ than (x) = $g \{f(x)\}$ $= g \{x + 2\}$ = 7^{x+2} = 7^x, 7² = 7[×]. (49) $= 49.(7^{*})$ $\log\left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2x}{1+x^2}\right)$ is equal to: (b) 2f(x)(d) -f(x)(1 mark) $= \log\left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2x}{1+x^2}\right) = \log\left(\frac{1+\frac{2x}{1+x^2}}{1-\frac{2x}{1-x^2}}\right)$

Answer:

(d) Since the element "1" of Set A does not have an image in Set B, therefore, this relation is not a function.

[4	4) In a clas	ss of 50 st	Ude	ents, 3	5 opted	for Ma	athem	atics	and 37	opte	d for
	Comme	rce. The	nu	mber	of suc	h stud	lents	who	opted	for	both
	Mathem	atics and (Cor	nmero	are:						
	(a) 13				(b)	15					
	(c) 22				(d)	28				(1m	ark)
	Answer	:			(0)	20				(arry
	(c) Give	n n(m∪c)	=	50							
	r	n(m)	=	35							
	r	(C)	=	37							
	n	i(m∪c)	=	n(m) -	+ n(c) -	∩(m ∩	ic)				
	5	0	=	35 + 3	37 – n(r	n∩c)					
	n	(m ∩c)	=	35 + 3	7 - 50						
			=	72 - 5	0						
	n((m ∩c)	=	22							
[45]	The range	of {(1,0),	(2,0), (3,0), (4,0)	(0,0)}	is:				
	(a) {1,2,3,	4,0}			(b) {	0}					
	(c) {1,2,3,	4}			(d) N	lone of	thes	9	(1 ma	rk)
	Answer:								```		,
	(b) The Ra	inge of {(1)	. 0)	. (2, 0)	(3, 0)	(4, 0).	(5.0)}			
	= {0}	2		, ,		, , , 2/	(-, -				
00											
201	4 - DECEME	BER									
-											

[46] Let N be the set of all Natural numbers; E be the set of all even natural numbers then the function

 $f: \mathbb{N} \to \mathbb{E}$ defined as $f(x) = 2x + x \in \mathbb{N}$ is:

- (a) One-one into
- (c) Many-one into
- (b) One-one onto (d) Many-one onto

(1 mark)

Answer: (b) N = Set of all Natural No. = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} E = Set of all Even No. = {2, 4, 6, 8, 10,} $f: N \rightarrow E$ $f(\mathbf{x}) = 2\mathbf{x}$ $f(\mathbf{x}_1) = f(\mathbf{x}_2)$ If $2x_1 = 2x_2$ So f(x) is one-one $X_1 = X_2$ \Rightarrow $f(\mathbf{x}) = 2\mathbf{x}$ at = 2x ٧ $=\frac{y}{2}$ x Then Range of f = Even No. (E)So f(x) is onto Hence, f(x) is one-one onto.

[47] If A = {2, 3}, B = {4, 5}, C = {5, 6}, then A x (B \cap C) = (a) $\{(5, 2), (5, 3)\}$ (b) $\{(2, 5), (3, 5)\}$ (c) $\{(2, 4), (3, 5)\}$ (d) {(3, 5), (2, 6)} (1 mark) Answer: (b) $A = \{2, 3\}, B = \{4, 5\}, C = \{5, 6\}$ $B \cap C = \{5\}$ $A \times (B \cap C) = \{2, 3\} \times \{5\}$ $= \{(2, 5), (3, 5)\}$

[48] If S = {1, 2, 3} then the relation {(1, 1), (2, 2), (1, 2), (2, 1)} is symmetric and

- (a) Reflexive but not transitive
- (b) Reflexive as well as transitive
- (c) Transitive but not reflexive
- (d) Neither transitive ncr reflexive

[Chapter → 7] Sets, Relations and runctions ■ 3.441 Answer: (c) If S = {1, 2, 3} then The Relation {(1, 1), (2, 2), (1, 2), (2, 1)} is symmetric and [49] If $f(x) = \frac{x}{x-1}$, then $\frac{f(x/y)}{f(x/y)} =$

 $f(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x} - 1}$

$$f(x/y) = \frac{x/y}{\frac{x}{y} - 1} = \frac{y}{\frac{x-y}{y}} = \frac{x}{x-y}$$

$$f(y/x) = \frac{y/x}{\frac{y}{x-1}} = \frac{\frac{y}{\frac{y-x}{y}}}{\frac{y-x}{x}} = \frac{y}{y-x}$$

$$\frac{f(x/y)}{f(y/x)} = \frac{x/(x-y)}{y/(y-x)} = \frac{x}{(x-y)} \cdot \frac{(y-x)}{y}$$

$$= \frac{-x(x-y)}{y(x-y)}$$

$$= \frac{-x}{y}$$

2015 - JUNE

(c) If

[50] If N be the set of all natural numbers and E be the set of all even natural numbers then the function $f: \mathbb{N} \to \mathbb{E}$, such that f(x) = 2x for all X ∈ N is

- (a) one-one onto (c) many-one onto
- (b) ((d) constant

(1 mark)

3.442

Answer:

(a) $N = \{1, 2, 3, 4, \dots, \infty\}$ $E = \{2, 4, 6, 8, \dots, \infty\}$ $f: N \rightarrow E$ $f(\mathbf{x}) = 2\mathbf{x}$ $f(1) = 2 \times 1 = 2$ $f(2) = 2 \times 2 = 4$ $f(3) = 2 \times 3 = 6$ (i) Range of function (R) = E (ii) $f(x_1) = f(x_2)$ then function is one-one onto

2015 - DECEMBER

[51] If $A = \{x, y, z\}, B = \{a, b, c, d\}$, then which of the following relation from the set A to set B is a function? (a) $\{(x, a), (x, b), (y, c), (z, d)\}$ (b) $\{(x, a), (y, b), (z, d)\}$ (c) $\{(x, c), (z, b), (z, c)\}$ (1 mark) (d) $\{a, z\}, (b, y), (c, z), (d, x)\}$ Answer: (b) if A $= \{x, y, z\}$ В $= \{a, b, c, d\}$ $A \times B = \{x, y, z\} \times \{a, b, c, d\}$ $= \{(x, a) (x, b) (x, c) (x, d) \}$ (y, a) (y, b) (y, c) (y, d)(z, a) (z, b) (z, c) (z, d)

Then $\{(x, a), (y, b), (z, d)\}$ is a functions.

[52] In a class of 80 students, 35% students can play only cricket, 45% students can play only table tennis and the remaining students can play both the games. In all how many students can play cricket?

[Chapter => 7] Sets, Relations and Functions	■ 3.443 3.444 ■
(a) 55 (b) 44 (c) 36 (d) 28 Answer: (b) Total students in the class = 80 $n(A \cup B) = 80$	(1 mark) i.e. $n(A \cap B) = 16$ No. of students who play cricket n(A) = 28 + x = 28 + 16 = 44
Let no. of students who play both Table Tennis and Cricket = x i.e. $n(A \cap B)$ = x No. of person who play only Cricket	[53] If $f(x) = 2x + 2$ and $g(x) = x^2$, then the value of fog (4) is: (a) 18 (b) 22 (c) 34 (d) 128 Answer: (c) $f(x) = 2x + 2$ and $g(x) = x^2$
$n(A \cap B) = a_0 \times \frac{100}{100} = 28$ $n(A \cap B) = 28$ $n(A) - n(A \cap B) = 28$ $n(A) - x = 28$ $n(A) = 28 + x$ No. of students who play only Table Tennis $n(B \cap \overline{A}) = 45\% \text{ of } 80$ $= \frac{45}{100} \times 80$	$fog(x) = f\{g(x)\} = f\{x^2\} = 2x^2 + 2$ then $fog(4) = 2(4)^2 + 2 = 2 \times 16 + 2 = 32 + 2 = 34$
$n(B) - n(A \cap B) = 36$ $n(B) - n(A \cap B) = 36$ n(B) - x = 36 (B) = (36 + x) We know that, $n(A \cup B) = n(A) + n(B) + n(B) - n(A \cap B)$ 80 = 28 + x + 36 + x - x 80 = 64 + x n = 80 - 64	[54] If set A = $\begin{bmatrix} x : \frac{x}{2} \in z, & 0 \le x \le 10 \end{bmatrix}$, B = $\{x : x \text{ is one digit prime number}\}$ and C = $\begin{bmatrix} x : \frac{x}{3} \in N, & x \le 12 \end{bmatrix}$ then A \cap (B \cap C) is equal to (a) φ (b) Set A (c) Set B (d) Set C
<u>n =16</u>	(a) If A = $\left\{ x: \frac{x}{2} \in z, 0 \le x \le 10 \right\}$ A = $\left\{ \frac{0}{2}, \frac{2}{2}, \frac{4}{2}, \frac{6}{2}, \frac{8}{2}, \frac{10}{2} \right\} = \{0, 1, 2, 3, 4, 5\}$

(1 _{mark)}

[Chapter → 7] Sets, Relations and Functions ■ 3.445 3.446 = {x : x is one digit prime number} В $= \{2, 3, 5, 7\}$ [x + 1]= 2 - y= $x: \frac{x}{3} \in \mathbb{N}$ $x \le 12$ and C $\pm (x + 1)$ = 2 · ¥ + ve sign taking - ve sign $= \frac{3}{3}, \frac{6}{3}, \frac{9}{3}, \frac{12}{3}$ -(x+1)=2-yx + 1 = 2 - yx = 2 - y - 1x + 1 = -2 + y $= \{1, 2, 3, 4\}$ x = 1 - yx = y - 2 - 1 $B \cap C = \{2, 3\}$ So Range = $[-\infty, 2]$ x = y - 3 $A \cap (B \cap C) = \{0, 1, 2, 3, 4, 5\} \cap \{2, 3\}$ Domain = Real No, Range = $(-\infty, 2)$ $= \{2, 3\}$ [55] Let A be the set of squares of natural numbers and let $x \in A$, $y \in A$ then 2016 - DECEMBER (a) $X + Y \in A$ (b) $X - Y \in A$ [57] If R is the set of all real numbers, then the function f: R→R defined by (c) $\frac{\mathbf{x}}{\mathbf{v}} \in \mathbf{A}$ (d) $xy \in A$ (1 mark) $f(x) = 2^x$ (a) one-one onto (b) one-one into Answer: (d) many-one onto (1 mark) (c) many-one into (d) Let A be the set of square of Natural No. Answer: $A = \{1^2, 2^2, 3^2, 4^2, \dots, \infty\}$ (b) $f(x) = 2^x$ $f(x_1) = 2^{x_1}$ and $f(x_2) = 2^{x_2}$ $A = \{1, 4, 9, 16, \dots\}$ Now, $f(x_1) = f(x_2)$ If $x \in A$, $y \in A$ then $xy \in A$ $2^{x_1} = 2^{x_2} \Longrightarrow x_1 = x_2$ [56] The domain (D) and range (R) of the function f(x) = 2 - |x+1| is so, $f(x) = 2^x$ is one-one and (a) D = Real numbers, R = $(2, \infty)$ $f(x) = 2^{x}$ (b) D = Integers, R = (0, 2) $y = 2^x$ $\log y = \log 2^x$ (c) D = Integers, R = $(-\infty, \infty)$ $\log y = x \log 2$ (1 mark) $x = \log_2 y$ [log is not valid value if y is negative] (d) D = Real numbers, R = $(-\infty, 2)$ So, range of function \neq B so it is into function. Answer: (d) Given function [58] The inverse function f^1 of f(x) = 100x is: = 2 - [(x + 1)]f(x)(a) $\frac{x}{100}$ (b) 100x = Real Number Domain and f(x) = 2 - [x + 1](d) None of these (1 mark) (c) = 2 - [x + 1]Y х

. 4

[Chapter - 7] Sets	Relations and Functions 3.447	3.448	
Answer: (a) Given f(x) = 100 x y = 100 x		$yx^{2} + y = x$ $yx^{2} - x + y = 0$ a = y, b = -1, c = y $-(-1) \pm \sqrt{(-1)^{2} - 4 \times y \times y}$	
$f^{-1}(y) = \frac{y}{100}$		$x = \frac{2.y}{2.y}$ $x = \frac{1 \pm \sqrt{1 - 4y^2}}{2y}$	
$f^{-1}(\mathbf{x}) = -\frac{\mathbf{x}}{100}.$ [59] The number of subsets of the		$1 - 4y^{2} \ge 0$ $1 \ge 4y^{2}$ $\frac{1}{4} \ge y^{2}$	
(a) 128 (c) 32 Answer: (c) A = Set of the letter	(b) 16 (d) 64 (d) 64 (d) 64	$\pm \frac{1}{2} \ge y$ Range $\rightarrow \{x: -\frac{1}{2} \le x \le \frac{1}{2}\}$	•, •
$= \{A, L, H, B, D\}$ n(A) = :5 No. of subset $= 2^{n}$ $= 2^{5}$ = 32	or the word 'ALLAHABAD'	 [61] In a group of students 80 can speak Hindi, 60 can speak 40 can speak English and Hindi both, then number of si (a) 100 (b) 140 (c) 180 (d) 60 	ak English and tudents is: (1 mark)
2017 - JUNE	d by $f(x) = \frac{x}{1 - \frac{1}{2}}$ is:	(a) $A = \text{Hindi}, B = \text{English}$ $n(A) = 80, n(B) = 60, n(A \cap B) = 40$ $n(A \cup B) = n(A) + n(B) = n(A \cap B)$	•
(a) $\{x: \frac{-1}{2} < x < \frac{1}{2}\}$ (c) $\{x: \frac{-1}{2} \le x \le \frac{1}{2}\}$	(b) $\{x: \frac{-1}{2} \le x < \frac{1}{2}\}$ (d) $\{x: x > \frac{1}{2} \text{ or } x < \frac{-1}{2}\}$ (1 mark)	= 80 + 60 - 40 = 140 - 40 = 100	
Answer: (c) $f(x) = \frac{x}{x^2 + 1}$ $y = -\frac{x}{x}$	2 2 2 , ((((((((((((((((([62] If $f(x) = \frac{x-1}{x}$ and $g(x) = \frac{1}{1-x}$ then (fog) (x) is equal to: (a) $x - 1$ (b) x (b) x	

[64] In a class of 35 students, 24 like to play cricket and 16 like to play football. Also each student likes to play at least one of the two games. How many students like to play both cricket and football? (b) 11 (1 mark) (d) 8 n(A) = 24, n(B) = 16, n(AUB) = 35 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $35 = 24 + 16 - n(A \cap B)$ $n(A \cap B) = 24 + 16 - 35$ [65] Let N be the set of all natural numbers; E be the set of all even natural numbers then the function; F:N \Rightarrow E defined as f(x) = 2x-Vx \in N is = (b) Many-one-into (1 mark) (d) Many-one-onto N = {1, 2, 3, 4,5,6∞} E = {2, 4, 6, 8,∞} VXEN $f(1) = 2 \times 1 = 2$ $f(2) = 2 \times 2 = 4$ $f(3) = 2 \times 3 = 6$

101

Range of function = {2,4,6,.....} = E and $f(x_1) = f(x_2)$ $2x_1 = 2x_2 = x_2$ So f(x) function is one-one and one to.

[66] In a town of 20,000 families it was found that 40% families buy newspaper. A. 20% families buy newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy A and C it 2% families buy all the three newspapers, then the number of families which buy A only is:

(a) 6600 (b) 6300 (c) 5600 (d) 600

(a) 60

Answer:

(a) Total Families n(u) = 20000

No. of families who buy Newspapers 'A' n(A) = 40% of 20000 = 8000 No. of families who buy Newspaper 'B' n(B) = 20% of 20000 = 4000

No. of farailies who buy Newspaper 'C' n(C) = 10% of 20000 = 2000

No. of families who buy Newspapers A & B

n (A O B) = 5% of 20000 = 1000

No. of families who buy Newspapers B & C

n (B ∩ C) = 3% of 20000 = 600

No. of families who buy Newspapers C & A

n (C ∩ A) = 4% of 200C3 = 800

No. of families who Luy all newspapers

n (A \cap B \cap C) = 2% of 20000 = 400 No. of families which buy Newspapers 'A' only

= n A BOC

= $n(A) - n(A \cap B) - n(A \cap C) + n(A \cap B \cap C)$ = 8000 - 1000 - 800 + 400 = 6600 [67] The numbers of proper sub set of the set {3,4,5,6,7} is: 31 (a) 32 (b) (d) 25 (c) 30 (1 mark Answer: (b) Given $A = \{3, 4, 5, 6, 7\}$ n(A) = 5No. of proper subset $= 2^n - 1$ $= 2^{5} - 1$ = 32 - 1= 312018 - NOVEMBER [68] A is {1,2,3,4} and B is {1,4,9,16,25} if a function f is defined from set to B where $f(x) = x^2$ then the range of f is: (a) $\{1,2,3,4\}$ (b) {1.4.9.16} (c) $\{1,4,9,16,25\}$ (d) None of these 1 mark Answer: (b) Given $A = \{1, 2, 3, 4\}$

(c) {1,4,9,16,25} Answer: (b) Given $A = \{1,2,3,4\}$ $B = \{1,4,9,16,25\}$ If f : A \rightarrow B and $f(x) = x^2$ $f(1) = (1)^2 = 1$ $f(2) = (2)^2 = 4$ $f(3) = (3)^2 = 9$ $f(4) = (4)^2 = 16$ Range of $f = \{1,4,9,16\}$

3.452

•

3.456

[Chapter → 7] Sets, Relations and Functions 3.457 3.458 Answer: $(\mathbf{s}) \ (\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{A}$ Answer: Example $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (a) $f(x) = \frac{x+1}{x}$ - Equation (1) $A^{T} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$ Let f(x) = y $x = f^{-1}(y)$ $(\mathbf{A}^{\mathsf{T}})^{\mathsf{T}} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \mathbf{A}$ **Further Solving** - Equation (1) $y = \frac{x+1}{x}$ $So.(A^T)^T = A$ f(n) = f(n - 1) + f(n - 2) when n = 2, 3, 4 f(0) = 0,xy = x + 1xy - x = 1(8) 3 x(y-1) = 1 $x=\frac{1}{(y-1)}$ (b) 5 (c) 8 $f^{-1}(y) = \frac{1}{(y-1)}$ (d) 13 (1 mark) Ansi $f^{-1}(x) = \frac{1}{(x-1)}$ (d) f(n) = f(n-1) + f(n-2)f(2) = f(1) + f(0) = 1 + 0 = 1 = f(2)f(3) = f(2) + f(1) = 1 + 1 = 2 = f(3)2020 - NOVEMBER f(4) = f(3) + f(2) = 2 + 1 = 3Similarly, Two finite sets respectively have x and y number of elements. The total [80] f(7) = f(6) + f(5)number of subsets of the first is 56 more than the total number of f(7) = [f(5) + f(4)] + [f(4) + f(3)]subsets of the second. The value of x and y respectively. f(7) = [f(4) + f(3) + f(4)] + (f(4) + f(3)](a) 6 and 3 f(7) = [3+2+3] + [3+2](b) 4 and 2 f(7) = 13(c) 2 and 4 [79] $f(x) = \frac{x+1}{x}$ find $f^{-1}(x)$ (d) 3 and 6 (1 mark) Answer: (a) 1/(x-1)(a) Let A and B are two set (b) 1/(y-1)Given n(A) = x and n(B) = y(c) $\frac{1}{y} - 1$ No. of subset of $A = 2^x$ and No. of subset of $B = 2^y$ According the question (d) x $2^{x} = 2^{y} + 56$ (1 mark)1 Option (a) is satisfied eq (1) so x = 6, y = 3

Ú,

3.460

1811 The number of items in the set A is 40; in the set B is 32: in the set C Answer: is 50: in both A and B is 4, in both A and C is 5: in both B and C is 7 in (b) Given f(y) = 3yall the sets 2. How many are in only one set? Let $f(y) = x \quad y = f^{-1}(x)$ (a) 110 x = 3v(b) 65 $y = \frac{x}{3}$ (c) 108 (d) 84 $f^{1}(x) = \frac{x}{3}$ (1 mark) Answer: (c) Given: n(A) = 40 $n(A \cap B) = 4$ $f^{1}(y) = \begin{pmatrix} y \\ 3 \end{pmatrix}$ n(B) = 32n (B∩C) = 7 n(C) = 50n (C∩A) = 5 n (A \cap B \cap C) = 2 2021 - JANUARY $n(A \cup B \cup C) = ?$ We know that: [84] The set of cubes of natural number is $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B)$ (a) Null set $-n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$ (b) A finite set = 40 + 32 + 50 - 4 - 7 - 5 + 2(c) An infinite set = 124 - 16(d) Singleton Set = 108Answer: [82] The set of cubes of the natural number is: (c) The set of cubes of Natural Number is an infinite set because (a) A null set Natural Number is Infinite. (b) A finite set [85] In the set of all straight lines on a plane which of the following is Not (c) An infinite set 'TRUE'? (1 mark) (d) A finite set of three numbers (a) Parallel to an equivalence relation (b) Perpendicular to is a symmetric relation Answer: (c) The set of cubes of the Natural Number is Infinite Set. (c) Perpendicular to is an equivalence relation (d) Parallel to a reflexive relation · because Natural Number is Infinite. [83] The inverse function f^1 of f(y) = 3y is: Answer: (c) 'Perpendicular to' is an equivalence relation' which is not true. (a) 1/3y [86] Let F: R R be defined by (b) y/3 2x for x>3(c) -3v $f(x) = |x^2 \text{ for } 1 < x \le 3$ (1 mark) (d) 1/y | 3x for x < 1

(1 mark)

For detailed analysis Log

17J

160

17D

E

0