Acknowledgement

I would like to express the words of gratitude for all those who have helped me in lightening my task during the course of formation of my book ,

"MATHS KI GATHA" (MATHS REGULAR BOOK)

Here, I Would like to express my deep sense of gratitude to Almighty who has guided me towards my path; my parents (Praveen Jain & Kalpana Jain)

AND

To my respectful in-laws (CA Prakash Nahta & Indira Nahta), my little Dearest sister (Bhumika Kothari) and my Dearest Husband (CA Pratik Nahta) & my Cutie Brother- inlaw (Achin Nahta) who has always inspired and supported me towards journey of this book.

The **FIRST** edition is also dedicated towards all my dear students without whom this would not be possible

Vote Of Thanks !!!!!!!!!!

- CA MEGHA NAHTA

© All rights reserved with the Author.

INDEX

S. NO.	CHAPTER	NOS OF QUESTION	PAGE NO
1	Ratio, Proportion, Indices & Logarithm	222	1.1 – 1.38
2	Equation & Matrices	245	2.1 – 2.56
3	Linear Inequalities	47	3.1 – 3.26
4	Time Value of Money	177	4.1 – 4.35
5	Permutation & Combination	181	5.1 – 5.38
6	AP & GP	173	6.1 – 6.30
7	Set, Relation & Function	138	7.1 – 7.24
8	Differentiation & Integral Calculus	150	8.1 - 8.50
	TOTAL QUESTIONS	1,300+	
		1	

PROFESSIONAL CLASSES

Nahta Tower, Opp Little Kingdom School,

MLB School Road, Napler Town, Jabalpur (MP)

Call : 9302355649, 8518819888

Opposite Surya Vihar Apartment, Tagore Nagar Road, Pachpedi Naka, Raipur (C.G.) Call : 9302355649, 8518819888

CH -

BUSINESS MATHEMATICS

RATIO, PROPORTION, INDICES & LOGARITHM

UNIT I: RATIO

Ex. 1:	The ratio of the number of boys to the number of girls in a school of 720 students is 3 : 5. If 18			
	new girls are admitted in the school, find how many new boys may be admitted so that the ratio			
	of the number of boys to the number of girls may change to 2 : 3.			
Sol.:				
Ex. 2:	Find in what ratio will the total wages of the workers of a factory be increased or decreased if			
	there be a reduction in the number of workers in the ratio 15 : 11 and an increment in their wages			
	in the ratio 22 : 25.			

Sol.:							
	AGAR DAR	RR HAI BHAGAN	NA, TO MATH	S HAI BANANA			
	EXERCISE 1(A)						
	Choose the	e most appropri	iate option (a)) (b) (c) or (d).			
1.	The inverse rati	io of 11 : 15 is					
	(a) 15 : 11	(b) $\sqrt{11} : \sqrt{15}$	(c) 121 : 225	(d) none of these			
2.		(b) $\sqrt{11} : \sqrt{15}$ o quantities is 3 : 4. If th					
2.							
2. 3.	The ratio of two (a) 16	o quantities is 3 : 4. If th (b) 60	e antecedent is 15, th (c) 22	ne consequent is			
	The ratio of two (a) 16	o quantities is 3 : 4. If th (b) 60	e antecedent is 15, th (c) 22	ne consequent is (d) 20			
	The ratio of two (a) 16 The ratio of the (a) 5	o quantities is 3 : 4. If th (b) 60 quantities is 5 : 7. If the	e antecedent is 15, th (c) 22 e consequent of its in (c) 7	ne consequent is (d) 20 verse ratio is 5, the antecedent is			
3.	The ratio of two (a) 16 The ratio of the (a) 5	o quantities is $3 : 4$. If th (b) 60 quantities is $5 : 7$. If the (b) $\sqrt{5}$	e antecedent is 15, th (c) 22 e consequent of its in (c) 7	ne consequent is (d) 20 verse ratio is 5, the antecedent is			

NAH	ITA PROFESSION	VAL CLASSES	BUSINESS MATHEMATIC			
	(a)√3 : 2	(b) 4 : 3	(c) 9:16	(d) none of these		
6.	The sub-duplica	ate ratio of 25 : 36 is				
	(a) 6 : 5	(b) 36 : 25	(c) 50 : 72	(d) 5 : 6		
7.	The triplicate ra	atio of 2 : 3 is				
	(a) 8 : 27	(b) 6 : 9	(c) 3 : 2	(d) none of these		
8.	The sub-triplica	ate ratio of 8 : 27 is				
	(a) 27 : 8	(b) 24 : 81	(c) 2 : 3	(d) none of these		
9.	The ratio compounded of 4 : 9 and the duplicate ratio of 3 : 4 is					
	(a) 1:4	(b) 1 : 3	(c) 3 : 1	(d) none of these		
10.	The ratio comp	ounded of 4 : 9, the du	plicate ratio of 3 : 4,	the triplicate ratio of 2 : 3 and 9 : 7 is		
	(a) 2 : 7	(b) 7 : 2	(c) 2 : 21	(d) none of these		
11.	The ratio comp 256	ounded of duplicate ra	atio of 4 : 5, triplicate	ratio of 1 : 3, sub duplicate ratio of 81 :		
	and sub-triplica	ate ratio of 125 : 512 is	S			
	(a) 4 : 512	(b) 3 : 32	(c) 1 : 12	(d) none of these		
12.	If $a : b = 3 : 4$, th	he value of (2a+3b) :	(3a+4b) is			
	(a) 54 : 25	(b) 8 : 25	(c) 17 : 24	(d) 18:25		
13.	Two numbers a	re in the ratio 2 : 3. If	4 be subtracted from	each, they are in the ratio 3 : 5. The		
	numbers are					
	(a) (16, 24)	(b) (4, 6)	(c) (2, 3)	(d) none of these		
14.	The angles of a	triangle are in ratio 2	: 7 : 11. The angles ar	-e		
1 2 1	Page EACULTY'CA MEGHA NAHTA					

NA	HTA PROFESSIONA	l Classes		BUSINESS MATHEMATICS		
	(a) (20, 70, 90)	(b) (30, 70, 8	(c) (18, 63, 9	(d) none of these		
15.	Division of RS 324 between X and Y is in the ratio 11 : 7. X & Y would get Rupees					
	(a) (204, 120)	(b) (200, 124)	(c) (180, 144)	d) none of these		
16.	Anand earns Rs 8	0 in 7 hours and Promo	de Rs 90 in 12 hours. The ra	tio of their earnings is		
	(a) 32 : 21	(b) 23 : 12	(c) 8 : 9	(d) none of these		
17.	The ratio of two n	umbers is 7 : 10 and the	eir difference is 105. The nu	mbers are		
	(a) (200, 305)	(b) (185, 290)	(c) (245, 350)	(d) none of these		
18.	P, Q and R are thr	ee cities. The ratio of av	erage temperature between	P and Q is 11 : 12 and that		
	between P and R is 9 : 8. The ratio between the average temperature of Q and R is					
	(a) 22 : 27	(b) 27 : 22	(c) 32:33	(d) none of these		
19.	If $x : y = 3 : 4$, the	value of x ² y + xy ² : x ³ +	y ³ is			
	(a)13:12 (b)	12:13	(c) 21:31	(d) none of these		
20.	If p : q is the sub-c	duplicate ratio of $p-x^2$:	$q-x^2$ then x^2 is			
	$(A)\frac{p}{p+q}$	$(b)\frac{q}{p+q} \tag{(}$	c) $\frac{pq}{p+q}$ (d) none	of these		
21.	If 2s : 3t is the dup	olicate ratio of 2s – p : 3	t – p then			
	(a) $p^2 = 6st$	(b) p = 6st	(c) 2p = 3st	(d) none of these		
22.	If $p : q = 2 : 3$ and	$\mathbf{x}: \mathbf{y} = 4: 5$, then the va	lue of $5px + 3qy : 10px + 4q$	ąy is		
	(a) 71 : 82	(b) 27 : 28	(c) 17:28	(d) none of these		
23.	The number whic	h when subtracted from	each of the terms of the rat	tio 19 : 31 reducing it to 1 : 4 is		
	(a) 15	(b) 5	(c) 1	(d) none of these		

NAH	ITA PROFESSIONAL CLASSES			BUSINESS MATHEMATICS				
24.	Daily earnings of two persons are in the ratio 4:5 and their daily expenses are in the ratio 7 : 9. If							
	each saves Rs 50 per day, their daily earnings in Rs are							
	(a) (40, 50)	(b) (50, 40)	(c) (400, 500)) (d)	none of these			
25.	The ratio between the speeds of two trains is 7 : 8. If the second train runs 400 kms. in 5 hours, the							
	speed of the first	t train is						
	(a) 10 Km/hr	(b) 50 Kn	1/hr	(c) 70 Km/hr	(d) none of these			

I

	UNIT II: PROPORTIONS
Ex.1 :	Find the mean proportion between 1.25 and 1.8.
Sol.:	Mean proportion between 1.25 and 1.8 is $\sqrt{1.25 \times 1.8} = \sqrt{2.25} = 1.5$.
Ex.2 :	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, then prove that $\frac{a+b+c}{c} = 2$
Sol.:	
Ex. 3:	A dealer mixes tea costing Rs 6.92 per kg. with tea costing Rs 7.77 per kg and sells the mixture at
	Rs 8.80 per kg and earns a profit of 17^1_2 on his sale price. In what proportion does he mix them?
Sol.:	

L

	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA						
	EXERCISE 1(B)						
	Choose the	e most appropr	iate option (a)	(b) (c) or (d).	2		
1.	The fourth prop	portional to 4, 6, 8 is					
	(a) 12	(b) 32	(c) 48	(d) none of the	se		
2.	The third prope	ortional to 12, 18 is					
	(a) 24	(b) 27	(c) 36	(d) none of the	se		
3.	The mean prop	ortional between 25, 8	31 is				
	(a) 40	(b) 50	(c) 45	(d) none of the	se		
4.	The number wh	nich has the same ratio	to 26 that 6 has to 1	3 is			
	(a) 11	(b) 10	(c) 21	(d) none of the	se		
5.	The fourth prop	portional to 2a, a ² , c is					
	(a) ac/2	(b) ac	(c) 2/ac	(d) none of these			
6.	If four numbers	s 1/2, 1/3, 1/5, 1/x are	e proportional then x	is			
	(a) 6/5	(b) 5/6	(c) 15/2	(d) none of these			
7.	The mean prop	ortional between $12x^2$	and $27y^2$ is				
	(a) 18xy (Hint: Let z be t	(b) 81xy the mean proportional	(c) 8xy and $z = (\sqrt{12x^2} \text{ and } z)$	(d) none of these 27y ²)			
8.	If $A = B/2 = C/$	5, then A : B : C is					
	(a) 3 : 5 : 2	(b) 2 : 5 : 3	(c) 1 : 2 : 5	(d) none of these			

NAH	HTA PROFESSIONAL CLASSES			BUSINESS MATHEMATICS	
9.	If $a/3 = b/4 = c/7$, then $a + b + c/c$ is				
	(a) 1	(b) 3	(c) 2	(d) none of these	
10.	If $p/q = r/s = 2.5/$	1.5, the value of ps : q	r is		
	(a) 3/5	(b) 1:1	(c) 5/3	(d) none of these	
П.	If $x : y = z : w = 2.5$: 1.5, the value of (x -	+ z)/(y + w) is		
	(a) 1	(b) 3/5	(c) 5/3	(d) none of these	
12.	If (5x – 3y)/(5y – 3	x) = 3/4, the value of	f x : y is		
	(a) 2 : 9	(b) 7:2	(c) 7:9	(d) none of these	
13.	If A : B = 3 : 2 and I	3 : C = 3 : 5, then A : B	: C is		
	(a) 9:6:10	(b) 6:9:10	(c) 10:9:6	(d) none of these	
14.	If $x/2 = y/3 = z/7$,	then the value of (2x	– 5y + 4z)/2y is		
	(a) 6/23	(b) 23/6	(c) 3/2	(d) 17/6	
15.	If $x : y = 2 : 3, y : z =$	= 4 : 3 then x : y : z is			
	(a) 2 : 3 : 4	(b) 4:3:2	(c) 3 : 2 : 4	(d) none of these	
16.	Division of Rs 750	into 3 parts in the rat	io 4 : 5 : 6 is		
	(a) (200, 250, 300)	(b) (250, 250	0, 250) (c) (350, 25	0, 150) (d) 8 : 12 : 9	
17.	The sum of the age	s of 3 persons is 150 y	years. 10 years ago t	heir ages were in the ratio 7 : 8 : 9.	
	Their present ages	are			
	(a) (45, 50, 55)	(b) (40, 60, 5	50) (c) (35, 45,	70) (d) none of these	
18.	The numbers 14, 1	6, 35, 42 are not in pr	oportion. The fourth	term for which they will be in	

NAF	ITA PROFESSIONAL	CLASSES		BUSINESS MATHEMATICS			
	proportion is						
	(a) 45	(b) 40	(c) 32	(d) none of these			
19.	If $x/y = z/w$, impl	ies $y/x = w/z$, then the j	process is called				
	(a) Dividendo	b) Componendo	(c) Alternendo	(d) none of these			
20.	If $p/q = r/s = p -$	r/q – s, the process is ca	lled				
	(a) Substrendo	(b) Addendo	(c) Invertendo	(d) none of these			
21.	If $a/b = c/d$, impl	If $a/b = c/d$, implies $(a + b)/(a - b) = (c + d)/(c - d)$, the process is called					
	(a) Componendo	(b) Dividendo	(c) Componendo and Divi	idendo (d) none of these			
22.	22. If $u/v = w/p$, then $(u - v)/(u + v) = (w - p)/(w + p)$. The process is called						
	(a) Invertendo	(b) Alternend	o (c) Addend	o (d) none of these			
23.	12, 16, *, 20 are in	proportion. Then * is					
	(a) 25	(b) 14	(c) 15	(d) none of these			
24.	4, *, 9, 13½ are in	proportion. Then * is					
	(a) 6	(b) 8	(c) 9	(d) none of these			
25.	The mean propor	tional between 1.4 gms a	and 5.6 gms is				
	(a) 28 gms	(b) 2.8 gms	(c) 3.2 gms	(d) none of these			
26.	If $\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$ then $\frac{a}{5}$	$\frac{b+c}{c}$ is					
	(a) 4	(b) 2	(c) 7	(d) none of these.			
27.	Two numbers are be	in the ratio 3 : 4; if 6 be	added to each terms of th	e ratio, then the new ratio will			
	4 : 5, then the num	nbers are					
101	Ρασρ			<u>са медна панта</u>			

NAH	HTA PROFESSIONAL CLASSES			BUSINESS MATHEMATICS
	(a) 14, 20	(b) 17, 19	(c) 18 and 24	(d) none of these
28.	If $\frac{a}{4} = \frac{b}{5}$ then			
	$\frac{a+4}{a-4} = \frac{b-5}{b+5}$	(b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$	(c) $\frac{a-4}{a+4} = \frac{b+5}{b-5}$	(d) none of these
29.	If a : b = 4 : 1 tl	hen $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$ is		
	(a) 5/2	(b) 4	(c) 5	(d) none of these
30.	$\text{If}\frac{x}{b+c-a} = \frac{y}{c+a-b}$	$\frac{z}{b} = \frac{z}{a+b-c}$ then $(b-c)x$	+ (c – a)y + (a – b)z is	
	(a) 1	(b) 0	(c) 5	(d) none of these

NAHTA	PROFESSIONAL CLASSES	

T

			UNIT III: IN	DICES		
Ex 1.	Find x, if $x \sqrt{X}$	$= (x\sqrt{X})^x$				
Sol.:						
	AGAR DA	RR HAI BHAG	ANA, TO MA	THS HAI BAI		
	EXERCISE	1(C)				Y
	Choose th	e most appro	priate option	(a) (b) (c) o	r (d).	y
1.	4x ^{-1/4} is express					
	*(a) -4x ^{1/4}	(b) x ⁻¹	(c) 4/	/x ^{1/4} (d)	none of these	
2.	The value of 8 ^{1/3}	³ is				
	(a) ³ √2	(b) 4	(c) 2	(d) none o	of these	
3.	The value of 2 ×	(32) ^{1/5} is				
	(a) 2	(b) 10	(c) 4	(d) none o	of these	
4.	The value of 4/(32) ^{1/5} is				
	(a) 8	(b) 2	(c) 4	(d) none o	of these	
		27) ^{1/3} is				

NA	HTA PROFESSI	onal classes		BUSINESS MATH	IEMATICS
	(a) 2/3	(b) 3/2	(c) 2/9	(d) none of these	
6.	The value of 2	2(256) ^{-1/8} is			
	(a) 1	(b) 2	(c) 1/2	(d) none of these	
7.	2½ . 4¾ ⁱ s equa	al to			
	(a) a fraction	(b) a pos	sitive integer	(c) a negative integer (d) none of	these
8.	$\left(\frac{81x^4}{y^{-8}}\right)^{1/4}$ has	simplified value e	equal to		
	(a) xy ²	(b) x ² y	(c) 9xy	v ² (d) none of these	
9.	$x^{a-b} imes x^{b-c} imes x$	^{c-a} is equal to			
	(a) x	(b) 1	(c) 0	(d) none of these	
10.	The value of	$\left(\frac{2p^2q^3}{3xy}\right)^0$ where p,	q, x, y ≠ 0 is equal t	0	
	(a) 0	(b) 2/3	(c) 1	(d) none of these	
П.	${(3^3)^2 \times (4^2)^3}$	$(5^3)^2 / ((3^2)^3)^3 / ((3^2)^3)^3$	× $(4^3)^2$ × $(5^2)^3$ } is		
	(a) 3/4	(b) 4/5	(c) 4/7	(d) 1	
12.	Which is True	e ?			
	(a) $2^0 > (1/2)$)0 (1	b) $2^0 < (1/2)^0$	(c) $2^0 = (1/2)^0$ (d) none of	these
13.	If $x^{1/p} = y^{1/q} =$	$z^{1/r}$ and $xyz = 1$, then the value of p	+ q + r is	
	(a) 1	(b) 0	(c) 1/2	(d) none of these	
14.	The value of y	$y^{a-b} \times y^{b-c} \times y^{c-a} \times y^{c-a}$	y ^{-a-b} is		
	(a) y ^{a+b}	(b) y	(c) 1	(d) 1/y ^{a+b}	

NA	HTA PROFESSION	al classes			BUSINESS MATHEMATICS
15.	The True option i	S			
	(a) $x^{2/3} = \sqrt[3]{x^2}$	(b) x ^{2/3} =	$=\sqrt{x^3}$	(c) $x^{2/3} > \sqrt[3]{x^2}$	(d) $x^{2/3} < \sqrt[3]{x^2}$
16.	The simplified va	lue of $16x^{-3}y^2 \times 8^{-1}x^3$	y-² is		
	(a) 2xy (b) xy/2 (c	2) 2	(d) none of the	se
17.	The value of (8/2	7) ^{-1/3} × (32/243) ^{-1/5}	⁵ is		
	(a) 9/4	(b) 4/9	(c) :	2/3	(d) none of these
18.	The value of {(x +	$(x - y)^{2/3} (x - y)^{3/2} / \sqrt{x}$	$+ y \sqrt{(x+y)^3}$ } ⁶	is	
	(a) $(x + y)^2$	(b) (x - y)	(c) x + y	(d) non	e of these
19.	Simplified value of	of $(125)^{2/3} \times \sqrt{25} \times \sqrt[3]{3}$	$\sqrt{5^3} \times 5^{1/2}$ is		
	(a) 5	(b) 1/5	(c)	1 (d) none of these
20.	$[\{(2)^{1/2}.(4)^{3/4}.($	8) ^{5/6} .(16) ^{7/8} .(32) ^{9/}	¹⁰ } ⁴] ^{3/25} is		
	(a) A fraction	(b) an integer	(c)	1 (d) none of these
21.	$[1-{1-(1-x^2)^{-1}}]^{-1}$] ^{-1/2} is equal to			
	(a) x	(b) 1/x	(c)	1 (d) none of these
22.	$\left[(x^n)^{n-\frac{1}{n}} \right]^{\frac{1}{n+1}} $ is eq	jual to			
	(a) x ⁿ	(b) x ⁿ⁺¹	(c)	X ⁿ⁻¹	(d) none of these
23.	If $a^3-b^3 = (a-b)$ ($\left[\frac{x^l}{x^m}\right]^{l^2+lm+m^2} \left[\frac{x^m}{x^n}\right]$	$a^{2} + ab + b^{2}$), then the $a^{2} + ab + b^{2}$, $\left[\frac{x^{n}}{x^{l}}\right]^{l^{2} + ln + n}$	ne simplified form	m of	
	(a) 0	(b) 1	(c) x	(d) non	e f these
24.	Using $(a-b)^3 = a^3$	-b ³ -3ab(a-b) tick th	e correct of thes	e when $x = p^{1/3} - p^{1/3}$	p ^{-1/3}

NAHTA PROFESSIONAL CLASSES

Т

	(a) $x^3 + 3x = p + 1/p$	(b) $x^3 + 3x = p - 1/2$	p (c) $x^3 + 3x =$	p + 1 (d) none of these
25.	On simplification, 1/	$(1+a^{m-n}+a^{m-p})+1/($	$1 + a^{n-m} + a^{n-p}) + 1/(1)$	$+a^{p-m}+a^{p-n}$) is equal to
	(a) 0	(b) a	(c) 1	(d) 1/a
26.	The value of $\left(\frac{x^a}{x^b}\right)^{a+b}$	$x\left(\frac{x^b}{x^c}\right)^{b+c}x\left(\frac{x^c}{x^a}\right)^{c+a}$		
	(a) 1	(b) 0	(c) 2	(d) none of these
27.	If $x = 3^{1/3} + 3^{-1/3}$, the	en 3x ³ -9x is		
	(a) 15	(b) 10	(c) 12	(d) none of these
28.	If $a^x = b$, $b^y = c$, $c^z =$	a, then xyz is		
	(a) 1	(b) 2	(c) 3	(d) none of these
29.	The value of $\left[\frac{x^a}{x^b}\right]^{a^2+a}$	$(b+b^2 \left[\frac{x^b}{x^c}\right]^{b^2+bc+c^2} \left[\frac{x^c}{x^a}\right]^{c}$	c^2+ca+a^2	
	(a) 1	(b) 0	(c) -1	(d) none of these
30.	If $2^x = 3^y = 6^{-z}$, $\frac{1}{x} + \frac{1}{y}$	$+\frac{1}{z}$		
	(a) 1	(b) 0	(c) 2	(d) none of these

I

	UNIT IV: LOGARITHM
Ex. 1:	Find the logarithm of 64 to the base $2\sqrt{2}$
Sol.:	
Ex. 2:	If a=log2412, b=log3624, and c=log4836 then prove that I+abc = 2bc
Sol.:	

	AGAR DARR	HAI BHAGAN	A, TO MATHS	HAI BANANA
	EXERCISE 1(I	D)		
	Choose the r	nost appropria	ate option (a)) (b) (c) or (d).
1.	log 6 + log 5 is exp	pressed as		
	(a) log 11	(b) log 30	(c) log 5/6	(d) none of these
2.	log28 is equal to			
	(a) 2	(b) 8	(c) 3	(d) none of these
3.	log 32/4 is equal t	0		
	(a) log 32/log 4	(b) log 32 – log 4	(c) 2 ³	(d) none of these
4.	log (1 × 2 × 3) is ϵ	equal to		
	(a) log 1 + log 2 +	log 3 (b) log 3	(c) log 2	(d) none of these
5.	The value of log 0.	0001 to the base 0.1 i	is	
	(a) -4	(b) 4	(c) 1/4	(d) none of these
6.	If $2 \log x = 4 \log 3$,	the <i>x</i> is equal to		
	(a) 3	(b) 9	(c) 2	(d) none of these
7.	$\log\sqrt{2}64$ is equal to	0		
	(a) 12	(b) 6	(c) 1	(d) none of these
8.	$\log_{2\sqrt{3}} 1728$ is equa	al to		
	(a) 2√3	(b) 2	(c) 6	(d) none of these
9.	log (1/81) to the b	base 9 is equal to		

NAH	TA PROFESSIONA	al Classes		BUSINESS MATHEMATICS
	(a) 2	(b) ½	(c) -2	(d) none of these
10.	log 0.0625 to the	e base 2 is equal to		
	(a) 4	(b) 5	(c) 1	(d) none of these
11.	Given $\log 2 = 0.3$	010 and log3 = 0.477	71 the value of log 6 i	is
	(a) 0.9030	(b) 0.9542	(c) 0.7781	(d) none of these
12.	The value of log	2 log2 log2 16		
	(a) 0	(b) 2	(c) 1	(d) none of these
13.	The value of log	1/3 to the base 9 is		
	(a) – ½	(b) ½	(c) 1	(d) none of these
14.	If log x + log y =	log (x+y), y can be e	xpressed as	
	(a) x-1	(b) x	(c) x/x-1	(d) none of these
15.	The value of log	2 [log2 {log3 (log327 ³	³)}] is equal to	
	(a) 1	(b) 2	(c) 0	(d) none of these
16.	If log2x + log4x	$+\log 16x = 21/4$, the	se x is equal to	
	(a) 8	(b) 4	(c) 16	(d) none of these
17.	Given that log10	$2 = x$ and $\log 103 = y$, the value of log106	0 is expressed as
	(a) x - y + 1	(b) x + y + 1	(c) x - y - 1	(d) none of these
18.	Given that log10	$y^2 = x$, $\log 103 = y$, the	en log101.2 is expres	sed in terms of <i>x</i> and y as
	(a) x + 2y - 1	(b) x + y -	-1 (c) $2x + y$	y – 1 (d) none of these
19.	Given that log x as	= m + n and log y $=$ r	n – n, the value of log	g $10x/y^2$ is expressed in terms of m and n

NAF	ITA PROFESSIONA	l Classes		BI	JSINESS MATHEMATICS
	(a) 1 – m + 3n	(b) m – 1	+ 3n	(c) m + 3n + 1	(d) none of these
20.	The simplified va	lue of 2 log105 + lo	g108 – ½ log104	is:	
	(a) 1/2	(b) 4	(c) 2	(d)	none of these
21.	log [1 - {1 - (1	x²)-1}-1]-1/2 can be v	vritten as		
	(a) log x^2	(b) log <i>x</i>	(c) $\log 1/x$	(d) none of	f these
22.	The simplified va	lue of log $\sqrt[4]{7293\sqrt{9}}$) ⁻¹ 27 ^{4/3} is		
	(a) log 3	(b) log 2	(c) log ½	(d) none of	f these
23.	The value of (log	$ba \times logcb \times logac)^3$	³ is equal to		
	(a) 3	(b) 0	(c) 1	(d) none of	f these
24.	The logarithm of	64 to the base $2\sqrt{2}$	is		
	(a) 2	(b) 2√2	(c) ½	(d) none of	fthese
25.	The value of log8	25 given $\log 2 = 0.3$	8010 is		
	(a) 1	(b) 2	(c) 1.5482	(d) none of	f these
	1				

Exe	rcise	1(A)													
1.	(a)	2.	(d)	3.	(c)	4.	(a)	5.	(c)	6.	(d)	7.	(a)	8.	(
9.	(a)	10.	(c)	11.	(d)	12.	(d)	13.	(a)	14.	(c)	15.	(d)	16.	(
	(c)	18.	(b)	19.	(b)	20.	(c)	21.	(a)	22.	(c)	23.	(a)	24.	(
	(c)														
	rcise			-				_						-	10
1.	(a)	2.	(b)	3.	(c)	4.	(d)	5.	(a)	6.	(c)	7.	(a)	8.	(
9.	(c)	10.	(b)	11.	(c)	12.	(d)	13.	(a)	14.	(d)	15.	(d)	16.	(
17.		18.	(b)	19.	(d)	20.	(a)	21.	(c)	22.	(d)	23.	(c)	24.	(
25.	(b)	26.	(b)	27.	(c)	28.	(b)	29.	(a)	30.	(b)				
Exe	rcise	1(C)													
1.	(c)	2.	(c)	3.	(c)	4.	(b)	5.	(a)	6.	(a)	7.	(b)	8.	(
9.	(b)	10.	(c)	11.	(d)	12.	(c)	13.	(b)	14.	(d)	15.	(a)	16.	1
	(a)	18.	(c)	19.	(d)	20.	(b)	21.	(a)	22.	(c)	23.	(b)	24.	(
25.	(c)	26.	(a)	27.	(b)	28.	(a)	29.	(a)	30.	(b)				
Exe	rcise	1(D)													
1.	(b)	2.	(c)	3.	(b)	4.	(a)	5.	(b)	6.	(b)	7.	(a)	8.	
9.	(c)	10.	(d)	11.	(c)	12.	(c)	13.	(a)	14.	(c)	15.	(c)	16.	(
17.	(b)	18.	(c)	19.	(a)	20.	(c)	21.	(b)	22.	(a)	23.	(c)	24.	1
25.	(c)														

	Past Exam Questions								
	2006 – Nov				2				
1.	Two numbers a	re in the ratio 2 : 3 an	d the difference of their	r squares is 320. The nu	imbers are :				
	(a) 12,18	(b) 16,24	(c) 14,21	(d) Non e .					
2.	If p : q is the sul	b-duplicate ratio of p	- x ² : q - x ² , then x ² is :						
	(a) $\frac{p}{p+q}$	(b) $\frac{q}{p+q}$	(c) $\frac{qp}{p-q}$	(d) None.					
3.	An alloy is to contain copper and zinc in the ratio 9 : 4. The zinc required to melt with 24 kg of copper:								
	(a) $10\frac{2}{3}$ kg	(b) $10\frac{1}{3}$ kg	(c) $9\frac{2}{3}$ kg	(d) 9kg					
4.	$7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{16}{15}\right) + 5\log\left(\frac{16}{$	$\log\left(\frac{25}{24}\right) + 3\log\left(\frac{81}{80}\right)$ i	s equal to :						
	(a) 0	(b) 1	(c) log 2	(d) log 3					
	2007- Feb								
5.	Two numbers a	re in the ratio 7 : 8. If	3 is added to each of th	em, their ratio become	s 8 : 9. The				
	numbers are :								
	(a) 14,16	(b) 24,27	(c) 21,24	(d) 16,18					
6.	A box contains	Rs. 56 in the form of co	oins of one rupee, 50 pa	ise and 25 paise. The nu	umber of 50 paise				

	coin is double the	e number of 25 pai	se coins and f	our times the r	numbers of o	ne rupee coins. The			
	numbers of 50 pa	ise coins in the bo	x is :						
	(a) 64	(b) 32	(c) 16		(d) 14				
7.	Value of $(a^{1/8} + a^{-1/8}) (a^{1/8} - a^{-1/8}) (a^{1/4} + a^{-1/4}) (a^{1/2} + a^{-1/2})$ is :								
	(a) $a + \frac{1}{a}$	(b) a - 2	La	(c) $a^2 + \frac{1}{2}$	$\frac{1}{a^2}$	(d) $a^2 - \frac{1}{a^2}$			
8.	The value of the e	expression : a ^{loga}	b.log ^c .log ^d .log _d t						
	(a) t (b)	abcdt	(c) (a + b + c	+ d +1)	(d) N	one.			
9.	If $\log_{10000} x = \frac{-1}{4}$,	then x is given by:							
	(a) $\frac{1}{100}$	(b) $\frac{1}{10}$	$(c)\frac{1}{20}$		(d) None of	these.			
	2007 – May								
10.	Eight people are planning to share equally the cost of a rental car. If one person withdraws from the								
	arrangement and	the others share e	equally entire	cost of the car,	, then the sha	are of each of the			
	remaining perso	ns increased by:							
	(a) 1/9	(b) 1/8	}	(c) 1/7	(d) 7	/8			
11.	A bag contains R	s. 187 in the form o	of 1 rupee, 50	paise and 10 p	aise coins in	the ratio 3:4:5. Find the			
	number of each t	ype of coins :							
	(a) 102,136,170	(b) 136,102,12	70	(c) 170, 102, 1	136 (d) N	one			
	D o g o								

NAF	ITA PROFESSIONA	al Classes		BUSINESS MATHEMATICS
12.	Simplification of	$\frac{x^{m+3n}x^{4m-9n}}{x^{6m-6n}}$ is:		
	(a) x ^m	(b) x ^{-m}	(c) x ⁿ	(d) x ⁻ⁿ
13.	If log (2a - 3b) =	log a - log b, then a =	:	
	$(a)\frac{3b^2}{2b-1}$	$(b)\frac{^{3b}}{^{2b-1}}$	$(C)\frac{b^2}{2b+1}$	$(d)\frac{3b^2}{2b+1}$
	2007 – Aug			
14.	On simplification	$\frac{1}{1+Z^{a-b}+Z^{a-c}} + \frac{1}{1+Z^{b-c}+Z^{a-c}}$	$\frac{1}{Z^{b-a}} + \frac{1}{1+Z^{c-a}+Z^{c-b}}$ redu	ices to:
	$(a)\frac{1}{Z^{2(a+b+c)}}$	(b) $\frac{1}{Z^{(a+b+c)}}$	(c) 1	(d) 0
15.	Ratio of earnings	of A and B is 4 : 7. If t	he earnings of A increa	ase by 50% and those of B decrease by
	25%,the new rati	o of their earning bec	omes 8 : 7. What is A's	searning?
	(a) Rs. 21,000	(b) Rs. 26,000	(c) Rs. 28,000	(d) Data inadequate.
16.	P, Q and R are th	ee cities. The ratio of	average temperature	between P and Q is 11 :12 and that
	between P and R	is 9 : 8. The ratio betw	veen the average temp	perature of Q and R is
	(a) 22:27	(b) 27:22	(c) 32:33	(d) None.
17.	$\frac{1}{\log_{ab}(abc)} + \frac{1}{\log_{bc}(abc)}$	$\frac{1}{\log_{ca}(abc)}$ is equal	to:	
	(a) 0	(b) 1	(c) 2	(d) -1
18.	Number of digits	in the numeral for 2 ⁶⁴	⁴ . [Given log 2 = 0.301	03]:

NAF	ITA PROFESSIONA	AL CLASSES		BUSINESS MAT	HEMATICS	
	(a) 18 digits	(b) 19 digits	(c) 20 di	igits ((d) 21 digits.	
	2007- Nov					
19.	Rs. 407 are to be	divided among A, B a	and C so that their sh	ares are in th	e ratio $\frac{1}{4}: \frac{1}{5}: \frac{1}{6}$. Th	e respective
	shares of A, B, C a	are :				
	(a) Rs.165.Rs.132.Rs.no (b) Rs. 165, Rs. 110, Rs. 132					
	(c) Rs. 132, Rs. 110, Rs. 165 (d) Rs. 110, Rs.132, Rs. 165					
20.	The incomes of A	and B are in the rati	o 3 : 2 and their exp	enditures in t	ne ratio 5 : 3. If ea	ich saves Rs.
	1,500, then B's in	come is :				
	(a) Rs. 6,000	(b) Rs. 4,500	(c) Rs. 3,000	(d) Rs. '	7,500	
21.	If $4^{x} = 5^{y} = 20^{z}$ the second seco	nen z is equal to :				
	(a) xy (b	$\left(\frac{x+y}{xy}\right)$	(c) $\frac{1}{xy}$ (4)	d) $\frac{xy}{x+y}$		
22.	$\left(\frac{\sqrt{3}}{9}\right)^{5/2} \left(\frac{9}{3\sqrt{3}}\right)^{7/2}$	× 9 is equal to				
	(a) 1	(b) √3	(c) 3√3	$(d) \frac{3}{9\sqrt{3}}$		
23.	The value $\frac{\log_3}{\log_9 16.\log_3}$	$\frac{8}{\log_4 10}$ is :				
	(a) 3 log ₁₀ 2	(b) 7 log ₁₀ 3	(c) 3 log _e z	(d) Non	е.	

NAH	TA PROFESSIONAL CLASSES			BUSINESS MATHEMATICS		
	Feb 08					
24.	In 40 litres mixture	of glycerine and wat	er, the ratio of glycer	ine and water i	s 3:1. The quantity of	
	water added in the	mixture in order to n	nake this ratio 2:1 is:			
	(a) 15 litres	(b) 10 litres	(c) 8 litres	(d) 5 litres.		
25.	The third proportio	nal between (a² - b²)	and $(a+b)^2$ is :			
	(a) $\frac{a+b}{a-b}$	(b) $\frac{a-b}{a+b}$	$(c) \frac{(a-b)^2}{a+b}$	$(d)\frac{(a+b)^3}{a-b}$		
26.	If $2^x - 2^{x-1} = 4$ then x	^{x×} is equal to :				
	(a) 7	(b) 3	(c) 27	(d) 9		
27.	If $x = \frac{e^n - e^{-n}}{e^n + e^{-n}}$, then the	ne value of n is:				
	$(a)\frac{1}{2}\log_{e}\frac{1+x}{1-x}$	(b) $\log_e \frac{1+x}{1-x}$	(c) $\log_e \frac{1-x}{1+x}$	(d) $\log_e \frac{1-x}{1+x}$		
28.	log 144 is equal to:					
	(a) 2 log 4 + 2 log 2	(b) 4 log 2 + 2 lo	g 3 (c) 3 log 2+	4 log 3	(d) 3 log 2 - 4 log 3	
	2008 - June					
29.	In what ratio should	l tea worth Rs. 10 per	kg be mixed with tea	worth Rs. 14 p	er kg, so that the average	
	price of the mixture	may be Rs. 11 per k	g?			
	(a) 2:1	(b) 3:1	(c) 3:2	(d) 4:3		
30.	The ages of two per	sons are in the ratio	5:7. Eighteen years a	go their ages w	ere in the ratio of 8:13,	

	their present ages (in years) are:						
	(a) 50, 70	(b) 70, 50	(c) 40,56	(d) None.			
31.	$x = y^a$, $y = z^b$ and $z = x^c$ then abc is:						
	(a) 2	(b) 1	(c) 3	(d) 4			
32.	If log2 [log3 (log2 x)] = 1, then x equals	5:				
	(a) 128	(b) 256	(c) 512	(d) None.			
33.	If $\log\left(\frac{a+b}{4}\right) = \frac{1}{2}$ (lo	og a + log b) then:	$\frac{a}{b} + \frac{b}{a}$				
	(a) 12	(b) 14	(c) 16	(d) 8			
34.	If A, B and C starte	d a business by inve	esting Rs. 1,26,000, Rs.	. 84,000 and Rs. 2,10,000. If at the end of			
	The year profit is I	Rs. 2,42,000 then the	e share of each is :				
	(a) 72,600, 48,400), 1,21,000	(b) 48,400, 1,21,000, 72,600				
	(c) 72,000,49,000,	1,21,000	(d) 48,000,1,21,4	00,72,600			
35,	$If\frac{p}{q} = -\frac{2}{3} then the v$	value of $\frac{2p+q}{2p-q}$ is					
	(a) 1	(b) -1/7	(c) 1/7	(d) 7			
36.	Fourth proportion	al to x, 2x, (x+1) is:					
	(a) (x+2)	(b) (x-2)	(c) (2x+2)	(d) (2x-2)			

BUSINESS MATHEMATICS

	IA FROFESSIONAL	CLASSES		DUSINESS MATHEMATICS			
37.	If $x = 3^{1/3} + 3^{-1/3}$ th	nen find value of 3x ³ -	9x				
	(a) 3	(b) 9	(c) 12	(d) 10			
38.	Find the value of: $[1 - {1 - (1 - x^2)^{-1}}^{-1}]^{-1/2}$						
	(a) 1/x	(b) x	(c) 1	(d)- None of these.			
39.	$\log\left(m+n\right) = \log r$	n + log n, m can be ex	xpressed as :				
	(a) m = $\frac{n}{n-1}$	(b) $m = \frac{n}{n+1}$	(c) m = $\frac{n+1}{n}$	(d) $m = \frac{n+1}{n-1}$			
40.	$\log_4 (x^2 + x) - \log_4 (x+1) = 2$. Find x						
	(a) 16	(b) 0	(c) – 1	(d) None of these.			
	2009 - Dec						
41.	$\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$						
	(a) 1/2	(b) 3/2	(c) 2/3	(d) 1/3			
42.	$2^{\mathrm{x}} \times 3^{\mathrm{y}} \times 5^{\mathrm{z}} = 360.$	Then what is the val	ue of x, y, z.?				
	(a) 3,2,1	(b) 1,2,3	(c) 2,3,1	(d) 1,3,2			
43.	Find the value of [l	og₁₀√25 - log₁₀ (2³) +	- log10(4)²]x				
	(a) x	(b) 10	(c) 1	(d) None.			

BUSINESS MATHEMATICS

	2010 – June							
44.	If $2^x - 2^{x-1} = 4$ then x^x is equal to :							
	(a) 7	(b) 3	(c) 27	(d) 9				
45.	If $\log_a b + \log_a c =$	0 then						
	(a) b = c	(b) b = -c	(c) $b = c = 1$	(d) b and c are reciprocals.				
46.	What must be add	led to each term of the	e ratio 49 : 68, so that :	it becomes 3:4?				
	(a) 3	(b) 5	(c) 8	(d) 9				
47.	The students of t	wo classes are in the ra	atio 5 : 7, if 10 student	s left from each class, the remaining				
	students are in th	e ratio of 4 : 6 then the	e number of students i	in each class is:				
	(a) 30, 40 (b) 25, 24 (c) 40, 60 (d) 50,70							
	2010 - Dec							
48.	The value of 2 log	$x + 2 \log x^2 + 2 \log x^3$	³ + + 2 log x	ⁿ will be:				
	$(a)\frac{n(n+1)\log x}{2}$	(b) n(n+1)logx	(c) n ² log x	(d) None of these.				
49.	The recurring decimal 2.7777 can be expressed as:							
	(a) 24/9	(b) 22/9	(c) 26/9	(d) 25/9				
50.	Solve: $\left(\frac{\log x_{10}-3}{2}\right)$	$+\left(\frac{11-\log x_{10}}{3}\right) = 2$						

(a) 10 ⁻¹	(b) 10 ²	(c) 10	(d) 10 ³			
If A:B = 2:5, then (10A + 3B):(5A + 2B) is equal to:						
(a) 7:4	(b) 7:3	(c) 6:5	(d) 7:9			
2011 – June						
If $n = m!$ where ('r	n' is a positive intege	r > 2) then the value	of:			
$\frac{1}{\log_{2}^{n}} + \frac{1}{\log_{3}^{n}} + \frac{1}{\log_{4}^{n}} + \dots \dots + \frac{1}{\log_{m}^{n}}$						
(a) 1	(b) 0	(c) -1	(d) 2			
In a film shooting,	A and B received mor	ney in a certain ratio	and B and C also received the money in			
the same ratio. If A	. gets Rs. 1,60,000 and	d C gets Rs. 2,50,000.	Find the amount received by B ?			
(a) Rs. 2,00,000	(b) Rs. 2,50,000	(c) Rs. 1,00,000	(d) Rs. 1,50,000			
2011 - Dec						
The ratio Compour	nded of 4:5 and sub-d	uplicate of "a":9 is 8:	15. Then Value of "a" is:			
(a) 2	(b) 3	(c) 4	(d) 5			
$If \log_2 x + \log_4 x = 6$, then the Value of x i	S :				
(a) 16	(b) 32	(c) 64	(d) 128			
If X Varies inverse	y as square of Y and §	given that $Y = 2$ for X	= 1, then the Value of X for $Y = 6$ will be:			
(a) 3	(b) 9	(c) 1/3	(d) 1/9			
	If A:B = 2:5, then ((a) 7:4 2011 - June If n = m! where ('n (a) 1 (a) 1 In a film shooting, 1 the same ratio. If A (a) Rs. 2,00,000 2011 - Dec The ratio Compoun (a) 2 If $\log_2 x + \log_4 x = 6$ (a) 16 If X Varies inversel	If A:B = 2:5, then $(10A + 3B):(5A + 2B)$ (a) 7:4 (b) 7:3 2011 - June If n = m! where ('m' is a positive integer $\frac{1}{\log_2^n} +$ (a) 1 (b) 0 In a film shooting, A and B received mor the same ratio. If A gets Rs. 1,60,000 and (a) Rs. 2,00,000 (b) Rs. 2,50,000 2011 - Dec The ratio Compounded of 4:5 and sub-d (a) 2 (b) 3 If log ₂ x + log ₄ x = 6, then the Value of x i (a) 16 (b) 32 If X Varies inversely as square of Y and g	If A:B = 2:5, then (10A + 3B):(5A + 2B) is equal to: (a) 7:4 (b) 7:3 (c) 6:5 2011 - June If n = m! where ('m' is a positive integer > 2) then the value $\frac{1}{\log_2^n} + \frac{1}{\log_3^n} + \frac{1}{\log_4^n} + \dots \dots$ (a) 1 (b) 0 (c) -1 In a film shooting, A and B received money in a certain ratio the same ratio. If A gets Rs. 1,60,000 and C gets Rs. 2,50,000. (a) Rs. 2,00,000 (b) Rs. 2,50,000 (c) Rs. 1,00,000 2011 - Dec The ratio Compounded of 4:5 and sub-duplicate of "a":9 is 8: (a) 2 (b) 3 (c) 4 If $\log_2 x + \log_4 x = 6$, then the Value of x is : (a) 16 (b) 32 (c) 64 If X Varies inversely as square of Y and given that Y = 2 for X			

	2012 – June			
57.	The value of $\frac{(3^n)}{(3^n)}$	$\frac{1+1+3^{n}}{3-3^{n+1}}$ is equal to:		
	(a) 1/5	(b) 1/6	(c) ¼	(d) 1/9
58.	If $\log x y = 100 a$	and $\log_2 x = 10$, then t	he value of 'y' is :	
	(a) 2 ¹⁰	(b) 2 ¹⁰⁰	(c) 2 ^{1,000}	(d) 2 ^{10,000}
59.	Which of the nu	mbers are not in prop	portion ?	
	(a) 6, 8, 5, 7	(b) 7, 14, 6	(c) 18, 27, 12,18	(d) 8, 6,12, 9
	2012 – Dec			
60.	Find the value o	f x, if x (x) ^{1/3} = (x ^{1/3}))x	
	(a) 3	(b) 4	(c) 2	(d) 6
61.	Which of the fol	lowing is true. If $\frac{1}{ab}$ +	$\frac{1}{bc} + \frac{1}{ca} = \frac{1}{abc}$	
	(a) log (ab + bc	+ ca) = abc	(b) $\log\left(\frac{1}{a}+\right)$	$\left(\frac{1}{b} + \frac{1}{c}\right) = abc$
	(c) log (abc) = ()	(d) log (a +	(b + c) = 0
62.	Find two numbe	ers such that mean pr	oportional between then	n is 18 and third proportional between
	them is 144			
	(a) 9, 36	(b) 8, 32	(c) 7, 28	(d) 6, 24

NAH	ITA PROFESSION	al Classes	BUSINESS MATHEMATICS				
	2013 - June						
63.	For what value of x, the equation $(\log_{\sqrt{x}} - 2)^2 = \log_{x^2} $ is true?						
	(a) 16	(b) 32	(c) 8	(d) 4			
64.	The mean propo	rtional between 24	and 54 is :				
	(a) 33	(b) 34	(c) 35	(d) 36			
65.	The triplicate rat	io of 4 : 5 is:					
	(a) 125:64	(b) 16:25	(c) 64 :	: 125 (d) 120 : 46			
	2013 - Dec						
66.	$If \sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c}$	= 0 = 0, then the va	alue of $\left(\frac{a+b+c}{3}\right)^3$				
	(a) abc	(b) 9abc	(c) $\frac{1}{abc}$	$(d)\frac{1}{9abc}$			
67.	Find three numb	ers in the ratio 1 : 2	: 3, so that the sum of	of their squares is equal to 504			
	(a) 6, 12,18	(b) 3,6, 9	(c) 4, 8	8, 12 (d) 5,10,15			
68.	The value of log ₄	9 . log3 2 is:					
	(a) 3	(b) 9	(c) 2	(d) 1			
69.	The value of (log	_y x . log ₂ y . log _x z) ³ i	S				
	(a) 0	(b) -1	(c) 1	(d) 3			

70.	Divide 80 into two parts so that their product is maximum, then the numbers are:						
	(a) 25,55	(b) 35,45	(c) 40,40	(d) 15,65			
	2014 – June						
71.	If $x : y = 2:3$, then $(5x+2y):(3x-y)=$						
	(a) 19:3	(b) 16:3	(c) 7 :2	(d) 7:3			
72.	If $(25)^{150} = (25x)^{50}$; t	hen the value of x will be	:				
	(a) 5 ³ (b) 5 ⁴	(c) 5 ²	(d) 5				
73	The value of $\left(\frac{y^a}{y^b}\right)^{a^2+a^2}$	$(b+b^2 \times \left(\frac{y^b}{y^c}\right)^{b^2+bc+c^2} \times \left(\frac{y^c}{y^a}\right)^{b^2+bc+c^2}$) ^{c^{2+ac+a2} is equal to}				
	(a) y (b) -1	(c) 1 (d) Non	e of these				
74.	If the salary of P is 25	% lower than that of Q an	d the salary of R is 20%	b higher than that of Q, the ratio			
	of the salary of R and	P will be:					
	(a) 5 : 8 (b) 8 : 1	5 (c) 5 : 3	(d) 3 : 5				
75.	If $x^2 + y^2 = 7xy$, then $\log \frac{1}{3}(x+y) = $						
	(a) (log x+log y)	(b) $\frac{1}{2}(\log x + \log y)$	$(c)\frac{1}{3}(\log x / \log y)$	$(d)\frac{1}{3}(\log x + \log y)$			
76.	A person has assets w	orth Rs. 1,48,200. He wis	h to divide it amongst h	is wife, son and daughter in the			
	ratio 3:2:1 respective	ly. From this assets, the s	hare of his son will be:				

Т

NAH	ITA PROFESSIONA	L CLASSES		BUSINESS MATHEMATICS			
	(a) Rs. 24,700	(b) Rs. 49,400	(c) Rs. 74,100	(d) Rs. 37,050			
77.	If $x = \log_{24}12$, $y = \log_{36}24$ and $z = \log_{48}36$, then $xyz + 1 = $						
	(a) 2xy (1	o) 2xz (c) 2y	yz (d) 2				
	2014 – Dec						
78	If $\log x = a + b$, lo	g y = a - b then the va	alue of $\log \frac{10x}{y^2} =$				
	(a) 1 - a + 3b	(b) a -1 + 3b	(c) a + 3b + 1	(d) 1 - b + 3a			
79.	If $x = 1 + \log_p qr$,	$y = 1 + \log_q rp$ and z	$= 1 + \log_{r} pq$ then th	e value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = $			
	(a) 0 (b)	1 (c) -1	(d) 3				
80.	For three months	, the salary of a perso	n are In the ratio 2: 4:	5. If the difference between the productof			
	salaries of the firs	st two months and las	st two months is Rs. 4	,80,00,000; then the salary of the person			
	for the second mo	onth will be:					
	(a) Rs. 4,000	(b) Rs. 6,000	(c) Rs. 8,000	(d) Rs. 12,000			
	2015 – June						
81.	A dealer mixes rid	ce costing Rs. 13.84 p	er Kg. with rice costir	ng Rs. 15.54 and sells the mixture at			
	Rs. 17.60 per Kg.	So, he earns a profit o	f 14.6% on his sale pr	ice. The proportion in which he mixesthe			
	two qualities of ri	ce is:					

NAH	TA PROFESSION	VAL CLASSI	ES		BUSINESS MATHEMATICS	
	(a) 3:7	(b) 5 : 7	(c) 7:9	(d) 9:1		
82.	If $p^x = q$, $q^y = r$	and $r^2 = p^6$,	then the value	of xyz will be:		
	(a) 0	(b) 1	(c) 3	(d) 6		
83	If $\log x = m + \pi$	n and log y =	= m - n, then log	$g(10x/y^2) =$		
	(a) 3n - m + 1	(b)	3m - n + 1	(c) 3n + n + 1	(d) 3m + n + 1	
84	If 15(2p ² - q ²) =	= 7pq, wher	e p and q are p	ositive, then p: q wil	l be:	
	(a) 5:6	(b) 5 : 7	(c) 3 :	5 (d) 8 :	3	
85.	The ratio of thi	rd proportic	on of 12,30 to th	ne mean proportion	of 9, 25 is:	
	(a) 2:1	(b) 5:1	(c) 7:15	(d) 3:5		
	2015 – Dec					
86.	The value of lo	g5 3 × log3 4	× log ₂ 5.			
	(a) 0	(b) 1	(c) 2	$(d)\frac{1}{2}$		
87.	What number must be added to each of the numbers 10,18, 22, 38 to make the numbers is					
	proportion?					
	(a) 2 (b	o) 4	(c) 8	(d) None of these	2.	
88.	The value of $\frac{2^{n+1}}{2^{n+1}}$	$\frac{2^{n-1}}{1-2^n}$ is:				

	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$	$(c)^{\frac{2}{2}}$					
			(C) ₃		(d) 2			
	2016 – Jun	e						
89.	The integral _I	part of a loga	rithm is call	ed	and the deci	mal par	t of a logarithı	m is called
	(a) Mantissa,	Characterist	ic	(b)	Characteristic	Mantis	sa	
	(c) Whole, De	ecimal		(d) N	one of these.			
90.	The value of	$\left[\frac{x^2 - (y - z)^2}{(x + z)^2 - y^2} + \frac{y^2 - (z - z)^2}{(x + y)^2}\right]$	$\frac{(x-z)^2}{(y-z)^2} + \frac{z^2 - (x-y)}{(y+z)^2 - z^2}$	$\left \frac{x^2}{x^2}\right $ is				
	(a) 0	(b) 1	(c)	-1	(d)			
91.	X, Y, Z togeth	er starts a bu	siness. If X i	nvests	3 times as muo	ch as Y ii	nvests and Y in	nvests two
	third of what	Z invests, the	en the ratio	of capi	tals of X, Y, Z is	:		
	(a) 3:9:2	(b) 6:3:2		(c) 3:6:2	(d) 6:2:3	
92.	If $\log_4(x^2 + x)$) - log ₄ (x + 1))=2, then t	he valu	e of X is:			
	(a) 2	(b) 3	((c) 16	(d) 8	}		
93.	Value of $\frac{1}{\log_3^{60}}$ -	$+ -\frac{1}{\log_4^{60}} + \frac{1}{\log_5^{60}}$	is:					
	(a) 0	(b) 1	(c) 5	(d) 6	0		
94.	If $3^{x} = 5^{y} = 7$	5 ^z , then						
	(a) x + y - z =	= 0 (b)	$\frac{2}{x} + \frac{1}{y} = \frac{1}{z}$		(c) $\frac{1}{x} + \frac{2}{y} = \frac{1}{z}$		$(d)\frac{2}{x} + \frac{1}{z} =$	$\frac{1}{y}$

I

	2016 – Dec							
95.	If $\log 2 - 0.3010$ and $\log 3 = 0.4771$, then the value of $\log 24$ is:							
	(a) 1.0791	(b) 1.73	23	(c) 1.3801	(d) 1.8301			
96.	If abc = 2, the	n the value of $\frac{1}{1+1}$	$\frac{1}{a+2b^{-1}} + \frac{1}{1+\frac{1}{2}b+c^{-1}}$	$\frac{1}{1+c+a^{-1}}$ is:				
	(a) 1	(b) 2	(c) 3	$(d)\frac{1}{2}$				
97.	There are tota	l 23 coins of Rs.	1, Rs. 2 and 1	Rs. 5 in a bag. If th	eir value is Rs. 43 and the ratio of			
	coins of Rs. 1 and Rs. 2 is 3:2. Then the number of coins of Rs. 1 is:							
	(a) 12	(b) 5	(c) 10	(d) 14				
	2017 – June	•						
98.	If a:b = 2:3, b	:c = 4:5 and c: d	= 6 : 7, then	a: d is:				
	(a) 24:35	(b) 8 :15	(c)	16:35	(d) 7:15			
99.	The value of lo	$\log(1^3+2^3+3^3)$	+n ³) is	equal to:				
	(a) $3 \log 1 + 3 \log 2 + \dots + 3 \log n$ (b) $2 \log n + 2 \log (n+1) - 2 \log 2$							
	(c) log n + log	$(n+1) + \log(2)$	n+1) - log 6	(d) 1				
100.	If $a = \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} - \sqrt{5}}$ and	$b = \frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}}$ then t	he value of $\frac{1}{a^2}$	$+\frac{1}{b^2}$ is equal to:				
	(a) 480	(b) 482	(c) 484	(d) 486				

	2017 – Dec							
101.	The ratio of the number Rs. 5 coins and Rs.10 coins Is 8: 15; If the value of Rs. 5 coins is 360,							
	then the number of Rs. 10 coins will be:							
	(a) 72 (b) 120 (c) 135 (d) 185							
102.	If $\log 3 \left[\log 4 \left(\log 2 x\right)\right] = 0$, then the value of 'x' will be:							
	(a)4. (b) 8 (c) 16. (d) 32							
103.	If $\log\left(\frac{X-Y}{2}\right) = \frac{1}{2}$ (logx+ logy), then the value of $x^2 + y^2 = $							
	(a) 2xy (b) 4xy (c) 2x (d) 6xy							
104.	If $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{5}$ and $\frac{1}{x}$ are in proportion, than the value of 'x' will be:							
	(a) $\frac{15}{2}$ (b) $\frac{6}{5}$ (c) $\frac{10}{3}$ (d) $\frac{5}{6}$							

1	В	11	A	21	D	31	B	41	B	51	A	61	D	71	В	81	A
2	D	12	В	22	A	32	С	42	A	52	A	62	A	72	В	82	D
3	A	13	A	23	A	33	B	43	С	53	A	63	A	73	С	83	A
4	С	14	С	24	D	34	A	44		54	С	64	D	74	В	84	A
5	С	15	D	25	D	35	С	45	D	55	A	65	С	75	В	85	В
6	A	16	B	26	С	36	С	46	С	56	D	66	A	76	В	86	С
7	В	17	С	27	A	37	D	47	D	57	B	67	A	77	С	87	A
8	A	18	С	28	B	38	В	48	В	58	С	68	D	78	A	88	B
9	В	19	A	29	В	39	A	49	D	59	A	69	С	79	В	89	B
10	С	20	A	30	A	40	A	50	A	60	В	70	С	80	С	90	B

ANSWERS

91	D	97	A	104	
92	С	98	С		
93	В	99	В		
94	С	100	В		
95	С	101	С		
96	A	102	С		
97	A	103	D		

A

STUDENT NOTES

C HU		<u>EQUATIC</u>	ONS & MA	<u>ATRICES</u>	
			<u>UNIT I: EQU</u>	ATIONS	
	<u>LINEAR EQ</u>	<u>UATIONS</u>			
	AGAR DAR	RR HAI BHAG	ANA, TO MA	THS HAI BANA	
	EXERCISE (A	A)			<u>y</u>
1.	The equation –7	7x + 1 = 5 - 3x will	be satisfied for x ea	qual to:	
	a) 2	b) –1	c) 1	d) none of th	iese
2.	The root of the	equation $\frac{x+4}{4} + \frac{x-5}{3} =$	= 11 is		
	a) 20	b) 10	c) 2	d) none of th	ese
3.	Pick up the corr	The value of x for $\frac{x}{30}$	$=\frac{2}{45}$		
	a) <i>x</i> = 5	b) <i>x</i> = 7	c) x= 1^1_3	d) none of th	ese
4.	The solution of	the equation $\frac{x+24}{5} =$	$4 + \frac{x}{4}$		
	a) 6	b) 10	c) 16	d) none of th	ese
5.	8 is the solution	n of the equation			
	$\frac{x+4}{4} + \frac{x-5}{3} = 11$	b) $\frac{x+4}{2}$ -	$+\frac{x+10}{9}=8$	$c)\frac{x+24}{5} = 4 + \frac{x}{4}$	d) $\frac{x-15}{10} + \frac{x+5}{5} = 4$
6.	The value of yt	hat satisfies the equ	ation $\frac{y+11}{6} - \frac{y+1}{9} = \frac{y}{6}$	$\frac{7+7}{4}$ is	
	a) –1	b) 7	c) 1	d) - 1/7	

NAF	ITA PROFESSIOI	NAL CLASSES			BUSINESS MATHEMATICS
7.	The solution of	f the equation (p+2) (p-3) + (p+3) (j	(-4) = p((2p–5) is
	a) 6	b) 7	c) 5		d) none of these
8.	The equation ¹	$\frac{2x+1}{4} = \frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is	true for		
	a) <i>x</i> =1	b) <i>x</i> =2	c) 2	r=5	d) <i>x</i> =7
9.	Pick up the cor	rrect value x for which	$\frac{x}{0.5} - \frac{1}{0.05} + \frac{x}{0.005} - \frac{x}{0.005}$	$\frac{1}{0.0005} = 0$	0
	a) <i>x</i> =0	b) <i>x</i> = 1	c) 2	r=10	d) none of these
	ILLUSTRATIO	<u>DNS:</u>			
Ι.	The denominat	cor of a fraction exceed	ds the numerato	r by 5 ai	nd if 3 be added to both the fraction
	becomes 3/4 .	Find the fraction.			
Sol:	Let x be the nu	merator and the fracti	on be $\frac{x}{x+5}$. By the	e questic	$ on \frac{x+3}{x+5+3} = \frac{3}{4} \text{ or} $
	4x + 12 = 3x +	- 24 or $x = 12$			
	The required f	raction is 12/17			
2.	If thrice of A's	s age 6 years ago be s	ubtracted from	twice his	present age, the result would be equal
	his present age	e. Find A's present age	2.		
Sol:					
3.	A number cons 18	sists of two digits the	digit in the ten	's place i	is twice the digit in the unit's place. If

	be subtracted fr	om the number the d	igits are reversed. Fin	d the number.
Sol:				
	AGAR DAR	R HAI BHAGA	NA, TO MATH	S HAI BANANA
	EXERCISE (B)			
	Choose the most	t appropriate option (a) (b) (c) or (d).	
1.	The sum of two	numbers is 52 and the	eir difference is 2. The	e numbers are
	a) 17 and 15	b) 12 and 10	c) 27 and 25	d) none of these
2.	The diagonal of a	a rectangle is 5 cm and	d one of at sides is 4 c	em. Its area is
	a) 20 sq.cm.	b) 12 sq.cm.	c) 10 sq.cm.	d) none of these
3.	Divide 56 into tv	vo parts such that thr	ee times the first part	exceeds one third of the second by 48. The
	parts are.			
	a) (20, 36)	b) (25, 31)	c) (24, 32)	d) none of these
4.	The sum of the d	ligits of a two digit nu	mber is 10. If 18 be sı	ubtracted from it the digits in the resulting
	number will be e	equal. The number is		
	a) 37	b) 73	c) 75	d) none of these numbers.
5.	The fourth part of	of a number exceeds t	he sixth part by 4. Th	e number is

NA	AHTA PROFESSION	al classes		BUSINESS MATHEMATICS					
	a) 84	b) 44	c) 48	d)	none of these				
6.	Ten years ago th	ne age of a father was	four times of his son	. Ten years hen	ce the age of the father will				
	be twice that of	his son. The present a	ages of the father and	l the son are.					
	a) (50, 20)	b) (60, 20)	c) (55, 25)	d)	none of these				
7.	The product of t	two numbers is 3200	and the quotient wh	en the larger nu	mber is divided by the				
	smaller is 2.The	numbers are							
	a) (16, 200)	b) (160, 20)	c) (60, 30)	d)	(80, 40)				
8.	The denominate	or of a fraction exceed	s the numerator by 2	2. If 5 be added	to the numerator the fraction				
	increases by un	ity. The fraction is.							
	5/7	b) 1/3	c) 7/9	d)	3/5				
9.	Three persons Mr. Roy, Mr. Paul and Mr. Singh together have Rs. 51. Mr. Paul has Rs. 4 less than Mr.								
	Roy and Mr. Singh has got Rs. 5 less than Mr. Roy. They have the money as.								
	a) (Rs. 20, Rs. 1	6, Rs. 15) b) (Rs. 1	5, Rs. 20, Rs. 16) c) (Rs. 25, Rs. 11	, Rs. 15) d) none of these				
10.	A number consi	sts of two digits. The o	digits in the ten's pla	ce is 3 times the	e digit in the unit's place. If 54				
	is subtracted fro	om the number the dig	gits are reversed. Th	e number is					
	a) 39	b) 92	c) 93	d) 94					
П.	One student is a	One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two							
	quantities. Inste	ad of doing so the stu	dent divides the give	en number by 5.	If the answer is 4 short of				
	the correct answ	ver then the number v	was						
	a) 320	b) 400	C) 480	d) none of these.				

NAH	ta professional cla	SSES		BUSINESS MATHEMATICS				
12.	If a number of which the half is greater than 1/5 th of the number by 15 then the number is							
	a) 50 b)	40	c) 80	d) none of these.				
	<u>Elimination Method:</u> In	this method two g	given linear equ	ations are reduced to a linear equation in one				
Ex. 1:	unknown by eliminating Solve: $2x + 5y = 9$ and	-	owns and then s	olving for the other unknown.				
Sol.:		<i>y y</i>						
Ex. 2:	Solve for x, y and z : $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 5, \frac{2}{x} - \frac{1}{y} = 5$	$-\frac{3}{y}-\frac{4}{z}=-11, \frac{3}{x}-\frac{3}{z}$	$+\frac{2}{y}-\frac{1}{z}=-6$					
Sol.:	We put $u = \frac{1}{x}$, $v = \frac{1}{y}$, $w =$	$=\frac{1}{z}$ we get'						
	u + v + w = 5 (i)		2u - 3v - 4w	v = -11 (ii)				
	3u + 2v − w = −6 (ii	i)	By (i) + (iii) 4u + 3v = -1 (iv)				
	By (iii) x 4 12u + 8v - 4	w = -24(v)		v -10u - 11v = 13 v + 11v = -13 (vi)				
	By (iv) × 11 44x + 33v	= -11(vii)	By (vi) × 3 3	30u + 33v = -39(viii)				
	By (vii) – (viii) 14u = 28	3 or u = 2						
	Putting $u = 2$ in (iv) 4	2 + 3v = -1	or $8 + 3v = -1$	or $3v = -9$ or $v = -3$				

NAH	TA PROFESSIONAL CLASSES BUSINESS MATHEMATICS
	Putting $u = 2$, $v = -3$ in (i) or $2-3 + w = 5$
	or $-1 + w = 5$ or $w = 5 + 1$ or $w = 6$ $x = \frac{1}{u} = \frac{1}{2}$ $y = -\frac{1}{v} = \frac{1}{-3}$ $z = \frac{1}{w} = \frac{1}{6}$
	ILLUSTRATIONS:
1.	If the numerator of a fraction is increased by 2 and the denominator by I it becomes I. Again if the
	numerator is decreased by 4 and the denominator by 2 it becomes 1/2 . Find the fraction.
SOL.:	Let <i>x</i> /y be the required fraction.
	By the question $\frac{x+2}{y+1} = 1, \frac{x-4}{y-2} = \frac{1}{2}$
	Thus $x + 2 = y + 1$ or $x - y = -1$ (i) and $2x - 8 = y - 2$ or $2x - y = 6$ (ii)
	By (i) – (ii) – $x = -7$ or $x = 7$
	from (i) $7 - y = -1$ or $y = 8$
	So the required fraction is 7/8.
2.	The age of a man is three times the sum of the ages of his two sons and 5 years hence his age will
	be double the sum of their ages. Find the present age of the man?
SOL.:	

	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA												
	EXERCISE (C)	EXERCISE (C)											
	Choose the most	Choose the most appropriate option (a), (b), (c) or (d).											
1.	Monthly incomes	s of two persons are in	n the ratio 4 : 5 and the	eir monthly expenses are in	1 the ratio 7 : 9.								
	If each saves Rs. 50 per month find their monthly incomes.												
	a) (500, 400)	b) (400, 500)	c) (300, 600)	d) (350, 550)									
2.	Find the fraction	which is equal to 1/2	when both its numera	ator and denominator are i	ncreased by 2.								
	It is equal to 3/4 when both are increased by 12.												
	a) 3/8												
3,	The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice												
	the sum of their ages. Find his present age.												
	a) 60 years	a) 60 years b) 52 years c) 51 years d) 50 years											
4.	A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are												
	reversed find the number.												
	a) 54	a) 54 b) 53 c) 45 d) 55											
5.	The wages of 8 m	The wages of 8 men and 6 boys amount to Rs. 33. If 4 men earn Rs. 4.50 more than 5 boys determine											
	the wages of each	the wages of each man and boy.											
	a) (Rs. 1.50, Rs. 3	b) (Rs. 3,	Rs. 1.50) c) (1	Rs. 2.50, Rs. 2) d) (Rs. 2	, Rs. 2.50)								
6.	A number consist	ting of two digits is fo	our times the sum of its	s digits and if 27 be added	to it the digits								
	are reversed. The	e number is :											

hta professional	CLASSES		BUSINESS MATHEMATICS						
a) 63	b) 35	c) 36	d) 60						
Of two numbers, 1	/5th of the greater is o	equal to 1/3rd of the	e smaller and their sum is 16. The						
numbers are:									
a) (6, 10)	b) (9, 7)	c) (12, 4)	d) (11, 5)						
<i>y</i> is older than <i>x</i> by	7 years 15 years bac	k x's age was 3/4 of	y's age. Their present ages are:						
a) (<i>x</i> =36, <i>y</i> =43)	b) (<i>x</i> =50, <i>y</i> =43)	c) (<i>x</i> =43, <i>y</i> =50)	d) (<i>x</i> =40, <i>y</i> =47)						
The sum of the digits in a three digit number is 12. If the digits are reversed the number is increased									
by 495 but reversing only of the ten's and unit digits increases the number by 36. The number is									
a) 327	b) 372	c) 237	d) 273						
Two numbers are such that twice the greater number exceeds twice the smaller one by 18 and 1/3rd									
of the smaller and 1/5th of the greater number are together 21. The numbers are:									
a) (36, 45)	b) (45, 36)	c) (50, 41)	d) (55, 46)						
The demand and supply equations for a certain commodity are $4q + 7p = 17$ and $p = \frac{q}{3} + \frac{7}{4}$									
respectively where p is the market price and q is the quantity then the equilibrium price and quantity are									
a)2,3/4	b) 3,1/2	c) 5,3/5	d) None of these						
	 a) 63 Of two numbers, 1 numbers are: a) (6, 10) y is older than x by a) (6, 10) a) (6, 10) y is older than x by a) (x=36, y=43) The sum of the dig by 495 but reversi a) 327 Two numbers are a) 327 Two numbers are a) (36, 45) The demand and s respectively where are 	Of two numbers, 1/5th of the greater is on numbers are: a) (6, 10) b) (9, 7) y is older than x by 7 years 15 years back a) (x=36, y=43) b) (x=50, y=43) a) (x=36, y=43) b) (x=50, y=43) The sum of the digits in a three digit numbers are such that twice the group of the ten's and and supply equations for a frespectively where p is the market price are	a) 63b) 35c) 36Of two numbers, 1/5th of the greater is equal to 1/3rd of the numbers are:a) (6, 10)b) (9, 7)c) (12, 4)y is older than x by 7 years 15 years back x's age was 3/4 of a) (x=36, y=43)b) (x=50, y=43)c) (x=43, y=50)The sum of the digits in a three digit number is 12. If the digit by 495 but reversing only of the ten's and unit digits increasea) 327b) 372c) 237Two numbers are such that twice the greater number exceed of the smaller and 1/5th of the greater number are togethera) (36, 45)b) (45, 36)c) (50, 41)The demand and supply equations for a certain commodity a respectively where p is the market price and q is the quantit are						

	QUADRATIC EQUATION
Ex. 1:	Solve $x^2 - 5x + 6 = 0$
Sol.:	1st method : $x^2 - 5x + 6 = 0$
	or $x^2 - 2x - 3x + 6 = 0$ or $x(x-2) - 3(x-2) = 0$ or $(x-2)(x-3) = 0$ or $x = 2$ or 3
	2nd method (By formula) $x^2 - 5x + 6 = 0$
	Here $a = 1$, $b = -5$, $c = 6$ (comparing the equation with $ax^2 + bx + c = 0$)
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-5 \pm \sqrt{25 - 24}}{2},$ $\frac{5 \pm 1}{2} = 6/2 \text{ and } 4/2$ x = 3 and 2
Ex. 2:	Examine the nature of the roots of the following equations. i) $x^2 - 8x + 16 = 0$ ii) $3x^2 - 8x + 4 = 0$ iii) $5x^2 - 4x + 2 = 0$ iv) $2x^2 - 6x - 3 = 0$
Sol.:	(i) a = 1, b = -8, c = 16
	$b^2 - 4ac = (-8)2 - 4.1.16 = 64 - 64 = 0$
	The roots are real and equal
	(ii)
	(iii) $5x^2 - 4x + 2 = 0$ $b^2 - 4ac = (-4)^2 - 4.5.2 = 16 - 40 = -24 < 0$ The roots are imaginary and unequal.

	ILLUSTRATIONS:
1.	If α and β be the roots of $x^2 + 7x + 12 = 0$ find the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$.
SOL.:	
2.	If α , β be the roots of $2x^2 - 4x - 1 = 0$ find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$
SOL.:	
3.	Solve for x : $4^x - 3.2^{x+2} + 2^5 = 0$
SOL.:	$4^x - 3 \cdot 2^{x+2} + 2^5 = 0$
	or $(2^x)^2 - 3 \cdot 2^x \cdot 2^2 + 32 = 0$ or $(2^x)^2 - 12 \cdot 2^x + 32 = 0$ or $y^2 - 12y + 32 = 0$ (taking $y = 2x$)

	or $y^2 - 8y - 4y + 32 = 0$ or $y(y - 8) - 4(y - 8) = 0$ $(y - 8)(y - 4) = 0$
	either $y - 8 = 0$ or $y - 4 = 0$ $y = 8$ or $y = 4$.
	$\Rightarrow 2^{x} = 8 = 2^{3} \text{ or } 2^{x} = 4 = 2^{2} \text{ Therefore } x = 3 \text{ or } x = 2.$
4.	If one root of the equation is 2- $\sqrt{3}$,form the equation given that the roots are irrational
SOL.:	
5.	If α , β are the two roots of the equation $x^2 - px + q = 0$ form the equation whose roots are $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$
SOL.:	
6.	If the roots of the equation $p(q - r)x^2 + q(r - p)x + r(p - q) = 0$ are equal show that $\frac{2}{q} = \frac{1}{p} + \frac{1}{r}$
SOL.:	Since the roots of the given equation are equal the discriminant must be zero
	ie. $q^2(r-p)^2 - 4$. $p(q-r) r(p-q) = 0$
	or $q^2 r^2 + q^2 p^2 - 2q^2 rp - 4pr (pq - pr - q^2 + qr) = 0$

	or $p^2q^2 + q^2r^2 + q^2r^2$	or $p^2q^2 + q^2r^2 + 4p^2r^2 + 2q^2pr - 4p^2qr - 4pqr^2 = 0$											
	or (pq + qr – 2rp	or $(pq + qr - 2rp)2 = 0$											
	pq + qr = 2pr	pq + qr = 2pr											
	or $\frac{pq+qr}{2pr} = 1$	or, $\frac{q}{2} \frac{(p+r)}{pr} = 1$ or	$\frac{1}{r} + \frac{1}{p} = \frac{2}{q}$										
	EXERCISE (D)	HAI BHAGANA			A C	V.							
	Choose the most	appropriate option	(a) (b) (c) or (d).			y							
١.	If the roots of th	e equation $2x^2 + 8x$	$-m^3 = 0$ are equa	al then value of n	n is								
	(a) - 3	(b) – 1		(c) 1	(d) – 2								
2.	If $2^{2x+3} - 3^2 \cdot 2^x + 3^2 \cdot 3^$	1 = 0 then values of	f <i>x</i> are										
	(a) 0, 1	(b) 1, 2	(c) 0, 3	(d) 0, -	3								
3.	The values of $4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\dots}}}}$	∞											
	(a) $1 \pm \sqrt{2}$	$(b)2\pm\sqrt{5}$	$(c)2\pm\sqrt{5}$	(d) nor	ne of these								
4.	If $\alpha\beta$ be the root	ts of the equation 2 <i>x</i>	$x^2 - 4x - 3 = 0$ the	value of $\alpha^2 + \beta^2$	is								
	a) 5 b)	7 c)) 3	d) – 4									
5	If the sum of the	roots of the quadra											

NA		IONAL CLASSES		BUSINESS MATHEMATICS								
	of their re	ciprocals then $\frac{a^2}{ac}$ +	$\frac{bc}{a^2}$ is equal to									
	a) 2	b) –2	c) 1	d) -1								
6.	he equation	he equation $x^2 - (p+4)x + 2p + 5 = 0$ has equal roots the values of p will be.										
	a) <u>±</u> 1	b) 2	c) ± 2	d) -2								
7.	The roots	of the equation x^2 +	$(2p-1)x + p^2 = 0$ are	e real if.								
	a) p ≥ 1	b) p ≤ 4	c) p ≥ 1/4	d) $p \le \frac{1}{4}$								
8.	If $x = m$ is	If $x = m$ is one of the solutions of the equation $2x^2 + 5x - m = 0$ the possible values of m are										
	a) (0, 2)	b) (0, -2)	c) (0, 1)	d) (1, -1)								
9.	If p and q a	If p and q are the roots of $x^2 + 2x + 1 = 0$ then the values of $p^3 + q^3$ becomes										
	a) 2	b) –2	c) 4	d) – 4								
10.	If L + M +	If L + M + N = 0 and L, M, N are rationals the roots of the equation $(M+N-L)x^2 + (N+L-M)x +$										
	(L+M-N)	(L+M-N) = 0 are										
	a) real and	a) real and irrational b) real and rational c) imaginary and equal d) real and equal										
11.	If α and β	If α and β are the roots of $x^2 = x + 1$ then value of $\frac{\alpha^2}{\beta} - \frac{\beta^2}{\alpha}$ is										
	a) 2 √5	b) √5	c) 3√5	d) -2								
12.	If p ≠ q an	d $p^2 = 5p - 3$ and q^2	= 5q – 3 the equation	n having roots as $\frac{p}{q}$ and $\frac{q}{n}$ is								
	a) <i>x</i> ² – 19 <i>x</i>	a) $x^2 - 19x + 3 = 0$ b) $3x^2 - 19x - 3 = 0$ c) $3x^2 - 19x + 3 = 0$ d) $3x^2 + 19x + 3 = 0$										
13.	If one root	$x \text{ of } 5x^2 + 13x + p =$	0 be reciprocal of the	e other then the value of p is								
	a) –5	b) 5	c) 1/5	d) -1/5								
	u) 0		0, 1, 0	uj 1/0								

	AGAR DARR	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA											
	EXERCISE (E)	EXERCISE (E)											
	Choose the most	Choose the most appropriate option (a) (b) (c) or (d).											
Ι.	The sum of two	numbers is 8 and the	e sum of their squa	res is 34. Taking one nu	mber as <i>x</i> form an								
	equation in x and hence find the numbers. The numbers are												
	a) (7, 10)	b) (4, 4)	c) (3, 5)	d) (2, 6))								
2.	The difference o	The difference of two positive integers is 3 and the sum of their squares is 89. Taking the smaller											
	integer as <i>x</i> form	n a quadratic equatic	on and solve it to fi	nd the integers. The inte	egers are.								
	a) (7, 4)	b) (5, 8)	c) (3, 6)	d) (2, 5))								
3.	Five times of a p	ositive whole numbe	er is 3 less than tw	ice the square of the nu	mber. The number is								
	a) 3	b) 4	c) –3	d) 2									
4.	The area of a rectangular field is 2000 sq.m and its perimeter is 180m. Form a quadratic equation by												
	taking the length of the field as <i>x</i> and solve it to find the length and breadth of the field. The length and												
	breadth are												
	a) (205m, 80m)	b) (50m	, 40m)	c) (60m, 50m)	d) none								
5.	Two squares hav	ve sides p cm and (p	+ 5) cms. The sun	n of their squares is 625	sq. cm. The sides of the								
	squares are												
	a) (10 cm, 30 cm	n) b) (12 cr	m, 25 cm)	c) 15 cm, 20 cm)	d) none of these								
6.	Divide 50 into tv	vo parts such that th	e sum of their reci	procals is 1/12. The nu	mbers are								
	a) (24, 26)	b) (28, 22)	c) (27, 23)	d) (20, 30)									

NA	HTA PROFESSIONAL	CLASSES		BUSINESS MATHEMATICS								
7.	There are two consecutive numbers such that the difference of their reciprocals is 1/240. The											
	numbers are											
	a) (15, 16)	b) (17, 18)	c) (13, 14)	d) (12, 13)								
8.	The hypotenuse of	a right-angled triang	gle is 20cm. The diffe	erence between its other two sides be 4c	cm.							
	The sides are											
	a) (11cm, 15cm)	b) (12cm, 16cm)	c) (20cm, 24cm)	d) none of these								
9.	The sum of two numbers is 45 and the mean proportional between them is 18. The numbers are											
	a) (15, 30)	b) (32, 13)	c) (36, 9)	d) (25, 20)								
10.	The sides of an equilateral triangle are shortened by 12 units 13 units and 14 units respectively and a											
	right angle triangle is formed. The side of the equilateral triangle is											
	a) 17 units	b) 16 units	c) 15 units	d) 18 units								
11.	A distributor of ap	ple Juice has 5000 bo	ttle in the store that	it wishes to distribute in a month. From	1							
	experience it is known that demand D (in number of bottles) is given by $D = -2000p^2 + 2000p + 2000p^2$											
	17000. The price per bottle that will result zero inventory is											
	a) Rs. 3	b) Rs. 5	c)]	Rs. 2 d) none of thes	se							
12.	The sum of two irr	The sum of two irrational numbers multiplied by the larger one is 70 and their difference is multiplied										
	by the smaller one	by the smaller one is 12; the two numbers are										
	a) 3 √2, 2 √3	a) $3\sqrt{2}$, $2\sqrt{3}$ (b) $5\sqrt{2}$, $3\sqrt{5}$		d) none of these								

	CUBIC EQUATION						
Ι.	Solve $x^2 - 7x + 6 = 0$						
Sol:	Putting $x = 1$ L.H.S is Zero. So (x-1) is a factor of $x^3 - 7x + 6$						
	We write $x^3-7x+6=0$ in such a way that (x-1) becomes its factor. This can be achieved by						
	writing the equation in the following form. or $x^3-x^2+x^2-x-6x+6=0$ or $x^2(x-1) + x(x-1) - 6(x-1) = 0$						
	or $(x-1)(x^2+x-6) = 0$ or $(x-1)(x^2+3x-2x-6) = 0$						
	or $(x-1){x(x+3) - 2(x+3)} = 0$ or $(x-1)(x-2)(x+3) = 0$						
	or <i>x</i> = 1, 2, -3						
2.	Solve for real x : $x^3 + x + 2 = 0$						
SOL.:	By trial we find that $x = -1$ makes the LHS zero. So $(x + 1)$ is a factor of $x^3 + x + 2$						
	We write $x^3 + x + 2 = 0$ as $x^3 + x^2 - x^2 - x + 2x + 2 = 0$						
	or $x^2(x+1) - x(x+1) + 2(x+1) = 0$						
	or $(x+1)(x^2 - x + 2) = 0.$						
	Either $x + 1 = 0$; $x = -1$						
	or $x^2 - x + 2 = 0$ i.e. $x = -1$						
	<i>i</i> e. $x = \frac{1 \pm \sqrt{1-8}}{2} = \frac{1 \pm \sqrt{-7}}{2}$						
	As $x = \frac{1 \pm \sqrt{-7}}{2}$ is not real, $x = -1$ is the required sol						

	AGAR DARR HA	BHAGANA, TO	MATHS HAI	BANANA						
	EXERCISE (F)					P				
	Choose the most appr	opriate option (a), (b)	, (c) or (d)			2				
Ι.	The solution of the cu	bic equation $x^3 - 6x^2 + 3$	11x-6 = 0 is give	en by the triplet	:					
	a) (-1, 1 -2) k	o) (1, 2, 3) c)) (-2, 2, 3)	d) (0, 4, -5)						
2.	The cubic equation <i>x</i>	$x^3 + 2x^2 - x - 2 = 0$ has	3 roots namely.							
	a) (1, -1, 2) k	o) (-1, 1, -2) c)) (-1, 2, -2)	d) (1, 2, 2)						
3.	x, x – 4, x + 5 are the factors of the left-hand side of the equation.									
	a) $x^3 + 2x^2 - x - 2 = 0$	b) $x^3 + x^2 - 20x$	$x = 0$ c) $x^3 - 3x^2$	-4x + 12 = 0	d) <i>x</i> ³ – 6 <i>x</i> ²	+ 11x - 6 = 0				
4.	The equation $3x^3 + 5$	$x^2 = 3x + 5$ has got 3 r	roots and hence	the factors of the	e left–hand	side of the				
	equation $3x^3 + 5x^2 -$	3x - 5 = 0 are								
	a) <i>x</i> -1, <i>x</i> -2, <i>x</i> -5/3	b) <i>x</i> - 1, <i>x</i> +1, 3.	x + 5 c) x	+ 1, <i>x</i> - 1, 3 <i>x</i> - 5	d) <i>x</i> – 1, <i>x</i>	+ 1, <i>x</i> - 2				
5.	The roots of the equation $x^3 + 7x^2 - 21x - 27 = 0$ are									
	a) (- 3, - 9, - 1)	b) (3, - 9, - 1)	c) (3	3, 9, 1)	d) (- 3, 9,	1)				
6.	The roots of $x^3 + x^2 - x - 1 = 0$ are									
	a) (- 1, - 1, 1)	b) (1, 1,	– 1) c) (- 1, - 1, - 1)	d)	(1, 1, 1)				
7.	The satisfying value of	of $x^3 + x^2 - 20x = 0$ are	9							
	a) (1, 4, - 5)	b) (2, 4, - 5)	c) (0, – 4, 5)	d) (0, 4, -	5)				
8.	The roots of the cubic	c equation $x^3 + 7x^2 - 2$	1x - 27 = 0 are							
	a) (-3, -9, -1)	b) (3, -9, -1)	c) (3, 9, 1)		d) (-3, 9, 1	1)				

NA	HTA PE	ROFES	siona	L CLA	SSES							BUSIN	IESS N	AATHEN	MATIC	S
9.	If 4	If $4x^3 + 8x^2 - x - 2 = 0$ then value of $(2x+3)$ is given by														
	a) 4	4, –1, 2		b)	-4, 2, 1		c)	2, -4,	-1	C	l) non	e of the	se.			
10.	The	The rational root of the equation $2x^3 - x^2 - 4x + 2 = 0$ is														
	a)1,	/2		b)	-1/2			C)) 2			d) – 2.				
	ANSWERS															
	Exe	Exercise A														
	1. 9.	(b) (c)	2.	(a)	3.	(c)	4.	(c)	5.	(b)	6.	(d)	7.	(a)	8.	(d)
	Exe	ercise	В													
	1. 9.	(c) (a)	2. 10.	(b) (c)	3. 11.	(a) (c)	4. 12.	(b) (a)	5.	(c)	6.	(a)	7.	(d)	8.	(d)
	Exe	ercise	С													
	1. 9.	(b) (c)	2. 10.	(a) (b)	3. 11.	(d) (a)	4.	(c)	5.	(b)	6.	(c)	7.	(a)	8.	(a)
	Exe	ercise	D													
	1. 9.	(d) (a)	2. 10.	(d) (b)	3. 11.	(b) (d)	4. 12.	(b) (c)	5. 13.	(a) (b)	6.	(c)	7.	(d)	8.	(b)
	Exe	ercise	E													
	1. 9.	(c) (c)	2. 10.	(b) (a)	3. 11.	(a) (a)	4. 12.	(b) (c)	5.	(c)	6.	(d)	7.	(a)	8.	(b)
	Exe	Exercise F														
	1. 9.	(c) (a)	2. 10.	(b) (c)	3.	(b)	4.	(b)	5.	(b)	6.	(a)	7.	(d)	8.	(b)

BUSINESS MATHEMATICS

		"KAR LO PAST APNI MUTHI ME"							
		Past Exam Questions							
	2006 – Nov				2				
Ι.	On solving $\sqrt{\frac{x}{1-x}}$ +	$\sqrt{\frac{1-x}{x}} = 2\frac{1}{6}$, we get or	ne val of x as:						
	(a) $\frac{4}{13}$	(b) $\frac{1}{13}$	(c) $\frac{2}{13}$	$(d)\frac{3}{13}$					
2.	Find the positive va	lue of k for which the	e equations : x ² + kx +	$-64 = 0$ and $x^2 - 8x + k =$	= 0 will have real				
	roots :								
	(a) 12	(b) 16	(c) 18	(d) 22.					
	2007 – Feb								
3.	A man sells 6 radios	s and 4 televisions for	r Rs. 18,480. If 14 radi	os and 2 televisions are	sold for the same				
	amount, what is the	e price of a television?	?						
	(a) Rs. 1,848	(b) Rs. 840	(c) Rs. 1,680	(d) Rs. 3,360					
4.	If one root of a equation is $2 + \sqrt{5}$, then the quadratic equation is:								
	(a) $x^2 + 4x - 1 = 0$	(b) $x^2 - 4x - 1 = 0$	(c) $x^2 + 4x + 1 - 0$	(d) $x^2 - 4x + 1 = 0$					
	2007 – May								
5.	A man starts his job	with a certain mont	hly salary and earns a	fixed increment every y	ear. If his salary				
_	was Rs. 1,500 after	4 years of service and	l Rs. 1,800 after 10 yea	ars of service, what was l	nis starting salary				

NA	HTA PROFESSIONAL	- CLASSES	BUSI	NESS MATHEMATICS	
	and what is the an	nual increment in r	upees?		
	(a) Rs. 1,300, Rs. 5	50 (b) Rs. 1	,100, Rs. 50	(c) Rs. 1,500, Rs. 30	(d) None.
	2007 – Aug				
6.	The value of $\sqrt{6}$ +	$\sqrt{6+\sqrt{6+\cdots}\dots}$	$\overline{\infty}$ is :		
	(a) -3 , (b)	2 (c) 3	(d) 4		
	2007 - Nov				
7.	Area of a rectangu	lar garden is 8000 s	quare metres. Ra	tio in length and bread	th is 5:4. A path of uniform
	width, runs all rou	and the inside of the	e garden. If the pa	th occupies 3200 m², v	vhat is its width?
	(a) 12m	(b) 6m (c) 10m	(d) 4m.	
	2008 - Feb				
8.	A man went to the 10	e Reserve Bank of Iı	ndia with Rs. 1 ,00	0. He asked the cashie	er to give him Rs. 5 and Rs.
	notes only in retu	rn. The man got 175	5 notes in all. Finc	l how many notes of R	s. 5 and Rs. 10 did he
	receive?				
	(a) (25, 150)	(b) (40, 110)	(c) (150,25)	(d) None.	
	2008 - June				
9.	A man rowing at t the	he rate of 5 km in a	h hour in still wa	iter takes thrice as mu	ch time in going 40 km up

	river as in going 40 km down. Find the rate at which the river flows :						
	(a) 9 km/hr	(b) 2.5 km/hr	(c) 12 km/hr	(d) None.			
10.	The value of $2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots + \frac{1}{2 + \frac{1}{2 + \cdots + \frac{1}{2 + \frac{1}{2 + \cdots + \frac{1}{2 $	is: 					
	(a) $1 \pm \sqrt{2}$	(b) $2 \pm \sqrt{5}$.	(c) $2 \pm \sqrt{3}$	(d) None.			
	2008 – Dec						
11.	If $x^3 - 6x^2 + 11x$	-6 = 0 then find the v	alue of (3x - 4).				
	(a) (1,2,3)	(b) (-1,2,5)	(c) (-1,3, 5)	(d) (2, 3, 5)			
12.	If $(2+\sqrt{3})$ is a ro	ot of a quadratic equa	tion $x^2 + p_x + q =$	• 0 then find the value of p and q.			
	(a) (41)	(b) (4,1)	(c) (-4,1)	(d) (2,3)			
	2008 - Dec						
13.	If area and perin :	neter of a rectangle is	6000 cm ² and 34() cm respectively, then the length of rectangle is			
	(a) 140	(b) 120	(c) 170	(d) 200			
	2009 - June						
14.	One root of the e	equation : $x^2 - 2(5+m)$	x+3(7+m)=0 is 1	reciprocal of the other. Find the value of M.			
	(a) - 7 (b) 7 (c)	1/7	(d) - 1/7			
	2009 – Dec						
	_						

NA	HTA PROFESSIONAL	CLASSES		BUSINESS MATHEMATICS			
15.	If the length of a red	If the length of a rectangle is 5 cm more than the breadth and if the perimeter of the rectangle is 40					
	then the length & b	readth of the rectang	gle will be :				
	(a) 7.5 cm, 2.5 cm	(b) 10 cm, 5 cm	(c) 12.5 cm, 7.5 c	cm (d) 15.5 cm, 10.5 cm.			
16.	Roots of the equation	$5 \text{ on } 3x^2 - 14x + k = 0 x$	will be reciprocal of	each other if:			
	(a) k = -3	(b) k = 0	(c) $k = 3$	(d) $k = 14$.			
17.	Positive value of 'k' for which the roots of equation $12x^2 + kx + 5 = 0$ are in ratio 3:2, is:						
	(a) 5/12	(b) 12/5	(c) $\frac{3\sqrt{10}}{2}$	(d) 5√10			
18.	If one root of the equation $x^2-3x+k=0$ is 2, then value of k will be:						
	(a) -10	(b) 0	(c) 2	(d) 10			
	2011 - June						
19.	If the ratio of (5x - 3	3y) and (5y - 3x) is 3	:4, then the value o	f x : y is :			
	(a) 27:29	(b) 29 :27	(c) 3 : 4	(d) 4:3			
20.	If roots of equation	$x^2 + x + r = 0$ are ' \propto	s' and 'β' and $\propto^3 + \beta$	$R^3 = -6$. Find the value 'r' ?			
	$(a)\frac{-5}{3}$	(b) $\frac{7}{3}$	(c) $\frac{-4}{3}$ (d) 1			
	2011 - Dec						
21.	If one root of the Ec	quation $px^2 + qx + r$	= 0 is r then other	root of the Equation will be:			
	(a) 1/q	(b) 1/r	(c) 1/p	(d) $\frac{1}{p+q}$			

NA	ITA PROFESSIONAL CLASSES	BUSINESS MATHEMATICS					
22.	If the ratio of the roots of the Equation $4x^2 - 6x + p = 0$ is 1:2 then the value of p is:						
	(a) 1 (b) 2 (c) – 2	(d) -1					
23.	If p & q are the roots of the Equation x ² - +	bx + C = 0, then what is the Equation whose roots are $(pq + p$					
	q) and (pq - p - q)?						
	(a) $x^2 - 2cx + C^2 - b^2 = 0$	(b) $x^2 - 2bx + C^2 + b^2 = 0$					
	(c) $8cx^2 - 2(b + c)x + C^2 = 0$	(d) $x^2 + 2bx - (C^2 - b^2) = 0$					
	2012 - June						
24.	If arithmetic mean between roots of a quadratic equation is 8 and the geometric mean between them is						
	5, the equation is						
	(a) $x^2-16x-25 = 0$ (b) $x^2-16x+25 = 0$	(c) $x^2-16x + 5 = 0$ (d) None of these.					
25.	The minimum value of the function x^2 - 6	x + 10 is					
	(a) 1 (b) 2 (c) 3	(d) 10					
25.	If one of the roots of the equation $x^2 + px$	$x + a$ is $\sqrt{3} + 2$, then the value of 'p' and 'a' is:					
	(a) -4,-1 (b) 4,-1	(c) - 4, 1 (d) 4, 1					
	2012 – Dec						
26.	If $\log_{10} 5 + \log_{10} (5x + 1) = \log_{10} (x + 5)$	+ 1 then, the value of $x = $					

NA		SSIONAL CLASS	SES		BUSINESS MATHEMATICS	
	(a) 7	(b) 3	}	(c) 5	(d) 10	
27.	lf x - 2 +	x - 3 = 7 then,	, 'x' will be equa	l to		
	(a) 6	(b) -1	(c) 6 and -1	(d)	None of the above.	
28.	Roots of e	equation $2x^2 + 3$	$x + 7 = 0$ are α	and β. The	value of $\alpha\beta^{-1} + \beta\alpha^{-1}$	is
	(a) 2	(b) 3/7	(c) 7/	2	(d) -19/14	
29.	The quad	ratic equation x ²	2 - 2kx + 16 = 0	will have e	qual roots when the	value of 'k' is
	(a) ±1	(b) <u>-</u>	<u>+</u> 2	(c) ±3	(d) ± 4	
	2013 - 3	lune				
30.	If α and β	are the roots of	the equation x ²	+ 7x + 12	= 0, then the equation	on whose roots $(\alpha + \beta)^2$ and
	(α -β)² wi	ll be:				
	(a) x ² -14	x + 49 = 0 (b)	$x^2 - 24x + 144 =$	$= 0 (c) x^2$	50x + 49 = 0 (6)	d) $x^2 - 19x + 144 = 0$
	2013 - 1	Dec				
31.	If b ² - 4ac	is a perfect squa	are but not equa	al to zero th	an the roots are:	
	(a) real ai	nd equal		(b) real, ir	rational and equal	
	(c) real, ra	ational and unec	lual	(d) Imagiı	ıary.	
32.	A seller m	akes an offer of	selling certain a	rticles that	can be described by	the equation x = 25 - 2y where
	"x" is the j	orice per unit an	d 'y' denotes th	e number o	f unit. The cost price	of the article is Rs. 10 per unit.

NAH	ITA PROFESSIC	NAL CLASSES			BUSINESS MATHEMATICS		
	The maximum	n quantity that can b	be offered in a sin	gle deal to avoid lo	ss is		
	(a) 6	(b) 7	(c) 8	(d) 9			
33.	If $kx - 4 = (k - 4)$	1)x, then which of t	the following is tr	·ue?			
	(a) x = - 5	(b) x = - 4	(c) x = -	· 3 (d) x :	= + 4		
34.	The value of 'K' for which the system of equations $kx + 2y = 5$ and $3x + y = 1$ has no solution is:						
	(a) 5	(b) $\frac{2}{3}$ (c) 6	$(d)\frac{3}{2}$				
	2014 - June						
35.	The roots of t	ne equation y ³ +y ² -y	v-1= 0 are:				
	(a) (1, 1, -1)	(b) (-11,1)	(c) (1,1,	1) (d) No	one of these		
36.	The equation	$x + 5y = 33; \frac{x+y}{x-y} = \frac{2}{3}$	$\frac{13}{3}$ has the solution	n (x, y) as:			
	(a) (4, 8)	(b) (8, 5)	(c) (4,1	6) (d) (1	6,4)		
37.	The number o	f students in each s	ection of a school	is 36. After admitt	ng 12 new students, four new		
	sections were	started. If total nun	nber of students i	n each section now	is 30, than the number of sections		
	initially were.						
	(a) 6	(b) 10	(c) 14	(d) 18			
37.	If α and β be t	he roots of the quac	lratic equation 23	$x^2 - 4x = 1$. the value	$e ext{ of } \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} ext{ is } \underline{\qquad}.$		
	(a) -11	(b) 22	(c) -22	(d) 11			
2 25	Page			Ε Δ C I I I T V	· C A MEGHA NAHTA		

FACULTY:CA MEGHA NAHTA

NAF	TA PROFESSIONAL CLASSES BUSINESS MATHEMATICS
38.	A person on a tour has Rs. 9,600 for his expenses. If his tour is extended by 16 days, he has to cut down
	his daily expenses by Rs. 20, his original duration of tour had been.
	(a) 48 days (b) 64 days (c) 80 days (d) 96 days
39.	The present age of a man is 8 years more than thrice the sum of the ages of his two grandsons who are
	twins. After 8 years, his age will be 10 years more than twice the sum of the ages of his grandsons. The
	age of a man when his grandsons were born was:
	(a) 86 years (b) 73 years (c) 68 years (d) 63 years
	2015 - June
40.	The roots of the cubic equation $x^3 - 7x + 6 = 0$ are:
	(a) 1,2 and 3 (b) 1, -2 and 3 (c) 1,2 and - 3 (d) 1, -2 and - 3
	2015 - Dec
41.	If the roots of the equation $4x^2 - 12x + k = 0$ are equal, then the value of k is:
	(a) -3 (b) 3 (c) -9 (d) 9
42.	If $\alpha + \beta = -2$ and $\alpha \beta = -3$, then α , β are the roots of the equation, which is:
	(a) $x^2 - 2x - 3 = 0$ (b) $x^2 + 2x - 3 = 0$ (c) $x^2 + 2x + 3 = 0$ (d) $x^2 - 2x + 3 = 0$
43.	Let E_1 and E_2 are two linear equations in two variables x and y. (0,1) is a solution of both equations E_1
	and E ₂ . (2, -1) is a solution of equation E ₁ only and (-2, -1) is solution of E ₂ only then E ₁ and E ₂ are

NAH	AHTA PROFESSIONAL CLASSES			BUSINESS MATHEMATICS				
	(a) $X = 0$,	y = 1		(b) $2x - y = -1$, $4x + y = 1$				
	(c) x + y =	1, x - y = - 1		(d) $x + 2y = 2$, $x + y = 1$				
	2016 - Ju	ine						
44.	If differenc	e between the roo	ts of the equ	uation x² - k	$\mathbf{x} + 8 = 0$	is 4, then th	e value of K is:	
	(a) 0	(b) ±4 ((c) $\pm 8\sqrt{3}$	(d)	$\pm 4\sqrt{3}$			
45.	If $Z^{x+y} = Z^{2x-y} = \sqrt{8}$, then the respective values of X and Y are							
	(a) $1, \frac{1}{2}$	(b) $\frac{1}{2}$,1		(c) $\frac{1}{2}, \frac{1}{2}$		(d) None	of these	
46.	A cottage in	ndustry produces a	ı certain nuı	mber of pott	ery article	es in a day. If	t was observed on a partic	ular
	day that the cost of each article (in Rs.) was 2 more than thrice the number of articles					er of articles produced on	that	
	day. If the t	otal cost of produ	ction on tha	it day was R	s. 800, the	number of	articles produced was	
	(a) 14	(b) 16		(c) 12		(d) 18		
47.	If α , β are t	he roots of the equ	uation x ² + x	x + 5 = 0 the	$ en \frac{\alpha^2}{\beta} + \frac{\alpha}{\beta^2} $	is equal to		
	$(a)\frac{16}{5}$	(b) 2		(c) 3		$(d)\frac{14}{5}$		
48.	$If\frac{3}{x+y} + \frac{2}{x-y}$	$x = -1$ and $\frac{1}{x+y} - \frac{1}{x}$	$\frac{\uparrow}{-y} = \frac{4}{3}$ then	(x, y) is :				
	(a) (2, 1)	(b) (1,2)		(c) (-:	1,2)	(d) (- 2, 1)	
	2017 Dec.							
49.	The roots	of the cubic equat	ion x ³ + 7x ²	² —21 x —2	27 =0 are			
	• -							

NA	hta professi	onal classes			BUSINESS MATHEMATICS
	(a) —1,3,9	(b) 1,—3,9	(c) — 1	l, 3, — 9 (d) -	— 1, — 3, 9
50.	The differer	nce between the root	s of the equation	n x ² — 7x —9 =. () is:
	(a) 7	(b)√ <u>85</u>	(c) 9 .	(d) 2√85	
51.	If the sum o	of two numbers is 13	and the sum of	their squares is 8	5, then the numbers will be: :
	(a) 3,10	(b) 5,8	(c) 4, 9	(d) 6, 7	
52.	If u ^{5X} = v ^{5y} =	= W ^{5z} and u ² = vw, th	en the value of	xy + xz — 2yz wil	l be:
	(a)5	(b)2	(c) 1	(d) ()

NAHTA PROFESSIONAL (CLASSES
----------------------	---------

	<u>UNIT –II MATRICES</u>						
Ex. 1 :	The annual sale volume of three products X , Y , Z whose sale prices per unit are Rs. 3.50 Rs.2.75 ,						
	Rs. 1.50 respectively. In two different market I and II are shown below.						
	Market		Product				
		Х	Y	Z			
	I	6,000	9,000	13,000			
	II	12,000	6,000	17,000			
	Find the tota	l revenue in each market with	h the help of matrices.				
Sol.:							
Ex. 2:	(a) Show that the matrix $A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & -6 & -7 \end{bmatrix}$ satisfies the equation: $A^{3} + 2A^{2} - A - 20I = 0$						
	$A^3 + 2A^2 - A^3$	- 20 I = 0					
Sol.:							

NAH	ΤA	PRC	DFES	SSIC	NAL	. Cl	AS	SES

Ex 3.	if $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ then show that $A^2 - (a+d) A = (bc-ad) I$.
Sol.:	
Ex.4 :	If $A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix} B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix}$ and $(A+B)^2 = A^2 + B^2$, find the value of a and b.
Sol.:	

5: A company employs 6	Contraction of the second s	Charles A and D	
5. A company employs c	50 labourers from either o	f party A and B, com	brising of persons in alt
groups as under			
Category	I (20-25 years)	II (26-30 years)	III (31-40 years)
Party A	25	25	15
Party B	20	30	10
	Category	Rates	
	I	1,200	
	II	1,000	
	III	600	
Poto of Labour andia	able to esteration 1. 11 an	d III ara Ra 1200 Ra	1000 and Pa (00 years
	able to categories I, II an	iu iii uie ks. 1,200, Ks	. 1,000 ana ks. 600 resp
Using			
~			
	party is economically pre	ferable over the other.	
matrices, Find which	party is economically pre	ferable over the other.	
matrices, Find which	party is economically pres I (20-25 years)	ferable over the other. II (26-30 years)	III (31-40 years)
matrices, Find which			
ol.: Category	I (20-25 years)	II (26-30 years)	III (31-40 years)

			_	
		Category	Rates	
		I	1,200	
		II	1,000	
		III	600	
	Labour charge payabl $\binom{25X1200 + 25X100}{20X1200 + 30X100}$			
	Therefore, Party B is	more economical	as compared to	party A.
x. 6:	In a Certain city ther	re are 5 colleges a	and 20 school.	Each school has 3 peons, I clerk, and I head
	clerk, where a college	has 5 peons , 3	clerk , I Head o	Clerk and additional staff of a caretaker. Th
	monthly salary of a e	employee is as foll	low:	
		Peon	₹1100	
		Clerk	₹1700	
		Head-Clerk	₹3000	
		Caretaker	₹2500	
	Using matrix method	, find the total n	nonthly bill of e	ach college.
	·		•	
Sol.:				

NAH	TA PROFESSIONAL CLASSES BUSINESS MATHEMATICS
Ex. 7:	There are two families A and B . There are 4 men, 6 women and 2 Children in a Family A
	and 2 men, 2 women, and 4 children in Family B .The recommended requirement of calories in Man:
	2400, Woman : 1900, Child : 1800 and for proteins in Man: 55 gm, Woman: 45 gm and Child: 33 gm.
Sol.:	Represent the above information by matrices in using matrix multiplication method
	The members of the two families can be represented by the 2 × 3 matrix. $ \begin{array}{c} M & W & C \\ F = \frac{A}{B} \begin{bmatrix} 4 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix} \end{array} $
	And the recommended daily requirement of calories and proteins for each member can be represented
	by the 3 × 2 matrix:
	calories Protiens $F = \frac{M}{c} \begin{bmatrix} 2400 & 55\\ 1900 & 45\\ 1800 & 33 \end{bmatrix}$
	The total requirements of calories and proteins for each of the families is given by matrix multiplication. $FR = \begin{bmatrix} 4 & 6 & 2 \\ 2 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2400 & 55 \\ 1900 & 45 \\ 1800 & 33 \end{bmatrix} = \frac{A}{B} \begin{bmatrix} 24600 & 556 \\ 15800 & 332 \end{bmatrix}$
	Hence finally A requires 24,600 calories and 556 gm proteins and Family B requires 15,800 calories
	and 332 gm proteins.

DETERMINANTS

Ex.8:	Find the determinant value of the following matrices. $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$
Sol.	by definition $\Delta = 1 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}$ $= 1(45 - 48) - 2(36 - 42) + 3(32 - 35)$ $= -3 + 12 - 9 = 0$
	ADJOINT OF MATRIX
Ex.9:	Find the Adjoint of the Matrix. $A = \begin{bmatrix} 1 & 4 & 0 \\ -1 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$
Sol.:	The Co-factors of elements of A = $\begin{bmatrix} 1 & 4 & 0 \\ -1 & 2 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ are calculated below:
	$A_{11} = (-1)^{1+1} \begin{vmatrix} 2 & 2 \\ 0 & 2 \end{vmatrix} = 4$
	$A_{12} = (-1)^{1+2} \begin{vmatrix} -1 & 2 \\ 0 & 2 \end{vmatrix} = 2$
	$A_{13} = (-1)^{1+3} \begin{vmatrix} -1 & 2 \\ 0 & 0 \end{vmatrix} = 0$
	$A_{21} = (-1)^{2+1} \begin{vmatrix} 4 & 0 \\ 0 & 2 \end{vmatrix} = -8$
	$A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 2$
	$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 4 \\ 0 & 0 \end{vmatrix} = 0$
	$A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 0 \\ -1 & 2 \end{vmatrix} = -2$
	$A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 4 \\ -1 & 2 \end{vmatrix} = 6$
	Now Adj. A = $\begin{pmatrix} 4 & -8 & 8 \\ 2 & 2 & -2 \\ 0 & 0 & 6 \end{pmatrix}$

	INVERSE OF A MATRIX			
Ex.10:	Solve the following system of equations by matrix inversion method :			
	2x + 8y + 5z = 5			
	X + y + z = (-2) X + 2y - z = -2			
	X + 2y - z = -2			
Sol.:	The given system of equations can be written in the form, $AX = B$. Where $= \begin{pmatrix} 2 & 8 & 5 \\ 1 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} X = \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$ and $B = \begin{pmatrix} 5 \\ -2 \\ 2 \end{pmatrix}$ det $(A) = \begin{vmatrix} 2 & 8 & 5 \\ 1 & 1 & 1 \\ 1 & 2 & -1 \end{vmatrix} = 2(-1-2) - 8(-1-1) + 5(2-1)$ = -6 + 16 + 5			
	= 15 ≠ 0			
	Hence, the system has a unique Sol. as A is non-singular. The Sol. is given by $X = A^{-1}B$			
	To and A-1, we find the cofactors.			
	A11 = -3; A12 = + 2; A13 = 1, A21 = + 18; A22 = -7; A23 + 4; A31 = 3; A22 = +3; A33 = -6			
	Co-factor of A = $\begin{pmatrix} -3 & 2 & 1\\ 18 & -7 & 4\\ 3 & 3 & -6 \end{pmatrix}$			
	Adj: A = $(\text{co-factor A})^{\mathrm{T}} = \begin{pmatrix} -3 & 18 & 3\\ 2 & -7 & 3\\ 1 & 4 & -6 \end{pmatrix}$			
	$A^{-1} = \frac{1}{\det(A)} = \begin{pmatrix} -3 & 18 & 3\\ 2 & -7 & 3\\ 1 & 4 & -6 \end{pmatrix} = \frac{1}{15} \begin{pmatrix} -3 & 18 & 3\\ 2 & -7 & 3\\ 1 & 4 & -6 \end{pmatrix}$			
	Therefore X = $\frac{1}{15} \begin{pmatrix} -3 & 18 & 3 \\ 2 & -7 & 3 \\ 1 & 4 & -6 \end{pmatrix} \begin{pmatrix} 5 \\ -2 \\ 2 \end{pmatrix}$			
	$=\frac{1}{15} \begin{pmatrix} -15 & 36+6\\ 10+14+6\\ 5 & 8-12 \end{pmatrix} = \begin{pmatrix} -3\\ 2\\ 1 \end{pmatrix}$			
	Hence, $x = -3$; $y = 2$ and $z = -1$			
Ex.11:	Show that the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ satisfies the equation $A^2 - 5A - 2I = 0$			

,	 			01,	0000		
	House	daduca	+laa	value	of A-1		
	mence	, deduce	ine	value	OT AT		

	Hence, deduce the value of A ⁻¹
Sol.:	$A^{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1+6 & 2+8 \\ 3+12 & 6+16 \end{bmatrix} = \begin{bmatrix} 7 & 10 \\ 15 & 12 \end{bmatrix}$
	$A^2 - 5A - 2I = \begin{bmatrix} 7 & 10 \\ 15 & 12 \end{bmatrix} - 5 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} - 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
	$\begin{bmatrix} 7-5-2 & 10-10 \\ 15-15 & 22-20-2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$
	Since $A^2 - 5A - 2I = 0$,
	$\Rightarrow A^{-1} (A^2 - 5A - 2I) = 0$
	$\Rightarrow A - 5I - 2A^{-1} = 0$
	$\Rightarrow 2A^{-1} = A - 5I$
	$\Rightarrow A^{-1} = \frac{1}{2} (A - 5I)$
	$=\frac{1}{2}\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} - \frac{5}{2}\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}$
	$= \begin{bmatrix} \frac{1}{2} - \frac{5}{2} & 1 - 0\\ \frac{3}{2} - 0 & 2 - \frac{5}{2} \end{bmatrix}$
	$= \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$
	$A^{-1} = \begin{bmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$
Ex.12:	Fine the inverse of the matrix $\begin{pmatrix} 2 & -3 \\ 4 & -1 \end{pmatrix}$
Sol.:	

Ex 13:	Using the inverse of the coefficient matrix, solve the following system of equations:
LA 15.	x + y + z = 3
	x + 2y + 3z = 4 x + 4y + 9z = 6
Sol.:	
501.:	

SOL. OF LINEAR EQUATIONS IN THREE VARIABLES (CRAMER'S RULE)
Solve the equations:
1) $2x - y + z = 4$
X + 3y + 2z = 12
3x + 2y + 3z = 16
x + y + 3z = 6
x - 3y - 3z = -4 5x - 3y + 3z = 8

Sol:	$X = \frac{\Delta x}{x} = \frac{\begin{vmatrix} 6 & 1 & 3 \\ -4 & -3 & -3 \\ \frac{8}{-4} & -3 & -3 \\ \frac{8}{-4} & -3 & -3 \\ \frac{1}{-4} & -3 & -3 \\ \frac{1}{-4} & -3 & -3 \\ \frac{1}{-4} & -3 & -3 \\ \frac{1}{-5} & -3 & -3 \\ \frac{1}{-3} & -3 & -3 \\ \frac{1}{-9} & -9 & -1(12+24) + 3(12+24) \\ \frac{1}{-9-9} & -1(3+15) + 3(-3+15) \\ \frac{1}{-9-9} & -1(-3+15) \\ \frac$
Ex.16:	The given equations are:
	x + y - z = -2
	x + y - z = -2 3x + 2y + 3z = 13 2x + 7y + 4z = 31
	2x + 7y + 4z = 31
Sol.:	
	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA
	EXERCISE A
	Choose the most appropriate option (a), (b), (c), or (d)
1.	If a matrix has 16 elements; what are the possible orders it can have
	(a) 2×8 ; 8×1 ; 4×4 ; 1×16 ; 16×1 (b) 2×8 ; 8×2 ; 4×4 ; 1×16 ; 16×1

NA	NAHTA PROFESSIONAL CLASSES				BUSINESS MATHEMATICS			
	(c) 2 × 8 ; 8 × 2; 4 × 1; 1 × 16; 16 × 1			(d) 2	(d) 2×4 ; 8×2 ; 4×4 ; 1×16 ; 16×1			
2.	Transpose of a rectangular matrix is a							
	(a) rectangular mat	rix (b) diagonal	matrix	(c) sq	uare matrix	(d) scaler matrix		
3.	Transpose of a row	Transpose of a row matrix is						
	(a) zero matrix	(b) diagonal	matrix	(c) co	lumn matrix	(d) row matrix		
4.	Two matrices A and	B are multiplied to g	et AB if	ſ				
	(a) both are rectangular			(b) both hav	e same order			
	(c) no. of columns o	f A is equal to rows of	B	(d) no. of rov	ws of A is equal	to no. of columns of B		
5.	If $ A = 0$, then A is							
	(a) zero matrix	(b) singular	matrix	(c) no	on-singular mat	rix (d) 0		
6.	If A is a symmetric matrix, then $A^t =$							
	(a) A	(b) A	(c) 0		(d) diagonal n	natrix		
7.	If the order of matrix <i>A</i> is $m \times p$. And the order of <i>B</i> is $p \times n$. Then the order of matrix <i>AB</i> is?					f matrix <i>AB</i> is?		
	(a) <i>m</i> × <i>n</i>	(b) <i>n</i> × <i>m</i>	(c) <i>n</i>	× p	(d) $m \times p$			
8.	If <i>A</i> and <i>B</i> are matrices, then which from the following is true?							
	(a) $A + B \neq B + A$	(b) $(At)t \neq A$	l	(c) $AB \neq BA$		(d) all are true		
9.	What is <i>a</i> , if $A = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$	$\binom{3}{a}$ is a singular mat	rix?					
	(a) 5	(b) 6	(c) 7		(d) 8			
10.	If $A = \begin{pmatrix} 2i & 3i \\ 2i & -i \end{pmatrix}$							
	(a) 2	(b) 8	(c) 4		(d) 5			

	DOSINESS MAILEMAILES
11.	If $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$ then order of matrix $A = ?$
	(a) 2 x 2 (b) 2 x 3 (c) 3 x 2 (d) 3 x 3
12.	Using 12-16 Let $A = \begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 5 \\ 6 & -7 \end{pmatrix}$ $C = \begin{pmatrix} 2 & 5 \\ 3 & 4 \end{pmatrix}$ Find (A+B)
	$\begin{bmatrix} 3 & 2 \\ 10 & -2 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 2 \\ -10 & -2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 3 \\ = 10 & -2 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -1 \\ 10 & -2 \end{bmatrix}$
13.	Find A–B.
	(a) $\begin{bmatrix} 1 & -2 \\ -2 & -2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -8 \\ -2 & 12 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 8 \\ -2 & -12 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & -8 \\ -12 & -2 \end{bmatrix}$
14.	3A – C
	(a) $\begin{pmatrix} -4 & -14 \\ 9 & 11 \end{pmatrix}$ (b) $\begin{pmatrix} 4 & -14 \\ -9 & -11 \end{pmatrix}$ (c) $\begin{pmatrix} 4 & -14 \\ 9 & 11 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$
15.	АВ
	(a) $\begin{pmatrix} -16 & 31 \\ 34 & -15 \end{pmatrix}$ (b) $\begin{pmatrix} 16 & 31 \\ 34 & -15 \end{pmatrix}$ (c) $\begin{pmatrix} 16 & 31 \\ 34 & 5 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & -3 \\ 4 & 5 \end{pmatrix}$
16.	BA
	(a) $\begin{pmatrix} 22 & 22 \\ -16 & -53 \end{pmatrix}$ (b) $\begin{pmatrix} -22 & 22 \\ 16 & -53 \end{pmatrix}$ (c) $\begin{pmatrix} 22 & -11 \\ 16 & 53 \end{pmatrix}$ (d) $\begin{pmatrix} 22 & -33 \\ 16 & 53 \end{pmatrix}$
17.	$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$
	(a) $\begin{bmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$ (b) $\begin{bmatrix} -a^2 - b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$ (c) $\begin{bmatrix} a^2 - b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$ (d) $\begin{bmatrix} a^2 - b^2 & 0 \\ 0 & a^2 - b^2 \end{bmatrix}$
18.	$ \begin{pmatrix} a^{2} + b^{2} & b^{2} + c^{2} \\ a^{2} + c^{2} & a^{2} + b^{2} \end{pmatrix} + \begin{pmatrix} -2ab & -2bc \\ +2ac & +2ab \end{pmatrix} $
a)	$\begin{bmatrix} a^{2} + b^{2} + 2ab & b^{2} + c^{2} - 2bc \\ a^{2} + c^{2} + 2ac & a^{2} + b^{2} + 2ab \end{bmatrix} \text{or} \begin{bmatrix} (a+b)^{2} & (b-c)^{2} \\ (a+c)^{2} & (a+b)^{2} \end{bmatrix}$
	$\begin{bmatrix} a^{2} + b^{2} - 2ab & b^{2} + c^{2} + 2bc \\ a^{2} + c^{2} + 2ac & a^{2} + b^{2} + 2ab \end{bmatrix} \text{or} \begin{bmatrix} (a-b)^{2} & (b+c)^{2} \\ (a+c)^{2} & (a+b)^{2} \end{bmatrix}$

NAH	TA PROFESSIONAL CLASSES BUSINESS MATHEMATICS
c)	$\begin{bmatrix} a^{2} + b^{2} - 2ab & b^{2} + c^{2} - 2bc \\ a^{2} + c^{2} + 2ac & a^{2} + b^{2} + 2ab \end{bmatrix} \text{or} \begin{bmatrix} (a-b)^{2} & (b-c)^{2} \\ (a+c)^{2} & (a+b)^{2} \end{bmatrix}$
d)	$\begin{bmatrix} a^{2} + b^{2} - 2ab & b^{2} + c^{2} - 2bc \\ a^{2} + c^{2} - 2ac & a^{2} + b^{2} + 2ab \end{bmatrix} \text{or} \begin{bmatrix} (a-b)^{2} & (b-c)^{2} \\ (a-c)^{2} & (a+b)^{2} \end{bmatrix}$
19.	$ \binom{l}{n} \binom{m}{o} + \binom{-p}{r} \binom{q}{s} $
	(a) $\begin{bmatrix} l+p & m+q \\ n+r & s \end{bmatrix}$ (b) $\begin{bmatrix} l+p & m+q \\ n-r & s \end{bmatrix}$ (c) $\begin{bmatrix} l+p & m-q \\ n+r & s \end{bmatrix}$ (d) $\begin{bmatrix} l-p & m+q \\ n+r & s \end{bmatrix}$
20.	$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$
	(a) $\begin{bmatrix} a^2 + b^2 & 0 \\ 0 & -a^2 - b^2 \end{bmatrix}$ (b) $\begin{bmatrix} a^2 + b^2 & 0 \\ 0 & -a^2 + b^2 \end{bmatrix}$ (c) $\begin{bmatrix} -a^2 - b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$ (d) $\begin{bmatrix} a^2 - b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$
21.	$ \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix} X \begin{pmatrix} 3 & 4 & 5 & 6 \end{pmatrix} $
	$ (a) \begin{bmatrix} 3 & 4 & 5 & 6 \\ 6 & 8 & 10 & 12 \\ 15 & 20 & 25 & 30 \end{bmatrix} $ (b) $\begin{bmatrix} 3 & 4 & 5 & 6 \\ 6 & 8 & 10 & 12 \\ 12 & 16 & 20 & 24 \end{bmatrix} $ (c) $\begin{bmatrix} 3 & 4 & 5 & 6 \\ 6 & 8 & 10 & 12 \\ 12 & 16 & 20 & 24 \end{bmatrix} $ (d) $\begin{bmatrix} 3 & 4 & 5 & 6 \\ 6 & 8 & 10 & 12 \\ 24 & 16 & 16 & 12 \end{bmatrix} $
22.	$\begin{pmatrix} x & y \\ 2 & 3 \end{pmatrix} X \begin{pmatrix} 1 & 2 & 3 \\ x & y & z \end{pmatrix}$
	(a) $\begin{bmatrix} x + 2xy & 3x + y^2 & 3xyz \\ 2 + 3x & 4 + 3y & 6 + 3z \end{bmatrix}$ (b) $\begin{bmatrix} x + xy & 2x + y^2 & 3x + yz \\ 2 + 3x & 4 + 3y & 6 + 3z \end{bmatrix}$
	(c) $\begin{bmatrix} x + 2xy & 2xy + y^2 & 12yz \\ 2 + 3x & 4 + 3y & 6 + 3z \end{bmatrix}$ (d) $\begin{bmatrix} x - xy & 2x - y^2 & 3x - yz \\ 2 + 3x & 4 + 3y & 6 + 3z \end{bmatrix}$
23.	$ \begin{pmatrix} 1 & -2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} X \begin{pmatrix} 1 & 3 & 5 \\ 0 & 2 & 4 \\ 3 & 0 & 5 \end{pmatrix} $
	(a) $\begin{bmatrix} 10 & -1 & 12 \\ 22 & 22 & 70 \\ 34 & 37 & 112 \end{bmatrix}$ (b) $\begin{bmatrix} 10 & 1 & 28 \\ 22 & -2 & 70 \\ 34 & -5 & 112 \end{bmatrix}$ (c $\begin{bmatrix} 10 & 1 & 28 \\ 22 & -2 & -70 \\ 34 & -5 & 112 \end{bmatrix}$ (d) $\begin{bmatrix} 10 & 1 & 28 \\ 22 & -2 & 70 \\ 34 & -5 & -112 \end{bmatrix}$
24.	$\begin{pmatrix} -3 & -1 & 3 \\ -1 & 0 & 2 \end{pmatrix} X \begin{pmatrix} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{pmatrix}$
	(a) $\begin{bmatrix} 14 & -6\\ 4 & -5 \end{bmatrix}$ (b) $\begin{bmatrix} 14 & -6\\ 4 & 5 \end{bmatrix}$ (c) $\begin{bmatrix} 14 & -6\\ -4 & 5 \end{bmatrix}$ (d) $\begin{bmatrix} -14 & -6\\ 4 & 5 \end{bmatrix}$

NAHTA PROFESSIONAL CLASSES BUSINESS MATHEMATICS If $A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 4 \end{bmatrix}$, $B = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 0 & 1 \\ 3 & 0 & 1 & 2 \end{pmatrix}$ Find AB. Does BA exist? 25. (a) AB exists but BA not Exists (b) AB not exists BA Exists (c) Both Ab and BA not Exists (d) None of these 26. If $A = \begin{pmatrix} 0 & 2 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$; $B = \begin{pmatrix} 0 & 3 \\ 1 & 2 \\ 2 & 1 \\ 2 & 0 \end{pmatrix}$ (a) $AB \neq BA$ (b) AB = BA(c) AB exists BA not exists (d) AB not exists BA exists If $A = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$; where $i^2 = -1$ Find A^2 , A^3 etc. 27. (a) $A^2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} A^3 = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$ (b) $A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} A^3 = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$ (c) $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} A^3 = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ (d) $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A^3 = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}$ Find the elements C23, C32, C31in the product C=AB. 28. Where A = $\begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{pmatrix}$; B = $\begin{pmatrix} 1 & 3 & 0 \\ -1 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$ a) 11] C23= 8, C32= =-1, C22= 7, C31= 5 and AB = $\begin{vmatrix} -1 \\ -1 \end{vmatrix}$ 7 8 5 b) 11] 12 C23 = 8, C32 = -5, C22 = 7, C31 = 0 and AB = -17 8 5 c) C23= 8, C32= -1, C22 = 7, C31 = 5 and AB = $\begin{vmatrix} -1 & 12 \\ -1 & 7 \\ 2 & -1 \end{vmatrix}$ 11] 8 5 C23= 8, C32= -1, C22= 7, C31 = 5 and AB = $\begin{bmatrix} -1 & 12 \\ -1 & 7 \end{bmatrix}$ 11 d) 8 Using matrix Cramers method $\Delta x = 1$, $\Delta y = -1$, $\Delta Z = 1$, $\Delta = 1$, find x, y and z values 29. (a) X = 1, y = -1 and z = -1(b) X = -1, y = 1 and z = 1

NAH	TA PROFESSIONAL CLASSES BUSINESS MATHEMATICS										
	(c) $X = 1$, $y = -1$ and $z = 1$ (d) $X = -1$, $y = -1$ and $z = 1$										
30.	4x - 5y - 2z = 0; $2x + 2y + z = 2$; $2x + 2y + 8z = -1$ then the values of x, y, z using crammers rule										
	(a) X =	1 , y = −1 an	dz = 1	(b) inconsi	stent	(c) X =	= 1 , y = -1	l and z = 2	1	(d) none of t	hese
31.	x + y =	-1; y + z = 2	1; z + x	= 0							
	(a) X =	-1; y = 0; z =	= 1	(b) X = 1; y	y = 0; z	= 1 (c)) X = 1; y =	= 0; z = -1	(d) X =	-1; y = 0; z	= -1
32.	If $A = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 5\\ 3 & 9 \end{bmatrix}$, find (A	A')'								
	(a) A			(b) -A			(c) A ²		(d) non	e of these	
33.	Chose t	he correct al	ternativ	ve; If 2 $\begin{bmatrix} x & y \\ z & p \end{bmatrix}$	/]-9 [-2 _] -9 [_1	$\begin{bmatrix} 2 & 3 \\ & 0 \end{bmatrix} = 1$	18 I				
	(a) X=1	.8; z= 9/2		(b) x= 0 , z	= -9/2		(c) $X = 0$;	z = 9/2	(d) Nor	ne of these	
34.	$\begin{bmatrix} 0 & 3 & -4 \\ -3 & 0 & -5 \\ 4 & 4 & 8 \end{bmatrix}$ is a										
	(a) Symmetric matrix (b) Null matrix (c) Skew - symmetric matrix (d) None of these					these					
35.	If $A = \begin{bmatrix} 6 \\ 5 \end{bmatrix}$	$\begin{bmatrix} 5 & 10 \\ 3 & 5 \end{bmatrix}$									
	(a) Is a singular matrix (b) Non-singular matr			natrix	x (c) Identity matrix (d) Symmetric matrix			rix			
					<u>A</u>	NSWE	<u>RS</u>				
	1 (b) 2 (a) 3 (c) 4 (c) 5 (b)						ĩ				
	6	(a)	7	(a)	8	(c)	9	(b)	10	(b)	1
	11	(d)	12	(a)	13	(b)	14	(c)	15	(a)	1
	16	(a)	17	(a)	18	(c)	19	(d)	20	(a)	1
	21	(a)	22	(b)	23	(a)	24	(b)	25	(a)	
	26	(a)	27	(b)	28	(b)	29	(c)	30	(b)	
	31	(a)	32	(a)	33	(c)	34	(d)	35	(a)	Ţ
	21 26	(a) (a)	22 27	(b) (b)	23 28	(a) (b)	24 29	(b) (c)	25 30	(a) (b)	

	ADDITIONAL QUESTIONS				
	MULTIPLE CHOICE QUESTIONS				
1.	If $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 7 & -1 & 3 \\ 3 & 6 & 0 \end{bmatrix}$ then $A + B =$				
	(a) $\begin{bmatrix} 8 & 3 & 6 \\ 6 & 10 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 8 & 1 & 6 \\ 6 & 10 & 0 \end{bmatrix}$ c) $\begin{bmatrix} 8 & 1 & 6 \\ 6 & 10 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 8 & 2 & 0 \\ 6 & -2 & 0 \end{bmatrix}$				
Ans:	(b)				
2.	$lf A = \begin{bmatrix} 3 & 0 & 0 \\ 2 & 3 & 0 \\ 3 & 5 & 7 \end{bmatrix} then 3A =$				
	$ (a) \begin{bmatrix} 6 & 0 & 0 \\ 5 & 6 & 0 \\ 6 & 8 & 10 \end{bmatrix} $ (b) $\begin{bmatrix} 9 & 3 & 3 \\ 6 & 6 & 0 \\ 6 & 15 & 21 \end{bmatrix} $ (c) $\begin{bmatrix} 9 & 0 & 0 \\ 6 & 9 & 0 \\ 9 & 15 & 21 \end{bmatrix} $ (d) $\begin{bmatrix} 6 & 0 & 0 \\ 6 & 6 & 0 \\ 6 & 10 & 21 \end{bmatrix} $				
Ans:	(c)				
3.	If A + B = $\begin{bmatrix} 7 & 0 \\ 2 & 5 \end{bmatrix}$ and A-B = $\begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ find A and B.				
Ans:	$A = \begin{pmatrix} 5 & 0 \\ 1 & 4 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & 0 \\ 7 & 1 \end{pmatrix}$				
4.	Find a matrix A such that 2A- 3B + 5C = 0 where B = $\begin{bmatrix} -2 & 2 & 0 \\ 3 & 1 & 4 \end{bmatrix}$ and C = $\begin{bmatrix} 2 & 0 & -2 \\ 7 & 1 & 6 \end{bmatrix}$				
Ans:	$A = \begin{pmatrix} -8 & 3 & 5 \\ -13 & -1 & -9 \end{pmatrix}$				
5.	Solve the matrix equation $\begin{bmatrix} a^2 \\ b^2 \end{bmatrix} 3 \begin{bmatrix} a \\ 2b \end{bmatrix} = \begin{bmatrix} -2 \\ 9 \end{bmatrix}$				
Ans:	A = 1, 2 and b = $3 \pm 3\sqrt{2}$				
6.	Find the value of x such that $\begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ t5 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = 0$				
Ans:	x = -2 or x = -14				

7.	If $A = \begin{bmatrix} 9 & 1 \\ 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 5 \\ 8 & 11 \end{bmatrix}$ find the matrix Z such that $3A + 5B + 2Z = 0$.
Ans:	$Z = \begin{bmatrix} -16 & -14 \\ -26 & -32 \end{bmatrix}$
8.	Find the matrix A such that $A\begin{bmatrix}3 & 4\\6 & 2\end{bmatrix} = \begin{bmatrix}2 & 8\\9 & 4\end{bmatrix}$
Ans:	$A = \begin{bmatrix} 22/9 & -8/9 \\ 1/3 & 4/3 \end{bmatrix}$
9.	Find a and b if $\begin{pmatrix} 2 & -3 \\ 1 & a \end{pmatrix} \begin{pmatrix} 1 & 5 & b \\ 0 & 2 & -3 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 1 \\ 1 & -1 & 5 \end{pmatrix}$
Ans:	a = -3 and b = - 4
10.	If $A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} a & b \\ 3 & 5 \end{pmatrix}$ find a and b such that $AB = BA$. Compute $3A + 5B$.
Ans:	$\begin{bmatrix} 83/2 & 27/2 \\ 27 & 28 \end{bmatrix}$
11.	r the matrix $A = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, find the numbers a and b such that $A^2 + aA + bl = 0$. Hence find A ⁻¹ .
Ans:	a = -4 and b = 1. A ⁻¹ = $\begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$
12.	Show that $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$ satisfies the equation $x^2 - 4x - 5 = 0$. Hence find A ⁻¹ .
Ans:	$A^{-1} = \frac{1}{5} \begin{bmatrix} -3 & 2 & 2\\ 2 & -3 & 2\\ 2 & 2 & -3 \end{bmatrix}$
13.	Find the matrix A satisfying the matrix equation $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
Ans:	$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

14.	Find the matrix X satisfying the matrix equation $X\begin{bmatrix}5 & 3\\-1 & -2\end{bmatrix} = \begin{bmatrix}14 & 7\\7 & 7\end{bmatrix}$				
Ans:	$\begin{bmatrix} 3 & 1 \\ 1 & -2 \end{bmatrix}$				
15.	Solve the following system of equations using Cramer's rule: (a) $x - 2y = 4$, $-3x + 5y = -7$ (b) $3x + y = 19$, $3x - y = 23$ (d) $3x + y - 2z = 3$, $x - y - z = -1$, $x + y - z = 1$ (e) $3x + y + z = 2$, $2x - 4y + 3z = -1$, $4x + y - 3z = -11$ (f) $\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4$, $\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1$, $\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$				
Ans:	(a) $x = -6$ and $y = -5$ (b) $x = 7$ and $y = -2$ (d) $x = 2$, $y = 1$, $z = 2$ (e) $x = -1$, $y = 2$, $z = 3$				
	(f) $x = 2, y = 3, z = 5$				
16.	Find the matrix product AB, if it is defined. A = $\begin{bmatrix} 1 & 3 & -3 \\ 3 & 0 & 5 \end{bmatrix}$, B = $\begin{bmatrix} 3 & 0 \\ -3 & 1 \\ 0 & 5 \end{bmatrix}$				
	(a) $\begin{bmatrix} -12 & -6\\ 25 & 9 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -9 & 0\\ 0 & 0 & 25 \end{bmatrix}$ (c) AB is undefined (d)				
Ans:	(d)				
17.	Perform the matrix operation. Let $A = [-5 2]$ and $B = [1 0]$. Find $2A + 3B$.				
	(a) [-10 4] (b) [-2 2] (c) [-9 4] (d) [-7 4]				
Ans:	(d)				
18.	Find the inverse of the matrix, if it exists. $A = \begin{bmatrix} -5 & 4 \\ 0 & 4 \end{bmatrix}$				
	(a) $\begin{bmatrix} -\frac{1}{5} & -\frac{1}{5} \\ 0 & \frac{1}{4} \end{bmatrix}$ (b) $\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} \\ 0 & \frac{1}{4} \end{bmatrix}$ (c) $\begin{bmatrix} \frac{1}{4} & \frac{1}{5} \\ 0 & -\frac{1}{5} \end{bmatrix}$ (d) $\begin{bmatrix} 0 & \frac{1}{4} \\ -\frac{1}{5} & \frac{1}{5} \end{bmatrix}$				

NAF	HTA PROFESSIONAL CLASSES		BUSINESS MATHEMATICS			
Ans:	(b)					
19.	Compute the determinant of the matrix by	$\begin{bmatrix} 4 & 2 & 7 \\ 9 & 3 & 5 \\ 7 & 9 & 4 \end{bmatrix}$				
	(a) 1084 (b) -286	(c) 286	(d) 146			
Ans:	(c)					
20.	$\begin{bmatrix} 3 & 1 & 2 \\ -3 & -1 & -6 \\ 6 & 5 & 3 \end{bmatrix}$					
	(a) -9 (b) -36 (c) 0	(d) 36				
	Ans: (d)					
21.	If the order of matrix A is $m \times p$. And the o	If the order of matrix A is m \times p. And the order of B is p \times n. Then the order of matrix AB is?				
	(a) $n \times p$ (b) $m \times n$	(c) n × p	(d) n × m			
	Ans: (b)					
22.	If A and B are matrices, then which from th	ne following is true?				
	(a) $AB \neq BA$ (b) $(At)t \neq A$	$(c) A + B \neq B + A$	(d) all are true			
	Ans: (a)					
23.	The number of non-zero rows in an echelo	on form is called?				
	(a) rank of a matrix	(b) cofactor of the r	natrix			
	(c) reduced echelon form	(d) conjugate of the	matrix			

NA	AHTA PROFESSIONAL CLASSES	BUSINESS MATHEMATICS			
	Ans: (a)				
24.	Transpose of a rectangular matrix is a				
	(a) scaler matrix (b) square matrix (c) diagonal m	atrix (d) rectangular matrix			
	Ans: (d)				
25.	Transpose of a column matrix is				
	(a) row matrix (b) zero matrix (c) column ma	trix (d) diagonal matrix			
	Ans: (a)				
26.	Two matrices A and B are multiplied to get AB if				
	(a) both are rectangular (b) both have s	same order			
	(c) no. of columns of A is equal to columns of B				
	(d) no. of rows of A is equal to no. of columns of B				
	Ans: (c)				
27.	If $ A = 0$, then A is				
	(a) 0 (b) zero matrix (c) singular matrix ((d) non-singular matrix			
	Ans: (c)				
28.	If A is a symmetric matrix, then $A^t = .$				
	(a) 0 ' (b) A (c) A (d) diagonal n	natrix			

NA	HTA PROFESSIONAL CLASSES BUSINESS MATHEMATICS					
	Ans: (b)					
29.	Additive inverse of a matrix A is					
	(a) adj A/ A (b) A^2 (c) A (d) A'					
	Ans: (a)					
30.	For a non-trivial solution A is					
	(a) $ A > 0$ (b) $ A < 0$ (c) $ A \neq 0$ (d) $ A = 0$					
	Ans: (d)					
31.	Two matrices A and B are multiplied to get BA if					
	(a) no. of rows of A is equal to no. of columns of B					
	(b) no. of columns of A is equal to columns of B					
	(c) both have same order					
	(d) both are rectangular					
	Ans: (a)					
32.	A matrix having m rows and n columns with $m \neq n$ is said to be a					
	(a) scaler matrix (b) identity matrix (c) square matrix (d) rectangular matrix					
	Ans: (a)					
33,	[a b c] is a					

	(a) zero matrix (b) row matrix (c) column matrix (d) diagonal matrix					
	Ans: (b)					
34.	Two matrices A and B are added if					
	(a) no. of rows of A is equal to no. of columns of B (b) no. of columns of A is equal to columns of B					
	(c) both have same order (d) both are rectangular					
	Ans: (c)					
35.	Transpose of a row matrix is					
	(a) zero matrix (b) row matrix (c) column matrix (d) diagonal matrix					
	Ans: (c)					
36.	Matrices obtained by changing rows and columns is called					
	(a) symmetric (b) transpose (c) rectangular matrix (d) None of Above					
	Ans: (b)					
37.	[0 0 0] is					
	(a) null matrix (b) scaler matrix (c) identity matrix (d) diagonal matrix					
	Ans: (a)					
38.	If A is a matrix of order m \times n and B is a matrix of order n x p then order of AB is					
	(a) $p \times n$ (b) $m \times p$ (c) $p \times m$ (d) $n \times p$					

	Ans: (b)					
39.	Transpose of a square matrix is a					
	a) scaler matrix (b) square matrix (c) diagonal matrix (d) rectangular matrix					
	Ans: (c)					
40.	If $ A \neq 0$, then A is					
	(a) non * singular matrix (b) singular matrix (c) diagonal matrix (d) zero matrix					
	Ans: (a)					
41.	Two matrices A and B are equal if					
	(a) both are rectangular (b) both have same order					
	(c) no. of columns of A is equal to columns of B					
	(d) both have same order and equal corresponding elements					
	Ans: (d)					
42.	Order of a matrix [2 5 7] is					
	(a) 1×1 (b) 1×3 (c) 3×1 (d) 3×3					
	Ans: (b)					
43.	A matrix having m rows and n columns with $m = n$ is said to be a					
	(a) scaler matrix (b) identity matrix (c) square matrix (d) rectangular matrix					

NAH	ITA PROFESSIONAL	CLASSES		BUSINESS MATHEMATICS
	Ans: (c)			
44.	Equations having a	common solution ar	e called	
	(a) linear equations	s (b) simultaneous e	equations (c) homo	geneous equations (d) None of Above
	Ans: (c)			
45.	If a matrix has m ro	ws and n columns th	ien order is	
	(a) m × n	(b) m × m	(c) m + n	(d) $n \times n$
	Ans: (a)			
46.	If the order of matr	∵ix A is m×p. And the	e order of B is p×n.	Then the order of matrix AB is ?
	(a) m×n	(b) n×m	(c) n×p	(d) m×p
	Ans: (a)			
47.	If A and B are matr	ices, then which fron	n the following is t	rue ?
	(a) $A + B \neq B + A$	(b) $(At)^t \neq A$	(c) AB ≠ BA	(d) all are true
	Ans: (c)			
48.	What is a, if $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 4\\ a \end{bmatrix}$ is a singular mat	rix?	
	(a) 5 (b) 6	(c) 7	(d) 8	
	Ans: (d)			
49.	If $A = \begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$ then	A = ?		

NAF	ITA PROFESSIONAL CLASSES	BUSINESS MATHEMATICS
	(a) 2 (b) 3 (c) 4 (d) 5	
	Ans: (b)	
50.	If $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} A = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$ then order of matrix A	. = ?
	(a) 2×2 (b) 2×3 (c) 3×2	(d) 3 × 3
	Ans: (b)	
51.	Transpose of a rectangular matrix is a	
	(a) rectangular matrix (b) diagonal matrix (c) squ	are matrix (d) scaler matrix
	Ans: (a)	
52.	Two matrices A and B are multiplied to get AB if	
	(a) both are rectangular (b) both	h have same order
	(c) no. of columns of A is equal to rows of B (d) no.	of rows of A is equal to no. of columns of B
	Ans: (c)	
53.	If A is a symmetric matrix, then A ^t =	
	(a) A, (b) A (c) 0 (d) diagonal m	natrix
	Ans: (a)	
54.	If $A = \begin{pmatrix} 2i & 3i \\ 2i & -i \end{pmatrix}$ (i ² = -1) then $ A = ?$	

NA	HTA PROFESSIONAL CLASSES		BUSINESS MATHEMATICS
	(a) 2 (b) 8 (c) 4	(d) 5	
	Ans: (b)		
55.		$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$	
	(a) $\begin{bmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$	(b) $\begin{bmatrix} -a^2 - b^2 & 0\\ 0 & a^2 + b^2 \end{bmatrix}$	
	(c) $\begin{bmatrix} a^2 - b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$	$(d)\begin{bmatrix}a^2-b^2 & 0\\ 0 & a^2-b^2\end{bmatrix}$	
	Ans: (a)		
56.		$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \times \begin{pmatrix} a & b \\ b & -a \end{pmatrix}$	
	(a) $\begin{bmatrix} a^2 + b^2 & 0 \\ 0 & -a^2 - b^2 \end{bmatrix}$	(b) $\begin{bmatrix} a^2 + b^2 & 0\\ 0 & -a^2 + b^2 \end{bmatrix}$	
	(c) $\begin{bmatrix} -a^2 - b^2 & 0\\ 0 & a^2 + b^2 \end{bmatrix}$	$(d)\begin{bmatrix}a^2 \cdot b^2 & 0\\ 0 & a^2 + b^2\end{bmatrix}$	
	Ans: (a)		
57.		$\begin{pmatrix} -3 & -1 & 3 \\ -1 & 0 & 2 \end{pmatrix} \times \begin{pmatrix} 2 & -3 \\ 1 & 0 \\ 3 & 1 \end{pmatrix}$	
	(a) $\begin{bmatrix} 14 & -6 \\ 4 & -5 \end{bmatrix}$ (b) $\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}$	$(c)\begin{bmatrix} 14 & -6\\ -4 & 5 \end{bmatrix} \qquad (d)\begin{bmatrix} -4\\ -4 \end{bmatrix}$	14 - 6 5
	Ans: (b)		
58.	The elements C23, C32, C31 in the pr	oduct C = AB.	
	Where A = $\begin{pmatrix} 2 & 3 & 4 \\ 1 & 2 & 3 \\ 1 & f & 2 \end{pmatrix}$, B = $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$	$ \begin{array}{ccc} 3 & 0 \\ 2 & 1 \\ 0 & 2 \end{array} $	

(a) $C_{23} = 8$, $C_{32} = -1$, $C_{22} = 7$, $C_{31} = 5$ and $AB = \begin{bmatrix} -1 & 12 & 11 \\ -1 & 7 & 8 \\ 0 & 5 & 5 \end{bmatrix}$
(b) $C_{23} = 8$, $C_{32} = 5$, $C_{22} = 7$, $C_{31} = 0$ and $AB = \begin{bmatrix} -1 & 12 & 11 \\ -1 & 7 & 8 \\ 0 & 5 & 5 \end{bmatrix}$
(c) $C_{23} = 8, C_{32} = -1, C_{22} = 7, C_{31} = 5 \text{ and } AB = \begin{bmatrix} -1 & 12 & 11 \\ -1 & 7 & 8 \\ -2 & 5 & 5 \end{bmatrix}$
(d) $C_{23} = 8$, = -1, = 7, $C_{31} = 5$ and $AB = \begin{bmatrix} -1 & 12 & 11 \\ -1 & 7 & 8 \\ 0 & -5 & -5 \end{bmatrix}$
 Ans: (b)

CH - 3	LINEAR INEQUALITIES	
Ex,: 1	A manufacturer produces two products A and B, and has his machines in operation	for 24 hours a
	day.Production of A requires 2 hours of processing in machine M_1 and 6 hours in mathin	achine M2. n
	Productio of B requires 6 hours of processing in machine M1 and 2 hours in machine	e M2. The
	manufacturer earns a profit of Rs. 5 on each unit of A and Rs. 2 on each unit of E	3. How many units
	of each product should be produced in a day in order to achieve maximum profit?	
Sol.		
Ex.: 2	A company produces two products A and B, each of which requires processing in tw	o machines. The
	first machine can be used at most for 60 hours, the second machine can be used a	t most for

	40 hours. The product A requires 2 hours on machine one and one hour on machine two. The
	product B requires one hour on machine one and two hours on machine two. Express above situation
	using linear inequalities.
Sol	Let the company produce, x number of product A and y number of product B. As each of product A
	requires 2 hours in machine one and one hour in machine two, x number of product A requires 2x
	hours in machine one and x hours in machine two. Similarly, y number of product B requires y hours
	in machine one and 2y hours in machine two. But machine one can be used for 60 hours and machine
	two for 40 hours.
	Hence $2x + y$ cannot exceed 60 and $x + 2y$ y cannot exceed 40. In other words, $2x + y \le 60$ and $x + 2y \le 40$.
	Thus, the conditions can be expressed using linear inequalities.
Ex.3:	A fertilizer company produces two types of fertilizers called grade I and grade II. Each of these types
	is processed through two critical chemical plant units. Plant A has maximum of 120 hours available in
	a week and plant B has maximum of 180 hours available in a week. Manufacturing one bag of grade I
	fertilizer requires 6 hours in plant A and 4 hours in plant B. Manufacturing one bag of grade II
	fertilizer requires 3 hours in plant A and 10 hours in plant B. Express this using linear inequalities.
Sol.	

Ex.:4	Graph the inequalities $5x_1 + 4x_2 \ge 9$, $x_1 + x_2 \ge 3$, $x_1 \ge 0$ and $x_2 \ge 0$ and mark the common region.						
Sol.	We draw the straight lines $5x_1 + 4x_2 = 9$ and $x_1 + x_2 = 3$. Table for $5x_1 + 4x_2 = 9$ Table for $5x_1 + 4x_2 = 9$ Table for $x_1 + x_2 = 3$ Table for $x_1 + x_2 = 3$ Table for 3 Table						
	Now, if we take the point (4, 4), we find $5x_1 + 4x_2 \ge 9$ i.e., $5.4 + 4.4 \ge 9$ or, $36 \ge 9$ (True) $x_1 + x_2 \ge 3$ i.e., $4 + 4 \ge 3$ $8 \ge 3$ (True)						
	Hence (4, 4) is in the region which satisfies the inequalities. We mark the region being satisfied by the inequalities and note that the cross-hatched region is satisfied by all the inequalities. Ex.: Draw the						
	graph of the solution set of the following inequality and equality: $ \begin{bmatrix} $						
Ex. 5:	Draw the graphs of the following inequalities: $x + y \le 4$, $x - y \le 4$, $x \ge -2$.						
Sol:							

Ex. 6 :	Draw the graphs of the following linear inequalities:					
	$5x + 4y \le 100,$ $5x + y \ge 40,$ $3x + 5y \le 75,$ $x \ge 0, y \ge 0.$ and mark the common region.					
	$3x + 5y \le 75$, $x \ge 0$, $y \ge 0$. and mark the common region.					
Sol:						
Ex. 7 :	Draw the graphs of the following linear inequalities:					
	$5x + 8y \le 2000, \qquad x \le 175, \qquad x \ge 0.$					
	$7x + 4y \le 1400$, $y \le 225$, $y \ge 0$. and mark the common region:					
Sol.	Let us plot the line AB $(5x + 8y = 2,000)$ by joining the points A(400, 0) and B(0, 250).					
	Similarly, we plot the line CD $(7x + 4y = 1400)$ by joining the points C(200, 0) and D(0, 350).					
	x 400 0					
	y 0 250					
	x 200 0					
	y 0 350					
	Also, we draw the lines $EF(x = 175)$ and $GH(y = 225)$.					
	The required graph is shown alongside in which the common region is shaded.					

	$B(0, 250) \xrightarrow{9}{9} \xrightarrow{1}{10} \xrightarrow{1}{10} \xrightarrow{9}{10} \xrightarrow{1}{10} \xrightarrow{9}{10} \xrightarrow{1}{10} \xrightarrow$
Ex. 8 :	Draw the graphs of the following linear inequalities:
	$x + y \ge 1$, $7x + 9y \le 63$, $y \le 5$, $x \le 6$, $x \ge 0$, $y \ge 0$.
	and mark the common region.
Sol :	
	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA
	EXERCISE
	Choose the correct answer (a),(b),(c) or (d)
1. (i)	An employer recruits experienced (x) and fresh workmen (y) for his firm under the condition that he
	cannot employ more than 9 people. x and y can be related by the inequality
	(a) $x + y \neq 9$ (b) $x + y \leq 9$ $x \geq 0, y \geq 0$ (c) $x + y \geq 9$ $x \geq 0, y \geq 0$ (d) none of these

(ii)	On the average experienced person does 5 units of work while a fresh one 3 units of work daily but
	the employer has to maintain an output of at least 30 units of work per day. This situation can be
	expressed as
	(a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30$ x ≥ 0, y ≥ 0 (d) none of these€
(iii)	The rules and regulations demand that the employer should employ not more than 5 experienced
	hands to 1 fresh one and this fact can be expressed as
	(a) $y \ge x/5$ (b) $5y \le x$ (c) $5y \ge x$ (d) none of these
(iv)	The union however forbids him to employ less than 2 experienced person to each fresh person. This
	situation can be expressed as
	(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) $x > 2y$
(v)	The graph to express the inequality $x + y \le 9$ is
	(a) (b)
	(c)
	(d) none of these

(viii)							
	L1: $5x + 3y = 30$ L2: $x+y = 9$ L3: $y = x/3$ L4: $y = x/2$						
	The common region (shaded part) shown in the diagram refers to						
	(a) $5x + 3y \le 30$ $x + y \le 9$ $y \le 1/5 x$ $y \le x/2$						
	(b) $5x + 3y \ge 30$ $x + y \le 9$ $y \ge x/3$ $y \le x/2$ $x \ge 0, y \ge 0$						
	(c) $5x + 3y \ge 30$ $x + y \ge 9$ $y \le x/3$ $y \ge x/2$ $x \ge 0, y \ge 0$						
	(d) $5x + 3y > 30$ x + y < 9 $y \ge 9$ $y \le x/2$ $x \ge 0, y \ge 0$						
2.	A dietitian wishes to mix together two kinds of food so that the vitamin content of the mixture is at						
	least 9 units of vitamin A, 7 units of vitamin B, 10 units of vitamin C and 12 units of vitamin D. The						
	vitamin content per Kg. of each food is shown below:						
	A B C D						

	1	1	2	3				
Food II:								
Assuming x units of food I is to be mixed with y units of food II the situation can be expressed as								
(a) $2x + y \le 9$								
$\begin{array}{l} x + y \leq 7 \\ x + 2y \leq 10 \end{array}$								
	$2x + 3y \le 1$							
x > 0, y > 0								
(b)	$2x + y \ge 3$	0						
	$x + y \le 7$							
	$x + 2y \ge 1$							
	$x + 3y \ge 12$	2						
	$2x + y \ge 9$							
	$x + y \ge 7$							
$\begin{array}{l} x + y \leq 10 \\ x + 3y \geq 12 \end{array}$								
(d)	2x + y ≥ 9							
	$x + y \ge 7$							
	$x + 2 y \ge 1$							
	$2x + 3 y \ge 0$ $x \ge 0, y \ge 0$							
$x \ge 0, y \ge 0,$ Graphs of the inequations are drawn below :								

Т

	The common region (shaded part) indicated on the diagram is expressed by the set of€inequalities						
	(a) $2x + y \le 9$ $x + y \ge 7$ $x + 2y \ge 10$ $x + 3y \ge 12$						
	(b) $2x + y \ge 9$ $x + y \le 7$ $x + 2y \ge 10$ $x + 3y \ge 12$						
	(c) $2x + y \ge 9$ $x + y \ge 7$ $x + 2y \ge 10$ $x + 3y \ge 12$ $x \ge 0, y \ge 0$						
	(d) none of these						
4.	The common region satisfied by the inequalities L1: $3x + y \ge 6$, L2: $x + y \ge 4$, L3: $x + 3y \ge 6$, and L4: x						
	$+ y \le 6$ is indicated by						
	(a) (b) $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}{$						
	(c) $\overline{\begin{array}{c} 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$						

5.	The region indicated by the shading in the graph is expressed by inequalities					
	r_{1} r_{2} r_{2} r_{3} r_{4} r_{1} r_{1}					
	(a) $x_1 + x_2 \le 2$ $2x_1 + 2x_2 \ge 8$ $x_1 \ge 0$, $x_2 \ge 0$,					
	(b) $x_1 + x_2 \le 2$ $x_2 x_1 + x_2 \le 4$					
	(c) $x_1 + x_2 \ge 2$ $2x_1 + 2x_2 \ge 8$					
	(d) $x_1 + x_2 \le 2$ $2x_1 + 2x_2 > 8$					
6. (i)	The inequalities $x_1 \ge 0$, $x_2 \ge 0$, are represented by one of the graphs shown below:					
	(a) (b)					
	(c) (d)					

	$L3: x_1 + x_2$								
	L4 : x ₁ – x ₂								
	$L5: -x_1 + 2x_2 \le 0$								
	(b) $L1 : x_1 \ge 0$								
	$L2: x2 \ge 0$								
	$L3: x_1+x_2$	≥1							
	$L4: x_1 - x_2 \ge 1$								
	L5 :- x ₁ + 2	$2x_2 \leq 0$							
	(c) $L1 : x_1 \le 0$								
	$L2: x2 \le 0$								
	$L3: x_1 + x_2$	≥1							
	$L4: x_1-x_2 \ge$	≥1							
	L5 :- x1+2	$x_2 \leq 0$							
	(d) None of th	ese							
8.	A firm makes two types of products : Type A and Type B. The profit on product A is Nu. 20 each and								
	that on product B is Nu. 30 each. Both types are processed on three machines M1, M2 and M3. The								
	time required in hour	rs by each product a	nd total time availa	ble in hours per week	on each machine				
	time required in hours by each product and total time available in hours per week on each machine								
	are as follows:								
	Machine	Product A	Product B	Available Time					
					Ţ				
	M1	3	3	36	-				
	M2	5	2	50					
					-				
	M3 2 6 60								
	The constraints can be formulated taking x_1 = number of units A and x_2 = number of unit of B as								
	(a) $x_1 + x_2 \le 12$								
	$5x_1 + 2x_2 \le$	≤ 50							
	$2x_1 + 6x_2 \le$	≤ 60							
	(b) $3x_1 + 3x_2 \ge$	≥ 36							
	$5x_1 + 2x_2 \le 5x_1 + 2x_2 = $								
	$2x_1 + 6x_2 \ge$	≥ 60							
	$x_1 \ge 0, x_2 \ge$	<u>≥</u> 0							
3 13	Page		F	ACULTY:CA MEG	SHA NAHTA				

	(c) $3x_1 + 3x_2 \le 36$ $5x_1 + 2x_2 \le 50$ $2x_1 + 6x_2 \le 60$ $x_1 \ge 0, x_2 \ge 0$
	(d) none of these
9.	The set of inequalities L1: $x_1 + x_2 \le 12$, L2: $5x_1 + 2x_2 \le 50$, L3: $x_1 + 3x_2 \le 30$, $x_1 \ge 0$, and $x_2 \ge 0$ is
	represented by
	(a) (b) $\int_{\frac{g}{g}} \int_{\frac{g}{g}} \int_{g$
	(d) none of these
10.	The common region satisfying the set of inequalities $x \ge 0$, $y \ge 0$, L1: $x+y \le 5$, L2: $x + 2y \le 8$ and L3:
	$4x + 3y \ge 12$ is indicated by
	(a) (b) (c)
	$ \begin{array}{c} $

(d) none of these													
ANSWERS													
2.	(d)		(c)	4.		5.	(a)				(vii) (iii)	(d) (viii) (e) (a)	

		"KAR LO PAST APNI MUTHI ME"
		Past Exam Questions
	2006 - Nov	
1.	Graphs of Inequations	are drawn below
	$L_1: 5x + 3y = 30 L_2: x$	x + y = 9
	$L_3: y = \frac{x}{3}L_4: y = \frac{x}{2}$	
	The common region (shaded part) shown in the diagram refers to the inequalities:
	(a) $5x + 3y \le 30$ $x + y \le 9$ $y \le \frac{1}{2}x$	(b) $5x + 3y \ge 30$ $x + y \le 9$ $y \ge x/3$ $y \le x/2$
	$y = \frac{1}{2}$ $y \le \frac{x}{2}$ $x \ge 0, y \ge 0$	$x \ge 0, y \ge 0.$
	(c) $5x + 3y \ge 30$ $x + y \ge 9$ $y \le x/3$ $y \ge x/2$	(d) $5x + 3y > 30$ x + y < 9 $y \ge 9$ $y \le x/2$
	$y \ge n/2$ $x \ge 0, y \ge 0.$	$y \ge 0, y \ge 0.$

L

2.	If $\left x+\frac{1}{4}\right > \frac{7}{4}$, then :
	(a) $x < \frac{-3}{2}$ or $x > 2$ (b) $x < -2$ or $x > \frac{3}{2}$ (c) $-2 < x < \frac{3}{2}$ (d) None of these.
	2007- Feb
3	$\left f \left \frac{3x-4}{4} \right \le \frac{5}{12} \right $, the solution set is:
	(a) $\left\{x:\frac{19}{18} \le x \le \frac{29}{18}\right\}$ (b) $\left\{x:\frac{7}{9} \le x \le \frac{17}{9}\right\}$ (c) $\left\{x:\frac{-29}{18} \le x \le \frac{-19}{18}\right\}$ (d) None of these.
4.	On solving the inequalities $6x + y \ge 18$, $x + 4y \ge 12$, $2x + y \ge 10$, we get the following situation :
	(a) (0, 18), (12, 0), (4, 2) & (7, 6) (b) (3, 0), (0, 3), (4, 2), & (7, 6)
	(c) (5, 0), (0, 10), (4, 2) & (7, 6) (d) (0,18), (12, 0), (4, 2), (0, 0) and (7, 6)
	2007 – May
5.	A car manufacturing company manufactures cars of two types A and B. Model A requires 150 man-
	hours for assembling, 50 manhours for painting and 10 man-hours for checking and testing. Model B
	requires 60 man-hours for assembling, 40 man-hours for painting and 20 man-hours for checking and
	testing. There are available 30 thousand manhours for assembling, 13 thousand man-hours for
	painting and 5 thousand man-hours for checking and testing. Express the above situation using linear
	inequalities. Let the company manufacture x units of type A model of car and y units of type B model of
	car. Then, the inequalities are:
	(a) $5x + 2y \ge 1000; 5x + 4y \ge 1300,$ (b) $5x + 2y \le 1000, 5x + 4y \le 1300,$ $x + 2y \le 500; x \ge 0, y \ge 0,$ $x + 2y \ge 500; x \ge 0, y \ge 0.$

(c) $5x + 2y \le 1,000$, $5x + 4y \le 1300$, (d) $5x + 2y = 1000$, $5x + 4y \le 1300$, $x + 2y = 500$; $x \ge 0$, $y \ge 0$.
$x + 2y \ge 500; x > 0, y \ge 0.$
The rules and regulations demand that the employer should employ not more than 5 experienced
hands to 1 fresh one and this fact is represen-ted by : (Taking experienced person as x and fresh
person as y)
(a) $y \ge \frac{x}{5}$ (b) $5y \le x$ (c) $5y \ge x$ (d) None
The shaded region represents :
X' O (8,0) (10.0) X Y'
(a) $3x + 2y < 24$, $x + 2y \ge 16$, $x + y \le 10x$, $x \ge 0$, $y \ge 0$
(b) $3x + 2y < 24$, $x + 2y \le 16$, $x + y \ge 10$, $x \ge 0$, $y \ge 0$
'(c) $3x + 2y < 24$, $x + 2y < 16$, $x + y \le 10$, $x > 0$, $y \ge 0$
(d) None of these.
The shaded region represents :
X C C C C C C C C C C C C C C C C C C C

	(a) $3x + 5y < 15$, $5x + 2y \ge 10$, $x, y \ge 0$ (b) $3x + 5y \le 15$, $5x + 2y \le 10$, $x, y \ge 0$
	(c) $3x + 5y \ge 15$, $5x + 2y \ge 10$, x, y, ≥ 0 (d) None of these.
	2008 – Feb
[9]	The shaded region represents :
	$x' \stackrel{(0,5)}{\longleftrightarrow} x = 2$ y' y' y'
	(a) $x + y \le 5, x \ge 2, y < 1$ (b) $x + y \le 5, x \ge 2, y \ge 1$ (c) $x + y \ge 5, x \ge 2, y \ge 1$ (d) None of thes
	2008 – June
[10]	The shaded region represents :
	(0,6) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (2,4) (4,0) (6,0) (4,0) (6,0) (4,0)
	(a) $x + y > 6$, $2x - y > 0$ (b) $x + y < 6$, $2x - y > 0$ (c) $x + y > 6$, $2x - y < 0$ (d) None of these
[11]	If a >0 and b <0, it follows that:

	2008 - Dec								
[12]	The Linear relationship between two variables in an inequality:								
	(a) $ax + by \le c$. (b) $ax by \le c$ (c) $axy + by \le c$ (d) $ax + bxy \le c$								
	2010 – June								
[13]	The solution of the inequality $\frac{5-2x}{3} \le \frac{x}{6} - 5$ is								
	(a) $x \ge 8$ (b) $x \le 8$ (c) $x = 8$ (d) None of these.								
[14]	On the average an experienced person does 7 units of work while a fresh one work 5 units of work								
	daily but the employer has to maintain an output of atleast 35 units of work per day. The situation can								
	be expressed as: .								
	(a) $7x + 5y < 35$ (b) $7x + 5y \le 35$ (c) $7x + 5y > 35$ (d) $7x + 5y \ge 35$								
	2011 – June								
[15]	Solution space of the inequalities $2x + y \le 10$ and $x - y \le 5$:								
	(i) includes the origin.								
	(ii) includes the points (4, 3)								
	which one is correct ?								
	(a) Only (i) (b) Only (ii) (c) Both (i) and (ii) (d) None of the above								
16.	On an average, experienced person does 5 units of work while a fresh person does 3 units of work								

	can be expressed as.								
	(a) $5x + 3y \le 30$	(b) $5x + 3y \ge 30$	(c) $5x + 3y > 30$	(d) $5x + 3y = 30$					
	2012 – June								
17.	Find the range of rea	al values of x satisfying	the inequalities $3x - 2 > 7$	and 4x -13 > 15					
	(a) x>3	(b) x>7	(c) $x < 7$ ((d) x < 3					
	2012 - Dec								
18.	On the average, expe	On the average, experienced person does 5 units of work while a fresh one 3 units work daily but the							
	employer have to maintain the output of at least 30 units of work per day. The situation can be								
			-						
	expressed as.								
	expressed as. (a) $5x + 3y \le 30$	(b) 5x + 3y ≥ 30	(c) $5x + 3y = 30$	(d) None of these.					
		(b) 5x + 3y ≥ 30							
19.	(a) $5x + 3y \le 30$ 2013 - June		(c) $5x + 3y = 30$						
19.	(a) $5x + 3y \le 30$ 2013 - June	nployer to employ less t	(c) $5x + 3y = 30$	(d) None of these.					
9.	(a) $5x + 3y \le 30$ 2013 - June The union forbids en	nployer to employ less t	(c) $5x + 3y = 30$	(d) None of these.					
.9.	(a) $5x + 3y \le 30$ 2013 - June The union forbids en This situation can be	nployer to employ less t e expressed as:	(c) 5x + 3y = 30	(d) None of these.					

BUSINESS MATHEMATICS

(a) (-2,2)	(b) (0,-2)	(c) (2,)	(d) (- 2,)					
2014 – June	,							
The graph of li	The graph of linear inequalities $7x+9y \le 63$, $x+y \ge 1,0 \le x \le 6$ and 1 = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +							
(a) BCDB and	DEFD (b) Unb	ounded (c) H	IFGH (d) ABDFHKA					
2014 – Dec								
The graph to e	xpress the inequality x -	+ y \leq 6 is: (c)	(d) None of these					
The graph of li	near inequalities x + y≥	$z5;x + y \le 5;0 \le x \le 4;$	and $0 \le y \ge 2$ is given below:					
The common r								

	(a) OABCEO	(b) ECDE	(c) Line Segment DC	(d) Line Segment BC
	2015 – June			
24.	The common regio	on in the graph of lir	near inequalities $2x + y > 18$, y	x + y ≥ 12 and $3x + 2y ≤ 34$ is:
	(a) unbounded	(b) infeasible	(c) feasible and bounded	(d) feasible and unbounded
	2015 – Dec			
			ph represents the linear inequ	
	$(a) x + y \ge 6$	(b) x + y	≥ 6 (c) x + y ≤ 6	$(d) x + y \le 6$
	$2x - y - 2 \ge 0$	2x - y -2 ≤	$\leq 0 \qquad \qquad 2x - y - 2 \leq 0$	$2x - y - 2 \ge 0$
	x, y ≥ 0	x, y ≥	$0 x, y \ge 0$	x, y > 0
	2016 – June			
26.	The common region	on of $x+y \le 6$; $x+y \ge 6$	\geq 3; x \geq 0; y \geq 0, is (as shown l	by shaded region):

	2016 – Dec							
27.	The common region by the inequal portion in: (a)	alities $x_1 + 2x_2 \le \frac{1}{2}$	5, x1 + x2 ≥ 1, x	$x_1 \ge 0$, $x_2 \ge 0$ is	given as shade			
	(c) 2017 – June							
28.	A dietician wishes to mix together two kinds of food so that the vitamins content of the mixture is							
	atleast 9 units of vitamin A, 7 units of vitamin B, 10 units of vitamin C, 12 units of vitamin D. The							
	vitamin content per kg. of each food is shown in table. Assuming 'x' units of food I is to be mixed with							
	vitamin content per kg. of each foo	d is shown in table	. Assuming 'x' ur	iits of food I is to	be mixed with			
	vitamin content per kg. of each foo 'y' units of food II the situation can		. Assuming 'x' ur	iits of food I is to	be mixed with			
			e. Assuming 'x' ur B	iits of food I is to C	be mixed with			
		be expressed as:						

	(a) 2x + y ≤9	(b) 2x + y≥30	(c) $2x + y \ge 9$	(d) $2x + y \ge 9$
	$x + y \le 7$	$x + y \le 7$	$x + y \ge 7$	x + y > 7
	$\begin{array}{l} x+2y\leq 10\\ 2x+3y\leq 12 \end{array}$	$x + 2y \ge 10$	$\begin{array}{l} x+2y\leq 10\\ x+3y\leq 12 \end{array}$	$x + 2y \ge 10$
	x > 0, y > 0	$2x + 3y \ge 12$	$x \ge 0, y > 0$	$2x + 3y \ge 12$
		x > 0, y > 0		$x \ge 0, y \ge 0$
		x > 0, y > 0		x ≥ 0, y ≥ 0
29.	The common regions by the	e inequalities $4x + 3y \le 60$; $y \ge 2x$; $x \ge 3$, $x \ge 0$ and	$y \ge 0$ is
		4		A start in the C
		20- x=3		
			y=2x 20 x=3	
	N+ 1+1		15-	1.0
	**	10-		1.
	•			
		57 X	+ 3y = 60 5 -	
		4*		4x+3y=60
		× 10 15		
	(a) 35 10 15		/ <i>///</i>	10 15 (d) No
	(a)	× 10 15		
	(a)	× 10 15		
	(a)	(b) 5 10 15	(c)	
	(a)	× 10 15	(c)	
	(a)	(b) 5 10 15	(c)	
		(b) 5 10 15	(c)	10 15 (d) No
	I B 2 B	(b) ANSWE	(c) RS A 21 A 22	10 15 (d) No D A
	l B 2 B 3 B	(b) <u>ANSWE</u> 11 12 13	(c) RS A 21 A 22 A 23	10 15 (d) No D A C
	I B 2 B	(b) ANSWE	(c) RS A 21 A 22	10 15 (d) No D A
	I B 2 B 3 B 4 A	(b) <u>5 10 15</u> <u>ANSWE</u> 11 12 13 14	(c) RS A 21 A 22 A 23 D 24	10 15 (d) No (d) No D A C C C
	I B 2 B 3 B 4 A 5 C	(b) <u>ANSWE</u> <u>ANSWE</u> 11 12 13 14 15	(c) RS A 21 A 22 A 23 D 24 A 25	10 15 (d) No (d) No D A C C D D
	I B 2 B 3 B 4 A	(b) <u>5 10 15</u> <u>ANSWE</u> 11 12 13 14	(c) RS A 21 A 22 A 23 D 24	10 15 (d) No (d) No D A C C C
	I B 2 B 3 B 4 A 5 C 6 A	(b) 5 10 15 ANSWE 11 12 13 14 14 15 16	A 21 A 22 A 23 D 24 A 25 B 26	10 15 (d) No (d)
	I B 2 B 3 B 4 A 5 C 6 A 7 C	(b) ANSWE ANSWE 11 12 13 14 14 15 16 17	A 21 A 21 A 22 A 23 D 24 A 25 B 26 B 27	10 15 (d) No (d)
	I B 2 B 3 B 4 A 5 C 6 A	(b) 5 10 15 ANSWE 11 12 13 14 14 15 16	A 21 A 22 A 23 D 24 A 25 B 26	10 15 (d) No (d)
	I B 2 B 3 B 4 A 5 C 6 A 7 C 8 B	(b) ANSWE ANSWE 11 12 13 14 14 15 16 17 18	A 21 A 21 A 22 A 23 D 24 A 25 B 26 B 27 B 28	15 (d) No (d)
	I B 2 B 3 B 4 A 5 C 6 A 7 C	(b) ANSWE ANSWE 11 12 13 14 14 15 16 17	A 21 A 21 A 22 A 23 D 24 A 25 B 26 B 27	10 15 (d) No (d)

STUDENT NOTES

M: 8878819888 / 8518819888

7

CH - 4	TIME VALUE OF MONEY
	SUMMARY

L

Ex. 1:	How much interest will be earned on Rs. 2000 at 6% simple interest for 2 years?
Ex. 2:	Sania deposited Rs. 50,000 in a bank for two years with the interest rate of 5.5% p.a. How much
	interest would she earn?
Ex. 3:	In Ex. 2 what will be the final value of investment?
Ex. 4:	Sachin deposited Rs. 1,00,000 in his bank for 2 years at simple interest rate of 6%. How much interest
	would he earn? How much would be the final value of deposit?
Ex. 5:	Find the rate of interest if the amount owed after 6 months is Rs. 1050, borrowed amount being Rs.
	1000
Ex. 6:	Rahul invested Rs. 70,000 in a bank at the rate of 6.5% p.a. simple interest rate. He received Rs. 85,925
	after the end of term. Find out the period for which sum was invested by Rahul.
Ex. 7:	Kapil deposited some amount in a bank for 7 ½ years at the rate of 6% p.a. simple interest. Kapil
	received Rs. 1,01,500 at the end of the term. Compute initial deposit of Kapil.
Ex. 8:	A sum of Rs. 46,875 was lent out at simple interest and at the end of 1 year 8 months the total amount
	was Rs. 50,000. Find the rate of interest percent per annum.
Ex. 9:	What sum of money will produce Rs. 28,600 as an interest in 3 years and 3 months at 2.5% p.a. simple
	interest?
Ex. 10:	In what time will Rs. 85,000 amount to Rs. 1,57,675 at 4.5 % p.a. ?

		TOPIC: SI	IMPLE INTEREST	
Ι.	S.I on Rs. 3,500 for 3 years	at 12% per annum i	S	
	(a) Rs. 1,200	(b) Rs. 1,260	(c) Rs. 2,260	(d) none of these
2.	P = 5,000, R = 15, T = 4 ½	using I = PRT/100,	I will be	
	(a) Rs. 3,375	(b) Rs. 3,300	(c) Rs. 3,735	(d) none of these
3.	If P = 5,000, T = 1, I = Rs,	300, R will be		
	(a) 5% (b) 4%	%	(c) 6%	(d) none of these
4.	If P = Rs. 4,500, A = Rs. 7,2	200, than Simple inte	erest i.e. I will be	
	(a) Rs. 2,000	(b) Rs. 3,000	(c) Rs. 2,500	(d) Rs. 2,700
5.	P = Rs. 12,000, A = Rs. 16,	,500, T = 2 ½ years.	Rate percent per ann	um simple interest will be
	(a) 15%	(b) 12%	(c) 10%	(d) none of these
6.	P = Rs. 10,000, I = Rs. 2,50	00, R = 12 ½% SI. Th	e number of years T	will be
	(a) 1 ½ years	(b) 2 years	(c) 3 years	(d) none of these
7.	P = Rs. 8,500, A = Rs. 10,2	00, R = 12 ½ % SI, t	will be.	
	(a) 1 yr. 7 mth.	(b) 2 yrs.	(c) 1 ½ yr.	(d) none of these
8.	The sum required to earn	a monthly interest of	f rs. 1,200 at 18% per	annum SI is
	(a) Rs. 50,000	(b) Rs. 60,000	(c) Rs. 80,00	00 (d) none of these
9.	A sum of money amount to	o rs. 6,200 in 2 years	and R. 7,400 in 3 yea	rs. The principal and rate of
	interest are			
	(a) Rs. 3,800, 31.57%	(b) Rs. 3,000, 20%	(c) Rs. 3,500, 15%	(d) none of these
10.	A sum of money doubles it	tself in 10 years. The	number of years it w	ould triple itself is
	(a) 25 years. (b) 15	years. (c) 20) years (d) n	one of these

	CONCEPT BOOSTER PROBLEMS – COMPOUND INTEREST
Ex. 11:	Saina deposited Rs. 1,00,000 in a nationalized bank for three years. If the rate of interest is 7% p.a.,
	calculate the interest that bank has to pay to Saina after three years if interest is compounded
	annually. Also calculate the amount at the end of third year.
Ex. 12:	Rs. 2,000 is invested at annual rate of interest of 10%. What is the amount after two years if
	compounding is done (a) Annually (b) Semi-annually (c) Quarterly (d) monthly.
Ex. 13:	Determine the compound amount and compound interest on Rs. 1000 at 6% compounded semi-
	annually for 6 years. Given that $(1 + i)^n = 1.42576$ for $i = 3\%$ and $n = 12$.
Ex. 14:	Compute the compound interest on Rs. 4,000 for $1\frac{1}{2}$ years at 10% per annum compounded half-
	yearly.
Ex. 15:	On what sum will the compound interest at 5% per annum for two years compounded annually be Rs.
	1,640?
Ex. 16:	What annual rate of interest compounded annually doubles an investment in 7 years? Given that $2^{1/7}$
	= 1.104090
Ex. 17:	In what time will Rs. 8,000 amount to Rs. 8,820 at 10% per annum interest compounded half-yearly?
Ex. 18:	Find the rate percent per annum if Rs. 2,00,000 amount to Rs. 2,31,525 in $1\frac{1}{2}$ year interest being
	compounded half-yearly.
Ex. 19:	A certain sum invested at 4% per annum compounded semi-annually amounts to Rs.78,030 at the end of
	one year. Find the sum.
Ex. 20:	Rs. 16,000 invested at 10% p.a. compounded semi-annually amounts to rs. 18,522. Find the time
	period of investment.
Ex. 21:	A person opened an account on April, 2011 with a deposit of Rs. 800. The account paid 6% interest
	compounded quarterly. On October 1, 2011 he closed the account and added enough additional money
	to invest in a 6 month time-deposit for Rs. 1,000, earning 6% compounded monthly.

 (a) How much additional amount did the person invest on October 1?
 (b) What was the maturity value of his time deposit on April 1 2012?
 (c) How much total interest was earned?
 Given that $(1 + i)^n$ is 1.03022500 for $i=1\frac{1}{2}$ % n = 2 and $(1 + i)^n$ is 1.03037751 for $i=\frac{1}{2}$ % and n = 6.

	CONCEPT BOOSTER PROBLEMS – EFFECTIVE RATE OF INTEREST
Ex. 22:	Rs. 5,000 is invested in a Term Deposit Scheme that fetches interest 6% per annum compounded
	quarterly. What will be the interest after one year? What is effective rate of interest?
Ex. 23:	Find the amount of compound interest and effective rate of interest if an amount of Rs. 20,000 is
	deposited in a bank for one year at the rate of 8% per annum compounded semi annually.
Ex. 24:	Which is a better investment 3% per year compounded monthly or 3.2% per year simple interest?
	Given that (1+0.0025)12 =1.0304.

	TOPIC: COMPOUND INTEREST & EFFECTIVE RATE OF INTEREST			
1.	If P = Rs. 1,000, R = 5% p.a, n = 4; What is Amount and C.I. is			
	(a) Rs. 1,215.50, Rs. 215.50 (b) Rs. 1,125, Rs. 125			
	(c) Rs. 2,115, Rs. 115 (d) none of these			
2.	Rs. 100 will become after 20 years at 5% p.a compound interest amount of			
	(a) Rs. 250 (b) Rs. 205 (c) rs. 265.50 (d) none of these			
3.	The effective rate of interest corresponding to a nominal rate 3% p.a payable half yearly is			
	(a) 3.2% p.a (b) 3.25% p.a (c) 3.0225% p.a (d) none of these			
4.	A machine is depreciated at the rate of 20% on reducing balance. The original cost of the machine			
	was Rs. 1,00,000 and its ultimate scrap value was Rs. 30,000. The effective life of the machine is			
	(a) 4.5 years (appx.) (b) 5.4 years (appx.)			
	(c) 5 years (appx.) (d) none of these			
5.	If A = Rs. 1,000, n = 2 years, R = 6% p.a compound interest payable half-yearly, then principal (P)			
	(a) Rs. 888.80 (b) Rs. 885 (c) 800 (d) none of these			
6.	The population of a town increases every year by 2% of the population at the beginning of that year			
	The number of years by which the total increase of population be 40% is			
	(a) 7 years (b) 10 years (c) 17 years (app) (d) none of these			
7.	The difference between C.I and S.I on a certain sum of money invested for 3 years at 6% p.a is Rs			
	110.16. The sum is			
	(a) Rs. 3,000 (b) Rs. 3,700 (c) Rs. 12,000 (d) Rs. 10,000			
8.	The useful life of a machine is estimated to be 10 years and cost Rs. 10,000. Rate of depreciation is			

NA	hta professional	_ CLASSES		M: 8878819888 / 8518819888				
	(a) Rs. 3,486.78	(b) Rs. 4,383	(c) Rs. 3,400	(d) none of these				
9.	The effective rate of interest corresponding a nominal rate of 7% p.a convertible quarterly is							
	(a) 7%	(b) 7.5%	(c) 5%	(d) 7.18%				
10.	The C.I on Rs. 16000 for 1 $\frac{1}{2}$ years at 10% p.a payable half -yearly is							
	(a) Rs. 2,222	(b) Rs. 2,522	(c) Rs. 2,500	(d) none of these				
11.	The C.I on Rs. 400	The C.I on Rs. 40000 at 10% p.a for 1 year when the interest is payable quarterly is						
	(a) Rs. 4,000	(b) Rs. 4,100	(c) Rs. 4,152.51	(d) none of thes				
12.	The difference be	tween the S.I and th	e C.I on Rs. 2,400 for 2	years at 5% p.a is				
	(a) Rs. 5	(b) Rs. 10	(c) Rs. 16	(d) Rs. 6				
13.	The annual birth and death rates per 1,000 are 39.4 and 19.4 respectively. The number of years in							
	which the popula	tion will be doubled	assuming there is no i	mmigration or emigration is				
	(a) 35 years.	(b) 30 years.	(c) 25 years	(d) none of these				
14.	The C.I on Rs. 4,000 for 6 months at 12% p.a payable quarterly is							
	(a) Rs. 243.60	(b) Rs. 240	(c) Rs. 243	(d) none of these				

	CONCEPT BOOSTER PROBLEMS – FUTURE VALUE
Ex. 25:	You invest Rs. 3000 in a two year investment that pays you 12% per annum. Calculate the future value
	of the investment.
Ex. 26:	Find the future value of an annuity of Rs. 500 made annually for 7 years at interest rate of 14%
	compounded annually. Given that $(1.14)7 = 2.5023$.
Ex. 27:	Rs. 200 is invested at the end of each month in an account paying interest 6% per year compounded
	monthly. What is the future value of this annuity after 10^{th} payment? Given that $(1.005)10 = 1.0511$
Ex. 28:	Z invests Rs. 10,000 every year starting from today for next 10 years. Suppose interest rate is 8% per
	annum compounded annually. Calculate future value of the annuity. Given that $(1 + 0.08)^{10} =$
	2.15892500.
	SINKING FUND CONCEPT RELATED TO FUTURE VALUE
Ex. 34:	SINKING FUND CONCEPT RELATED TO FUTURE VALUE How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of
Ex. 34:	How much amount is required to be invested every year so as to accumulate Rs. 300000 at the end of

	CONCEPT BOOSTER PROBLEMS – PRESENT VALUE
Ex. 29:	What is the present value of Rs. 1 to be received after two years compounded annually at 10% interest
	rate?
Ex. 30:	Find the present value of Rs. 10,000 to be required after 5 years if the interest rate be 9%. Given that
	$(1.09)^5 = 1.5386.$
	LOAN BORROWING / EMI CONCEPT RELATED TO PRESENT VALUE
Ex. 31:	S borrows Rs. 5,00,000 to buy a house. If he pays equal instalments for 20 years and 10% interest on
	outstanding balance what will be the equal annual instalment?
Ex. 32:	Rs. 5,000 is paid every year for ten years to pay off a loan. What is the loan amount if interest rate be
	14% per annum compounded annually?
Ex. 33:	Suppose your mom decides to gift you Rs. 10,000 every year starting from today for the next five
	years. You deposit this amount in a bank as and when you receive and get 10% per annum interest
	rate compounded annually. What is the present value of this annuity?
	·

	CONCEPT BOOSTER PROBLEMS – MIXED PROBLEMS
Ex. 35:	ABC Ltd. wants to lease out an asset costing Rs. 3,60,000 for a five year period. It has fixed a rental of
	Rs. 1,05,000 per annum payable annually starting from the end of first year. Suppose rate of interest is
	14% per annum compounded annually on which money can be invested by the company. Is this
	agreement favourable to the company?
Ex. 36:	A company is considering proposal of purchasing a machine either by making full payment of Rs.
	4,000 or by leasing it for four years at an annual rate of Rs. 1,250. Which course of action is preferable
	if the company can borrow money at 14% compounded annually?
Ex. 37 :	A machine can be purchased for Rs. 50000. Machine will contribute Rs. 12000 per year for the next
	five years. Assume borrowing cost is 10% per annum compounded annually. Determine whether
	machine should be purchased or not.
Ex. 38:	A machine with useful life of seven years costs Rs. 10,000 while another machine with useful life of
	five years costs Rs. 8,000. The first machine saves labour expenses of Rs. 1,900 annually and the
	second one saves labour expenses of Rs. 2,200 annually. Determine the preferred course of action.
	Assume cost of borrowing as 10% compounded per annum.

		SOME IN	IPORTANT CON	ICEPTS			
		VALU	ATION OF B	OND			
Ex. 39:	An investor intends p	ourchasing a three yea	ar Rs. 1,000 par valu	e bond having nomina	al interest rate of		
	10%. At what price th	ne bond may be purcl	nased now if it matur	res at par and the inve	estor requires a		
	rate of return of 14%	?					
			PERPETUITY				
Ex. 40	Ramesh wants to reti	re and receive Rs. 3,0)00 a month. He wan	ts to pass this monthl	y payment to		
	future generations after his death. He can earn an interest of 8% compounded annually. How much						
	will he need to set aside to achieve his perpetuity goal?						
Ex. 41:	Assuming that the discount rate is 7% per annum, how much would you pay to receive Rs. 50, growing						
	at 5%, annually, forev	ver?					
		NET	PRESENT VA	LUE			
Ex. 43:	Compute the net pres	sent value for a proje	ct with a net investm	ent of Rs. 1,00,000 an	ıd net cash flows		
	year one is Rs. 55,000); for year two is Rs. 8	30,000 and for year t	hree is Rs. 15,000. Fu	rther, the		
	company's cost of cap	pital is 10%? [P	VIF @ 10% for three	years are 0.909, 0.82	6 and 0.751]		
	COL	ADOUND AND		H RATE (CAG	D)		
Ex.44:				•	-		
EX.44:	Suppose the revenue Year	2013	2014	2015	2016		
	Revenues	100	120	160	210		
	Calculate Compound			100	210		

	PRACTIC	CE SESSION - C FOR I	BETTER UNDER	STANDING				
		TOPIC: ANNUITY	RELATED					
1.	The present value of an annuity of Rs. 3000 for 15 years at 4.5% p.a CI is							
	(a) Rs. 23,809.41	(b) Rs. 32,218.63	(c) Rs. 32,908.41	(d) none of these				
2.	The amount of an annu	ity certain of Rs. 150 for 12 yea	ars at 3.5% p.a C.I is					
	(a) Rs. 2,190.28	(b) Rs. 1,290.28	(c) Rs. 2,180.28	(d) none of these				
3.	A loan of Rs. 10,000 is t	o be paid back in 30 equal inst	alments. The amount	of each installment to				
	cover the principal and	at 4% p.a CI is						
	(a) Rs. 587.87	(b) Rs. 587	(c) Rs. 578.87	(d) none of these				
4.	A = Rs. 1,200 n = 12 years i = 0.08, V = ?							
	Using the formula $V = \frac{2}{3}$	$\frac{1}{4} \left[1 - \frac{1}{(1+i)^n} \right]$ Value of v will be						
	(a) Rs. 3,039	(b) Rs. 3,990	(c) Rs. 9930	(d) none of these				
5.	a = Rs. 100 n = 10, i = 5% find the FV of annuity							
	Using the formula $FV = a / \{1 + i\}^n - 1\}$, FV is equal to							
	(a) Rs. 1,258	(b) Rs. 2,581	(c) Rs. 1,528	(d) none of these				
6.	If the amount of an ann	uity after 25 years at 5% p.a C.	I is Rs. 50,000 the an	nuity will be				
	(a) Rs. 1,406.90 (b) Rs.	1,046.90 (c) Rs. 1,146.90 (d) n	one of these					
7.	Given annuity of Rs. 10	0 amounts to Rs. 3137.12 at 4.5	5% p.a C. I. The numb	er of years will be				
	(a) 25 years (appx.)	(b) 20 years (appx.) (c) 22 years	d) none of these				
8.	A company borrows Rs	. 10,000 on condition to repay	it with compound int	erest at 5% p.a by annual				
	installments of Rs. 100	0 each. The number of years by	which the debt will	be clear is				
	(a) 14.2 years	(b) 10 years	(c) 12 years	(d) none of these				

Т

9.	Mr. X borrowed Rs. 5,120 at 12 $\frac{1}{2}$ % p.a C.I. At the end of 3 yrs, the money was repaid along with the							
	interest accrued. The	amount of interest paid by	him is					
	(a) Rs. 2,100	(b) Rs. 2,170	(c) Rs. 2,000	(d) none of these				
10.	Mr. Paul borrows Rs.	20,000 on condition to repa	ay it with C.I. at 5% p.a in	annual installments of Rs.				
	2000 each. The numb	er of years for the debt to be	e paid off is					
	(a) 10 years	(b) 12 years	(c) 11 years	(d) none of these				
П.	A person invests Rs.	500 at the end of each year	with a bank which pays i	nterest at 10% p. a C.I.				
	annually. The amoun	t standing to his credit one	year after he has made hi	is yearly investment for the				
	12 th time is.							
	(a) Rs. 11,764.50	(b) Rs. 10,000	(c) Rs. 12,000	(d) none of these				
12.	The present value of	annuity of Rs. 5,000 per anı	num for 12 years at 4% p	.a C.I. annually is				
	(a) Rs. 46,000	(b) Rs. 46,850	(c) Rs. 15,000	(d) none of these				
13.	A person desires to create a fund to be invested at 10% CI per annum to provide for a prize of Rs. 300							
	every year. Using V =	a/I find V and V will be						
	(a) Rs. 2,000	(b) Rs. 2,500	(c) Rs. 3,000	(d) none of these				

	PRACTI	CE SESSION – D F	OR BETTER UNDE	RSTANDING				
		TOPIC: MIX	KED PROBLEMS					
1.	A = Rs. 5,200, R = 5% p.a., T = 6 years, P will be							
	(a) Rs. 2,000	(b) Rs. 3,880	(c) s. 3,000	(d) none of these				
2.	If P = 1,000, n = 4 year	rs., R = 5% p.a then C. I wil	l be					
	(a) Rs. 215.50	(b) Rs. 210	(c) Rs. 220	(d) none of these				
3.	The time in which a su	m of money will be double	at 5% p.a C.I is					
	(a) Rs. 10 years	(b) 12 years	(c) 14.2 years	(d) none of thes				
4.	If A = Rs. 10,000, n = 18yrs., R = 4% p.a C.I, P will be							
	(a) Rs. 4,000	(b) Rs. 4,900	(c) Rs. 4,500	(d) none of these				
5.	The time by which a sum of money would treble it self at 8% p. a C. I is							
	(a) 14.28 years	(b) 14 years	(c) 12 years	(d) none of these				
6.	The present value of an annuity of Rs. 80 a years for 20 years at 5% p.a is							
	(a) Rs. 997 (appx.)	(b) Rs. 900	(c) Rs. 1,000	(d) none of these				
7.	A person bought a house paying Rs. 20,000 cash down and Rs. 4,000 at the end of each year for 25 yrs							
	at 5% p.a. C.I. The cash down price is							
	(a) Rs. 75,000	(b) Rs. 76,000	(c) Rs. 76,392	(d) none of thes				
8.	A man purchased a house valued at Rs. 3,00,000. He paid Rs. 2,00,000 at the time of purchase and							
	agreed to pay the balar	nce with interest at 12% pe	er annum compounded h	alf yearly in 20 equal half				
	yearly instalments. If the	ne first instalment is paid a	after six months from the	e date of purchase then the				
	amount of each instalm	ient is						
	[Given log $10.6 = 1.025$]	53 and log 31.19 = 1.494]						

2

А

2

С

12

D

2

Α

12

D

2

Α

1

В

1

А

11

А

1

В

11

А

1

В

3

С

3

С

13

С

3

С

13

С

3

С

4

D

4

В

4

D

4

D

M: 8878819888 / 8518819888

9

А

9

В

9

В

8

С

8

А

8

А

8

А

10

С

10

D

10

D

(a) Rs. 8,719	.66 (b) Rs. 8,769.21		(c) Rs. 7,893.1	13	(d) no	one of these.
			ANSWER	5			
		I	EXERCISE : 4	(A)			

5

А

5

А

5

А

5

А

EXERCISE : 4(B)

EXERCISE : 4(C)

EXERCISE : 4(D)

6

В

6

С

6

В

6

А

7

А

7

В

7

В

7

С

4. 17	Page

	ADDITIONAL QUESTION BANK							
Ι.	The difference between compound and simple interest at 5% per annum for 4 years on Rs. 20,000 is							
	Rs							
	(a) 250 (b) 277 (c) 300 (d) 310)						
2.	The compound interest on half-yearly rests on Rs. 10,000 the rate for the first and second ye	ears being						
	6% and for the third year 9% p.a. is Rs							
	(a) 2,200 (b) 2,287 (c) 2,285 (d) None							
3.	The present value of Rs. 10,000 due in 2 years at 5% p.a. compound interest when the interest	est is paid						
	on yearly basis is Rs							
	(a) 9,070 (b) 9,000 (c) 9,061 (d) None							
4.	The present value of Rs. 10,000 due in 2 years at 5% p.a. compound interest when the interest is paid							
	on half-yearly basis is Rs							
	(a) 9,070 (b) 9,069 (c) 9,061 (d) None							
5.	Johnson left Rs. 1,00,000 with the direction that it should be divided in such a way that his minor sons							
	Tom, Dick and Harry aged 9, 12 and 15 years should each receive equally after attaining the	age 25						
	years. The rate of interest being 3.5%, how much each son receive after getting 25 years old	?						
	(a) 50,000 (b) 51,994 (c) 52,000 (d) None							
6.	A machine depreciates at 10% of its value at the beginning of a year. The cost and scrap valu	ie realized						
	at the time of sale being Rs. 23,240 and Rs. 9,000 respectively. For how many years the mac	hine was						
	put to use?							
	(a) 7 years (b) 8 years (c) 9 years (d) 10 years							
7.	Alibaba borrows Rs. 6 lakhs Housing Loan at 6% repayable in 20 annual installments comm	encing at						
	the end of the first year. How much annual payment is necessary.							

	(a) 52,420	(b) 52,419) (c) 52,	310	(d) 5	52,320				
8.	A sinking fund is created for redeeming debentures worth Rs. 5 lakhs at the end of 25 years. How									
	much provision needs to be made out of profits each year provided sinking fund investments can earn									
	interest at 4% p.a.?									
	(a) 12,006	(b) 12,040) (c) 12,	039	(d) 1	2,035				
9.	A machine costs Rs.	5,20,000 with an e	stimated life of 25	years. A	sinking fu	ind is cre	eated to r	eplace		
	by a new model at 2	by a new model at 25% higher cost after 25 years with a scrap value realization of Rs. 25000. what								
	amount should be set aside every year if the sinking fund investments accumulate at 3.5% compound									
	interest p.a.?									
	(a) 16,000	(b) 16,500) (c) 16,	050	(d) 1	6,005				
0.	Raja aged 40 wishes his wife Rani to have Rs. 40 lakhs at his death. If his expectation of life is another									
	30 years and he star	ts making equal ar	nual investments	commen	cing now	at 3% co	mpound	intere		
	p.a. how much shoul	d he invest annual	ly?							
	(a) 84,448	(b) 84,450) (c) 84,	449	(d) 8	34,077				
11.	Appu retires at 60 ye	ears receiving a pe	nsion of 14,400 a	year paid	in half-ye	early inst	tallments	for res		
	of his life after recko	of his life after reckoning his life expectation to be 13 years and that interest at 4% p.a. is payable half								
	yearly. What single sum is equivalent to his pension?									
	(a) 1,45,000	(b) 1,44,900	(c) 1,44,800	(0	l) 1,44,70	0				
			Answer							
	_ 1 2	3 4		7	8	9	10	11		
		3 4 A C	Answer	7 C	8 A		10	11 B		

	2006 - Nov					
1.	Rs. 8,000 becomes Rs. 10,000 in two years at simple interest. The amount that will become Rs. 6,875					
	in 3 years at the same rate of interest is:					
	(a) Rs. 4,850 (b) Rs. 5,000 (c) Rs. 5,500 (d) Rs. 5,275					
2.	The difference between the simple and compound interest on a certain sum for 3 year at 5% p.a. is Rs					
	228.75. The compound interest on the sum for 2 years at 5% p.a. is :					
	(a) Rs. 3,175 (b) Rs. 3,075 (c) Rs. 3,275 (d) Rs. 2,975.					
3.	Mr. X Invests Rs. 10,000 every year starting from today for next 10 years suppose interest rate is 8%					
	per annum compounded annually. Calculate future value of the annuity:					
	(Given that $(1 + 0.08)^{10} = 2.15892500$]					
	(a) Rs. 156454.88 (b) Rs. 144865.625 (c) Rs. 156554.88 (d) None of these					
4.	The present value of an annuity of Rs. 3,000 for 15 years at 4.5% p.a. C.I. is: [Given that (1.045) ¹⁵ =					
	1.935282]					
	(a) Rs. 23,809.67 (b) Rs. 32,218.67 (c) Rs. 32,908.67 (d) None of these					
	2007 - Feb					
5.	The rate of simple interest on a sum of money is 6% p.a. for first 3 years, 8% p.a. for the next five yea					
	and 10% p.a. for the period beyond 8 years. If the simple interest accrued by the sum for a period for					
	10 years is Rs. 1,560. The sum is :					
4. 20	Page FACULTY: CA PRATIK NAHTA					

NA	HTA PROFESSION	al classes	M: 8878819888 / 8518819888		
	(a) Rs. 1,500	(b) Rs. 2,000	(c) Rs. 3,000	(d) Rs. 5,000	
6.	A sum of money doubles itself in 10 years. The number of years it would treble itself is :				
	(a) 25 years	(b) 15 years	(c) 20 years	(d) None.	
7	what time will Rs. 3,90,625 amount to Rs. 4,56,976 at 8% per annum, when the interest is				
	compounded semi-annually?			[Given : $(1.04)^4 = 1.16986$]	
	(a) 2 years	(b) 4 years	(c) 5 years	(d) 7 years	
8.	A machine can be purchased for Rs. 50,000. Machine will contribute Rs. 12,000 per year for the next				
	five years. Assume borrowing cost is 10% per annum. Determine whether machine should be				
	purchased or not:				
	(a) Should be purchased (b) Should n			not be purchased	
	(c) Can't say about purchase (d) None of the above				
9.	How much amount is required to be invested every year so as to accumulate Rs. 3,00,000 at the end				
	10 years, if inter	est is compounded and	nually at 10%?	[Give $(1.1)^{10} = 2.5937$]	
	(a) Rs. 18,823.65	5 (b) Rs. 18,828.65	(c) Rs. 18,832.65	(d) Rs. 18,882.65	
	2007 - May				
10.	A certain sum of money amounts to Rs. 6,300 in two years and Rs. 7,875 in three years nine months a				
	simple interest. Find the rate of interest per annum:				

П.	How long will Rs. 12,000 take to amount to Rs. 14,000 at 5% p.a. converted quarterly? [Given :					
	$(1.0125)^{12.4} = 1.1666]$					
	(a) 3 years (b) 3.1 ye	ears (c) 13.5 years	(d) 12.4 years.			
12.	A company is considering prop	osal of purchasing a machine e	either by making full payment of Rs.			
	4,000 or by leasing it for four y	ears at an annual rate of Rs. 1,2	250. Which course of action is preferable			
	if the company can borrow mo	ney at 14% compounded annu	ally? [Given : $(1.14)^4 = 1.68896$]			
	(a) Leasing is preferable (b) Should be purchased (c) N	o difference (d) None			
13.	Vipul purchases a car for Rs. 5,	50,000. He gets a loan of Rs. 5,(00,000 at 15% p.a. from a Bank and			
	balance Rs. 50,000 he pays at the time of purchase. He has to pay the whole amount of loan in 12 equa					
	monthly instalments with interest starting from the end of the first month. The money he has to pay a					
	the end of every month is:		[Given $(1.0125)^{12} = 1.16075452$]			
	(a) Rs. 45,130.43 (b) Rs. 45	5,230.43 (c) Rs. 45,330.43	(d) None of these			
		2007 - Aug				
14.	If Rs. 1,000 be invested at inter	est rate of 5% and the interest	be added to the principal every 10 years			
	then the number of years in which it will amount to Rs. 2,000 is :					
	(a) $16\frac{2}{3}$ years (b) $6\frac{1}{4}$ years	ars (c) 16 years	(d) $6\frac{2}{3}$ years.			
15.	The annual birth and death rat	es per 1000 are 39.4 and 19.4 i	respectively. The number of years in			

NA	HTA PROFESSIONA	al Classes		M: 8878819888 / 8518819888		
	(a) 35 years	(b) 30 years	(c) 25 years	(d) None of these.		
16.	The effective rate equivalent to nominal rate of 6% compounded monthly is:					
	(a) 6.05	(b) 6.16	(c) 6.26	(d) 6.07		
17.	A company estab	lishes a sinking fund	to provide for the pa	yment of Rs. 2,00,000 debt maturing in 20		
	years. Contributi	ons to the fund are to	be made at the end	of every year. Find the amount of each		
	annual deposit if	interest is 5% per an	num :			
	(a) Rs. 6,142	(b) Rs. 6,049	(c) Rs. 6,052	(d) Rs. 6,159		
			2007 - Nov			
18.	A person borrows Rs. 5,000 for 2 years at 4% p.a. simple interest. He immediately lends to another					
	person at $6\frac{1}{4}$ % p.a. for 2 years. Find his gain in the transaction per year:					
	(a) Rs. 112.50	(b) Rs. 12	25 (c) Rs.22	5 (d) Rs. 167.50		
19.	A person deposited Rs. 5,000 in a bank. The deposit was left to accumulate at 6% compounded					
	quarterly for the first five years and at 8% compounded semi-annually for the next eight years. The					
	compound amount at the end of 13 years is :					
	(a) Rs. 12621.50	(b) Rs. 12613.10	(c) Rs. 13613.10) (d) None.		
20.	Raja aged 40 wis	hes his wife Rani to h	ave Rs. 40 lakhs at h	is death. If his expectation of life is anothe		
	30 years and he starts making equal annual investments commencing now at 3% compound interest					
	p.a. How much sh	nould he invest annua	lly?			

	(a) Rs. 84,077 (b) Rs. 81,628 (c) Rs. 84,449 (d) Rs. 84,247				
	2008 - Feb				
21.	Two equal sums of money were lent at simple interest at 11 % p.a. for $3\frac{1}{2}$ years and $4\frac{1}{2}$ year	S			
	respectively.				
	If the difference in interests for two periods was Rs. 412.50, then each sum is:				
	(a) Rs. 3,250 (b) Rs. 3,500 (c) Rs. 3,750 (d) Rs. 4,350				
22.	Anshul's father wishes to have Rs. 75,000 in a bank account when his first college expenses	begin.			
	How much amount his father should deposit now at 6.5% compounded annually if Anshul is to start				
	college in 8 years hence from now?				
	(a) Rs. 45,360 (b) Rs. 46,360 (c) Rs. 55,360 (d) Rs. 48,360.				
	2008 - Feb				
23.	A company may obtain a machine either by leasing it for 5 years (useful life) at an annual rent of Rs.				
	2,000 or by purchasing the machine for Rs. 8,100. If the company can borrow money at 18% per				
	annum, which alternative is preferable?				
	(a) Leasing (b) Purchasing (c) Can't say (d) None of these				
	2008 - June				
24.	In how much time would the simple interest on a certain sum be 0.125 times the principal a	t 10% pe			
	annum?				

(a) $1 - \frac{1}{4}$ years (b) $1\frac{3}{4}$ years (c) $2\frac{1}{4}$ years (d) $2\frac{3}{4}$ years				
The difference between compound interest and simple interest on a certain sum for 2 years @ 10%				
p.a. is Rs. 10. Find the sum :				
(a) Rs. 1,010 (b) Rs. 1,095 (c) Rs. 1,000 (d) Rs. 990				
A machine worth Rs. 4,90,740 is depreciated at 15% on its opening value each year. When its value				
would reduce to Rs. 2,00,000 :				
(a) 5 years 6 months (b) 5 years 7 months (c) 5 years 5 months (d) None.				
A sinking fund is created for redeeming debentures worth Rs. 5 lacs at the end of 25 years. How much				
provision needs to be made out of profits each year provided sinking fund investments can earn				
interest at 4% p.a.?				
(a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035				
2008 - Dec				
If the difference between simple interest and compound interest is Rs. 11 at the rate of 10% for two				
years, then find the sum.				
(a) Rs. 1,200 (b) Rs. 1,100 (c) Rs. 1,000 (d) None of these				
Future value of an ordinary annuity:				
Future value of an ordinary annuity: (a) A (n, i) = A $\left[\frac{(1+i)^n - 1}{i}\right]$ (b) A (n, i) = A $\left[\frac{(1+i)^n + 1}{i}\right]$				

M: 8878819888 / 8518819888

30.		soryears in which as		he rate of 8% per annum.
	(a) $11\frac{1}{2}$ (b)	$12\frac{1}{2}$ (c)	$9\frac{1}{2}$ (d) $13\frac{1}{2}$	
			2009 - June	
31.	In how many yea	rs, a sum will become	double at 5% p.a. co	mpound interest.
	(a) 14.0 years	(b) 14.1 years	(c) 14.2 years	(d) 14.3 years
32.	The time by whic	h a sum of money is 8	times of itself if it do	ubles itself in 15 years.
	(a) 42 years	(b) 43 years	(c) 45 years	(d) 46 years
33.	What is the rate o	of simple interest if a s	sum of money amoun	ts to Rs. 2,784 in 4 years and Rs. 2,688 in
	years ?			
	(a) 1%p.a.	(b) 4%p.a.	(c) 5% p.a.	(d) 8% p.a.
34.	A sum amount to	Rs. 1,331 at a princip	al of Rs. 1 ,000 at 10%	o compounded annually. Find the time.
	(a) 3.31 years	(b) 4 years	(c) 3 years	(d) 2 years
35.	Paul borrows Rs.	20,000 on condition t	to repay it with comp	ound interest at 5% p.a. in annual
	instalment of Rs.	2,000 eachFind the r	number of years in wh	nich the debt would be paid off.
	(a) 10 years	(b) 12 years	(c) 14 years	(d) 15 years
			2009 - Dec	
36.	In how many yea	rs, a sum of Rs. 1,000	compounded annuall	y @ 10%, will amount to Rs. 1,331 ?
	(a) 6 years	(b) 5 years	(c) 4 years	(d) 3 years

37.	The compound in	terest for a certain s	um @ 5% p.a. for first	year is Rs. 25. The S-l for the same money	
	@ 5% p.a. for 2 ye	ears will be.			
	(a) Rs. 40	(b) Rs. 50	(c) Rs. 60	(d) Rs. 70	
38.	At what % rate of	compound interest ((C.i) will a sum of mo	ney become 16 times in four years, if	
	interest is being c	calculated compound	ing annually:		
	(a) r = 100%	(b) r=10%	(c) r = 200%	(d) r = 20% •	
			2010 - June		
39.	Find the present	value of an annuity o	f Rs. 1 ,000 payable at	the end of each year for 10 years. If rate o	
	interest is 6% cor	npounding per annu	m (given (1.06) ⁻¹⁰ = (0.5584):	
	(a) Rs. 7,360	(b) Rs. 8,360	(c) Rs. 12,000	(d) None of these.	
40.	If the simple interest on a sum of money at 12% p.a. for two years is Rs. 3,600. The compound interest				
	on the same sum for two years at the-same rate is :				
	(a) Rs. 3,816	(b) Rs. 3,806	(c) Rs. 3,861	(d) Rs. 3,860 .	
			2010 - Dec		
41.	The future value of an annuity of Rs. 5,000 is made annually for 8 years at interest rate of 9%				
	compounded annually [Given that (1.09) ⁸ =1.99256] is				
	(a) Rs. 55,142.22	(b) Rs. 65,142.22	2 (c) Rs. 65,532.22	(d) Rs. 57,425.22	
42.	The effective ann				

(a) 6.06%	(b) 6.07%	(c) 6.08%	(d) 6.09%		
The cost of Machi	nery is Rs. 1,25,000/-	- If its useful life is es	timated to be 20 years and the rate of		
depreciation of its	s cost is 10% p.a., the	n the scrap value of t	the Machinery is [given that $(0.9)^{20} =$		
0.1215]					
(a) Rs. 15,187	(b) Rs. 15,400	(c) Rs. 15	,300 (d) Rs. 15,250		
Mr. X invests 'P' a	mount at Simple Inte	rest rate 10% and M	r. Y invests 'Q' amount at Compound		
Interest rate 5% o	compounded annuall	y. At the end of two y	ears both get the same amount of interes		
then the relation	between two amount	s P and Q is given by	:		
(a) $P = \frac{41Q}{80}$	(b) $P = \frac{41Q}{40}$	(c) P = $\frac{41Q}{100}$	(d) $P = \frac{41Q}{200}$		
		2011 - June			
If the difference of S.I and C.I is Rs. 72 at 12% for 2 years. Calculate the amount.					
(a) Rs. 8,000	(b) Rs. 6,000	(c) Rs. 5,000	(d) Rs. 7,750.		
If a simple interest on a sum of money at 6% p.a. for 7 years is equal to twice of simple interest on					
another sum for 9 years at 5% p.a The ratio will be :					
(a) 2:15	(b) 7:15	(c) 15:7	(d) 1:7		
By mistake a clerl	k, calculated the simp	le interest on princip	oal for 5 months at 6.5% p.a. instead of 6		
months at 5 50/ m	a lf the error in calc	ulation was Ds 25 40). The original sum of principal was		
	The cost of MachiThe cost of Machidepreciation of its0.1215](a) Rs. 15,187Mr. X invests 'P' aInterest rate 5% athen the relation 1(a) $P = \frac{410}{80}$ If the difference o(a) Rs. 8,000If a simple interestanother sum for 9(a) 2:15By mistake a clerificity	The cost of Machinery is Rs. 1,25,000/-depreciation of its cost is 10% p.a., the0.1215](a) Rs. 15,187 (b) Rs. 15,400Mr. X invests 'P' amount at Simple InteInterest rate 5% compounded annuallythen the relation between two amount(a) $P = \frac{41Q}{80}$ (b) $P = \frac{41Q}{40}$ If the difference of S.I and C.I is Rs. 72 at(a) Rs. 8,000 (b) Rs. 6,000If a simple interest on a sum of moneyanother sum for 9 years at 5% p.a The(a) 2:15 (b) 7:15By mistake a clerk, calculated the simple	The cost of Machinery is Rs. 1,25,000/- If its useful life is est depreciation of its cost is 10% p.a., then the scrap value of t 0.1215] (a) Rs. 15,187 (b) Rs. 15,400 (c) Rs. 15 Mr. X invests 'P' amount at Simple Interest rate 10% and M Interest rate 5% compounded annually. At the end of two y then the relation between two amounts P and Q is given by (a) $P = \frac{41Q}{80}$ (b) $P = \frac{41Q}{40}$ (c) $P = \frac{41Q}{100}$ 2011 - June If the difference of S.I and C.I is Rs. 72 at 12% for 2 years. C (a) Rs. 8,000 (b) Rs. 6,000 (c) Rs. 5,000 If a simple interest on a sum of money at 6% p.a. for 7 years another sum for 9 years at 5% p.a The ratio will be : (a) 2:15 (b) 7:15 (c) 15:7 By mistake a clerk, calculated the simple interest on princip		

Т

	(a) Rs. 60,690	(b) Rs. 60,960	(c) Rs. 90,660	(d) Rs. 90,690		
			2011 - Dec			
48.	If the Simple In	terest on Rs. 1,400 for	3 years is less than tl	ne simple interest on Rs.1,800 for the same		
	period by Rs. 80, then the rate of interest is					
	(a) 5.67%	(b) 6.67%	(c) 7.20%	(d) 5.00%		
49.	Nominal rate of	interest is 9.9% p.a. If	f interest is Compoun	ded monthly, What will be the effective rate		
	of interest (give	$\left(\frac{4033}{4000}\right)^{12} = 1.1036$ (a)	pprox))?			
	(a) 10.36%	(b) 9.36%	(c) 11.36%'	(d) 9.9%		
50.	The S.I. on a su	n of money is $\frac{4}{9}$ of the p	principal and the no.	of years is equal to the rate of interest per		
50.		m of money is $\frac{4}{9}$ of the p e rate of interest per a		of years is equal to the rate of interest per		
50.	annum. Find th	e rate of interest per a	nnum ?	of years is equal to the rate of interest per		
50.	annum. Find th	e rate of interest per a	nnum ?			
50.	annum. Find th (a) 5% (e rate of interest per a	nnum ?) 22/7% (d 2012 - June) 6%		
	annum. Find th (a) 5% (e rate of interest per a	nnum ?) 22/7% (d 2012 - June	.) 6%		
	annum. Find th (a) 5% (Simple interest	e rate of interest per a (b) 20/3% (c) on Rs. 2,000 for 5 mor	nnum ?) 22/7% (d 2012 - June nths at 16% p.a. is	.) 6%		
	 annum. Find th (a) 5% (a) Simple interest (a) Rs. 133.33 	e rate of interest per a (b) 20/3% (c) on Rs. 2,000 for 5 mor (b) Rs. 133.26	nnum ?) 22/7% (d 2012 - June nths at 16% p.a. is (c) Rs. 13 2012 - Dec	.) 6%		
51.	 annum. Find th (a) 5% (a) Simple interest (a) Rs. 133.33 	e rate of interest per a (b) 20/3% (c) on Rs. 2,000 for 5 mor (b) Rs. 133.26	nnum ?) 22/7% (d 2012 - June nths at 16% p.a. is (c) Rs. 13 2012 - Dec yield an Annual incor) 6% 34.00 (d) Rs. 132.09 ne of Rs. 420 at 7% p.a. Simple interest.		

	wrongly taken as 5.7% p.a.					
	The difference in amounts at maturity is Rs. 9,774. Find the period for which the sum was invested:					
	(a) 7 years	(b) 5.8 years	(c) 6 years	(d) 8 years		
	2013 - June					
54.	The difference between compound and simple interest on a certain sum of money for 2 years at					
	p.a. is Rs. 1. The st	ım (in Rs.) is:				
	(a) 625	(b) 630	(c) 640	(d) .635		
55.	A sum of money c	ompounded annually	v becomes Rs. 1,140 ir	n two years and Rs. 1,710 in three years.		
	Find the rate of in	terest per annum.				
	(a) 30%	(b) 40%	(c) 50%	(d) 60%		
			2013 - Dec			
56.	On what sum diffe	erence between comp	bound interest and sir	nple interest for two years at 7% p.a.		
	interest is Rs. 29.4	ł				
	(a) Rs. 5,000	(b) Rs. 5,500	(c) Rs. 6,000	(d) Rs. 6,500		
57.	In what time will a sum of money double its y at 6.25% p.a. simple interest?					
	(a) 5 years	(b) 8 years	(c) 12 years	(d) 16 years		
58.	What principal wi	ll amount to Rs. 370	in 6 years at 8% p.a. a	at simple interest?		
	(a) Rs. 210	(b) Rs. 250	(c) Rs.310	(d) Rs. 350		

			2014 - June			
59.	The partners A and B together lent Rs. 3,903 at 4% per annum interest compounded annually. After a					
	span of 7 years, A	A gets the same amount as	B gets after 9 years. Th	e share of A in the sum of Rs. 3,903		
	would have been	:				
	(a) Rs. 1,875	(b) Rs. 2,280	(c) Rs. 2,028	(d) Rs. 2,820		
60.	If a sum triples in	15 years at simple rate of	f interest,* the rate of in	iterest per annum will be:		
	(a) 13.0%	(b) 13.3%	(c) 13.5%	(d) 18.0%		
61.	How much amou	nt is required to be investe	ed every year as to accu	umulate Rs. 6,00,000 at the end of 1		
	years, if interest is compounded annually at 10% rate of interest [Given: $(1.1)^{10}$ = 2.59374].					
	(a) Rs. 37,467	(b) Rs. 37,476	(c) Rs. 37,647	(d) Rs. 37,674		
			2014 - Dec			
62.	The future value of an annuity of Rs. 1,000 made annually for 5 years at the interest of 14%					
	compounded and	nually is:	(Given $(1.14)^5 =$	1.92541)		
	(a) Rs. 5,610	(b) Rs. 6,610 ((c) Rs. 6,160 (d)) Rs. 5,160		
63.	A sum of money invested of compound interest doubles itself in four years. It becomes 32 times of					
	itself at the same	rate of compound interest	t in			
	(a) 12 years	(b) 16 years (c) 20 years (d) 24 years		

I

64.	A certain sum of m	noney was invested a	A certain sum of money was invested at simple rate of interest for three years. If the same has been				
	invested at a rate that was seven percent higher, the interest amount would have been Rs. 882 more.						
	The amount of sum invested is:						
	(a) Rs. 12,600	(b) Rs. 6,800	(c) Rs. 4,200	(d) Rs. 2,800			
	2015 - June						
65.	A sum of money doubles itself in 8 years at simple interest.						
	The number of yea	ars it would triple its	elf is				
	(a) 20 years	(b) 12 years	(c) 16 years	(d) None of these.			
66.	A sum of Rs. 44,00	0 is divided into thre	ee parts such that the co	prresponding interest earned after 2			
	years, 3 years and	6 years may be equa	ıl. If the rates of simple i	nterest are 6% p.a., 8% p.a. and 6% p.a.			
	respectively, then	the smallest part of t	the sum will be:				
	(a) Rs. 4,000	(b) Rs. 8,000	(c) Rs. 10,000	(d) Rs. 12,000			
	2015 - Dec						
67.	Suppose your parent decides to open a PPF (Public Provident Fund) account in a bank towards your						
	name with Rs. 10,000 every year starting from today for next 15 years. When you receive and get						
	8.5% per annum i	nterest rate compou	nded annually. What is t	the present value of this annuity? (Give			
	Ans. in Rs. without	t any fraction.)	(Given P (15,0.085)	= 8.304236576)			

NA	ITA PROFESSIONA	l Classes		M: 8878819888 / 8518819888
	(a) 83,042	(b) 1,66,084	(c) 93,042	(d) 8,30,423
68.	In how many year	s will a sum of mone	ey become four times a	t 12% p.a. simple interest?
	(a) 18 years	(b) 21 years	(c) 25 years	(d) 28 years
69.	The simple interes	st for a certain sum f	for 2 years at 10% per	annum is Rs. 90. The corresponding
	compound interes	st is (In Rs.):		
	(a) 99	(b) 95.60	(c) 94.50	(d) 108
			2016 - June	
70.	Mr. X bought an el	ectronic item for Rs.	. 1,000. What would be	e the future value of the same item after 2
	years, if the value	is compounded sem	i annually at 22% per a	annum?
	(a) Rs. 1488.40	(b) Rs. 1518.07	(c) Rs. 200	8.07 (d) Rs. 2200.00
71.	If an amount is ke	pt at simple interest	, it earns an interest of	Rs. 600 in first two years but when kept
	at compound inter	rest it earns an inter	est of Rs. 660 for the sa	ame period, then the rate of interest and
	principal amount	respectively are:		
	(a) 20%, Rs. 1,200) (b) 10%, Rs. 1,20	00 (c) 2Q%, Rs. 1,500) (d) 10%, Rs. 1,500
72.	The sum invested	at 4% per annum co	ompounded Semiannua	ally amounts to Rs. 7,803 at the end of one
	year, is:			
	(a) Rs. 7,000	(b) Rs. 7,500	(c) Rs. 7,225	(d) Rs. 8,000

I

			2016 - Dec	
73.	A compound inter	est on a sum for 2 yea	rs is Rs. 30 more thar	n the simple interest at the rate of 5% per
	annum then the su	ım is:		
	(a) Rs. 11,000	(b) Rs. 13,000	(c) Rs. 12,000	(d) Rs. 15,000
74.	A person lends Rs.	6,000 for 4 years and	l Rs. 8,000 for 3 years	at simple interest. If he gets Rs. 2,400 as
	total interest, the r	rate of interest is:		
	(a) 5%	(b) 4%	(c) 6%	(d) 7%
75.	The future value o	f an annuity of Rs. 1,5	00 made annually for	five years at interest rate 10%
	compounded annu	ally is (Given that (1.	$1)^5 = 1.61051)$:	
	(a) Rs. 9517.56	(b) Rs. 9157.65	(c) Rs. 9715.56	(d) Rs. 9175.65
			2017 - June	
76.	The difference bet	ween the Compound	interest and Simple ir	nterest at 10% per annum for 4 years on
	Rs. 10,000 is Rs	·		
	(a) 650	(b) 640	(c) 641	(d) 600
77.	How much amoun	t is required to be inv	ested every year as to	accumulate Rs. 7,96,870 at the end of 10
	years, if interest co	ompounded annually	at 10% given that A(1	10, 0.1) = 15.9374?
	(a) Rs. 40,000	(b) Rs. 4,50,000	(c) Rs. 48,000	(d) Rs. 50,000

						ł	NSI	JERS	5						
1	В	11	В	21	С	31	D	41	A	51	A	61	С	71	С
2	В	12	A	22	A	32	С	42	D	52	A	62	В	72	В
3	A	13	A	23	A	33	В	43	A	53	С	63	С	73	С
4	В	14	A	24	A	34	С	44	A	54	A	64	С	74	A
5	В	15	A	25	С	35	D	45	С	55	С	65	С	75	В
6	С	16	В	26	A	36	D	46	С	56	С	66	В	76	С
7	A	17	В	27	A	37	В	47	В	57	D	67	С	77	D
8	В	18	A	28	В	38	A	48	В	58	В	68	С		
9	A	19	В	29	A	39	A	49	A	59	С	69	С		
10	A	20	В	30	В	40	A	50	В	60	В	70	В		

CH - 5

BASIC CONCEPTS OF PERMUTATION & COMBINATION

	FACTORIAL
Ex.: 1	Example 4: Find n if $ n+1 =30 n-1 $
	Solution: $\underline{ n+1 }=30\underline{ n-1 } \Rightarrow (n+1).n\underline{ n-1 }=30\underline{ n-1 }$
	PERMUTATIONS
Ex.2	How many three letters words can be formed using the letters of the words
	(a) SQUARE and (b) HEXAGON?
Sol.	a. Since the word 'SQUARE' consists of 6 different letters, the number of permutations of choosing
	3 letters out of six equals ${}^6P_3 = 6 \times 5 \times 4 = 120$.
	b. Since the word 'HEXAGON' contains 7 different letters, the number of permutations is $^{7}P_{3} = 7 \times$
Ex 3.:	First, second and third prizes are to be awarded at an engineering fair in which 13 exhibits have
	been entered. In how many different ways can the prizes be awarded?
Sol.	
Ex 4.:	In how many different ways can 3 students be associated with 4 chartered accountants, assuming
	that each chartered accountant can take at most one student?
Sol.	This equals the number of permutations of choosing 3 persons out of 4. Hence , the answer is ${}^4\mathrm{P}$ =
5.1	Page FACULTY:CA MEGHA NAHTA

	$4 \times 3 \times 2 = 24.$
Ex. 4:	If six times the number permutations of n things taken 3 at a time is equal to seven times the
	number of permutations of (n – 1) things taken 3 at a time, find n.
Sol.	
Ex. 5:	Compute the sum of 4 digit numbers which can be formed with the four digits I, 3, 5, 7, if each
	digit is used only once in each arrangement.
Sol.	The number of arrangements of 4 different digits taken 4 at a time is given by ${}^{4}P_{4} = 4! = 24$. All the
	four digits will occur equal number of times at each of the positions, namely ones, tens, hundreds,
	thousands.
	Thus, each digit will occur 24 / $4 = 6$ times in each of the positions. The sum of digits in one's
	position will be $6 \times (1 + 3 + 5 + 7) = 96$. Similar is the case in ten's, hundred's and thousand's
	places.
	Therefore, the sum will be 96 + 96 × 10 + 96 × 100 + 96 × 1000 = 1,06,656.
Ex. 6:	When Dr. Ram arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only

	one patient at a time, find the number of ways, he can schedule his patients (a) if the					
	their turn, and	(b) if 3 leave in	disgust before	Dr. Ram gets around to seeing them.		
Sol.						
	AGAR DAR	R HAI BHA	GANA, TO	MATHS HAI BANANA		
	EXERCISE 5	(A)				
	Choose the mos	t appropriate opt	ion (a) (b) (c) (or (d)		
1.	⁴ P ₃ is evaluate	d as				
	a) 43	b) 34	c) 24	d) None of these		
2.	⁴ P ₄ is equal to					
	a) 1	b) 24	c) 0	d) none of these		
3.	∟7 is equal to					
	a) 5040	b) 4050	c) 5050	d) none of these		
4.	∟0 is a symbol	equal to				
	a) 0	b) 1	c) Infinity	d) none of these		
5.	In ⁿ Pr, n is alwa	ays				
	a) an integer	b) a fraction	c) a positive i	nteger d) none of these		
6.	In ⁿ Pr , the rest	riction is				
	a) n > r	b) n \ge r	c) n ≤ r	d) none of these		
7.	$\ln {}^{n}P_{r} = n (n-1)$.) (n-2)	(n-r+1), the	number of factors is		

NA	HTA PROFESSION	AL CLASSES	i		BUSINESS MATHEMATICS
	a) n	b) r-1	c) n-r	d) r	
8.	ⁿ P _r can also wri	itten as			
	a) $\frac{\underline{ n }}{\underline{ n-r }}$	b)	$\frac{ \mathbf{n} }{ \mathbf{r} \mathbf{n}-\mathbf{r} }$	c) $\frac{ \mathbf{r} }{ \mathbf{n}-\mathbf{r} }$	d) none of these
9.	If $^{n}P_{4} = 12 \times ^{n}P_{4}$	P2, the n is e	qual to		
	a) –1	b) 6	c) 5	d) none of these	
10.	If $. nP3 : nP2 =$	3 : 1, then n	is equal to		
	a) 7	b) 4	c) 5	d) none of these	
11.	m+nP2 = 56, n	n-nP2 = 30	then		
	a) m =6, n = 2	b) m = 7,	, n=1 c) m=4,n=4	d) none of these	
12.	if $5Pr = 60$, the	en the value	of r is		
	a) 3	b) 2	c) 4	d) none of these	
13.	If $n^{1} + n^{2}P_{2} = 132$	2, $^{n1-n2}P_2 = 3$	30 then,		
	a) n1=6,n2=6	b) n ₁	$n_1 = 10, n_2 = 2$	c) $n_1 = 9$, $n_2 = 3$	d) none of these
14.	The number of	ways the let	tters of the word `CO	OMPUTER' can be i	rearranged is
	a) 40,320	b) 40,319	c) 40,318	d) none of these	
15.	The number of	arrangemer	nts of the letters in t	he word `FAILURE	', so that vowels are always
	coming togethe	er is			
	a) 576	b) 575	c) 570	d) none of these	
16.	10 examination	n papers are	arranged in such a	way that the best a	and worst papers never come
	together. The n	umber of ar	rangements is		

NA	AHTA PROFESSIOI	NAL CLASSES		BUSINESS MATHEMATICS				
	a) 9 <u>8</u>	b)	10	c) 8 <u>9</u>	d) :	none of these		
17.	n articles are	arranged in such	a way that 2 pa	rticular article	s never come toge	ther. The number of		
	such arrange	ments is						
	a) (n-2) <u> n</u>	<u>b)</u>	(n-1) <u>n-2</u>	c) <u>n</u>	d)	none of these		
18.	If 12 school to	eams are particip	ating in a quiz c	ontest, then th	e number of ways	the first, second and		
	third positior	ns may be won is						
	a) 1,230	b) 1,320	c) 3,210	d) none of tl	hese			
19.	The sum of al	l 4 digit number	containing the d	igits 2, 4, 6, 8,	without repetition	s is		
	a) 1,33,330	b) 1,22,220	c) 2,13,330	d) 1,33,320				
20.	The number of	of 4 digit number	s greater than 5	,000 can be for	rmed out of the di	gits 3,4,5,6 and 7(No.		
	digit is repea	ted). The number	r of such is					
	a) 72	b) 27	c) 70	d) none of th	iese			
21.	4 digit numbe	ers to be formed	out of the figure	s 0, 1, 2, 3, 4 (n	o digit is repeated) then number of		
	such number	s is						
	(a) 120	(b) 20	(c) 96.	(d) none of t	hese			
22.	The number of	of ways the letter	s of the word `T	RIANGLE' to b	e arranged so that	the word 'angle' will		
	be always pre	esent is						
	(a) 20	(b) 60	(c) 24	(d) 32				
23.	If the letters w	ord 'DAUGHTER'	are to be arrang	ged so that vov	vels occupy the od	d places, then		
	number of diffe	erent words are						
	(a) 2,880	(b) 676	(c) 625	(d) 576				
	- Rago			ГАСИ	LTV.CA MEG			

_	PERMUTATION WITH RESTRICATIONS
Ex. 1:	There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how many ways can
	these be placed on a shelf if the books on the same subject are to be together?
Sol.:	
Ex. 2:	How many different numbers can be formed by using any three out of five digits 1, 2, 3, 4, 5, no
	digit being repeated in any number?
	How many of these will (i) begin with a specified digit? (ii) begin with a specified digit and end
	with another specified digit?
Sol.:	Here we have 5 different digits and we have to find out the number of permutations of them 3 at a
	time. Required number is ${}^{5}P_{3} = 5.4.3 = 60$.
	(<i>i</i>) If the numbers begin with a specified digit, then we have to find the number of Permutations of
	the remaining 4 digits taken 2 at a time. Thus, desire number is ${}^{4}P_{2} = 4.3 = 12$.
	(ii) Here two digits are fixed; first and last; hence, we are left with the choice of finding the number
	of permutations of 3 things taken one at a time i.e., ${}^{3}P_{1} = 3$.
Ex. 3:	How many four digit numbers can be formed out of the digits 1,2,3,5,7,8,9, if no digit is repeated in

	any number? How many of these will be greater than 3000?
Sol.:	
Ex. 4:	Find the total number of numbers greater than 2000 that can be formed with the digits 1, 2, 3, 4, 5
	no digit being repeated in any number.
Sol.:	

Ex. 5:	There are 6 students of whom 2 are Indians, 2 Americans, and the remaining 2 are Russian	ns. They
	have to stand in a row for a photograph so that the two Indians are together, the two Ame	ericans are
	together and so also the two Russians. Find the number of ways in which they can do so.	
Sol.:	The two Indians can stand together in ${}^{2}P_{2} = 2! = 2$ ways. So is the case with the two America	ins and
	the two Russians.	
	Now these 3 groups of 2 each can stand in a row in ${}^{3}P_{3} = 3 \times 2 = 6$ ways. Hence by the generation	alized
	fundamental principle, the total number of ways in which they can stand for a photograph u	nder
	given conditions is	
	$6 \times 2 \times 2 \times 2 = 48$	
	$6 \times 2 \times 2 \times 2 = 48$	
	6 × 2 × 2 × 2 = 48 AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA	
1.	6×2×2×2=48 AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA EXERCISE 5 (B)	
1.	6 × 2 × 2 × 2 = 48 AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA EXERCISE 5 (B) Choose the most appropriate option (a) (b) (c) or (d)	
<i>I.</i> 2.	6 × 2 × 2 × 2 = 48 AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA EXERCISE 5 (B) Choose the most appropriate option (a) (b) (c) or (d) The number of ways in which 7 girls form a ring is	together is

3.	If 50 different jewels can be set to form a necklace then the number of ways is							
	(a) $\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 49 (d) none of these							
4.	3 ladies and 3 gents can be seated at a round table so that any two and only two of the ladies sit							
	together. The number of ways is							
	(a) 70 (b) 27 (c) 72 (d) none of these							
5.	The number of ways in which the letters of the word `DOGMATIC' can be arranged is							
	(a) 40,319 (b) 40,320 (c) 40,321 (d) none of these							
6.	The number of arrangements of 10 different things taken 4 at a time in which one particular thing							
	always occurs is							
	(a) 2015 (b) 2016 (c) 2014 (d) none of these							
7.	The number of permutations of 10 different things taken 4 at a time in which one particular thing							
	never occurs is							
	(a) 3,020 (b) 3,025 (c) 3,024 (d) none of these							
8.	Mr. X and Mr. Y enter into a railway compartment having six vacant seats. The number of ways in							
	which they can occupy the seats is							
	(a) 25 (b) 31 (c) 32 (d) 30							
9.	The number of numbers lying between 100 and 1000 can be formed with the digits 1, 2, 3, 4, 5, 6, 7 is							
	(a) 210 (b) 200 (c) 110 (d) none of these							
10.	The number of numbers lying between 10 and 1000 can be formed with the digits 2,3,4,0,8,9 is							
	(a) 124 (b) 120 (c) 125 (d) none of these							
11.	In a group of boys the number of arrangement of 4 boys is 12 times the number of arrangements of 2							
F (9 Paga							

NAHIA PROFESSIONAL CLASSES			BUSINESS WATHEMATICS		
boys. The nu	umber of boys in th	e group is			
(a) 10	(b) 8 (c)	6 (d	l) none of these		
The value of	$\sum_{r=1}^{10} r. r_{P_r}$ is				
(a) ¹¹ P ₁₁	(b) ¹¹ P ₁₁ -	1 (c) $^{11}P_{11}$	+1 (d) none of thes	e	
The total nu	mber of 9 digit nun	bers of differ	rent digits is		
(a) 10 <u>9</u>	(b)	89	(c) 9 <u>9</u>	(d) none of these	
The number	of ways in which 6	men can be a	arranged in a row so t	hat the particular 3 men sit	
together, is					
(a) ⁴ P ₄	(b) ${}^{4}P_{4} \times {}^{3}P_{3}$ (c))(∟3)² (d	l) none of these		
There are 5	speakers A, B, C, D	and E. The nu	mber of ways in whic	ch A will speak always before B is	
(a) 24	(b) $\bot 4 \times \bot 2$ (c)) ∟5	(d) none of thes	e	
There are 10) trains plying betw	een Calcutta	and Delhi. The numb	er of ways in which a person can go	
from Calcutt	ta to Delhi and retu	rn by a differe	ent train is		
(a) 99	(b) 90 (c)) 80 (0	d) none of these		
The number	of ways in which 8	sweats of dif	fferent sizes can be di	stributed among 8 persons of	
different ages so that the largest sweat always goes to be younger assuming that				assuming that each one of then	
gets a sweat	is				
(a) ∟8	(b) 5040	(c) 5039	(d) none of thes	5e	
The number	of arrangements in	n which the le	etters of the word `MC	NDAY' be arranged so that the	
words thus f	formed begin with	M and do not	end with N is		
(a) 720	(b) 120	(c) 96	(d) none of thes	e	
	boys. The nu (a) 10 The value of (a) 1 ¹ P ₁₁ The total nu (a) 10[9 The number (a) 4P4 There are 5 (a) 24 There are 10 (a) 99 The number (a) 99 The number (a) 10[1 (a) 24 There are 5 (a) 24 There are 10 (a) 24 There are 10 (a) 24 The number (a) 99 The number (a) 10[2 The number (a) 24 The number (a) 10[2 The number The number The number The number The number <tr< td=""><td>iboys. The number of boys in the (a) 10(b) 8(c)The value $\Box \sum_{r=1}^{10} r. r_{P_r}$ is(a) 11P11(b) $11P11 - 1$(a) 11P11(b) $11P11 - 1$(b) $11P11 - 1$(b)The total number of 9 digit(b) $11P11 - 1$(c)(a) 10[9(b) $11P11 - 1$(c)(a) 24(b) $11P11 - 1$(c)(a) 24(b) $11P11 - 1$(c)(a) 24(b) $11P11 - 1$(c)(a) 99(b) 90(c)(a) 99(b) 90(c)(a) 10[9(b) 10[9(c)(a) 10[9(b) 10[9(c)(a) 10[9(b) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9</td><td>boys. The number of boys in the group is (a) 10 (b) 8 (c) 6 (d) The value of $\Sigma_{r=1}^{10} r. r_{P_r}$ is (a) 11P₁₁ (b) 11P₁₁ -1 (c) 11P₁₁ The total number of 9 digit numbers of differ (a) 10 9 (b) 8 9 The number of ways in which 6 men can be a together, is (a) 4P₄ (b) 4P₄ × 3P₃ (c) (\perp3)² (d) There are 5 speakers A, B, C, D and E. The number (a) 24 (b) \perp4 × \perp2 (c) \perp5 There are 10 trains plying between Calcutta from Calcutta to Delhi and return by a differ (a) 99 (b) 90 (c) 80 (d) The number of ways in which 8 sweats of different (a) \perp8 (b) \leq040 (c) \leq039 The number of arrangements in which the later (a) \perp8 (b) \leq040 (c) \leq039 The number of arrangements in which the later (b) \leq040 (c) \leq039 (c) 80 (c) \leq04 (c) \leq04</td><td>boys. The number of boys in the group is (a) 10 (b) 8 (c) 6 (d) none of these The value of $\sum_{r=1}^{10} r. r_{P_r}$ is (a) 11P11 (b) 11P11 - 1 (c) 11P11 + 1 (d) none of these The total number of 9 digit numbers of different digits is (a) 10 9 (b) 8 9 (c) 9 9 The number of ways in which 6 men can be arranged in a row so f together, is (a) 4P4 (b) 4P4 × 3P3 (c) (L3)² (d) none of these There are 5 speakers A, B, C, D and E. The number of ways in which (d) none of these (d) none of these There are 10 trains plying between Calcutta and Delhi. The number (d) none of these (d) none of these (a) 99 (b) 90 (c) 80 (d) none of these (d) none of these The number of ways in which 8 sweats of different train is (a) 99 (b) 90 (c) 80 (d) none of these (a) 19 (b) 5040 (c) 5039 (d) none of these (d) L8 (b) 5040 (c) 5039 (d) none of these The number of arrangements in which the letters of the word MO (d) words thus formed begin with M and do not end with N is (d) words thus formed begin with M and do not end with N is</td></tr<>	iboys. The number of boys in the (a) 10(b) 8(c)The value $\Box \sum_{r=1}^{10} r. r_{P_r}$ is(a) 11P11(b) $11P11 - 1$ (a) 11P11(b) $11P11 - 1$ (b) $11P11 - 1$ (b)The total number of 9 digit(b) $11P11 - 1$ (c)(a) 10[9(b) $11P11 - 1$ (c)(a) 24(b) $11P11 - 1$ (c)(a) 24(b) $11P11 - 1$ (c)(a) 24(b) $11P11 - 1$ (c)(a) 99(b) 90(c)(a) 99(b) 90(c)(a) 10[9(b) 10[9(c)(a) 10[9(b) 10[9(c)(a) 10[9(b) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9(c)(a) 10[9(c) 10[9	boys. The number of boys in the group is (a) 10 (b) 8 (c) 6 (d) The value of $\Sigma_{r=1}^{10} r. r_{P_r}$ is (a) 11P ₁₁ (b) 11P ₁₁ -1 (c) 11P ₁₁ The total number of 9 digit numbers of differ (a) 10 9 (b) 8 9 The number of ways in which 6 men can be a together, is (a) 4P ₄ (b) 4P ₄ × 3P ₃ (c) (\perp 3) ² (d) There are 5 speakers A, B, C, D and E. The number (a) 24 (b) \perp 4 × \perp 2 (c) \perp 5 There are 10 trains plying between Calcutta from Calcutta to Delhi and return by a differ (a) 99 (b) 90 (c) 80 (d) The number of ways in which 8 sweats of different (a) \perp 8 (b) \leq 040 (c) \leq 039 The number of arrangements in which the later (a) \perp 8 (b) \leq 040 (c) \leq 039 The number of arrangements in which the later (b) \leq 040 (c) \leq 039 (c) 80 (c) \leq 04 (c) \leq 04	boys. The number of boys in the group is (a) 10 (b) 8 (c) 6 (d) none of these The value of $\sum_{r=1}^{10} r. r_{P_r}$ is (a) 11P11 (b) 11P11 - 1 (c) 11P11 + 1 (d) none of these The total number of 9 digit numbers of different digits is (a) 10 9 (b) 8 9 (c) 9 9 The number of ways in which 6 men can be arranged in a row so f together, is (a) 4P4 (b) 4P4 × 3P3 (c) (L3) ² (d) none of these There are 5 speakers A, B, C, D and E. The number of ways in which (d) none of these (d) none of these There are 10 trains plying between Calcutta and Delhi. The number (d) none of these (d) none of these (a) 99 (b) 90 (c) 80 (d) none of these (d) none of these The number of ways in which 8 sweats of different train is (a) 99 (b) 90 (c) 80 (d) none of these (a) 19 (b) 5040 (c) 5039 (d) none of these (d) L8 (b) 5040 (c) 5039 (d) none of these The number of arrangements in which the letters of the word MO (d) words thus formed begin with M and do not end with N is (d) words thus formed begin with M and do not end with N is	

19.	The total number of ways in which six '+' and four '–' signs can be arranged in a line such that no
	two '–' signs occur together is
	(a) $\lfloor 7 / \lfloor 3 \end{pmatrix}$ (b) $\lfloor 6 \times \lfloor 7 / \lfloor 3 \end{pmatrix}$ (c) 35 (d) none of these
20.	The number of ways in which the letters of the word `MOBILE' be arranged so that consonants
	always occupy the odd places is
	(a) 36 (b) 63 (c) 30 (d) none of these.
21.	5 persons are sitting in a round table in such way that Tallest Person is always on the right–side of
	the shortest person; the number of such arrangements is
	(a) 6 (b) 8 (c) 24 (d) none of these

COMBINATIONS
Find the number of different poker hands in a pack of 52 playing cards.
This is the number of combinations of 52 cards taken five at a time. Now applying the formula,
${}^{52}C_5 = 52!/5! (52-5)! = 52!/5! 47! = \frac{52 \times 51 \times 50 \times 49 \times 48 \times 47!}{5 \times 4 \times 3 \times 2 \times 1 \times 47!}$
A committee is to be formed of 3 persons out of 12. Find the number of ways of forming such a
committee.
A building contractor needs three helpers and ten men apply. In how many ways can these selections
take place?
There is no regard for order in this problem. Hence, the contractor can select in any of 10 C ₃ ways i.e.,
$(10 \times 9 \times 8) / (3 \times 2 \times 1) = 120$ ways.
In each case, find n:
(a) $4, {}^{n}C_{2} = {}^{n+2}C_{3}$ (b) ${}^{n+2}C_{n} = 45$.
(a) We are given that 4. ${}^{n}C_{2} = {}^{n+2}C_{3}$. Now applying the formula,
$4 \times \frac{n!}{2!(n-2)!} = \frac{(n+2)!}{3!(n+2-3)!}$
Or, $\frac{4 \times n.(n-1)(n-2)!}{2!(n-2)!} = \frac{(n+2)(n+1).n.(n-1)!}{3!(n-1)!}$
4n(n-1)/2 = (n+2)(n+1)n/3!
or, $4n(n-1) / 2 = (n+2)(n+1)n / 3 \times 2 \times 1$

	or, $12(n-1)=(n+2)(n+1)$
	or, $12n-12 = n^2 + 3n + 2$
	or, $n^2 - 9n + 14 = 0$.
	or, $n^2 - 2n - 7n + 14 = 0$.
	or, $(n-2)(n-7) = 0$
	∴ n=2 or 7.
	(b) We are given that $n^{+2}C_n = 45$. Applying the formula,
	$(n+2)!/\{n!(n+2-n)!\} = 45$
	or, (n+2) (n+1) n! / n! 2! = 45
	or, $(n+1)(n+2) = 45 \times 2! = 90$
	or, $n^2 + 3n - 88 = 0$
	or, $n^2 + 11n - 8n - 88 = 0$
	or, (n+11) (n-8) = 0
	Thus, n equals either – 11 or 8. But negative value is not possible. Therefore we conclude that n=8.
Ex. 5:	A box contains 7 red, 6 white and 4 blue balls. How many selections of three balls can be made so
	that (a) all three are red (b) none is red (c) one is of each colour?
Sol.:	(a) All three balls will be of red colour if they are taken out of 7 red balls and this can be done in
	$^{7}C_{3} = 7! / 3!(7-3)!$
	$= 7! / 3!4! = 7 \times 6 \times 5 \times 4! / (3 \times 2 \times 4!) = 7 \times 6 \times 5 / (3 \times 2) = 35$ ways
	Hence, 35 selections (groups) will be there such that all three balls are red.

	(b) None of the three will be red if these are chosen from (6 white and 4 blue balls) 10 balls and this
	can be done in ${}^{10}C_3 = 10!/{3!(10-3)!} = 10!/3!7!$
	$= 10 \times 9 \times 8 \times 7! / (3 \times 2 \times 1 \times 7!) = 10 \times 9 \times 8 / (3 \times 2) = 120 $ ways.
	Hence, the selections (or groups) of three such that none is a red ball are 120 in number. One red ball
	can be chosen from 7 balls in ${}^{7}C_{1} = 7$ ways. One white ball can be chosen from 6 white balls in ${}^{6}C_{1}$
	ways. One blue ball can be chosen from 4 blue balls in ${}^{4}C_{1} = 4$ ways. Hence, by generalized
	fundamental principle, the number of groups of three balls such that one is of each colour = 7×6×4 =
	168 ways.
Ex. 6:	If 10Pr = 6,04,800 and 10Cr = 120; find the value of r
Sol.:	
Ex. 7:	Find r if ${}^{18}C_r = {}^{18}C_{r+2}$
Sol.:	

Т

Ex. 8:	If ${}^{28}C_{2r}$; ${}^{24}C_{2r-4} = 225$; II, find r.	
Sol.		
Ex. 9:	Find x if ¹² C ₅ +2 ¹² C ₄ + ¹² C ₃ = ¹⁴ C _x	
Sol.:	L.H.S = ${}^{12}C5 + 2 {}^{12}C_4 + {}^{12}C_3$	
	$= {}^{12}C_5 + {}^{12}C_4 + {}^{12}C_4 + {}^{12}C_3$	
E 1E	Ρασρ	ΕΔΟΙΙΙΤΥ:ΟΔ ΜΕΘΗΔ ΝΔΗΤΔ

	= ¹³ C ₅ + ¹³ C ₄
	$= {}^{14}C_5$
	Also ${}^{n}C_{r} = {}^{n}C_{n-r}$.
	Therefore ${}^{14}C_5 = {}^{14}C_{14-5} = {}^{14}C_9$
	Hence, L.H.S = ${}^{14}C_5 = {}^{14}C_9 = {}^{14}C_x$
	= R.H.S by the given equality
	This implies, either $x = 5$ or $x = 9$.
Ex. 10:	How many different permutations are possible from the letters of the word `CALCULUS'?
	S. Hence , by result (I), the number of different permutations from the letters of the word `CALCULUS'
	taken all at a time
	$=\frac{8!}{2!2!2!1!1!}$
	$=\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2}{2 \times 2 \times 2} = 7 \times 6 \times 5 \times 4 \times 3 \times 2 = 5,040$
Ex. 11:	An examination paper with 10 questions consists of 6 questions in Algebra and 4 questions in
	Geometry. At least one question from each section is to be attempted. In how many ways can this
	be done?
Sol.:	

Ex. 12:	A man has 5 friends. In how many ways can he invite one or more of his friends to dinner?
Sol.:	
Ex. 13:	There are 7 men and 3 ladies. Find the number of ways in which a committee of 6 can be formed of
	them if the committee is to include atleast two ladies?
Sol.:	

Ex. 14:	Find the number of v	ways of selecting 4 lett	ers from the word `l	EXAMINATION'.
Sol.:				
		IAI BHAGANA,		
	EXERCISE 5 (C	.)		
	Choose the most app	ropriate option (a, b, c o	ord)	
1.	The value of ${}^{12}C_4 + {}^{12}C_4$	² C ₃ is		
	(a) 715	(b) 710	(C) 716	(d) none of these
2.	If ${}^{n}p_{r} = 336$ and ${}^{n}C_{r} = 336$	= 56, then n and r will b	0e	

NA	AHTA PROFESSIONAL (CLASSES		BUSINESS MATHEMATICS			
	(a) (3, 2)	(b) (8, 3)	(c) (7, 4)	(d) none of thes			
3.	If ${}^{18}C_r = {}^{18}C_{r+2}$, the value of ${}^{r}C_5$ is						
	(a) 55	(b) 50	(c) 56	(d) none of these			
1.	If ${}^{n}c_{r-1} = 56$, ${}^{n}c_{r} = 2$	8 and ${}^{n}c_{r+1} = 8$, then r is	equal to				
	(a) 8	(b) 6	(c) 5	(d) none of these			
-	A person has 8 frie	nds. The number of ways	s in which he may in	vite one or more of them to a dinner			
	is.						
	(a) 250	(b) 255	(c) 200	(d) none of these			
5.	The number of ways in which a person can chose one or more of the four electrical appliances : T.V,						
	Refrigerator, Washing Machine and a cooler is						
	(a) 15	(b) 25	(c) 24	(d) none of these			
7.	If ${}^{n}c_{10} = {}^{n}c_{14}$, then ${}^{25}c_{n}$ is						
	(a) 24	(b) 25	(c) 1	(d) none of these			
3.	Out of 7 gents and 4 ladies a committee of 5 is to be formed. The number of committees such that						
	each committee includes at least one lady is						
	(a) 400	(b) 440	(c) 441	(d) none of these			
7.	If ${}^{28}c_{2r} : {}^{24}c_{2r-4} = 225 : 11$, then the value of r is						
	(a) 7	(b) 5	c) 6	(d) none of these			
0.	The number of diagonals in a decagon is						
	(a) 30	b) 35	(c) 45	(d) none of these			
Ι.	There are 12 points	s in a plane of which 5 ar	e collinear. The num	nber of triangles is			

NA	AHTA PROFESSIONA	L CLASSES		BUSINESS MATHEMATICS				
	(a) 200	(b) 211	(c) 210	(d) none of these				
12.	The number of s	traight lines obtained by	joining 16 points on	a plane, no three of them being on the				
	same line is							
	(a) 120	(b) 110	(c) 210	(d) none of these				
13.	At an election th	ere are 5 candidates and	3 members are to be	e elected. A voter is entitled to vote for				
	any number of c	andidates not greater tha	an the number to be e	elected. The number of ways a voter				
	choose to vote is	3						
	(a) 20	(b) 22	(c) 25	(d) none of these				
14.	Every two perso	Every two persons shakes hands with each other in a party and the total number of hand shakes is						
	66. The number of guests in the party is							
	(a) 11	(b) 12	(c) 13	(d) 14				
15.	The number of parallelograms that can be formed from a set of four parallel lines intersecting							
	another set of three parallel lines is							
	(a) 6	(b) 18	(c) 12	(d) 9				
16.	The number of ways in which 12 students can be equally divided into three groups is							
	(a) 5775	(b) 7575	(c) 7755	(d) none of these				
17.	The number of ways in which 15 mangoes can be equally divided among 3 students is							
	(a) $ \underline{15} / \underline{(5)}^4$	(b) 15 / (5) ³	(c) $ \underline{15} / \underline{(5)}^2$	(d) none of these				
18.	8 points are marked on the circumference of a circle. The number of chords obtained by joining							
	these in pairs is							
	(a) 25	(b) 27	(c) 28	(d) none of these				

19.	A committee of 3 ladies and 4 gents is to be formed out of 8 ladies and 7 gents. Mrs. X refuses to							
	serve in a commit	ee in which Mr. Y is a me	ember. The number c	f such committees is				
	(a) 1530	(b) 1500	(c) 1520	(d) 1540				
20.	$\mathrm{If}{}^{500}\mathrm{C}_{92} = {}^{499}\mathrm{C}_{92} + 1$	¹ C91 then n is						
	(a) 501	(b) 500	(c) 502	(d) 499				
21.	The Supreme Cour	rt has given a 6 to 3 decis	sion upholding a low	er court; the number of ways it can				
	give a majority de	cision reversing the lowe	er court is					
	(a) 256	(b) 276	(c) 245	(d) 226.				
22.	Five bulbs of which	Five bulbs of which three are defective are to be tried in two bulb points in a dark room.						
	Number of trials t	ne room shall be lighted	is					
	(a) 6	(b) 8	(c) 5	(d) 7.				
	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA							
	EXERCISE 5(D)							
	Choose the appr	opriate option (a, b ,	c or d)	2				
		The letters of the words `CALCUTTA' and `AMERICA' are arranged in all possible ways. The ratio of						
	The letters of the	words `CALCUTTA' and `	AMERICA' are arran	ged in all possible ways. The ratio o				
		words `CALCUTTA' and ` re arrangements is	AMERICA' are arran	ged in all possible ways. The ratio c				

2.	The ways of selecting 4 letters from the word `EXAMINATION' is				
	(a) 136	(b) 130	(c) 125 (d) no	(c) 125 (d) none of these	
3.	The number of different words that can be formed with 12 consonants and 5 vowels by taking 4				
	consonants and 3 vowels in each word is				
	(a) ${}^{12}c_4 \times {}^{5}c_3$	(b) ¹⁷ c7	(c) 4950 × ∟7	! (d) none of these	
4.	Eight guests have to be seated 4 on each side of a long rectangular table.2 particular guests desire				
	to sit on one side of the table and 3 on the other side. The number of ways in which the sitting				
	arrangements can be made is				
	(a) 1732	(b) 1728	(c) 1730	(d) 1278.	
5.	A question paper contains 6 questions, each having an alternative. The number of ways an examine				
	can answer one or more questions is				
	(a) 720	(b) 728	(c) 729	(d) none of these	
6.	⁵¹ c ₃₁ is equal to				
	(a) ⁵¹ c ₂₀	(b) 2. ⁵⁰ c ₂₀	(c) 2. ⁴⁵ c ₁₅	(d) none of these	
7.	The number of words that can be made by rearranging the letters of the word APURNA so that				
	vowels and consonants appear alternate is				
	(a) 18	(b) 35	(c) 36	(d) none of these	
8.	The number of arrangement of the letters of the word `COMMERCE' is				
	(a) <u> 8</u>	(b) <u>8 / (222)</u>	(c) 7! (d) none of these	
9.	A candidate is required to answer 6 out of 12 questions which are divided into two groups				
	containing 6 questions in each group. He is not permitted to attempt not more than four from any				

	group. The number of choices are.						
	(a) 750	(b) 850	(c) 800	(d) none of these			
10.	The results of 8 matches (V	Vin, Loss or Draw) a	re to be predicted. The n	umber of different forecasts			
	containing exactly 6 correc	t results is					
	(a) 316	(b) 2 14	(c) 112	— d) none of these			
11.	The number of ways in whi	ch 8 different beads	be strung on a necklace	is			
	(a) 2500	(b) 2520	(c) 2250	(d) none of these			
12.	The number of different fac	ctors the number 75,	600 has is				
	(a) 120	(b) 121	(c) 119	(d) none of these			
13.	The number of 4 digit numbers formed with the digits 1, 1, 2, 2, 3, 4 is						
	(a) 100	(b) 101	(c) 201	(d) none of these			
14.	The number of ways a person can contribute to a fund out of 1 ten-rupee note, 1 five rupee note, 1						
	two-rupee and 1 one rupee	e note is					
	(a) 15	(b) 25	(c) 10	(d) none of these			
15.	The number of ways in which 9 things can be divided into twice groups containing 2,3, and 4 things						
	respectively is						
	(a) 1250	(b) 1260	(c) 1200	(d) none of these			
16.	$^{(n-1)}P_r + r.^{(n-1)}P_{(r-1)}$ is equa	ll to					
	(a) ⁿ C _r	(b) <u>n/([r n-r</u>)	(c) ⁿ p _r	(d) none of these			
17.	∟2n can be written as						
	(a) 2 ⁿ { 1.3.5(2n−1)} <u> n</u>	(b) 2 ⁿ [<u>n</u>	(c) {1.3.5(2n −1)}	(d) none of these			

18.	The n	The number of even numbers greater than 300 can be formed with the digits 1, 2, 3, 4, 5 without								
	repeti	repetition is								
	(a) 11	.0		(b) 11	2	(0	c) 111	(d) none of	these
19.	5 lette	ers are wri	tten and th	nere are fiv	ve letter-b	oxes. The i	number of	ways the l	etters can	be dropped
	into tl	into the boxes, are in each								
	(a) 11	.9		(b) 12	0	(0	c) 121	(d) none of	these
20.	ⁿ C ₁ +	ⁿ C ₂ + ⁿ C ₃ +	- ⁿ C ₄ +	+ ⁿ C _n equa	ls					
	(a) 2 ⁿ	-1		(b) 2 ⁿ		(0	c) 2 ⁿ +1	(d) none of	these
					A٨	ISWERS				
	Exe	rcise 5	5(A)							
	1	2	3	4	5	6	7	8	9	10
	С	b	а	b	с	В	d	а	b	с
	11	12	13	14	15	16	17	18	19	20
	В	b	с	b	a	С	а	b	d	a
	21	22	23							
	С	С	а							
	Exer	cise 5 (B)							
	1	2	3	4	5	6	7	8	9	10
	С	а	b	с	b	В	с	d	а	с
	11	12	13	14	15	16	17	18	19	20

Т

С	b	с	b	a	В	b	С	С	а
21									
А									
Exer	cise 5 (C)							
1	2	3	4	5	6	7	8	9	1
А	b	с	b	b	А	b	с	a	ł
11	12	13	14	15	16	17	18	19	2
С	а	с	b	b	А	b	С	d	c
21	22								
А	d								
1	2	3	4	5	6	7	8	9	10
			4 b	5 b	6 A	7 c	8 B&c	9 b	10 c
1	2	3							с
В	2 a	3 c	b	b	A	с	B & c	b	

	"KAR LO PAST APNI MUTHI ME"								
	Past Exam Questions								
	2006 – Nov					2			
[1]	The number of	The number of triangles that can be formed by choosing the vertices from a set of 12 points, seven of which							
	lie on the same	straight line, is:							
	(a) 185	(b) 175	(c) 115	(d) 10	5				
[2]	A code word i	s to consist of two Eng	lish alphabets follow	ved by two di	stinct numbers	s between 1 a	nd 9.		
	How many suc	h code words are ther	re?						
	(a) 6,15,800.	(b) 46,8	00 (c) 7,19	9,500	(d) 4,10,800				
[3]	A boy has 3 library tickets and 8 books of his interest in the library of these 8, he does not want to								
	borrow Mathe	matics part-ll unless M	lathematics part-1 is	s also borrow	ed? In how ma	ny ways can I	he		
	choose the thr	ee books to be borrow	ved?						
	(a) 41	(b) 51	(c) 61	(d) 71					
	2007 – Feb								
[4]	An examinatio	n paper consists of 12	questions divided ir	nto two parts	A and B. Part A	A contains 7			
	questions and	part B contains 5 ques	stions. A candidate is	required to a	attempt 8 ques	tions selectin	g at		
	least 3 from ea	ch part. In how many	maximum ways can	the candidate	e select the que	estions?			

NAH		NAL CLASSES		BUSINESS MATHEMATICS			
	(a) 35	(b) 175	(c) 210	(d) 420			
[5]	A Supreme Court Bench consists of 5 judges. In how many ways, the bench can give a majority						
	division?						
	(a) 10	(b) 5	(c) 15	(d) 16			
[6]	Given : P (7, k)	= 60 P(7, k - 3).	ſhen:				
	(a) k = 9	(b) k = 8	(c) k = 5	(d) $k = 0$			
[7]	The number of	f ways in which n	books can be arrange	ed on a shelf so that two particular boo	ks are not		
	together is :						
	(a) (n - 2) × (r	ı - 1)!	(b) (n - 2)	$\times (n + 1)!$			
	(c) (n - 1) × (r	n + 1)!	(d) (n - 2)	\times (n + 2)!			
	2007 – May						
[8]	In how many v	ways can the letter	rs of the word FAILU	RE be arranged so that the consonants	may		
	occupy only oc	ld positions?					
	(a) 576	(b) 476	(c) 376	(d) 276			
[9]	Five bulbs-of v	vhich three are de	fective are to be trie	l in two lights-points in a dark-room. Ii	1 how		
	many trials the	e room shall be lig	hted?				
	(a) 10	(b) 7	(c) 3	(d) None of these			
5 27	Page			FACULTY:CA MEGHA NAF	ТА		

[10]	In how many ways can a party of 4 men and 4 woman be seated at a circular table, so that no two							
	woman are ad	ljacent?						
	(a) 164	(b) 174	(c) 144	(d) 154				
[11]	The value of $\sum_{r=1}^{5} {}^{5}C_{r}$ is :							
	(a) 29	(b) 31	(c) 35	(d) 26				
	2007 – Aug							
[12]	If ${}^{6}P_{r} = 24 {}^{6}C_{r}$,	, then find f:						
	(a) 4	(b) 6	(c) 2	(d) 1				
[13]	Find the number of combinations of the letters of the word COLLEGE taken four together:							
	(a) 18	(b) 16.	(c) 20	(d) 26				
[14]	How many words can be formed with the letters of the word 'ORIENTAL so that A and E always							
	occupy odd pl	aces:						
	(a) 540	(b) 8640	(c) 8460	(d) 8450				
[15]	If ${}^{1000}C_{98} = {}^{999}$	C97 + , find x :						
	(a) 999	(b) 998	(c) 997	(d) 1000				
	2007 – Nov							
[16]	How many nu	mbers greater than a r	nillion can be formed	l with the digits 4, 5, 5, 0, 4, 5, 3?				

NA	HTA PROFESSION	IAL CLASSES	BUSINESS MATHEMATICS					
	(a) 260	(b) 360	(c) 280	(d) 380				
[17]	A building contractor needs three helpers out of ten men supply. In how many ways can these							
	selections take	place?						
	(a) 36	(b) 15	(c) 150	(d) 120				
	2008 – Feb							
[18]	There are three	e blue balls, four red ba	alls and five green ba	lls. In how many ways can they be arranged				
	in a row?							
	(a) 26,720	(b) 27,720	(c) 27,820	(d) 26,620				
[19]	If $C(n, r)$: $C(n, r + 1) = 1 : 2$ and $C(n, r + 1)$: $C(n, r + 2) = 2:3$, determine the value of n and r:							
	(a) (14, 4)	(b) (12,4)	(c) (14,6)	(d) None				
	2008 – June							
[20]	Six seats of arti	cled clerks are vacant	in a 'Chartered Accou	untant Firm'. How many different batches of				
	candidates can	candidates can be chosen out of ten candidates?						
	(a) 216	(b) 210	(c) 220	(d) None				
[21]	Six persons A, E	3, C, D, E and F are to b	be seated at a circular	table. In how many ways can this be done, if				
	A must always l	have either B or C on I	nis right and B must a	llways have either C or D on his right?				
	(a) 3	(b) 6	(c) 12	(d) 18				

	2008 - Dec	c					
[22]	If ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = {}^{n}C_{r-1}$ then find the value of 'n'						
	(a) 2	(b) 3	(c) 4	(d) 5			
[23]	How many siz	sing 10 distinct digits?					
	(a) 10 ⁶	(b) 6 ¹⁰	(c) ¹⁰ C ₆	(d) ${}^{10}P_6$			
[24]	In how many	ways a committee of 6 m	embers can be forme	d from a group of 7 boys and 4 girls having			
	at least 2 girl	s in the committee.					
	(a) 731	(b) 137	(c) 371	(d) 351			
	2009 – Jun	e					
[25]	Number of wa	ays of painting a face of a	cube by 6 colours is _	·			
	(a) 36	(b) 6	(c) 24	(d) 1			
[26]	If ¹⁸ Cr =	= ¹⁸ Cr + 2 find the value of	of ^r C ₅ .				
	(a) 55	(b) 50	(c) 56	(d) None of these			
[27]	7 books are to	be. arranged in such a wa	y so that two particula	ar books are always at first and last place.			
	Final the num	ber of arrangements.					
	(a) 60	(b) .120	(c) 240	(d) 480			
[28]	Find the num	ber of arrangements in w	hich the letters of the	e word 'MONDAY' be arranged so that the			
	words thus fo	ormed begin with 'M' and	do not end with 'N'.				

NA	HTA PROFESSIC	ONAL CLASSES		BUSINESS MATHEMATICS				
	(a) 720	(b)	120	(c) 96	(d) None.			
[29]	In how many	em are black, 6 red and 4 white ?						
	(a) 4084080	(b)	1 (c) 8048040	(d) None of these			
	2009 - Dec							
[30]	(n + 1)! = 20 (n - 1)!, find	l n					
	(a) 6	(b) 5	(c) 4	(d) 10				
[31]	Out of 4 gents	s and 6 ladies, a con	nmittee is to	be formed find	the number of ways the committee	e can b		
	formed such that it comprises of at least 2 gents and at least the number of ladies should be double of							
	gents.							
	(a) 94	(b) 132		(c) 136	(d) 104			
[32]	Six points are on a circle. The number of quadrilaterals that can be formed are:							
	(a) 30	(b) 360	(c) 15	(d) None of the above			
	2010 – Jun	е						
[33]	The number of	of ways of arrangin	g 6 boys and	4 girls in a row	so that all 4 girls are together is :			
	(a) 6!. 4!	(b) :	2 (7!.,4!)	(c) 7I.4!	(d) 2. (6!. 4!)			
[34]	How many nu is not allowed		ng 1000 car	ı be made from	the digits 1,2, 3, 4, 5, 6, 7, 8, 9 if re	petitio		
	(a) 364	(b)	585	(c) 728	(d) 819			

	2010 – Dec				
[35]	U U	ng 6 tall trees in a row. To pose for a photograph		children stand, one in a gap betwee	n the
	(a) 24	(b) 120	(c) 720	(d) 30	
[36]	¹⁵ C ₃ +15C ₁₃ is e	qual to:			
	(a) 16 _{c3}	(b) 30 _{c16}	(c) 15 _{c16}	(d) 15 _{c15}	
[37]	How many way be selected in t		can be made out of 1	5 players if one particular player is r	not to
	(a) 364	(b) 728	(c) 1,001	(d) 1,234	
	2011 - June				
[38]	Find the numb must always be	-	5 things taken out o	f 12 things, in which one particular	thing
	(a) 39,000	(b) 37,600	(c) 39,600	(d) 36,000	
	2011 – Dec				
[39]	In how many w	vays 3 prizes out of 5 can	be distributed amor	gst 3 brothers Equally?	
	(a) 10	(b) 45	(c) 60	(d) 120	
[40]	There are 12 q	uestions to be Answered	to be Yes or No. Hov	v many ways can these be Ans.ed?	
	(a) 1024	(b) 2048	(c) 4096	(d) None	
	2012 – June				
[41]		the word "VIOLENT' as mutations is	re arranged so that	the vowels occupy even place only	. The

NAI	HTA PROFESSIO	NAL CLASSES		BUSINESS MATHEMATICS		
	(a) 144	(b) 120	(c) 24	(d) 72		
[42]	If ${}^{n}P_{4} = 20$ (${}^{n}P$	P_2) then the value of	. 'n' is			
	(a) -2	(b) 7	(c) - 2 and 7 both	(d) None of these.		
	2012 – Dec					
[43]		ons and 6 schools w e to read in the same		any ways, he can send them t	o school, if two	
	(a) ⁶ P ₂	b) ⁶ P ₃	(c) 6 ³	(d) 3 ⁶		
[44]	How many pe not be separat		formed from the letters o	f the word "DRAUGHT', if bo	th vowels may	
	(a) 720	(b) 1,440	(c) 140	(d) 1,000		
[45]	If ${}^{13}C_6 + 2 {}^{13}C_5$	$S + {}^{13}C_4 = {}^{15}C_X$ then	, x =			
	(a) 6	(b) 7	(c) 8	(d) 9		
	2013 – June	9				
[46]	A polygon has	44 diagonals then	the number of its sides are	2:		
	(a) 8	(b) 9	(c) 10	(d) 11		
[47]	The number of occupy even p		be formed out of the lett	ers of the word "ARTICLE" s	so that vowels	
	(a) 36	(b) 144	(c) 574	(d) 754		
[48]	Number of wa	ys of shaking hand	s in a group of 10 persons	shaking hands to each other	are:	
	(a) 45	(b) 54	(c) 90	(d) 10		

	2013 – Dec						
[49]	If ${}^{15}C_{3r} = {}^{15}C_{r+3}$	s, then 'r' is equal is					
	(a) 2	(b), 3	(c) 4	(d) 5			
[50]	How many diff	erent words can be for	med with the lette	rs of the word "LIB	ERTY"		
	(a) 4050	(b) 5040	(c) 5400	(d) 4500			
[51]	In how many w (a) ³⁶⁵ C ₃	vays can a family consis (b) ^{366°} C3 – 3			hdays in a leap year (d) ³⁶⁶ C3		
	2014 – June						
[52]	If ${}^{1000}C_{98} = {}^{999}C_{98}$	C ₉₇ + ^x C ₉₀₁ , then the val	ue of x will be :				
	(a) 999	(b) 998	(c) 997	(d) None of	f these.		
[53	If six times the number of permutations of 'n' items taken 3 at a time is equal to seven times the						
	number of peri	mutation of (n - 1) item	ns taken 3 at a time	, then the value of '	n' will be:		
	(a) 7	(b) 9	(c) 13	(d) 21			
	2014 – Dec						
[54]	If ${}^{6}P_{r} = 360$, th	en the value of 'r' is:					
	(a) 5	(b) 3	(c) 4	(d) None of	f these.		
[55]	There are 5 bo	oks on English, 4 Books	s on Tamil and 3 b	ooks on Hindi. In ho	ow many ways can these		
	books be place	d on a shelf if the book	s on the same subj	ects are to be toget	her?		

NA	HTA PROFESSION	AL CLASSES	BUSINESS MATHEMATICS						
	(a) 1,36,800	(b) 1,83,600	(d) 1,63,800						
[56]	5 Men and 4 Women to sit in a row in such a manner that the woman always occupy the even place								
	The number of s	uch arrangement will	be:						
	(a) 126	(b) 1056	(c) 2080	(d) 2880					
	2015 – June								
[57]	-	umbers that can be for number and are great		digits 1,2, 3, 5, 7, 8, 9 such t	hat no digit is				
	(a) 120	(b) 480	(c) G00	(d) 840					
[58]	A person has ten friends of whom six are relatives. If he invites five guests such that three of them are his relatives, then the total number of ways in which he can invite them are:								
	(a) 30	(b) 60	(c) 120	(d) 75					
[59]	A student has three books on computer, three books on Economics and five books on Commerce. If								
	these books are ways:	to be arranged subje	ect wise, then these c	an be placed on a shelf in t	he number of				
	(a) 25290	(b) 25920	(c) 4230	(d) 4320					
	2015 - Dec								
[60]	An examination	paper with 10 questio	ons consists of 6 quest	ions in mathematics and 4 qu	estions in				
	statistic part. At done?	least one question fr	om each part is to be	attempted in how many way	ys can this be				

NA	HTA PROFESSIOI	NAL CLASSES		BUSINESS MATHEMATICS					
	(a) 1024	(b) 945	(c) 1005	(d) 1022					
[61]	If ${}^{n}p_{r} = 720$ an	d ${}^{\mathrm{n}}\mathrm{c}_{\mathrm{r}}=120$, then valu	e of V is:						
	(a) 4	(b) 5	(c) 6	(d) 3					
[62]	There are 6 men and 4 women in a group, then the number of ways in which a committee of 5 persons								
	can be formed	can be formed of them, if the committee is to include at least 2 women are:							
	(a) 180	(b) 186	(c) 120	(d) 105					
	2016 – June	,							
[63]	In how many ways can a selection of 6 out of 4 teachers and 8 students be done so as to include at least two teachers?.								
	(a) 220	(b) 672	(c) 596	(d) 968					
[64]	There are 10 students in a class including 3 girls. The number of ways to arrange them in a row when								
	any two girls out of three never comes together:								
	(a) ⁸ P ₃ 1 <u>7</u>	(b) ³ P ₃ <u> 7</u>	(c) ⁸ P ₃ <u>10</u>	(d) None of these.					
	2016 – June								
[65]	The maximum number of points of inter section of 10 circles will be:								
	(a) 2	(b) 20	(c) 90	(d) 180					
	2016 – Dec								

[66]	If $n+1C_{r+1}: nC_r: n-1C_{r-1} = 8:3:1$, then n is equal to:							
	(a) 20	(b) 16	(c) 10	(d) 15				
[67]	The number of numbers between 1,000 and 10,000, which can be formed by the digits 1,2,3, 4, 5, 6 without repetition is:							
	(a) 720	(b) 180	(c) 360	(d) 540				
[68]	The number of	ways in which 4 person	is can occupy 9 vacan	t seats is:				
	(a) 6048	(b) 3024	(c) 1512	(d) 4536				
	2017 – June							
[69]	If ${}^{10}C_3 + 2.{}^{10}C_4 + {}^{10}C_5 = {}^{n}C_5$ then value of n is:							
	(a) 10	(b) 11	(c) 12	(d) 13				
[70]	The number of parallelograms, formed from a set of six parallel lines intersecting another set of four parallel lines is:							
	(a) 360	(b) 90	(c) 180	(d) 45				
[71]	The number of words which can be formed by letters of the word 'ALLAHABAD' is:							
	(a) 7560	(b) 3780	(c) 30240	(d) 15120				

ANSWERS

1	•												
	A	11	В	21	D	31	В	41	A	51	С	61	D
2	В	12	A	22	В	32	С	42	В	52	A	62	В
3	A	13	A	23	D	33	с	43	В	53	D	63	В
4	D	14	В	24	с	34	В	44	В	54	С	64	A
5	D	15	A	25	В	35	В	45	A	55	С	65	С
6	С	16	В	26	С	36	A	46	D	56	D	66	D
7	A	17	D	27	С	37	A	47	В	57	С	67	С
8	A	18	В	28	С	38	С	48	A	58	С	68	В
9	В	19	A	29	A	39	С	49	В	59	В	69	С
10	С	20	В	30	С	40	С	50	В	60	В	70	В
												71	A

SEQUENCE & SERIES- ARITHMETIC 9 E **PROGRESSION & GEOMETRIC** PROGRESSION ARITHMETIC PROGRESSION (A.P.) Ex. 1 Find the 7th term of the A.P. 8, 5, 2, -1, -4,.... Here a = 8, d = 5 - 8 = -3Sol.: Now $t_7 = 8 + (7 - 1) d$ = 8 + (7 - 1)(-3)= 8 + 6 (-3)= 8 - 18= -10Which term of the AP $\frac{3}{\sqrt{7}}$, $\frac{4}{\sqrt{7}}$, $\frac{5}{\sqrt{7}}$, ..., is $\frac{17}{\sqrt{7}}$? Ex. 2 Sol.: If Sth and 12th terms of an A.P. are 14 and 35 respectively, find the A.P. Ex. 3: Sol.:

Ex. 4:	Find the arithmetic mean between 4 and 10.
Sol.:	We know that the Λ M of a θ h is $-(a + b)/2$
301.:	We know that the A.M. of a & b is = $(a + b)/2$
	Hence, The A. M between 4 & $10 = (4 + 10)/2 = 7$
Ex. 5:	Insert 4 arithmetic means between 4 and 324.
Sol.:	

	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA
	EXERCISE 6 (A)
	Choose the most appropriate option (a), (b) , (c) or (d).
1.	The nth element of the sequence 1, 3, 5, 7,is
	(a) n (b) 2n - 1 (c) 2n +1 (d) none of these
2.	The nth element of the sequence –1, 2, –4, 8 is
	(a) $(-1)^{n}2^{n-1}$ (b) 2^{n-1} (c) 2^{n} (d) none of these
3.	$\sum_{i=4}^{7} \sqrt{2i-1}$ can be written as
	(a) $\sqrt{7} + \sqrt{9} + \sqrt{11} + \sqrt{13}$ (b) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{12}\sqrt{13}$
	(c) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{12}\sqrt{13}$ (d) none of these
4.	The sum to ∞ of the series –5, 25, –125 , 625, can be written as
	(a) $\sum_{k=1}^{\infty} (-5)^k$ (b) $\sum_{k=1}^{\infty} (5)^k$ (c) $\sum_{k=1}^{\infty} -5^k$ (d) none of these
5.	The first three terms of sequence when nth term tn is $n^2 - 2n$ are
	(a) -1, 0, 3 (b) 1, 0, 2 (c) -1, 0, -3 (d) none of these
6.	Which term of the progression –1, –3, –5, Is –39
	(a) 21 st (b) 20 th (c) 19 th (d) none of these
7.	The value of x such that $8x + 4$, $6x - 2$, $2x + 7$ will form an AP is
	(a) 15 (b) 2 (c) 15/2 (d) none of the these
8.	The m th term of an A. P. is n and nth term is m. The r th term of it is
	(a) $m + n + r$ (b) $n + m - 2r$ (c) $m + n + r/2$ (d) $m + n - r$
9.	The number of the terms of the series $10 + 9\frac{2}{3} + 9\frac{1}{3} + 9 + \dots$ will amount to 155 is
	(a) 30 (b) 31 (c) 32 (d) none of these

10.	The nth term of the series whose sum to n terms is $5n^2 + 2n$ is								
	(a) 3n – 10	(b) 10n – 2	(c) 10n - 3	(d) none of these					
11.	The 20 th term of the progression 1, 4, 7, 10is								
	(a) 58	(b) 52	(c) 50	(d) none of these					
12.	The last terr	m of the series 5, 7,	9, to 21 terms is						
	(a) 44	(b) 43	(c) 45	(d) none of these					
13.	The last term	m of the A.P. 0.6, 1.2	2, 1.8, to 13 terms	is:					
	(a) 8.7	(b) 7.8	(c)	c) 7.7 (d) none of these					
14.	The sum of	the series 9, 5, 1,	to 100 terms is						
	(a) -18,900	(b) 18,900	(c) 19,900	(d) none of these					
15.	The two arit	thmetic means betw	veen –6 and 14 is						
	(a) 2/3, 1/3	(b) $2/3, 7\frac{1}{3}$	(c) -2/3,	$-7\frac{1}{3}$ (d) none of these					
16.	The sum of	three integers in AP	is 15 and their pro	duct is 80. The integers are					
	(a) 2, 8, 5	(b) 8, 2, 5	(c) 2, 5, 8	3 (d) 8, 5, 2					
17.	The sum of	n terms of an AP is :	$3n^2 + 5n$. The series	s is					
	(a) 8, 14, 20), 26 (b) 8, 22, 4	2, 68 (c) 22, 68	8, 114, (d) none of these					
18.	The number	r of numbers betwe	en 74 and 25,556 di	ivisible by 5 is					
	(a) 5,090	(b) 5,097	(c) 5,095	(d) none of these					
19.	The p th term	n of an AP is (3p – 1)/6. The sum of the	first n terms of the AP is					
	(a) n (3n +	1) (b) n/12 (3	3n + 1) (c) n/12	(3n-1) (d) none of these					
20.	The arithme	etic mean between 3	33 and 77 is						
	(a) 50	(b) 45	(c) 55	(d) none of these					
21.	The 4 arithr	netic means betwee	en –2 and 23 are						

NA	.hta professiona	l Classes	BUSINESS MATHEMATICS					
	(a) 3, 13, 8, 18	(b) 18, 3, 8, 13	(c) 3, 8, 1	3, 18(d) none of these				
22.	The first term of an A.P is 14 and the sums of the first five terms and the first ten terms are equal is							
	magnitude but op	pposite in sign. The 3	rd term of the AP i					
	(a) $6\frac{4}{11}$	(b) 6	(c) 4/11	(d) none of thes				
23.	The sum of a cert	ain number of terms	s of an AP series –8, -	6, –4, is 52. The number of terms is				
	(a) 12	(b) 13	(c) 11	(d) none of these				
24.	The first and the	last term of an AP ar	e –4 and 146. The su	m of the terms is 7171. The number of				
	terms is							
	(a) 101	(b) 100	(c) 99	(d) none of these				
25.	The sum of the se	eries 3 ½ + 7 + 10 ½	$2 + 14 + \dots$ to 17 term	ns is				
	(a) 530	(b) 535	(c) 535 ½	(d) none of these				

GEOMETRIC PROGRESSION (G.P.)

Ex. 1:	Which term of the progression 1, 2, 4, 8, is 256?
Sol.:	$a = 1, r = 2/1 = 2, n = ? t_n = 256$
	$t_n = ar^{n-1}$
	or $256 = 1 \times 2^{n-1}$ i.e., $2^8 = 2^{n-1}$ or, $n - 1 = 8$ i.e., $n = 9$
	Thus 9 th term of the G. P. is 256
Ex. 2:	Insert 3 geometric means between 1/9 and 9.
Sol.:	
Ex. 3:	Find the G.P where 4th term is 8 and 8th term is 128/625
Sol.:	

	<u>Sum of first n terms of a G P Series</u>
Ex. 1:	Find the sum of 1 + 2 + 4 + 8 + to 8 terms.,
Sol.:	Here a = 1, r = 2/1 = 2 , n = 8
	Let $S = 1 + 2 + 4 + 8 + \dots$ to 8 terms
	$= 1 (2^8 - 1) / (2 - 1) = 2^8 - 1 = 255$
Ex. 2:	Find the sum to n terms of 6 + 27 + 128 + 629 +
Sol.:	Required Sum = $(5 + 1) + (5^2 + 2) + (5^3 + 3) + (5^4 + 4) +$ to n terms
	$= (5 + 52 + 53 + \dots + 5n) + (1 + 2 + 3 + \dots + n \text{ terms}$
	$= \{5 (5^{n} - 1) / (5 - 1)\} + \{n (n + 1) / 2\}$
	$= \{5 (5^{n} - 1) / 4\} + \{n (n + 1) / 2\}$
Ex. 3:	Find the sum to n terms of the series 3 + 33 + 333 +
Sol.:	

I

Ex. 4:	Find the sum of n terms of the series 0.7 + 0.77 + 0.777 + to n terms
Sol.:	Let S denote the required sum.
	i.e. $S = 0.7 + 0.77 + 0.777 + \dots$ to n terms
	$= 7 (0.1 + 0.11 + 0.111 + \dots \text{ to n terms})$
	$=\frac{7}{9}(0.9+0.99+0.999+$ to n terms)
	$=\frac{7}{9}\left\{(1-1/10) + (1-1/10^{2}) + (1-1/10^{3}) + + (1-1/10^{n})\right\}$
	$=\frac{7}{9}\{n-1/10\} (1+1/10+1/10^2 + \dots + 1/10^{n-1})\}$
	So $S = \frac{7}{9} \{n - \frac{1}{10}\} (1 - 1/10^n) / (1 - 1/10) \}$
	$=\frac{7}{9}\{n - (1 - 10^{-n}) / 9)\}$
	$=\frac{7}{81}\{9n-1+10^{-n}\}$
Ex. 5:	Evaluate 0.2175 using the sum of an infinite geometric series.
Sol.:	0.2175 = 0.2175757575
	$0.2175 = 0.21 + 0.0075 + 0.000075 + \dots$

	$= 0.21 + 75(1 + 1/10^{2} + 1/10^{4} +) / 104$
	$= 0.21 + 75 \left\{ \frac{1}{1 - \frac{1}{10^2}} \right\} $
	$= 0.21 + (75/10^4) \times 10^2 / 99$
	$=21/100 + (\frac{3}{4}) \times (1/99)$
	= 21/100 + 1/132
	= (693 + 25)/3300 = 718/3300 = 359/1650
Ex. 6:	Find three numbers in G. P whose sum is 19 and product is 216.
Sol.:	Let the 3 numbers be a/r, a, ar.
	According to the question $a/r \times a \times ar = 216$
	or $a^3 = 6^3 => a = 6$
	So the numbers are 6/r, 6, 6r
	Again $6/r + 6 + 6r = 19$
	or $6/r + 6r = 13$ or $6 + 6r^2 = 13r$
	or $6r^2 - 13r + 6 = 0$ or $6r^2 - 4r - 9r + 6 = 0$
	or $2r(3r-2) - 3(3r-2) = 2$ or $(3r-2)(2r-3) = 0$ or, $r = 2/3$, $3/2$
	So the numbers are $6/(2/3), 6, 6 \times (2/3) = 9, 6, 4$
	or $6/(3/2)$, 6 , $6 \times (3/2) = 4$, 6 , 9

AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA EXERCISE 6 (B) Choose the most appropriate option (a), (b), (c) or (d) The 7th term of the series 6, 12, 24,.....is 1. (a) 384 (b) 834 (c) 438 (d) none of these t8 of the series 6, 12, 24,...is 2. (d) none of these (a) 786 (b) 768 (c) 867 3. t12 of the series -128, 64, -32,is (a) - 1/16(b) 16 (c) 1/16 (d) none of these 4. The 4th term of the series 0.04, 0.2, 1, ... is (b) 1/2 (c) 5 (d) none of these (a) 0.5 The last term of the series 1, 2, 4,.... to 10 terms is 5. (b) 256 (d) none of these (a) 512 (c) 1024 The last term of the series 1, -3, 9, -27 up to 7 terms is 6. (a) 297 (b) 729 (c) 927 (d) none of these 7. The last term of the series x2, x, 1, to 31 terms is (a) x²⁸ (c) $1/x^{28}$ (d) none of these (b) 1/x 8. The sum of the series -2, 6, -18, to 7 terms is (a) -1094 (b) 1094 (c) - 1049 (d) none of these 9. The sum of the series 243, 81, 27, to 8 terms is (b) $\left(36\frac{13}{30}\right)$ (c) $36\frac{1}{9}$ (a) 36 (d) none of these The sum of the series $\frac{1}{\sqrt{3}} + 1 + \frac{3}{\sqrt{3}} + \cdots$ to 18 terms 10.

NAH	ta professio	ONAL CLASSES			BUSINESS MATHEMATICS					
	(a) 9841 $\frac{(1+1)}{\sqrt{2}}$	$\frac{\sqrt{3}}{\sqrt{3}}$ (b) 9841	(c) $\frac{9841}{\sqrt{3}}$	(d)None of these					
11.	The second term of a G P is 24 and the fifth term is 81. The series is									
	(a) 16, 36, 2	4, 54, (b) 24, 36,	53, (c) 16, 2	4, 36, 54,	(d) none of these					
12.	The sum of 3 numbers of a G P is 39 and their product is 729. The numbers are									
	(a) 3, 27, 9	(b) 9, 3, 27	(c) 3, 9,	27	(d) none of these					
13.	In a G. P, the	e product of the first	three terms 27/8	. The middl	e term is					
	(a) 3/2	(b) 2/3	(c) 2/5	(d) none of these					
14.	If you save 1	paise today, 2 pais	e the next day 4 pa	aise the suc	ceeding day and so on, then your total					
	savings in tv	vo weeks will be								
	(a) Rs. 163	(b) Rs. 183	(c) Rs. 1	63.83	(d) none of these					
15.	Sum of n ter	rms of the series 4 +	- 44 + 444 + is							
	(a) 4/9 { 10	$/9(10^{n}-1)-n$	(b) 10/9 (10 ⁿ -	-1) -n	(c) $4/9(10^{n}-1) - n$ (d) none of these					
16.	Sum of n ter	ms of the series 0.1	+ 0.11 + 0.111 +	is						
	(a) 1/9 {n -	$(1-(0.1)^n)$ } (b)	$1/9 \{n - (1 - (0.1)^n)\}$)/9} (c) n	$-1 - (0.1)^{n}/9$ (d) none of these					
17.	The sum of t	the first 20 terms of	a G. P is 244 times	s the sum o	f its first 10 terms. The common ratio is					
	(a) ± 3	(b) ±3	(c) 3	(d) none of these					
18.	Sum of the s	eries $1 + 3 + 9 + 2$	7 +is 364. The n	umber of t	erms is					
	(a) 5	(b) 6	(c) 11	(d) n	one of these					
19.	The product	c of 3 numbers in G	P is 729 and the su	m of squar	es is 819. The numbers are					
	(a) 9, 3, 27	(b) 27, 3, 9	(c) 3, 9, 27	(d) n	one of these					
20.	The sum of t	the series $1 + 2 + 4$	+ 8 + to n term							
	(a) 2 ⁿ –1	(b) 2n – 1	(c) 1/2 ⁿ	- 1	(d) none of these					
21.	The sum of t	the infinite GP 14, –	2, + 2/7, - 2/49, -	+ is						

	ITA PROFESSIONAL (CLASSES	BUSINESS MATHEMATICS						
	(a) $4\frac{1}{12}$	(b) $12\frac{1}{4}$	(c) 12	(d) none of these					
2.	The sum of the infinite G. P. 1 - 1/3 + 1/9 - 1/27 + is								
	(a) 0.33	(b) 0.57	(c) 0.75	(d) none of these					
3.	The number of tern	ns to be taken s	so that $1 + 2 + 4 + 8 + 1$	- will be 8191 i s					
	(a) 10	(b) 13	(c) 12	(d) none of these					
24.	Four geometric me	ans between 4	and 972 are						
	(a) 12, 36, 108, 324	(b) 12, 24, 10	8, 320 (c) 10, 36	5, 108, 320 (d) none of these					
	ILLUSTRATION	<u>S:</u>							
	A person is employed	d in a company	ı at Rs. 3000 per mon	oth and he would get an increase of Rs. I	100				
	per year. Find the to	otal amount wh	ich he receives in 25	years and the monthly salary in the last	ţ				
	year								
SOL.									
2.				r annum. The principal and the interest a					

	to be paid in t	he 10 monthly instaln	nents. If each instalm	ent is double the preceding	g one, find the					
	value of the fi	rst and the last instal	ment.							
SOL.	Interest to b	be paid = $2.76 \times 10 \times$	$8000 / 100 \times 12 = \text{Rs}$. 184						
	Total amou	nt to be paid in 10 mor	nthly instalment is Rs.	(8000 + 184) = Rs. 8184						
	The instalm	ents form a G P with c	ommon ratio 2 and so	$Rs. 8184 = a (2^{10} - 1) / ($	2 – 1),					
	a = 1st insta	alment								
	Here a = Rs	. 8184 / 1023 = Rs. 8								
	The last instalr	ment = ar $^{10-1} = 8 \times 2$	$2^9 = 8 \times 512 = \text{Rs. } 409$	96						
	AGAR DA	RR HAI BHAGA	NA, TO MATH	IS HAI BANANA						
	EXERCISE	6 (C)								
	Choose th	e most approp	riate option (a), (b), (c) or (d).	- D					
1.	Three numbers are in AP and their sum is 21. If 1, 5, 15 are added to them respectively, they form a G.									
	P. The number	s are								
	(a) 5, 7, 9	(b) 9, 5, 7	(c) 7, 5, 9	(d) none of these						
2.	The sum of $1 + 1/3 + 1/32 + 1/33 + + 1/3^{n-1}$ is									
	(a) 2/3	(b) 3/2	(c) 4/5	(d) nor	ne of these					
3.	The sum of the	infinite series $1 + 2/3$	3 + 4/9 + is							
	(a) 1/3	(b) 3	(c) 2/3	(d) none of th	ese					
4.	The sum of the	first two terms of a G	.P. is 5/3 and the sum	to infinity of the series is 3	8. The common					
	ratio is									

NA	AHTA PROFESSI	onal classes			BUSINESS MATHEMATICS					
	(a) 1/3	(b) 2/3		(c) – 2/3	(d) none of these					
5.	If p, q and r a	are in A.P. and x, y,	z are in G.P. th	en x ^{q-r} . y ^{r-p} . z ^{p-q} is eq	jual to					
	(a) 0	(b) -1	(c) 1	(d) none	of these					
6.	The sum of t	hree numbers in G	.P. is 70. If the	two extremes by mu	tiplied each by 4 and the mean by 5					
	the products	s are in AP. The nur	nbers are							
	(a) 12, 18, 4	0 (b) 10, 20	0, 40	(c) 40, 20, 10	(d) none of these					
7.	The sum of 3	3 numbers in A.P. is	s 15. If 1, 4 and	19 be added to them	respectively, the results are is G. P					
	The number	's are								
	(a) 26, 5, -1	6 (b) 2, 5, 8	(c) 5, 8, 2	(d) none	of these					
8.	Given x, y, z	are in G.P. and $x^p =$	$y^{q} = z^{\sigma}$, then	$1/p$, $1/q$, $1/\sigma$ are in						
	(a) A.P.	(b) G.P.	(c)	Both A.P. and G.P.	(d) none of these					
9.	If the terms 2x, (x+10) and (3x+2) be in A.P., the value of x is									
	(a) 7	(b) 10	(c) 6	(d) none	of these					
10.	If A be the A.M. of two positive unequal quantities x and y and G be their G. M, then									
	(a) A < G	(b)) A>G	(c) $A \ge G$	(d) $A \leq G$					
11.	The A.M. of two positive numbers is 40 and their G. M. is 24. The numbers are									
	(a) (72, 8)	(b)) (70, 10)	(c) (60, 20)	(d) none of these					
12.	Three numbers are in A.P. and their sum is 15. If 8, 6, 4 be added to them respectively, the numbers									
	are in G.P. The numbers are									
	(a) 2, 6, 7	(b)) 4, 6, 5	(c) 3, 5, 7	(d) none of these					
13.	The sum of f	our numbers in G.	P. is 60 and the	e A.M. of the first and	the last is 18. The numbers are					
	(a) 4, 8, 16, 3	32 (b)) 4, 16, 8, 32	(c) 16, 8, 4, 20	(d) none of these					
14.	A cum of Do		201 . 1	1.1	lment is Rs. 10 more than the					

	proceeding installm	ent. The value o	of the 1st ins	stalment is							
	(a) Rs. 36	(b) Rs. 30	(c) F	Rs. 60	(d) none o	f these					
15.	The sum of 1.03 + (The sum of $1.03 + (1.03)^2 + (1.03)^3 + \dots$ to n terms is									
	(a) 103 {(1.03) ⁿ – 1	} (b) 103/3 {(1.	03) ⁿ – 1}	(c) (1.0	3) ⁿ –1	(d) n	one of these				
16.	If x, y, z are in A.P. a	nd x, y, (z + 1) a	re in G.P. th	ien							
	$(x-z)^2 = 4x$	(b) $z^2 = (x - y)^2$)	(c) $z = z$	к – у	(d) n	one of these				
17.	The numbers x, 8, y	are in G.P. and t	he number:	s x, y, –8 ar	e in A.P. The valu	ie of x an	nd y are				
	(a) (-8, -8)	(b) (16, 4)	(c) (8, 8)	(d) none o	f these					
18.	The nth term of the	series 16, 8, 4,	in 1/2 ¹⁷ . T	'he value o	f n is						
	(a) 20 (b) 22	L	(c) 22	(d) none of these						
19.	The sum of n terms of a G.P. whose first terms 1 and the common ratio is $1/2$, is equal to $1\frac{127}{128}$ The										
	value of n is										
	(a) 7 (b) 8		(c) 6	(d) none of these						
20.	T4 of a G.P. in x, t10	T_4 of a G.P. in x, $t10 = y$ and $t16 = z$. Then									
	(a) $x^2 = yz$	(b) $z^2 = xy$	(c) y	2 = zx	(d) none o	f these					
21.	If x, y, z are in G.P., then										
	(a) $y^2 = xz$	(b) y ($z^2 + x^2$)	$) = x (z^{2} +$	y ²)	(c) $2y = x - x - x - x - x - x - x - x - x - x$	⊦z	(d) none of these				
22.	The sum of all odd numbers between 200 and 300 is										
	(a) 11,600	(b) 12,490	(c) 1	2,500	(d)	24,750					
23.	The sum of all natur	al numbers betv	ween 500 a	nd 1000 w	hich are divisible	by 13, i	S				
	(a) 28,405	(b) 24,805	(c) 2	8,540	(d)	none of	these				
24.	If unity is added to t	he sum of any n	umber of te	erms of the	A.P. 3, 5, 7, 9,	the resu	ilting sum is				
	(a) 'a' perfect cube	(b) 'a' perfect :	square	(c) 'a' n	umber	(d) n	one of these				

25.	The sum of all natural numbers from 100 to 300 which are exactly divisible by 4 or 5 is										
	(a) 10,200	(b) 15,200	(c) 16,200	(d) none of these							
26.	The sum of all natural numbers from 100 to 300 which are exactly divisible by 4 and 5 is										
	(a) 2,200	(b) 2,000	(c) 2,220	(d) none of these							
27.	A person pays Rs. 97	5 by monthly instalment	each less then the former	by Rs. 5. The first instalment							
	is Rs. 100. The time b	y which the entire amou	nt will be paid is								
	(a) 10 months	(b) 15 months	(c) 14 months	(d) none of these							
28.	A person saved Rs. 16	5,500 in ten years. In eac	h year after the first year h	e saved Rs. 100 more than he							
	did in the preceding y	did in the preceding year. The amount of money he saved in the 1st year was									
	(a) Rs. 1000	(b) Rs. 1500	(c) Rs. 1200	(d) none of these							
29.	At 10% C.I. p.a., a sum of money accumulate to Rs. 9625 in 5 years. The sum invested initially is										
	(a) Rs. 5976.37	(b) Rs. 5970	(c) Rs. 5975	(d) Rs. 5370.96							
30.	The population of a c	The population of a country was 55 crore in 2005 and is growing at 2% p.a. C.I. the population is the									
	year 2015 is estimated as										
	(a) 5705	(b) 6005	(c) 6700	(d) none of these							

									ANS	WER	S						
E	xei	rcise	A														
1	l.	(b)		2.	(a)	3.	(a)	4.	(a)	5.	(a)	6.	(b)	7.	(c)	8.	(d)
9).	(a),	(b)	10	(c)	11.	(a)	12.	(c)	13.	(b)	14.	(a)	15.	(b)	16.	(c), (d
1	17.	(b)		18.	(b)	19.	(b)	20.	(c)	21.	(c)	22.	(a)	23.	(b)	24.	(a)
2	25.	(c)															
E	xei	rcise	B														
	1.	(a)		2.	(b)	3.	(c)	4.	(c)	5.	(a)	6.	(b)	7	. (c)) (8. (a
1	9.	(d)		10.	(a)	11	. (c)	12	2 . (c)	13	. (a)	14	I . (c)	1	5. (a)	16. (b
í.	17.	(a)		18.	(b)	19	. (c)	20). (a)	21	. (b)	22	2. (c)	2	3. (b) 1	24. (a
E	xei	rcise	С														
í.	1.	(a)		2.	(d)	3.	(b)	4.	(b),	(c) 5 .	(c)	6.	(b),	(c)7.	(a),	(b) 8	8. (a)
9	9.	(c)		10.	(b)	11	. (a)	12	. (c)	13.	(a)	14	. (d)	15	i. (b)	1	6. (a)
Ĩ	17.	(a),	(b)	18.	(c)	19	. (b)	20	. (c)	21.	(a)	22	. (c)	2 3	. (a)	2	4 . (b)
1	25.	(c)		26.	(a)	27	. (b)	28	. (c)	29.	(a)	30	. (d)				
_																	
+																	
\square																	

		"KAR LO P	AST APNI MUT	HI ME"							
		<u>Pas</u>	t Exam Questior	<u>15</u>	VA -						
	2006 - Nov										
1.	The sum of all na	atural numbers betwee	en 100 and 1000 whic	h are multiple of 5 is:	2						
	(a) 98,450	(b) 96,450	(c) 97,450	(d) 95,450							
2.	Find n such that	$\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$ may be the g	geometric mean betwe	een a and b :							
	(a) 1/2	(b) 1	(c) -1/2	(d) 0							
3.	The sum of an A	P, whose first term is ·	- 4 and last term is 14	6 is 7171. Find the valu	ie of n.						
	(a) 99	(b) 100 +	(c) 101	(d) 102							
ŀ.	If the first term o	of a G.P exceeds the see	cond term by 2 and th	e sum to infinity is 50,	the series is :						
	(a) 10,8, ³² / ₅ ,	(b) 10, 8, ⁵ / ₂ ,	(c) $10, \frac{10}{3}, \frac{10}{9}, \dots$	(d) None							
	2007 – Feb										
5.	\sum/n^2 defines										
	(a) $\frac{n(n+1)(2n+1)}{6}$	(b)	$\frac{n(n+1)}{2}$ (C)	$\left[\frac{n(n+1)}{2}\right]^2 \qquad (d) N$	lone of these						
).	Divide 30 into fiv	Divide 30 into five parts in A.P., such that the first and last parts are in the ratio 2 :3 :									
	(a) $\frac{24}{5}, \frac{27}{5}, 6, \frac{33}{5}, \frac{36}{5}$	(b) $6, \frac{36}{5}, \frac{33}{5}, \frac{24}{5}, \frac{27}{5}$	$(c)\frac{27}{5},\frac{24}{4},\frac{36}{5},\frac{33}{5},6$	6 (d) $6, \frac{24}{5}, \frac{27}{5}, \frac{27}{5}$	33 36 5' 5						
7.	If $a^{1/x} = b^{1/y} = c^1$	^{L/z} and a, b, c are in G.P	; the x, y, z are in :								
	(a) A.P.	(b) G.P.	(c) Both (a) & (b)	(d) None							
3.	Find the sum to	n terms of the series : '	7 + 77 + 777 +	to n terms:							
	$(a)\frac{7}{9}(10^{n+1}-10)$	7n	7	$(1 - 10) + \frac{7n}{9}$							

	(c) $\frac{7}{81}$ (10 ⁿ⁺¹ - 10)	$-\frac{7n}{9}$	(d) $\frac{1}{8}$	$\frac{7}{31}(10^{n+1} - 10) + \frac{7n}{9}$						
	2007 – May									
9.	Find the sum of a	ll natural numbers	between 250 and	1,000 which are exactly	v divisible by 3:					
	(a) 1,56,375	(b) 1,56,357	(c) 1,65,37	5 (d) 1,65,357						
10.	If the pth term of	a G.P. is x and the q	th term is y, then	find the nth term:						
	(a) $\left[\frac{x^{(n-q)}}{y^{(n-p)}}\right]$	(b) $\left[\frac{x^{(n-q)}}{y^{(n-p)}}\right]^{(p-q)}$	(c) 1	$(d) \left[\frac{x^{(n)}}{y^{(n)}} \right]$	$\left[\frac{-q}{p-q}\right]$					
11.	A person pays Rs.	. 975 in monthly ins	talments, each in	stalment is less than for	mer by Rs. 5. The					
	amount of first instalment is Rs. 100. In what time will the entire amount be paid?									
	(a) 26 months	(b) 15 m	onths	(c) Both (a) & (b)	(d) 18 months					
	2007 – Aug									
12.	If the sum of n ter	rms of an A.P. is (3n	² - n) and its com	mon difference is 6, the	n its first term is :					
12.	If the sum of n ter (a) 3 (b)		² - n) and its com c) 4 (d)		n its first term is :					
	(a) 3 (b)		c) 4 (d)	1	n its first term is :					
	(a) 3 (b)	2 (0	c) 4 (d)	1	n its first term is :					
13.	(a) 3 (b) Find the sum of th (a) 8970	2 (d ne series : 2 + 7 + 1 (b) 8870	c) 4 (d) 2+ (c) 7630	1 297.						
12. 13. 14.	(a) 3 (b) Find the sum of th (a) 8970 A certain bail whe	2 (d ne series : 2 + 7 + 1 (b) 8870 en dropped to the g	c) 4 (d) 2+ (c) 7630 round rebounds t	1 297. (d) 9875	which it falls; it is					
13.	(a) 3 (b) Find the sum of th (a) 8970 A certain bail whe	2 (d ne series : 2 + 7 + 1 (b) 8870 en dropped to the g	c) 4 (d) 2+ (c) 7630 round rebounds t	1 297. (d) 9875 to $\frac{4^{\text{th}}}{5}$ of the height from v	which it falls; it is					
13.	(a) 3 (b) Find the sum of the	2 (d ne series : 2 + 7 + 1 (b) 8870 en dropped to the g eight of 100 metres (b) 700m	c) 4 (d) 2+ (c) 7630 round rebounds t find the total dis (c) 900m	1 297. (d) 9875 to $\frac{4^{\text{th}}}{5}$ of the height from v tance it travels before fi	which it falls; it is nally coming to rest:					

	2007 - Nov								
16.	The sum of the series : 0.5 + 0.55 + 0.555 + to n terms is :								
	(a) $\frac{5n}{9} + \frac{5}{9} [1 - (0.1)^n]$ (b) $\frac{5n}{9} - \frac{5}{81} [1 - (0.1)^n]$								
	$(c)\frac{5n}{9} + \frac{5}{81}[1 - (0.1)^{n}] \qquad (d)\frac{5n}{9} + \frac{5}{81}[1 + (0.1)^{n}]$								
17.	A contractor who fails to complete a building in a certain specified time is compelled to forfeit I	Rs.							
	200 for the first day of extra time required and thereafter forfeited amount is increased by Rs. 2	25							
	for every day. If he loses Rs. 9,450, for how many days did he over-run the contract time?								
	(a) 19 days (b) 21 days (c) 23 days (d) 25 days								
18.	The first, second and seventh term of A.P. are in G.P. and the common difference is 2, the 2nd								
	term of A.P. is :								
	(a) 5/2 (b) 2 (c) 3/2 (d) 1/2								
	2008 – Feb								
19.	A man employed in a company is promised a salary of Rs. 3,000 every month for the first year and								
	an increment of Rs. 1,000 in his monthly salary every succeeding year. How much does the man								
	earn from the company in 20 years?								
	(a) Rs. 30,00,000 (b) Rs. 27,50,000 (c) Rs. 19,10,000 (d) Rs. 7,90,000								
20.	If a, b, c are in A.P. and x, y, z are in G.P, then the value of $x^{(b-c)}$. $y^{(c-a)}$. $z^{(a-b)}$								
	(a) 1 (b) 0 (c) b(c - a) (d) None								
21.	Insert 4 A.M.'s between 3 and 18 :								
	(a) 12, 15,9,6 (b) 6,9, 12, 15 (c) 9,6,12,15 (d) 15,12,9,6								

1 1/	ATTA T KOI L3310117			DUSINESS WATTEMATICS
22.	If $x = 1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^2}$	∞		
	$y = 1 + \frac{1}{4} + \frac{1}{4^2} + .$	∞ Find >	ky.	
	(a) 2 (b)	1 (c) 8/9	(d) ½	
23.	On 1 st January ev	ery year a person buy	vs National Saving Ce	rtificates of value exceeding that of
	his last year's pur	chase by Rs. 100. Aft	er 10 years, he finds	that the total value of the certificates
	purchased by him	ı is Rs. 54,500. Find tl	he value of certificate	es purchased by him in the first year:
	(a) Rs. 6,000	(b) Rs. 4,000	(c) Rs. 5,000	(d) Rs. 5,500
24.	Find three numbe	ers in G.P. such that th	neir sum is 21, and th	e sum of their squares is 189 :
	(a) 5, 7, 9	(b) 3, 7, 11	c) 3, 6, 12	(d) 4, 8, 9
25.	Find the ninth ter	rm of the series : $\sqrt{2}$, S	5√2, 9√2,	
	(a) 25√2	(b) 31√2	(c) 33√2	(d) 52√2
26.	The sum of how r	nany terms of the seq	juence 256, 128, 64,	is 511.
	(a) 8	(b) 9	(c) 7	(d) None of these.
27.	(x + 1), 3x, (4x +	2) are in A.P. Find th	e value of x	
	(a) 2 (b)	3 (c) 4	(d) 5	
28.	Find two number	s whose A.M. is 10 an	d G.M. is 8.	
	(a) [10,10] .	(b) [16,4]	(c) [18,2]	(d) [14,6]
29.	$\sum n^2$ defines :			
	(a) $\frac{n(n+1)(2n+1)}{6}$	(b) $\frac{n(n+1)}{2}$	$(c)\left[\frac{n(n+1)}{2}\right]^2$	(d) None of these

30.	The sum of ter	The sum of terms of an infinite GP is 15. And the sum of the squares of the term is 45. Find the								
	common ratio.									
	(a) 3/2	(b) 1	(c) -2	/3	(d) 2/3					
31.	If in an A.P., Tn	represents nth term. I	If $t_7: t_{10} = 5: 7$ the	$n t_8 : t_{11} = __\$						
	(a) 13: 16	(b) 17:23	(e) 14:17	(d) 15:19						
32.	The sum of an A P, whose first term is - 4 and last term is 146 is 7171. Find the value of n.									
	(a) 99	(b) 100	(c) 10	01 (d) 1	02					
33.	Find the sum to infinity of the following series: $1 - 1 + 1 - 1 + 1 - 1 + \dots \infty$									
	(a) 1	(b) ∞	(c) ½	(d) Does not exist						
34.	If a1, a2, a3 represents first, second and third terms of an AP respectively, the first term is 2 and									
	$(a_1 + a_2)a_3$ is minimum, then the common difference is equal to									
	(a) 5/2	(b) -5/2		(c) 2/5	(d) - 2/5					
35.	Divide 144 into three parts which are in AP and such that the largest is twice the smallest, the									
	smallest of thre	ee numbers will be :								
	(a) 48	(b) 36	(c) 13	(d) 32						
36.	Sum of series 1	$1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots \infty$ is	3							
	(a) 15/36	(b) 35/36	(c) 35/16	(d) 15/16						
				1	1					
37.	If G be Geomet	ric Mean between two	numbers a and b,	then the value of $\frac{1}{G^2}$	$\frac{1}{a^2} + \frac{1}{G^2 - b^2}$ is equal to					
37.	If G be Geomet (a) G ²	ric Mean between two (b) 3 G ²	numbers a and b, (c) 1/G ²	then the value of $\frac{1}{G^2}$ (d) 2/G ²	$\frac{1}{a^2} + \frac{1}{G^2 - b^2}$ is equal to					

NA	NAHTA PROFESSIONAL CLASSES					BUSINESS MATHEMATICS			
	and 1 st term	?							
	(a) 207	(b)	36	(c) 90		(d) 63			
39.	Find the proc	duct of: (243	3), (243) ^{1/6} , (2	243) ^{1/36} ,	œ				
	(a) 1,024		(b) 27		(c) 72	9		(d)	246
40.	Insert two A	rithmetic me	eans between	68 and 26	0				
	(a) 132,196	(b)	130,194	(c) 70,	, 258		(d) None	of the al	bove.
41.	Geometric M	ean of P,P ² ,I	⁰³ , P ⁿ wi	ll be :					
	(a) P ^{n + 1}	(b)	$P^{\frac{1+n}{2}}$	(c) P ^{<u>n(</u>}	<u>n+1)</u> 2		(d) None	of the ab	oove.
42.	Find the numbers whose arithmetic mean is 12.5 and geometric mean is 10.								
	(a) 20 and 5	(b)	10 and 5	(c) 5 a	nd 4		(d) None	of these	
43.	If sum of 3 ar	rithmetic me	eans between '	"a" and 22	is 42, t	hen "a"	=		
	(a) 14	(b) 11	(c) 10	(d) 6					
14.	If each month Rs. 100 increases in any sum then find out the total sum after 10 months, if the sum								
	of first month is Rs. 2,000.								
	(a) Rs. 24,50	0	(b) Rs. 24,	000		(c) Rs.	50,000	(d)	Rs. 60,000
45.	The sum of a	ll two Digit	odd numbers i	S					
	(a) 2475		(b) 2575		(c) 49	50	(d)	5049	
46.	If 5 th term of	a G.P. is 3√3	3,then the proc	duct of firs	t nine	terms is	:		
	(a) 8	(b) 27	(c) 243		(d) 9				
47.	The sum of t	he third and	ninth term of	an A.P. is	8. Find	the sun	n of the firs	st 11 ter	ms of the

NA	HTA PROFESS	SIONAL CLAS	SES		BUSINESS MATHEMATICS				
	progressior	1.							
	(a) 44	(b) 22	(c) 19	(d) 11					
ł8.	If 8 th term o	of an A.P is 15,	then sum of i	ts 15 terms is:					
	(a) 15	(b) 0	(c) 225	(d) 225/	2				
ŀ9.	Find the su	Find the sum of the infinite terms 2, $\frac{4}{y'}$, $\frac{8}{y^2}$, $\frac{16}{y^3}$; if y > 2							
	$(a)\frac{^{2y}}{^{y-2}}$	$(b)\frac{4y}{y-2}$	$(c)\frac{3y}{y-2}$	(d) None	e of these.				
50.	The 4 th term of an A.P. is three times the first and the 7 th term exceeds twice the third term by 1.								
	Find the fir	st term 'a' and	l common diff	erence 'd'.					
	(a) a = 3, d	= 2 (b)	a = 4, d = 3	(c) a = 5, d = 4	(d) a = 6, d = 5				
51.	In an A.P., if	f common diff	erence is 2, Sı	ım of. n terms is 49,	7 th term is 13 then n =				
	(a) 0	(b) 5	(c) 7	(d) 13					
52.	The first ter	The first term of a G.P. where second term is 2 and sum of infinite term is 8 will be:							
	(a) 6	(b) 3	(c) 4	(d) 1					
53.	If the sum of n terms of an A.P be $2n^2 + 5n$, then its 'n th ' term is:								
	(a) 4n - 2	(b)	3n – 4	(c) 4n + 3	(d) 3n + 4				
	2013 - Ju	ine							
54.	If the sum c	of n terms of a	n A.P be 3n ² -	n and its common d	ifference is 6, then its first term is :				
	(a) 2	(b) 3	(c) 4	(d) 5					
55.	If the sum o	of the 4 ^{lh} term	and the 12^{th} t	erm of an A.P. is 8, v	vhat is the sum of the first 15 terms of				

NA	NAHTA PROFESSIONAL CLASSES					BUSINESS MATHEMATICS			
	the progre	ession?							
	(a) 60	(b) 120	(c) 1	110		(d) 150			
56.	If 'n' arith	metic means are	inserted betw	ween 7 &	71 and	5 th arithme	tic mean	is 27, th	en 'n' is equal to
	(a) 15	(b) 16	(c) 17	(d) 18	3				
57.	In a G.P. the sixth term is 729 and the common difference is 3, then the first term of G.P. is:								
	(a) 2	(b) 3	(c) 4	(d) 7					
	2013 - D	Dec							
58.	An Arithm	etic progression	n has 13 term	s whose s	sum is 1	43. The thi	rd term i	s 5 so the	e first term is:
	(a) 4	(b) 7	(c) <u>c</u>)	(d) 2				
59.	If Geometric mean (G.M.) Of a, b, c, d is 3, then G.M. of $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$, $\frac{1}{d}$ will be:								
	(a) 1/3	(b) 3	(c) 8	31	(d) 1/	81			
	2014 - 3	lune							
60.	The sum to m terms of the series 1+11+111+ upto m terms, is equal to:								
	(a) $\frac{1}{81}(10^{m}$	^{n + 1} - 9m - 10)	(b) $\frac{1}{27}(10^{m})$	^{+ 1} - 9m -	10) (c) 10 ^{m + 1} - 9	m – 10	(d) No	ne
61.	The sum of the infinite G.P. $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$ is equal to:								
	(a) 1.95	(b) 1	5 (c) 1	1.75		(d) None o	of these		
62.	value of 1 ³	$3^{3}+2^{3}+3^{3}+4^{3}+$	+m ³ is e	qual to:					
	(a) $\left[\frac{m(m+1)}{2}\right]$	$\frac{(b)}{2} \Big]^3$ (b) $\frac{1}{2}$	n(m+1)(2m+1) 6	(c) [<u>m</u>	$\left[\frac{m(m+1)}{2}\right]^2$		(d) N	lone of th	iese.
63.	If x, y, z ar	e the terms in G	.P. then the te	rms x ² +	y², xy +	$yz, y^2 + z^2$	are in:		

NA	HTA PROFESSIO	NAL CLASSES		BUSI	NESS MATHEMATICS				
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None of	these.				
64.	If $S_n = n^2 p$ and	If $S_n = n^2 p$ and $S_m = m^2 p$ (m \neq n) is the sum of an A.P., then $S_P =$							
	(a) p ²	(b) p ³	(c) 2p ³	(d) p	94				
	2014 – Dec								
65.	The arithmeti	c mean of the square	e of first 2n natural nun	nbers is:					
	(a) $\frac{1}{6}(2n+1)$	(4n - 1) (b) $\frac{1}{6}$	$(2n-1)(4n-1)(c)\frac{1}{6}(2$	n-1)(4n + 1) (d) $\frac{2}{6}$	$\frac{1}{6}(2n+1)(4n+1)$				
66.	If the sum of first 'n' terms of an A.P. is $6n^2 + 6n$, then the fourth term of the series:								
	(a) 120	(b) 72	(c) 48	(d) 24					
	2015 – June	2							
67.	If S be the sum	n, P the product and	R is the sum of recipro	cals of n-terms in (G.P then $P^2R^n =$				
	(a) S ²ⁿ	(b) S ⁿ	(c) S ⁻²ⁿ	(d) S ⁻ⁿ					
68.	The sum of the series 1 + 11 + 111 + to n terms is								
	(a) $\frac{1}{27}(10^{n+1} -$	9n - 10) (b) 10	$n^{n+1} - 9n - 10$ (c) $\frac{1}{81}$ (2)	10 ⁿ⁺¹ - 9n -10)	(d) None of these				
69.	If third term and seventh term of an A.P are eighteen and thirty respectively, then sum of first								
	twenty terms	will be:							
	(a) 540	(b) 6	10 (c) 740	(d) 8	310				
	2015 – Dec								
				ic 2w ² + Ex and its	s m th term is 164, then				

NA	hta professio	NAL CLASSES	BUSINESS MATHEMATICS						
	the value of m	is:							
	(a) 27	(b) 28	(c) 24	(d) 26					
71.	If a, b, c are in	Arithmetic Progression ((A.P.), then the valu	e of a – b + c is:					
	(a) a	(b) -b (c) l	b (d) c						
72.	Find the two n	umbers whose geometric	c mean is 5 and arit	hmetic mean in 7.5.					
	(a) 10 and 5	(b) 13.9 and 1.91	(c) 12 and 3	(d) None of the above					
	2016 – June	•							
73.	The sum of n t	erms of the series log x +	$-\log\frac{x^2}{y} + \log\frac{x^2}{y^2} + \dots$	is					
	(a) $\frac{n}{2} \left[2n \log \left(\frac{x}{y} \right) \right]$	$\left(\frac{1}{2} \right) + \log xy$	(b) $\frac{n}{2} \left[n \log xy + \right]$	$\log\left(\frac{x}{y}\right)$					
	(c) $\frac{n}{2} \left[n \log \left(\frac{x}{y} \right) \right]$) – log xy]	(d) $\frac{n}{2} \left[n \log \left(\frac{x}{y} \right) \right]$	+ log xy]					
74.	A G. P. (Geometric Progression) consists of 2n terms. If the sum of the terms occupying the odd								
	places is S_1 and that of terms in the even places is S_2 , the common ratio of the progression is:								
	(a) n	(b) 2S ₁	(c) $\frac{S_2}{S_1}$	$(d)\frac{S_1}{S_2}$					
75.	If $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in arithmetic progression then a^2 , b^2 , c^2 , are in								
	(a) Arithmetic	Progression	(b) Geom	netric Progression					
	(c) Both in arithmetic and geometric Progression(d) None of these								
	2016 - Dec								
76.	The income of	a person is Rs. 5.00.000 i	in the firm in the fir	st year and he receives an increase of					

hta professional classes	BUSINESS MATHEMATICS						
(a) Rs. 56,75,000 (b) Rs. 72,50,000 (c) Rs. 15,67,500	(d) None of these						
If the Sum 50 + 45 + 40 + 35 + is zero, then the n	umber of terms is:						
(a) 22 (b) 20 (c) 21 (d) 25							
The number 2.353535 in $\frac{p}{q}$ form is:							
(a) $\frac{235}{99}$ (b) $\frac{234}{99}$ (c) $\frac{230}{99}$ (d) $\frac{233}{99}$							
2017 – June							
The sum of n terms of the series $1 + (1 + 3) + (1 + 3 + 5) - (1 + 3 + 5)$	+ Is						
(a) $\frac{n(n+1)(2n+1)}{6}$ (b) $\frac{n(n+1)(n+2)}{6}$ (c) $\frac{n(n+1)(n+2)}{3}$	(d) None of these.						
The sum of first 20 terms of a GP is 1025 times the sum of ,r	rst 10 terms of same GP then common						
ratio is:							
(a) $\sqrt{2}$ (b) 2 (c) $2\sqrt{2}$	(d) 1/2						
The value C such that a, - 3, b, 5, c are in A.P. is:							
(a) -7 (b) 1 (c) 13 (d) 9						
	(a) Rs. 56,75,000 (b) Rs. 72,50,000 (c) Rs. 15,67,500 If the Sum 50 + 45 + 40 + 35 + is zero, then the n (a) 22 (b) 20 (c) 21 (d) 25 The number 2.353535 in $\frac{p}{q}$ form is: (a) $\frac{235}{99}$ (b) $\frac{234}{99}$ (c) $\frac{230}{99}$ (d) $\frac{233}{99}$ 2017 - June The sum of n terms of the series $1 + (1 + 3) + (1 + 3 + 5) - (1 + 3 + 5) - (1 + 3 + 5) - (1 + 3 + 5) - (2 +$						

2 C 12 B 22 A 32 C 42 A 52 C 62 C 7 3 C 13 A 23 C 33 C 43 D 53 C 63 B 7 4 A 14 C 24 C 34 B 44 A 54 A 64 B 7	'1 '2 '3 '4
3 C 13 A 23 C 33 C 43 D 53 C 63 B 73 4 A 14 C 24 C 34 B 44 A 54 A 64 B 74	/3
4 A 14 C 24 C 34 B 44 A 54 A 64 B 7	
	'4
5 A 15 B 25 C 35 D 45 A 55 A 65 D 7	
	′5 J
6 A 16 B 26 B 36 C 46 B 56 A 66 C 7	′6 .
7 A 17 B 27 B 37 C 47 A 57 B 67 B 7	7
8 C 18 A 28 B 38 B 48 C 58 D 68 C 7	'8
9 A 19 A 29 A 39 C 49 A 59 A 69 D 7	'9 J
10 D 20 A 30 D 40 A 50 A 60 A 70 A 8	30
۸	31

STUDENT NOTES

SETS, FUNCTION & RELATIONS

0									
	<u>SETS</u>								
	AGAR DARR	HAI BHAGAN	IA, TO M	ATHS HAI BAN	NANA				
	EXERCISE 7 (A)								
	Choose the most appropriate option or options (a) (b) (c) or (d).								
1.	The number of subs	sets of the set {2, 3,	5} is						
	(a) 3	(b) 8	(c) 6	(d) none o	of these				
2.	The number of subsets of a set containing n elements is								
	(a) 2 ⁿ	(b) 2 ⁻ⁿ	(c) n	(d) none o	of these				
3.	The null set is repre	esented by							
	(a){Ø}	(b) { 0 }	(c) Ø	(d) none o	of these				
4.	A = {2, 3, 5, 7}, B {	4, 6, 8, 10} then A ∩	B can be wri	tten as					
	(a) { }	(b) { Ø }	(c) (AUB)	d) None	of these				
5.	The set {x 0 <x<5}< th=""><th>represents the set v</th><th>vhen x may ta</th><th>ake integral values on</th><th>ly</th><th></th></x<5}<>	represents the set v	vhen x may ta	ake integral values on	ly				
	(a) {0, 1, 2, 3, 4, 5}	(b) {1, 2, 3	, 4}	(c) {1, 2, 3, 4, 5 }	(0	d) none of these			
6.	The set {0, 2, 4, 6, 8,	, 10} can be written	as						
	(a) $\{2x \mid 0 < x < 5\}$	(b) {x : 0<	x<5} (c)) {2x : 0 <u><</u> x <u><</u> 5}	(d) none	e of these			

NA	HTA PROFESSIONAL	L CLASSES		BUSINESS A	MATHEMATICS				
	Using Q.7 to Q.10 If	$\mathbf{P} = \{1, 2, 3, 5, 7\},\$	Q = {1, 3, 6, 10,	15},					
	Universal Set S = {	1, 2, 3, 4, 5, 6, 7, 8,	9, 10, 11, 12, 13,	14, 15}					
7.	The cardinal numb	er of $P \cap Q$ is							
	(a) 3	(b) 2	(c) 0	(d) none of these					
8.	The cardinal number of P∪ Q is								
	(a) 10	(b) 9	(c) 8	(d) none of these					
9.	n (P ¹) is								
	(a) 10	(b) 5	(c) 6	(d) none of these					
10.	n(Q ¹) is								
	(a) 4	(b) 10	(c) 4	(d) none of these					
11	The set of cubes of	the natural numb	er is						
	(a) a finite set	(b) an in	finite set	(c) a null set	(d) none of these				
12	The set {2 ^x x is any	positive rational	number} is						
	(a) an infinite set	(b) a null set	(c) :	a finite set	(d) none of these				
13	$\{1-(-1)^x\}$ for all in	tegral x is the set							
	(a) {0}	(b) {2}		(c) {0, 2}	(d) none of these				
14	E is a set of positive	e even number and	d 0 is a set of pos	sitive odd numbers, then E \cup () is a				
	(a) set of whole nu	mbers (I	o) N						
	(c) a set of rational	number (o	d) none of these						
15	If R is the set of pos	sitive rational num	iber and E is the	set of real numbers then					
	(a) R⊆ E	(b) R ⊂ E	(c) E ⊂ R	(d) none of these					

NA	HTA PROFESSIONA	L CLASSES		BUSINESS MATHEMATICS					
16	If N is the set of na	itural numbers and I i	s the set of positive	integers, then					
	(a) N = I	(b) $N \subset I$	(c) N ⊆ I	(d) none of these					
15	If I is the set of iso	sceles triangles and E	is the set of equilate	eral triangles, then					
	(a) I ⊂ E	(b) E ⊂ I	(c) $E = I$	(d) none of these					
16	If R is the set of isc	osceles right angled tr	iangles and I is set c	of isosceles triangles, then					
	(a) R = I	(b) R⊃ I	(c) R ⊂ I	(d) none of these					
17	${n(n+1)/2 : n is a positive integer}$ is								
	(a) a finite set	(b) an infin	ite set (c) is an e	mpty set (d) none of these					
18	If A = {1, 2, 3, 5, 7}, and B = { $x^2 : x \in A$ }								
	(a) $n(b) = n(A)$	(b) $n(B) > n(A)$	(c) $n(A) = n(B)$	(d) n(A) <n(b)< th=""></n(b)<>					
19	$A \cup A$ is equal to								
	(a) A	(b) E	(c) Ø	(d) none of these					
20	$A \cap A$ is equal to								
	(a) Ø	(b) A	(c) E	(d) none of these					
21	$(A \cup B)'$ is equal to)							
	(a) (A ∩ B)'	(b) A ∪ B'	(c) A' ∩ B'	(d) none of these					
22	$(A \cap B)'$ is equal to)							
	(a) (A' ∪ B)'	(b) A' ∪ B'	(c) A' ∩ B'	(d) none of these					
23	$A \cup E$ is equal to (I	E is a superset of A)							
	(a) A	(b) E	(c) Ø	(d) none of these15					
24	$A \cap B$)' is equal to								

ITA PROFESSIONAL	CLASSES			BUSINESS A	NATHEMATICS			
(a) (A' ∪ B)'	(b) A' ∪ B'	(c) A'∩B'		(d) none of t	these			
$A \cup E$ is equal to (E	is a superset of A)							
(a) A	(b) E	(c) Ø		(d) none of t	these			
$A \cap E$ is equal to (E	is a superset of A)							
(a) A	(b) E	(c) Ø	(d) none of these					
$E \cup E$ is equal to (E	is a superset of A)							
(a) E	(b) Ø		(d) none of t	these				
$A \cap E'$ is equal to (E	E is a superset of A)							
(a) E	(b) Ø	(c) A	(d) none of these					
$A \cap \emptyset$ is equal to (E	is a superset of A)							
(a) A	(b) E	(c) Ø	(d) none of these					
$A \cup A'$ is equal to (I	E is a superset of A)							
(a) E	(b) Ø	(c) A		(d) none of t	these			
If $E = \{1, 2, 3, 4, 5, 6\}$	6, 7, 8, 9}, the subset o	of E satisfying	5 + x > 10 is					
(a) {5, 6, 7, 8, 9}	(b) {6, 7, 8, 9	9}	(c) {7	8,9}	(d) none of these			
If $A \Delta B = (A-B) \cup$	$(B-A)$ and $A = \{1, 2, 3\}$	8, 4}, B = {3,5,7	7} than A ΔB is					
(a) {1, 2, 4, 5, 7}	(b) {3}		(c) {1, 2, 3, 4,	5, 7}	(d) none of these			
	(a) $(A' \cup B)'$ $A \cup E$ is equal to $(E$ (a) A $A \cap E$ is equal to $(E$ (a) A $E \cup E$ is equal to $(E$ (a) E $A \cap E'$ is equal to $(E$ (a) E $A \cap \emptyset$ is equal to $(E$ (a) A $A \cup A'$ is equal to $(E$ (a) E If $E = \{1, 2, 3, 4, 5, 6\}$ If $A \Delta B = (A-B) \cup A$	$A \cap E$ is equal to (E is a superset of A)(a) A (b) E $E \cup E$ is equal to (E is a superset of A)(a) E (b) \emptyset $A \cap E'$ is equal to (E is a superset of A)(a) E (b) \emptyset $A \cap \emptyset$ is equal to (E is a superset of A)(a) A (b) E $A \cup A'$ is equal to (E is a superset of A)(a) E (b) \emptyset $A \cup A'$ is equal to (E is a superset of A)(a) E (b) \emptyset If $E = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, the subset of(a) $\{5, 6, 7, 8, 9\}$ (b) $\{6, 7, 8, 9\}$ (c) $\{5, 6, 7, 8, 9\}$ </th <th>(a) $(A' \cup B)'$(b) $A' \cup B'$(c) $A' \cap B'$$A \cup E$ is equal to $(E$ is a superset of A)(b) E(c) \emptyset(a) A(b) E(c) $\emptyset$$A \cap E$ is equal to $(E$ is a superset of A)(c) \emptyset(a) A(b) B(c) $\emptyset$$E \cup E$ is equal to $(E$ is a superset of A)(c) $2E$(a) E(b) \emptyset(c) $2E$$A \cap E'$ is equal to $(E$ is a superset of A)(c) A(a) E(b) \emptyset(c) A(a) E(b) \emptyset(c) A(a) A(b) E(c) \emptyset(a) A(b) E(c) \emptyset(a) A(b) B(c) A(a) A(b) \emptyset(c) A(a) E(b) \emptyset(c) A(a) $\{5, 6, 7, 8, 9\}$(b) $\{6, 7, 8, 9\}$</th> <th>(a) $(A' \cup B)'$(b) $A' \cup B'$(c) $A' \cap B'$$A \cup E$ is equal to (E is a superset of A)(a) A(b) E(c) \emptyset(a) A(b) E(c) \emptyset(c) \emptyset(a) A(b) E(c) \emptyset(c) $2E$$A \cap E'$ is equal to (E is a superset of A)(a) E(b) \emptyset(c) $2E$$A \cap E'$ is equal to (E is a superset of A)(a) E(b) \emptyset(c) A(a) E(b) \emptyset(c) A(c) $A$$A \cap \emptyset$ is equal to (E is a superset of A)(a) $A \cap \emptyset$ is equal to (E is a superset of A)(a) A(b) E(c) $\emptyset$$A \cup A'$ is equal to (E is a superset of A)(c) A(a) E(b) \emptyset(c) $A$$A \cup A'$ is equal to (E is a superset of A)(c) A(a) E(b) \emptyset(c) A(b) \emptyset(c) A(c) $\{A \cup A' = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, the subset of E satisfying $5 + x > 10$ is(a) $\{5, 6, 7, 8, 9\}$(b) $\{6, 7, 8, 9\}$(c) $\{7, 16 \land A = (4 - B) \cup (B - A)$ and $A = \{1, 2, 3, 4\}, B = \{3, 5, 7\}$ than $A \triangle B$ is</th> <th>(a) $(A' \cup B)'$(b) $A' \cup B'$(c) $A' \cap B'$(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) 2E(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) A(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(c) A<</th>	(a) $(A' \cup B)'$ (b) $A' \cup B'$ (c) $A' \cap B'$ $A \cup E$ is equal to $(E$ is a superset of A)(b) E (c) \emptyset (a) A (b) E (c) \emptyset $A \cap E$ is equal to $(E$ is a superset of A)(c) \emptyset (a) A (b) B (c) \emptyset $E \cup E$ is equal to $(E$ is a superset of A)(c) $2E$ (a) E (b) \emptyset (c) $2E$ $A \cap E'$ is equal to $(E$ is a superset of A)(c) A (a) E (b) \emptyset (c) A (a) E (b) \emptyset (c) A (a) A (b) E (c) \emptyset (a) A (b) E (c) \emptyset (a) A (b) B (c) A (a) A (b) \emptyset (c) A (a) E (b) \emptyset (c) A (a) $\{5, 6, 7, 8, 9\}$ (b) $\{6, 7, 8, 9\}$	(a) $(A' \cup B)'$ (b) $A' \cup B'$ (c) $A' \cap B'$ $A \cup E$ is equal to (E is a superset of A)(a) A (b) E (c) \emptyset (a) A (b) E (c) \emptyset (c) \emptyset (a) A (b) E (c) \emptyset (c) $2E$ $A \cap E'$ is equal to (E is a superset of A)(a) E (b) \emptyset (c) $2E$ $A \cap E'$ is equal to (E is a superset of A)(a) E (b) \emptyset (c) A (a) E (b) \emptyset (c) A (c) A $A \cap \emptyset$ is equal to (E is a superset of A)(a) $A \cap \emptyset$ is equal to (E is a superset of A)(a) A (b) E (c) \emptyset $A \cup A'$ is equal to (E is a superset of A)(c) A (a) E (b) \emptyset (c) A $A \cup A'$ is equal to (E is a superset of A)(c) A (a) E (b) \emptyset (c) A (b) \emptyset (c) A (c) $\{A \cup A' = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, the subset of E satisfying $5 + x > 10$ is(a) $\{5, 6, 7, 8, 9\}$ (b) $\{6, 7, 8, 9\}$ (c) $\{7, 16 \land A = (4 - B) \cup (B - A)$ and $A = \{1, 2, 3, 4\}, B = \{3, 5, 7\}$ than $A \triangle B$ is	(a) $(A' \cup B)'$ (b) $A' \cup B'$ (c) $A' \cap B'$ (d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) 2E(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) E(c) Ø(d) none of the sequal to (E is a superset of A)(a) A(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) A(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(d) none of the sequal to (E is a superset of A)(a) E(b) Ø(c) A(c) A<			

	FUNCTIONS										
	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA										
	EXERCISE 7 (B)										
	Choose the most appropriate option/options (a) (b) (c) or (d).										
1.	If $A = \{x, y, z\}$, $B = \{p, q, r, s\}$ which of the relation on A to B are function.										
	(a) $\{n, p\}, (x, q), (y, r), (z, s)\},$ (b) $\{(x, s), (y, s), (z, s)\}$										
	(c) {(y, p), (y, q), (y, r), (z, s), (d) {(x, p), (y, r), (z, s)}										
2	$\{(x, y) x+y=5\}$ where x, y \in R is a										
	(a) not a function (b) a composite function (c) one-one mapping (d) none of these										
3	$\{(x, y) x = 4\}$ where x, y \in R is a										
	(a) not a function (b) function (c) one-one mapping (d) none of these										
4	$\{(x, y), y=x2\}$ where x, $y \in R$ is										
	(a) not a function (b) a function (c) inverse mapping (d) none of these										
5	$\{(x, y) x < y\}$ where x, $y \in R$ is										
	(a) not a function (b) a function (c) one-one mapping (d) none of these										
6.	The domain of {(1, 7), (2, 6)} is										
	(a) $(1, 6)$ (b) $(7, 6)$ (c) $(1, 2)$ (d) $\{6, 7\}$										
7	The range of {(3, 0), (2, 0), (1, 0), (0, 0)} is										
	(a) $\{0, 0\}$ (b) $\{0\}$ (c) $\{0, 0, 0, 0\}$ (d) none of these										
8	The domain and range of $\{(x,y) : y = x2\}$ where x, $y \in R$ is										

(a) (reals, natural numbers) (b) (reals, positive reals) c) (reals, reals)	(d) none of these								
9 Let the domain of x be the set {1}. Which of the following functions are equa	l to 1								
(a) $f(x) = x^2$, $g(x) = x$ (b) $f(a) = x$, $g(x) = 1-x$	b) $f(a) = x, g(x) = 1-x$								
(c) $f(x) = x^2 + x + 2$, $g(x) = (x+1)^2$ (d) none of these									
10 If $f(x) = 1/1 - x$, $f(-1)$ is									
(a) 0 (b) $\frac{1}{2}$ (c) 0 (d) none of these									
11 If $g(x) = (x-1)/x$, $g(-\frac{1}{2})$ is									
(a) 1 (b) 2 (c) 3/2 (d) 3									
12 If $f(x) = 1/1 - x$ and $g(x) = (x-1)/x$, than fog(x) is									
(a) x (b) $1/x$ (c) -x (d) none of these	(a) x (b) 1/x (c) -x (d) none of these								
13 If $f(x) = 1/1 - x$ and $g(x) = (x-1)/x$, then g of(x) is									
(a) x-1 (b) x (c) $1/x$ (d) none of these									
14 The function $f(x) = 2^x$ is									
(a) one-one mapping (b) one-many (c) many-one	(d) none of these								
15 The range of the function $f(x) = \log 10(1 + x)$ for the domain of real values of	f x when $0 \le x \le 9$ is								
(a) [0, 1] (b) [0, 1, 2] (c) [0, 1] (d) none of these									
16 The Inverse function $f-1$ of $f(x) = 2x$ is									
(a) 1/2x (b)x/2 (c) 1/x	(d) none of these								
17 If $f(x) = x+3$, $g(x) = x^2$, then fog(x) is									
(a) $x^2 + 3$ (b) $x^2 + x + 3$ (c) $(x + 3)^2$ (d) none of these									
18 If $f(x) = x+3$, $g(x) = x2$, then $f(x).g(x)$ is									

NA	AHTA PROFESS	IONAL CLAS	SES	BUSINESS MATHEMATICS							
	(a) $(x + 3)^2$	(b) x ² + 3	(c) $x^3 + 3x^2$	(d) none of these							
19	The Inverse	h–1 when h(x	$x) = \log 10x i$								
	(a) log10 ^x	(b) 10 ^x	(c) log10(1/x)	(d) none of these							
20	For the funct	tion h(x) = 10) ^{1+x} the domain of real	values of x where $0 \le x \le$	9, the range is						
	(a) $10 \le h(x)$	$) \le 10^{10}$	(b) $0 \le h(x) \le 10$	10 (c) $0 \le h(x) \le 10$	(d) none of these						

I

	RELATIONS										
	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA										
	EXERCISE 7 (C)										
	Choose the most appropriate option/options (a) (b) (c) or (d).										
1.	"Is smaller than" over the set of eggs in a box is										
	(a) Transitive (T) (b) Symmetric (S) (c) Reflexive (R) (d) Equivalence (E)										
2.	"Is equal to" over the set of all rational numbers is										
	(a) (T) (b) (S) (c) (R) (d) E										
	[By using using R = Reflexive; T = Transitive, S = Symmetric and E = Equivalence fromQ.No. 2 to 8]										
3	"has the same father as" over the set of children										
	(a) R (b) S (c) T (d) none of these										
4.	"is perpendicular to" over the set of straight lines in a given plane is										
	(a) R (b) S (c) T (d) E										
5	"is the reciprocal of" over the set of non-zero real numbers is										
	(a) S (b) R (c) T (d) none of these										
6	$\{ (x, y)/x \in , y \in y, y = x \}$ is										
	(a) R (b) S (c) T (d) none of these										
7	$\{(x,y) / x + y = 2x \text{ where } x \text{ and } y \text{ are positive integers}\}$, is										
	(a) R (b) S (c) T (d) E										
8	"Is the square of" over n set of real numbers is										

NA	HTA PROFESSIO	NAL CLAS	\$SES	BUSINESS MATHEMATICS						
	(a) R	(b) S	(c) T	(d) none of these						
9	If A has 32 eler	nents, B ha	is 42 elements	s and A \cup B has 62 elements, the number of elements						
	in $A \cap B$ is									
	(a) 12	(b) 74	(c) 10	(d) none of these						
10	In a group of 2	20 children	, 8 drink tea bı	ut not coffee and 13 like tea. The number of children						
	drinking coffee	e but not te	a is							
	(a) 6 ((b) 7	(c) 1	(d) none of these						
11	The number of	subsets of	the sets {6, 8,	, 11} is						
	(a) 9	(b) 6	(c) 8	(d) none of these						
12	The sets $V = \{x\}$	<th>, R={x / x^2+2x</th> <th>$x=0$ and $S = {x : x^2 + x - 2 = 0}$ are equal to one</th> <th></th>	, R={x / x^2+2x	$x=0$ and $S = {x : x^2 + x - 2 = 0}$ are equal to one						
	another if x is e	equal to								
	(a) -2	(b) 2	(c) ½	(d) none of these						
13	If the universa	l set E = {x	x is a positive	re integer <25}, A = {2, 6, 8, 14, 22}, B = {4, 8, 10, 14}						
	Then									
	(a) $(A \cap B)' = A$.'∪B'	b) (A ∩ B)'=	$A' \cap B'$ (c) $(A' \cap B)' = \emptyset$ (d) none of these						
14	If the set P has	3 elements	s, Q four and R	R two then the set P \times Q \times R contains						
	(a) 9 elements	·	(b) 20 elemer	ents (c) 24 elements (d) none of these						
15	Given A = {2, 3	\$}, B = {4, 5	5 , C = {5, 6} th	hen A × (B \cap C) is						
	(a) {(2, 5), (3,	5)}	(b) {(5, 2), (5	(5, 3)} (c) {(2, 3), (5, 5)} (d) none of these						
16	A town has a to	otal popula	tion of 50,000.). Out of it 28,000 read the newspaper X and 23,000 read Y						
	while 4,000 rea	ad both the	e papers. The n	number of persons not reading X and Y both is						

NA	HTA PROFESS	IONAL CLASSES		BUSINESS MATHEMA	TICS				
	(a) 2,000	(b) 3,000	(c) 2,500	(d) none of these					
17	If A = { 1, 2,	3, 5, 7} and B = {1, 3	3, 6, 10, 15}. Cardin	al number of A-B is					
	(a) 3	(b) 4	(c) 6	(d) none of these					
18	Which of the diagram is graph of a function								
	Y (a)	• • • •	(b) x	Y A					
	(c	Y) O	x	Y (d)					
19	At a certain	conference of 100 p	people there are 29	Indian women and 23 Indian men. Out of t	hese				
	Indian peop	e 4 are doctors and	24 are either men	or doctors. There are no foreign doctors. T	he				
	number of w	omen doctors atter	nding the conferenc	ce is					
	(a) 2	(b) 4 (c)	1 (d) non	e of these					
20	Let $A = \{a, b\}$	}. Set of subsets of A	A is called power se	t of A denoted by P(A). Now n(P(A) is					
	(a) 2	(b) 4 (c)	3 (d) non	e of these					
21	Out of 2000 employees in an office 48% preferred Coffee (c), 54% liked (T), 64% used to smoke (S).								
	Out of the to	tal 28% used C and	T, 32% used T and	S and 30% preferred C and S, only 6% did	none of				
	these. The n	umber having all th	e three is						

NA	HTA PROFESS	IONAL CLASS	SES	BUSINESS MATHEMATICS					
	(a) 360	(b) 300	(c) 380	(d) none of these					
22	Referred to t	he data of Q. 2	1 the number o	of employees having T	and S but not C is				
	(a) 200	(b) 280	(c) 300	(d) none of these					
23	Referred to t	he data of Q. 2	1 the number o	of employees preferrin	g only coffee is				
	(a) 100	(b) 260	(c) 160	(d) none of these					
24	If $f(x) = x + x$	3, $g(x) = x^{2}$, th	en g of (x) is						
	(a) $(x + 3)^2$	(b) x ² + 3	(c) $x^2(x+3)$), (d) noi	ne of these				
25	If $f(x) = 1/1$	$-x$, then $f^{-1}(x)$	is						
	(a) 1-x	(b) (x	x-1)/x	(c) x/(x-1)	(d) none of these				

BUSINESS MATHEMATICS

											_					
							AN.	SWER	S							
Exer	cise f	4														
1.	b	2.	а	3.	С	4.	a	5.		b	6.	с		7.	b	8.
9.	а	10.	b	11.	. b	12.	а	13	3.	с	14.	b		15.	b	16.
17.	b	18.	С	19.	b	20.	С	21	l.	а	22.	b		23.	С	24.
25.	. b	26.	а	27.	а	28.	b	29).	с	30.	а		31.	b	32.
Exer	cise E	3														
1.	b, d	2.	С	3.	a	4.	b	5.	a		6.	2	7.	b	8.	b
9.	а	10.	b	11.	d	12.	а	13.	b		14.	a	15.	а	16	. b
17.	a	18.	с	19.	b	20.	а									
Exer	rcise (\$														
1.	а	2. a	ı,b,c,d	3.	a, b, e	c 4 .	b	5.	а		6. a,	b, c	7.	a,	b 8.	d
9.	а	10.		11.		12.		13.			14. c		15.		16	
17.		18.	b	19.	С	20.	b	21.	а		22. b		23.	С	24	. а
25.	D															

NA	AHTA PROFESSIONAL CLASSES BUSINESS MATHEMATICS
	"KAR LO PAST APNI MUTHI ME"
	Past Exam Questions
	2006 - Nov
[1]	Out of 20 members in a family, 11 like to take tea and 14 like coffee. Assume that each one likes at
	least one of the two drinks. Find how many like both coffee and tea :
	(a) 2 c (b) 3 (c) 4 (d) 5
	2007 – Feb
[2}	In a group of 70 people, 45 speak Hindi, 33 speak English and 10 speak neither Hindi nor English. Find
	how many can speak both English as well as Hindi:
	(a) 13 (b) 19 (c) 18 (d) 28
[3]	Let R is the set of real numbers, such that the function f: $R \rightarrow R$
	and g : R \rightarrow R are defined by f(x) = x ² + 3x + 1 and g(x) = 2x - 3. Find (fog):
	(a) $4x^2 + 6x + 1$. (b) $x^2 + 6x + 1$ (c) $4x^2 - 6x + 1$ (d) $x^2 - 6x + 1$.
	2007 – May
[4]	In a survey of 300 companies, the number of companies using different media - Newspapers (N), Radio
	(R) and Television (T) are as follows :
	$n(N) = 200, n(R) = 100, n(T) = 40, n(N \cap R) = 50, n(R \cap T) = 20, n(N \cap T) = 25 and n(N \cap R \cap T) = 5.$

HTA PROFESSIONAL CLASSES BUSINESS MATHEMATICS								
Find the numbers, of companies using none of these media :								
(a) 20 companies (b) 250 companies (c) 30 companies (d) 50 companies								
If R is the set of real numbers such that the function f: $R \rightarrow R$ is defined by $f(x) = (x + 1)^2$, then find								
(fof):								
(a) $(x + 1)^2 + 1$ (b) $x^2 + 1$ (c) $\{(x + 1)^2 + 1)^2$ (d) None								
2007 – Aug								
If f: $R \rightarrow R$, f(x) = 2x + 7, then the inverse of f is :								
(a) $f^{-1}(x) = (x - 7)/2$ (b) $f^{-1}(x) = (x + 7)/2$ (c) $f^{-1}(x) = (x - 3)/2$ (d) None.								
In a town of 20,000 families it was found that 40% families buy newspaper A, 20% families buy								
newspaper B and 10% families buy newspaper C, 5% families buy A and B, 3% buy B and C and 4% buy								
A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is:								
(a) 6600 (b) 6300 (c) 5600 (d) 600.								
2007 - Nov								
Let f: $R \rightarrow R$ be such that f (x) = 2 ^x , then f (x + y) equals :								
(a) $f(x) + f(y)$ (b) $f(x).f(y)$ (c) $f(x) \div f(y)$ (d) None of these								
2008 – Feb								
Out of total 150 students, 45 passed in Accounts, 30 in Economics and 50 in Maths, 30 in both Accounts								

NA	AHTA PROFESSIONAL CLASSES BUSINESS MATHEMATICS
	and Maths, 32 in both Maths and Economics, 35 in both Accounts and Economics, 25 students passed in
	all the three subjects. Find the numbers who passed at least in any one of the subjects :
	(a) 63 (b) 53 (c) 73 (d) None.
	2008 – June
10	If $f(x) = \frac{2+x}{2-x}$, then $f^{-1}(x)$:
	(a) $\frac{2(x-1)}{x+1}$ (b) $\frac{2(x+1)}{x-1}$ (c) $\frac{x+1}{x-1}$ (d) $\frac{x-1}{x+1}$
	2008-Dec
11	If $A = \{1, 2, 3, 4, \}$
	$B = \{2, 4, 6, 8,\}$
	f(1) = 2, f(2) = 4, f(3) = 6 and
	$f(4) = 8$, And $f: A \rightarrow B$ then f^{-1} is :
	(a) $\{(2,1), (4,2), (6,3), (8,4)\}$ (b) $\{(1,2), (2,4), (3,6), (4,8)\}$
	(c) {(1.4). (2. 2), (3, 6), (4, 8)} (d) None of these
12	If $f(x) = x^2 + x - 1$ and $4f(x) = f(2x)$ then find 'x'.
	(a) 4/3 (b) 3/2 (c) - 3/4 (d) None of these
13.	If $A = \{p, q, r, s\}$
	$B = \{q, s, t\}$
	$C = \{m, q, n\}$

N <i>A</i>	AHTA PROFESSI	ONAL CLASSES		BUSINESS MATHEMATICS
	Find C - (ΑΛΙ	B)		
	(a) {m, n}	(b) {p, q}	(c) {r, s}	(d) {p, r}
	2009 - Dec	;		
14	$X = \{x, y, w, z\}$	}, $y = \{1, 2, 3, 4\}$		
	$H = \{(x, 1), (y, y)\}$	y, 2), (y, 3), (z, 4), (x, 4)}	}	
	(a) H is a fund	ction from X to Y	(b) H is not	a function from X to Y
	(c) H is a rela	tion from Y to X	(d) None of	the above
15	Given the fun	ction $f(x) = (2x + 3)$, th	ien the value of f(2:	x) - $2f(x) + 3$ will be :
	(a) 3	(b) 2 (c) 1	(d) 0	
16	If $f(x) = 2x +$	- h then find f(x + h) - 2	f (x)	
	(a) h - 2x	(b) 2x – h	(c) 2x + h	(d) None of these
	2010 – June	е		
17.	If $A = \{x : x^2 -$	$3x + 2 = 0$ },		
	$B = \{x : x^2 + 4\}$	4x - 12 = 0}, then		
	B - A is Equal	to		
	(a) {- 6}	(b) {1}	(c) {1,2}	(d) {2,-6}
18.	If $F : A \rightarrow R$ is	a real valued function d	lefined by $f(x) = \frac{1}{x}$	then A =
	(a) R	(b) R-{1}	(c) R-{0}	(d) R-N
7.1	16 Page		F	ACULTY:CA MEGHA NAHTA

19.	In the set N of all natural numbers the relation R defined by a R b "if and only if, a divide b", then the										
	relation R is :										
	(a) Partial or	(a) Partial order relation (b) Equivalence relation									
	c) Symmetric	c) Symmetric relation (d) None of these.									
	2010 – Dec										
20.	For any two s	ets A and B, A∩ (A' ∪	_ = (Bر	, where A' r	epresent the compliment of the set A						
	(a) A∩B	(b) A∪B		(c) A'∪B	(d) None of these						
21.	If f: R→R, f(x)	= x + 1,									
	$g: R \rightarrow R g(x) :$	$= x^2 + 1$									
	then fog(-2) equals to										
	(a) 6	(b) 5	(c) -2	(d) None							
22.	If A⊂B, then	which one of the foll	lowing	is true							
	(a) A∩B =B	(b) A∪B=B		(c) $A \cap B = A^1$	(d) $A \cap B = \varphi$						
23.	If $f(x-1) = x^{2}$	² -4x + 8 , then f (x +	1) =								
	(a) x ² +8	(b) x ² +7		(c) x ² +4	(d) x ² - 4x						
	2011 – Jun	е									
24.	There are 40	students, 30 of then	n passe	d in English, 25 of t	them passed in Maths and 15 of them						
	passed in bo	th. Assuming that ev	ery Stu	dent has passed at	least in one subject. How many student's						

NA	ITA PROFESSIONAL CLASSES BUSINESS MATHEMATICS	
	passed in English only but not in Maths.	
	(a) 15 (b) 20 (c) 10 (d) 25	
25.	If A = { \pm 2, \pm 3}, B = {1,4,9} and F = {(2, 4), (-2, 4), (3, 9), (-3, 4)} then 'F' is defined as :	
	(a) One to one function from A into B. (b) One to one function from A onto B.	
	(c) Many to one function from A onto B. (d) Many to one function from A into B.	
26.	If f (x) = $\frac{x}{\sqrt{1+x^2}}$ and g (x) = $\frac{x}{\sqrt{1-x^2}}$ Find fog ?	
	(a) x (b) $\frac{1}{x}$ (a) $\frac{x}{\sqrt{1-x^2}}$ (d) $x\sqrt{1-x^2}$	
	2011 – Dec	
27.	f(x) = 3+x, for - 3< x <0 and 3 - 2x for 0< x <3, then Value of f(2) will be	_
	(a) - 1 (b) 1 (c) 3 (d) 5	
28.	If A = $(1, 2, 3, 4, 5)$, B = $(2, 4)$ and C = $(1,3, 5)$ then (A - C) × B is	
	(a) $\{(2, 2), (2, 4), (4, 2), (4, 4), (5, 2), \{5, 4)\}$ (b) $\{(1, 2), (1, 4), (3, 2), (3, 4), (5, 2); (5, 4)\}$	
	(c) $\{(2, 2), (4, 2), (4, 4), (4, 5)\}$ (d) $\{(2, 2), (2, 4), (4, 2), (4, 4)\}$	
29.	For any two sets A and B the set (AUB')' is Equal to (where' denotes compliment of the set)	
	(a) B – A (b) A – B (c) A' – B' (d) B' – A'	
30.	The number of proper sub set of the set {3, 4, 5, 6, 7} is	
	(a) 32 (b) 31 (c) 30 (d) 25	

	2012 – June			
31.	On the set of lines,	being perpendicular	is a relation	1.
	(a) Reflexive	(b) Symmetric	(c) Transitive	(d) None of these.
32.	The range of the fu	nction f: N - N; f(x) =	: (- 1) ^{x-1} , is	
	2012 - Dec			
33.	For a group of 200	persons, 100 are inte	erested in music, 70 i	n photography and 40 in swimming,
	Further more 40 ar	e interested in both	music and photograp	bhy, 30 in both music and swimming, 20 in
	photography and s	wimming and 10 in a	ll the three. How ma	ny are interested in photography but not
	in music and swimi	ming?		
	(a) 30 (b) 1	5 (c) 25	(d) 20	
34.	If f: $R \rightarrow R$ is a funct	ion, defined by f (x)	$= 10x - 7$, if g(x) $= f^{-1}$	f(x), then $g(x)$ is equal to
	(a) $\frac{1}{10x-7}$	(b) $\frac{1}{10x+7}$	(c) $\frac{x+7}{10}$	(d) $\frac{x-7}{10}$
35.	The number of elem	nents in range of con	istant function is	
	(a) One	(b) Zero	(c) Infinite	(d) Indetermined
36.	Let $A = \{1, 2, 3\}$, the	en the relation $R = \{1$.,1), (2, 3), (2, 2), (3,	3), (1,2)} is:
	(a) Symmetric	(b) Transitive	(c) Reflexive	(d) Equivalence
37.	If $f(x) = x + 2$, $g(x) = x + 2$	$) = 7^{x}$, than g of (x) =	=	

<u> </u>	AHTA PROFESSIONA			BUSINESS MATHEMATICS
	(a) 7×. x + 2.7×	(b) 7 ^x + 2	(c) 49 (7 ^x)	(d) None of these
	2013 - June			
38.	If $f(x) = \log\left(\frac{1+x}{1-x}\right)$), then $f\left(\frac{2x}{1+x^2}\right)$ is	equal to:	
	(a) f(x)	(b) 2f(x)	(c) 3f(x)	(d) - f(x)
39.	if $f(x) = (a - x^n)^{1/2}$	ⁱⁿ , $a > 0$ and 'n' is a	a positive integer, th	ten $f(f(x)) = $ 2013 - Dec
	(a) x	(b) a	(c) x ^{1/n}	(d) $a^{1/n}$
40.	Of the 200 candid	lates who were inf	terviewed for a posi	tion at call centre, 100 had a two-wheeler, 70
	had a credit card	and 140 had a mo	bile phone, 40 of the	em had both a two-wheeler and a credit card,
	30 had both a cre	dit card and a mol	bile phone, 60 had b	oth a two-wheeler and a mobile phone, and 10
	had all three. Hov	v many candidate:	s had none of the thi	ree?
	(a) 0 (b)	20 (c) 10	(d) 18	
41.	If $f(x) = \frac{x^2 - 25}{x - 5}$, the	en f(5) is		
	(a) 0 (b)	1 (c) 10	(d) not defin	led
	2014 - June			
42.	Let $A = \{1, 2, 3\}$ and	d B = $\{6,4,7\}$. The	en, the relation $R = {$	(2,4), (3,6)} will be:
	(a) Function from	A to B	(b) Function	n from B to A
	(c) Both A and B		(d) Not a fun	iction

43. In a class of 50 students, 35 opted for Mathematics and 37 opted for Commerce. The number of such students who opted for both Mathematics and Commerce are: (a) 13 (b) 15 (c) 22 (d) 28 44. The range of $\{(1,0), (2,0), (3,0), (4,0), (0,0)\}$ is: (b) {0} (d) None of these (a) {1,2,3,4,0} (c) {1,2,3,4} 2014 - Dec 45. Let N be the set of all Natural numbers; E be the set of all even natural numbers then the function f: N \rightarrow E defined as f (x) = 2x +/x \in N is: (a) One-one into (b) One-one onto (c) Many-one into (d) Many-one onto 46. If $A = \{2, 3\}, B = \{4, 5\}, C = \{5, 6\}, \text{then } A \times (B \cap C) = _$ (a) $\{(5, 2), (5, 3)\}$ (b) $\{(2,5), \{3,5\}\}$ (c) $\{(2,4), (3,5)\}$ $(d) \{(3, 5), (2, 6)\}$ 47. If $S = \{1, 2, 3\}$ then the relation $\{(1, 1), (2, 2), (1, 2), (2, 1)\}$ is symmetric and (a) Reflexive but not transitive (b) Reflexive as well as transitive (c) Transitive but not reflexive (d) Neither transitive nor reflexive 48. If $f(x) = \text{then} \frac{x}{x-1}$, then $\frac{f(x/y)}{f(y/x)} =$ _____ (b) y/x(c) - x/y(d) - y/x(a) x/y2015 - June 49. If N be the set of all natural numbers and E be the set of all even natural numbers then the function f: N

NAHTA PROFESSIONAL CLASSES

HTA PROFESSIONAL	CLASSES			l	BUSINESS MA	ATHEMATICS		
\rightarrow E, such that f (x)	$= 2x$ for all $X \in$	N is						
(a) one-one onto	(b) one-one ir	nto (c) ma	iny-one onto	o (d) con	stant			
2015 - Dec								
If $A = \{x, y, z\}, B =$	{a, b, c, d}, then v	which of the fo	ollowing rela	ation from	the set A to s	et B is a functio	on?	
(a) {(x, a), (x, b), (y, c), (z, d)}	(b) {(x	ĸ, a), (y, b), ([z, d)}				
(c) {(x, c), (z, b), (z	z, c)}	(d) {a,	z), (b, y), (c	z, z), (d, x)}	}			
In a class of 80 students, 35% students can play only cricket, 45% students can play only table tennis								
and the remaining students can play both the games. In all how many students can play cricket?								
(a) 55 (b) 4	44 (c) 36	(d) 28	3					
If $f(x) = 2x + 2$ and	$d g(x) = x^2$, then	the value of fo	og (4) is:					
(a) 18 (b) 2	22 (c) 34	(d) 12	8					
2016 - June								
If set A = $\left\{ x: \frac{x}{2} \in z \right\}$	$0 \le x \le 10$,							
B = {x: x is one dig	it prime number	}						
and C = $\left\{ x: \frac{x}{3} \in N, \right.$	$x \le 12$							
then $A \cap (B \cap C)$ is	equal to -							
(a) φ (b)	Set A	(c) Set B	(d) :	Set C				
	→ E, such that f (x) (a) one-one onto 2015 - Dec If A =.{x, y, z}, B = (a) {(x, a), (x, b), (x) (c) {(x, c), (z, b), (z) In a class of 80 stu and the remaining (a) 55 (b) 4 If f(x) = 2x + 2 and (a) 18 (b) 2 2016 - June If set A = $\left\{x: \frac{x}{2} \in z\right\}$ B = {x: x is one dig and C = $\left\{x: \frac{x}{3} \in N\right\}$	→ E, such that f (x) = 2x for all X ∈ (a) one-one onto (b) one-one in 2015 - Dec If A =.{x, y, z}, B = {a, b, c, d}, then y (a) {(x, a), (x, b), (y, c), (z, d)} (c) {(x, c), (z, b), (z, c)} In a class of 80 students, 35% stude and the remaining students can pla (a) 55 (b) 44 (c) 36 If f(x) = 2x + 2 and g(x) = x ² , then (a) 18 (b) 22 (c) 34 2016 - June If set A = {x: $\frac{x}{2} \in z, 0 \le x \le 10$ }, B = {x: x is one digit prime number and C = {x: $\frac{x}{3} \in N, x \le 12$ } then A ∩ (B∩C) is equal to -	→ E, such that f (x) = 2x for all X ∈ N is (a) one-one onto (b) one-one into (c) may 2015 - Dec If A =.{x, y, z}, B = {a, b, c, d}, then which of the for (a) {(x, a), (x, b), (y, c), (z, d)} (b) {(x, c), (z, b), (z, c)} (d) {a, (x, c), (z, c), (z, c), (z, c)} (d) {a, (x, c), (z, c), (z, c)} (d) {a, (x, c), (z, c), (z, c), (z, c)} (d) {a, (z, c), (z, c), (z, c), (z, c)} (d)	→ E, such that f (x) = 2x for all X ∈ N is (a) one-one onto (b) one-one into (c) many-one onto 2015 - Dec If A =.{x, y, z}, B = {a, b, c, d}, then which of the following relations (a) {(x, a), (x, b), (y, c), (z, d)} (b) {(x, a), (y, b), (x, c)} (d) {a, z), (b, y), (c)} (c) {(x, c), (z, b), (z, c)} (d) {a, z), (b, y), (c)} In a class of 80 students, 35% students can play only cricket, and the remaining students can play both the games. In all her (a) 55 (b) 44 (c) 36 (d) 28 If f(x) = 2x + 2 and g(x) = x ² , then the value of fog (4) is: (a) 18 (b) 22 (c) 34 (d) 128 2016 - June If set A = {x: $\frac{x}{2} \in z$, 0 ≤ x ≤ 10}, B = {x: x is one digit prime number} and C = {x: $\frac{x}{3} \in N$, x ≤ 12} then A ∩ (B∩C) is equal to -	→ E, such that f (x) = 2x for all X ∈ N is (a) one-one onto (b) one-one into (c) many-one onto (d) con 2015 - Dec If A =.{x, y, z}, B = {a, b, c, d}, then which of the following relation from (a) {(x, a), (x, b), (y, c), (z, d)} (b) {(x, a), (y, b), (z, d)} (c) {(x, c), (z, b), (z, c)} (d) {a, z), (b, y), (c, z), (d, x)} In a class of 80 students, 35% students can play only cricket, 45% stud and the remaining students can play both the games. In all how many s (a) 55 (b) 44 (c) 36 (d) 28 If f(x) = 2x + 2 and g(x) = x ² , then the value of fog (4) is: (a) 18 (b) 22 (c) 34 (d) 128 2016 - June If set A = {x: $\frac{x}{2} \in z$, 0 ≤ x ≤ 10}, B = {x: x is one digit prime number} and C = {x: $\frac{x}{3} \in N$, x ≤ 12} then A ∩ (B∩C) is equal to -	→ E, such that f (x) = 2x for all X ∈ N is (a) one-one onto (b) one-one into (c) many-one onto (d) constant 2015 - Dec If A =.{x, y, z}, B = {a, b, c, d}, then which of the following relation from the set A to s (a) {(x, a), (x, b), (y, c), (z, d)} (b) {(x, a), (y, b), (z, d)} (c) {(x, c), (z, b), (z, c)} (d) {a, z}, (b, y), (c, z), (d, x)} In a class of 80 students, 35% students can play only cricket, 45% students can play and the remaining students can play both the games. In all how many students can play (a) 55 (b) 44 (c) 36 (d) 28 If f(x) = 2x + 2 and g(x) = x ² , then the value of fog (4) is: (a) 18 (b) 22 (c) 34 (d) 128 2016 - June If set A = {x: $\frac{x}{2} \in z$, 0 ≤ x ≤ 10}, B = {x: x is one digit prime number} and C = {x: $\frac{x}{3} \in N, x \le 12$ } then A ∩ (B∩C) is equal to -	→ E, such that f (x) = 2x for all X ∈ N is (a) one-one onto (b) one-one into (c) many-one onto (d) constant 2015 - Dec If A =.{x, y, z}, B = {a, b, c, d}, then which of the following relation from the set A to set B is a function (a) {(x, a), (x, b), (y, c), (z, d)} (b) {(x, a), (y, b), (z, d)} (c) {(x, c), (z, b), (z, c)} (d) {a, z), (b, y), (c, z), (d, x)} In a class of 80 students, 35% students can play only cricket, 45% students can play only table tenr and the remaining students can play both the games. In all how many students can play cricket? (a) 55 (b) 44 (c) 36 (d) 28 If f(x) = 2x + 2 and g(x) = x ² , then the value of fog (4) is: (a) 18 (b) 22 (c) 34 (d) 128 2016 - June If set A = {x: $\frac{x}{2} \in z$, 0 ≤ x ≤ 10}, B = {x: x is one digit prime number} and C = {x: $\frac{x}{3} \in N, x \le 12$ } then A ∩ (B∩C) is equal to -	

NAF	TA PROFESSIONAL CLASSES		BUSINESS MATHEMATICS						
54.	Let A be the set of squares of natural n	umbers and let x∈A, y∈	A then						
	(a) $X + Y \in A$ (b) $X - Y \in A$	(c) $\frac{x}{Y} \in A$	(d) $xy \in \mathbf{A}$						
55.	The domain (D) and range (R) of the fu	unction $f(x) = 2 - x + 1 $	l is						
	(a) D = Real numbers, R = $(2, \infty)$	(b) D = Integers, R	= (0, 2)						
	(c) D = Integers, R = $(-\infty, \infty)$ (d) D = Real numbers, R = $(-\infty, 2)$								
56.	If R is the set of all real numbers, then	the function f: R→R def	fined by $f(x) = 2^x$						
	(a) one-one onto (b) one-one into	(c) many-one into	(d) many-one onto						
57.	The inverse function f^{-1} of $f(x) = 100x$	is:							
	(a) $\frac{x}{100}$ (b) $\frac{1}{100x}$ (c)	$\frac{1}{x}$ (d) None of	these						
58.	The number of subsets of the set forme	ed by the word Allahab	ad is:						
	(a) 128 (b) 16	(c) 32	(d) 64						
	2017 - June								
59.	The range of function f defined by f(x)	$=\frac{x}{x^2+1}$ is:							
	(a) $\left\{ x: \frac{-1}{2} < x < \frac{1}{2} \right\}$ (b) $\left\{ x: \frac{-1}{2} \le x < \frac{1}{2} \right\}$	$\left. \right\} (c) \left\{ \times : \frac{-1}{2} \le X \le \frac{1}{2} \right\}$	(d) $\left\{ x: x > \frac{1}{2} \text{ or } x < \frac{-1}{2} \right\}$						
60.	In a group of students 80 can speak Hi	ndi, 60 can speak Engli	sh and 40 can speak English and Hindi						
	both, then number of students is:								
	(a) 100 (b) 140	(c) 180	(d) 60						

1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>												
2 C 12 B 22 B 32 B 42 A 52 C 3 C 13 A 23 C 33 D 43 C 53 A 4 D 14 B 24 A 34 C 44 B 54 D 5 C 15 D 25 C 35 C 45 B 54 D 6 A 16 A 25 C 35 C 45 B 55 D 6 A 16 A 26 A 36 C 46 B 56 B 7 A 17 A 27 A 37 C 47 C 57 A 8 B 18 C 28 D 38 B 48 C 58 C 9						+	ANSWE	RS				
A A 23 C 33 D 43 C 53 A A D 14 B 24 A 34 C 44 B 54 D S C 15 D 25 C 35 C 45 B 55 D 6 A 16 A 26 A 36 C 46 B 56 B 7 A 16 A 27 A 37 C 47 C 57 A 8 B 18 C 28 D 38 B 48 C 58 C 9 B 18 C 28 D 38 B 48 C 58 C 9 B 19 D 29 A 39 A 49 A 59 C 9 A 20 A 30 B 40 C 50 B 60 A	1	D		A	21	A	31	В	41	D	51	В
4 0 14 B 24 A 34 C 44 B 54 D 5 C 15 D 25 C 35 C 45 B 55 D 6 A 16 A 26 A 36 C 46 B 56 B 7 A 17 A 27 A 37 C 47 C 57 A 8 B 18 C 28 D 38 B 48 C 58 C 9 B 19 D 29 A 39 A 49 A 59 C 10 A 20 A 30 B 40 C 50 B 60 A	2	С	12	В	22	В	32	В	42	A	52	С
Image: Marking Constraints Image: Marking Constraints <th< td=""><td>3</td><td>С</td><td>13</td><td>A</td><td>23</td><td>С</td><td>33</td><td>D</td><td>43</td><td>С</td><td>53</td><td>A</td></th<>	3	С	13	A	23	С	33	D	43	С	53	A
6 A 16 A 26 A 36 C 46 B 56 B 7 A 17 A 27 A 37 C 47 C 57 A 8 B 18 C 28 D 38 B 48 C 58 C 9 B 19 D 29 A 39 A 49 A 59 C 10 A 20 A 30 B 40 C 50 B 60 A	4	D	14	В	24	A	34	С	44	В	54	D
7 A 17 A 27 A 37 C 47 C 57 A 8 B 18 C 28 D 38 B 48 C 58 C 9 B 19 D 29 A 39 A 49 A 59 C 10 A 20 A 30 B 40 C 50 B 60 A	5	С	15	D	25	С	35	С	45	В	55	D
8 B 18 C 28 D 38 B 48 C 58 C 9 B 19 D 29 A 39 A 49 A 59 C 10 A 20 A 30 B 40 C 50 B 60 A	6	A	16	A	26	A	36	С	46	В	56	В
9 B 19 D 29 A 39 A 49 A 59 C 10 A 20 A 30 B 40 C 50 B 60 A	7	A	17	A	27	A	37	С	47	С	57	A
10 A 20 A 30 B 40 C 50 B 60 A	8	В	18	С	28	D	38	В	48	C	58	C
	9	В	19	D	29	A	39	A	49	A	59	C
61 B	10	A	20	A	30	В	40	С	50	В	60	A
											61	В

СН - 8	BASIC CONCEPTS OF DIFFERENTIAL & INTEGRAL CALCULUS
	(A) DIFFERENTIAL CALCULUS
	SOME STANDARD RESULTS (FORMULAE)
	$(1) \frac{d}{dx}(x)^n = nx^{n-1}$
	$(2)\frac{d}{dx}(e^x) = e^x$
	$(3)\frac{d}{dx}(a^x) = a^x \log_e a$
	$(4)\frac{d}{dx}(constant) = 0$
	$(5)\frac{d}{dx}(e^{ax}) = ae^{ex}$
	$(6)\frac{d}{dx}\log x = \frac{1}{x}$
Ex. 1:	Differentiate each of the following functions with respect to x:
	$(a) 3x^2 + 5x - 2$
Sol.:	
Ex. 2:	$(b) a^{x} + x^{a} + a^{a}$
Sol.:	Let $h(x) = a^{x} + x^{a} + a^{a}$

	$\frac{d}{dx}\{h(x)\} = \frac{d}{dx}(a^{x}) + \frac{d}{dx}(x^{a}) + \frac{d}{dx}(a^{a}), a^{a} \text{ is constant}$
	$= a^{x} \log a + ax^{a-1} + 0 = a^{x} \log a + ax^{a-1}.$
Ex. 3:	(c) $\frac{1}{3}x^3 - 5x^2 + 6x - 2\log x + 3$
Sol.:	
Ex. 4:	(d) e ^x log x
Sol.:	
Ex. 5:	(e) $y = 2^{x} x^{5}$
Sol.:	$\frac{dy}{dx} = x^5 \frac{d}{dx} 2^x + 2^x \frac{d}{dx} x^5 $ (Product Rule)
	$= x^5 2^x \log 2 + 5.2^x x^4$
Ex. 6:	(f) $\frac{x^2}{e^x}$
Sol.:	

Ex. 7:	(g) $e^x / \log x$
Sol.:	
Ex. 8:	(h) $2^{x} \log x$
Sol.:	Let $h(x) = 2^x \log x$
	The given function h(x) is appearing here as product of two functions
	$f(x) = 2^x$ and $g(x) = \log x$
	$\frac{d}{dx}{h(x)} = \frac{d}{dx}(2^x \log x) = 2^x \frac{d}{dx}\log x + \log x \frac{d}{dx}2^x$
	$2^{x} x \frac{1}{x} + \log x \ 2^{x} \log 2 = \frac{2^{x}}{x} + 2^{x} \log 2 \log x$
Ex. 9:	(i) $\frac{2x}{3x^3+7}$
Sol.:	Let $h(x) = \frac{2x}{3x^3+7}$ [Given function appears as the quotient of two functions]
	$\frac{d}{dx}\{h(x)\} = \frac{3x^3 + 7\frac{d}{dx}(2x) - 2x\frac{d}{dx}(3x^3 + 7)}{(3x^3 + 7)^2}$
	$=\frac{(3x^3+7)\cdot2-2x(9x^2+0)}{(3x^3+7)^2}=\frac{2\{(3x^3+7)-9x^3\}}{(3x^3+7)^2}=\frac{2(7-6x^3)}{(3x^3+7)^2}$
	DERIVATIVE OF A FUNCTION OF FUNCTION
Ex. 10:	Differentiate log (I+x²) w.r.t to x
Sol.:	

IT FUNCTIONS
$r x^2 y^2 + 3xy + y = 0$
y + y = 0
ating with respect to x we see
$y^{2}\frac{d}{dx}x^{2} + 3x\frac{d(y)}{dx}y + 3y\frac{d}{dx}(x) + \frac{dy}{dx} = 0$
+ $2xy^2 + 3x\frac{dy}{dx} + 3y\frac{d(x)}{dx} + \frac{dy}{dx} = 0, \frac{d}{dx}(x) = 1, \frac{d(y^2)}{dx} = 2y\frac{dy}{dx}$ (chain rule)
$(-3x+1)\frac{dy}{dx} + 2xy^2 + 3y = 0$
$(2xy^2 + 3y)/(2yx^2 + 3x + 1)$
procedure for differentiation of Implicit Function.
ETRIC EQUATION
$x = at^3, y = a/t^3$
THMIC DIFFERENTIATION

Ex. 13:	Differentiate x ^x w.r.t. x
Sol.:	
	SOME MORE EXAMPLES
1.	If $y = \sqrt{\frac{1-x}{1+x}}$ show that $(1-x^2) \frac{dy}{dx} + y = 0$.
Sol.:	Taking logarithm, we may write $\log y = \frac{1}{2} \{\log (1 - x) - \log (1 + x)\}$
	Differentiating throughout we have
	$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}\left\{\log\left(1-x\right) - \log\left(1+x\right)\right\} = \frac{1}{2}\left(\frac{-1}{1-x} - \frac{1}{1+x}\right) = -\frac{1}{1-x^2}$
	By cross-multiplication $(1 - x^2) \frac{dy}{dx} = -y$
	Transposing $(1 - x^2)\frac{dy}{dx} + y = 0$
2.	Differentiate the following w.r.t. x :
	(a) log $(x + \sqrt{x^2 + a^2})$
Sol.:	$y = \log\left(x + \sqrt{x^2 + a^2}\right)$

	$\frac{dy}{dx} = \frac{1}{(x + \sqrt{x^2 + a^2})} \left(1 + \frac{1}{2\sqrt{x^2 + a^2}} (2x) \right)$
	$=\frac{1}{(x+\sqrt{x^2+a^2})}+\frac{x}{(x+\sqrt{x^2+a^2})\sqrt{x^2+a^2}}$
	$=\frac{(x+\sqrt{x^2+a^2})}{(x+\sqrt{x^2+a^2})\sqrt{x^2+a^2}} = \frac{1}{\sqrt{x^2+a^2}}$
	(b) $log(\sqrt{x-a} + \sqrt{x-b})$
Sol.:	Let $\mathbf{y} = \log(\sqrt{x-a} + \sqrt{x-b})$
	$\operatorname{or} \frac{dy}{dx} = \frac{1}{\sqrt{x-a} + \sqrt{x-b}} \left(\frac{1}{2\sqrt{x-a}} + \frac{1}{2\sqrt{x-b}} \right)$
	$=\frac{(\sqrt{x-a}+\sqrt{x-b})}{(\sqrt{x-a}+\sqrt{x-b})2\sqrt{x-a\sqrt{x-b}}}$
	$=\frac{1}{2\sqrt{x-a\sqrt{x-b}}}$
3.	If $x^m y^n = (x+y)^{m+n}$ prove that $dy/dx = Y/X$
Sol.:	$x^m y^n = (x+y)^{m+n}$
	Taking log on both sides
	$\log x^m y^n = (m+n) \log (x+y)$
	or $m \log x + n \log y = (m+n) \log (x+y)$
	$\operatorname{so}\frac{m}{x} + \frac{n}{y}\frac{dy}{dx} = \frac{(m+n)}{(x+y)}\left(1 + \frac{dy}{dx}\right)$
	$\operatorname{or}\left(\frac{n}{y} - \frac{(m+n)}{(x+y)}\right)\frac{dy}{dx} = \frac{(m+n)}{(x+y)} = \frac{m}{x}$
	$\operatorname{or}\frac{(nx+ny-my-ny)}{y(x+y)}\frac{dy}{dx} = \frac{mx+nx-mx-my}{x(x+y)}$
	$\operatorname{or}\frac{(nx-my)}{y}\frac{dy}{dx} = \frac{nx-my}{x}$
	or $\frac{dy}{dx} = \frac{y}{x}$ proved,

4.	If $x^{y} = e^{x-y}$ prove that $\frac{dy}{dx} = \frac{\log x}{(1+\log x)^2}$
Sol.:	
	BASIC IDEA ABOUT HIGHER ORDER DIFFERENTIATION
Ex. :	If $y = ae^{mx} + be^{-mx}$ prove that $\frac{d^2y}{dx^2} = m^2y$
Sol.:	
	WORD PROBLEMS

Ex. 1:	The total cost function of a firm is where is the total cost and is outpout. A tax at the rate of `2				
	per unit of output is imposed and the producer adds it to his cost. If the market demand function is				
	given by ,where `p is the price per unit of output, find the profit maximising output and price for				
	maximum profit.				
Sol.:					
Ex. 2:	The cost function of a company is given by:				
	$C(x) = 100x - 8x^2 + \frac{x^3}{3}$				
	where x denotes the output. Find the level of output at which:				
	(i) marginal cost is minimum				
	(ii) average cost is minimum				
Sol.:	M(x) = Marginal Cost = C(x) = $\frac{d}{dx}(100x - 8x^2 + \frac{x^3}{3}) = 100 - 16x + x^2$				
8. 8 	Page FACULTY: CA MEGHA NAHTA				

	A(x) = Average Cost = $\frac{C(x)}{x}$ = 100x - 8x ² + $\frac{x^{3}}{3}$					
	(i) M(x) is maximum or minimum when $M\xi(x) = -16 + 2x = 0$ or, $x = 8$.					
	$M^{2}(8) = M''(x)]_{X=8} = [2]_{X=8} = 2 > 0$					
	Hence, marginal cost is minimum at $x = 8$.					
	(ii) A(x) is maximum or minimum when $A^{\epsilon}(x) = -8 + \frac{2X}{3} = 0$, or $x = 12$					
	A ² (12) A''(x)] _{x=12} = $\frac{2}{3}$] _{x=12} = $\frac{2}{3}$ > 0					
	Hence, average cost is minimum at $x = 12$.					
	A(x) = Average Cost = $100 - 8n + \frac{X^3}{3} = 100 - 8(12) + \frac{144}{3}$					
	=100 - 96 + 48 = 52					
	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA EXERCISE 8(A)					
1.	EXERCISE 8(A)					
1.	EXERCISE 8(A) Choose the most appropriate option (a) (b) (c) or (d).					
	EXERCISE 8(A) Choose the most appropriate option (a) (b) (c) or (d).The gradient of the curve $y = 2x^3 - 3x^2 - 12x + 8$ at $x = 0$ is					
1.	EXERCISE 8(A)Choose the most appropriate option (a) (b) (c) or (d).The gradient of the curve $y = 2x^3 - 3x^2 - 12x + 8$ at $x = 0$ isa) -12b) 12c) 0d) none of these					
	EXERCISE 8(A)Choose the most appropriate option (a) (b) (c) or (d).The gradient of the curve $y = 2x^3 - 3x^2 - 12x + 8$ at $x = 0$ isa) -12b) 12c) 0d) none of theseThe gradient of the curve $y = 2x^3 - 5x^2 - 3x$ at $x = 0$ is					

FACULTY: CA MEGHA NAHTA

Т

4.	If $f(x) = e^{aX^2 + bX + c}$ the f'(x) is							
	a) e^{aX^2+bX+c} b) e^{aX^2+bX+c} (2ax+b) c)2ax+b d) none of these							
5.	if $f(x) = \frac{X^2 + 1}{X^2 - 1}$ then f'(x) is							
	a) $-4x / (x^2 - 1)^2$ b) $4x / (x^2 - 1)^2$ c) $x / (x^2 - 1)^2$ d) none of these							
6.	If $y = x(x-1)(x-2)$ then $\frac{dy}{dx}$ is							
	a) $3x^2 - 6x + 2$ b) $-6x + 2$ c) $3x^2 + 2$ d) none of these							
7.	The gradient of the curve $y - xy + 2px + 3qy = 0$ at the point (3, 2) is -2/3 The values of p and q are							
	a) (1/2, 1/2) b) (2, 2) c) (-1/2, -1/2) d) (1/2, 1/6)							
8.	The curve $y^2 = ux^3 + v$ passes through the point P(2, 3) and $\frac{dy}{dx} = 4$ at P. The values of u and v are							
	a) $(u = 2, v = 7)$ b) $(u = 2, v = -7)$ c) $(u = -2, v = -7)$ d) $(0, -1)$							
9.	The gradient of the curve $y + px + qy = 0$ at (1, 1) is $\frac{1}{2}$. The values of p and q are							
	a) (-1, 1) b) (2, -1) c) (1, 2) d) (0, -1)							
10.	If $xy = 1$ then $y^2 + dy/dx$ is equal to							
	a) 1 b) 0 c) -1 d) none of these							
11.	The derivative of the function $\sqrt{x} + \sqrt{x}$ is							
	a) $1/2\sqrt{x} + \sqrt{x}$ b) $1+1/2\sqrt{x}$ c) $1/2\sqrt{x} + \sqrt{x}(1+1/2\sqrt{x})$ d) none of these							
12.	Given $e^{-xy} - 4xy = 0$, dy/dx can be proved to be							
	a) $-y/x$ b) y/x c) x/y d) none of these							
13.	If $x^2/a^2 - y^2/a^2 = 1$, dy/dx can be expressed as							
	a) x/y b) x/ $\sqrt{x^2}$ -a ² c) 1/ $\sqrt{x^2}/a^2$ -1 d) none of these							
0.4								

14.	If $\log (x / y) = x + y$, dy/dx may be found to be						
	a) $y(1-x)/x(1+y)$ b) y/x c) $1-x/1+y$ d) none of these						
15.	If $f(x, y) = x^3 + y^3 - 3axy = 0$, $d\frac{ay}{x}$ can be found out as						
	a) $ay-x^2/y^2 + ax$ b) $ay-x^2/y^2 - ax$ c) $ay+x^2/y^2 + ax$ d) none of these						
16.	Given $x = at^2$, $y = 2at$; $\frac{ay}{dx}$ is calculated as						
	a) t b) $-1/t$ c) $1/t$ d) none of these						
17.	Given $x = 2t + 5$, $y = t^2 - 2$; dy/dx is calculated as						
	a) t b) $-1/t$ c) $1/t$ d) none of these						
18.	If $y = 1/\sqrt{x}$ then dy/dx is equal to						
	a) $\frac{1}{2x\sqrt{x}}$ b) $\frac{-1}{x\sqrt{x}}$ c) $-\frac{1}{2x\sqrt{x}}$ d) none of these						
19.	If $x = 3t^2 - 1$, $y = t^3 - t$, then dy/dx is equal to						
	a) 3t ² -1/6t b) 3t ² -1 c)3t -1/6t d) none of these						
20.	The slope of the tangent to the curve $y = \sqrt{4} - x^2$ at the point, where the ordinate and the						
	abscissa are equal, is						
	a) -1 b) 1 c) 0 d) none of these						
21.	The slope of the tangent to the curve $y = x^2 - x$ at the point, where the line $y = 2$ cuts the						
	curve in the Ist quadrant, is						
	a) 2 b) 3 c) -3 d) none of these						
22.	For the curve $x^2 + y^2 + 2gx + 2hy = 0$, the value of dy/dx at (0, 0) is						
_	a) -g/h b) g/h c) h/g d) none of these						
23.	If $y = e^{3x} - e^{2x} / e^{3x} + e^{2x}$ then dy/dx is equal to						
	a) $2e^{5x}$ b) $1/(e^{5x} + e^{2x})^2$ c) $e^{5x}/(e^{5x} + e^{2x})$ d) none of these						
0.4							

24.	If $x^y \cdot y^x = M$, where M is constant then dy/dx is equal to						
	a) $-y/x$ b) $\frac{-y(y+x\log y)}{x(x\log x+x)}$ c) $\frac{y+x\log y}{y\log x+x)}$ d) none of these						
25.	Given $x = t + t^{-1}$ and $y = t - t^{-1}$ the value of dy/dx at $t = 2$ is						
	a) 3/5 b) -3/5 c) 5/3 d) none of these						
26.	If $x^3 - 2x^2y^2 + 5x + y - 5 = 0$ then dy/dx at $x = 1$, $y = 1$ is equal to						
	a) 4/3 b) – 4/3 c) 3/4 d) none of these						
27.	The derivative of $x^2 \log x$ is						
	a) $1+2\log x$ b) $x(1+2\log x)$ c) $2\log x$ d) none of these						
28.	The derivative of $\frac{3-5x}{3+5x}$ is						
	a) $30/(3+5x)^2$ b) $1/(3+5x)^2$ c) $-30/(3+5x)^2$ d) none of these						
29.	Let $y = \sqrt{2x + 3^{2x}}$ then dy/dx is equal to						
	a) $(1/2x) + 2.3^{2x}\log_{e}3$ b) $1/2x$ c) $2.3^{2x}\log_{e}3$ d) none of these						
30.	The derivative of log $[e^{x}{x-2/x+2}^{3/4}]$ is						
	a) $x^{2} + 1/x^{2} + 4$ b) $x^{2} - 1/x^{2} - 4$ c) $1/x^{2} - 4$ d) none of these						
31.	The derivative of e ^{3x2 -6x+2} is						
	a) $30(1-5x)^5$ b) $(1-5x)^5$ c) $6(x-1)^{e_{3x^2-6x+2}}$ d) none of these						
32.	If $y = e^x + 1/e^x - 1$ then dy/dx is equal to						
	a) $-2e^{x}/(e^{x}-1)^{2}$ b) $2e^{x}/(e^{x}-1)^{2}$ c) $-2/(e^{x}-1)^{2}$ d) none of these						
33.	If $f(x) = \{(a+x)/(1+x)\}^{a+1+2x}$ the value of $f'(0)$ is						
	a) a^{a+1} b) $a^{a+1}[1 - a^2/a + 2\log a]$ c) $2\log a$ d) none of these						
34.	If $x = at^2$, $y = 2at$ then $[dy/dx]_{t=2}$ is equal to						
	a) ½ b) -2 c) -1/2 d) none of these						

35.	Let $f(x) = (\sqrt{x} + \frac{1}{\sqrt{x}})^2$ then f'(2) is equal to						
	a) ³ / ₄ b) ¹ / ₂ c) 0 d) none of these						
36.	$f(x) = x^2 - 6x + 8$ then $f'(5) - f'(8)$ is equal to						
	a) f(2) b) 3f(2) c) 2f(2) d) none of these						
37.	If $y = (x + \sqrt{x^2 + m^2})^n$ then dy/dx is equal to						
	a) ny b) ny/ $\sqrt{x^2 + m^2}$ c) -ny/ $\sqrt{x^2 + m^2}$ d) none of these						
38.	If $y = +\sqrt{x}/m + \sqrt{m}/x$ then $2xy dy/dx - x/m + m/x$ is equal to						
	a) 0 b) 1 c) –1 d) none of these						
39.	If $y = 1 + x + x^2/2! + x^3/3! + \dots + x^n/n + \dots$. Then dy/dx – y is proved to be						
	a) 1 b) -1 c) 0 d) none of these						
40.	$f(x) = x^k$ and $f'(1) = 10$ the value of k is						
	a) 10 b) -10 c) 1/10 d) none of these						
41.	If $y = x^2 + m^2$ then $y y_1$ (where $y_1 = dy/dx$) is equal to						
	a) –x b) x c) 1/x d) none of these						
42.	If $y = e^x + e^{-x}$ then $dy/dx - \sqrt{y^2} - 4$ is equal to						
	a) 1 b) -1 c) 0 d) none of these						
43.	The derivative of $(x^2-1)/x$ is						
	a) $1 + 1/x^2$ b) $1 - 1/x^2$ c) $1/x^2$ d) none of these						
44.	The differential coefficients of $(x^2+1)/x$ is						
	a) $1 + 1/x^2$ b) $1 - 1/x^2$ c) $1/x^2$ d) none of these						
45.	If $y = e^{\sqrt{2x}}$ then dy/dx is equal to						

	a) $e^{\sqrt{2x}}/\sqrt{2x}$	b) e ^{√2x}	c) $e^{\sqrt{2x}}/\sqrt{2x}$	d) none of these			
5 .	If $y = \sqrt{x^{\sqrt{\dots \infty}}}$ then dy/dx is equal to						
	a) $\frac{y^2}{2-y \log x}$	b) $\frac{y^2}{x(2-y\log x)}$	$rac{y^2}{\log x}$ c) $\frac{y^2}{\log x}$	d) none of these			
7.	If $x = (1 - t^2)/(1 + t^2) y = 2t/(1 + t^2)$ then dy/dx at t = 1 is						
	a) ½ b) 1 c)	0 d) none of	these			
3.	$f(x) = x^2/e^x$ then f'(1) is equal to						
	a) – 1/e	b) 1/e	c) e o	l) none of these			
9.	If $y = (x + \sqrt{x^2 - 1})^m$ then $(x^2 - 1) (dy/dx)^2 - m_2 y_2$ is proved to be						
	a) –1	b) 1	c) 0	d) none of these			
0.	If $f(x) = \frac{4 - 2x}{2 + 13x + 3x}$	If $f(x) = \frac{4 - 2x}{2 + 13x + 3x^2}$ then the values of x for which $f'(x) = 0$ is					
	a) 2 $(1 \pm \sqrt{\frac{5}{3}} 0)$	b) (1 ± √3	3) c)2	d) none of these			

<u>(</u>	(B) INTEGRAL CALCULUS
ł	BASIC FORMULAE
	i) $\int x^n dx = \frac{x^{n+1}}{n+1} + c, \ n \neq -1$ (If $n = -1, \frac{x^{n+1}}{n+1} = \frac{1}{0}$ which is not defined)
	ii) $\int dx = x$, since $\int 1 dx = \int x^{\circ} dx = \frac{x1}{1} = x$
	iii) $\int e^x dx = e^x + c$, since $\frac{d}{dx}e^x = e^x$
	iv) $\int e^{ax} dx = \frac{e^{ax}}{a} + c$, since $\frac{d}{dx} \left(\frac{e^{ax}}{a} \right) = e^{ax}$
	v) $\int \frac{dx}{x} = \log x + c$, since $\frac{d}{dx} \log x = \frac{1}{x}$
	vi) $\int a^x dx = a^x / \log_e a + c$, since $\frac{d}{dx} \left(\frac{a^x}{\log_e^a} \right) = a^x$
N	N ote: In the answer for all integral sums we add +c (constant of integration) since the differentiation
0	f constant is always zero.
E	lementary Rules:
	$\int c f(x) dx = c \int f(x) dx$ where c is constant.
	$\int \{f(x) dx \pm g(x)\} dx = \int f(x) dx \pm \int g(x) dx$

Ex. 1:	Find (a) $\int \sqrt{x} dx$, (b) $\int \frac{1}{\sqrt{x}} dx$, (c) $\int e^{-3x} dx$ (d) $\int 3^x dx$ (e) $\int x\sqrt{x} dx$
Sol.	(a)
	(b) $\int \frac{1}{\sqrt{x}} dx = \int x^{-\frac{1}{2}} dx = \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + c = 2\sqrt{x} + c$ where c is arbitrary constant.
	(c)
	(d) $\int 3^x dx = \frac{3^x}{\log_e 3} + c.$
	(e)
Ex. 2:	Evaluate the following integral :
i)	$f(x + 1/x)^2 dx$
Sol:	$= f x^2 dx + 2f dx + f dx / x^2$
	$= x^{3} / x + 2x + x^{-2+1} / -2 + 1$
	$= x^3 / x + 2x = 1 / x + c$
ii)	$f \sqrt{x(x^3 + 2x - 3)} dx = f x^{7/2} dx + 2f x^{3/2} dx - 3f x^{1/2}/dx$
Sol:	$=\frac{x^{7/2+1}}{7/2+1} + \frac{2x^{3/2+1}}{3/2+1} - \frac{3x^{1/1/2+1}}{1/2+1}$
	$= \frac{2x^{9/2}}{9} + \frac{4x^{5/2}}{\frac{3}{2}+1} - \frac{3x^{\frac{1}{2}+1}}{\frac{1}{2}+1}$

iii)	$f^{e^3 x+e^{-3} \times dx} = f e^{2} \times dx + f e^{-4} \times dx$
Sol:	$=\frac{e^{2x}}{2} + \frac{e^{-4x}}{-4} = \frac{e^{2x}}{2} - \frac{1}{4e^{4x}} + c$
iv)	$f\frac{x^2}{x+1} dx = f\frac{x^2 - 1 + 1}{x+1} dx$
Sol:	$= \int \frac{(x^2 - 1)}{x + 1} \mathrm{d}x + \int \frac{\mathrm{d}x}{x + 1}$
	$= f(x-1)dx + \log (x+1) = \frac{x^2}{2} - x + \log(x+1) + c$
v)	$f \frac{x^3 + 5x^2 - 3}{x + 2} dx$
Sol:	By simple division = $\int \frac{x^3 + 5x^2 - 3}{x+2} dx$
	$= f \{x^2 + 3x - 6 + \frac{9}{(x+2)}\} dx$
	$=\frac{x^3}{3} + \frac{3x^2}{2} - 6x + 9\log(x+2) + c$
	METHOD OF SUBSTITUTION (CHANGE OF VARIABLE)
Ex. 1:	f (2x+3) ⁷ dx
Sol:	We put $(2x + 3) = t \rightarrow so 2 dx = dt or dx = dt / 2$
	Therefore $f(2x+3)^7 dx = \frac{1}{2} ft^7 dt = \frac{t^8}{2x8} = \frac{t^8}{16} = \frac{(2x+3)^8}{16} + c$
Ex. 2:	$f \frac{x^2}{(x^2+1)3} dx$
Sol:	We put $(x^2+1) = t$ so $2x dx = dt$ or $x dx = dt / 2$
	$= \int \frac{x^2 x}{t^3} dx$

	$= \frac{1}{2} \int \frac{t-1}{t^3} \mathrm{d}t$
	$= \frac{1}{2} \int \frac{dt}{t^2} - \frac{1}{2} \int \frac{dt}{t^3}$
	$= \frac{1}{2} x \frac{t^{-2+1}}{(-2+1)} - \frac{1}{2} x \frac{t^{-3+1}}{(-3+1)}$
	$= -\frac{1}{2} \frac{1}{t} + \frac{1}{4} \frac{1}{t^2}$
	$= \frac{1}{4} \frac{1}{t^2} - \frac{1}{2} \frac{1}{t}$
	$= \frac{1}{4} \cdot \frac{1}{x^2 + 1} - \frac{1}{2} \cdot \frac{1}{x^2 + 1} + c$
	IMPORTANT STANDARD FORMULA
a)	$\int \frac{dx}{x^2 - a^2} - \frac{1}{2a} \log \frac{x - a}{x + a} + c$
b)	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$
c)	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left x + \sqrt{x^2 + a^2} \right + c$
d)	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 + a^2}) + c$
e)	$\int e^{x} \{f(x) + f'(x)\} dx = e^{x} \{f(x) + c$
f)	$\int \sqrt{x^2 + a^2} dx = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\log(x + \sqrt{x^2 + a^2}) + c$
g)	$fx^{2} - a^{2} dx = \frac{x}{2}\sqrt{x^{2} - a^{2} - \frac{a^{2}}{2}}\log(x + \sqrt{x^{2} - a^{2}}) + c$
h)	$f\frac{f'(x)}{f(x)} dx = \log f(x) + c$

Ex.1	
	(a) $f \frac{e^x}{e^{2x}-4} dx$
	$== \int_{z^2-2^2} \frac{dz}{z^2-2^2} \text{ where } z = e^x dz = e^x dx \ \frac{1}{4} \log(\frac{e^{x-2}}{e^{x+2}}) + c$
	(b) $f \frac{1}{x+\sqrt{x^2-1}} dx$
	$= \int \frac{x - \sqrt{x^2 - 1}}{(x + \sqrt{x^2 - 1})(x + \sqrt{x^2} - 1)} dx \qquad = \int (x - \sqrt{x^2 - 1}) dx$
	$=\frac{x^2}{2} - \frac{x}{2}\sqrt{x^2 - 1} + \frac{1}{2}\log(x + \sqrt{x^2 - 1}) + c$
	$(c)fe^{x}(x^{3}+3x^{2})dx$
	= $fe^{x} \{f(x)+f'(x)\}dx$. Where $f(x) = x^{3}$ [by (e) above)] = $e^{x}x^{3}+c$
	METHOD OF PARTIAL FRACTION
Ex.1	$f \frac{(3x+2)dx}{(x-2)(x-3)}$
Sol.	Let $\frac{(3x+2)}{(x-2)(x-3)} = \frac{A}{(x-2)} + \frac{B}{(x-3)}$
	[Here degree of the numerator must be lower than that of the denominator; the denominator contains non-
	repeated linear factor]
	so $3x + 2 = A(x - 3) + B(x - 2)$
	We put x = 2 and get
	3.2 + 2 = A (2-3) + B (2-2) => A = -8
	we put x = 3 and get

	3.3 + 2 = A (3-3) + B (3-2) => B = 11
	$\int \frac{(3x+2)dx}{(x-2)^2(x-3)} - 8 \int \frac{dx}{(x-2)} + 11 \int \frac{dx}{(x-3)}$
	$=-\log(x-2)+11\log(x-3)+c$
Ex.2:	$f\frac{dx}{X(X^3+1)}$
Sol:	$f\frac{dx}{X(X^3+1)}$
	$= \int \frac{x^2 dx}{x^3 (X^3 + 1)} $ we put $x^3 = z$, $3x^2 dx = dz$
	$=1/3 \mathrm{f}\frac{dz}{z(z+1)}$
	$= 1/3 f(\frac{1}{z} - \frac{1}{z+1}) dz$
	$= 1/3 [\log z - \log(z-1)]$
	$= 1/3 \log \left(\frac{X^3}{X^3 - 1}\right) + c$
Ex.3:	Find the equation of the curve where slope at (x, y) is 9x and which passes through the origin.
Sol.:	$\therefore \int dy = \text{ or } y = 9x^2 / 2 + c$
	DEFINITE INTEGRATION
Ex.1:	$\int_0^2 x^5 dx$
Sol.	
	<u> </u>

Ex.2:	$\int_{1}^{2} (x^5 - 5x + 2) dx$
Sol.	
Ex. 3:	Evaluate $\int_{-2}^{2} \frac{x^4 dx}{a^{10} - x^{10}}$ (a>2)
Sol.:	$\frac{x^4 dx}{a^{10} - x^{10}} = \frac{x^4 dx}{(a^5)2 - (x^{5})^2}$
	let $x^5 = t$ so that $5x^4 dx = dt$
	Now $f \frac{x^4 dx}{(a^5)2 - (x^{5})^2}$
	$= 1/5 f \frac{5x^4 dx}{(a^5)^2 - (x^{5})^2}$
	$= 1/5 f \frac{dt}{(a^5)2 - t^2}$
	$=\frac{1}{10^5}\log\frac{a^5+x^5}{a^5-x^5}$ (by standard formula b)
	Therefore, $\int_{-2}^{2} \frac{x^4 dx}{a^{10} - x^{10}}$
	$\int_{-2}^{2} \frac{x^4 dx}{a^{10} - x^{10}} $ (by prop. VI)
	$= 2 x \frac{1}{10a^5} \log \left[\frac{a^5 + x^5}{a^5 - x^5} \right]_0^2$
	$=\frac{1}{5a^5}\log\frac{a^5+32}{a^5-32}$

	AGAR DARR HAI BHAGANA, TO MATHS HAI BANANA						
	EXERCISE 8(B) [K = CONSTANT]						
	Choose the most appropriate option (a) (b) (c) or (d).						
1.	Evaluate = $\int 5x^2 dx$:						
	(a) $5/3x^3 + k$ (b) $\frac{5x^3}{3} + k$ (c) $5x^3$ (d) none of these						
2.	Integration of $3 - 2x - x^4$ will become						
	(a) $-x^2 - x^5/5$ b) $3x - x^2 - \frac{x^5}{5} + k$ c) $3x - x^2 + \frac{x^5}{5} + k$ (d) none of these						
3.	Given $f(x) = 4x^3 + 3x^2 - 2x + 5$ and $\int f(x) dx$ is						
	(a) $x^4 + x^3 - x^2 + 5x$ (b) $x^4 + x^3 - x^2 + 5x + k$ (c) $12x^2 + 6x - 2x^2$ (d) none of these						
4.	Evaluate $f(x^2 - 1)dx$						
	(a) $x^{5}/5 - 2/3 x^{3} + x + k$ (b) $\frac{x^{3}}{3} - x + k$ (c) $2x$ (d) none of these						
5.	$\int (1-3x)(1+x) dx$ is equal to						
	(a) $x - x^2 - x^3$ (b) $x^3 - x^2 + x$ (c) $x - x^2 - x^3 + k$ (d) none of these						
6.	$\int [\sqrt{x} - 1/\sqrt{x}] dx$ is equal to						
	(a) $\frac{2}{3}x^{3/2} - 2x^{1/2} + k$ (b) $\frac{2}{3}\sqrt{x} - 2\sqrt{x} + k$ (c) $\frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} + k$ (d) none of these						
7.	The integral of $px^3 + qx^2 + rk + w/x$ is equal to						
	(a) $px^2 + qx + r + k$ (b) $px^{3/3} + qx^{2/2} + rx$ (c) $3px + 2q - w/x^2$ (d) none of these						
8.	Use method of substitution to integrate the function $f(x) = (4x + 5)^6$ and the answer is						
	(a) $1/28 (4x+5)^7 + k$ (b) $(4x+5)^7/7 + k$ (c) $(4x+5)^7/7$ (d) none of these						
9.	Use method of substitution to evaluate $\int x (x^2 + 4)^5 dx$ and the answer is						

	(a) $(x^2 + 4)^6 + k$	(b) $1/12 (x^2 + 4)^6 + k$	(c) $(x^2 + 4)^6 / + k$	(d) none of these		
10.	Integrate (x + a) ⁿ and	l the result will be				
	a) $\frac{(x+a)^{n+1}}{n+1} + k$	b) $\frac{(x+a)^{n+1}}{n+1}$	$c)(x+a)^{n+1}$	(d) none of these		
11.	$\int 8x^2/(x^3+2)^3 dx$ is e	equal to				
	$(a) - 4/3(x^3 + 2)^2 + k$	b)- $\frac{4}{3(x^3+2)2}$ +k	c) $\frac{4}{3(x^3+2)2}$ + k	(d) none of these		
12.	Using method of part	ial fraction the integration of	f f(x) when $f(x) = \frac{1}{x^2 - a^2} a^2$	and the answer is		
	(a) $\log x - \frac{a}{x+a} + k$	(b) $\log (x - a) - \log (x + a)$	$(+ k - c) \frac{1}{2a} \log (\frac{x-a}{x+a}) + 1$	k (d) none of these		
13.	Use integration by pa	rts to evaluate∫x² e³x dx				
	(a) $x^2 e^{3x}/3 - 2x e^{3x}/9 +$	2/27 e3x + k	(b) $x^2 e^{3x} - 2x$	$e^{3x} + 2e^{3x} + k$		
	(c) $e^{3x}/3 - x e^{3x}/9 + 2e^{3x}$	s + k	(d) none of the	ese		
14.	$\int \log x dx$ is equal to					
	(a) x logx + k	(b) $x \log x - x^2 + k$	(c) x logx + k	(d) none of these		
15.	∫ xe [×] dx is					
	(a) $(x - 1)e^x + k$	(b) $(x - 1) e^x$	(c) $x e^{x} + k$	(d) none of these		
16.	$\int (\log x)^2 dx$ and the result is					
	(a) x (logx) ² – 2x logx	+2x + k (b) x (logx) ² - 2	2x + k (c) 2x logx – 2:	x + k (d) none of these		
17.	Using method of partial fraction to evaluate $\int (x+5) dx/(x+1)(x+2)^2$ we get					
	(a) $4 \log (x + 1) - 4 \log (x + 2) + 3/x + 2 + k$ (b) $4 \log (x + 2) - 3/x + 2 + k$					
	(c) $4 \log (x+1) - 4 \log (x+1)$	og (x + 2)	(d) none of these			
18.	Evaluate $\int_0^1 (2x^2 - x^3)$	³)dx and the value is				

	(a) 4/3 + k	(b) 5/12	(c) – 4/3	(d) none					
19.	Evaluate $\int_2^4 (2x^2 - 2)^4$	2). ² dx and the value $\frac{1}{2}$	is						
	(a) 104	(b) 100	(c) 10	(d) none					
20.	Evaluate $\int_0^1 (xe^x d) d$	x and the value is							
	(a) –1	(b) 10	(c) 10/9	(d) +1					
21.	$\int x^2 (1 + \log x) dx$ is	equal to							
	(a) $x^x \log x + k$	(b) $e^{x^2} + k$	$(c)\frac{x^2}{2} + k$	(d) x ^x +	c				
22.	If $f(x) = \sqrt{1+x^2}$ then $\int f(x) = \sqrt{1+x^2}$	If $f(x) = \sqrt{1+x^2}$ then $\int f(x) dx$ is							
	(a)2/3 x $(1 + x^2)^{3/2}$	- k	(b) x/2 √ 1	$x + x^2 + \frac{1}{2} \log (x + \frac{1}{2})$	$\sqrt{x^2 + 1}$ k				
	(c)2/3 x $(1+x^2)^{3/2}$	+ k	(d) none c	of these					
23.	$\int d(x^2 + 1) / \sqrt{x^2 + 2}$ is e	qual to							
	$(a)\frac{x}{\sqrt{2}}(\sqrt{x^2+2}) + k$	(b) $\sqrt{x^2 + 2}$	(c) 1	$/(x^2 + 2)^{3/2} + k$	(d) none of these				
24.	$\int (e^{x} + e^{-x})^{2} (e^{x} + e^{-x}) dx$	is							
	(a) $1/3 (e^x + e^{-x})^3 + k$	(b) ½ (e ^x +e ^{-x})	$^{2} + k$ (c) $e^{x} +$	k (d)	none of these				
25.	$\int_{0}^{a} [f(x) + f_{-x}] dx \text{ is equal to}$								
	(a) $\int_0^a 2f(x)dx$	(b) $\int_{-a}^{a} f(x) dx$	dx (c)	0	(d) $\int_{-a}^{a} -f(-x)dx$				
26.	∫ xe ^x /(x+1)² dx is equ	$\int xe^{x}/(x+1)^{2} dx$ is equal to							
	(a) $e^{x}/(x+1) + k$	(b) $e^{x}/x + k$	(c) e ^x + k	(d) none of these				
27.	∫ (x ⁴ +3/x) dx is equa	l to							

	(a) x ⁵/5 + 3 log txl	(b) 1/5 x ⁵ + 3 log b	$kl + k$ (c) $1/5 x^5 + k$	(d) none of these			
28.	Evaluate the integr	al $\int (1-x)^3 / x dx$ and the ans	wer is equal to				
	(a) log txt – 3x + 3/2	$x^2 + k$ (b) $\log x - 2 + 3x^2$	+ k (c) $\log x + 3x^2 +$	k (d) none of these			
29.	The equation of the	curve in the form $y = f(x)$	if the curve passes throug	h the point			
	(1, 0) and $f'(x) = 2x$	– 1 is					
	(a) $y = x^2 - x$	(b) $x = y^2 - y$	(c) $y = x^2$	(d) none of these			
30.	Evaluate $\int_{1}^{4} (2x + 5)$) dx and the value is					
	a) 3	(b) 10	(c) 30	(d) none of these			
31.	$\int_{1}^{2} \frac{2x}{1+x^{2}}$ is equal to						
	(a) log _e (5/2)	(b) $\log_{e}5 - \log_{e}2 + k$	(c) log _e (2/5)	(d) none of these			
32.	$\int_0^4 \sqrt{3x} + 4 \mathrm{dx} \text{ is equ}$	ual to					
	(a) 9/112	(b) 112/9	(c) 11/9	(d) none of these			
3.	$\int_0^2 \frac{x+2}{x+1} \mathrm{dx} \mathrm{is}$						
	(a) 2 + log _e 2	(b) $2 + \log_{e} 3$	(c) log _e 3	(d) none of these			
34.	Evaluate $\int_{1}^{e^2} \frac{dx}{x(1+\log x)^2}$ and the value is						
	(a) 3/2	(b) 1/3	(c) 26/3	(d) ½ (loge5)			
35.	$\int_0^4 \frac{(x+1)(x+4)}{\sqrt{x}} dx \text{ is equal to}$						
	(a) 51 ½	(b) 48/5	(c) 48	(d) 55 7/15			
6.	The equation of the	The equation of the curve which passes through the point (1, 3) and has the slope $4x - 3$ at any point (x,					
	(a) $y = 2x^3 - 3x + 4$	(b) $y = 2x^2 - 3x + 4$	(c) $x = 2y^2 - 3y + 4$	(d) none of these			

37.	The value of $\int_2^3 f(5)$	The value of $\int_{2}^{3} f(5-x) dx - \int_{2}^{3} f(x) dx$ is					
	(a) 1	(b) 0	(c) –1	(d) none of these			
38.	$\int (x-1)e^x / x^2 dx$ is equal to						
	(a) e ^x /x + k	(b) $e^{-x}/x + k$	$(c) - e^{x}/x + k$	(d) none of these			
39.	$\int \frac{e^x (x \log x + 1)}{x} \mathrm{d}x \text{ is eq}$	ual to					
	(a) e ^x logx + k	(b) e ^x + k	(c) logx + k	(d) none of these			
40.	$\int \log x^2 dx$ is equal to)					
	(a) x (log x – 1) + k	(b) 2x (log x – 1) + k	(c) 2 $(\log x - 1) + k$	(d) none of these			
41.	$\int_1^2 x \log x dx$ is equal	to					
	(a) 2 log 2	$(b) - \frac{3}{4}$	(c) $2 \log 2 - \frac{3}{4}$	(d) none of these			
42.	Evaluate $\int_1^2 \left(\frac{x^2-1}{x^2}\right)$ e	$x^{+}\frac{1}{x}$ dx. The value is					
	(a) $e^2 (\sqrt{e} - 1)$	(b) e²[√e -1]+k	(c) e² √e	(d) none of these			
43.	$\int_0^2 3x^2 dx \text{ is}$						
	(a) 7	(b) -8	(c) 8 (c	l) none of these			
44.	Evaluate $\int \frac{(2-x)e^x}{(1-x)^2} dx$	and the value is					
	$(a)\frac{e^x}{1-x} + k$	(b)e ^x +k	$(c)\frac{1}{1-x} + k$	(d) none of these			
45.	Using integration b	Using integration by parts $f x^3 \log x dx$					
	(a) x ⁴ /16 + k	(b) x4/16 (4 log x	-1) + k (c) 4 log x - 1 + k	(d) none of these			
46.	∫log (logx)/x dx is						

	(a) $\log (\log x - 1) + k$ b) $\log x - 1 + k$ (c) $[\log (\log x - 1)] \log x + k$ (d) none of these
47.	$\int (\log x)^2 x dx$ is equal to
	(a) $\frac{x^2}{2} [(\log x)^2 - \log x + \frac{1}{2}] + k$ b) $(\log x)^2 - \log x + \frac{1}{2} + k$ c) $\frac{x^2}{2} [(\log x)^2 + \frac{1}{2}] + k$ (d) none of these
48.	Evaluate $\int \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right) dx$ and the value is
	(a) $\log_{e} e^{x} + e^{-x} $ (b) $\log_{e} e^{x} + e^{-x} + k$ (c) $\log_{e} e^{x} - e^{-x} + k$ (d) none of these
49.	By the method of partial fraction $\int \frac{3x}{(x^2 - x - 2)} dx$ is
	(a) $2 \log_{e} x-2 + \log_{e} x+1 + k$ (b) $2 \log_{e} x-2 - \log_{e} x+1 + k$
	(c) $\log_{e} x-2 + \log_{e} x+1 + k$ (d) none of these
50.	If $f'(x) = x - 1$, the equation of a curve $y = f(x)$ passing through the point (1, 0) is given by
	(a) $y = x^2 - 2x + 1$ (b) $y = x^2/2 - x + 1$ (c) $y = x^2/2 - x + \frac{1}{2}$ (d) none of these

ANSWERS									
Exercise 8	(A)								
1. (a)	2. (b)	3. (c)	4. (b)	5. (a) 6.	(a)	7. (d)	8.	(b)
9. (d)	10. (b)	11. (c)	12. (a)	13. (a) 14.	(a)	15. (b)	16.	(c)
17. (a)	18. (c)	19. (a)	20. (a)	21. (o) 22.	(a)	23. (d)	24.	(b
25. (c)	26. (a)	27. (b)	28. (c)	29. (a) 30.	(b)	31. (c)	32.	(a)
33. (b)	34. (a)	35. (a)	36. (b)	37. (1	o) 38.	(a)	39. (c)	40.	(a
41. (b)	42. (c)	43. (a)	44. (b)	45. (4	a) 46.	(b)	47. (c)	48.	(b
49. (c)	50. (a)								
Exercise 8	(B)								
1. (b)	2. (b)	3. (b)	4. (b)	5. (4	c) 6.	(a)	7. (d)	8.	(a
9. (b)	10 . (a)	11. (b)	12. (c)	13. (4		(d)	15. (a)	16.	(a
17. (a)	18. (b)	19. (a)	20. (d)	21. (d) 22.	(b)	23. (a)	24.	(a

	"KAR LO PAST APNI MUTHI ME"							
	Past Exam Questions							
1.	$\lim_{x \to 2} \frac{x^{n} - 2^{n}}{x - 2} = 80 \text{ and neN, then :}$							
	(a) $n = 5$ (b) $n = 0$ (c) $n = 4$ (d) None							
2.	$\operatorname{Let} f(x) = \begin{cases} x & \text{when } x > 0 \\ 0 & \text{when } x = 0 \\ -x & \text{when } x < 0 \end{cases}$							
	(a/ Undefined at $x = 0$ (b) Continuous at $x = 0$ (c) Discontinuous at $x = 0$ (d) None							
3.	The slope of the tangent at the point (2, -2) to the curve $x^2 + xy + y^2 - 4 = 0$ is given by:							
	(a) 0 (b) 1 (c) -1 (d) None							
4.	The derivative of x ² log x is :							
	(a) $1+2 \log x$ (b) $2 \log x$ (c) $x (1+2 \log x)$ (d) None of these							
5.	$\int_0^1 (e^x + e^{-x}) dx$ is :							
	(a) $e - e^{-1}$ (b) $e^{-1} - e$ (c) $e + e^{-1}$ (d) None							
6.	$\int \frac{8x^2}{(x^3+2)^3} dx \text{ is equal to:}$							
	(a) $-\frac{4}{3}(x^3+2)^2 + C$ (b) $-\frac{4}{3}(x^3+2)^{-2} + C$ (c) $\frac{4}{3}(x^3+2)^2 + C$ (d) None of these							
	2007 - Feb							
7.	If $f(x) = ax^2 + bx + c$ then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ is :							

	(a) ax + 2b (b) 2ax + b (c) 2ax - b (d) None
8.	A function $f(x)$ is defined as follows : $f(x) = \begin{cases} x \text{ when } x < 1\\ 1 + x \text{ when } x > 1 \end{cases}$ Then $f(x)$ is: $\frac{3/2 \text{ when } x = 1}{3/2 \text{ when } x = 1}$
	(a) Discontinuous at $x = 1$ (b) Undefined at $x = \frac{1}{2}$ (c) Continuous at $x = 1$ (d) None of the
9.	If $x = y \log (xy)$, then $\frac{dy}{dx}$ is equal to:
	(a) $\frac{x+y}{x(1+\log xy)}$ (b) $\frac{x-y}{x(1+\log xy)}$ (c) $\frac{x+y}{x(\log x+\log y)}$ (d) $\frac{x-y}{x(\log x+\log y)}$
10.	If $y = 2x + \frac{4}{x}$, then $x^2 \frac{d^2y}{dx^2} + X \frac{dy}{dx}$ - y yields
	(a) 3 (b) 1 (c) 0 (d) 4
11.	Evaluate : $\int \frac{dx}{\sqrt{x^2+a^2}}$:
	(a) $\frac{1}{2}\log(x + \sqrt{x^2 + a^2}) + C$ (b) $\log(x + \sqrt{x^2 + a^2}) + C$
	(c) $\log(x\sqrt{x^2 + a^2}) + C$ (d) $\frac{1}{2}\log(x\sqrt{x^2 + a^2}) + C$
12.	the value of. $\int_0^2 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{2-x}} dx$ is :
	(a) 0 (b) 3 (c) 2 (d) 1
	2007 - May
13.	$\lim_{x \to 1} \frac{e^{-x} - e}{x - 1}$ is equal to:
	$(a) e (b) - \frac{1}{e} (c) \frac{1}{e} (d) 0$
14.	$\lim_{x\to\infty}\frac{(a-bx)}{x^2}$ is equal to:

	(a) 1	(b) 0	(c) a	— (d) - ∞	
15.	The function f(x)	$=\frac{x^2-9}{x-3}$ is undefined at x	: = 3. What value mus	t be assigned to f(3),	if f(x) is to be
	continuous at x =	<u>- 3?</u>			
	(a) 6 (b)	0 (c) 9	(d) 3		
16.	If $f(x) = x^k$ and f'	(1) = 10, then the valu	e of k is :		
	(a) 10	(b) -10	(c) 1/10	(d) None	
17.	Given $x = 2t + 5;$	$y = t^2 - 2$, then $\frac{dy}{dx}$ is calc	culated as:		
	(a) t	(b) 1/t	(c) 1/t	(d) None	
18.	The integral of (e	$^{3x} + e^{-3x}) / e^{x}$ is:			
	(a) $\frac{e^{2x}}{2} + \frac{e^{-4x}}{4} + C$	(b) $\frac{e^{2x}}{2} - \frac{e^{-4x}}{4} + C$	(c) $e^{2x} - e^{-4x} + C$	(d) None of these	
19.	$\int x^2 e^{3x} dx$ is :				
	(a) $x^2 \cdot e^{3x} - 2xe^{3x} + 2$	$2e^{3x} + C$ (b) $\frac{e^{3x}}{3} - \frac{x \cdot e^3}{9}$	$\frac{x^{2}}{2}$ + 2e ^{3x} + C (c) $\frac{x^{2} \cdot e^{3x}}{3}$	$-\frac{2x \cdot e^{3x}}{9} + \frac{2}{27}e^{3x} + C$	(d) None of these
20.	$\int_1^2 \frac{2x}{1+x^2} \mathrm{d}x:$				
	(a) $\log_{e} \frac{5}{2}$	(b) $\log_e 5 - \log_e 2 + 1$	(c) $\log_e \frac{2}{5}$	(d) None of t	hese
	2007-Aug				
21.	$\lim_{h \to \infty} \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{$	$\frac{1}{3^{\underline{n}}}$ is equal to:			
	$\frac{(a)^{\frac{1}{2}}}{(b)}$	$\frac{1}{3}$ (c) 2	(d) 1		

22.	The total cost C of purchasing of a certain commodity is given by						
	$C(x) = \begin{cases} \frac{3x, 0 \le x \le 100}{100 + 2x, 100 < x \le 500} \\ \frac{500 + x, x > 500}{500 + x, x > 500} \end{cases}$						
	At $x = 500$, the function C (x) is:						
	(a) Continuous (b) Discontinuous (c) Both (a) & (b) (d) Neither (a) nor (b)						
23.	If $x^y = y^x$, then $\frac{dy}{dx}$ gives:						
	$(a)\frac{x(x\log y - y)}{y(y\log x - x)} \qquad (b)\frac{x(y\log x - x)}{y(x\log y - y)} \qquad (c)\frac{y(x\log y - y)}{x(y\log x - x)} \qquad (d) \text{ None of these}$						
24.	If $x^3 - 2x^2y^2 + 5x + y = 5$, then $\frac{dy}{dx}$ at x s 1 and y = 1 is:						
	(a) 4/3 (b) -5/4 (c) 4/5 (d) -4/3						
25.	The value of $\int_{1}^{e} \frac{(1+\log x)}{x} dx$ is : [Given Loge =1]						
	(a) ¹ / ₂ (b) 3/2 (c) 1 (d) 5/2						
26.	Find $\int \frac{x^3}{(x^2+1)^3} dx$:						
	$(a)\frac{1}{4}\left[\frac{2x^2+1}{(x^2+1)^2}\right] \qquad (b)\frac{1}{4}\left[\frac{2x^2+1}{(x^2+1)^2}\right] \qquad (a)\frac{1}{2}\left[\frac{2x^2+1}{(x^2+1)^2}\right] \qquad (d)-\frac{1}{2}\left[\frac{2x^2+1}{(x^2+1)^2}\right]$						
27.	$\frac{\lim_{x \to 1} \frac{x + x^2 + x^3 \dots + x^n - n}{x - 1}}{x - 1}$						
	(a) n (b) $\frac{n(n+1)}{2}$ (c) (n + 1) (d) n(n + 1)						
28.	If $f(x) = \frac{x^2 - 1}{x - 1}$ for $x \neq 1$, $f(x) = 2$ for $x = 1$, Then the function $f(x)$ at $x = 1$ is:						
	(a) Continuous (b) Discontinuous (c) Not defined (d) None of these						
29.	If $y = (x + \sqrt{x^2 + m^2})^n$ then $\frac{dy}{dx} =:$						

	$(a) \frac{ny}{n}$	(b) n y	$(c) = \frac{n!}{n!}$	у	(d) None
	(a) $\frac{ny}{\sqrt{x^2+m^2}}$	(0) II y	$(c) - \frac{ny}{\sqrt{x^2 + y^2}}$	+m ²	(u) None
0.	If $xy(x - y) = 0$, fi	nd & $\frac{dy}{dx}$:			
	(a) $\frac{y(2x-y)}{x(2y-x)}$	(b) $\frac{x(2x-y)}{y(2y-x)}$	(c) $\frac{y(2y-x)}{x(2x-y)}$	(d) None of t	hese
1.	If $y = \sqrt{x}^{\sqrt{x}}$ the second seco	hen ^{dy} is equal to:			
	$(a)\frac{y^2}{10gx}$	(b) $\frac{y^2}{2-y\log x}$	(0	c) $\frac{y^2}{x(2-y\log x)}$	(d) None
2.	$\int \frac{1}{x^2 \cdot a^2} dx \text{ is:}$				
	(a) log (x - a) - log	$g(x+a) + C(b) \log x - \frac{a}{x+b}$	$\frac{1}{a} + C$ (c) $\frac{1}{2a}$ Log	$g\left(\frac{x-a}{x+a}\right) + C$	(d) None of these
3.	The value of $\int_0^1 \frac{1}{(1-1)^2} dx$	$\frac{\mathrm{dx}}{\mathrm{+x})(2\mathrm{+x})}$ is:			
	(a) $\log \frac{3}{4}$	(b) $\log \frac{4}{3}$	(0	c) log 12	(d) None
4.	If $y = 1 + x + \frac{x^2}{2!} + \frac{x^2}{2!}$	$+\frac{x^3}{3!}+\dots+\frac{x^n}{n}+\dots+t$	then ^{dy} y is equal to :	:	
	(a) 1	(b) 1	(c) 0	(d) None	
5.	$\lim_{x\to 0} \frac{4^{x+1} \cdot 4}{2x}$				
	(a) Does not exis t	:(b) Exists and is equ	ual to 2 (c) Exists	and is equal to 4 lo	g _e 2 (d) None of these
6.	$f(x) = \frac{x^2 - 1}{x^2 - 1}$ is unc	lefined at $x = 1$, the value of	of f (x) at x = 1 such	that it is continuou	s at x = 1 is :
	$(a)^{\frac{3}{2}}$	$(b)\frac{2}{3}$	$-(c) - \frac{3}{2}$	——————————————————————————————————————	
7.	The slope of the t	angent to the curve $y = \sqrt{2}$	$\overline{4-x^2}$ at the point, v	where the ordinate a	and the abscissa are equal,

38.	The value of $\int_2^3 f(5)$	$(-x)dx - \int_2^3 f(x) dx$ is:			
	(a) 1	(b) 0	(c) -1	(d) None	
39.	$\int \frac{e^{\log e^x}}{x} dx \text{ is:}$				
	(a) x ⁻¹ + C	(b) x + C	(0	c) $x^2 + C$	(d) None
40.	$\frac{\text{Lim } \frac{3x + x }{x \to 0} \frac{3x + x }{7x - 5 x }}{\text{is equal}}$	to:			
	$\frac{(a)^{\frac{1}{6}}}{6}$	(b) 1	(c) does not exis t	-	(d) 2
	2008 - June				
41.	The points of discor	tinuity of the function	$f(x) = \frac{(2x^2 + 6x - 5)}{(12x^2 + x - 20)} \operatorname{are}$	2:	
	$\frac{(a)-\frac{4}{5}and\frac{5}{3}}{3}$	(b) $-\frac{4}{3}$ and $\frac{5}{4}$	$-(c)\frac{4}{5}$ and $-\frac{5}{3}$	$(d)\frac{4}{3}$ and $-\frac{5}{4}$	
42.	Differentiate $e^{(x^x)}$:				
	(a) (1 + log x)	(b) $x^{x} (1 + \log x)$	(c) $e^{(x^x)}$ ($(1 + \log x)x^{\times}$	(d) $e^{(x^x)} (1 + \log x)$
43.	If $x^m y^n = (x + y)^{m+1}$	$\frac{dy}{dy}$			
		dx dx			
	(a) $\frac{x}{y}$	(b) $\frac{y}{x}$	(c) xy	(d) None	
44.		(b) $\frac{y}{x}$	(c) xy	(d) None	
44.	(a) $\frac{x}{y}$ Evaluate $\int \frac{1}{(x-1)(x-1)}$	(b) $\frac{y}{x}$		(d) None c) $\log\left(\frac{x-1}{x-2}\right) + C$	(d) None
44. 45.	(a) $\frac{x}{y}$ Evaluate $\int \frac{1}{(x-1)(x-1)}$	(b) $\frac{y}{x}$ (b) $\log [(x-2) (x-1)]$			(d) None

46.	$\frac{\text{lf f}(x) = \frac{x^2 + x - 6}{(x - 2)} \text{ then}}{(x - 2)}$	$n \frac{\lim_{x \to 2}}{x \to 2} f(X)$			
	(a) 4	(b) 5	(c) 3	(d) 1	
47.	$\lim_{x\to b} \frac{1}{(x-b)}$ is:				
	(a) ∝	(b) - ∞	(c) does n	ot exist	(d) 0
48.	Let a function be def	ined as follows: f	$(X) = \begin{cases} 4x, \text{ when } 0 < \\ 5 - x, \text{ when } \end{cases}$	$\frac{1}{x \times 1}{x \ge 0}$	
	(a) continuous at x =	= 1	(b)	continuous at x = 0-	
	(c) continuous no w	here.	(d) continuous for all, exce	pt x = 1
49.	If $f(x) = a^{x} x^{a}$ then f	ind f'(x).			
	(a) f (x) [a + log a]	(b) f (x	$\left[\frac{a}{x} - \log a\right]$ (c) f(x) $\left[\frac{a}{x} - \log a\right]$	(d) f (x) $[a + x \log a]$
50.	$\int \frac{1}{x(x^5+1)} dx$				
	(a) $\log\left(\frac{x^5}{x^5-1}\right) + C$	(b) $\frac{1}{5}$ lo	$\log\left(\frac{x^5}{x^5+1}\right) + C$	$(c)\frac{1}{3}\log\left(\frac{x^5}{x^5+1}\right) + C$	$(d)\frac{1}{3}\log\left(\frac{x^{5}+1}{x^{5}}\right) + C$
51.	$\frac{\lim_{x\to 3} x^{\text{H}} - 3^{\text{H}}}{x - 3} = 108. \text{ Fin}$	d n			
	(a) 4	(b) - 4	(c) 1	(d) None of	these
52.	$\frac{\lim_{x \to c} \frac{(x+2)^{3/2} \cdot (c+2)^{3/2}}{x-c} =$				
	(a) C	(b) 1/c	(c) 0	(d) None of	the above.
53.	Find the value of \int_{-1}^{3}	$_{3}x\sqrt{8-x^{2}}dx$			
	(a) 1	(b) -1	(c) 0	(d) None of	these

54.	If $x^3y^2 = (x - y)^5$. Find $\frac{dy}{dx}$	at(1,2).		
	(a) -7/9	(b) 7/9	(c) 9/7	(d) -9/7
55.	Evaluate∫x.e ^x dx			
	(a) $e^{x}(x+1) + c$	(b) $e^{x}(x - 1) + c$	(c) e ^x + c	(d) x - $e^x + c$
56.	Find $\int \frac{x^3}{(x^2+1)^3} dx$			
	(a) $1/4 (x^2 + 1)^{-2} + 1/2$	(x ² + 1) ⁻¹ + C	(b) $1/4 (x^2 + 1)^{-1} - 1/2(x)$	² + 1) + C
	(c) $1/4 (x^2 + 1)^{-2} - 1/2(x^2 + 1)^{-2}$	$x^2 + 1)^{-1} + C$	(d) None of these	
	2009 - Dec			
57.	$f(x) = \begin{cases} 5 - \frac{x^2}{5}, & 0 < 3 \\ 0 & x = \\ 5 - \frac{5^3}{x^2}, & x > \end{cases}$	€ < 5 = 5 Then f(x) is: ≻ 5		
	(a) Continuous at x = 5	(b) Discontinuous a	t x = 5 (c) Undefined at :	x = 5 (d) None of the above
58.	$\frac{-\lim_{x\to -\frac{9x^2-1}{3x+1}}}{x\to -\frac{1}{3}}$			
	(a)∞ ((b) 1 (c) 2	2 (d)-2	
59.	$\frac{1}{x \to 0} \frac{6x + 8xe^x}{\log(1 + 2x)}$			
	(a) 7 ((b) 14 (c) /	d (d) None	
60.	$\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$			
	(a) $2x^{1/2}\left(\frac{1}{3}x-1\right)$	(b) $2x^{1/2}\left(\frac{1}{3}x+1\right)$	(c) $2\left(\frac{1}{3}x + x^{1/2}\right)$) (d) None of these.

61.		Ĵ	$\int_{0}^{1} \left(\frac{1-x}{1+x}\right) dx$		
	(a) 2 log 2 – 1 (b) 4 log 2 -1	(c) 2 log 2	(d) None of t	hese
62.	$x = 21 + 5$ and $y = t^2 - 5$, then $\frac{dy}{dx} = ?$			
	(a) t (b) -1/t	(c) 1/t	(d) 0		
63.	$x = at^2 y = 2 at, \frac{dy}{dx} = ?$				
	(a) 1/t (b) -1/t	(c) t	(d) None of the	e above	
64.	Find the second derivat	ive of $y = \sqrt{x+1}$			
	(a) $1/2 (x + 1)^{-1/2}$	(b) $-1/4 (x + 1)^{-3/2}$	(c) 1/4	$(x + 1)^{-1/2}$	(d) None of these.
65.	$\lim_{x \to \infty} \frac{\sqrt{2x^2 + 3}}{4x + 1} \text{ equal t}$	0			
	$(a) \frac{1}{2} \sqrt{2}$ (b) 2√2	(c) √2	(d) 0	
66.	The function y = x is				
	(a) Discontinuous at x =	= 0	(b) Discontinue	ous every where.	
	(c) Continuous every w	nere. (d) (Continuous every v	where except x = 0	
67.	If $f(x) = \left\{ \frac{x^2 + k(1-x) - 2x}{x-2} \right\}$	If $x \neq 2$ and $f(x) = 2$ if $x =$	2 is continuous a	tx = 2 then $k =$	
	(a) 0 (b) -1 (c) 1		- (d) 2	
68.	Equal to				
	$\frac{dx}{(a)} \int \frac{dx}{\sqrt{3x+4} - \sqrt{3x+1}} \frac{2}{27} \left[\left(\frac{1}{3x+4} - \frac{1}{3x+1} \right) \right] \frac{dx}{(a)} = \frac{1}{3} \left[\frac{1}{3x+4} - \frac{1}{3x+4} \right] \frac{dx}{(a)} = \frac{1}{3} \left[\frac{1}{3x+4} - \frac{1}{3} \left[\frac{1}{3x+4} - \frac{1}{3} \right] \frac{dx}{(a)} = \frac{1}{3} \left[\frac{1}{3x+4} - \frac$	$3x + 4)^{3/2} - (3x + 1)^{3/2} + 6$	$(b) \frac{2}{27} [(3x+4)]$	$3^{3/2} + (3x + 1)^{3/2} + c$	<u> </u>

	$\frac{(c)^{\frac{2}{3}}[(3x+4)^{3/2}-(3x+1)^{3/2}]+c}{(d) \text{ None of these.}}$
69.	$\int_{1}^{2} \frac{x dx}{x^2 + 2} = \underline{\qquad}$
	(a) $\log \sqrt{2}$ (b) $\log \sqrt{3}$ (c) $\log \frac{1}{\sqrt{2}}$ (d) $\log \frac{1}{\sqrt{3}}$
70.	If $x^2 + y^2 = 4$ then
	(a) $y \frac{d^2 y}{dx^2} - \left(2 \frac{dy}{dx}\right)^2 + 1 = 0$ (b) $y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$
	(c) $y \frac{d^2 y}{dx^2} - \left(\frac{dy}{dx}\right)^2 - 1 = 0$ (d) $y \frac{d^2 y}{dx^2} + 2\left(\frac{dy}{dx}\right)^2 + 1 = 0$
	2010 - Dec
71.	Value of $\lim_{x \to 0} \frac{\sqrt{4+3x} - \sqrt{4-3x}}{x}$ is
	a) 3/4 (b) 5/2 (c) 0 (d) 3/2
72.	$\lim_{y \to 0} \frac{3y + y }{7y - 5 y } =$
	(a) 2 (b) 1/6 (c) 3/7 (d) Does not exit
73.	The cost function for the production of x units of a commodity is given by
	$\frac{C(x) = 2x^3 - 15x^2 + 36x + 15}{15x^2 + 36x + 15}$
	The cost will be minimum when 'x' is equal to
	(a) 3 (b) 2 ; (c) 1 (d) 4
74.	$\int \frac{6x+4}{(x-2)(x-3)} dx$ is equal to
	(a) 22 log (x-3) -16 (x-2) (b) 11 log (x-3) - 8 (x-2)
	(c) 22 log (x-3)-16 log (x-2) (d) 22 log (x-3) + 16 log (x-2)
75.	$\int \frac{1}{x(1+\log x)^2} dx$ is equal to

	(a) $-\frac{1}{2(1 + \log x)^2}$ + C (b) $\frac{1}{(1 + \log x)}$ + C (c) $-\frac{1}{(1 + \log x)}$ + C (d) None of these
76.	$\lim_{x \to 2} \frac{(x^{2}-4)}{(x^{2}+2x-8)} = k, \text{ Find } \lim_{x \to k} (3x + 4)$
	(a) 5 (b) 6 (c) 8 (d) None of the above.
77.	Function f (x) = K.x -1 for $x < 2$ = x - k for $x \ge 2$ is continuous at $x = 2$ The value of 'k' is
	(a) 2 (b) 1 (c) -1 (d) -2
78.	Solve : $\int_{-1}^{1} (e^{x} - e^{-x}) dx$
	a) 0 (b) 1 (c) 12 (d) None of the above.
79.	Solve : $\int \frac{(\log x^x)^2}{x^3} dx$
	(a) $\frac{3}{2} (\log x)^3 + C$ (b) $\frac{1}{3} (\log x)^3 + C$ (c) $\frac{1}{6} (\log x)^3 + C$ (d) $\frac{3}{7} (\log x)^3 + C$
80.	If $f(x) = {}^{x}C_{3}$; then $f'(1) = ?$
	(a) $\frac{1}{6}$ (b) $\frac{-1}{6}$ (c) $\frac{5}{6}$ (d) $\frac{-5}{6}$
81.	Given, $y = \int (e^{a \log x} + e^{x \log a}) dx$; then $\frac{dy}{dx}$
	(a) $x^a a^x$, (b) $x^a + a^x$ (c) $ax^{x-1} + a^x \log a$ (d) None of the above.
82.	If $f'(x) = 3x^2 - \frac{2}{x^3}$, $f(1) = 0$ and $f(x) = $
	(a) $\frac{x^3}{3}$ - X ⁻² -2 (b) x^3 + x^2 +2 (c) x^3 + x^{-2} - 2 (d) None of these
83.	The points of discontinuity of the function, $F(x) = \frac{x^2 + 2x + 5}{x^2 - 3x + 2}$ are
	(a) x = 0, x = t (b) x = 1, x = 2 (c) x = 0, x = 2 (d) None of these
84.	$\int_{-1}^{1} \frac{ x }{x} dx = $
	(a) -1 (b) 0 (c) 1 (d) 2

85.	$\frac{d}{dx} \left[2^{\log_2 x} \right]$					
	(a) 1	(b) 0	(c) ½	(d) 2	×.log₂x	
86.	$\int \frac{\mathrm{e}^{\mathrm{x}}}{(1+\mathrm{x})^3} \mathrm{d}\mathrm{x} - \int \frac{\mathrm{e}^{\mathrm{x}}}{2} \mathrm{d}\mathrm{x}$	$\frac{e^{x}}{(1+x)^{2}} dx =$				
	(a) 0 (b	$\frac{e^{x}}{2(1+x)^{2}} + C$	(c) $-\frac{e^x}{2(1+x)^2} + C$	(d)	$\frac{e^{x}}{(x+x)^{2}} + C$	
87.	If $Y = X^x$ then $\frac{d^2Y}{dx^2}$	=				
	(a) $\frac{\mathrm{dY}}{\mathrm{dx}}$ (1 + log x)	+ Y $\frac{d}{dx}$ (1 + 10gx)	(b) $\frac{\mathrm{dY}}{\mathrm{dx}}$ (1	$+ \log x) + \frac{d}{dx} (1 + 1)$	og x)	
	c) $\frac{\mathrm{dY}}{\mathrm{dx}}$ (1 + log x) -	$Y \frac{d}{dx} (1 + \log x)$	(d) $\frac{dY}{dx}$ (1 +	⊦ log x) - ^d / _{dx} (1 + lo	g x)	
	2012 - June					
88.	Evaluate $\lim_{n\to\infty} \frac{2+1}{n}$	8 + 18 + + 2n n²	<u>2</u>			
	(a) 1/3	(b) 2/3	(c) 4/3	(d) 1		
89.	$If g(x) = -\sqrt{25 - x}$	$\frac{x^2}{x^2}$, then $\lim_{x \to 1} \frac{g(x) - g(x)}{x - 1}$	¹⁾ is equal to	·		
	(a) 0	(b) 1/√24	(c) √24	(d) None of these.	
90.	If $x = c t$, $y = c/t$,	then $\frac{dy}{dx}$ is equal to:				
	(a) 1/t (b) t.e ^t (c) -1/	t² (d) None of these.		
91.	$\int_{0}^{1} \frac{\mathrm{d}x}{[ax+b(1-x)]^2} = -$					
	a) a/b	(b) b/a	a c)	ab	(d) 1/ab	
92.	If $y = e^{a \log x} + e^{x \log x}$	g^{a} , then $\frac{dy}{dx}$ =				
	(a) x ^a + a ^x	(b) a x ^{a-1} + a'	log a (c) a x ^{a-1} + x a ^{x-1}	(d) x ^x + a ^a	

	2012 - Dec												
93.	$\lim_{x\to 1} \frac{(x-1)}{(2x^2-7x+5)}$ is equal to												
	(a) 1/3 (b) 1/3	(c) 1	(d) None	of these.									
94.	$\int 2^{3x} \cdot 3^{2x} \cdot 5^x \cdot dx =$												
	(a) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(720)}$ + c (b)	$0) \frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(360)} + c \qquad (c) \frac{2}{3}$	$\frac{3x.3^{2x}.5^{x}}{\log(180)}$ + c	(d) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(90)} + c$									
5.	For the functions $y = x^3 - 3x$, the	For the functions $y = x^3 - 3x$, the value of $\frac{d^2y}{dx^2}$ at which $\frac{dy}{dx}$ is zero, is											
	(a) ±1 (b) ±3 (c	;) ± 6 (d) None of	these.										
96.	The equation of the tangent to the curve, $f = x^2 - 3x + 2$, at the point (2, 7) is -												
	(a) $y = 2x - 13$ (b) $y = 10$	0x (c) y = 10x	- 13 (d) y = 10									
97.	If $y = \log\left(\frac{5-4x^2}{3+5x^2}\right)$, Then $\frac{dy}{dx} = $												
	(a) $\frac{8}{4x-5} - \frac{10}{3+5x}$ (b) $(4x^2 - $	5) $-(3 + 5x^2)$ (c) $\frac{1}{2}$	$\frac{8x}{x^2-5} - \frac{10x}{3+5x^2}$	(d) 8x – 10									
	2013 - June												
98.	$\lim_{x \to 0^{\pm}} \frac{2e^{\frac{1}{x}} - 3x}{e^{\frac{1}{x}} + x} = \underline{\qquad}$												
	(a) -3 (b) 0	(c) 2	(d) 4										
9.	Evaluate $\lim_{n \to \infty} \frac{(n+2)! + (n+1)!}{(n+2)! - (n+1)!}$:												
	(a) 1 (b) 2	(C) ∞	(d) 0										
00.	If $y = \log_y x$, then $\frac{dy}{dx}$ is equal to:												
	(a) $\frac{1}{x + \log y}$ (b) $\frac{1}{x + x \log y}$	$\frac{1}{gy} \qquad (c) \frac{1}{1 + x \log y}$	(d) $\frac{1}{y + \log x}$										

101.	$\int_{1}^{2} \frac{(\log_{e}(ex))^{n}}{x} dx (n + -1) is equal to :$
	(a) $\left[\frac{(\log_e(2e))^{n+1-1}}{n+1}\right]$ (b) $\left[(\log_e(2e))^{(n+1)} + 1\right]$ (c) $\frac{(\log_e(2e))^{n+1}}{n+1} - \frac{(\log_e 2)^{n+1}}{n+1}$ (d) None of these
102.	If x = log t, y = e ^t then $\frac{dy}{dx}$ =
	(a) $1/t$ (b) t.e ^t (c) $-1/t^2$ (d) None of these
103.	$\int 2^{3x} \cdot 3^{2x} \cdot 5^x dx =$
	(a) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(270)}$ + C (b) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(360)}$ + C (c) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(180)}$ + C (d) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(90)}$ + C
	2013- Dec
104.	$\lim_{x \to 0} \frac{1}{x}$
	(a) + ∞ (b) - ∞ (c) 0 (d) does not exist
105.	$\frac{\text{If }\lim_{x \to 2} \frac{x^2 - ax + x - a}{x - 2}}{x - 2} = 1, \text{ then which of the following is correct?}$
	(a) $a = 1,1 = 2$ (b) $a = 2,1 = 3$ (c) $a = -2,1 = -1$ (d) $a = -2,1 = -3$
106	The points on the curve $y = x^3 - x^2 - x + 1$, where the tangent is parallel to x - axis are
	$(a)\left(\frac{-1}{3},\frac{32}{27}\right)$ and $(1,0)$ (b) $(0,0)$ and $(1,0)$ (c) $(1,0)$ and $(1,1)$ (d) $(0,1)$ and $(1,1)$
107.	∫(a) ^{2x} dx
	(a) $\frac{a^{2x}}{2\log a}$ (b) $\frac{2 \cdot a^{2x}}{\log a}$ (c) $\frac{a^{2x} \cdot \log a}{2}$ (d) None of these
	2014-June
108.	$\frac{\lim_{x \to \infty} \frac{1^2 + 2^2 + 3^2 + 4^2 + \dots + x^2}{x^2}}{x^2} = \underline{\qquad}$
	$(a)\frac{4}{3}$ (b) + ∞ (c) - ∞ (d) None of these
109	$\int_{0}^{5} \frac{x^{2} dx}{x^{2} + (5 - x)^{2}} \text{ is equal to } \$
	(a) 5 (b) $\frac{5}{2}$ (c) 1 (d) None of these
110.	If $y = ae^{nx} + be^{-nx}$, then $\frac{d^2y}{dx^2}$ is equal to

	(a) n²y	(b) –n²y	(c) ny	(d) None	e of these	
	2014- Dec	c				
111.	-A function f(x	:) is defined as u	under: $f(x) = \begin{cases} \frac{3}{5} \\ \frac{5}{5} \end{cases}$	x + 2 When — px, When	$\frac{x \le 1}{x > 1}$	
	The value of '	p' for which f (x)	is continuous a	t x = 1 will be:		
	(a) 1	(b) 2	(c) -1	(d) -2		
112.	The value of l	im (x + 2) ^{5/3} - (k+2) ⁵ ↔k x−k	<u>/3</u>	=		
	(a) ⁵ / ₃ k ^{2/3}	(b) ⁵ / ₃ (k	+ 2) ^{2/3} (c) $\frac{5}{3}$ (k + 2) ^{5/3}	(d) None of t	hese
113.	If $f(x) = \begin{cases} \frac{x-1}{-\frac{1}{2}} \\ \frac{x+1}{2} \end{cases}$	When x > 0 When x = 0 When x < 0,	then f(x) is:			
	(a) Continuou	s at x = 0	(b) Undefined a	t x = 0	
	(c) Discontinu	ious at x = 0		(d) None	e of these.	
114.	The value of o	definite integral	$\int_0^2 1-x dx = -$			
	a) 0	(b) ½	(c) 3/2	(d) 1	
115.	If y = 1 + $\frac{x}{1}$ +	$\frac{x^2}{\underline{ 2 }} + \dots + \frac{x^r}{\underline{ r }}$	<u>-</u> +, thei	n the value of $\frac{d}{d}$	<u>у</u> -у=	
	(a) 1-	(b) 0	(c) 2 (d) -1		
	2015- Juv)e				
116.	$\frac{ f f(x) = \frac{x - x }{x}, x}{x}$	< ≠ 0 and f (0) =	2, then f (x) is			
	(a) undefii	ned (b) (continuous at x	= 0 (c) c	ontinuous at x = 2	(d) not continuous.
117.	The value of	Lim <u>9*-3*</u> _{x→0} 4 <u>*-2*</u> is				
	(a) log 3 / log	2	(b) log (3/2)	(c) log 6	; (d) 1	
118.	The value of	$\int_0^{1/2} \frac{\mathrm{dx}}{\sqrt{3-2x}} \mathrm{is}$				
	(a) 1	(b) 1 - √ <u>3/2</u>	(c) √3 -	$\sqrt{2}$ ((d) $\sqrt{2}$ - $\sqrt{3}$	

119.	The value of $\int_0^2 x e^{x^2} dx$ is
	(a) 1 (b) e-1 (c) (e/2) -1 (d) $\frac{1}{2}$ (e ⁴ -1)
120.	If $x^p y^q = (x + y)^{p+q}$, then $\frac{dy}{dx}$ is equal to
	(a) $\frac{q}{p}$ (b) $\frac{x}{y}$ (c) $\frac{y}{x}$ (d) $\frac{p}{q}$
121.	If $e^{xy} - 4xy = 4$ then $\frac{dy}{dx} = $
	(a) $\frac{y}{x}$ (b) $\frac{-y}{x}$ (c) $\frac{x}{y}$ (d) $\frac{-x}{y}$
	2015- Dec
122.	If lim $\lim_{x\to 3} \frac{x^{n} \cdot 3^{n}}{x-3} = 405$, then the value of 'n' is:
	(a) 3 (b) 5 (c) -3 (d) 4
123.	A function f(x) defined as follows: $f(x) = \begin{cases} x + 1 & \text{when } x \leq 1 \\ 3 - px & \text{when } x \geq 1 \end{cases}$
	The value of 'p' for which $f(x)$ is continuous at $x = 1$ is:
	(a) 0 (b) -1 (c) 1 (d) 2
124.	If $u = 3t^4 + 5t^3 + 2t^2 + t + 4$, then the value of $\frac{du}{dt}$ at $t = -1$ is:
	(a) 0. (b) 1 (c) 2 (d) 5
125.	The value of $\int_{1}^{2} \frac{1-x}{1+x} dx$ is equal to:
	(a) $\log \frac{3}{2} - 1$ (b) $2 \log \frac{3}{2} - 1$ (c) $\frac{1}{2} \log \frac{3}{2} - 1$ (d) $\frac{1}{2} \log \frac{2}{3} - 1$
126.	The slope of the tangent to the curve $y = \frac{x-1}{x+2}$ at $x = 2$ is:
	(a) $\frac{3}{16}$ (b) $-\frac{3}{16}$ (c) $\frac{1}{4}$ (d) $-\frac{1}{4}$
	2016-June
127.	$\lim_{x \to 2} \frac{(x-2)}{ x-2 }$ is equal to
	(a) 0 (b) 1 (c) -1 (d) Does not exist

128.	If $f(x) = \begin{bmatrix} x^2 & x \ge 0 \\ \alpha x + \beta & x > 0 \end{bmatrix}$, is a continuous fi	unction, then	
	(a) \propto = 0, β is any real number	(b) ∝ = o, β	=1
	(c) $\beta = 0$, \propto is any real number	(d) ∝ = 0, β	=2
129.	$\int_{\theta}^{2} \frac{3\sqrt{x}}{\sqrt{x}} dx$ is equal to		
	(a) $\frac{2\sqrt{2}}{\log_{e}^{2}}$ (b) 0	$-(c) \frac{2}{\log^3_e} (3^{\sqrt{2}} - 1)$	(d) $\frac{3\sqrt{2}}{\sqrt{2}}$
130.	$\int \frac{*}{(x^{2}+1)(x^{2}+2)} dx \text{ is equal to } _$		
	$(G) \log\left(\frac{x^2+1}{x^2+2}\right) + c$ $(b) \frac{1}{2} \log\left(\frac{x^2+1}{x^2+2}\right) + c$	$\frac{(C) \frac{1}{2} \log\left(\frac{x^2+2}{x^2+1}\right) + c}{x^2+1} + c$	$\frac{(d) - \log\left(\frac{x^2 + 1}{x^2 + 2}\right) + c}{x^2 + 2}$
131.	If $y = \sqrt{\frac{1-x}{1+x}}$, then $\frac{dy}{dx}$ is equal to -		
	(a) $\frac{y}{X^2-1}$ (b) $\frac{y}{1-X^2}$	(c) $\frac{y}{1+X^2}$	(d) $\frac{y}{y^2-1}$
	2016- Dec		
132.	If $f(x) = \frac{x^{3} + a^{3}}{x + a}$, when $x \neq -a = k$ if $x = -a$	then f(x) is continue	ous at x = - a, if k is equal to
	(a) -2a²(b) -3a²	(c) 2a²	(d) 3a²
133.	$\frac{\lim_{n \to \infty} (0.7 + 0.07 + 0.007 + \dots to)}{1 + 0.007 + 0.007 + \dots to}$	n terms) is equal to	
	$\frac{(a)\frac{77}{98}}{(b)\frac{6}{9}} \qquad (b)\frac{6}{9}$	$(d)\frac{31}{40}$	
134.	$\lim_{x\to 0} \frac{\log_e(1+x)}{e^{2x}-1}$ is equal to:		
	(a) 1 (b) $\frac{4}{2}$ (c) $-\frac{4}{2}$	(d) -1	
135.	Differential Co-efficient of $\log_e (\sqrt{x - 1} + $	$\sqrt{x + 1}$ with respect	to x is:
	(a) $\frac{l}{2\sqrt{x^2-1}}$ (b) $\frac{1}{2\sqrt{x^2+1}}$	(c) $\frac{1}{2(x^2-1)}$	(d) $\frac{1}{\sqrt{x-1}+\sqrt{x+1}}$
136.	If $f(x) = \log_e\left(\frac{x-1}{x+1}\right)$, then the value of x at y	which $f(x) = 1$, is	
	(a) 0 (b) 1	(c) $\pm\sqrt{3}$	(d) $\pm \sqrt{2}$

137.	$\int_{1}^{e} \frac{e^{x}(x \log_{e} x+1)}{x} dx \text{ is equal to:}$
	(a) e + 1 (b) e ^e (c) e - 1 (d) e ^x + 1
	2017- June
138.	The function $f(x) = (\sqrt{1 - x^2}/\sqrt{1 - x^3})$ is not defined at $x = 1$, the value of $f(x)$ which will make $f(x)$ continuous
	at x = 1 will be :
	(a) $\sqrt{\frac{2}{3}}$ (b) $\frac{\sqrt{2}}{3}$ (c) $\frac{2}{\sqrt{3}}$ (d) $\frac{2}{3}$
139.	$\frac{\lim_{n \to \infty} \frac{(n-1)^n}{n^n}}{is \text{ equal to:}}$
	(a) e (b) $\frac{1}{e}$ (c) -e (d) $\frac{-1}{e}$
140.	The equation of the curve which passes through the point (1,2) and has the slope 3x - 4 at any point
	(x, y) is:0
	(a) $2y = 3x^2 - 8x + 9$ (b) $y = 6x^2 - 8x + 9$ (c) $y = x^2 - 8x + 9$ (d) $2y = 3x^2 - 8x + c$
141.	The value of $\int_{1}^{2} \frac{x}{x^{2}+1} dx$ is equal to:
	(a) $\log_{e}\left(\frac{5}{2}\right)$ (b) $\frac{1}{2}\log_{e}\left(\frac{5}{2}\right)$ (c) $\log_{e}(5) - \log_{e}2 + c$ (d) None of these.
142.	If $x = at^3 + bt^2 - t$ and $y = at^2 - 2bt$, then the value of $\frac{dy}{dx}$ at $t = 0$ is :
	(a) 2b (b) -2b (c) $\frac{1}{2b}$ (d) $-\frac{1}{2b}$
143.	The value of $\int e^{x}[f(x) + f^{1}(x)]dx =$ (a) $e^{x} f(x) + c$ (b) $e^{x} f^{1}(x) + c$ (c) $\left[\frac{f^{1}(x)}{f(x)}\right] + c$ (d) $e^{x} \left[\frac{f(x)}{f^{1}(x)}\right] + c$
144.	If $x^y = e^{x-y}$ then is equal to:
	(a) $\frac{2\log x}{(1 + \log x)^2}$ (b) $\frac{\log x}{(1 + \log x)}$ (c) $\frac{\log x}{(1 + \log x)^2}$ (d) None of the above

145.	If y =	1 + <u>x</u> +	x² + x³	÷	c	», then t	the value	of dy is	equal					
	(a)x		(b)y		(c)1		(d)0							
146.	∫ xe ^{x⁴}		qual to: 2e ^{x2} +c 12.e ^{x2} +c		a ye	(b) e ^x (d) x	° [°] +C							
147.	lf x =	at²,y =	2at then	the va	lue of $\frac{dy}{dx}$	at t = 2	2 is:							
	(a) 2		(b) 4		(C) ½		(d) ¼							
148.	lf y =	log x ^x th	hen $\frac{dy}{dx}$ is	equal t	o:0									
	(a) lo	g ex		(b) log	$\left \frac{e}{x}\right $		(c) log-	<u>x</u> e		(d) 1				
								-						
							AN.	SWER	25					
	1	A	11	B	21	A	31	С	41	B	51	A	61	A
	2	В	12	D	22	В	32	С	42	С	52	D	62	A
	3	В	13	В	23	С	33	В	43	В	53	С	63	A
	4	С	14	В	24	A	34	С	44	A	54	A	64	В
	5	A	15	A	25	В	35	С	45	С	55	В	65	A

7	В	17	A	27	В	37	A	47	С	57	A	67	D
8	A	18	В	28	A	38	В	48	A	58	D	68	В
9	В	19	С	29	A	39	В	49	С	59	A	69	A
10	C	20	A	30	A	40	С	50	В	60	В	70	В
71	A	81	В	91	D	101	A		В	121	В	131	A
72	D	82	С	92	В	102	В	112	В	122	В	132	D
73	A	83	В	93	В	103	В	113	С	123	С	133	С
74	С	84	В	94	В	104	D	114	D	124	A	134	В
75	С	85	A	95	С	105	В	115	A	125	В	135	A
76	В	86	С	96	С	106	A	116	D	126	A	136	С
77	В	87	A	97	С	107	A	117	A	127	D	137	В
78	A	88	В	98	С	108	A	118	С	128	С	138	A
79	В	89	С	99	A	109	В	119	D	129	С	139	В
80	В	90	С	100	В	110	A	120	С	130	В	140	A
141	В	143	А	144	С	146	С	148	А				
142	А	144	С	145	В	147	С						