

THEORY HAI ZAROORI NOTES

SESSION 1

CA. PRANAV POPAT

SESSION LINK:

https://www.youtube.com/live/58T5 v LBbl8?si=V-tknpZDGvRO-GX1

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

THEORY WEIGHTAGE

Chapter	13. Statistical Description of Data	14. Central Tendency & Dispersion	15. Probability	16. Theoretical Distribution	17. Correlation & Regression	18. Index Numbers	Total
May 18	2	4	2	3	6	8	25
Nov 18	6	1	0	0	2	3	12
Jun 19	5	3	1	0	1	5	15
Nov 19	1	7	0	2	2	5	17
Nov 20	8	5	0	4	3	6	26
Jan 21	10	5	1	2	2	4	24
Jul 21	6	1	0	0	1	0	8
Dec 21	3	5	0	0	2	4	14
Jun 22	9	3	0	1	4	6	23
Dec 22	4	3	1	2	1	3	14
Jun 23	2	0	0	0	0	2	4

THEORY CONCEPTS

Statistical Description of Data – Basics of Statistics

Definition of Statistics	 Plural Sense: / analysis. Singular Sense data to draw s or Science of f 	 Plural Sense: Any data – quantitative or qualitative used for statistical analysis. Singular Sense: Scientific method of collecting, analyzing, and presenting data to draw statistical inferences. It is also called as Science of Averages or Science of Counting 			
Origin of Word	Latin Italian German French	Status Statista Statistic Statistique	Latus Pasta Breadstick Barbeque		
Publication	Koutilya's Art Abu Fezal's A First Census	Koutilya's Arthashastra • Record of Birth and Deaths • Chandragupta's reign • 4 th Century B.C • Abu Fezal's Ain-i-Akbari • Record on Agriculture • Akbar Reign • 16 th Century A.D. First Census • Egypt 300 BC to 2000 BC			
Application of Statistics	 Economics: De Business Man not intuition Industry and Opurchase, mail 	Economics: Demand Analysis, Future Projection etc. Business Management: Decision making using quantitative techniques not intuition Industry and Commerce: Profit maximization using business data – sales, purchase, market etc. by consulting experts			
Limitation of Statistics	 It deals with a Quantitative of be converted Projections ar that will change Sampling base improper results 	It deals with aggregate data and not individual data Quantitative data can only be used, however for qualitative – it needs to be converted into quantitative Projections are based on conditions/ assumptions and any change in that will change the projection. Example: Future projections of sales Sampling based conclusions are used, improper sampling leads to improper results. Bandom Sampling is must			
Data	 Quantitative I Primary: first Secondary: co 	Quantitative Information shown as number Primary: first time collected by agency/ investigator Secondary: collected data used by different person/ agency			

	Measurable Data – Value can vary		
Variable	Discrete • When a variable assumes a finite or count ably infinite isolated values. Variable • Example: no. of petals in a flower, no. of road accident in locality Continuous • When a variable assumes any value from the given interval (can also be in decimals, fractions). • Example: height, weight, sale, money		
Attribute	 Qualitative Characteristics. Example: gender of a baby, the nationality of a person, the colour of a flower etc. 		
Collection of Primary Data – Interview Method	MethodDetailsPersonal Interview•Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door SurveyIndirect Interview•When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accidentTelephone 		
Collection of Primary Data – Mailed Questionnaire Method	 In this method well drafted and soundly sequenced questionnaire, covering all the important aspects of the data requirement is sent to respondent for filling. Here coverage is wide but amount of non-responses will be maximum 		
Collection of Primary Data – Observation Method	 In this method data is collected by direct observation or using instrument. For example: data on height and weight for a group of students. Although more accurate but it is time consuming, low coverage and laborious method. 		
Collection of Primary Data – Questionnaire Filled and sent by Enumerators	 Mix of Interview and Mailed Questionnaire Enumerator means a Person who directly interacts with respondent and fills the questionnaire. It is generally used in case of Surveys and Census. 		

Sources of	International Sources Government	World Health Org Monetary Fund (I Organization (ILO In India – Central	anization (WHO), International MF), International Labor), World Bank Statistics Office (CSO), Indian	
Secondary Data	Sources	Agricultural Statis National Sample S RBI, SEBI, RERA, I	stics by the Ministry of Food and Agı Survey Office- NSSO, Regulators – RDA	ri,
	Private or Quasi- govt. sources	Indian Statistical Agriculture, NCEF	Institute (ISI), Indian Council of RT	
Scrutiny of Data	 checking accuracy and consistency of data There is no rule for it, one must apply his intelligence, patience and experience while scrutinizing the given information. Internal Consistency: When two or more series of related data are we should check consistency among them. 		cy of data apply his intelligence, patience and given information. or more series of related data are g ong them.	iven,
	Classification or Organ	isation : putting d	ata in a neat, precise, and condense analysis more understandable	d
Presentation	Chronological/ Temporal/ Time Series Data	Data a Examp	arranged based on Time ole: Revenues YoY i.e year on year	
Classification / Organization of Data	Geographical or Spatial Series Data	Arrang Examp compa	gement based on regions ble: Country wise Revenue of a globa any	al
orbutu	Qualitative or Ordina Data	 Based Nation 	on some attribute nality Wise Medal Winners in Olymp	oics
	Quantitative or Cardinal Data	Based Examp	on some variable ble: Frequency Distribution of a Data	a
Mode of Presentation of Data – Textual	 This method comprises presenting data with the help of a paragraph or several paragraphs. This is not a suitable mode of presentation as it is dull, monotonous and non-comparable. 		n or and	
Mode of	 When data is sl Useful in easy d 	hown in the form comparison	of Table .	
Presentation of Data	Complicated da Table is must to	ata can be presen	ted	
Tabular Form	 No analysis pos 	 Table is must to create a diagram No analysis possible without table 		
	Components of Description	f Table	Name of Component of Table	
	Entire Upper Par	rt	Box Head	
	Upper Part desci	ribing columns	Caption	
Components of	Left part of the t	s able describing	Stub	
Table	rows			
	Main Data of Tal	ble	Body	
Source of Data at the Table		t the bottom of	Footnote	

ULTIMATE CA

THEORY HAI ZAROORI NOTES - CA FOUNDATION DEC 23

Mode of Presentation of Data – Diagrams	 Can be used by educated and uneducated section of society Hidden trend can be traced If priority is accuracy, then tabulation is better
Line Diagram	 Time Series is generally in x axis For wide fluctuation – log chart or ratio chart is used Two or more series of same unit – Multiple Line Chart Two or more series of different unit – Multiple Axis Chart
Bar Diagram	 Bar means rectangle of same width and of varying length drawn horizontally or vertically For comparable series – multiple or grouped bar diagrams can be used For data divided into multiple components – subdivided or component bar diagrams For relative comparison to whole, percentage bar diagrams or divided bar diagrams Vertical Bar Diagram: Useful for Data varying over Time and Quantitative Data Horizontal Bar Diagram: Useful for Data varying over Space and Qualitative Data
Pie Chart	 Used for circular presentation of relative data (% of whole) Summation of values of all components/segments are equated to 360 Degree (total angle of circle) Segment angle = (segment value x 360°) (total value)

Statistical Description of Data – Frequency Distribution

Frequency and	 Frequency means number of times a particular observation is repeated. Frequency Distribution is table which contains observation or class intervals in one column and corresponding frequency in the other. Definition: A frequency distribution may be defined as a
	 ascending order, relating to a measurable characteristic according to individual value or a group of values of the characteristic under study.

THEORY HAI ZAROORI NOTES – CA FOUNDATION DEC 23

Types of Frequency Distribution	Ungrouped/ Simple Frequency Distribution Grouped Frequency Distribution •	When there are limited number of distinct observations, frequency can be assigned to each one of them. This distribution is simple When there are large no. of observations, grouping is done among them (generally in ascending order). Each group is called as class interval and frequency is assigned to group and not individual values, this is called Grouped Frequency Distribution
Class Limit	 For a class interval may content interval may content interval may content interval maximum Value Maximum Value Class Interval 10-19 20-29 30-39 	rval CL is the minimum and maximum value the class ontain e – Lower Class Limit <u>e – Upper Class Limit</u> <u>Frequency LCL UCL</u> <u>10 10 19</u> <u>5 20 29</u> <u>8 30 39</u>
Classification of Grouped of Frequency Distribution	Mutually Exclusive / Overlapping Classification Class LCL UCL 10-20 10 20 20-30 20 30 30-40 30 40 Mutually Inclusive / N Overlapping Classification Overlapping Class LCL UCL 10-19 10 20 20-19 20 30 30-39 30 40	 Here UCL an interval and LCL of next interval are same This is usually applicable for continuous variable. An observation which is equivalent to common class limit is excluded from the class interval where it is UCL and taken in the class where it is LCL. On- There is no common class limits between two intervals. This is usually applicable to discrete variable. All observation including UCL and LCL will be taken in the same class interval as there is no confusion.
Class Boundary	In case of Exclusive / Overlapping Classification In case of Inclusive / Overlapping Classification	Class Boundary = Class Limit Class LCL UCL LCB UCB 10-20 10 20 10 20 20-30 20 30 20 30 30-40 30 40 30 40 Lower Class Boundary LCB = LCL - 0.5 UCB = UCL + 0.5 Class LCL UCL LCB UCB 10-19 10 19 9.5 19.5 20-29 20 29 19.5 29.5 30-39 30 39 29.5 39.5

ULTIMATE CA

THEORY HAI ZAROORI NOTES – CA FOUNDATION DEC 23

Mid Doint / Class		LCL+UC	L		LCB+UCB		
Mark / Mid Value	2 2						
of Class Interval	Useful in calculation of AM, GM, HM, SD in case of grouped frequency						
Class Longth /	dis	tribution					
Class Length/ Width or Size	UCB – LCB only						
	• Les	s than typ	e: It show	vs no. of obse	rvations less th	nan UCB	
	• Mc	ore than ty	pe: It sho	ws no. of obs	ervations more	e than UCB	
	Class	Freq	LICB	Loss than	More than	Total of	
	Interval	ricq.	0CD	type CF	type CF	both CF	
Cumulative	44-48	3	48.5	3	33	36	
Frequency	49-53	4	53.5	7	29	36	
	54-58	5	58.5	12	24	36	
	59-63	7	63.5	19	17	36	
	64-68	9	68.5	28	8	36	
	69-73	8	73.5	36	0	36	
	Total	36					
Frequency			_	Class Freque	ency		
Density			C	lass Length o	f class		
Relative	Class frequency						
Frequency	Total Frequency						
-	Its can have values between 0 and 1						
Percentage				ass frequency	/ -×100		
Frequency			10	tal Frequency	/		
Frequency Dist.	• It is	It is a convenient way to represent FD					
Diagram – Histogram	 Comparison between frequency of two different classes possible It is useful to calculate mode also 						
	It is useful to calculate mode also						
Polygon	Usually preferable for ungrouped frequency distribution Cap ha used for grouped also but only if along langths are given						
	Call be used for grouped also but only it class lengths are even			and			
Cumulative	cal	s graph ca led as Less	than Ogi	e by both typ ve or More ti	nan Ogive	refrequency	anu
Frequency	• It c	an be use	d for calci	ulating quarti	les, median		
	• It is	s a limiting	form of A	Area Diagram	(Histogram) o	r Frequency	Polygon
F	• It is	sobtained	by drawi	ng smooth ar	nd free hand cu	irve though t	he mid
Frequency Curve	роі	nts		-		U U	
	Most used curve is Bell Shaped						

Index Numbers			
Practical Examples of Index Numbers	 Index numbers are convenient devices for measuring relative changes (generally in %) of differences from time to time or from place to place Series of numerical figures which show relative position Index Numbers show percentage changes rather than absolute amounts of change 		
Data Selection	 It depends on the purpose for which the index is used. Index numbers are often constructed from the sample. Random sampling, and if need be, a stratified random sampling can be used to ensure that sample is representative. Data should be comparable by ensuring consistency in selection method. 		
Base Period	 It is a point of reference in comparing various data. Standard point of comparison. The period should be normal. It should be relatively recent Choice of suitable base period is a temporary solution 		
Use of Averages	 The geometric mean is better in averaging relatives, But for most of the index's arithmetic mean is used because of its simplicity 		
Price/ Quantity/ Value Relative	For Individual Commodity, Current Period Price/ Quantity/ Value Base Period Price/ Quantity/ Value		
Link Relative	$\frac{P_1}{P_0}, \frac{P_2}{P_1}, \frac{P_3}{P_2},, \frac{P_n}{P_{n-1}}$ Same can be created for quantities also		
Chain relatives	When the above relatives are in respect to a fixed base period these are also called the chain relatives $\frac{P_1}{P_0}, \frac{P_2}{P_0}, \frac{P_3}{P_0}, \dots, \frac{P_n}{P_0}$		
Formula for Chain Index (when direct data is not available)	Link relative of current year × Chain Index of previous year 100 The chain index is an unnecessary complication unless of course where data for the whole period are not available or where commodity basket or the weights have to be changed.		
Limitations of Index Numbers	 Chances of errors due to Sampling Chances of errors due to Sampling It gives broad trend not real picture Due to many methods, at times it creates confusion Index numbers are very useful in deflating (eg. Nominal wages into real) Framing suitable policies in economics and business They reveal trends and tendencies in making important conclusions 		
Usefulness of Index Numbers			

ULTIMATE CA

	 They are used in time series analysis to study long-term trend, seasonal variations and cyclical developments
Formula for Deflated Value	Deflated Value = Current Value Price Index of the current year
Shifted Price Index	Original Price Index Price Index of the year on which it has to be shifted
Unit Test	 This test requires that the formula should be independent of the unit in which or for which prices and quantities are quoted. Except for the simple (unweighted) aggregative index all other formulae satisfy this test.
Time Reversal Test	 It is a test to determine whether a given method will work both ways in time, forward and backward. P₀₁ × P₁₀ = 1 Laspeyres' method and Paasche's method do not satisfy this test, but Fisher's Ideal Formula does.
Factor Reversal Test	 This holds when the product of price index and the quantity index should be equal to the corresponding value index. Symbolically P₀₁ × Q₀₁ = V₀₁ Fisher's Index Number is ideal as it satisfies Unit, Time Reversal and Factor Reversal Test
Circular Test	 This property therefore enables us to adjust the index values from period to period without referring each time to the original base. It is an extension of time reversal test The test of this shiftability of base is called the circular test. This test is not met by Laspeyres, or Paasche's or the Fisher's ideal index. The weighted GM of relative, simple geometric mean of price relatives and the weighted aggregative with fixed weights meet this test. (These methods are not in syllabus)
Cost of Living Index (also called General Index)	 CLI is defined as the weighted AM of index numbers of few groups of basic necessities. AM of group indices gives the General Index Generally, for calculating CLI; food, clothing, house rent, fuel & lightning and miscellaneous groups are taken into consideration. Examples of CLI: WPI, CPI, etc.
Symbol	 P₀₁ is the index for time 1 on 0 P₁₀ is the index for time 0 on 1

Measures of Central Tendency

Arithmetic Mean

Property 1	If all the observations are constant AM is also constant
Property 1	If all the observations are constant, Alvins also constant
Property 2	the algebraic sum of deviations of a set of observations from their AM
	is zero
Duonoutus 2	AM is affected both due to change of origin and scale
Property 3	If $y=a+bx$ then $\overline{y}=a+b\overline{x}$
	Combined AM
Property 4	$\overline{\mathbf{x}}_{1} = \frac{\mathbf{n}_{1}\overline{\mathbf{x}}_{1} + \mathbf{n}_{2}\overline{\mathbf{x}}_{2}}{\mathbf{n}_{1}}$
	$n_1 + n_2$
	AM is best measure of central tendency
	AM is based on all observations
General Review	 AM is affected by sampling fluctuations
	 AM is amenable to mathematical property
	 AM cannot be used in case of open end classification

Median

Property 1	For a set of observations, the sum of absolute deviations is minimum, when the deviations are taken from the median. $\sum \mathbf{x}_{i} - \mathbf{M}\mathbf{e} $		
Property 2	Median is also affected by both change of origin and scale.		
General Review	 Median is also called as positional average Median is not based on all observations Median is not affected by sampling fluctuations Median is best measure of central tendency in case of open end classification 		

Partition Values

Meaning		 These may be observations When we wa equal parts, v deciles, percent Name of PV 	e defined as valu into number of nt to divide the g we consider med entiles No. of equal	es dividing a giv equal parts given set of obse ian, similarly the No. of PVs	en set of rvations into two ere are quartiles, Symbol
	-	Median	2	1	Μο
		Iviculari	2	1	IVIE
		Quartile	4	3	Q_1, Q_2, Q_3

THEORY HAI ZAROORI NOTES - CA FOUNDATION DEC 23

	Decile	10	9	D ₁ ,D ₂ ,,D ₉
	Percentile	100	99	$P_1, P_2,, P_{99}$

Mode – Concept/ Formula

Meaning	Mode is the value that occurs the maximum number of times	
Special Thing about Mode	 If two or more observations are having maximum frequency then there are multiple modes [multimodal distribution] If there are exactly two modes then distribution is called as Bimodal Distribution If all observations are having same frequency then distribution has no mode We can say that Mode is not rigidly defined 	
Property 1	If all the observations are constant, mode is also constant	
Property 2	Mode is also affected both due to change of origin and scale	
General Review	 Mode is not based on all observations Mode is not rigidly defined Mode is not amenable to Mathematical Property 	

Relationship between Mean, Median and Mode

In case of Symmetric Distribution	Mean = Median = Mode
In case of Moderately	
Skewed Distribution	Mean – Mode = 3 (Mean – Median)
(Empirical relationship)	

Geometric Mean

Definition	For a given set of n positive observations , the geometric mean is defined as the n^{th} root of the product of the observations
Property 1	Logarithm of G for a set of observations is the AM of the logarithm of the observations $\log G = \frac{1}{n} \sum \log x$
Property 2	If all the observations are constant, GM is also constant
Property 3	GM of $z = GM$ of $x \times GM$ of y
Property 4	$GM \text{ of } z = \frac{GM \text{ of } x}{GM \text{ of } y}$

Harmonic Mean

Definition	For a given set of non-zero observations, harmonic mean is defined as
	the reciprocal of the AM of the reciprocals of the observation
Property 1	If all observations are constant HM is also constant

Use of GM and HM

Both	Both are used for calculating average rates
GM	Appropriate for rates having percentages
НМ	Appropriate for rates other than percentages

Measures of Dispersion

Meaning of Measure of Dispersion	 Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency 	
Types of Measure of Dispersion	Absolute Measures of Dispersion	 These are with units These are not useful for comparison of two variables with different units. Example: Range, Mean Deviation, Standard Deviation, Quartile Deviation
	Relative Measures of Dispersion	 These are unit free measures These are useful for comparison of two variables with different units. Example: Coefficient of Range, Coefficient of Mean Deviation, Coefficient of variation, Coefficient of Quartile Deviation

Range

Property 1	 Not affected by change of origin Affected by change of scale (only value) No impact of sign of change of scale Note: Measure of Dispersion can never be negative
General Review	Not Based on All Observations
	Easy to Compute

Mean Deviation

Meaning	Mean deviation is defined as the
	• arithmetic mean of the
	• absolute deviations of the observations
	 from an appropriate measure of central tendency
Property 1	Mean Deviation takes its minimum value when deviations are taken
	from Median

Bronarty 2	Change of Origin – No Affect, Change of Scale – Affect of value not		
Property 2	sign		
	Based on all observations		
	Improvement over Range		
General Review	Difficult to compute		
	• Not amenable to Mathematical Property because of usage of		
	Modulus		

Standard Deviation

Meaning	 Improvement over Mean Deviation It is defined as the root mean square deviation when the deviations are taken from the AM of the observations
Coefficient of Variation	$\frac{SD_x}{\overline{x}} \times 100$
SD for any two numbers	$SD = \frac{ a-b }{2}$
SD for first n natural numbers	$s = \sqrt{\frac{n^2 - 1}{12}}$
Property 1	If all the observations are constant, SD is ZERO
Property 2	No effect of change of origin but affected by change of scale in the magnitude (ignore sign)
Property 3	$SD_{c} = \sqrt{\frac{n_{1}s_{1}^{2} + n_{2}s_{2}^{2} + n_{1}d_{1}^{2} + n_{2}d_{2}^{2}}{n_{1} + n_{2}}}$ $d_{1} = \overline{x}_{c} - \overline{x}_{1}$ $d_{2} = \overline{x}_{c} - \overline{x}_{2}$

Quartile Deviation

Meaning	It is semi-inter quartile range	
General Review	 It is semi-inter quartile range It is the best measure of dispersion for open-end classification It is also less affected due to sampling fluctuations Like other measures of Dispersion, QD is also not affected by change of origin but affected by scale ignoring sign 	

Correlation and Regression

Bivariate Data

Definition	 When data are collected on two variables simultaneously, they are known as bivariate data and the corresponding frequency distribution, derived from it, is known as Bivariate Frequency Distribution
Marginal Distribution	 It is the frequency distribution of one variable (x or y) across the other variable's full range of values Number of Marginal Distribution = 2
Conditional Distribution	 It is the frequency distribution of one variable (x or y) across a particular sub-population of the other variable. No. of Conditional Distributions = m + n m = no. of class interval of x n = no. of class interval of y

Scatter Diagram

Concept Points	• It helps us to find Nature and Relative Strength of Correlation
	 It is useful for Non-Linear Correlation also
	 It cannot be used to determine value
	Diagrams are time taking

Karl Pearson's Correlation Coefficient

How to Calculate	Correlation Coefficient is the ratio of covariance with product of standard deviations				
Property 1	The Coefficient of Correlation is a unit-free measure				
Property 2	Value lies from -1 to +1				
	Change of Origin		No impact		
Property 3	Change of Scale		No impact of value, but if change of scale of both variables are of different sign then sign of r will also change		
	1		Value of r	Interpretation	
	-1		-1	Perfect Negative	
		Between -1 and 0		Negative	
Interpretation of Value of r		Closer to -1		Strong Negative	
		Far from -1		Weak Negative	
		0		No Correlation	
		Between 0 and 1		Positive	
		Far from +1		Weak Positive	
		٦	Near to +1	Strong Positive	
		+1		Perfect Positive	

Spearman's Rank Correlation Coefficient

Usage	 find the level of agreement (or disagreement) between two judges so far as assessing a qualitative characteristic (attribute) is concerned 		
	Use in case of ranks		
Banking in case of Tie	In case of tie, simple average of ranking should be assigned to tied		
Ranking in case of the	values		

Coefficient of Concurrent Deviations

Usage	A very quick, simple and casual method of finding correlation when
	we are not serious about the magnitude of the two variables

Regression Basics

Meaning	Estimation of one variable for a given value of another variable on the basis of an average mathematical relationship between the two variables		
Requirements	 Estimation of Y when X is given Estimation of X when Y is given 		
General Points	Perfect Correlation• When linear relationship exists between two variables, correlation is perfect. • Perfect Correlation is represented by a linear equation and this equation can be used for regression purpose directly. • Same equation can be used in both waysImperfect Correlation• In case of imperfect correlation there is no definite line and equation • We will use method of least square to estimate both regression lines		
Formula of Regression Equations/ Lines	Estimation of Y when X is given• Use Regression line of Y on X • Equation Format: $Y - \overline{Y} = b_{yx}(X - \overline{X})$ 		
Property 1	 Change of Origin and Scale Origin: No Impact Scale: If original pair is x, y and modified pair is u, v b_{vu} = b_{yx} × change of scale of y change of scale of x 		

THEORY HAI ZAROORI NOTES - CA FOUNDATION DEC 23

	$b_{uv} = b_{xy} \times \frac{\text{change of scale of } x}{\text{change of scale of } y}$		
Property 2	Two regression lines (if not identical) will intersect at the point [means] (\bar{x}, \bar{y})		
Property 3	Relation between Correlation and Regression Coefficients $r_{xy} = \pm \sqrt{b_{xy} \times b_{yx}}$ r_{xy} , b_{xy} , b_{yx} will always have same sign		

Probable Error

 Correlation is calculated using sample, value for sample may differ from population, this difference is probable error If there is significant probable error, there is no evidence of real correlation 		
r±PE		
Case	Conclusion	
If r is less than PE	There is no evidence of correlation	
If r is greater than six	The presence of correlation is certain	
times of PE		
Since r lies from -1 to +1	PE can never be negative	
	 Correlation is calcula differ from populatio If there is significant real correlation r ± PE Case If r is less than PE If r is greater than six times of PE Since r lies from -1 to +1 	

Coefficient of Determination and Non-Determination

Coefficient of Determination	2	
Accounted Variance/ Explained Variance	r	
Coefficient of Non-Determination	4 2	
Unaccounted Variance/ Unexplained Variance	1-r-	

