## JoL. SHAEF

a Veranda Enterprise

Foundation $\rightarrow$ Intermediate $\rightarrow$ Final CA $\lambda$

# CA <br> FOUNDATION <br> FAST TRACK <br> MATHEMATICS AND LOGICAL REASONING 

## Head Office

Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400069.
(C) 022-268366 66
(0) f/officialjksc
jkshahclasses.com

## MATHEMATICS INDEX



## LOGICAL REASONING

 INDEX

# RATIO, PROPORTION \& PARTNERSHIP 

## Ratio

## THEORY

- A ratio is a fraction (either proper or improper) which compares two or more quantities of similar kind, which enables us to understand as to how many times one quantity is involved in the other.
- If $\mathbf{A}: \mathbf{B}\left(\frac{A}{B}\right)$ is a ratio, then the numerator A is called "Antecedent" and the denominator B is called the "Consequent".
- Ratios must be expressed in the simplest possible form and we can calculate ratios only when the quantities are commensurable (fully quantifiable).
- Two or more ratios can be bridged in order to have a continuous comparison between more than two variables.
- Rule for bridging more than two ratios:

If ,a,b,c,d,e are five Quantities, and

$$
\frac{a}{b}=\frac{N_{1}}{D_{1}} ; \frac{b}{c}=\frac{N_{2}}{D_{2}} ; \frac{c}{d}=\frac{N_{3}}{D_{3}} ; \frac{d}{e}=\frac{N_{4}}{D_{4}}
$$

Then, a:b:c:d:e $=N_{1} N_{2} N_{3} N_{4}: D_{1} N_{2} N_{3} N_{4}: D_{1} D_{2} N_{3} N_{4}: D_{1} D_{2} D_{3} N_{4}: D_{1} D_{2} D_{3} D_{4}$

Let $\mathrm{a}: \mathrm{b}$ is a ratio, then:

- $\quad \frac{a}{b}>1$ (Ratio of Greater Inequality)
- $\frac{a}{b}<1$ (Ratio of Lesser Inequality)
- $\frac{a}{b}=1$ (Ratio of Equality)
- $a^{2}: b^{2}$ (Duplicate Ratio)
- $a^{3}: b^{3}$ (Triplicate Ratio)
- $\sqrt{a}: \sqrt{b}$ (Sub-Duplicate Ratio)
- $\sqrt[3]{a}: \sqrt[3]{b}$ (Sub-Triplicate Ratio)
- $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots \ldots . . .$. If then the value of each ratio can be obtained by mean of any one of the following two operations;
a. $\quad$ Each ratio $=\frac{a+c+e+\ldots}{b+d+f+\ldots}$ (ADDENDO)
b. Each ratio $=\frac{a-c-e-\ldots}{b-d-f-\ldots}$ (SUBTRANDENDO)


## INVERSE RATIO:

- IR of $a: b$ is $b: a$
- IR of $a: b: c$ is $b c: a c: a b$
- IR of $a: b: c: d$ is bcd : acd : abd : abc


## COMPOUND RATIO:

The multiplying effect of all ratios given is known as compound ratio. If $a: b$ and $c: d$ are two ratios, then ac: bd is called the compounded ratio of the two.

## Proportion

- Proportion is defined as the equality of two or more ratios. If $\frac{a}{b}=\frac{c}{d}$, in such a case the quantities $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are said to be proportional, here ' d ' is called the fourth proportional.
- If $\frac{a}{b}=\frac{b}{c}$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are said to be in continued proportion, where ' $b$ ' is called the mean proportional and ' $c$ ' is called third proportional.
- If $\frac{a}{b}=\frac{b}{c}$ or $b^{2}=\mathrm{ac} \therefore \mathrm{b}=\sqrt{a c}$

CA FOUNDATION - MATHEMATICS

| IF | THEN | PROPERTY |
| :---: | :---: | :---: |
| $\frac{a}{b}=\frac{c}{d}$ | $\mathrm{ad}=\mathrm{bc}$ | PRODUCT OF EXTREMES $=$ <br> PRODUCT OF MEANS |
|  | $\frac{b}{a}=\frac{d}{c}$ | INVERTENDO |
|  | $\frac{a}{c}=\frac{b}{d}$ | ALTERNENDO |
|  | $\frac{a+b}{b}=\frac{c+d}{d}$ | COMPONENDO |
|  | $\frac{a-b}{b}=\frac{c-d}{d}$ | DIVIDENDO |
|  | $\frac{a+b}{a-b}=\frac{c+d}{c-d}$ | COMPONENDO \& DIVIDENDO |
|  | $\frac{a-b}{a+b}=\frac{c-d}{c+d}$ |  |
|  |  |  |

## CLASSWORK SECTION

1. If $x / 2=y / 3=z / 7$, then find the value of $(2 x-5 y+4 z) / 2 y$.
a) $6 / 23$
b) $23 / 6$
c) $3 / 2$
d) $17 / 6$
2. The ratio of the number of 50 paise, Re. 1 and $₹ 5$ coins with Mr. Zen is $5: 2: 1$. If the amount with him is ₹ 38 , then the number of Re. 1 coins with him is:
a) 4
b) 8
c) 12
d) 16
3. If $\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}$. Then find the value of each ratio.
a. 1
b. $\frac{1}{2}$
C. $\frac{1}{20}$
d. None of the above
4. An employer reduces the number of employees in the ratio of $19: 16$ and increases their wages in the ratio of $4: 5$. What is the ratio of the wage bill of the employer initially and now?
a. $20: 19$
b. $17: 16$
c. $16: 17$
d. $19: 20$

## Compound Ratio

5. Find the compounded ratio of 275:31, inverse of $729: 1331$, duplicate ratio of $2: 5$, triplicate ratio of $9: 11$, sub-duplicate ratio of $961: 1296$, sub-triplicate ratio of $729: 1331$.
a. 1:1
b. $1: 2$
c. 275:11
d. $31: 25$

## Joint Ratio

6. If $A: B=2: 3, B: C=4: 5$ and $C: D=3: 7$, find $A: B: C: D$
a) $4: 6: 15: 35$
b) $4: 12: 15: 35$
c) $8: 12: 15: 35$
d) $8: 16: 25: 35$
7. If $a: b=3: 5, b: c=5: 4, c: d=2: 3$ and $d$ is $50 \%$ more than e, find the ratio between $a$ and $e$.
a) $2: 3$
b) $3: 4$
c) $3: 5$
d) $4: 5$
8. A man distributes his property of ₹ $6,00,000$ among his three sons. The share of his first son is thrice that of the second son's share and the share of the second son is twice that of the third son. Find the ratio in which sons share the property.
a) $1: 2: 6$
b) $3: 4: 5$
c) $6: 2: 1$
d) $2: 4: 6$
9. What should be added to each of $3,15,38$ and 134 so that the number become proportionate to each other.
a) 3
b) 5
c) 7
d) 2

Mixtures and Alligation
10. In what proportion must rice @ ₹ $3.10 / \mathrm{kg}$ be mixed with rice @ ₹ $3.60 / \mathrm{kg}$ to make the mixture worth ₹ $3.25 / \mathrm{kg}$ ?
a. 3:5
b. $5: 3$
c. $3: 7$
d. $7: 3$

## PAST YEAR QUESTIONS

11. A box contains ₹ 56 in the form of coins of one rupee, 50 paise and 25 paise. The number of 50 paise coin is double the number of 25 paise coins and four times the numbers of one rupee coins. The numbers of 50 paise coins in the box is
(a) 64
(b) 32
(c) 16
(d) 14

## PARTNERSHIP

## CLASSWORK SECTION

1. Simran Started a software business by investing Rs.50, 000 . After six months Nanda joined her with capital of Rs. 80,000. After three years, they earned a profit of Rs. 24,500 . What was Simran's share in the profit ?
(a) Rs. 9423
(b) Rs. 10500
(c) Rs.12,500
(d) Rs.14,000

# INDICES, SURDS AND LOGARITHMS 

## THEORY

$\mathrm{a}^{\mathrm{x}}=\mathrm{N}$
a = base
x = Power/Exponent/Index
$\mathrm{N}=$ Product
[But, $a \neq 0,1, \pm \infty$ ]

Theory of Indices deals with the various changes in power, during various mathematical operations.

## Basic Rules

1. $a^{m} \times a^{n}=a^{m+n}$
2. $\frac{a^{m}}{a^{n}}=a^{m-n}$
3. $\left(a^{m}\right)^{n}=a^{m n} ; \mathrm{m}$ is added n times
4. $(a b)^{m}=a^{m} x b^{m}$
5. $\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}$
6. $a^{0}=1$
7. $a^{-n}=\frac{1}{a^{n}}$
8. If $a^{m}=a^{n} \Rightarrow m=n$; where, $a \neq 0,1,-1, \pm \infty$
9. For $a^{m}=b^{m}$ if $m \neq 0$ then
(i) $a=b$ (when m is odd)
(ii) $a= \pm b$ (when m is even)
10. $a^{x}=N$

$$
\Rightarrow a=N^{\frac{1}{x}}=\sqrt[x]{N}
$$

11. $($ i $) 0^{a}=0$
(ii) $1^{a}=1$
(iii) $a^{1}=a$
(iv) $a^{0}=1$
(v) $0^{0}$ has no meaning

## Basic Formulae

1. $(a+b)^{2}=a^{2}+2 a b+b^{2}$
2. $(a-b)^{2}=a^{2}-2 a b+b^{2}$
3. $a^{2}-b^{2}=(a+b)(a-b)$
4. $(a+b)^{2}+(a-b)^{2}=2\left(a^{2}+b^{2}\right)$
5. $(a+b)^{2}-(a-b)^{2}=4 a b$
6. $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
7. $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=a^{3}+b^{3}+3 a b(a+b)$
8. $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}=a^{3}-b^{3}-3 a b(a-b)$
9. $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
10. $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
11. If $a+b+c=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$
12. If $a^{3}+b^{3}+c^{3}=3 a b c$, then either $a+b+c=0$ or $\mathrm{a}=\mathrm{b}=\mathrm{c}$ but both the results cannot hold true simultaneously

## Rational Numbers, Irrational Numbers \& Surds

- A Rational Number is a number which can be expressed in the form $\mathrm{p} / \mathrm{q}$, where $\mathrm{q} \neq$ $0 ; p \& q$ are integers and $p$ and $q$ are prime to each other, i.e., there is no common factor between $p \& q$, other than 1.
- Any terminating and recurring decimals are rational numbers.
- Thus any non-recurring and non-terminating decimals are irrational numbers, and when the irrational numbers are expressed in radical form (root form), it is known as "Surds".
- Thus all the surds are irrational, but all irrational numbers are not surds.
- The numbers whose perfect root can be evaluated are rational quantities and numbers for which perfect roots cannot be evaluated are irrational quantities.


## Order of Surds

If $\sqrt[k]{m}=(m)^{\frac{1}{k}}$ is a surd, then, it is said to be a surd of order " k ".

## Pure Surds and Mixed Surds

In case of pure surds, entire expression is kept within the radical sign. In mixed surds, it is expressed as a product of one rational and one irrational quantity.

Example:
$\sqrt{7}$ is a pure surd; $\sqrt{12}=\sqrt{4 x 3}=2 \sqrt{3}$ is a mixed surd.

## Conjugate of a Surd

If $(a+\sqrt{b})$ or $(\sqrt{a}+\sqrt{b})$ are surds, their respective conjugates would be given by,
$(a-\sqrt{b})$ or $(\sqrt{a}-\sqrt{b})$ and vice-versa.

## Rationalization of Surds

Rationalization is a process, where we convert the irrational part of the surd into a rational quantity, with help of its conjugate.

## Note: 1

- Rational + Rational = Rational
- Rational - Rational = Rational
- Rational $\times$ Rational = Rational
- Rational $\div$ Rational $=$ Rational


## Note: 2

- Irrational + Irrational = Irrational
- Irrational - Irrational = Rational (only when the quantities are equal); otherwise -
. Irrational - Irrational = Irrational
- Irrational $\times$ Irrational = May be Rational or Irrationat
- Irrational $\div$ Irrational $=$ May be Rational or Irrational


## Note: 3

- $\quad$ Rational + Irrational = Irrational
- Rational - Irrational = Irrational
- Rational $\times$ Irrational = Irrational
- Rational $\div$ Irrational = Irrational


## Square Root of Surds

- The square root of a surd is always a surd.
- Every answer for square root must contain +ve or -ve sign and in the absence of +/- sign, "none of these" will be marked as answer.
- If the given surd, whose square root is to be evaluated is in the form $(a \pm \sqrt{b})$, then the answer will also be in the form $\pm(x \pm \sqrt{y})$.
- Square the options, in order to get the question back.


## INDICES

1. $\left[\left\{(2)^{1 / 2} \cdot(4)^{3 / 4} \cdot(8)^{5 / 6} \cdot(16)^{7 / 8} \cdot(32)^{9 / 10}\right\}^{4}\right]^{3 / 25}$ is
(a) A fraction
(b) an integer
(c) 1
(d) none of these
2. If $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$, then the simplified form of $\left[\frac{x^{1}}{x^{m}}\right]^{1^{2}+1 m+m^{2}} \times\left[\frac{x^{m}}{x^{n}}\right]^{m^{2}+m n+n^{2}} \times\left[\frac{x^{n}}{x^{\prime}}\right]^{1^{2}+1 n+n^{2}}$
(a) 0
(b) 1
(c) $x$
(d) none of these
3. If $x=3^{\overline{3}}+3^{\overline{3}}$, then $3 x^{3}-9 x$ is
(a) 15
(b) 10
(c) 12
(d) none of these
4. If $x^{1 / p}=y^{1 / q}=z^{1 / r}$ and $x y z=1$, then the value of $p+q+r$ is
(a) 1
(b) 0
(c) $1 / 2$
(d) none of these
5. If $\frac{9^{y} \cdot 3^{2} \cdot\left(3^{-y}\right)^{-1}-27^{y}}{3^{3 x} \cdot 2^{3}}=\frac{1}{27}$ then $x-y$ is given by
(a) -1
(b) 1
(c) 0
(d) none
6. If $(5.678)^{x}=(0.5678)^{y}=10^{z}$ then
(a) $\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=1$
(b) $\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=0$
(c) $\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=-1$
(d) None
7. If $a x^{2 / 3}+b x^{1 / 3}+c=0$ then the value of $a^{3} x^{2}+b^{3} x+c^{3}$ is given by
(a) $3 a b c x$
(b) $-3 a b c x$
(c) $3 a b c$
(d) $-3 a b c$
8. Value of $\left(a^{1 / 8}+a^{-1 / 8}\right)\left(a^{1 / 8}-a^{-1 / 8}\right)\left(a^{1 / 4}+a^{-1 / 4}\right)\left(a^{1 / 2}+a^{-1 / 2}\right)$ is:
(a) $a+\frac{1}{a}$
(b) $a-\frac{1}{a}$
(c) $a^{2}+\frac{1}{a^{2}}$
(d) $a^{2}-\frac{1}{a^{2}}$
9. If $\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=0$ then the value of $\left(\frac{a+b+c}{3}\right)^{3}$
(a) abc
(b) 9 abc
(c) $\frac{1}{a b c}$
(d) $\frac{1}{9 a b c}$

## LOGARITHMS

## THEORY

If $a^{x}=N$, then $x=\log _{a} N ; \quad * a \neq 0,1, \pm \alpha$ and for the purpose of $\log$, any negative quantity. * $x$ is called the logarithm of $N$ (product) to the base "a".

## Base "a"

- The base "a" of log can be any positive real number except 1.
- The base of log can be clearly divided into two parts:
- $\quad 0<a<1$ (the proper fraction)
- $\quad a>1$ (positive integer / mixed fraction)
- Unless otherwise specified, the base of $\log$ is always taken to be 10 and this is known as Common Logarithm.
- For theoretical purpose, the base is always taken to be "e", where "e" is a constant and this is known as "Natural Logarithm".
- Common Logarithms are used for numerical calculations and Natural Logarithms are used in calculus.


## Basic Rules

1. $\log _{a} m n=\log _{a} m+\log _{a} n$
2. $\log _{a} \frac{m}{n}=\log _{a} m-\log _{a} n$
3. $\log _{a} m^{n}=n \log _{a} m$
4. $\log _{a} a=1$
5. $\log _{a} 1=0$
6. $\log _{a} 0=$ Undefined
7. $\log _{a}-v e=$ Undefined
8. $\log _{a} m=\log _{a} n \Rightarrow m=n$

## Change of Base in Logarithms

1. $\log _{b} a=\frac{\log _{m} a}{\log _{m} b}$ (m can be any common base) $(\mathrm{m} \neq 0,1, \pm \alpha$, -ve value)
2. $\log _{a} b=\frac{1}{\log _{b} a}$
3. $a^{\log _{a} x}=x$

## Nature of Log Values

- $\quad$ All the values which are obtained from log tables are irrational numbers provided the numbers are not 10 or in the form of 10 .
- $\log _{b} a$ is a rational quantity only when, $\frac{\log a}{\log b}$ is rational.
- If $K$ is a number, then its log value, logK can be divided into two parts: a) Integral Part, b) Fractional Part.
- The integral part is called "Characteristics" and the fractional part is called "Mantissa".
- The integral characteristics part can be positive or negative or zero but not a fraction.
- The values of mantissa are always positive fractions.
- The values for mantissa are obtained from log tables.
- Characteristics are to be calculated before we evaluate mantissa from the log table.
- $\quad$ Value of characteristics $=$ number of significant digits before decimal -1

1. If $\log _{10}\left[98+\sqrt{x^{2}-12 x+36}\right]=2$, then $x=$
a) 4
b) 8
C) 12
d) 4,8
2. If $\left(\frac{21}{10}\right)^{x}=2$, then $x=$ ?
a) $\frac{\log 2}{\log 3+\log 7+1}$
b) $\frac{\log 2}{\log 3+\log 7-1}$
c) $\frac{\log 2}{\log 7+\log 3+2}$
d) None of the above
3. If $\log \left(\frac{x+y}{5}\right)=\frac{1}{2}(\log x+\log y)$, then $\frac{x}{y}+\frac{y}{x}=$
a) 20
b) 23
c) 22
d) 21
4. If $\log _{0.5}\left(\log _{x}\left(\log _{4} 32\right)\right)=2$, then $x=$
a) $5 / 2$
b) $625 / 16$
c) $25 / 4$
d) None of the above
5. $\log _{2} \log _{\sqrt{2}} \log _{3} 81=$ ?
a) 3
b) 2
c) 1
d) 0
6. If $\log _{2} x+\log _{4} x+\log _{16} x=21 / 4$, these $x$ is equal to
(a) 8
(b) 4
(c) 16
(d) none of these

## PAST YEAR QUESTIONS

7. The value of $\log \left(1^{3}+2^{3}+3^{3}+\ldots n^{3}\right)$ is equal to:
(a) $3 \log 1+3 \log 2+\ldots+3 \log n$
(b) $2 \log n+2 \log (n+1)-2 \log 2$
(c) $\log \mathrm{n}+\log (\mathrm{n}+1)+\log (2 \mathrm{n}+1)-\log 6$
(d) 1

## 2 <br> EQUATIONS

## THEORY

Equations
An equation is defined as a mathematical statement of equality.

Types of Equations
a) Linear equation in one variable.
b) Linear simultaneous equations in 2 or 3 variables.
c) Quadratic equations.
d) Cubic equations.
e) Bi-quadratic equations.
f) Exponential equations.

## Quadratic Equations

- A quadratic equation is defined as polynomial equation of degree 2 .
- A quadratic equation can be expressed in the following general form:

$$
a x^{2}+b x+c=0 ;(a \neq 0)
$$

- A quadratic equation can also be expressed in the factor form as follows:

$$
a(x-\alpha)(x-\beta)=0
$$

Here, $\alpha$ and $\beta$ are the roots or solutions of quadratic equations.

- The general solution of the quadratic equation can be obtained as follows:

$$
\begin{gathered}
\alpha=\frac{-b+\sqrt{b^{2}-4 a c}}{2 \mathrm{a}} \text { and } \beta=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \\
\text { Sum of roots }=\alpha+\beta=-\frac{b}{a} \\
\text { Product of roots }=\alpha \beta=\frac{c}{a}
\end{gathered}
$$

## Structure of Quadratic Equations

If Sum $(S)(\alpha+\beta)$ and Product $(P)(\alpha \beta)$ of the roots are known, then the quadratic equation is

$$
x^{2}-S x+P=0
$$

## Sign of Roots of a Quadratic Equation

- When $\mathrm{c}=0$, one root of the equation must be 0 .
- When $b$ and $c$ are 0 , then both the roots must be 0 .
- If $a, b, c$ all are of same sign, both roots are negative.
- If $a$ and $c$ are of same sign, opposite to that of $b$, then both the roots will be positive.
- If $a$ and $c$ are of opposite signs, one root is positive and another root is negative.


## Nature of Roots

The expression " $b^{2}-4 a c$ " is called the "Discriminant (D)" of the quadratic equation.

- When $\mathrm{D}>0$, Roots are real and distinct.
- When $D=0$, Roots are real and equal.
- When $\mathrm{D}<0$, Roots are imaginary.
- When $\mathrm{D} \geq 0$, Roots are real.
- When $D$ is a perfect square, Roots are real, rational and unequal.
- When $D$ is not a perfect square, Roots are real, irrational and unequal.
- If roots are equal use $b^{2}=4 a c$.
- If roots are reciprocal of each other, use $a=c$
- If roots are equal but of opposite sign, use $b=0$
- If roots are reciprocal but opposite in sign, use $c=-a$


## Note

- Irrational roots will always appear in conjugate pairs.

$$
\alpha=(a-\sqrt{b}) \text { and } \beta=(a+\sqrt{b})
$$

- Imaginary roots will always appear in conjugate pairs

$$
\alpha=(a-i b) \text { and } \beta=(a+i b)
$$

## Cubic Equations

- A cubic equation is a polynomial equation of degree 3, and the general form is represented as follows:

$$
a x^{3}+b x^{2}+c x+d=0 ;(a \neq 0)
$$

- The factor form of a cubic equation is given as follows:

$$
a(x-\alpha)(x-\beta)(x-\gamma)=0
$$

Here, $\alpha, \beta$, and $\gamma$ are the roots or solutions of the cubic equation.

- Sum of roots $=\alpha+\beta+\gamma=-b / a$
- $\quad$ Product of the roots $=\alpha \beta \gamma=-\mathrm{d} / \mathrm{a}$


## Bi-Quadratic Equations

- A bi-quadratic equation is a polynomial of degree 4, and the general form is represented as follows:

$$
a x^{4}+b x^{3}+c x^{2}+d x+e=0 ;(a \neq 0)
$$

- The factor form of a cubic equation is given as follows:

$$
(x-\alpha)(x-\beta)(x-\gamma)(x-\delta)=0
$$

Here, $\alpha, \beta, \gamma$ and $\delta$ are the roots or solutions of the bi-quadratic equation.

- Sum of roots $=\alpha+\beta+\gamma+\delta=-b / a$
- Product of the roots $=\alpha \beta \gamma \delta=\mathrm{e} / \mathrm{a}$


## CLASSWORK

Choose the most appropriate option (a), (b), (c) or (d).

1. Ten years ago, the age of a father was four times of his son. Ten years hence, the age of the father will be twice that of his son. The present ages of the father and the son are.
a) $(50,20)$
b) $(60,20)$
c) $(55,25)$
d) none of these
2. $y$ is older than $x$ by 7 years 15 years back, $x$ 's age was $3 / 4$ of $y$ 's age. Their present ages are:
a) $(x=36, y=43)$
b) $(x=50, y=43)$
c) $(x=43, y=50)$
d) $(x=40, y=47)$
3. The sides of an equilateral triangle are shortened by 12 units 13 units and 14 units respectively and a right angle triangle is formed. The side of the equilateral triangle is
a) 17 units
b) 16 units
C) 15 units
d) 18 units

## PAST YEAR QUESTIONS

1. Number of students in each section of a school is 36 . After admitting 12 new students, four new sections are started. If total number of students in each section now is 30 , then number of section initially were
(a) 6
(b) 10
(c) 14
(d) 18

## QUADRATIC EQUATIONS

1. If ' -4 ' is a root of the equation $x^{2}+a x-4=0$ and the equation $x^{2}+a x+b=0$ has equal roots, the value of ' $a$ ' \& ' $b$ ' are
(a) $a=2, b=\frac{5}{4}$
(b) $a=3, b=\frac{9}{4}$
(c) $\mathrm{a}=, \mathrm{b}=\frac{5}{2}$
(d) none
2. If the equation $x^{2}-(b+4) x+2 b+5=0$ has equal roots, then the values of ' $b$ '
(a) -2
(b) 2
(c) $\pm 2$
(d) $\pm 1$
3. If $p+q+r=0$ and $p, q, r$ are rational nos. the roots of equation $(q+r-p) x^{2}+(r+p-q) x+(p+q-r)=0$
(a) real and irrational
(b) real \& equal
(c) imaginary
(d) real \& rational
4. If the sum of the roots of the quadratyic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals then $\frac{b^{2}}{a c}+\frac{b c}{a^{2}}$ is equal to
a) 2
b) -2
c) 1
d) -1

## PAST YEARS QUESTIONS

1. If roots of equation $x^{2}+x+r=0$ are $\alpha$ and $\beta$ and $\alpha^{3}+\beta^{3}=-6$. Find value of $r$
(a) $-\frac{5}{3}$
(b) $\frac{7}{3}$
(c) $-\frac{4}{3}$
(d) 1
2. If the ratio of the root of the equation $4 x^{2}-6 x+p=0$ is $1: 2$ then the value of $p$ is
(a) 1
(b) 2
(c) -2
(d) -1
3. If difference between the roots of the equation $x^{2}-k x+8=0$ is 4 then the value of $k$ is
(a) 0
(b) $\pm 4$
(c) $\pm 8 \sqrt{3}$
(d) $\pm 4 \sqrt{3}$

## CUBIC EQUATION

Choose the most appropriate option (a), (b), (c) or (d)

1. The roots of the equation $x^{3}+7 x^{2}-21 x-27=0$ are
a) $(-3,-9,-1)$
b) $(3,-9,-1)$
d) $(3,9,1)$
e) $(-3,9,1)$

## CONSISTENCY OF EQUATION

2. The system of equation $4 x+7 y=10$ and $10 x+(35 / 2) y=25$ have
(a) unique solution
(b) infinite solution
(c) no solution
(d) none

# LINEAR INEQUALITIES 

## CLASS WORK

1. A car manufacturing company manufactures cars of two types $A$ and $B$. Model $A$ requires 150 man-hours for assembling, 50 man-hours for painting and 10 manhours for checking and testing. Model B requires 60 man-hours for assembling, 40 man-hours for painting and 20 man-hours for checking and testing. There are available 30 thousand man-hours for assembling, 13 thousand man-hours for painting and 5 thousand man-hours for testing and checking. Let the company manufacture $x$ units of type A model of car and $y$ units of type B model of the car. Then, the inequalities are:
a) $5 x+2 y=1000,5 x+4 y \leq 1300, x+2 y \leq 500, x \geq 0, y \geq 0$
b) $5 x+2 y \leq 1000,5 x+4 y \leq 1300, x+2 y \leq 500, x \geq 0, y \geq 0$
c) $5 x+2 y \leq 1000,5 x+4 y=1300, x+2 y=500, x \geq 0, y \geq 0$
d) $5 x+2 y \leq 1000,5 x+4 y \geq 1300, x+2 y \geq 500, x \geq 0, y \geq 0$
2. A firm is engaged in breeding pigs. The pigs are fed on various products grown on the farm. In view of the need to ensure certain nutrient constituents, it is necessary to buy two additional products, say $A$ and $B$. The contents of the various products (per unit) in nutrient constituent (eg., vitamins, proteins, etc.) is given in the following table:

| Nutrient | Nutrient content in product |  | Minimum amount of Nutrient |
| :---: | :---: | :---: | :---: |
|  | A | B |  |
| M1 | 36 | 6 | 108 |
| M2 | 3 | 12 | 36 |
| M3 | 20 | 10 | 100 |

The last column of the above table gives the minimum amounts of nutrients constituents M1, M2 and M3 which must be given to the pigs. Express the above situation in terms of linear inequalities.
a) $\begin{aligned} & 20 x+10 y \geq 100 \\ & x \geq 0, y \geq 0\end{aligned}$
$36 x+6 y \geq 108$
c)
$\left.\begin{array}{l}36 x+6 y \leq 108 \\ 3 x+12 y \leq 36 \\ 20 x+10 y \leq 100 \\ x \geq 0, y \geq 0\end{array}\right\}$
$x \geq 0, y \geq 0$
$6 x+y \geq 18$

$$
x+4 y \geq 12
$$

b) $\quad \begin{aligned} & x+0.5 y \geq 5 \\ & \\ & x \geq 0, y \geq 0\end{aligned}$
d) (a) \& (b) both
3. The rules and regulations demand that the employers should employ not more than 5 experienced hands to 1 fresh one and this fact is represented by: (Taking experienced person as $x$ and fresh person as $y$ )
a) $y \geq x / 5$
b) $y \geq x$
c) $y \leq x / 5$
d) None of the above
4. The solution of the in-equality $\frac{(5-2 x)}{3} \leq \frac{x}{6}-5$ is:
a) $x \leq 8$
b) $x=8$
c) $x \geq 8$
d) None of the above
5. If $\left|x+\frac{1}{4}\right|>\frac{7}{4}$, then which of the following is correct?
a) $x<-\frac{3}{2}$ or $x>2$
b) $x<-2$ or $x>\frac{3}{2}$
c) $-2<x<\frac{3}{2}$
d) None of the above
6. A company produces two types of leather belts, say $A$ and $B$. Belt $A$ is of superior quality and belt $B$ is of lower quality. Each belt of type $A$ requires twice as much time as required by a belt of type $B$. If all belts were of type $B$, the company could produce 1000 belts per day. But the supply of leather is sufficient only for 800 belts per day. Belt A requires fancy buckles and only 400 fancy buckles are available per day. For belt of type B only 700 buckles are available per day.

CA FOUNDATION - MATHEMATICS

Constraints can be formulated by assuming that the company produce $\times$ units of belt $A$ and $y$ units of belt $B$ as :
(a) $2 x+y \leq 1000$
(b) $2 x+y \leq 1000$
(c) $2 x+y \geq 1000$
$x+y \geq 800$
$x+y \leq 800$
$x+y \leq 800$
$x \leq 400 ; y \leq 700$
$x \leq 400 ; y \leq 700$
$x \leq 400 ; y \leq 700$
$x \geq 0 ; y \geq 0$
$x \geq 0 ; y \geq 0$
d) None of these

## TIME VALUE OF MONEY

## Simple Interest

Simple interest is charged on the principal amount and hence it is same for every year.
$\mathrm{A}=$ Amount, $\mathrm{P}=$ principal, $\mathrm{n}=$ number of years, $\mathrm{R}=$ interest rate

$$
\begin{gathered}
\mathrm{SI}=\frac{\mathrm{PTR}}{100} \\
\mathrm{~A}=\mathrm{P}+\mathrm{SI}=\mathrm{P}+\frac{\mathrm{PTR}}{100}=P\left(1+\frac{T R}{100}\right)
\end{gathered}
$$

Notes:

- If rate of interest is known, then sum of money will double itself in $100 / r$ years.
- If number of years is known, then sum of money wilt double itself @ 100/n \%.
- A sum of money will become " $n$ " times in $\frac{(n-1) \times 100}{R}$ years.

Example:
In how many years a sum of money @10\% p.a. SI will become (a) double, (b) triple, (c) N times.

| (a) Double | (b) Triple | (c) N times |
| :---: | :---: | :---: |
| $\frac{(2-1) \times 100}{10}=10$ years | $\frac{(3-1) \times 100}{10}=20$ years | $\frac{(\mathrm{N}-1) \times 100}{10}=10(\mathrm{~N}-1)$ years |

- If the sum of money becomes " $n_{1}$ " times in $T_{1}$ years and " $n_{2}$ " times in $T_{2}$ years, then the ratio of their times is: $\frac{T_{1}}{T_{2}}=\frac{n_{1}-1}{n_{2}-1}$.


## Compound Interest

- In case of compound interest, the interest is calculated on the amount of the succeeding years, i.e., principal keeps changing every year.
- Here interest on interest is also earned, thus money grow faster when Compounding is done
- If $P$ is the principal, $n=$ number of years for which interest is calculated and "i" $(R / 100)$ is the rate of interest, then, the amount $A$ after $n$ years will be given by:

$$
A=P(1+i)^{n}
$$

- In case of depreciation by diminishing balance method (WDV), if $C=$ Cost of the machinery, $\mathrm{I}=$ rate of depreciation per annum and $\mathrm{n}=$ effective life of the machinery, then the depreciated value $D$ after $n$ years is :

$$
\mathrm{D}=\mathrm{C}(1-i)^{n}
$$

D is also known as the scrap value of the machinery.

- Compound Interest thus would be calculated as follows:

$$
C I=A-P=P\left[(1+i)^{n}-1\right]
$$

- Depending upon the compounding style of interest rate, the effective formula for calculating Amount would be as follows:

| Half Yearly or Semi Annually | Quarterly | Monthly |
| :---: | :---: | :---: |
| $A=P\left(1+\frac{i}{2}\right)^{2 n}$ | $A=P\left(1+\frac{i}{4}\right)^{4 n}$ | $A=P\left(1+\frac{i}{12}\right)^{12 n}$ |

- When differential interest rates are charged $\left(i_{1}, i_{2}, i_{3}, \ldots \ldots i_{n}\right)$, then: $A=P\left(1+i_{1}\right)\left(1+i_{2}\right)\left(1+i_{3}\right) \ldots \ldots \ldots . .\left(1+i_{n}\right)$
- Relationship between Cl and SI
a) For the first year, $\mathrm{CI}=\mathrm{SI}$, i.e. for the first year difference is zero.
b) For two years, $\mathrm{Cl}-\mathrm{SI}=\mathrm{Pi}^{2}$
c) For three years, $\mathrm{CI}-\mathrm{SI}=\mathrm{Pi}^{2}(\mathrm{i}+3)$


## Notes:

1. A sum of money will double itself in approximately $72 / r$ years (known as Rule 72 ), where $r$ is the rate of interest per annum.
2. A sum of money will triple itself in approximately $114 / r$ (known as Rule 114), where $r$ is the rate of interest per annum.
3. If a sum of money becomes " $n$ " times in " $t$ " years, then, it will become $n^{m}$ times in "mt" years.
Example: If sum of money doubles itself in 3 years, then it will be 8 times $\left(2^{3}\right)$ in $3 \times 3=9$ years at Cl.

## Concept of Effective Rate of Interest

1. When the compounding is done more than once a year, then, the net annual rate of interest is found to be slightly higher than the given annual rate of interest.
2. This new rate of interest is known as the effective rate of interest and the given annual rate is called the nominal rate of interest.
3. Effective rate of interest is denoted by $E$ and is given by the formula:

$$
E=\left\{(1+i)^{n}-1\right\} \times 100
$$

Where " i " is rate of interest, converted monthly, quarterly, half yearly and n is the number of conversion period per annum.
4. Effective rate of interest are particularly useful in making investment decisions when various options are given with differential interest rates.
5. Amongst various investment options, we shall choose that investment option, where effective rate of interest is maximum.

## Concept of Present Value

Present Value is defined as the present worth of the money that would yield an amount $A$ after $n$ years at a specified rate of interest $i$.

$$
\begin{aligned}
& \text { If } A=P(1+i)^{n} \\
& \therefore P=P V=\text { Principal }=\frac{A}{(1+i)^{n}} \\
& \text { or }, P V=A(1+i)^{-n}
\end{aligned}
$$

## Annuities

- Annuity is defined as a series of payments (usually equal) which are made at regular intervals of time (usually a year).
- The period for which the payment continues is called the status or the term of the annuity.
- Unless otherwise stated, the first payment will fall due at the end of every year. This is known as "Ordinary Annuity".
- When the payment falls due at the beginning of every year, i.e., immediately, it is called "Immediate Annuity".
- When the status or term of the annuity is not fixed, i.e., the payment is to be continued for an indefinite period, these are known as "Perpetual Annuity or Perpetuity".
- Hence forth, we shall maintain the following notation throughout. The regular annual payment i.e., annuity $=P$, rate of interest = "i" and the period for which payment is made $=\mathrm{n}$ (status or term of the annuity).
- The amount of the ordinary annuity is given by:

$$
A=\frac{P}{i}\left\{(1+i)^{n}-1\right\}
$$

- The amount of immediate annuity is obtained by multiplying amount obtained for ordinary annuity by $(1+i)$; hence the formula becomes:

$$
A=\frac{P}{i}\left\{(1+i)^{n}-1\right\}(1+i)
$$

- Note:

1. When half yearly or quarterly or monthly payment is "P", in such a case change " i " to $\mathrm{i} / 2$ or $\mathrm{i} / 4$ or $\mathrm{i} / 12$ and change " n " to 2 n or 4 n or 12 n respectively.
2. When half yearly, quarterly or monthly rate of interest is "i", in such a case, change $P$ to $P / 2, P / 4$ or $P / 12$ and change $n$ to $2 n$ or $4 n$ or $12 n$ respectively.

- The present value of an annuity payable over a period of $n$ years is defined as the sum of the present value of all the future payments.
- The present value of an ordinary annuity is represented by V and given as follows:

$$
V=\frac{P}{i}\left\{1-(1+i)^{-n}\right\}
$$

- If the term of the annuity is n years, then for evaluating the present value of the immediate annuity, first calculate the present value of the annuity for $(\mathrm{n}-1)$ years and then add to it the initial or first payment.

$$
v=\frac{P}{i}\left\{1-(1+i)^{-n}\right\}(1+\mathrm{i})
$$

- Present value of the perpetual annuity is given by,

$$
\begin{aligned}
& \qquad \mathrm{V}=\mathrm{P} / \mathrm{i} \\
& \text { Important concepts related to CA Inter and CA Final }
\end{aligned}
$$

Financial Management

## 1. Sinking Fund

It is the fund credited for a specified purpose by way of sequence of periodic payments over a time period at a specified interest rate. Interest is compounded at the end of every period. Size of the sinking fund deposit is computed from $A=P . A(n, i)$ where $A$ is the amount to be saved, P the periodic payment, n the payment period.

## 2. Leasing

Leasing is a financial arrangement under which the owner of the asset (lessor) allows the user of the asset (lessee) to use the asset for a defined period of time(lease period) for a consideration (lease rental) payable over a given period of time. This is a kind of taking an asset on rent.

## 3. Capital Expenditure (investment decision)

Capital expenditure means purchasing an asset (which results in outflows of money) today in anticipation of benefits (cash inflow) which would flow across the life of the investment. For taking investment decision we compare the present value of cash outflow and present value of cash inflows. If present value of cash inflows is greater than present value of cash outflows decision should be in the favour of investment.

## 4. Valuation of Bond

A bond is a debt security in which the issuer owes the holder a debt and is obliged to repay the principal and interest. Bonds are generally issued for a fixed term longer than one year.

## 5. Perpetuity

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date and continue indefinitely or perpetually. Fixed coupon payments on permanently invested (irredeemable) sums of money are prime examples of perpetuities.
The formula for evaluating perpetuity is relatively straight forward. Two points which are important to understand in this regard are:.
(a) The value of the perpetuity is finite because receipts that are anticipated far in the future have extremely low present value (today's value of the future cash flows).
(b) Additionally, because the principal is never repaid, there is no present value for the principal.
Therefore, the price of perpetuity is simply the coupon amount over the appropriate discount rate or yield.

Calculation of multi period perpetuity:
The formula for determining the present value of multi-period perpetuity is as follows:

$$
\text { PVA } \infty=\frac{\mathrm{R}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{R}}{(1+\mathrm{i})^{2}}+\frac{\mathrm{R}}{(1+\mathrm{i})^{3}}+\ldots \ldots . .+\frac{\mathrm{R}}{(1+\mathrm{i})}=\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{R}}{(1+\mathrm{i})^{\mathrm{n}}}=\frac{\mathrm{R}}{\mathrm{i}}
$$

## Where:

$R=$ the payment or receipt each period
$i=$ the interest rate per payment or receipt period

## 6. Calculation of Growing Perpetuity

A stream of cash flows that grows at a constant rate forever is known as growing perpetuity. The formula for determining the present value of growing perpetuity is as follows:

$$
\text { PVA }=\frac{\mathrm{R}}{(1+\mathrm{i})^{1}}+\frac{\mathrm{R}(1+\mathrm{g})}{(1+\mathrm{i})^{2}}+\frac{\mathrm{R}(1+\mathrm{g})^{2}}{(1+\mathrm{i})^{3}}+\ldots . .+\frac{\mathrm{R}(1+\mathrm{g})^{\infty}}{(1+\mathrm{i})^{\infty}}
$$

$\sum_{n=1}^{\infty} \frac{R(1+g)^{n-1}}{(1+i)^{n}}=\frac{R}{i-g}$

## 7. Net Present Value

Net present value = Present value of net cash inflow - Total net initial investment
Since it might be possible that some additional investment may also be required during the life time of the project then appropriate formula shall be:

Net present value = Present value of cash inflow - Present value of cash outflow
The steps to calculate net present value are:-

1. Determine the net cash inflow in each year of the investment.
2. Select the desired rate of return or discounting rate or Weighted Average Cost of Capital.
3. Find the discount factor for each year based on the desired rate of return selected.
4. Determine the present values of the net cash flows by multiplying the cash flows by respective the discount factors of respective period called Present Value (PV) of Cash flows
5. Total the amounts of all PVs of Cash Flows

## Decision Rule:

If NPV > OAccept the Proposal If NPV < OReject the Proposal

## 8. Nominal Rate of Return

The nominal rate is the stated interest rate. If a bank pays $5 \%$ annually on a savings account, then $5 \%$ is the nominal interest rate. So if you deposit ₹ 100 for 1 year, you will receive ₹ 5 in interest.

However, that Rs. 5 will probably be worth less at the end of the year than it would have been at the beginning. This is because inflation lowers the value of money. As goods, services, and assets, such as real estate, rise in price.

The nominal interest rate is conceptually the simplest type of interest rate. It is quite simply the stated interest rate of a given bond or loan. It is also defined as a stated interest rate. This interest works according to the simple interest and does not take into account the compounding periods.

Real Rate of Return: The real interest rate is so named because it states the "real" rate that the lender or investor receives after inflation is factored in; that is, the interest rate that exceeds the inflation rate.

CA FOUNDATION - MATHEMATICS
a Veranda Enterprise
A comparison of real and nominal interest rates can therefore be summed up in this equation:

Nominal Rate of Return - Inflation = Real Rate of Return
Nominal Interest Rate = Real Interest Rate + Inflation

## 9. Compound Annual Growth Rate (CAGR)

Compound Annual Growth Rate (CAGR) is a business and investing specific term for the smoothed annualized gain of an investment over a given time periodit is not an accounting term, but remains widely used, particularly in growth industries or to compare the growth rates of two investments because CAGR dampens the effect of volatility of periodic returns that can render arithmetic means irrelevant. CAGR is often used to describe the growth over a period of time of some element of the business, for example revenue, units delivered, registered users, etc.
$\operatorname{CAGR}\left(\mathrm{t}_{0^{\prime}} \mathrm{t}_{\mathrm{n}}\right)=\left(\frac{\mathrm{V}\left(\mathrm{t}_{\mathrm{n}}\right)}{V\left(t_{0}\right)}\right)^{\frac{1}{t_{n}-t_{0}}}-1$
Where $V\left(t_{0}\right)=$ Beginning Period ; $V\left(t_{n}\right)=$ End Period


## CLASSWORK SECTION

## SIMPLE INTEREST

1. Find rate of interest if the amount owed after 6 months is 2100 , borrowed amount being Rs. 2000.
(a) $10 \%$
(b) $8 \%$
(c) $9 \%$
d $11 \%$
2. 46875 was lent out at SI and at the end of 1 yr 8 months, total amount was 50000 . Find rate of int per annum?
(a) $2 \%$
(b) $4 \%$
(c) $6 \%$
(d) $8 \%$
3. Sum required to earn quarterly interest of 3600 at $18 \%$ p.a. is
(a) 50,000
(b) 60,000
(c) 80,000
(d) none
4. A sum of 3402 amounts to 6804 on 20 yrs. What sum witl amount to 5200 in 6 yrs at same rate?
(a) 3000
(b) 4000
(c) 5000
(d) 600
5. A bike is purchased by making a down payment of 15000 and balance to be paid alongwith interest at $5 \%$ p.a. for 2 yrs. Total amount paid is 28200 . Find cash price of the bike.
(a) 28000
(b) 26000
(c) 27000
(d) 25000

## PAST EXAM QUESTIONS

6. The rate of simple interest on a sum of money is $6 \%$ p.a. for first 3 years, $8 \%$ p.a. for the next five years and $10 \%$ p.a. for the period beyond 8 years. If the simple interest accrued by the sum for a period for 10 years is ₹ 1,560 . The sum is:
(a) ₹ 1,500
(b) ₹ 2,000
(c) ₹ 3,000
(d) ₹ 5,000
7. A sum of money doubles itself in 10 years. The number of years it would treble itself is :
(a) 25 years
(b) 15 years
(c) 20 years
(d) none
a Veranda Enterprise
8. If a simple interest on a sum of money at $6 \%$ p.a. for 7 years is equal to twice of simple interest on another sum for 9 years at 5\% p.a. The ratio will be
(a) 2:15
(b) $7: 15$
(c) $15: 7$
(d) $1: 7$
9. A sum of ₹ 44,000 is divided into three parts such that the corresponding interest earned after 2 years, 3 years and 6 years may be equal. If the rates of simple interest are $6 \%$ p.a., $8 \%$ p.a. and $6 \%$ p.a. respectively, then the smallest part of the sum will be :
(a) ₹ 4,000
(b) ₹ 8,000
(c) ₹ 10,000
(d) ₹ 12,000

## COMPOUND INTEREST

10. Find present value of 10000 due in 2 yrs at $5 \%$ p.a. compound interest paid annually?
(a) 9050
(b) 9070
(c) 9080
(d) 9090
11. A machinery worth 10000 is depreciated at the rate of $10 \%$ p.a. for first 3 yrs. $8 \%$ p.a. for next 2 yrs. Find its value after 5 yrs.
(a) 5170.25
(b) 7170.25
(c) 6170.25
(d) 8170.25

## PAST EXAM QUESTIONS

12. The difference between the simple and compound interest on a certain sum for 3 year at 5\% p.a. is ₹ 228.75 . The compound interest on the sum for 2 years at 5\% p.a. is
(a) ₹ 3,175
(b) ₹ 3,075
(c) ₹ 3,275
(d) ₹ 2,975
13. A person deposited ₹ 5000 in a bank. The deposit was left to accumulate at $6 \%$ compounded quarterly for the first five years and at 8\% compounded semi-annually for the next eight years. The compound amount at the end of 13 years is:
(a) ₹ 12621.50
(b) ₹ 12613.10
(c) ₹ 13613.10
(d) none
14. If compound interest on a sum for 2 years at $4 \%$ per annum is $₹ 102$, then the simple interest on the same sum for the same period at the same rate will be
(a) ₹ 99
(b) ₹ 101
(c) ₹ 100
(d) ₹ 95

EFFECTIVE RATE OF INTEREST
15. Which is a better investment?
(i) $9 \%$ p.a. compounded half yrly.
(ii) $9.23 \%$ p.a. S.I.
(a) (i)
(b) (ii)
(c) both
(d) none

ANNUITY (FUTURE VALUE)
16. A company issued $10 \%$ cumulative debentures of Rs. 100 each, 5000 cumulative debentures are to be redeemed with $10 \%$ of interest for 5 yrs. For this a Sinking Fund is created and invested at $12 \%$ rate of C.I. Sum to be transferred every year to sinking fund is
(a) 805500
(b) 126834.64
(c) 207382
(d) 126755
17. A machine costing $5,20,000$ with an estimated life of 25 years. A sinking fund is created to replace it by new model at $25 \%$ higher cost after 25 years with a scrap value realization of 25000 . What amount should be set aside every year if sinking fund investment at 3.5\% C.I p.a.?
(a) 16000
(b) 16500
(c) 16050
(d) 16005

ANNUITY (PRESENT VALUE)
18. Present value of an annuity which pays 200 at the end of each 3 months for 10 years, assuming money to be worth $5 \%$ p.a. converted quarterly.
(a) 3809.20
(b) 3109.60
(c) 6265.38
(d) none
19. A man purchased house valued at $3,00,000$ by making a payment of $2,00,000$ at the time of purchase and agreed to pay balance with interest at $12 \%$ p.a. compounded half yearly in 20 equal half yearly installments. If first installment is paid after 6 months from the date of purchase then amount of each installment is
(a) 8719
(b) 8679
(c) 7719
(d) 8769

PAST YEARS QUESTION
20. A company considering proposal of purchasing a machine either by, making full payment of ₹ 4000 or by leasing it for four years at an annual rate of ₹ 1,250 . Which course of action is preferable, if the company can borrow money at 14\% compounded annually?
[Given: $\left.(1.14)^{4}=1.68896\right]$
(a) Leasing is preferable
(b) Should be Purchased
(c) No difference
(d) None of these

Typical Sums related to Important Concepts
21. If the cost of capital be $12 \%$ per annum, then the net present value (in nearest *) from the given cash flow is given as

| Year | 0 | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: | :---: |
| Operating profit (in lakh *) | $(100)$ | 60 | 40 | 50 |

(A) 31048
(B) 34185
(C) 21048
(D) 24187

## THEORY

## Permutation

- Permutation is defined as the arrangement of things by taking some or all at a time
- Permutation is order dependent
- Fundamental principle of counting;

If one operation can be performed in ' $m$ ' ways and another operation can be performed in ' $n$ ' ways, then the total number of ways in which both the operation can be performed will be given by ' $m$ n' ways

- Definition of Factorial ' $n$ ', i.e., $n$ ! or $n$

Factorial $n(n!)$ is defined as the continued product of first $n$ natural numbers or first $n$ positivel integers and is expressed as $n!=1 \times 2 \times 3 \times 4 \ldots \ldots . . . . . \times n$

- $\quad\lfloor n=\mathrm{n} \times \underline{n-1}=\mathrm{n} \times(\mathrm{n}-1)\lfloor n-2=\ldots \ldots$.
- $1!=16!=720$
$2!=2 \quad 7!=5040$
$3!=6 \quad 8!=40320$
$4!=24 \quad 9!=362880$
$5!=120 \quad 10!=3628800$
- Mathematical definition of Permutation (Repetition not allowed):

Total number of arrangements of ' $n$ ' different things taking " $r$ " at $a$ time will be given by nPr or $\mathrm{P}(\mathrm{n}, \mathrm{r})=\frac{\underline{\mathrm{n}}}{\underline{n-r}}$, where $\mathrm{r} \leq \mathrm{n}$.
Note:

- When $\mathrm{r}=\mathrm{n}$, it is known as "all at a time"
- When $r<n$, it is known as "some at a time"
- $\quad \mathbf{r}$ can never exceed $\mathbf{n}$
- $n$ and $r$ must be positive integers
- ${ }^{n} P_{1}=\mathrm{n}$
- ${ }^{n} P_{0}=1$
- ${ }^{n} P_{n}=\mathrm{n}$ !
- ${ }^{n} P_{n}={ }^{n} P_{(n-1)}=\mathrm{n}$ !
- But ${ }^{n} P_{r} \neq{ }^{n} P_{(r-1)}$
- Permutation or arrangements of ' $n$ ' different things in which few are alike (Repetition not allowed)
The total number of arrangements of $n$ different things in which $p$ are alike and of one kind, $q$ are alike and $a$ second kind, $r$ are alike and yet of another kind and the rest are different, will be given by $\frac{\underline{\mathrm{n}}}{|p| q \mid r}$
- Permutation when repetitions are allowed

The total number of arrangements of $n$ things taken $r$ at a time when each thing may be repeated once, twice, thrice .to $r$ number of times will be given by $\mathrm{n}^{r}$

- Rules for restricted Permutation
a) Whenever the arrangements should begin or end or begin and end with a particular letter or object keep the objects fixed at the respective places and arrange the rest.
b) When in the arrangement of $n$ things, $r$ things are together, the total arrangements will be given by: $(n-r+1)$ ! $r$ !
c) When in the arrangements of $n$ things, $r$ things are together in a specified order, the total arrangement will be given by $(n-r+1)$ !
d) Total number of ways in which out of $n$ things, $r$ things are never together $=$ total ways - number of ways when they are always together, i.e., $n!-(n-r+1)!r!$
e) When the relative positions of few objects are to be kept unaltered it implies that the objects can be interchanged or arranged in their respective place only.
f) In problems involving re-arrangements always subtract 1 from the total arrangements.
g) When in the arrangement of $n$ things, $r$ alike things are together, then total number of arrangements will be given by ( $n-r+1$ )!

Circular Permutation (When the things are arranged in a ring or circle)

- Total ways in which $n$ things can be arranged in a ring or circle is $n-1$
- Total ways in which n things can be arranged in a ring or circle with respect to any object will be given by $\lfloor$
- When the clockwise or anti clock wise position cannot be disguised (for example: arrangements of different flowers in garland or arrangement of different beads in a necklace etc), in such a case the total number of circular arrangements will be given by $(n-1)$ ! / 2


## Arrangements of digits

- There are 10 random digits: $0,1,2,3,4,5,6,7,8,9$
- $\quad 5$ odd digits $(1,3,5,7,9)$ and
- $\quad 5$ even digits $(0,2,4,6,8)$
- Unless otherwise mentioned no number can start with ' 0 '
- If there are ' $n$ ' different digits ( 0 is included) then the total number of n digit numbers not beginning with 0 will be given by: $\lfloor n-\lfloor n-1$
- If there are n different digits ( 0 is included) and we are to form a number with r different digits then the total number of $r$ digit numbers not beginning with 0 will be given by: ${ }^{n} P_{r}-{ }^{n-1} P_{r-1}$


## Fundamental Principle of Counting

1. There are 26 stations on a railway line. How many different kinds of tickets of class II must be printed in order that a passenger may go from any one station to another by purchasing a ticket.
a) 65
b) 240
c) 650
d) 1300

## Formula Pattern - ${ }^{n} \mathrm{P}_{\mathrm{r}}$

2. ${ }^{n} P_{3}:{ }^{n} P_{2}=3: 1$, then the value of $n$ is:
a) 4
b) 5
c) 6
d) 7

Alike Items - Repetition not allowed
3. INSTITUTION
a) 554499
b) 445588
c) 554400
d) None of the above

In how many ways the results of:
4. In how many ways can 3 persons enter into 4 hotels if (i) repetition is allowed, and
(ii) repetition is not allowed?
a) $3^{4}, 3^{4}$
b) $4^{3}, \mathrm{P}(4,3)$
c) $3^{4}, \mathrm{P}(4,3)$
d) None of the above

## Restricted Permutation

5. How many words can be formed of the letters in the word COSTING, the vowels being not separated?
a) 144
b) 1440
c) 1280
d) 2880

All different words formed by the letters of the word BHARAT:
6. In how many different ways can the letters of the word "CONSTITUTION" be arranged? How many of these will have the letter $N$ both at the beginning and at the end?
a) 9979200,151200
b) 9989920,152150
c) 9979000,151000
d) None of the above

Circular Permutation
7. In how many ways can 7 persons be arranged at a round table so that 2 particular persons can be together?
a) 180
b) 240
c) 360
d) None of the above
8. In how many ways 8 stones of different colours be arranged on a ring? In how many of these arrangements red and yellow beads being separated?
a) 2520,900
b) 2520,1800
c) 1800,2520
d) 1800,1260

## Problem Involving Digits

9. How many numbers can be formed with the digits $1,2,3,4,3,2,1$, so that odd digits are at odd places?
a) 18
b) 19
c) 20
d) None
10. How many four digits numbers can be formed with the digits $3,4,5,6$ ? Find the sum of all the numbers thus formed.
a) 24,1420
b) 24,1520
C) 24,4742
d) 24,119988
11. How many even numbers greater than 300 can be formed with the digits $1,2,3,4$ and 5 (no digit being repeated)?
a) 121
b) 111
c) 222
d) 124

Miscellaneous
12. How many ways can 3 boys and 5 girls be arranged in row so that no 2 boys are together?
a) 14400
b) 604800
c) 2880
d) 28800
13. One arrange 10 letters taken 7 at a time. In how many of these 3 particular letters (i) always occur, and (ii) never occurs?
a) 720,30240
b) 30240,5040
c) 5040,5040
d) 176400,5040
14. Find rank of word 'ZENITH'.
(a) 613
(b) 614
(c) 615
(d) 616

## COMBINATION

- Combination is the selection of different items from a given number of items
- Combination is order independent
- The total number of combinations or selections of $r$ items from $n$ different items will be given by;

$$
{ }^{n} C_{r} \text { or } \mathrm{C}(\mathrm{n}, \mathrm{r})=\frac{\underline{n}}{\underline{r \times \underline{n}-r}} \text { where } \mathrm{r} \leq n
$$

- No arrangement (Permutation) is possible without selection (Combination) but selection (Combination) process can take place independently
- Thus ${ }^{n} C_{r}<{ }^{n} P_{r}$, except when $\mathrm{r}=0$ or 1
- Relation between ${ }^{n} P_{r}$ and ${ }^{n} C_{r}$
- ${ }^{n} P_{r}={ }^{n} C_{r} \times \underline{r}$
- $\frac{{ }^{n} P_{r}}{{ }^{n} C_{r}}=\underline{r}$
- ${ }^{n} C_{0}={ }^{n} P_{0}=1$
- ${ }^{n} C_{1}={ }^{n} P_{1}=n$
- ${ }^{n} C_{n}=1,{ }^{n} P_{n}=\underline{n}$

Complementary Combination

- ${ }^{n} C_{r}={ }^{n} C_{n-r}$ (Use this result, when $r>\frac{n}{2}$ )
- If ${ }^{n} C_{x}={ }^{n} C_{y}$ then either
a. $x=y$ or
b. $x+y=n$ or
c. both the results can hold true simultaneously
- ${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
- $\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}$


## Application of combinations

## Case 1:

Total number of straight lines that can be formed out of ' $n$ ' points on a plane when no three of them are co-linear will be given by

$$
{ }^{n} C_{2}
$$

## Case 2:

Total number of triangles that can be formed out of these ' $n$ ' points is

$$
{ }^{n} C_{3}
$$

Case 3:
Total Number of circles that can be formed out of these ' $n$ ' points is

$$
{ }^{n} C_{3}
$$

## Case 4:

Total number of lines that can be formed with ' $n$ ' points when $p$ of them are collinear will be given

$$
{ }^{n} C_{2}-{ }^{p} C_{2}+1
$$

## Case 5:

Total number of triangles that can be formed with ' $n$ ' points when $p$ of them are collinear will be given by

$$
{ }^{n} C_{3}-{ }^{P} C_{3}
$$

## Case 6:

The total number of points of intersection that can be obtained from ' $n$ ' straight lines are ${ }^{n} C_{2}$ when,
i. No two of them are parallel and
ii. No three of them are concurrent

## Case 7:

To find the number of diagonals in a polygon having ' $n$ ' sides
No of diagonals $={ }^{n} C_{2}-n$
Where ${ }^{n} C_{2}=$ total number of lines by joining 2 vertices in pairs and
a Veranda Enterprise
' $n$ ' number of sides $=$ number of vertices
${ }^{n} C_{2}-n$
$=\frac{n(n-1)}{2}-n=n\left(\frac{n-1}{2}-1\right) \Rightarrow n\left(\frac{n-1-2}{2}\right) \Rightarrow n\left(\frac{n-3}{2}\right)$

## Case 8:

Total number of selections or combinations of ' $n$ ' different things taking one or more at a time (i.e., at least 1 ) will be given by

$$
{ }^{n} C_{1}+{ }^{n} C_{2}+{ }^{n} C_{3}+\ldots \ldots \ldots+{ }^{n} C_{n}=2^{n}-1
$$

## Case 9:

Combinations or selections of things which are alike.
Total number of combinations or selection of $p, q, r$ items by taking one or more(atleast one) will be given by, $(p+1)(q+1)(r+1)-1$

When $p$ are alike and of one kind, $q$ are alike and of $a$ second kind and $r$ are alike and of yet of another kind.

## Note:

Total number of selections of $p$ alike, $q$ alike and $r$ different items by taking at least one will be given by $(p+1)(q+1) 2^{r}-1$

## Case 10: Division into groups

- The total number of ways in which ( $m+n$ ) items can be divided into two distinct groups containing m \& n items respectively will be given by:

$$
\frac{\mid m+n}{|m| n}
$$

- Total ways in which $m+n+p$ items can be divided into 3 distinct groups containing $m$, $\mathrm{n} \& \mathrm{p}$ items respectively will be given by,

$$
\frac{\underline{m+n+p}}{\underline{m|n| p}}
$$

## Case i :

When $m=n$ or $m=n=p$ then $2 m$ or $3 m$ items can be equally distributed into two or three distinct groups in,

$$
\frac{\lfloor 2 m}{\left(\lfloor m)^{2}\right.} \text { or } \frac{\lfloor 3 m}{\left(\lfloor m)^{3}\right.} \text { ways }
$$

Case ii:
When the identities of the groups are not distinct i.e, the groups are alike in such a case 2 m or 3 m items can be distributed equally into 2 or 3 identified groups in

$$
\frac{\lfloor 2 m}{\left(\lfloor m)^{2}\right.} \times \frac{1}{2!\text { or }} \frac{\lfloor 3 m}{\left(\lfloor m)^{3}\right.} \times \frac{1}{3!} \text { ways }
$$

## Basic Meaning

1. If ${ }^{13} C_{6}+2 .{ }^{13} C_{5}+{ }^{13} C_{4}={ }^{15} C_{x^{\prime}}$, what is the value of $X$ ?
a) 6
b) 9
c) Either $a$ ) or b)
d) Both a) and b)
2. If $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{1}{4}$ and $\frac{{ }^{n} c_{r}}{{ }^{n} C_{r+1}}=\frac{1}{3}$ then find the value of $n$ and $r$ ?
a) 35,7
b) 53,8
c) 35,8
d) 19,4
" $n$ " different things, " $r$ " to be selected ( $r \leq n$ ) - With Restrictions
3. The question paper on Mathematics and Statistics contains 10 questions divided into two groups of 5 questions each. In how many ways can an examinee select 6 questions taking at least two questions from each group?
a. 200
b. 150
c. 100
d. 250
" n " different things, any number can be selected at a time
4. In how many ways a man can invite 5 friends to a dinner so that two or more of them remain present?
a. 24
b. 25
c. 26
d. 32

A man has 5 German, 4 Spanish and 3 French friends. Find:
5. A Supreme Court Bench consists of five judges. In how many ways the bench can give a decision in majority?
a. 16
b. 15
c. 31
d. 32

Application of Combination in Geometry
6. Find the number of straight lines formed by joining 10 different points on a plane, no three of them being collinear (with the exception of 4 points which are collinear).
a. 41
b. 45
c. 39
d. 40
7. Find the number of triangles formed by joining 10 different points on a plane, no three of them being collinear (with the exception of 4 points which are collinear).
a. 120
b. 116
c. 121
d. 126
8. A polygon has 44 diagonals. Find the number of its sides.
a. 10
b. 11
c. 12
d. 14

How many selections can be made by taking any letters from the words
9. A person has in his bag 14 notes of Rs. 10 each, 9 notes of Rs. 5 each, 4 notes of Rs. 2 each and 7 notes of Re. 1 each. In how many different ways can he contribute to a charitable fund?
a) 3000
b) 6000
C) 5999
d) 2999

Division into Groups - either distinct or alike
10. Divide 12 items in two groups so that each containing 8 and 4 items.
a) $\frac{12!}{8!}$
b) $\frac{12!}{4!8!}$
C) $\frac{8!4!}{12!}$
d) None of the above

Mixed Bag
11. In how many ways can the letters of the word FORECAST taken 3 at a time and the word MILKY taken 2 at a time be arranged?
a) 62700
b) 67000
c) 68720
d) 67200
12. How many different factors can 2160 have?
a) 40
b) 39
c) 37
d) 45

# SEQUENCE AND SERIES 

## THEORY

- A sequence is defined as an array of numbers in such a manner so that there is a similarity in a given array, which enables us to determine the term or terms preceding or succeeding to such an array.
- A sequence can be categorized into 3 parts:
a) Arithmetic Progression
b) Geometric Progression
c) Harmonic Progression

|  | Arithmetic Progression | Geometric Progression |
| :--- | :---: | :---: |
| Definition | Series which increases or <br> decreases by a fixed quantity | Series which increases or <br> decreases by a fixed proportion |
| First Term | $a$ | $a$ |
| Constant | Common Difference $=\mathrm{d}$ | Common Ratio $=\mathrm{r}$ |
| Last Term | $l=t_{n}=a+(n-1) d$ | $l=t_{n}=a \cdot r^{n-1}$ |
| Sum | $S_{n}=\frac{n}{2}[2 a+(n-1) d]$ | $S_{n}=a \cdot \frac{1-r^{n}}{1-r} \quad$ when $r<1$ |
|  | $S_{n}=\frac{n}{2}(a+l)$ | $S_{n}=a \cdot \frac{r^{n}-1}{r-1} \quad$ when $r>1$ |

- If three numbers are in G.P., their Logarithms are always in A.P.

Infinite GP Series

$$
a+a r+a r^{2}+a r^{3}+\ldots \ldots \ldots \ldots \ldots . . . . \alpha=\frac{a}{1-r} \text { given }|r|<1
$$

Sum of Natural Numbers:

$$
\begin{aligned}
& \sum n=1+2+3+\ldots \ldots+n=\frac{n(n+1)}{2} \\
& \sum n^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1) \\
& \sum n^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

Harmonic Progression(H.P)

- $\quad$ Three numbers are in H.P, If their reciprocals are in A.P
- $\quad a, b, c$ are in H.P, if $\frac{1}{a} \frac{1}{b} \frac{1}{c}$ are in A.P.
- H.P fails when one of the terms of the $A$. $P$ is Zero.

$$
t_{n} \text { of } \mathrm{HP}=\frac{1}{t_{n} \text { of the crresponding A.P }}
$$

## Concept of A.M, G.M and H.M

If $a \& b$ are any unequal real positive numbers then,

|  | A.M(A) | G.M(G) | H.M(H) |
| :---: | :---: | :---: | :---: |
| Definition | $\frac{a+b}{2}$ | $+\sqrt{a b}$ | $\frac{2 a b}{a+b}$ |
| Relation | i) $\quad \mathrm{A}>$ | $\mathrm{G}>$ | H |
|  | ii) $\quad A \times H$ | $=\mathrm{G}^{2}$ |  |

## Things to remember

- $\quad$ The ratio of the sum of $X$ number of A.Ms to the sum of $Y$ number of A.Ms is always $X: Y$
- Two numbers can have more than one A.M/G.M/H.M
- A.Ms/G.Ms/ H.Ms are also the members of A.P/G.P/ H.P


## CLASSWORK SECTION

## ARITHMETIC PROGRESSION

Choose the most appropriate option (a), (b), (c) or (d).

1. The $a^{\text {th }}$ term of $a n A P$ is $b$ and $b^{\text {th }}$ term is $a$. Then $c^{\text {th }}$ term of it is
(a) $a+b+c$
(b) $b+a-2 c$
(c) $a+b+c / 2$
(d) $a+b-c$
2. Third term of an AP is 8 and the 17 th term is $51 / 2$. The 23 rd term is
(a) 37
(b) 33
(c) 41
(d) 31
3. The $n^{\text {th }}$ term of the series whose sum to $n$ terms $3 n^{2}+2 n$ is
(a) $3 n-1$
(b) $8 n-2$
(c) $11 \mathrm{n}-3$
(d) none of these
4. The sum of all numbers between 400 and 900 which are divisible by 13 is
(a) 22504
(b) 29405
(c) 25402
(d) 25350
5. The 4 arithmetic means between -2 and 23 are
(a) $3,13,8,18$
(b) $18,3,8,13$
(c) $3,8,13,18$
(d) none of these
6. The $r^{\text {th }}$ term of $A P$ is $(3 r-1) / 6$. The sum of first $p$ terms of the series is
(a) $n(3 p+1)$
(b) $(p / 12)(3 p+1)$
(c) $(p / 12)(3 p-1)$
(d) none of these

PAST YEARS QUESTIONS
7. On 1st January every year a person buys national saving certificates of value exceeding that of his last years purchase by Rs. 100. After 10 years he finds that the total value of the certificates purchased by him is Rs. 54500 . Find the value of certificates purchased by him in the first year
(a) 6000
(b) 4000
(c) 5000
(d) 5500
8. If in an AP, Tn represent nth term $t_{7}: t_{10}=5: 7$ then $t_{8}: t_{11}=$ $\qquad$
(a) $13: 16$
(b) $17: 23$
(c) $14: 17$
(d) $15: 19$
9. If sum of 3 arithmetic means between ' $a$ ' and 22 is 42 then ' $a$ ' = $\qquad$
(a) 14
(b) 11
(c) 10
(d) 6

## GEOMETRIC PROGRESSION

10. If $x, y, z$ are in GP, and $x y z=27 / 8$. The value of $y$ is
(a) $3 / 2$
(b) $2 / 3$
(c) $2 / 5$
(d) none of these
11. A ball is dropped from a height of 48 m and rebounds two third of the distance it falls. It continued to fall and rebound in this way, how far will it travel before coming to rest
(a) 240 m
(b) 260 m
(c) 380 m
(d) none
12. If $x, y, z$ are pth, qth and rth terms of a GP then the value of $x^{q-r} y^{r-p} z^{p-q}$ is
(a) 0
(b) 1
(c) -1
(d) none of these
13. If the pth term of the series $16,8,4, \ldots$ is $\frac{1}{217}$. The value of $p$ is
(a) 25
(b) 22
(c) 23
(d) none of these
14. Given $x, y, z$ are in $G P, x^{p}=y^{q}=z^{\sigma}$ then $\frac{1}{p}, \frac{1}{q}, \frac{1}{\sigma}$ are in
(a) $A P$
(b) GP
(c) Both AP and GP
(d) none of these
15. The value of $S=2 / 3+5 / 9+2 / 27+5 / 81+\ldots$ to infinite terms is
(a) $11 / 8$
(b) $8 / 11$
(c) $3 / 11$
(d) none of these

## PAST YEARS QUESTIONS

16. If $G$ be geometric mean between $a$ and $b$ then the value of $\frac{1}{G^{2}-a^{2}}+\frac{1}{G^{2}-b^{2}}$ is equal to
(a) $\mathrm{G}^{2}$
(b) $3 G^{2}$
(c) $1 / \mathrm{G}^{2}$
(d) $2 / G^{2}$
17. A GP (Geometric Progression) consists of $2 n$ terms. If the sum of the terms occupying the odd places is $S_{1}$ and that of the terms in even places is $S_{2}$. The common ratio of the progression is
(a) n
(b) $2 \mathrm{~S}_{1}$
(c) $\frac{\mathrm{S}_{2}}{\mathrm{~S}_{1}}$
(d) $\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}$

## SPECIAL SERIES

18. Sum of ' $n$ ' terms whose $t_{n}$ is $n^{2}+2^{n}$
(a) $\frac{n(n+1)(2 n+1)}{6}+2\left(2^{n}-1\right)$
(b) $\frac{(n+1)(2 n+1)}{6}+2\left(2^{n}-1\right)$
(c) $\frac{n(n+1)^{2}}{6}+2\left(2^{n}-1\right)$
(d) None

## MIXED BAG

19. If the sum of $p$ terms of an $A P$ is same as the sum of its q terms, then the sum of the first $(p+q)$ terms is:
a) 0
b) $p+q$
c) $\mathrm{p}-\mathrm{q}$
d) None of the above
20. 300 trees are planted in a regular pattern in rows in the shape of an isosceles triangle, the numbers in the successive rows diminishing by one from the base to the apex. How many trees are there in the row, which forms the base of the triangle
a) 30
b) 21
c) 27
d) 24
21. If the sums of $n, 2 n$ and $3 n$ terms of an $A P$ be $S_{1}, S_{2}$ and $S_{3}$ respectively, then show that $S_{3}=$ ?
a) $3\left(S_{2}-S_{1}\right)$
b) $\left(S_{2}-S_{1}\right)$
c) $2\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)$
d) $3\left(S_{2}+S_{1}\right)$
22. $31^{3}+32^{3}+33^{3}+\ldots .+50^{3}$
a) 2010000
b) 3025000
c) 2870000
d) 1409400
23. The sum of the first three terms of a G.P. is to the sum of the first six terms as $125: 152$. Find the common ratio of the G.P.
a. 0.40
b. 0.50
c. 0.75
d. 0.60
24. The first, tenth and twenty-eighth term of an AP are three successive terms of a GP. Find the common ratio of the GP. given that the sum of the first 28 terms of the AP is 210 , find its first term.
a. 2, 2
b. 2, 3
c. 3,2
d. $-3,2$
25. If $\mathrm{a}^{2}, \mathrm{~b}^{2}, \mathrm{c}^{2}$ are in AP , the $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in:
a. Geometric Progression
c. Both a) and b) above
b. Arithmetic Progression
d. None of the above
26. If $a, b, c$ are in GP and $x, y$ be the arithmetic means between $a, b$ and $b, c$ respectively, then which of the following/s is/are true?
(a) $\frac{a}{x}+\frac{c}{y}=2$
(b) $\frac{1}{x}+\frac{1}{y}=\frac{2}{b}$
(c) Both a) and b) above
(d) Neither a) nor b) is true

SET THEORY RELATION AND FUNCTIONS

## SET THEORY RELATIONS

## STANDARD NOTATIONS

```
1) U }\quad=>\mathrm{ OR (Union)
2) \cap }\quad=>\mathrm{ and (Intersection)
3) }=>\quad=>\mathrm{ Implies
4) }\in\quad=>\mathrm{ belongs to
5) & }\quad=>\mathrm{ does not belong to
6) }\forallx\quad=>\mathrm{ for all }
7) : }\quad=>\mathrm{ such that
8) / }=>\mathrm{ such that
9) \subset }\quad=>\mathrm{ Subset OR Proper Subset.
11) }\not\subset\quad=>\quad(not a proper subset
12) \supset }\quad=>\mathrm{ (Superset)
13) ~ }\quad=>\mathrm{ (Difference)
14) }\varnothing\mathrm{ or {} }=>\mathrm{ (nullset)
15) U or S }=>\mathrm{ (Universal set)
```


## 2. SET THEORY ( Concepts)

1. A set is a collection of well-defined and distinct object. The objects are called the elements of the set.
2. Sets are denoted by $A, B, C, D$ etc and the elements are kept within brackets.
e.g $\quad A=\{a, b, c, d\}$

$$
A=\{1,2,3,4\}
$$

3. METHOD OF DESIGNATING A SET
i. ROSTER METHOD / TABULAR METHOD / ENUMERATION METHOD
ii. PROPERTY METHOD / SELECTOR METHOD / RULE METHOD/SET BUILDER NOTATION.
1) Under Roster or Enumeration method the set is defined by listing all the elements.
e.g $A=\{a, e, i, o, u\}$
2) Under Property Method the sets are indicated by their common characteristics which an object must possess in order to its elements.
e.g. $A=\{x: x$ is a vowel $\}$

## TYPES OF SETS

1) A set is said to be finite when the elements can be exhausted by counting. $A=\{4,5,6\}$
2) A set is said to be infinite when its elements can not be exhausted by counting. Eg. $A=\{1,2,3 . \ldots . . . . .$.
3) SINGLETON SET : A set which has only 1 element is called Singleton set e.g $A=\{2\}$

## 3. A FEW STANDARD INFINITE SETS

1. $\mathrm{I}^{+}=$Sets of Positive integers $=\mathrm{N}=$ Set of natural numbers $=\{1,2,3 . \ldots .$.
2. $\mathbf{W}=$ Set of whole nos.
$=\{0,1,2 \ldots .$.
3. $\mathrm{I}^{-}=$Sets of Negative integers
$=\{-1,-2,-3 . \ldots$.
4. $\mathrm{I}=$ Set of Integers
$=\{0, \pm 1, \pm 2, \pm 3 \ldots . . . .$.
5. $\mathrm{Q}=$ Sets of Rational nos.
6. $\quad R=$ Set of real nos

- NULL SET / EMPTY SET / VOID SET

It is a set having no element in it. It is denoted by $\varnothing$ or $\}$
$A=\{x: x$ is $a$ real no. whose square is negative $\}$

## 4. EQUAL SETS

Two sets are said to be equal if all the elements of $A$ belong to $B$ and all the elements of $B$ belong to A
$A=\{S, T, R, A, N, D\}$
$B=\{S, T, A, N, D, A, R, D\}$
Note : Order of arrangement or repetition of elements does not affect the property of equality.

## 5. EQUIVALENT SETS

If the total no. of elements of one set is equal to the total no. of elements of another set, then the two sets are said to be equivalent. The elements may or may not be same always.
$A=\{1,2,3,4\}$
$B=\{b, l, u, e\}$
$A \equiv B$

## 6. SUB SET

If each element of set $A$ is an element of set $B$, then $A$ is said to be $a$ subset of $B$ or $A$ is contained in $B$ or $B$ is the Superset of $A$.
Symbolically, $\mathrm{A} \subseteq \mathrm{B}$
If $a$ set has $n$ elements than the number of subset are $2^{n}$.
e.g. If $A=\{1,2,3\}$
then the subsets of $A$ are $\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$
Therefore the total number of subsets are $2^{3}=8$
Note 1. : If a set has n elements then
i. TOTAL NUMBER OF SUBSETS $=2^{\text {n }}$
ii. TOTAL NUMBER OF NON- EMPTY SUBSETS $=2^{n}-1$
iii. TOTAL NUMBER OF PROPER SUBSETS = $2^{\mathrm{n}}-1$
iv. TOTAL NUMBER OF NON- EMPTY PROPER SUBSETS = $\mathbf{2 n}^{\text {n }} \mathbf{- 2}$

Note 2.: i. Every set is a subset of itself
ii. $\Phi$ is a subset of every set
iii. In subset element may be equal
iv. If $A \subseteq B$ and $B \subseteq A \quad A=B$

## 7. PROPER SUB SET

If each element of set $A$ is an element of set $B$ but there is atleast 1 element in $B$ which is not in $A$, in such a case $A$ is said to be proper subset of $B$ and is symbolically denoted by :
$A \subset B$ : for example, $A=\{1,2,3\}$
To the above e. g. the proper subsets of $A$ are $\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\} \& \varnothing$
$\{1,2,3\}$ is the improper subset because all the element are equal.
8. UNIVERSAL SET (U \S)

Universal set or the universe is the set which contains all the elements under investigation in a particular content.

Eg. $\mathrm{U}=\{1,2,3,4,5\}$
$A=\{2,3\}$
$B=\{1,3,5\}$
$C=\{4,5\}$, etc
Here A, B, C are all subsets of $U$.

## 9. POWER SET

It is defined as the set of all possible subsets in a particular investigations. If a set contains $n$ elements, its power set will contain $2^{n}$ elements.
$A=\{2,3,4\}$ Total elements in the Power set will be $2^{3}=8$
[ there are 3 elements in set A]
$P(A)=\{\varnothing,\{2\},\{3\},\{4\},\{2,3\},\{2,4\},\{3,4\},\{2,3,4\}\}$
e.g. The power set of $A$ contains 128 elements. Find the no. of elements in set $A$ Let there be n elements in Set A

$$
2^{n}=128
$$

Or $2^{n}=2^{7}$
Or $\mathrm{n}=7 \therefore$ Set A has 7 elements
10. CARDINAL NO. IN A SET: $n(A)$

If a set $A$ contains " $X$ " no. of elements, then the cardinal no. in set $A$ will be given by:
$n(A)=x$.
e.g. $A\{2,3,4,5\}$
$\mathrm{n}(\mathrm{A})=4$

## SET OPERATIONS

## 1. UNION OR JOIN OF 2 SETS

If A \& B are 2 sets then the Union or Join of 2 sets is defined as, the set of all elements which belong either to $A$ or to $B$ or to both $A \& B$.
Symbolically $A \cup B=\{x: x \in A$ or $x \in B\}$
NOTE : Here 'UNION' $\Rightarrow$ or

e.g
$A=\{1,2,3,4,5\}: B=\{2,3,5,6,7\}$
$A \cup B=\{1,2,3,4,5,6,7\}$

## 2. INTERSECTION OF 2 SETS

If $A \& B$ are 2 sets, then the intersection of the sets $A \& B$ is the set of those elements which belong to both $\mathbf{A} \& B$ and is denoted by $A \cap B$.


## Symbolically,

$A \cap B=\{x: x \in A$ and $x \in B\}$
$A=\{1,2,3,4\} \quad B=(3,4,5\}$
$A \cap B=\{3,4\}$

## 3. DISJOINT SETS

2 Sets are said to be disjoint when they have no elements in common i.e. their intersection is a Null Set.

e.g. If $A=\{1,3,5\} B=,\{2,4\}$ then $A \cap B=\phi$
therefore $A \& B$ are disjoints sets.

## 4. COMPLEMENT OR NEGATION SET



If $U$ be the universal set and $A$ be its subset, then the complement of set $A$ in relation to $U$ is the set whose element belong to $U$ and not to $A$. This is denoted by :
$\hat{A}$ or $A^{\prime}$ or $A^{c}=(U-A)$
therefore $A^{c}=\{x: x \in U$ and $x \notin A\}$
e.g.
$U=\{1,2,3,4, \ldots . . .10\}$
$A=\{2,3,5,7\}$
$B=\{1,2,9,10\}$
$A^{C}=\{1,4,6,8,9,10\}$
$B^{C}=(4,3,5,7,6,8\}$

## 5. DIFFERENCE OF 2 SETS

$A-B=\{x: x \in A$ and $x \notin B\}$
A ~B
$B-A=\{x: x \in B$ and $x \notin A\}$
Or
B ~ A
e. g. $A=\{1,2,3,4,5\}$
$B=\{3,5,6,7\}$

$A-B=\{1,2,4\}$ and $B-A=\{6,7\}$

## 6. CARTESIAN PRODUCT OF 2 SETS

If $A$ and $B$ are 2 sets, then the set of all ordered pairs $(x, y)$ such that $x \in A$ and $y \in B$ is called
Cartesian Product of A \& B and it is denoted by A x B ( read an A "cross" B)
Symbolically, $A \times B=\{(x, y): x \in A$ and $y \in B\}$
$A=\{1,2\} B=(3,4,7\}$
$A \times B=\{(1,3),(1,4),(1,7),(2,3),(2,4),(2,7)\}$
$B \times A=\{(3,1),(3,2),(4,1),(4,2),(7,1),(7,2)\}$
$A \times B \neq B \times A$ but $A \times B \cong B \times A$ since $n(A \times B)$
$=n(B \times A)$

Note :1. If $n(A)=m$ and $n(B)=n$ then the total number of elements in $A \times B=m \times n$
2. The total number of subsets of $A \times B=2^{m n}$

Notes :

| 1. $\phi^{\prime}$ | $=$ | $U$ |
| :--- | :--- | :--- |
| 2. $U^{\prime}$ | $=$ | $\phi$ |
| 3. $\left(A^{C}\right)^{C}$ | $=$ | $A$ |
| 4. $A \cup A^{\prime}$ | $=$ | $U$ |
| 5. $A \cap A^{\prime}$ | $=$ | $\phi$ |

6. $A \subset B$ then $B^{\prime} \subset A^{\prime}$
7. $\mathrm{A} \cup \phi \quad=\quad \mathrm{A}$
8. $\mathrm{A} \cap \phi \quad=\quad \phi$
9. $\mathrm{A} \cup \mathrm{U}=\square \cup$
10. $A \cap U=A$

## PARTITIONING OF SETS

## Case 1



1. $A-B$ or $A \cap B^{C}$ or $A$ but not $B=n(A)-n(A \cap B)$
2. $(A \cap B)$ or $(A$ and $B)$
3. $B-A$ or $A^{C} \cap B$ or $B$ but not $A=n(B)-n(A \cap B)$
4. $A^{C} \cap B^{C}$ or neither $A$ nor $B$ or $n(A \cup B)^{C}$ or $n(U)$ $-n(A \cup B)$
5. $n(A \cup B)=n(A)+n(B)-n(A \cap B)$

## Case 2



$$
\begin{array}{ll}
\text { 1. } & \text { ( } A \cap B \cap C) \\
\text { 2. } & n\left(A \cap B \cap C^{C}\right)=n(A \cap B)-n(A \cap B \cap C) \\
\text { 3. } & n\left(A \cap B^{C} \cap C\right)=n(A \cap C)-n(A \cap B \cap C) \\
\text { 4. } & n\left(A^{C} \cap B \cap C\right)=n(B \cap C)-n(A \cap B \cap C) \\
\text { 5. } & n\left(A \cap B^{C} \cap C^{C}\right)=n(A)-n(A \cap B)- \\
& n(A \cap C)+n(A \cap B \cap C) \\
\text { 6. } & n\left(A^{C} \cap B \cap C^{C}\right)=n(B)-n(A \cap B)- \\
& n(B \cap C)+n(A \cap B \cap C) \\
\text { 7. } & n\left(A^{C} \cap B^{C} \cap C\right)=n(C)-n(A \cap C)- \\
& n(B \cap C)+n(A \cap B \cap C) \\
\text { 8. } & n\left(A^{C} \cap B^{C} \cap C^{C}\right)=n(A \cup B \cup C)^{C}=n(U) \\
& -n(A \cup B \cup C) \\
\text { 9. } & n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap \\
& B)-n(B \cap C)-n(A \cap C)+n(A \cap B \cap C)
\end{array}
$$

## Notes:

a) (2), (3), (4) are cases where only 2 items of the 3 are taken at a time.
b) (5), (6), (7) are cases where only 1 item of the 3 is taken at a time
c) (8) is the case where no item of the 3 are taken.
d) (1) is the case where all the items are taken i.e. the common part to all the 3.

## LAWS

ASSOCIATIVE LAW
(a) $A \cup(B \cup C)=(A \cup B) \cup C$
(b) $A \cap(B \cap C)=(A \cap B) \cap C$

DISTRIBUTIVE LAW
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
(b) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

DEMORGAN'S LAW
(a) $(A \cup B)^{C}=A^{C} \cap B^{C}$
(b) $(A \cap B)^{C}=A^{c} \cup B^{C}$

DEMORGAN'S LAW ON DIFFERENCE OF SETS
(a) $A-(B \cup C)=(A-B) \cap(A-C)$
(b) $A-(B \cap C)=(A-B) \cup(A-C)$

## CARTESIAN PRODUCT

(a) $A \times(B \cup C)=(A \times B) \cup(A \times C)$
(b) $A \times(B-C)=(A \times B)-(A \times C)$

## RELATIONS

1. If $A$ and $B$ are two non empty sets, then any sub-set of $A \times B$ is called a relation from $A$ to $B$. If $R$ is a relation, then, $R \in A \times B$.
2. $A=\{1,2,3,5\} B=\{2,4\}$

Then, $A \times B=\{(1,2),(1,4),(2,2),(2,4),(3,4),(3,2),(5,2),(5,4)\}$
3. If we consider the relation 'is less than' then the set of all ordered pairs $R$ in A x B, where
(i) $R=\{(1,2),(1,4),(2,4),(3,4)\}=\{(x, y): x \in A, Y \in B, X R Y\}$
(ii) Let $A=(1,2,3,4$
32) $R$ be the relation "one fourth of $A$ "

$$
R=\{(1,4),(2,8),(3,12),(4,16),(5,20),(6,24),(7,28),(8,32)\}
$$

## 4. Number of Relation

If $A$ and $B$ are 2 sets containing $m$ and $n$ items respectively, then $A \times B$ will have $m n$ ordered pairs, Total number of subsets of mn ordered pairs $=2^{\mathrm{mn}}$

Since each relation is subset of $\mathrm{A} \times \mathrm{B}$.
$\therefore$ Total Relation $=2^{\mathrm{mn}}$
e.g. if $n(A)=4, n(B)=2$

Total relations $=2^{8}=256$.

## 5. Domain and Range of Relation

If $A$ and $B$ are 2 non-empty sets and $R$ be the relation, then the set of first element in the ordered pair $(x, y)$ is called the Domain of the relation and the set of second elements in the ordered pair is called the Range of the relation.
e.g. : $A=\{1,3,4,5,7\}$
$B=(2,4,6,8)$
And $R$ is the relation 'is one less than' from
A to B, then
$R=\{(1,2),(3,4),(5,6),(7,8)\}$
Domain of $R=\{1,3,5,7\}$
Range of $R=(2,4,6,8\}$
Co-domain of $R=(2,4,6,8\}$
Range $\subseteq$ Co-domain

## TYPES OF RELATIONS

1. Note : A relation $R$ in set $A$ is a subset of $A \times A$
2. A relation $R$ in set $A$ is said to be "Reflexive", if $(a, a) \in R$, for all $a \in A$ where ' $a$ ' is the element of set $A$
e.g. : $A=\{2,4,7\}$ then the relation $R=$ $\{(2,2),(4,4),(7,7)\}$ is reflexive.
3. A relation $R$ in set $A$ is called "Symmetric"
if $(a, b) \in R$, then $(b, a) \in R$.
e.g. $A=\{2,4,7\}$
$R=\{(2,4),(4,2),(2,7),(7,2)\}$ is a symmetric relation.
4. A relative $R$ in Set $A$ is called "Transitive" relation if $(a, b),(b, c) \in R$, then $(a, c) \in R$ e.g. : $R=\{(2,4),(4,7),(2,7)\}$ is transitive
5. A relation which is reflexive, symmetric and transitive is called an "Equivalence" relation.

## Note :

1. Inverse of Equivalence relation is also an Equivalence relation.
2. Intersection of two Equivalence relation is also Equivalence relation.

## Inverse Relation

Let, $R$ be the relation from set $A$ to $B$, then the inverse relation of $R$ is denoted by $R^{-1}$ is $a$ relation from $B$ to $A$.

If $R$ is $a$ subset of $A \times B$.
$R^{-1}$ is a subset of $B \times A$ which consists of all the ordered pairs which when reversed belongs to R .
e.g. $A=(2,3,5,7), B=(4,6,9,10,11)$
$R$ be the relation "is a divisior of" from $A$ to $B$
then, $R=\{(2,4),(2,6),(2,10),(3,6),(3,9),(5,10)\}$
$\therefore R^{-1}$ is a relation from $B$ to $A$ will be given by;
$\mathrm{R}^{-1}$ in this relation "is divisible by"
Domain of $R^{-1}=\{4,6,10,9\}=$ Range of $R$
Range of $R^{-1}=\{2,3,5)=$ Domain of $R$
Note :
$\mathrm{D}\left(\mathrm{R}^{-1}\right)=\mathrm{R}(\mathrm{R})$
$R\left(R^{-1}\right)=D(R)$

## FUNCTIONS

1. If $A$ and $B$ are 2 non-empty sets then, function is a rule or correspondence which associates every element ' $X$ ' of $A$ to a unique element of ' $Y$ ' in $B$.
2. Symbolically we express it as $f: A \rightarrow B$

## Note :

1. Set from which it is defined is called domain i.e. Set $A$
2. Set to which it is defined is called co-domain i.e. Set B
3. The set of images are the ranges of the function, Range $\subseteq$ Co-domain

Types of Functions


Onto Function
(Surjective Function)
Range = co-domain

one-onto one-onto
(Bijective
Function)


Into Function Range $\subseteq$ co-domain


There should be at least one element in Set B which has no preimage in $A$



Domain : $\{-1,1,-2,2\}$
Co-Domain : $\{1,2,3,4,5\}$
Range: $\{1,4)$
a $V$ dranda Enterprise

## CLASSWORK SECTION

(For Q. No. 1 to 6)

If $A=\{a, b, c, d, e\} ; B=\{a, e, i, o, u\}$ and $C=\{m, n, o, p, q, r, s, t, u\}$

1. If $A$ and $B$ are two sets containing 4 and 7 distinct elements respectively, find the minimum possible number and maximum possible number of elements $A \cup B$.
a) 5,10
b) 4,12
c) 7,11
d) 8,13
2. If $A=\{1,2,3\}, B=\{3,4\}$, and $C=\{4,5,6\}$ then $(A \times B) \cap(B \times C)$ is equal to :
a) $\}$
b) $\{(3,4)\}$
c) $\{(2,3),(3,2),(3,4)\}$
d) None of the above
3. The number of non - empty subsets of the set $\{8,9,10,11,15\}$ is :
a) 32
b) 31
c) 30
d) 33
4. Two finite sets have $p$ and $q$ number of elements. The total number of subsets of the first set is eight times the total number of subsets of the second set. Find the value of $p-q$.
a) 2
b) 3
c) 4
d) None of the above
5. In a class of 65 students, 35 students have taken Mathematics, 40 have taken Statistics. Find the no. of students who have taken both. Find the no. of students who have taken Mathematics but not Statistics. (Assume that every student has to take atleast one of the two subjects.)
(a) 10, 25
(b) 10,10
(c) 10,20
(d) 10, 30
6. In a City, there are three daily newspaper published $X, Y, Z .65 \%$ of the people of the city read $X, 54 \%$ read $Y, 45 \%$ read $Z, 38 \%$ read $X$ and $Y, 32 \%$ read $Y$ and $Z, 28 \%$ read $X$ and $Z .12 \%$ do not read any of the three papers. If 10,00,000 person live in the city. Find the number of persons who read all the three newspaper.
(a) 220000
(b) 230000
(c) 120000
(d) 200000
7. If $A=\{a, b, c, d\}$ and $B=\{p, q, r, s\}$ then which of the following are relations from $A$ to $B$ ?
a) $R 1=\{(a, p),(b, r),(c, s)\}$
b) $R 2=\{(q, b),(c, s),(d, r)\}$
c) $R 3=\{(a, p),(b, r),(c, r)(s, q)\}$
d) $R 4=\{(a, p),(b, s),(s, b)(q, a)\}$
8. If $A=\{1,3,5,7\}$ and $B=\{2,4,6,8,10\}$ and $R=\{(1,8),(3,6),(5,2),(1,4)\}$ be a relation from $A$ to $B$, then $\operatorname{Dom}(R)=$ ?
a) $\{1,5\}$
b) $\{1,3,5\}$
c) $(3,5\}$
d) None of the above
9. In the above question, what is the Range (R)?
a) $\{1,3,5\}$
b) $\{8,6,2,4\}$
C) $(2,4,6\}$
d) None of the above
10. What can be said about the relation $R=\{(a, a),(a, b),(a, c),(b, b),(b, c),(c, a),(c, b)$, $(c, c)\}$ defined on Set $A=\{a, b, c\}$ ?
a) Reflexive, Symmetric, Transitive
b) Non Reflexive, Symmetric, Transitive
c) Reflexive, Symmetric, Non Transitive
d) Reflexive, Non-Symmetric, Non Transitive
11. Find in each case the type of relation:
$A=\{1,2,3\}$
$R_{1}=\{(1,1),(2,2),(3,3),(1,2)\}$
$R_{2}=\{(1,1),(2,2),(1,2),,(2,1)\}$
$R_{3}=\{(1,1),(2,2),(3,3),,(1,2),(2,1),(2,3)(3,2)\}$
$R_{4}=\{(1,1),(2,3),(3,2)\}$

## FUNCTIONS

1. The domain and range of $\left\{(x, y): y=x^{2}\right\}$ where $x, y \in R$ is
(a) (reals, natural numbers)
(b) (reals, positive reals including zero)
(c) (reals, reals)
(d) none of these
2. If $f(x)=1 / 1-x$ and $g(x)=(x-1) / x$, than $f \circ g(x)$ is
(a) $x$
(b) $1 / x$
(c) $-x$
(d) none of these
3. The inverse $h^{-1}$ when $h(x)=\log _{10} x$ is
(a) $\log _{10} x$
(b) $10^{x}$
(c) $\log _{10}(1 / x)$
(d) none of these

## LIMITS \& CONTINUITY

## Limits (THEORY)

## Type I

$\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=f(a) \quad \underset{x \rightarrow a}{\operatorname{Lt}} \frac{f(x)}{g(x)}=\frac{f(a)}{g(a)}$; if $g(a) \neq 0$

Type II
$\underset{x \rightarrow a}{L t} \frac{f(x)}{g(x)} \& g(a)=0$, then cancel the common terms from numerator and denominator using algebraic treatments.
The reduced form would be: $\underset{x \rightarrow a}{L} \frac{f(x)}{g(x)}=\underset{x \rightarrow a}{L t} \frac{p(x)}{q(x)}=\frac{p(a)}{q(a)}$

## Type III

$\operatorname{Lit}_{x \rightarrow \infty} \frac{f(x)}{g(x)}$, Divide numerator and denominator by the highest power of x , and then put $1 / x=0$.

## Type IV(Standard Limits)

- $\underset{x \rightarrow 0}{\operatorname{Lt} \frac{e^{x}-1}{x}}=1 \quad \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{m x}-1}{x}=m \quad \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{e^{m x}-1}{m x}=1$
- $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{a^{x}-1}{x}=\log _{e} a \quad \underset{x \rightarrow 0}{L t} \frac{a^{m x}-1}{x}=m \cdot \log _{e} a \quad \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{a^{m x}-1}{m x}=\log _{e} a$
- $\operatorname{Lt}_{x \rightarrow 0} \frac{\log (1+x)}{x}=1 \quad \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\log (1+m x)}{x}=m \quad \underset{x \rightarrow 0}{\operatorname{Lt}} \frac{\log (1+m x)}{m x}=1$
- $\operatorname{Lt}_{x \rightarrow a} \frac{x^{n}-a^{n}}{x-a}=n \cdot a^{n-1} \quad \operatorname{Lt} \frac{x^{n}-a^{n}}{x^{m}-a^{m}}=\frac{n \cdot a^{n-1}}{m \cdot a^{m-1}}=\frac{n}{m} \cdot a^{n-m}$
- $\underset{x \rightarrow \infty}{\operatorname{Lt}}\left(1+\frac{1}{x}\right)^{x}=e \underset{x \rightarrow \infty}{\operatorname{Lt}}\left(1+\frac{a}{x}\right)^{x}=e^{a}$
- $\quad \underset{x \rightarrow 0}{\operatorname{Lt}}(1+x)^{\frac{1}{x}}=e ; \underset{x \rightarrow \infty}{\operatorname{Lt}}(1+x)^{\frac{a}{\bar{x}}}=e^{a} ; \operatorname{Ltt}_{x \rightarrow 0}(1+a x)^{\frac{1}{x}}=e^{a}$


## CLASSWORK SECTION

## Type II

1. $\operatorname{Lt}_{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
a) $1 / 6$
b) $1 / 5$
c) $1 / 9$
d) $1 / 7$
2. $\operatorname{Lt}_{x \rightarrow 1} \frac{x^{7}-2 x^{5}+1}{x^{3}-3 x^{2}+2}$
a) 0
b) 1
c) 2
d) 4

Type - III - Limits, When the variable tends to Infinity
3. $\operatorname{Lt}_{x \rightarrow \infty} \frac{\left(1+2 x^{2}\right)\left(3-x^{4}\right)}{\left(1+x^{2}\right)\left(5+x^{4}\right)}$
a) -2
b) 2
c) 1
d) -1
4. $\operatorname{Lt}_{x \rightarrow \infty} \frac{1^{2}+2^{2}+3^{2}+\ldots+x^{2}}{x^{3}}$
a) $\frac{1}{4}$
b) $\frac{1}{2}$
c) $\frac{1}{3}$
d) $\frac{2}{5}$

## Type - IV - Definition

For each of the following functions (from Q No. 20 to25), evaluate the following limit:

$$
\operatorname{Lt}_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

5. $f(x)=\frac{1}{\sqrt{x}}$
a) $\frac{1}{2 \sqrt{x}}$
b) $\frac{-1}{2 \sqrt{x}}$
C) $\frac{-1}{2 x \sqrt{x}}$
d) None of the above
6. $\operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{\mathrm{e}^{-2 \mathrm{x}}-1}{\mathrm{x}}$
a) 1
b) 2
c) -1
d) -2
7. $\underset{x \rightarrow 0}{L t} \frac{e^{\alpha x}-e^{\beta x}}{x}$
a) $a+\beta$
b) $\alpha \cdot \beta$
c) $\alpha-\beta$
d) None of the above
8. $\quad \operatorname{Lt}_{\mathrm{x} \rightarrow 0} \frac{6^{x}-3^{x}-2^{x}+1}{x^{2}}$
a) $\log _{e} 3+\log _{e} 2$
b) $\log _{e} 3-\log _{e} 2$
c) $\log _{e} 6$
d) $\log _{e} 3 \cdot \log _{e} 2$
9. $\underset{h \rightarrow 0}{\operatorname{Lt}} \frac{(x+h)^{n}-x^{n}}{h}$
i) $n$. $x^{n-1}$
j) $n \cdot a^{n-1}$
k) $a^{n-1}$
l) $n^{2} \cdot a^{n-1}$
10. $\operatorname{Ltt}_{x \rightarrow \infty}\left(\frac{x+6}{x+1}\right)^{(x+6)}$
a) e
b) $e^{2}$
c) $e^{3}$
d) $e^{5}$
11. $\operatorname{Lt}_{x \rightarrow 1} \frac{a x^{2}+b x-2}{x-1}=3$, find $a$ \& $b$.
a) 1,1
b) 1,2
c) 1,3
d) 1,4

## CONCEPT OF CONTINUITY OF A FUNCTION

A function $f(x)$ is said to be Continuous at a particular point, $x=a$, if it satisfy the following conditions:
$\lim _{x \rightarrow a^{-} \downarrow} f(x)=\lim _{x \rightarrow a^{+} \downarrow} f(x)=f_{\downarrow}(a)$

Left hand = Right hand =Functional
Limit (LHL) Limit (RHL) Value

Note1: Equality of RHL and LHL is treated as a condition for existence of limit i.e, limit of a function will exist if LHL=RHL

Note2: For Continuity, equality of the functional value at that point is also necessary.

Note3: For all Continuous functions, limit must exist, but existence of limit, is not a sufficient condition for continuity of a function.

Note4: Sum, difference, product and quotient of all continuous functions are always continuous.

Note5: All polynomials are continuous.
Note6: If a given function is of the form $\frac{f(x)}{g(x)}$, where both $f(x)$ and $g(x)$ are polynomials in $x$, it will be everywhere continuous except at the points at which it is undefined i.e; points of discontinuity of such functions are the points where $g(x)=0$.

Example: In each of the following cases, discuss continuity of the functions at $x=5$
i) $\quad f(x)=\frac{x^{2}-25}{x-5}$

Solution: LHL $=\lim _{x \rightarrow 5^{-}} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5^{-}} \frac{2 x}{1}=2 \times 5=10$

$$
\mathrm{RHL}=\lim _{x \rightarrow 5^{+}} \frac{x^{2}-25}{x-5}=\lim _{x \rightarrow 5^{+}} \frac{2 x}{1}=2 \times 5=10
$$

$f(5)=\frac{25-25}{5-5}=\frac{0}{0}($ undifined $)$
since, $\mathrm{LHL}=\mathrm{RHL} \neq \mathrm{f}(5), \mathrm{f}(\mathrm{x})$ is discontinuous atx $=5$, although the limit has existed.
ii) $\quad f(x)=\frac{x^{2}-25}{x-5}$, when $x \neq 5$
$=10$, when $\mathrm{x}=5$
Solution: LHL=10=RHL taken from(i)
Given, $f(5)=10$ since, $L H L=R H L=f(5), f(x)$ is continuous at $x=5$
iii) $f(x)=\frac{x^{2}-25}{x-5}$, when $x \neq 5$
$=2$, when $x=5$

Solution: LHL=RHL=10 taken from(ii)
Given , $f(5)=2$ since, $L H L=R H L \neq f(5), f(x)$ is discontinuous at $x=5$
Example 2: Find the points of discontinuity of the function, $f(x)=\frac{\left(x^{2}-3 x+2\right)}{\left(x^{2}-5 x+6\right)}$

Solution: The given function will be continuous at all points, except at the points at which it is undefined i.e the points at which its denominator is $0 .\left(x^{2}-5 x+6\right)=0$

Points of discontinuity are 2 and 3

$$
\begin{aligned}
& \Rightarrow(x-2)(x-3)=0 \\
& \Rightarrow x=2,3
\end{aligned}
$$

WORKING CODES for Q. No. 1 to 18
Mark C : if function is continuous at the given point
Mark D : if function is discontinuous at the given point
Mark $X$ : if nothing can be said about the continuity of the function at the given point
Mark $Y$ : if function is neither continuous nor discontinuous at the given point

## CLASSWORK SECTION

12. $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x+1, x \geq 1 \\ 2 x+1, x<1\end{array}\right.$, Check continuity $\mathrm{x}=1$
a) C
b) $X$
c) $D$
d) Y
13. $\left.\mathrm{f}(\mathrm{x})=\begin{array}{r}x^{2}, x>2 \\ 4, x=2 \\ 2 x, x<2\end{array}\right\}$ Check continuity at $\mathrm{x}=2$
a) C
b) D
c) $X$
d) $Y$

$$
\left.3+2 x,-\frac{2}{3} \leq x<0\right)
$$

14. $\left.\mathrm{f}(\mathrm{x})=3-2 x, 0 \leq x<\frac{3}{2}\right\}$ Check continuity at $\mathrm{X}=\frac{3}{2}$ $-3-2 x, x \geq \frac{3}{2}$
a) C
b) D
c) $X$
d) Y
15. $f(x)=\frac{3 x^{2}-4 x}{x^{3}+x^{2}-x-1}$
a) $\pm 1$
b) 1
c) -1
d) None of the above
16. Given $\mathrm{f}(\mathrm{x})\left\{\begin{array}{l}=x+1, \quad x \leq 1 \\ =3-a x^{2}, x>1\end{array}\right.$, for what value of a , will $\mathrm{f}(\mathrm{x})$ be continuous at $\mathrm{x}=1$ ?
a) 2
b) 1
c) 8
d) 6

## BASIC CONCEPTS OF DIFFERENTIAL AND INTEGRAL CALCULUS

## THEORY

Let $y=f(x)$ be a continuous function. Then, the value of $y$ depends upon the value of $x$ and it changes with a change in the value of $x$. We use the word increment to denote a small change, i.e., increase or decrease in the values of $x$ and $y$.

Let $\Delta y$ be an increment in $y$ corresponding to an increment $\Delta x$ in $x$.

Then, $\frac{d y}{d x}=\underset{h \rightarrow 0}{L t} \frac{f(x+h)-f(x)}{h}$. This limit, if it exists finitely, is called the derivative or differential coefficient of $\mathbf{y}=\mathrm{f}(\mathbf{x})$ with respect to $\mathbf{x}$ and is denoted by $\frac{d y}{d x}$ or $f^{\prime}(x)$ or $y_{1}$. The process of finding the derivative is known as differentiation.

Standard Derivatives

| $\frac{d}{d x} x^{n}=n \cdot x^{n-1}$ | $\frac{d}{d x}(c)=0$ | $\frac{d}{d x} x=1$ | $\frac{d}{d x} \frac{1}{x^{n}}=-\frac{n}{x^{n+1}}$ |
| :---: | :---: | :---: | :---: |
| $\frac{d}{d x} \frac{1}{x}=-\frac{1}{x^{2}}$ | $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$ | $\frac{d}{d x} \frac{1}{\sqrt{x}}=-\frac{1}{2 x \sqrt{x}}$ | $\frac{d}{d x} e^{x}=e^{x}$ |
| $\frac{d}{d x} e^{m x}=m \cdot e^{m x}$ | $\frac{d}{d x} a^{x}=\cdot a^{x} \cdot \log _{e} a$ | $\frac{d}{d x} a^{m x}=m \cdot a^{m x} \cdot \log _{e} a$ | $\frac{d}{d x} \log _{e} x=\frac{1}{x}$ |

## Product and Quotient Rule

$$
\frac{d}{d x} u \cdot v=u \cdot \frac{d}{d x} v+v \cdot \frac{d}{d x} u \quad \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \cdot \frac{d u}{d x}-u \cdot \frac{d v}{d x}}{v^{2}}
$$

## Parametric Functions

Sometimes $x$ and $y$ are given as function of another variable $t$. Then $t$ is called $a$ parameter. Let $x=f(t)$ and $y=g(t)$, then:

$$
\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}
$$

## Implicit Functions

When the variables x and y are not explicitly or clearly defined in terms of each other ,the function takes an implicit form. We differentiate both sides of the equation term wise, keeping in mind that $\frac{d}{d x} 2 y=2 \cdot \frac{d y}{d x} \quad \& \frac{d}{d t} m^{2}=2 m \cdot \frac{d m}{d t}$ and so on.

## Function of a Function - Chain Rule

If $y=f(t)$ and $t=g(x)$, then $\frac{d y}{d x}=\frac{d y}{d t} \cdot \frac{d t}{d x}$, and the rule can be further extended.

## Logarithmic Differentiation - Log Rule

When the given function is a power of some expression or a product of expressions, we take logarithm on both sides and differentiate the implicit functions so obtained.
If $y=f(x)^{g(x)}$, then; $\log y=g(x) \cdot \log f(x) \ldots$. .Then proceed.

## Slope - Applied Differentiation

For $y=f(x)$, slope at any point $\left(x_{1}, y_{1}\right)$ is given by $\frac{d y}{d x}$

## Higher Order Derivatives

Let $y=f(x)$ be a differentiable function of $x$ whose second and higher order derivatives exists.
The first, second, third, ...... and the nth derivatives of this function are denoted by;
$d y / d x, d^{2} y / d x^{2}, d^{3} y / d x^{3}, \ldots \ldots ., d^{n} y / d x^{n}$ or $y_{1}, y_{2}, y_{3}, \ldots \ldots . . y_{n}$ or $f^{\prime}(x), f^{\prime \prime}(x), \ldots \ldots$.

INTEGRAL CALCULUS

Fundamental Integrals

| $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ | $\int \frac{d x}{x^{n}}=\frac{1}{(1-n) \cdot x^{n-1}}+C$ | $\int \frac{d x}{\sqrt{x}}=2 \sqrt{x}+C$ | $\int d x=x+C$ |
| :---: | :---: | :---: | :---: |
| $\int \frac{d x}{x}=\log \|x\|+C$ | $\int e^{x} d x=e^{x}+C$ | $\int e^{m x} d x=\frac{e^{m x}}{m}+C$ | $\int a^{x} d x=\frac{a^{x}}{\log _{e} a}+C$ |
| $\int a^{m x} d x=\frac{a^{m x}}{m \log _{e} a}+C$ |  |  |  |

Integration by Parts

$$
\int u . v d x=u \cdot \int v d x-\int\left\{\frac{d u}{d x} \int v d x\right\} d x
$$

Standard Integrals

- $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C$, Given $(|x|>|a|)$
- $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+C$, Given $(|x|>|a|)$
- $\int \frac{d x}{\sqrt{x^{2} \pm a^{2}}}=\log \left|\left(x+\sqrt{x^{2} \pm a^{2}}\right)\right|+C$
- $\int \sqrt{x^{2}+a^{2}} d x=\frac{x \sqrt{x^{2}+a^{2}}}{2}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+C$
- $\quad \int \sqrt{x^{2}-a^{2}} d x=\frac{x \sqrt{x^{2}-a^{2}}}{2}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+C$

Definite Integrals:- Important Properties
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(z) d z$
$\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \quad(a<c<b)$
$\int_{0}^{a} f(x) \mathrm{dx}=\int_{0}^{a} f(a-x) d x$
$\int_{-a}^{+a} f(x) d x=0$, if $f(x)$ is an odd function.
$\int_{-a}^{+a} f(x) d x=2 \int_{0}^{a} f(x) d x$, if $f(x)$ is an even function.
$\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$
$\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\phi(\mathrm{b})-\phi(\mathrm{a})$
$\left.\int_{a}^{b} x d x=\frac{x^{2}}{2}\right]_{a}^{b}=\frac{b^{2}}{2}-\frac{a^{2}}{2}=\frac{b^{2}-a^{2}}{2}$

## APPLICATION OF DERIVATIVE \& INTEGRATION IN COMMERCE AND ECONOMICS

1. COST FUNCTION $=C(x)=$ Fixed Cost + Variable Cost

$$
a+b x
$$

2. AVERAGE COST $=A C=\frac{\text { TOTAL COST }}{\text { QUANTITY }}=\frac{C(x)}{x}$
3. MARGINAL COST $=M C=\frac{d}{d x}($ TOTAL COST $)=\frac{d}{d x}(C(x))$
4. REVENUE FUNCTION $=R(x)=$ Quantity $\times$ Price

$$
R(x) \quad=\quad x . p
$$

5. AVERAGE REVENUE $=A R=\frac{\text { TOTAL REVENUE }}{\text { QUANTITY }}=\frac{x \cdot p}{x}=p$
6. MARGINAL REVENUE $=M R=\frac{d}{d x}$ (TOTAL REVENUE $)=\frac{d}{d x}(R(x))$
7. PROFIT FUNCTION $=P(x)=R(x)-C(x)$
8. AVERAGE PROFIT $=\frac{P(x)}{x}=\frac{\text { TOTAL PROFIT }}{\text { QUANTITY }}$
9. MARGINAL PROFIT $=M P=\frac{d}{d x}(R(x)-C(x))=\frac{d}{d x}(P(x))$
10. MAXIMUM PROFIT:

Level of output at which profit is maximum can be obtained through the following :

$$
M R=M C
$$

11. Consumption Function. The consumption function expresses a relationship between the total income (I) and the total national consumption (C). It is denoted by $C=f(I)$. Marginal Propensity to Consume. It is the rate of change of the consumption with respect to income.
$\therefore$ Marginal Propensity to Consume $=$ MPC $=\frac{d C}{d l}$. Marginal Propensity to Save

Let S denote the saving, then Saving S = (Total income - Total consumption) = I - C
$\therefore$ Marginal Propensity to Save $=$ MPS $=\frac{d S}{d /}$.
It indicates how fast saving changes with respect to income.
12. At Equilibrium, $\mathrm{Qd}=\mathrm{Qs}$

On solving the demand and supply equation, we obtain the equilibrium Price and Quantity.
13. Total Cost $=\int$ Marginal Cost $d x=\int M C d x$

$$
=C(x)+k
$$

where $k=$ fixed cost
i). $\quad A C=\int M A C d x$
ii). $\quad V C=\int M V C d x$
14. Total Cost for ' $n$ ' units $=\int_{0}^{n} M C d x$
15. Total Revenue $=\int$ Marginal Revenue $d x$

16. Total Revenue for ' $n$ ' units $=\int_{0}^{n} M R d x$

## MAXIMA AND MINIMA (EXTREME VALUE)

Given : $y=f(x)$
Steps for finding Maxima and Minima of a function.

1. Find $\frac{d y}{d x}$
2. Equate $\frac{d y}{d x}=0$ to obtain the value/values of $x$
3. Find $\frac{d^{2} y}{d x^{2}}$ and put therein the values of $x$ obtained from Step 2 , and observe the result:
(i) if $\frac{d^{2} y}{d x^{2}}<0$, then the function attains its Maximum Value, at that point and the maximum value of the function can be obtained by putting the value in the original function.
(ii) If $\frac{d^{2} y}{d x^{2}}>0$, the function attains the Minimum Value, at that point and the minimum value of the function can be obtained by putting the value in the original function.
(iii) If on putting the value of ' $x$ ' $\frac{d^{2} y}{d x^{2}}=0$, but $\frac{d^{3} y}{d x^{3}} \neq 0$, then the function will have a Point of Inflexion, at a point.

In other words, at Point of Inflexion, the curve changes its Curvature.

## DIFFERENTIATION

1. If $y=a^{x}+x^{a}+a^{a}$, then $\frac{d y}{d x}=$
(a) $x a^{x-1}+a x^{a-1}+a a^{a-1}$
(b) $a^{x} \log a+a x^{a-1}$
(c) $a^{\times} \log a+a x^{a-1}+a a^{a-1}$
(d) none
2. If $f(x)=x^{2}-6 x+5$, then $f^{\prime}(2)-f^{\prime}(5)=$
(a) $-3 f^{\prime}(2)$
(b) $3 f^{\prime}(2)$
(c) $2 f^{\prime}(2)$
(d) $\quad 4 f^{\prime}(2)$
3. $f(x)=a^{x} x^{k}$, then $f^{\prime}(x)$
(a) $f(x)(a-\log a)$
(b) $f(x)(a+\log a)$
(c) $f(x)\left(\frac{k}{x}-\log a\right)$
(d) $f(x)\left(\frac{k}{x}+\log a\right)$
4. $f(x)={ }^{x} C_{2}$, then $f^{\prime}(1)=$
(a) 1
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) $\frac{1}{6}$
5. Derivative of $\sqrt{x^{2}+\sqrt{x}}$
(a) $\frac{1}{2 \sqrt{x^{2}+\sqrt{x}}}$
(b) $2 x+\frac{1}{2 \sqrt{x}}$
(c) $\frac{1}{2 \sqrt{x^{2}+\sqrt{x}}}\left(2 x+\frac{1}{2 \sqrt{x}}\right)$
(d) none
6. $y=\sqrt{x^{2}+a^{2}}$, then $y \frac{d y}{d x}=$
(a) $x$
(b) $2 x$
(c) $y$
(d) $2 y$
7. $x^{2}+x y+y^{2}=0$, then $\frac{d y}{d x}=$
(a) $-\left(\frac{2 x+y}{x+2 y}\right)$
(b) $\quad-\left(\frac{2 x-y}{x+2 y}\right)$
(c) $-\left(\frac{x+2 y}{2 x+y}\right)$
(d) $\frac{2 x+y}{x+2 y}$
8. $x^{y}=e^{x}$, then $\frac{d y}{d x}$ is
(a) $\frac{\log x-1}{\log x}$
(b) $\frac{\log x-1}{(\log x)^{2}}$
(c) $\frac{\log x+1}{\log x}$
(d) $\frac{\log x+1}{(\log x)}$
9. $y=2 a t ; x=a t^{2}$, then $\frac{d y}{d x}$ at $t=1$
(a) 1
(b) 0
(c) 2
(d) $a$
10. $y=x^{\log x}$, then $\frac{\frac{d y}{d x}}{y}=$
(a) $2 x^{-1} \log x$
(b) $2 x \log x$
(c) $x^{\log x}\left(\frac{2 \log x}{x}\right)$
(d) none
11. $y=(3 x+1)^{\frac{1}{4}}(4 x+1)^{\frac{1}{5}}(5 x+1)^{\frac{1}{6}}$, then $\frac{d y}{d x}=$
(a) $\frac{3}{4}\left(\frac{1}{3 x+1}\right)+\frac{4}{5}\left(\frac{1}{4 x+1}\right)+\frac{5}{6}\left(\frac{1}{5 x+1}\right)$
(b) $y\left[\frac{3}{4}\left(\frac{1}{3 x+1}\right)+\frac{4}{5}\left(\frac{1}{4 x+1}\right)+\frac{5}{6}\left(\frac{1}{5 x+1}\right)\right]$
(c) $(x-3)^{-1}+\frac{1}{3}(x-4)^{-1}+\frac{1}{4}(x-5)^{-1}$
(d) none
12. $y=e^{k \log x}+e^{x \log k}$, then $\frac{d y}{d x}=$
(a) $x^{k}+k^{x}$
(b) $k x^{k-1}+k^{x} \log k$
(c) $k x^{k-1}+x k^{x-1}$
(d) none
13. If $y=\left(x+\sqrt{x^{2}-4}\right)^{m}$, then $\left(x^{2}-4\right)\left(\frac{d y}{d x}\right)^{2}-m^{2} y^{2}=$
(a) 0
(b) 1
(c) 2
(d) none

## PAST EXAM QUESTIONS

14. If $x^{y}=y^{x}$, then $\frac{d y}{d x}$ gives:
(a) $\frac{x(x \log y-y)}{y(y \log x-x)}$
(b) $\quad x(y \log x-x)$
$y(x \log y-y)$
(c) $y(x \log y-y)$
$x(y \log x-x)$
(d) none of these
15. If $x^{y}=e^{x-y}$ then $\frac{d y}{d x}$ is equal to
(a) $\frac{2 \log x}{(1+\log x)^{2}}$
(b) $\frac{\log x}{(1+\log x)}$
(c) $\frac{\log x}{(1+\log x)^{2}}$
(d) none of the above

## INTEGRATION

1. $\int\left(e^{2 x}+e^{-3 x}\right) d x$
(a) $\frac{e^{2 x}}{2}+\frac{e^{-3 x}}{3}+c$
(b) $\frac{e^{2 x}}{2}-\frac{e^{-3 x}}{3}+c$
(c) $\frac{e^{2 x}}{2}-\frac{e^{+3 x}}{3}$
(d) none
2. $\int \frac{d x}{\sqrt{x+2}}$
(a) $\sqrt{x+2}+c$
(b) $\quad 2 \sqrt{x+2}+c$
(c) $\frac{2}{\sqrt{x+2}}+c$
(d) none
3. $\int x^{2} 2^{x} d x$
(a) $x^{2} \frac{2^{x}}{\log 2}-\frac{x 2^{x}}{(\log 2)^{2}}+\frac{22^{x}}{(\log 2)^{3}}+c$
(b) $\frac{x^{2} 2 x}{\log 2}+\frac{2 x 2^{x}}{(\log 2)^{2}}+\frac{2^{x}}{(\log 2)^{3}}+c$
(c) $\frac{x^{2} 2^{x}}{\log 2}+\frac{2 x 2^{x}}{(\log 2)^{2}}+\frac{2^{x}}{(\log 2)^{3}}+c$
(d) none
4. $\int x^{n} \log x d x$
(a) $\frac{x^{n+1}}{(n+1)^{2}}[(n+1) \log x+1]+c$
(b) $\frac{x^{n+1}}{(n+1)^{2}}[(n+1) \log x-1]+c$
(c) $\frac{x^{n+1}}{n+1}[\log x-1]+c$
(d) none
5. $\int \frac{3 x+2}{(x-2)(x-3)} d x$
(a) $11 \log (x-3)-8 \log |x-2|+c$
(b) $8 \log |x-3|-11 \log |x-2|+c$
(c) $-11 \log |x-3|+8 \log |x-2|+c$
(d) $-8 \log |x-3|+11 \log |x-2|+c$
6. $\int \frac{7 x^{2}}{\left(x^{3}+2\right)^{3}} d x$
(a) $\frac{7}{6}\left(x^{3}+2\right)^{2}+c$
(b) $-\frac{7}{6}\left(x^{3}+2\right)^{2}+c$
(c) $-\frac{7}{6}\left[\frac{1}{\left(x^{3}+2\right)^{2}}\right]+c$
(d) $\frac{7}{6}\left[\frac{1}{\left(x^{3}+2\right)^{2}}\right]+c$
7. $\int e^{x}\left(x^{3}+5 x^{2}+4 x\right) d x$
(a) $e^{x}\left(x^{3}+x^{2}\right)+c$
(b) $\quad e^{x}\left(x^{3}+2 x^{2}\right)+c$
(c) $e^{x}\left(x^{3}+3 x^{2}\right)+c$
(d) $e^{x}\left(x^{3}+4 x^{2}\right)+c$
8. $\int e^{x}\left(\frac{2-x}{(1-x)^{2}}\right) d x$
(a) $e^{x}\left(\frac{1}{1-x}\right)+c$
(b) $e^{x}\left(\frac{-1}{1-x}\right)+c$
(c) $e^{x}\left(\frac{1}{2-x}\right)+c$
(d) none
9. $\int \sqrt{x^{2}+4} d x$
(a) $\frac{x}{2} \sqrt{x^{2}+4}+c$
(b) $\frac{x}{2} \sqrt{x^{2}+4}+8 \log \left|x+\sqrt{x^{2}+4}\right|+c$
(c) $\frac{x}{2} \sqrt{x^{2}+4}+2 \log \left|x+\sqrt{x^{2}+4}\right|+c$
(d) $\frac{x}{2} \sqrt{x^{2}+4}-2 \log \left|x+\sqrt{x^{2}+4}\right|+c$
10. $\int_{4}^{5} f(x) d x-\int_{4}^{5} f(9-x) d x$
(a) 0
(b) 1
(c) -1
(d) none
11. $\int_{-3}^{3}\left(x^{3}+x\right) d x$
(a) 0
(b) 3
(c) -3
(d) 1
12. Equation of the curve which passes through the point $(1,0)$ and $F^{1}(x)=2 x-1$
(a) $y=x^{2}-x-1$
(b) $y=x^{2}-x-2$
(c) $y=x^{2}-x$
(d) none
a VCranda Enterprise
PAST EXAM
QUESTIONS
13. The value of $\int_{0}^{2} \frac{\sqrt{x}}{\sqrt{x}+\sqrt{2-x}} d x$ is
(a) 0
(b) 3
(c) 2
(d) 1
14. $\int \frac{1}{x\left(x^{5}+1\right)} d x$
(a) $\log \left(\frac{x^{5}}{x^{5}-1}\right)+c$
(b) $\quad \frac{1}{5} \log \left(\frac{x^{5}}{x^{5}+1}\right)+c$
(c) $\frac{1}{3} \log \left(\frac{\mathrm{x}^{5}}{\mathrm{x}^{5}+1}\right)+\mathrm{c}$
(d) $\frac{1}{3} \log \left(\frac{x^{5}+1}{x^{5}}\right)+c$

## LOGICAL REASONING



# 1 <br> NUMBER SERIES, CODING AND DECODING AND ODD MAN OUT 

- $\quad$ Series is a sequential order of numbers, letters or both arranged in some specific rules.
- These Rules can be based on mathematical operations, place of letters in alphabetical order etc.

Different types of Series

1. Number Series
2. Letter Series
3. Alpha-Numeric Series
4. Continuous pattern Series

## NUMBER SERIES

Number series is a logical sequence of more than one elements made of arithmetical digits.

Some Types of number series:

1. Same numbers addition or subtraction series.
2. Increasing order addition or subtraction series.
3. Same number multiplication or division series
4. Increasing order multiplication or division series
5. Same number multiplication and addition or subtraction series
6. Same number multiplication and addition or subtraction in increasing order series
7. Increasing order multiplication and same number addition or subtraction series.
8. Increasing order multiplication and increasing order addition or subtraction series
9. Multiplication and division series.
10. Square series
11. Cube series
12. Square addition series
13. Prime number series
14. Digital operation of number series
15. Mixed combination series

## CLASS WORK SECTION

In the following series replace the question (?) with the suitable option.

1. $27,32,30,35,33$, ?
a) 28
b) 31
c) 36
d) 38
2. $24,60,120,210$, ?
a) 300
b) 336
c) 420
d) 525
3. $198,194,185,169$, ?
a) 92
b) 136
c) 144
d) 112
4. $6,13,38, ?, 532,2675$
a) 129
b) 123
c) 172
d) 164
5. $45,46,70,141, ?, \quad 1061.5$
a) 353
b) 353.5
C) 352.5
d) 352

## ODD MAN OUT

1. $9,14,19,25,32,40$
a) 14
b) 25
c) 32
d) 9
2. $4,5,12,38,160805,4836$
a) 12 ,
b) 160
c) 38
d) 805
3. $7,4,5,9,20,51,160.5$
a) 4
b) 51
c) 9
d) 20

## LETTER SERIES, ALPHA NUMERIC AND CONTINUOUS PATTERN SERIES

Letter series is a sequence of letters taken from English alphabet and such sequence follows a certain logical pattern

1. PMK, MPK, MKP, KMP, ?
a) PMK
b) KMP
c) MPK
d) KPM
2. P3, M8, ?, G24, D35
a) K15
b) J13
c) 113
d) J15
3. Which of the following is odd one: (J-2019)
a) CEHL
b) KMPT
c) OQTX
d) NPSV
4. _sr_tr_srs_r_srst_
a) ttssrr
b) tsrtsr
c) Strtrs
d) tstttr

## CODING AND DECODING

Coding-Decoding is process of transmitting an information from one place to other using some suitable codes, so that it might reach to other person safely.

## Different Types of coding and decoding:

1. Coding based on Rearrangement of Letters
2. Coding based on replacement of letters
3. Opposite letter coding
4. Coding of Letters by their Left and Right Letters
5. Number coding
6. Symbol coding based on Similarity
7. Coding by substitution or word replacement
8. Fictitious Language Coding
9. Coding by Comparison

## CLASS WORK SECTION

1. In a certain code language, COMPUTRONE is written as PMOCTUENOR. How is ADVANTAGES written in that same code?
a) ADVANSEGAS
b) ADTANSEAG
c) AVDANTAGES
d) AVDATNSEGA
2. If in a certain code language SIMILAR is written as IZORNRH, how will NATURAL be written in that language?
a) OZIFGZM
b) OZIFGMZ
c) OZIFZMG
d) OZIFMZG
3. In a certain code RIPPLE is written as 613382 and LIFE is written as 8192 . How is PILLER written in that code? (M-2018)
a) 318826
b) 318286
c) 618826
d) 338816
4. In a certain language 'DEW' written as 1625529 'GET' is written as 4925400 , then how will TWO be written in that language?
a) 400529522
b) 400529225
c) 400925225
d) 400225925
5. If $\mathrm{P}=16$ and PUT $=6720$ then PICK?
a) 4137
b) 4590
c) 4032
d) 4752
6. In a certain code 256 means 'you are good' 637 means 'we are bad' and 358 mens 'good and bad'. Which of the following represents 'and' in that code? (M-2018)
a) 2
b) 5
c) 8
d) 3

## DIRECTION TESTS

Direction is a measurement of position of one thing with respect to another thing or a reference point.

Types:

1. Finding direction only
2. Find the distance only
3. Finding both the distance and direction.
a VCranda Enterprise

## CLASS WORK SECTION

1. At sunrise, Amit and Deepak are having conversation standing in front of each other. The shadow of Deepak is formed towards the right hand of Amit. What direction is Deepak facing?
a) North-East
b) South
c) East
d) North
2. Samar wants to go college which is situated in a direction opposite to that of a mall. He starts from his house, which is in the east and comes at four-way place. His left side road goes to the mall and straight in front is the railway station. In which direction is the college located?
a) North
b) North-East
c) South
d) East
3. Laxman went 15 kms to North then he turned west and covered 10 kms . Then he turned South and covered 5 kms , finally turning to East he covered 10 kms . In which direction he is now moving? ( $\mathrm{M}-2018$ )
a) East
b) West
c) North
d) South
4. A man is facing East, then he turns left and goes to 10 meter then turns right and goes 5 meter then goes 5 meter to the south and from their 5 meter to West. In which direction is he from his original place? (M-2018)
a) East
b) West
c) North
d) South
5. Surbhi is facing east, she turns 100degree in the clockwise direction and then 145 degree in the anti-clockwise direction. Which direction is she facing now?
a) West
b) North-East
c) North
d) South-West
6. A train runs 120 km in West direction, then 30 km in South direction and then 80 km in East direction before reaching the station. In which direction is the station from the train's starting point?
a) South-West
b) North-West
c) South-East
d) South
a Veranda Enterprise
7. If $X$ stands on his head with his face towards South, to which direction will his left hand point?
a) East
b) West
c) South
d) North
8. Vinod Starts from his house and travels 4 km in East direction, after that he turns towards left and moves 4 km . Finally, he turns towards left and moves 4 km . At what distance and in which direction he finally stands from his starting point?
a) North, 4 km
b) North-East 4 km
c) South 12 km
d) West 4 km
9. Two buses start from the opposite points of a main road, 150 km apart. The first bus runs for 25 km and takes a right turn and then runs for 15 km . It then turns left and runs for another 25 km and takes the direction back to reach the main road. In the meantime, due to the minor break down the other bus has run only 35 km along the main road. What would be the distance between the two buses at this point?
a) 65 km
b) 80 km
c) 75 km
d) 85 km
10. Raghu is at point A. He walks 3 km to the North and then turns to his left. He walks, 4 km in this direction. He turns left again and walks 6 km . If he wishes to reach point A again, in which direction should he be walking and what distance will he have to cover?
a) South-East, 5 km
b) South-East, 4 km
c) North-East, 5 km
d) North-East, 4 km .

## SEATING ARRANGEMENT

Sitting arrangement questions are based on the sitting sequence pattern, direction, facing outside or inside etc.

Different types of Questions covered.

1. Linear arrangement
2. Circular arrangement
3. Polygonal arrangement

## CLASS WORK SECTION

## LINEAR ARRANGEMENT

1. 5 friends are sitting on $a$ bench. $A$ is to the left of $B$ but on the right of $C . D$ is to the right of $B$ but on the left of $E$. Who are at the extremes?
a) $A, B$
b) $A, D$
c) B, D
d) $\mathrm{C}, \mathrm{E}$
2. Five children are sitting in a row. $S$ is sting next to $P$ but not $T$. $K$ is sitting next to $R$, who is sitting on the extreme left and $T$ is not sitting next to $K$. Who is/are adjacent to $S$ ? (M-2018)
a) $K$ and $P$
b) $R$ and $P$
c) only P
d) P and T .
3. Five boys are standing in a row facing East, Pavan is to the left of Tavan, Vipin, Chavan. Tavan, Vipin and Chavan are to the left of Nakul. Chavan is between Tavan and Vipin. If Vipin is fourth from the left, then how far is Tavan from the right?
a) First
b) Second
c) Third
d) Fourth
4. Five boys $A, B, C, D$ and $E$ are sitting on a stair in the following way $E$ is above $A$
$D$ is under $B$
$B$ is under $A$
$D$ is between $B$ and $C$
Who is at the lowest position of the stair?
a) A
b) C
c) $E$
d) $B$
5. Eight persons $A, B, C, D, E, F, G$ and $H$ are sitting in a line.
$E$ is second right to $D$.
H sits fourth left to D.
$C$ and $F$ are immediate neighbors, but $C$ is not immediate neighbor of $A$.
$G$ is not neighbor of $E$
Only two person sit between A and E.
The persons on left end and right end respectively are
a) G and E
b) B and E
c) H and E
d) G and B

Directions: (Q. no. 6 to 10)
Read the following information carefully to answer the given questions.
A, B, C, D, E, F, G and H are seated in straight line facing North.
$C$ sits fourth to left of $G$.
$D$ sits seconds to right of $G$.
Only two people sit between D and A.
$B$ and $F$ are immediate neighbors of each other.
$B$ is not an immediate neighbour of $A$.
$H$ is not an immediate neighbour of $D$.
6. Who amongst the following sits exactly in the middle of the persons who sit fifth from the left and the person who sits sixth from the right?
a) C
b) H
c) E
d) F
7. Who amongst the following sits third to the right of C?
a) $B$
b) F
c) A
d) E
8. Which of the following represents persons seated at the two extreme ends of the line?
a) C, D
b) A, B
c) $B, G$
d) $\mathrm{D}, \mathrm{H}$
9. What is the position of H with respect to F ?
a) Third to the left
b) Immediate right
c) Second right
d) Fourth to left
10. How many persons are seated between $A$ and $E$ ?
a) One
b) Two
c) Three
d) Four

## Circular Arrangement

1. Five persons are sitting facing centre of a circle. Pramod is sitting to the right of Rajan. Raju is sitting between Brejesh and Naveen. Raju is to the left of Brejesh and Rajan is to right of Brejesh. Who is sitting to the left of Naveen?
a) Pramod
b) Raju
c) Brejesh
d) Rajan

Directions (Q. no. 4 to 6)
Read the following information carefully to answer the question that follow:
Six girls are sitting in a circle.
Sonia is sitting opposite to Radhika.
Poonam is sitting right of Radhika but left of Deepti.
Monika is sitting left of Radhika
Kamini is sitting right of Sonia and left of Monika
Now, Deepti and Kamini, Monika and Radhika mutually exchange their positions.

1. Who will be opposite to Sonia?
a) Radhika
b) Monika
c) Kamini
d) Sonia
2. Who will be sitting left of Kamini?
a) Poonam
b) Deepti
c) Radhika
d) Sonia
3. Who will be sitting left of Deepti?
a) Sonia
b) Monika
c) Radhika
d)Poonam

## Polygonal Arrangement

1. Four boys and four girls are sitting around a square facing the centre. One person is sitting at each corner and at the midpoint of each side of the square. Madhu is sitting diagonally opposite to Usha who is to the right of Geeta. Ram who is to the left of Geeta is diagonally opposite to Gopi who is to the left of Bose. Position of Suma is not to the right off Madhu but in front of Prema. Who is sitting opposite to Bose?
a) Geeta
b) Prema
c) Suma
d) Madhu

Directions (Q. no. 2 to 5)
Read the following information carefully to answer the question that follow:
Six people A, B, C, D, E and F are sitting on the ground in a hexagonal shape. All the sides of hexagon so formed are of same length. $A$ is not adjacent to $B$ or $C$. $D$ is not adjacent to $C$ or $E$. B and $C$ are adjacent. $F$ in the middle of $D$ and $C$.
2. Which of the following is not a correct neighbour pair?
a) A and F
b) D and $F$
c) B and E
d) C and F

## J.K. SHAH

C LLASSSSES
3. Who is at the same distance from $D$ as $E$ is from $D$ ?
a) $B$
b) C
c) $D$
d) F
4. Which of the following group has the correct order of arrangement?
a) A,F, B
b) F, A, E
c) B, C, F
d) D, A, B
5. If one neighbour of $A$ is $D$, who is the other one?
a) $B$
b) C
c) E
d) F

C L A S S E S

## BLOOD RELATION

Blood relation between two individuals is defined as a relation between them by the virtue of their birth rather than by their marriage or any other reasons.

Different Types of Blood Relation questions

1. Blood relation based on Conversation
2. Blood relation based on Puzzles
3. Symbolically Coded Blood Relationship

## CLASS WORK SECTION

## Type 1. Blood relation based on Conversation

1. Vinod introduces Vishal as the son of the only brother of his father's wife. How is Vinod related to Vishal?
(M-2018)
a) Cousin
b) Brother
c) Son
d) Uncle
2. Pointing to a picture, Summit said, she is the mother of my son's wife's daughter. How is lady related to the Summit.
(J-2019)
a) Uncle
b) Cousin
c) Daughter
d) None
3. Pointing to a lady Rishi said, "The son of her brother is the brother of my wife". How is this lady related to Rishi?
a) Mother-in Law
b) Mother's sister
c) Sister of Father-in Law
d) None of the above.
4. Pointing towards a girl, Anurag says, "This girl is the daughter of the only child of my father". What is the relation of Anurag's wife with the girl?
a) Sister
b) Aunt
c) Daughter
d) Mother

Type 2. Blood relation based on Puzzle

Directions (Q. no. 1 to 3)
Read the following information carefully to answer the question that follow:
There are six children playing football, namely, P, Q, R, S, T and U.
$P$ and $T$ are brothers,
$U$ is the sister of $T$.
$R$ is the only son of P's Paternal uncle,
$Q$ and $S$ are the daughters of the only brother of R's father.

1. Six persons are seen together in a group. They are $A, B, C, D, E$ and $F$.
$B$ is brother of $D$, but $D$ is not brother of $B$,
$F$ is brother of $B$.
$C$ and $A$ are married together.
$F$ is son of $C$, but $C$ is not mother of $F$.
$E$ is brother of $A$.
The number of female member in the group is
a) 1
b) 2
c) 3
d) 4
2. P's father is $Q$ 's son. $M$ is the paternal uncle of $P$ and $N$ is the brother of $Q$. How is $M$ related to N ?
a) Nephew
b) Cousin
c) Data inadequate
d) None of these
3. In a family, there are seven persons comprising two married couple. T is the only son of $M$ and the grandson of $K . M$ is a widower. $M$ and $R$ are brothers and $W$ is the daughter in law of $J$, who is the mother of $R$ and the grandmother of $D$. How is $D$ related to $M$ ?
a) Son
b) Son in law
c) Nephew or Niece
d) Brother

## Type 3. Symbolically Coded Blood Relation

Directions (Q. no. 1 \& 2)
Read the following information carefully to answer the question that follow:
' $P \times Q$ ' means ' $P$ is sister of $Q$ '.
' $P+Q$ ' means ' $P$ is mother of $Q$ '
' $P-Q$ ' means ' $P$ is father of $Q$ '
' $P \div Q$ ' means ' $P$ is brother of $Q$ '

1. If $P+Q$ means $P$ is the mother of $Q$.
$P \div Q$ means $p$ is the father of $Q$.
$P-Q$ means $P$ is the sister of $Q$.
Then which of the following relationship shows that $M$ is the daughter of $R$ ?
( N -2018)
a) $R \div M+N$
b) $R+N \div M$
c) $R-M \div N$
d) None of these
2. $S \times T$ means that $S$ is the mother of $T$
$\mathrm{S}+\mathrm{T}$ means that S is father of T
S - T means that S is the sister of T
On the basis of this information, you have to select the option which shows that $A$ is the grandfather of $T$ ?
a) $A+S+B-T$
b) $\mathrm{A} \times \mathrm{B}+\mathrm{C}-\mathrm{T}$
c) $A+B-C \times T$
d) (a) \& (c) both

Directions (Q. no. 1 to 5)
Read the following information carefully to answer the question that follow:
' $A+B$ ' means ' $A$ is the father of $B$ '
' $A \times B$ ' means ' $A$ is the sister of $B$ '
' $A \$ B$ ' means ' $A$ is the wife of $B$ '
' $A$ \% $B$ ' means ' $A$ is the mother of $B$ '
' $A \div B$ ' means ' $A$ is the son of $B$.'

1. What should come in place of the question mark, to establish that $J$ is the brother of $T$ in the expression?
$J \div P \% H$ ? T \% L
a) $x$
b) $\div$
c) $\$$
d) Either + or $x$
2. Which among the given expression indicate that $M$ is the daughter of $D$ ?
a) $L \% R \$ D+T \times M$
b) $L+R \$ D+M \times T$
c) $L \% R \% D+T \div M$
d) $L \$ D \div R \% M \div T$
3. Which among the following options is true, if the expression ' $I+T \% J \times L \div \mathrm{K}^{\prime}$ ' is definitely true?
a) $L$ is the daughter of $T$
b) $K$ is the son in Law of I
c) I is the grandmother of L
d) $J$ is the brother of $L$

CA FOUNDATION - MATHEMATICS a $V$ cranda Enterprise
4. Which among the following expressions is true, if $Y$ is the son of $X$ is definitely false?
a) $W \% L \times T \times Y \div X$
b) $W+L \times T \times Y \div X$
c) $X+L \times T \times Y \div W$
d) $W \$ X+L+Y+T$
5. What should come in the place of the question mark, to establish that T is the sister in law of $Q$ in the expression
$R \% T \times P$ ? Q + V
a) +
b) $\%$
c) $x$
d) $\$$

CA FOUNDATION - MATHEMATICS

## APPENDIX

Table I - LOGARITHM

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 0000 | 0043 | 0086 | 0128 | 0170 |  |  |  |  |  | 5 | 9 | 13 | 17 | 21 | 26 | 30 | 34 | 38 |  |  |
| 11 | 0414 | 0453 | 0492 | 0531 | 0569 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

J.K. SHAH

C LVCranda Enterprise

| 32 | 5051 | 5065 | 5079 | 5092 | 5105 | 5119 | 5132 | 5145 | 5159 | 5172 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 33 | 5185 | 5198 | 5211 | 5224 | 5237 | 5250 | 5263 | 5276 | 5289 | 5302 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 |
| 34 | 5315 | 5328 | 5340 | 5353 | 5366 | 5378 | 5391 | 5403 | 5416 | 5428 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 |
| 35 | 5441 | 5453 | 5465 | 5478 | 5490 | 5502 | 5514 | 5527 | 5539 | 5551 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 |
| 36 | 5563 | 5575 | 5587 | 5599 | 5611 | 5623 | 5635 | 5647 | 5658 | 5670 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 |
| 37 | 5682 | 5694 | 5705 | 5717 | 5729 | 5740 | 5752 | 5763 | 5775 | 5786 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 |
| 38 | 5798 | 5809 | 5821 | 5832 | 5843 | 5855 | 5866 | 5877 | 5888 | 5899 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 |
| 39 | 5911 | 5922 | 5933 | 5944 | 5955 | 5966 | 5977 | 5988 | 5999 | 6010 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
| 40 | 6021 | 631 | 6042 | 6053 | 6064 | 6075 | 6085 | 6096 | 6107 | 6117 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 |
| 41 | 6128 | 6138 | 6149 | 6160 | 6170 | 6180 | 6191 | 6201 | 6212 | 6222 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 42 | 6232 | 6243 | 6253 | 6263 | 6274 | 6284 | 6294 | 6304 | 6314 | 6235 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 43 | 6335 | 6345 | 6355 | 6365 | 6575 | 6385 | 6395 | 6405 | 6415 | 6425 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 44 | 6435 | 6444 | 6454 | 6464 | 6474 | 6484 | 6493 | 6503 | 6513 | 6522 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 45 | 6532 | 6542 | 6551 | 6561 | 6571 | 6580 | 6590 | 6599 | 6609 | 6618 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 46 | 6628 | 6637 | 6646 | 6656 | 6665 | 6675 | 6684 | 6693 | 6702 | 6712 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 | 8 |
| 47 | 6721 | 6730 | 6739 | 6749 | 6758 | 6767 | 6776 | 6785 | 6794 | 6803 | 1 | 2 | 3 | 4 | 5 | 5 | 6 | 7 | 8 |
| 48 | 6812 | 6821 | 6830 | 6839 | 6848 | 6857 | 6866 | 6875 | 6884 | 6893 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 49 | 6902 | 6911 | 6920 | 6928 | 6037 | 6946 | 6955 | 6964 | 6972 | 6981 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |

## Example:

$\log 2=0.3010: \log 20=1.3010: \log 200=2.3010: \log 2,000=3.3010$ etc.
$\log 2=0.3010-1-(-) 0.699$
$\log 0.02=0.3010-2-(-) 1.699$

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 6990 | 6998 | 7007 | 7016 | 7024 | 7033 | 7042 | 7050 | 7059 | 7067 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 51 | 7076 | 7084 | 7093 | 7101 | 7110 | 7118 | 7126 | 7135 | 7143 | 7152 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 52 | 7160 | 7166 | 7177 | 7185 | 7193 | 7202 | 7210 | 7218 | 7226 | 7235 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |
| 53 | 7243 | 7251 | 7259 | 7267 | 7275 | 7284 | 7292 | 7300 | 7306 | 7314 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 54 | 7324 | 7332 | 7340 | 7348 | 7358 | 7364 | 7372 | 7380 | 7388 | 7396 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 55 | 7404 | 7412 | 7419 | 7427 | 7435 | 7443 | 7451 | 7459 | 7466 | 7474 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 56 | 7452 | 7490 | 7497 | 7505 | 7513 | 7520 | 7528 | 7536 | 7543 | 7551 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 57 | 7559 | 7566 | 7574 | 7582 | 7589 | 7597 | 7604 | 7612 | 7619 | 7627 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 58 | 7634 | 7642 | 7649 | 7657 | 7664 | 7672 | 7679 | 7686 | 7694 | 7701 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
| 59 | 7709 | 7716 | 7723 | 7731 | 7738 | 7745 | 7752 | 7760 | 7767 | 7774 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
| 60 | 7782 | 7789 | 7796 | 7803 | 781 | 7818 | 782 | 7832 | 7839 | 7848 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| 61 | 7853 | 7860 | 7868 | 7875 | 788 | 7889 | 789 | 790 | 7910 | 7917 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| 62 | 7924 | 7931 | 7938 | 7945 | 7952 | 7958 | 7966 | 7973 | 7980 | 7987 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 6 |
| 63 | 7993 | 8000 | 8007 | 8014 | 8021 | 8028 | 8035 | 8041 | 8048 | 8055 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 64 | 8062 | 8069 | 8075 | 8082 | 808 | 8096 | 810 | 810 | 811 | 8122 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 65 | 8129 | 8136 | 8142 | 814 | 815 | 8162 | 816 | 817 | 818 | 8189 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 66 | 8195 | 8202 | 8209 | 8215 | 8222 | 8228 | 8235 | 8241 | 8248 | 8254 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 67 | 8261 | 8267 | 8274 | 8280 | 8287 | 8293 | 8299 | 8306 | 8312 | 8319 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 68 | 8325 | 8331 | 8338 | 8344 | 835 | 8357 | 8363 | 837 | 8376 | 8382 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 |
| 69 | 8388 | 8395 | 840 | 840 | 841 | 8420 | 8428 | 8432 | 8439 | 8445 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| 70 | 8451 | 8457 | 8463 | 8470 | 8476 | 8482 | 8488 | 8494 | 8500 | 8506 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| 71 | 8513 | 8519 | 8525 | 8531 | 8537 | 8543 | 8549 | 8555 | 8561 | 8567 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 72 | 8573 | 8579 | 8585 | 8591 | 859 | 8603 | 8609 | 8615 | 862 | 8627 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 73 | 8633 | 8639 | 8645 | 8651 | 865 | 8663 | 8669 | 8673 | 8681 | 8686 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 74 | 8692 | 8698 | 8704 | 8710 | 8716 | 8722 | 8727 | 8733 | 8738 | 8745 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 75 | 8751 | 8756 | 8762 | 8768 | 8774 | 8779 | 8785 | 8791 | 8797 | 8802 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 |
| 76 | 8808 | 8814 | 8820 | 8825 | 8831 | 8837 | 8842 | 8848 | 8854 | 8859 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 |
| 77 | 8865 | 8871 | 8876 | 8882 | 8887 | 8893 | 8899 | 8904 | 8910 | 8915 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 78 | 8921 | 8927 | 8932 | 8938 | 8943 | 8949 | 8954 | 8960 | 8965 | 8971 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 79 | 8976 | 8982 | 8987 | 8993 | 8998 | 9004 | 9009 | 9015 | 9020 | 9025 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 80 | 9031 | 9036 | 9042 | 9047 | 9053 | 9058 | 9063 | 9069 | 9074 | 9079 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 5 |
| 81 | 9085 | 9090 | 9096 | 9101 | 9106 | 9112 | 9117 | 9122 | 9128 | 9133 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 5 |
| 82 | 9138 | 9143 | 9149 | 9154 | 9159 | 9165 | 9170 | 9175 | 9180 | 9186 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 5 |
| 83 | 9191 | 9196 | 9201 | 9206 | 9212 | 9217 | 9222 | 9227 | 9232 | 9238 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 5 |
| 84 | 9243 | 9248 | 9253 | 9258 | 9263 | 9269 | 9274 | 9279 | 9284 | 9289 | 1 | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 5 |
| 85 | 9294 | 9299 | 9304 | 9309 | 9315 | 9320 | 9325 | 9330 | 9335 | 9340 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 86 | 9345 | 9350 | 9355 | 9360 | 9365 | 9370 | 9375 | 9380 | 9385 | 9390 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 87 | 9395 | 9400 | 9405 | 9410 | 9415 | 9420 | 9425 | 9430 | 9435 | 9440 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 88 | 9445 | 9450 | 9450 | 9455 | 9460 | 9469 | 9474 | 9479 | 9484 | 9489 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |

J.K. SHAF a $V$ cranda Enterprise

| 89 | 9494 | 9499 | 9504 | 9509 | 9513 | 9518 | 9523 | 9528 | 9533 | 9538 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 90 | 9542 | 9547 | 9552 | 9557 | 9562 | 9566 | 9571 | 9576 | 9581 | 9586 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 91 | 9590 | 9595 | 9600 | 9605 | 9609 | 9614 | 9619 | 9624 | 9628 | 9633 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 92 | 9638 | 9643 | 9647 | 9652 | 9657 | 9661 | 9666 | 9671 | 9675 | 9680 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 93 | 9685 | 9689 | 9694 | 9699 | 9703 | 9708 | 9713 | 9717 | 9722 | 9727 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 94 | 9731 | 9736 | 9741 | 9745 | 9750 | 9754 | 9759 | 9763 | 9768 | 9773 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 95 | 9777 | 9782 | 9786 | 9791 | 9795 | 9800 | 9805 | 9809 | 9814 | 9818 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 96 | 9823 | 9827 | 9832 | 9836 | 9841 | 9845 | 9850 | 9854 | 9859 | 9863 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 97 | 9868 | 9872 | 9877 | 9881 | 9886 | 9890 | 9894 | 9899 | 9903 | 9908 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 98 | 9912 | 9917 | 9921 | 9926 | 9930 | 9934 | 9939 | 9943 | 9945 | 9952 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 99 | 9958 | 9961 | 9965 | 9969 | 9974 | 9978 | 9983 | 9987 | 9991 | 9996 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |

CA FOUNDATION - MATHEMATICS

Table II - ANTILOGARITHM

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100 | 1000 | 1002 | 1005 | 1007 | 1009 | 1012 | 1014 | 1016 | 1018 | 1021 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| 101 | 1023 | 1026 | 1028 | 1030 | 1033 | 1035 | 1038 | 1040 | 1042 | 104 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| 102 | 1047 | 1050 | 1052 | 1054 | 1057 | 1059 | 1062 | 1064 | 1067 | 1069 | 0 | 0 | 1 | 1 |  | 1 | 2 | 2 | 2 |
| 103 | 1072 | 1074 | 1076 | 1079 | 1081 | 1084 | 1086 | 1089 | 1091 | 1094 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| 104 | 1096 | 1099 | 1102 | 1104 | 1107 | 1109 | 1112 | 1114 | 1117 | 1119 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| 105 | 1122 | 1125 | 1127 | 1130 | 1132 | 1135 | 1138 | 1140 | 1143 | 1146 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| 106 | 1148 | 1151 | 1153 | 1156 | 1159 | 1161 | 1164 | 1167 | 1169 | 1172 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| 107 | 1175 | 1178 | 1180 | 1183 | 1186 | 1189 | 1191 | 1194 | 1197 | 1199 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| 108 | 1202 | 1205 | 1208 | 1211 | 1213 | 1216 | 1219 | 1222 | 1225 | 1227 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 |
| 109 | 1230 | 1233 | 1236 | 1239 | 1242 | 1245 | 12 | 1250 | 1253 | 1256 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 |
| 110 | 1259 | 1262 | 1265 | 1268 | 1271 | 1274 | 1276 | 1279 | 1282 | 1285 | 0 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 |
| 111 | 1288 | 1291 | 1294 | 1297 | 1300 | 1303 | 1306 | 1309 | 1312 | 1315 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 |
| 112 | 1381 | 1321 | 1324 | 1327 | 1330 | 1334 | 1337 | 1340 | 1342 | 1348 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 |
| 113 | 1349 | 1352 | 1355 | 1358 | 1361 | 1365 | 1368 | 13 | 1374 | 137 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 114 | 1380 | 138 | 138 | 139 | 1393 | 139 | 14 | 140 | 14 | 140 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 115 | 141 | 141 | 141 | 14 | 14 | 14 | 14 | 143 | 14 | 14 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 116 | 144 | 1449 | 1452 | 145 | 14 | 146 | 14 | 146 | 14 | 14 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 117 | 1479 | 1483 | 1486 | 148 | 149 | 149 | 1500 | 1503 | 150 | 151 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 118 | 1514 | 151 | 1521 | 152 | 1528 | 1531 | 1535 | 1538 | 1542 | 1545 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 |
| 119 | 1549 | 1552 | 1556 | 1560 | 1563 | 1567 | 1570 | 1574 | 1578 | 1581 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 |
| 120 | 1585 | 1589 | 1592 | 1596 | 1600 | 1603 | 1607 | 1611 | 1614 | 1618 | 0 | 1 | 1 | 1 | 2 | 2 | 3 | 3 | 3 |
| 121 | 1622 | 1626 | 1629 | 1633 | 1637 | 1641 | 1644 | 1648 | 1652 | 1656 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 |
| 122 | 1660 | 1663 | 1667 | 167 | 1675 | 1679 | 1683 | 1687 | 1690 | 1694 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 |
| 123 | 1698 | 1702 | 1706 | 1710 | 1714 | 1718 | 1722 | 1726 | 1730 | 1734 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| 124 | 1738 | 1742 | 1746 | 1750 | 1754 | 1758 | 1762 | 1768 | 1770 | 1774 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| 125 | 1778 | 1782 | 1786 | 1791 | 1795 | 1799 | 1803 | 1807 | 1811 | 1816 | 0 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 4 |
| 126 | 1820 | 1824 | 1828 | 1832 | 1837 | 1841 | 1845 | 1849 | 1897 | 1858 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| 127 | 1862 | 1866 | 1871 | 1875 | 1879 | 1884 | 1888 | 1892 | 1941 | 1901 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 3 | 4 |
| 128 | 1905 | 1910 | 1914 | 1919 | 1923 | 1928 | 1932 | 1936 | 1941 | 1945 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 129 | 1950 | 1954 | 1959 | 1963 | 1968 | 1972 | 1977 | 1982 | 1986 | 1991 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 130 | 1995 | 2000 | 2004 | 2009 | 2014 | 2018 | 2023 | 2028 | 2032 | 2037 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 131 | 2042 | 2046 | 2051 | 2056 | 2061 | 2065 | 2070 | 2075 | 2080 | 2084 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 132 | 2089 | 2094 | 2099 | 2104 | 2109 | 2113 | 2118 | 2123 | 2128 | 2133 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 133 | 2138 | 2143 | 2148 | 2153 | 2158 | 2163 | 2168 | 2173 | 2178 | 2183 | 0 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 |
| 134 | 2188 | 2193 | 2198 | 2203 | 2206 | 2213 | 2218 | 2223 | 2228 | 2234 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 135 | 2239 | 2244 | 2249 | 2254 | 2259 | 2265 | 2270 | 2275 | 2280 | 2256 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |

J.E.SIAE
CLAS SES

C LASSSTS

| 136 | 2291 | 2286 | 2301 | 2307 | 2312 | 2317 | 2323 | 2328 | 2333 | 2339 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 137 | 2344 | 2350 | 2355 | 2359 | 2366 | 2271 | 2377 | 2382 | 2388 | 2393 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 138 | 2399 | 2404 | 2410 | 2415 | 2421 | 2427 | 2432 | 2438 | 2443 | 2449 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 5 |
| 139 | 2455 | 2460 | 2466 | 2472 | 2477 | 2483 | 2489 | 2495 | 2500 | 2506 | 1 | 1 | 2 | 2 | 3 | 3 | 4 | 5 | 5 |
| 140 | 2512 | 2518 | 2523 | 2529 | 2535 | 2541 | 2547 | 2553 | 2559 | 2564 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 141 | 2570 | 2576 | 2582 | 2588 | 2594 | 2600 | 2606 | 2612 | 2618 | 2624 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 5 |
| 142 | 2630 | 2636 | 2642 | 2649 | 2655 | 2661 | 2667 | 2673 | 2679 | 2624 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 | 6 |
| 143 | 2692 | 2698 | 2704 | 2710 | 2716 | 2723 | 2729 | 2735 | 2742 | 2748 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 |
| 144 | 2754 | 2761 | 2767 | 2773 | 2780 | 2786 | 2793 | 2799 | 2805 | 2812 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 |
| 145 | 2818 | 2825 | 2831 | 2838 | 2844 | 2851 | 2858 | 2864 | 2871 | 2877 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 146 | 2884 | 2891 | 2897 | 2904 | 2911 | 2917 | 2924 | 2931 | 2938 | 2944 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 147 | 2951 | 2958 | 2965 | 2972 | 2979 | 2985 | 2992 | 2999 | 3006 | 3013 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 148 | 3020 | 3027 | 3034 | 3041 | 3048 | 3055 | 3062 | 3069 | 3076 | 3083 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |
| 149 | 3090 | 3097 | 3105 | 3112 | 3118 | 3126 | 3133 | 3141 | 3148 | 3155 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 6 |

CA FOUNDATION - MATHEMATICS a Veranda Enterprise

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | 2 | 3 |  | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 3162 | 3170 | 3177 | 3184 | 3192 | 3199 | 3206 | 3214 | 3221 | 3228 | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 |
| 151 | 3236 | 3243 | 3251 | 3258 | 3268 | 3273 | 3281 | 3289 | 3296 | 33 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 152 | 3311 | 3319 | 3327 | 333 | 3342 | 3350 | 3357 | 3365 | 3373 | 338 | 1 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 7 |
| 153 | 3388 | 3396 | 3404 | 3412 | 3420 | 3428 | 3436 | 3442 | 3451 | 3459 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 154 | 3467 | 3475 | 3483 | 349 | 349 | 3508 | 3516 | 3524 | 3532 | 254 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 155 | 3548 | 3556 | 3565 | 357 | 358 | 3589 | 3597 | 3606 | 3614 | 362 | 1 | 2 | 2 | 3 | 4 | 5 | 6 | 6 | 7 |
| 156 | 363 | 3639 | 364 | 36 | 36 | 36 | 368 | 3690 | 3698 | 37 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 157 | 3715 | 3724 | 3733 | 374 | 375 | 3758 | 3767 | 3776 | 3784 | 379 | 1 | 2 | 3 | 3 | 4 | 5 | 6 | 7 | 8 |
| 158 | 3802 | 3811 | 3819 | 3828 | 383 | 384 | 3855 | 3864 | 3873 | 3882 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 159 | 3890 | 3899 | 3908 | 391 | 3926 | 3936 | 3945 | 3954 | 3963 | 397 | 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 |
| 160 | 398 | 3990 | 3999 | 400 | 40 | 40 | 403 | 40 | 40 | 40 | 1 | 2 | 3 | 4 | 5 | 6 | 6 | 7 | 8 |
| 161 | 4074 | 4083 | 4093 | 4102 | 411 | 41 | 4130 | 4140 | 4150 | 415 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 162 | 4169 | 417 | 4188 | 419 | 42 | 42 | 4227 | 4236 | 4246 | 425 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 163 | 4266 | 42 | 4285 | 429 | 430 | 43 | 432 | 4335 | 43 | 435 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 16 | 436 | 43 | 438 | 439 | 44 | 44 | 44 | 44 | 44 | 44 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 165 | 446 | 44 | 448 | 449 | 45 | 45 | 4529 | 4539 | 4550 | 45 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 166 | 457 | 458 | 4592 | 4603 | 46 | 4624 | 4634 | 4645 | 4656 | 466 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 10 |
| 167 | 467 | 4688 | 4699 | 4710 | 47 | 47 | 47 | 47 | 47 | 47 | 1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 |
| 168 | 47 | 4797 | 4808 | 48 | 48 | 48 | 48 | 48 | 48 | 48 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 10 |
| 169 | 4898 | 49 | 4920 | 493 | 49 | 49 | 4986 | 49 | 4989 | 500 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 9 | 10 |
| 170 | 5012 | 5023 | 5035 | 504 | 5058 | 5070 | 5082 | 5093 | 5105 | 51 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 9 | 11 |
| 171 | 5129 | 51 | 515 | 516 | 517 | 5188 | 5200 | 521 | 52 | 52 | 1 | 2 | 4 | 5 | 6 | 7 | 8 | 10 | 11 |
| 172 | 52 | 52 | 52 | 52 | 52 | 53 | 53 | 5333 | 53 | 53 | 1 | 2 | 4 | 5 | 6 | 7 | 9 | 10 | 11 |
| 173 | 5370 | 5383 | 5395 | 540 | 54 | 5433 | 5445 | 5458 | 5470 | 548 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 11 |
| 174 | 549 | 5508 | 5521 | 553 | 55 | 5559 | 5572 | 5585 | 5598 | 5610 | 1 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 |
| 175 | 5632 | 56 | 56 | 566 | 56 | 56 | 5702 | 5715 | 5728 | 57 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | 12 |
| 176 | 57 | 57 | 57 | 57 | 58 | 5821 | 5834 | 5848 | 5861 | 58 | 1 | 3 | 4 | 5 | 7 | 8 | 9 | 11 | 12 |
| 177 | 5858 | 5902 | 5916 | 592 | 5943 | 5957 | 5970 | 5984 | 5998 | 6012 | 1 | 3 | 4 | 5 | 7 | 8 | 10 | 11 | 12 |
| 178 | 6028 | 6039 | 6053 | 606 | 608 | 6095 | 6109 | 6124 | 6138 | 615 | 1 | 3 | 4 | 6 | 7 | 8 | 10 | 11 | 13 |
| 179 | 6166 | 6180 | 6194 | 620 | 6223 | 6237 | 6252 | 6266 | 6281 | 6295 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 11 | 13 |
| 180 | 6310 | 6324 | 6339 | 6353 | 6368 | 6383 | 6397 | 6412 | 6427 | 644 | 1 | 3 | 4 | 6 | 7 | 9 | 10 | 12 | 13 |
| 181 | 6457 | 6471 | 6486 | 6501 | 6516 | 6531 | 6546 | 6561 | 6577 | 6592 | 2 | 3 | 5 | 6 | 8 | 9 | 1 | 12 | 14 |
| 182 | 6607 | 66 | 66 | 6653 | 66 | 6683 | 6699 | 6714 | 6730 | 6745 | 2 | 3 | 5 | 6 | 8 | 9 | 1 | 12 | 14 |
| 183 | 6761 | 67 | 6792 | 6808 | 6823 | 6839 | 6855 | 6871 | 6887 | 6902 | 2 | 3 | 5 | 6 | 8 | 9 | 11 | 13 | 14 |
| 184 | 6918 | 6934 | 6950 | 6965 | 6982 | 6598 | 7015 | 7031 | 7047 | 7063 | 2 | 3 | 5 | 6 | 8 | 10 | 11 | 13 | 15 |
| 185 | 7079 | 7096 | 7112 | 7129 | 7145 | 7161 | 7178 | 7194 | 7211 | 7228 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 |
| 186 | 7244 | 7261 | 7278 | 7295 | 7311 | 7328 | 7345 | 7362 | 7379 | 7396 | 2 | 3 | 5 | 7 | 8 | 10 | 12 | 13 | 15 |
| 187 | 7413 | 7430 | 7447 | 7464 | 7482 | 7499 | 7516 | 7534 | 7551 | 7568 | 2 | 3 | 5 | 7 | 9 | 10 | 12 | 14 | 16 |
| 188 | 7586 | 7603 | 7621 | 7638 | 7656 | 7674 | 7691 | 7709 | 7727 | 7745 | 2 | 4 | 5 | 7 | 9 | 11 | 12 | 14 | 16 |


| 189 | 7762 | 7780 | 7796 | 7816 | 7834 | 7852 | 7870 | 7889 | 7907 | 7925 | 2 | 4 | 5 | 7 | 9 | 11 | 13 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 190 | 7943 | 7962 | 7980 | 7998 | 8017 | 8035 | 8054 | 8072 | 8091 | 8110 | 2 | 4 | 6 | 7 | 9 | 11 | 13 | 15 | 17 |
| 191 | 8128 | 8147 | 8166 | 8185 | 8204 | 8222 | 8241 | 8260 | 8279 | 8299 | 2 | 4 | 6 | 8 | 9 | 11 | 13 | 15 | 17 |
| 192 | 8318 | 8337 | 8356 | 8375 | 8395 | 8414 | 8433 | 8453 | 8472 | 8492 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 15 | 17 |
| 193 | 8511 | 8531 | 8551 | 8570 | 8590 | 8610 | 8630 | 8650 | 8670 | 8690 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 194 | 8710 | 8730 | 8750 | 8770 | 8790 | 8810 | 8831 | 8851 | 8872 | 8892 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 195 | 8913 | 8933 | 8954 | 8974 | 8995 | 9016 | 9036 | 9057 | 9078 | 9099 | 2 | 4 | 6 | 8 | 10 | 12 | 15 | 17 | 19 |
| 196 | 9120 | 9141 | 9162 | 9183 | 9204 | 9226 | 9247 | 9268 | 9290 | 9311 | 2 | 4 | 6 | 8 | 11 | 13 | 15 | 17 | 19 |
| 197 | 9333 | 9354 | 9376 | 9397 | 9419 | 9441 | 9462 | 9484 | 9506 | 9528 | 2 | 4 | 7 | 9 | 11 | 13 | 15 | 17 | 20 |
| 198 | 9550 | 9572 | 9594 | 9616 | 9638 | 9661 | 9683 | 9705 | 9727 | 9750 | 2 | 4 | 7 | 9 | 11 | 13 | 16 | 18 | 20 |
| 199 | 9772 | 9795 | 9817 | 9840 | 9836 | 9886 | 9908 | 9931 | 9954 | 9977 | 2 | 5 | 7 | 9 | 11 | 14 | 16 | 18 | 20 |

## Example:

If $\log x=0.301$. then $x=$ Antilog $0.301=2$
If $\log x=1.301$. then $x=($ Antilog 0.301$) \times 10=20$
If $\log x=2.301$. then $x=($ Antilog 0.301$) \times 100=200$
If $\log x=(-) 0.699$, then we can write $\log x=(-1+0.301)$ : Thus $x=\operatorname{Antilog}(0.301) / 10=0.2$
If $\log x=(-) 1.699$, then we can write $\log x=(-2+0.301)$ : Thus $x=$ Antilog $(0.301) / 100=0.02$

