	v		١	
ι			•	
		,		

	Class Boundary				
Formula 1	Mutually Exclusive Classification UCB = UCL and LCB = LCL	_			
	Mutually Inclusive Classification UCB = UCL + 0.5 and LCB = LCL - 0).5			
Formula 2	Mid-Point / Class Mark of Class Interval: $\frac{LCL + UCL}{2}$ or $\frac{LCB + UCB}{2}$				
Formula 2	1 Vild-Follit / Class Ivial K of Class filter val. 2 2				
Formula 3	Class Length / Width of Class / Size of Class: UCB – LCB				
	Frequency of the class				
Formula 4	Frequency Density of a Class: Class length of the class				
	Polative Fraguency: Frequency of the class				
	Relative Frequency: Total Frequency of distribution				
Formula 5	5.1.1				
	Percentage Frequency: Frequency of the class Total Frequency of distribution Total Frequency of Distribution				
	$x_1 + x_2 + x_3 + \dots + x$	T.x			
Formula 6	AM of Discrete Distribution/Series: $\overline{x} = \frac{x_1 + x_2 + x_3 + + x_n}{n}$ in short $\overline{x} = \frac{\sum x}{n}$				
	AM of Frequency Distribution: $\overline{x} = \frac{\sum fx}{N}$ In case of ungrouped distribution				
Formula 7					
	In case of grouped frequency distribution x = mid-point of class inter	val			
	AM using assumed mean / step deviation method	vai			
Formula 8					
Torrida	$\overline{x} = A + \frac{\sum fd}{N} \times C$ where $d = \frac{x - A}{C}$, A is assumed mean, C is class length				
	The algebraic sum of deviations of a set of observations from their AM is	zero			
Formula 9	$\sum (x-\overline{x})=0$				
	Combined ANA: $\overline{x} = n_1 \overline{x}_1 + n_2 \overline{x}_2$				
Formula 10	Combined AM: $\overline{X}_c = \frac{n_1 \overline{X}_1 + n_2 \overline{X}_2}{n_1 + n_2}$				
	Median in case of discrete distribution				
	If number of observations are odd Median is middle term				
Formula 11	If number of observations are even AM of two middle terms				
	Same formula is used for ungrouped frequency distribution				
	Median in case of grouped frequency distribution				
	Step 1 Prepare a less than type cumulative frequency distribution				
	Step 2 Calculate $\frac{N}{2}$ and check between which class boundaries it fall	s and call it			
	_	s and can it			
	as Median Class				
	Step 3 I ₁ N _u N _l	С			
Formula 12		s length of			
		dian Class			
	Step 4 Appy Formula				
	$\left(\begin{array}{c} N \\ -N \end{array}\right)$				
	$Me = I_1 + \left(\frac{\frac{N}{2} - N_1}{N_u - N_1}\right) \times C$				
	$\left[\begin{array}{c c} & N_{u} - N_{l} \end{array}\right]$				

	•		
v			

Formula 13	For a set of observations, th			•	when the
	deviations are taken from t		-x)=0 is mini	mum	
	Quartiles in case of discrete		0	- 1 · 1	0 .::
	First Quartile		Quartile		Quartile
Formula 14	$Q_1 = \left((n+1) \times \frac{1}{4} \right)^{th} term$	$Q_2 = \left((n+1) \right)$	$1 \times \frac{2}{4}$ term	$Q_3 = \left((n +$	$(1) \times \frac{3}{4}$ term
	Note: above formula gives t		alue to be calc	ulated based	on the term
	Deciles in case of discrete o				
	First Decile		l Decile		h Decile
Formula 15	$D_1 = \left((n+1) \times \frac{1}{10} \right)^{th} term$				
	Note: above formula gives the term. Final value to be calculated based on the term				
	Percentiles in case of discre	te observations	:	41-	
	First Percentile	Second P	ercentile	99 th P	ercentile
Formula 16	First Percentile $P_{1} = \left((n+1) \times \frac{1}{100} \right)^{th} term$	•			
	Note: above formula gives t	he term. Final v	alue to be calc	ulated based	on the term
	Quartiles in case of Groupe	d Frequency Dis	tribution: Step	s are like me	dian with few
	modifications.				
	$ \begin{array}{c c} & 1^{\text{st}} \text{ Quartile} \\ \hline \text{Find } Q_1 \text{ class using } \frac{N}{4} \\ \hline \end{array} $ Find Q_3 class using $\frac{3N}{4}$				
Formula 17	Find Q ₁ c	lass using $\frac{N}{4}$	Find Q ₃ class us	sing $\frac{3N}{4}$	
	$Q_1 = I_1 +$	$\left(\frac{\frac{N}{4}-N_1}{N_u-N_1}\right)\times C$	$Q_3 = I_1 + \left(\frac{\frac{3N}{4}}{N_u} - \frac{1}{N_u} \right)$	$\left \frac{-N_1}{N_1} \right \times C$	
			()	
	Deciles in case of Grouped I	requency Distri	ibution: Steps a	are like medi	an with few
	modifications.				,
		Decile	9 th De		
Formula 18	Find D ₁ cl	ass using $\frac{N}{10}$	Find D ₉ class (using $\frac{9N}{10}$	
	$D_1 = I_1 + \left(-\frac{1}{2}\right)$	$\frac{\frac{N}{10} - N_I}{N_u - N_I} > C$	/	`	
	Percentiles in case of Group modifications.	ed Frequency D	istribution: Ste	eps are like n	nedian with few
Formula 19		ercentile	99 th Per	centile	
2	Find P ₁ cla	N	Find P ₉₉ class ι	99N	

	•			
)	
. ~		7		

	$P_1 = I_1 + \left(\frac{\frac{N}{100} - N_1}{N_u - N_1}\right) \times C$ $P_{99} = I_1 + I_2 + I_3 + I_4 + I_4 + I_5 + I_5$	$\left(\frac{\frac{99N}{10}-N_{I}}{N_{U}-N_{I}}\right)\times C$	
Formula 20	Mode in case of discrete observation: observation retimes or observation with highest frequency Note: There can be multiple modes also. If all observation frequency, then there is no mode.		
Formula 21	Mode in case of grouped frequency distribution: Find Modal Class (Class with highest frequency) then $ Mo = I_1 + \left(\frac{f_0 - f_{-1}}{2f_0 - f_{-1} - f_1}\right) \times C $ where, $I_1 = LCB$ of modal class $f_0 = f$ frequency of modal class, $f_1 = f$ frequency of post modal class, $f_2 = f$	al class, f_{-1} = frequency of pre- ass length of modal class	
Formula 22	Relationship between Mean, Median and Mode in ca Mean = Median = Mo		
Formula 23	Relationship between Mean, Median and Mode in case of moderately skewed distribution: Mean – Mode = 3 (Mean – Median)		
Formula 24	Geometric Mean in case of discrete positive observat $G = (x_1 \times x_2 \times \times x_n)^{1/n}$	ions:	
Formula 25	Geometric Mean in case of frequency distribution: $G = \left(x_1^{f_1} \times x_2^{f_2} \times \times x_n^{f_n}\right)^{1/N}$		
Formula 26	Harmonic Mean in case of discrete observations: $H = \frac{n}{\sum (\frac{1}{x})}$		
Formula 27	Harmonic Mean in case of frequency distribution: $H = \frac{N}{\sum \begin{pmatrix} f \\ -1 \end{pmatrix} x}$		
Formula 28	Combined HM= $\frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$		
Formula 29	Relationship between AM, GM and HM Situation When all the observations are identical / same When all the observations are distinct / different In General	Relationship AM=GM=HM AM>GM>HM AM≥GM≥HM	
Formula 30	Range in case of discrete observations: L – S where L = Largest Observation, S = Smallest Observat	ion	
Formula 31	Range in case of Grouped Frequency Distribution: L – L = UCB of last class interval, S = LCB of first-class inte	·S	
Formula 32	Coefficient of Range $\frac{L-S}{L+S} \times 100$		

-		

	Mean Deviation in case of discrete observations
Formula 33	$MD_A = \frac{1}{n} \Sigma x - A $ where A is any appropriate central tendency (as given)
	Mean Deviation (in case of grouped frequency distributions)
Formula 34	$MD_A = \frac{1}{N} \Sigma f x - A $ where A is any appropriate central tendency (as given)
Formula 35	Coefficient of Mean Deviation: $\frac{\text{Mean Deviation about A}}{\text{A}} \times 100$
	A Standard Deviation in case of discrete observations:
Formula 36	
	$\sigma_{x} = SD_{x} = \sqrt{\frac{\sum (x - \overline{x})^{2}}{n}}$ or shorter formula $\sigma_{x} = SD_{x} = \sqrt{\frac{\sum x^{2}}{n} - (\overline{x})^{2}}$
	Standard Deviation in case of grouped frequency observations
Formula 37	$\sigma_{x} = SD_{x} = \sqrt{\frac{\sum f(x - \overline{x})^{2}}{N}}$ or shorter formula $\sigma_{x} = SD_{x} = \sqrt{\frac{\sum fx^{2}}{N}} - (\overline{x})^{2}$
Formula 38	Coefficient of Variation: $\frac{SD_x}{\overline{x}} \times 100$
	If there are only two observations, then SD is half of range
Formula 39	$SD = \frac{ a-b }{2}$
Formula 40	Standard Deviation of first n natural numbers: $s = \sqrt{\frac{n^2 - 1}{12}}$
	Combined SD: $SD_c = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$
Formula 41	1 2
	$d_1 = \overline{x}_c - \overline{x}_1$ and $d_2 = \overline{x}_c - \overline{x}_2$
Formula 42	If all the observations are constant, then SD/ MD/ Range is ZERO Change of Origin and Scale: No effect of change of origin but affected by change of
Formula 43	scale in the magnitude (ignore sign) $SD_v = b SD_x$
	Note: same thing will apply to all the measures of dispersion
Formula 44	Quartile Deviation: $QD_x = \frac{Q_3 - Q_1}{2}$
Torritula 44	
Formula 45	Coefficient of Quartile Deviation: $\frac{Q_3 - Q_1}{Q_1 + Q_2} \times 100$
	$Q_3 + Q_1$ Relationship between SD, MD and QD
Formula 46	4SD=5MD=6QD or SD: MD: QD=15:12:10
Formula 47	Basic Formula of Probability: P(A) = No. of favorable events to A
7 Official 47	Total no. of events
Formula 48	Odds in favour of Event A: no. of favorable events no. of unfavorable events
	no of unfavorable events
Formula 49	Odds against an Event A: no. of favorable events
Formula 50	Number of total outcomes of a random experiment:
	If an experiment results in p outcomes and if it is repeated q times, then

Show your love by using code **CAPRANAV** while taking Unacademy Subscriptions

	v			
			•	
O			,	
`		,		

	Total number of outcomes is p ^q	
	Relative Frequency Probability	
Formula 51	no. of times the event occurred during experimental trials $=\frac{f_A}{f_A}$	
	total no. of trials $=\frac{R}{n}$	
Formula 52	Set Based Probability: $P(A) = \frac{\text{no.of sample points in A}}{\text{no.of sample points in S}} = \frac{n(A)}{n(S)}$	
	here A is Event Set and S is Sample Space	
Formula 53	Addition Theorem 1: In case of two mutually exclusive events A and B	
Formula 33	$P(A \cup B) = P(A + B) = P(A \text{ or } B) = P(A) + P(B)$	
Formula 54	Addition Theorem 2: In case of two or more mutually exclusive events	
	$P(A_1 \cup A_2 \cup A_3 \cup) = P(A_1) + P(A_2) + P(A_3) +$	
Formula 55	Addition Theorem 3: For any two events $P(A \cup B) = P(A) \cup P(B) = P(A \cap B)$	
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
Formula 56	Addition Theorem 4: In case of any three events $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$	
	Conditional Probability of Event B when Event A is already occurred	
Formula 57 $P(B/A) = \frac{P(B \cap A)}{P(A)} \text{ provided } P(A) \neq 0$		
Formula 58		
Torrida 30	$P(A/B) = \frac{P(B \cap A)}{P(B)} \text{ provided } P(B) \neq 0$	
	Compound Theorem: In case of two dependent events	
Formula 59	$P(A \cap B) = P(B) \times P(A/B) \text{ or } P(A \cap B) = P(A) \times P(B/A)$	
	Compound Theorem: In case of two independent events	
Formula 60	$P(A \cap B) = P(A) \times P(B)$	
	Expected value of a Probability Distribution: $E(x) = \sum p_i x_i$	
Formula 61	Also, $E(x) = \mu$ (here μ means mean of probability distribution)	
Formula 62	Variance of Probability Distribution: $V(x) = E(x - \mu)^2 = E(x^2) - [E(x)]^2$	
Torrida 02		
Formula 63	Probability Mass Function in case of Binomial Distribution: $f(x) = P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$	
Formula 64	Mean of Binomial Distribution: $\mu = np$	
	Variance of Binomial Distribution: $\sigma^2 = npq$	
	Mode in case of Binomial Distribution:	
	Step 1 Calculate (n+1)p	
Formula 65	Step 2A If (n+1)p is an integer, there will be two modes:	
Torrida 05	$\mu_0 = (n+1)p \& [(n+1)p-1]$	
	Step 2B If (n+1)p is a non-integer, there will be only one mode:	
	μ_0 = largest integer contained in (n+1)p	
Formula 66	Probability Mass Function in case of Poisson Distribution: $f(x) = P(X = x) = \frac{e^{-m}m^x}{x}$	
1 Official 60	X!	
Formula 67	Mean of Poisson Distribution: μ =m	

	Variance of Poisson Distribution: $\sigma^2 = m$			
	SD of Poisson Distribution: $\sigma = \sqrt{m}$			
	Mode in case of Poisson Distribution:			
Formula 68	If m is an integer there will be two modes: $\mu_0 = m\&m-1$			
	If m is a non-integer there will be only one mode: largest integer contained in m			
Formula 69	Probability Density Function in case of Normal Distribution $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\left(\frac{x-\mu}{\sigma}\right)^2 \frac{1}{2}}$ Mean Deviation in case of Normal Distribution: MD = 0.8 σ			
Formula 70	Mean Deviation in case of Normal Distribution: MD = 0.8σ			
Formula 71	Quartiles in case of Normal Distribution: $Q_1 = \mu - 0.675\sigma \& Q_3 = \mu + 0.675\sigma$			
Formula 72	Quartile Deviation in case of Normal Distribution: $QD = 0.675\sigma$			
Formula 73	Points of Inflex of Normal Curve: $\mu - \sigma \& \mu + \sigma$			
Formula 74	In case of Normal Distribution, Ratio between QD: MD: SD = 10:12:15			
Formula 75	Conditions of Standard Normal Distribution: Mean = 0, SD = 1			
Formula 76	$Z Score: Z = \frac{(x - \mu)}{\sigma}$			
	Area under Normal Curve (Popular Intervals)			
	From To Area under Normal Curve			
	Probability			
Formula 77	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\mu+\sigma$ $\mu+2\sigma$ 13.59%			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\mu+3\sigma$ + ∞ 0.135%			
	For a p×q bivariate frequency distribution:			
Formula 78	Number of cells pq			
Torrida 70	Number of marginal distributions 2			
	Number of conditional distributions p+q			
	Karl Pearson's Product Moment Correlation Coefficient:			
Formula 79	$r_{xy} = \frac{\text{Cov}(x, y)}{(\sigma_x \times \sigma_y)}$			
	Covariance between two variables:			
Formula 80	$Cov(x,y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n} \text{ or } \frac{\sum xy}{n} - \overline{x}.\overline{y}$			
Fa	Spearman's Rank Correlation Coefficient:			
Formula 81	$r_R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$ here d means difference in ranks of both variables			
	Spearman's Rank Correlation Coefficient (in case of tied values)			
Formula 82	$r_R = 1 - \frac{6(\Sigma d^2 + A)}{n(n^2 - 1)}$ here A is adjustment value			
	$A = \frac{\Sigma(t^3 - t)}{12}$ where t = tie length (calculate t value for each of the ties)			
Formula 83	Coefficient of Concurrent Deviations			

$\overline{}$	$\overline{}$	
•	_	

	$r_c = \pm \sqrt{\pm \left(\frac{2c - m}{m}\right)}$
	where c is number of concurrent deviations (same direction)
	m is number of pairs compared (equals to n-1)
	Regression Coefficients:
	Y on X: $b_{yx} = r \cdot \frac{SD_y}{SD_x}$ or $b_{yx} = \frac{cov(x, y)}{(SD_x)^2}$
Formula 84	SD_x SD_x SD_x
	$V \circ V \circ h = r \stackrel{SD_x}{\longrightarrow} or h = cov(x,y)$
	X on Y: $b_{xy} = r \cdot \frac{SD_x}{SD_y}$ or $b_{xy} = \frac{cov(x, y)}{(SD_y)^2}$
	Correlation Coefficient is the GM of regression coefficients:
Formula 85	$r_{xy} = \pm \sqrt{b_{xy} \times b_{yx}}$
Formula 83	
	Note: r_{xy} , b_{xy} , b_{yx} all will have same sign Change of Origin/ Scale for Regression Coefficients: Origin no impact, Scale impact of
	both magnitude and sign.
Formula 86	
	$b_{vu} = b_{yx} \times \frac{\text{change of scale of y}}{\text{change of scale of x}}$
	$b_{uv} = b_{xy} \times \frac{\text{change of scale of x}}{\text{change of scale of y}}$
Formula 87	Two regression lines (if not identical) will intersect at the point $(\overline{x}, \overline{y})$
Torritata o	Coefficient of Determination/ Explained Variance/ Accounted Variance:
Formula 88	
	$\left(\mathbf{r}_{xy}\right)^2$
Formula 89	Coefficient of Non-determination/ Un-explained Variance/ Un-accounted Variance:
	$\left 1 - \left(r_{xy} \right)^2 \right $
	Probable Error in correlation: $0.6745 \times \frac{1-r^2}{\sqrt{N}}$
Formula 90	Probable error in correlation: 0.6745× $\frac{1}{\sqrt{N}}$
Formula 91	Error Limits of Population Correlation Coefficient: r±PE
Formula 92	Price Relatives: $\frac{P_n}{P_0}$, Quantity Relatives: $\frac{Q_n}{Q_0}$, Value Relatives: $\frac{V_n}{V_0}$
Formula 92	P_0 , Quantity heliatives: Q_0 , value heliatives: V_0
Farmenta 02	Simple Aggregative Index: $\frac{\sum P_n}{100}$ × 100
Formula 93	Simple Aggregative Index: $\frac{\Sigma P_n}{\Sigma P_0} \times 100$
	$\Sigma \frac{P_n}{}$
Formula 94	Simple Average of Relatives – Method Index: $\frac{\overline{P_0}}{P_0}$
	n
	Laspeyres Index (weight – base year quantity weight)
Formula 95	$\frac{\Sigma P_n Q_0}{R_0 R_0} \times 100$
	$\Sigma P_0 Q_0$
	Paasche's Index (weight – current year quantity weight)
Formula 96	$\frac{\sum P_n Q_n}{\sum P_n Q_n} \times 100$
	$\Sigma P_0 Q_n$
Formula 97	Marshall-Edgeworth Index (weight – sum of both current and base quantity)

	$\frac{\Sigma P_{n}(Q_{0}+Q_{n})}{\Sigma P_{0}(Q_{0}+Q_{n})} \times 100$
Formula 98	Fisher's Ideal Index: GM of Laspeyres Index and Paasche's Index $\sqrt{\frac{\Sigma P_n Q_0}{\Sigma P_0 Q_0}} \times \frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$
Formula 99	Bowley's Index: AM of Laspeyres Index and Paasche's Index $\frac{\Sigma P_n Q_0}{\Sigma P_0 Q_0} + \frac{\Sigma P_n Q_n}{\Sigma P_0 Q_n} \times 100$

About CA. Pranav Popat Sir

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 6+ years of experience.
- He is an Educator by Passion and Choice (Dil Se)
- He teaches subjects of Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 3) at CA Intermediate Level.

Hope this formula book helps you in revising all formulas and become helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Ab mushkil nahi kuch bhi !! nahi kuch bhi !!

With Lots of Love

CA. Pranav Popat (P2 SIR)