

INDEX

CHAPTER	TOPIC	PAGE NO.
1	Ratio, Proportion, Indices & Logarithms	71 - 82
2	Equations	83 – 90
3	Inequalities	91 - 94
4	Simple and Compound Interest Including Annuity Applications	95 – 108
5	Permutation & Combination	109 - 118
6	Sequence and Series – Arthmetic and Geometric Progression	119 – 128
7	Set, Functions & Relations	129 - 138
8	Statistical Description of Data	139 - 148
9	Measures of Central Tendency	149 - 156
10	Measures of Dispersion	157 – 162
11	Probability	163 - 176
12	Theoretical Distributions	177 – 186
13	Correlation	187 – 192
14	Regression	193 - 198
15	Index Number	199 – 206

VIDHYODAY EDUCATION – AUDICHYA BHAWAN Behind High Court, South Tukoganj, Indore [M.P.] | 8181815951

	COMPILATION OF PAST YEAR QUESTIONS											
12.	{1 - { (A) (B)	$\{1 - \{1 - x^2\}^{-1}\}^{-1}\}^{-1/2}$ x $\frac{1}{x}$	[June 2009]	19.	Numł ratio from becor	per of students in of 5:7. If 10 stu both the classe nes 4:6 Number of	two classes in the idents are removed then their ratio distudents are					
	(C)	X ²			(A)	(20, 28)	[June 2010]					
	(D)	X ³	る酸酸		(B)	(40, 56)						
	n	2 2n⊥a			(C)	(50, 70)						
13.	$If \frac{p}{q} =$	$\frac{2}{3}$ find $\frac{2p+q}{2p-q}$	[June 2009]		(D)	Not						
	(A)	5		20.	Two	number are in th	e Ratio 49:68 What					
	(B)	3			must	be added to each	n of them such that					
	(C)	1			their	ratio becomes 3:4	[June 2010]					
	(D)	7			(A)	5						
14.	loa₄[$x^{2} + x] - loa_{4}[x + 1] =$	2 find x		(B)	6						
	(A)	4	[June 2009]		(C)	7						
	(R)	8	Dune 2009]		(D)	8						
	(C)	16		21.	2 ^x – 2	$x^{x-1} = 4$ find x^x						
	(D)	32			(A)	4						
	(2)		TTING WEAK		(B)	27						
15.	If log	$(m+n) = \log m$ then	[June 2009]		(C)	256	17200000 1-2000000					
	(A)	$n = \frac{m}{m+1}$	Jan VIDI	NOD	(D)	None						
	(B)	$\mathbf{m} = n^n$		A 122.UC	2logx	$+ 2\log x^2 + 2\log x$	³ + + 2logx ⁿ					
	(C)	$m = \frac{n}{n-1}$			U	0 0	[Dec. 2010]					
	(D)	mn = 1			(A)	nlogx						
16	log ₂ 5	xlog-2			(B)	(n+1)logx						
10.	(A)	1			(C)	n(n+1)logx						
	(B)	0			(D)	$\frac{(n+1)}{2}\log x$						
	(C)	log ₅ 2			100.10((x) = 3 11 - log 10 (x)						
	(D)	log ₂ 5		23.	2	$\frac{11}{3} + \frac{11}{3} + \frac{11}{3} =$	= 2, f ind x?					
17	2				(A)	10	[Dec. 2010]					
17.	$2^{x}.3^{y}.3$	$5^2 = 360$, then x, y, z resp	[Dec. 2000]		(B)	100						
	(A) (D)	(1, 2, 3)	[Dec. 2009]		(C)	$\frac{1}{100}$						
	(B)	(2, 1, 3)			(D)	$\frac{1}{10}$						
		(3, 2, 1)				10/1-38						
	(D)	Not		24.	A : B :	$= 2:5 \text{ then } \frac{10A+3B}{5A+2B}$	[Dec. 2010]					
18.	log _a b [.] betwo	$+\log_{a}c = 0$ then what een b & c	is the relation [June 2010]		(A)	$\frac{7}{4}$						
	(A)	b = c = 1			(B)	$\frac{8}{2}$						
	(B)	b and c are reciprocal	s Produce			3 <u>14</u>						
	(C)	b=c			(6)	5						
	(D)	$b^2 = c$	THE STATE		(D)	$\frac{15}{7}$	TET (C)					
				72								

VIDHYODAY **COMPILATION OF PAST YEAR QUESTIONS** 25. In a film shooting, A and B received money 31. Which of the following are not in proportion in a certain ratio and B and C also received 6, 8, 5, 7 (A) [June 2012] the Money in the same ratio. If A gets Rs. 1,60,000 and C gets Rs. 2,50,000. Find **(B)** 7, 3, 14, 6 the amount received by B? [June 2011] (C) 18, 27, 12, 18 100000 (A) (D) 8, 6, 12, 9 150000 **(B)** The value of $\frac{3^{n+1}+3^n}{3^{n+3}-3^{n-1}}$ [June 2012] 32. (C) 200000 $\frac{3}{20}$ (D) 175000 (A) $\frac{1}{9}$ 26. If the ratio of (5x-3y) and (5y-3x) is 3:4, **(B)** then the value of x:y is: [June 2011] $\frac{1}{8}$ (C) (A) 5:9 **(B)** 27:29 1 (D) 14:13 (C) (D) 9:4 33. Find the two numbers such that the mean proportional between them is 18 and third 27. If n = m! where ('m' is a positive integer > 2) proportional between them is 144. then the value of: [June 2011] (A) (15, 24) [Dec. 2012] $\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} + ... + \frac{1}{\log_m n}$ (9,24) **(B)** (9,36) (C) logn (A) (D) (8, 36)**(B)** nlogm1 34. If $\log_{10}5 + \log_{10}(5x+1) = \log_{10}(x+5)+1$ (C) 0 [Dec. 2012] then x =(D) 1 (A) 3 28. The ratio compounded of 4:5 and sub-**(B)** 2 duplicated of "a":9 is 8:5. Then value of "a" (C) 1 [Dec. 2011] is (D) 0 (A) 16 9 **(B)** Value of x, if x. $x^{\frac{1}{3}} = (x^{\frac{1}{3}})^x$ [Dec. 2012] 35. 4 (C) (D) 36 (A) 2 **(B)** 4 29. If $log_2 x + log_4 x = 6$, then the value of x is 8 (C) (A) 2 [Dec. 2011] **(B)** 8 (D) 16 (C) 16 Which is True if $\frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca} = \frac{1}{abc}$ 36. 32 (D) [Dec. 2012] 30. If $\log_x y = 100$ and $\log_2 x = 10$ then the value [June 2012] of y (A) $\log(a+b+c) = 1$ **(B)** $\log(abc) = 0$ $2^{\frac{1}{10}}$ (A) (C) $\log(abc) = 1$ 2^{1000} **(B)** $\log(a+b+c) = 0$ (D) $2^{\frac{1}{100}}$ (C) 2^{100} (D) 73

	COMPILATION OF PA	PAST YEAR QUESTIONS	VIDHYODAY
37.	if $(\log_{\sqrt{x}} 2)^2 = \log_x 2$ then x = (A) 2 [June 2013] (B) 4 (C) 8 (D) 16	 43. The ratio of numbers is 1:2 their squares is 504 then the (A) 6, 12, 18 (B) 3, 6, 9 (C) 4, 8, 12 (D) 5, 10, 15 	:3 and sum of numbers are [Dec. 2013]
38.	Triplicate ratio of 4:5 is [June 2013] (A) $\frac{3\sqrt{4}}{\sqrt{5}}$ (B) $\frac{64}{125}$ (C) $\frac{2}{\sqrt{5}}$ (D) $\frac{16}{25}$	44. If $x = \log_{24}12:y = \log_{36} 24:z$ xyz+1 = ? (A) $2xy$ (B) $2xz$ (C) $2yz$ (D) $2xyz$	= log ₄₈ 36 then [June 2014]
39.	The mean proportion between 24 and 54 is [June 2013, May 2018] (A) 40 (B) 32 (C) 36 (D) 30	45. If $x^2+y^2 = 7xy$ then $\log_{3}(x+y)$ (A) $\frac{1}{2}(\log x + \log y)$ (B) $\log(xy)$ (C) $\log(x+y)^3$ (D) $\frac{1}{3}\log(x+y)$) [June 2014]
40.	Find the value of $[log_y x. log_z y. log_x z]^3$ VID(A)2[Dec. 2013](B)1Image: Colspan="3">Image: Colspan="3">Image: Colspan="3">Image: Colspan="3">Image: Colspan="3">Image: Colspan="3">Image: Colspan="3">Image: Colspan="3"(D)logxyzImage: Colspan="3">Image: Colspan="3"	46. If $(25)^{150} = (25x)^{50}$ then the be (A) 5 (B) 25 (C) 125 (D) 625	value of x will [June 2014]
41.	Find the value of $\log_4 9 \log_3 2$ (A) 1 [Dec. 2013, May 2018] (B) 2 (C) $\frac{3}{2}$ (D) $\frac{2}{3}$ If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{c} = 0$ then find the value of	47. The value of $\left(\frac{y^{a}}{y^{b}}\right)^{a^{2}+ab+b^{2}}\left(\frac{y^{b}}{y^{c}}\right)^{b^{2}+bc+c^{2}}\left(\frac{y^{c}}{y^{a}}\right)^{b^{2}+bc+c^{2}}$ (A) 0 (B) 1 (C) $\frac{1}{y}$ (D) y^{a+b+c}) ^{c²+ca+a²} [June 2014]
72.	$\begin{bmatrix} \frac{a+b+c}{3} \end{bmatrix}^{3}$ [Dec. 2013] (A) $a+b+c$ (B) abc (C) $\frac{a+b+c}{9}$ (D) $\frac{abc}{9}$	 48. If P is 25% less than Q and R than Q the Ratio of R and P (A) 5:8 (B) 5:3 (C) 8:5 (D) 3:5 	t is 20% higher [June 2014]

		CO	MPILATION OF PA	ST YEA	R QU	IESTIONS	VIDHYA KA UDAY
49.	A per He wi and d	rson has assets shes to divide it aughter in the ra	worth Rs. 1,48,200. amongst his wife, son atio 3:2:1 respectively.	55.	15(2p p:q (A)	o ² – q ²) = 7pq when [J 3:5	re are positive then une 2015]
	From	the assets the sr	hare of his son will be:		(B)	5:6	
	(A)	45,000	[June 2014]		(C)	6:5	
	(B)	39,600			(D)	5:3	
	(C)	49,400		-			
50	(D)	52,000 - 2.3 then (5x+	2v) · (3v-v) —	56.	If one with a	another type of rice	e of cost Rs. 15.54 &
50.	II A.y ·	16	$(3x^{-}y) =$		of 14	.6% on selling pr	ice then in which
	(A)	3	[June 2014]		propo	ortion the two types	of rice are mixed?
	(B)	7			(A)	3:7	[June 2015]
	(C)	$\frac{4}{3}$			(B)	4:5	
	(D)	8/3			(C)	7:3	
		3	(10)		(D)	5:3	
51.	If logx	x = a+b; logy = a 1-a+3b	a - b then $\log\left(\frac{10x}{y^2}\right)$ [Dec. 2014]	57.	Find 12 & 3	the ratio of thir 30 and mean propo	d proportional of rtional of 9, 25
	(B)	a-1+3b			(A)	5:2	[Dec. 2015]
	(C)	a+3b+1			(B)	5:3	
	(D)	1-b+3a			(C)	5:4	
52	x = 1	$1 \pm \log_{10} r = 1$	$+\log_{rm} z = \frac{1+\log_{rm}}{1+\log_{rm}}$	IYOD/	(D)	5:1	
52.	find $\frac{1}{x}$	$+\frac{1}{y} + \frac{1}{z}$	[Dec. 2014]	A KA UD 58.	AY log ₃ 5	$\times \log_5 4 \times \log_2 3$	[Dec. 2015]
	(A)	1			(A)	log2	
	(B)	2			(B)	log3	ENCORE .
	(C) (D)	3	(1)247) 745 南京経営統		(C)	2	
	(D)	4			(D)	1	道總部
53.	The fi a per differ	rst, second and t rson are in t ence between	third month salaries of he ratio 2:4:5. The the product of the	59.	What 10, 18	must be added to 6 3, 22, 38 to make the	each of the number em proportional
	salari 4.80.0	es of first 2 mon 0.000. Find the	ths & last 2 months is e salary of the second		(A)	1	[Dec. 2015]
	montl	h	[Dec. 2014]		(B)	2	Barge
	(A)	9000			(C)	3	
	(B) (C)	7500 7000			(D)	4	
	(D)	8000		60.	The i	integral part of lo , and the decimal	part of a logarithm
54.	If p ^x = is	= q, q ^y = r, r ^z = p	⁶ then the value of xyz [June 2015]		(A)	ed Mantissa, Charact	teristic
	(A)	1			(B)	Characteristic, Ma	antissa
	(B)	$\frac{1}{6}$			(C)	Integer, Fraction	
	(C)	6	(中国) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		(D)	Fraction, Integer	
	(D)	3					
			7	/5			

	COMPILATION OF PAST YEAR QUESTIONS										
61.	The value of $\frac{1}{\log_3 60} + \frac{1}{\log_4 60} + \frac{1}{\log_5 60} =$ (A) 1 (B) 2 (C) $\log 5$ (D) $\log 2$	66.	A bag contains 23 numbers form of 1 rupee, 2 and 5 r total sum of the coins is R between 1 rupee and 2 rup Then the number of 1 rupee (A) 16 (B) 12	s of coins in the cupee coins. The cas. 43. The ratio bees coins is 3:2. coins. [Dec. 2016]							
62.	If $2^{x-y} = 2^{2x-y} = \sqrt{8}$ then the resp value of x and y are (A) $\left(\frac{3}{2}, 0\right)$ (B) $\left(0, \frac{-3}{2}\right)$ (C) $\left(0, \frac{3}{2}\right)$ (D) $\left(\frac{-3}{2}, 0\right)$	oective 67.	(C) 10 (D) 8 If $x = 3^{1/3} + 3^{-1/3}$ then $x = 3x^3 - 9x$ (A) 3 (B) 9 (C) 12	find value of [June 2009]							
63.	 x, y, z together starts a business. If x if 3 times as much as y invests and y if two third of what z invests, then the r capitals of x, y, z is [Dec. 2 (A) 6:2:3 (B) 2:3:6 (C) 3:6:2 (D) 3:4:6 	68. 1015]	(D) 10 The recurring decimal 2. expressed as: (A) $\frac{24}{9}$ (B) $\frac{22}{9}$ P (C) $\frac{22}{9}$	7777can be [Dec. 2010]							
64.	Given log 2 = 0.3010 and log 3 = 1 then the value of log 24 [Dec. 2 (A) 1.0936 (B) 1.3801 (C) 1.6258 (D) 1.1937	0.4771 016] 69.	(C) $\frac{26}{9}$ (D) $\frac{25}{9}$ The value of $(\log_y x \cdot \log_z y)$ (A) 0	. log _x z) ³ is [Dec. 2013]							
65.	If $3^{x} = 5^{y} = (75)^{z}$ then (A) $\frac{1}{x} + \frac{1}{z} = \frac{2}{y}$ (B) $\frac{1}{x} + \frac{2}{z} = \frac{1}{y}$ (C) $\frac{1}{x} + \frac{2}{y} = \frac{1}{z}$ (D) $\frac{1}{z} + \frac{1}{y} = \frac{2}{z}$	016] 70.	(B) -1 (C) 1 (D) 3 If log x = m + n and log y = $\left(\frac{10x}{y^2}\right) =$ (A) 3n-m+1 (B) 3m-n+1 (C) 3n+n+1 (D) 3m+n+1	= m – n, then log [June 2015]							

	COMPILATION OF PAST YEAR QUESTIONS										
71.	The v	value of $\left[\frac{x^2 - (y - z)^2}{(x + z)^2 - y^2} + \frac{y^2 - (x - y)^2}{(x + y)^2}\right]$	$\frac{(z)^{2}}{(z)^{2}} + \frac{z^{2} - (x - y)^{2}}{(y + z)^{2} - x^{2}}$ [June 2016]	77.	If a =	$\frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} - \sqrt{5}}$ and $b = \frac{1}{2}$	$\frac{\sqrt{6} - \sqrt{5}}{\sqrt{6} + \sqrt{5}}$ then the				
	(A) (B) (C)	0 1 -1			(A) (B)	$\frac{10}{a^2} + \frac{1}{b^2} = \frac{10}{b^2}$ $\frac{10}{480}$ $\frac{10}{482}$	[June 2017]				
72.	If log	$g_4(x^2 + x) - \log_4(x + 1) =$	2, then the		(C) (D)	484 486					
	(A) (B) (C) (D)	2 3 16 8		78.	The r Rs. 10 coins coins (A)	atio of the number 0 coins is 8 : 15. If is Rs. 360, then the will be: 72	of Rs. 5 coins and the value of Rs. 5 number of Rs. 10 [Dec. 2017]				
73.	Value	of $\frac{1}{\log_3 60} + \frac{1}{\log_4 60} + \frac{1}{\log_4 60}$	$\frac{1}{\log_5 60}$ is:		(B) (C) (D)	120 135 185					
	(A) (B) (C) (D)	0 1 5 60	[June 2016]	79.	If log 'x' wil (A)	$[\log_4(\log_2 x)] = 0,$ 1 be: 4	then the value of [Dec. 2017]				
74.	If abc $\frac{1}{1+a}$	= 2, then the value of $\frac{1}{1+2b^{-1}} + \frac{1}{1+\frac{1}{2}b+c^{-1}} + $	$\frac{1}{+c+a^{-1}}$ is:	YOD/ A KA UD	(D) (C) (B)	8 16 32 (x, x) 1					
	(A)	2	[Dec. 2016]	80.	If log	$g\left(\frac{x-y}{2}\right) = \frac{1}{2}(\log x - \frac{1}{2})$	+ logy), then the				
	(D) (C)	$\frac{1}{2}$			(A) (B)	of $x + y = $ 2xy 4xy $2x^2x^2$	[Dec. 2017]				
75.	If a : b a : d is	c = 2:3, b:c = 4:5 and c: s: [June 20]	d = 6 : 7, then 017]		(C) (D)	ZX Y 6xy					
	(A) (B) (C) (D)	24:35 8:15 16:35 7:15		81.	If $\frac{1}{2}$, $\frac{1}{2}$, the value (A)	$\frac{1}{3}, \frac{1}{5}$ and $\frac{1}{x}$ are in alue of 'x' will be: $\frac{15}{3}$	proportion, then [Dec. 2017]				
76.	The equal	value of log $(1^3 + 2^3 + 3^3)$ to:	$3^3 + \dots n^3$) is [June 2017]		(B)	$\frac{2}{\frac{6}{5}}$					
	(H) (B) (C) (D)	$2 \log n + 2 \log (n+1) - 2 \log \log n + \log (n+1) + \log (2n+1) - 1$	32 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7	(C)	$\frac{10}{3}$					

VIDHYODAY

ANSWER KEY											
1.	В	2.	С	3.	В	4.	D	5.	В		
6.	D	7.	C	8.	Α	9.	В	10.	С		
11.	В	12.	Α	13.	D	14.	С	15.	С		
16.	Α	17.	С	18.	В	19.	С	20.	D		
21.	В	22.	C	23.	D	24.	Α	25.	С		
26.	В	27.	D	28.	D	29.	С	30.	В		
31.	Α	32.	D	33.	С	34.	Α	35.	Α		
36.	D	37.	D	38.	В	39.	С	40.	В		
41.	Α	42.	В	43.	Α	44.	С	45.	Α		
46.	D	47.	В	48.	С	49.	С	50.	Α		
51.	A	52.	A	53.	С	54.	С	55.	В		
56.	С	57.	D	58.	С	59.	В	60.	В		
61.	Α	62.	В 🚄	63.		64.	В	65.	С		
66.	В	67.	D	68.	D	69.	С	70.	A		
71.	В	72.	С	73.	В	74.	А	75.	С		
76.	В	77.	В	78.	С	79.	С	80.	D		
81.	А	82.	D	83.	А	84.	В	85.	D		
86.	А	87.	A	88.	В	89.	В	90.	A		
91.	А	92.	С	93.	D	94.	D	95.	A		
96.	D	97.	A	98.	С	99.	Α	100.	С		
101.	С	102.	Α	103.	D	104.	С	105.	С		
106.	С	107.	В	108.	D	109.	В	110.	В		
111.	D	112.	С	113.	В	114.	D	115.	С		

VIDHYODAY **COMPILATION OF PAST YEAR QUESTIONS** 12. If life expectancy (E) is defined as a linear 18. If x Varies inversely as square of y and given function of time. If is given that in 1980, life that y = 2 for x = 1, then the value of x for expectancy was 70 yrs & in 2000 it was 75 yrs. y = 6 will be [Dec. 2011] What would be the life expectancy in 2012? 4 9 (A) 76 years (A) $\frac{\frac{1}{9}}{\frac{2}{7}}$ **(B)** 78 years **(B)** 80 years (C) (C) **(D)** Not (D) 13. If $x^2 - 3x + 2 = 0$ then *x* is 19. If the A.M. between the roots of a quadratic (A) (1, 2)equation is '8' and G.M. is '5' then the **(B)** (-2, 1) equation is (-1, 2) (C) (A) $x^2 - 25x + 16 = 0$ (D) Not $x^2 + 25x - 16 = 0$ **(B)** $12x^2 + Kx + 5 = 0$ if ratio (C) $x^2 - 5x + 8 = 0$ 14. of roots $\frac{\alpha}{\beta} = \frac{3}{2}$ then k is (D) $x^2 + 5x - 8 = 0$ $\sqrt[5]{10}$ (A) 20. α , β are the roots of the equation $2x^2 + 3x + 7 = 0$. Then the value of $\sqrt[2]{5}$ **(B)** $\alpha\beta^{-1}+\beta\alpha^{-1}$ is (C) 50 <u>-</u>10 (A) (D) 100 13 **(B)** 15. If of the Equation 19 one root $px^2 + qx + r = 0$ is r then other root of the -19 14 A KA UDA(C) equation will be [Dec. 2011] $\frac{-13}{10}$ (D) (A) 21. If |x - 2| + |x - 3| = 7 then **[Dec. 2012] (B)** q (A) 6 (C) р **(B)** -1 (D) (C) 6&-1 (D) None 16. If the ratio of the roots of the equation $4x^2 - 6x + p = 0$ is 1:2 then the value of p The quadratic equation $x^2 - 2kx + 16 = 0$ 22. is [Dec. 2011] will have equal roots then k =(A) 1 (A) 4 [Dec. 2012] 2 **(B) (B)** -4 (C) -1 (C) ± 4 (D) None of these **(D)** 17. If p & q are the roots of the Equation If α , β are roots of $x^2 + 7x + 11 = 0$ then the 23. $x^2 - bx + c = 0$, then what is the Equation equation whose roots as $(\alpha + \beta)^2 \& (\alpha - \beta)^2$ whose roots are (pq+p+q) and (pq-p-q)? [June 2013] is $x^2 - 2cx + c^2 - b^2 = 0$ [Dec. 2011] (A) $x^2 - 49x + 145 = 0$ (A) $x^2 - 2cx + b^2 - c^2 = 0$ **(B) (B)** $x^2 - 54x + 176 = 0$ (C) $x^2 - 2bx + b^2 - c^2 = 0$ $x^2 - 54x + 245 = 0$ (C) $x^2 - 2bx + c^2 - b^2 = 0$ (D) (D) $x^2 - 35x + 170 = 0$ 84

- 24. A seller makes an offer of selling certain articles that can be described by the equation x = 25 - 25y where x is price per unit and y denotes that no. of units. The cost price of the article is Rs. 10 per unit. The maximum quantity that can be offered in a single deal to avoid loss is
 - 7 [Dec. 2013] (A)
 - 5 **(B)**

10

12

(C)

(D)

- 25. Divide 80 into two parts so that their products is maximum, then the numbers are
 - (A) 15,65 [Dec. 2013]
 - 25,55 **(B)**
 - 35,45 (C)
 - 40,40 (D)
- 26. If $b^2 - 4ac$ is a perfect square but not equal to zero then the roots of the equation
 - Irrational and equal [Dec. 2013] (A)
 - **(B)** Rational and equal
 - (C) Rational and unequal
 - (D) Imaginary
- 27. If the equation kx + 2y = 5, 3x + y = 1 has no solution then the value of k is
 - (A) 3 [Dec. 2013] **(B)** 6 (C) 2
 - (D) 4
- If kx 4 = (k 1)x which of the following 28. [Dec. 2013] is true
 - (A) x = -5
 - **(B)** x = -4
 - (C) x = -3
 - **(D)** x = 4

- The roots of equation $y^3 + y^2 y 1 = 0$ 29. [June 2014] are
 - (1, -1, -1) (A)
 - (1, 1, -1) **(B)**
 - (-1, -1, -1) (C)
 - (D) (1, 1, 1)

85

If x + 5y = 33 and $\frac{x+y}{x-y} = \frac{13}{3}$ then (x, y) =30. [Dec. 2014] (8,5) (A) **(B)** (5, -8)(4, -3) (C) (D) (5, 7)

- The age of a person is 8 years more than 31. thrice the age of the sum of his two grandsons who were twins. After 8 years his age will be 10 years more than twice the sum of the ages of his grandsons. Then the age of the person when the twins were born is [June 2015]
 - (A) 75 years
 - **(B)** 77 years
 - (C) 73 years (D)
 - 80 years

VIDHYODAY

- Roots of the cubic equation $x^2 7x + 6 = 0$ 32. [June 2015] are (A) (6, -1)
 - **(B)** (-6, 1)
 - (C) (1,6) (-1, -6)
- (D)
- 33. In a school number of students in each section is 36. If 12 new students are added, then the number of sections are increased by 4, and the number of students in each section becomes 30. The original number of sections at first is [June 2015]
 - (A) 20
 - **(B)** 18
 - (C) 22
 - (D) 16

- 34. A person on a tour has Rs. 9600 for his expenses. But the tour was extended for another 16 days, so he has to cut down his daily expenses by Rs. 20. The original duration of the tour had been?
 - 80 [June 2015] (A) **(B)** 96
 - (C) 100
 - (D) 120

VIDHYODAY **COMPILATION OF PAST YEAR QUESTIONS** 35. If α , β be the roots of a quadratic equation if 40. One root of the equation: $\alpha + \beta = -2, \alpha\beta = -3$. Find quadratic $x^{2}-2(5+m)x+3(7+m)=0$ is reciprocal equation [Dec. 2015] of the other. Find the value of m. $x^2 - 2x - 3 = 0$ (A) -20[June 2009] (A) (B) $x^2 - 2x + 3 = 0$ 3 (C) $x^2 + 2x + 3 = 0$ 7 **(B)** $x^2 + 2x - 3 = 0$ (D) (C) Value of k for which roots are equal of given 36. equation $4x^2 - 12x + k = 0$ are equal (D) (A) 8 [Dec. 2015] 41. Positive value of 'k' for which the roots of 9 **(B)** equation $12x^2 + kx + 5 = 0$ are in ratio 3:2, is: (C) 10 5 [Dec. 2010] (A) (D) 12 12 37. The value of 12 $\frac{x^2 - (y - x)^2}{(x + z)^2 - y^2} + \frac{y^2 - (x - z)^2}{(x + y)^2 - z^2} + \frac{z^2 - (x - y)^2}{(y + z)^2 - x^2}$ **(B)** 5 $5\sqrt{10}$ (A) 0 (C) **(B)** 1 $5\sqrt{10}$ (D) 1 (C) 2 If one root of the equation $x^2 - 3x + k = 0$ is 42. **(D)** -1 2, then value of k will be: [Dec. 2010] If difference between the roots of the 38. (A) -10 equation $x^2 - kx + 8 = 0$ is 4 then the value **(B)** 0 of K is [June 2016] (C) 2 $\pm 2\sqrt{3}$ (A) 10 (D) $+3\sqrt{2}$ **(B)** If one of the roots of the equation 43. $\pm 4\sqrt{2}$ (C) $x^2 + px + a = 0$ is $\sqrt{3} + 2$, then the value of $\pm 4\sqrt{3}$ (D) 'p' and 'a' is: [June 2012] 39. Particular company produces some articles -4, -1(A) on a day. The cost of production per article 4,-1 **(B)** is Rs. 2 more than thrice the number of articles and the total cost of production is -4.1(C) Rs. 800 on a day then the number of articles (D) 4.1 is Roots of equation $2x^2 + 3x + 7 = 0$ and α 44. (A) 15 and β . The value of $\alpha\beta^{-1} + \beta\alpha^{-1}$ is **(B)** 16 2 (A) [Dec. 2012] (C) 20 $\frac{3}{7}$ (D) 22 **(B)** $\frac{7}{2}$ (C) 19 (D) 14 86

54. If $u^{5x} = v^{5y} = w^{5z}$ and $u^2 = VW$, then the value of $xy+xz - 2yz$ will be: [Dec. 2017] (A) 5 (B) 2 (C) 1 (D) 0 59. Let α and β be the roots of $x^2 + 7x + 12 = Then$ the value of $\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right)$ will be: (A) $\frac{7}{12} + \frac{12}{7}$ (B) $\frac{49}{\beta} + \frac{144}{\beta}$	= 0. .8]
(B) 2 (C) 1 (D) 0 (A) $\frac{7}{12} + \frac{12}{7}$ (B) $\frac{49}{144} + \frac{144}{7}$	are
$(\mathbf{R}) = \mathbf{I}$	are
55. If $\alpha + \beta = -2$ and $\alpha\beta = -3$, then α, β are the roots of the equation, which is:	are
(A) $x^2 - 2x - 3 = 0$ [May 2018] (C) $-\frac{31}{12}$	 are
(B) $x^{2}+2x+3=0$ (C) $x^{2}+2x+3=0$ (D) None of the above 4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	ratic
56. If $2^{x+y} = 2^{2x-y} = \sqrt{8}$, then the respective values of x and y are [May 2018] equation: [Nov. 2018] (A) $\alpha x^2 - (\alpha^2 + 1)x + \alpha = 0$	8]
(A) $1, \frac{1}{2}$ (B) $\alpha x^2 - \alpha^2 x + 1 = 0$	•
(B) $\frac{1}{2}$,1 (C) $\alpha x^2 - (\alpha^2 + 1)x + 1 = 0$ (D) None of these	
 (C) 1/2,1/2 (D) None of these (D) None of these 	that it in igits
57. If $\frac{3}{2} + \frac{2}{2} = -1$ and $\frac{1}{2} - \frac{1}{2} = \frac{4}{2}$ (A) 62 [June 2019]	.9]
$x+y \ x-y \ x+y \ x-y \ 3$ (B) 26 then (x y) is: [May 2018]	ļ
(A) (2, 1) (D) None of these	
(B) $(1, 2)$ (C) $(-1, 2)$ (D) $(-2, 1)$ (B) $(1, 2)$ (C) $(-1, 2)$ (C) $(-2, 1)$ (C) $(-$	uble
(b) $(2, 1)$ (A) $2b^2 = 3ac$ [June 2019	9]
58. If α , β are the roots of the equation (B) $b^2 = 3ac$	9
$x^2 + x + 5 = 0$ then $\frac{-1}{\beta} + \frac{-1}{\alpha}$ is equal to (D) $2b^2 = 9ac$ (D) $2b^2 > 9ac$	ų. K
(A) $\frac{16}{5}$ [May 2018] 63. Roots of the equation $x^3 + 9x^2 - x - 9 = 0$	0.
(B) 2 (A) 1, 2, 3 [Nov. 2019	9]
(C) 3 (B) $1, -1, -9$ (C) $2, 3, -9$	
(D) $\frac{14}{5}$ (D) 1, 3, 9	iş İ

	COMPILATION OF PAST YEAR QUESTIONS											
64.	$\frac{2x+3}{10}$	$\frac{5}{15} + \frac{3x+10}{15} = 5$	[Nov. 2019]	69.	Solvin	g equation $m + \sqrt{m}$	$=\frac{6}{25}$, the value					
	10	10.59			of m w	vorks out to:	25 [Nov. 2020]					
	(A) (B)	0.58				1						
	(C)	9.50			(A)	25						
	(U) (D)	None			(B)	$\frac{2}{25}$						
65.	Find v	value of $x^2 - 10x + 1$ i	$f x = \frac{1}{5 - 2\sqrt{6}}$		(C)	$\frac{3}{25}$						
	(A)	25	[Nov. 2019]		(D)	1						
	(B)	1		70.	The v	alue of P for which	n the difference					
	(C)	0			betwe	en the root	of equation					
	(D)	49			$x^2 + p$	x + 8 = 0 is 2 is	[Jan. 2021]					
66.	Find	the value of K in	$3x^2 - 2kx + 5 = 0$		(A)	± 2						
	if $x =$	2			(B)	± 4						
	(A)	$\frac{17}{4}$	[Nov. 2019]		(C)	± 6						
		7			(D)	± 8						
	(B)	$-\frac{1}{14}$					2					
	((1)	4	VIDI	71. IYOD/	If the	quadratic equation	$x^{-}+px+q=0$					
	(0)	17		A KA UD	and X	+qx+p=0 have co	mmon root then					
	(D)				(A)	0	Dani Totti					
		17			(B)	1						
67.	The	rational root of	the equation		(C)	-1						
	2p ³ –	$p^2 - 4p + 2 = 0$ is:	[Nov. 2020]		(D)	2						
	(A)	2		72.	The h	armonic mean of th	ne roots of the					
	(B)	-2			equati	on $(5+\sqrt{2})\times 2-(4+\sqrt{2})\times 2$	$(5)x + 8 + 2\sqrt{5} = 0$					
	(C)	$\frac{1}{2}$			1S	2	[Jan. 2021]					
		2			(A) (B)	2 4						
	(D)	$-\frac{1}{2}$			(C)	6						
		2			(D)	8						
68.	If $2x^2$	-(a+6)2x+12a-0	, then the roots	73.	lfαa	nd β are the roots	of the equation					
	are:		[Nov. 2020]		$2x^{2} +$	$5x + k = 0$,and $4(\alpha^2)$	$+\beta^2+\alpha\beta)=23$,					
	(A)	6 and a $\frac{3}{2}$			then w	which of the following	is true?					
	(B)	4 and a ²			(A)	$k^2 + 3k - 2 = 0$	[July 2021]					
	(C)	3 and 2a			(B)	$k^2 - 2k + 3 = 0$						
	(D)	6 and 3a			(C)	$k^2 - 2k - 3 = 0$						
					(D)	$k^2 - 3k + 2 = 0$						
				80								

	COMPILATION OF PAST YEAR QUESTIONS										
74.	The root x ³ - (A) (B) (C) (D) The	value of 1 t of the -(k+1)x+ 2 6 1 4 cost of 2 o	k' is, following - k = 0.	if 2 is one cubic equ [July 20 3 apples is	of the uation: 021]	78.	(C) $x^2 -$ (D) $x^2 +$ In a mul consisting c a candidate candidate at was a pen- answer, the right answe	$-3ax + 2a^2 =$ $-3ax - 2a^2 =$ tiple choid of 100 quest the gets 60 ttempted all alty of 0.2 difference rs and wrom	= 0 = 0 ce questic ions of 1 n 0% marks l questions 5 marks f between r	on paper nark each, s. If the and there or wrong number of is:	
,	If th cost orig (in ((A) (B) (C) (D)	(Rs.)) is: 59 47 71 63	an apple is ses and 5 ap of 7 orang	doubled th ples is Rs. 7 es and 4 [July 20	then the 75. The apples 021]	79.	 (A) 32 (B) 36 (C) 40 (D) 38 If the squar the number satisfies the 	e of a num r by 15, condition is	[De [De ber exceed then nun s [De	c. 2021]	
76. 77.	76. The sum of square of any real positive quantity and its reciprocal is never less [July 2021](A) 1 (B) 2 (C) 3 (D) 4Image: Comparison of the symplectic comparison of the s					1780.DA A KA UDA	(A) -5 (B) 3 (C) 5 (D) 15 Solve $x^3 - 7$ (A) $x = 6$ (B) $x = 6$ (C) $x = 6$ (D) $x = 6$ (D) $x = 6$	5x+6=0 6,7,-4 -1,-2,-3 1,2,-3 2,4,6	[De	c. 2021]	
					ANSWE	R KEY					
1.		С	2.	В	3.	A	4.	В	5.	В	
6.		С	7.	D	8.	C	9.	В	10.	С	
11.		Α	12.	В	13.	A	14.	Α	15.	D	
16.		В	17.	A	18.	В	19.	A	20.	C	
21.		С	22.	C	23.	C	24.	A	25.	D	
26.		С	27.	В	28.	D	29.	A	30.	A	
31.		С	32.	С	33.	В	34.	A	35.	D	
36.		B	37.	В	38.	D	39.	В	40.	A	
41		 D	42.	 C	43.	 C	44.	 D	45.	 C	
46			47.	A	48.	C C	49.	D	50.	B	
51		<u> </u>	52	B	53.	D	54	D	55	R	
56		 A	57	B	58	D	59	<u>с</u>	60	<u> </u>	
61		R	62	<u> </u>	63	R	64	R	65	<u> </u>	
66		Δ	67	r c	68	Δ	69	Δ	70		
71		<u>ہ</u> ۲	72	R	73		74	R	75		
76		R	77	<u>с</u>	78	R	79	<u>с</u>	80	<u>л</u> С	
	I	2	<u>, , , ,</u>		9						

	COMPILATION OF PAST YEAR QUESTIONS										
21.	Solv whe	re for x of th ere x – N	ne Inequalit	ies $2 \le \frac{3x-5}{5}$	<u>-2</u> ≤4 020]	24. The region indicated by the shading in the graph is expressed by the inequalities [Dec. 2021]				ng in the ies	
22.	 (A) (B) (C) (D) The inequality (A) (B) (C) 	{5, 6, 7} {3, 4, 5, {4, 5, 6} None common jualities x + Equilate Isoscele Quadril	6} region in t $-y \le 4, x - y$ eral triangle es triangle ateral	the graph $\leq 4, x \geq 2i$ (Jan. 20)	of the s 221]	($ \begin{array}{c} $	$x_{2} \le 2;$ $x_{2} \le 2;$ $x_{2} \ge 4;$ $0, x_{2} \ge 0$ $x_{2} \le 2;$	4 Xi		
23.	 (D) XYZ recr than How ineq (A) (B) (C) (D) 	Square Company uitment as a eight me v can th juality? $3y \ge 8$ $3y \le \frac{x}{8}$ $8y \ge 3$ $8y \le 3$	y has a : it should n (x) to th is fact bo x	policy fo not recruit ree wome e express [Dec. 2	or its more en (y). ed in 021]	(IYODA A KA UDA	$\begin{array}{c} x_{1} \\ x_{2} \\ x_{1} \\ x_{2} \\ x_{2} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\$	$ \begin{array}{l} x_{2} \ge 2, \\ + x_{2} \le 4; \\ 0, x_{2} \ge 0 \\ x_{2} \ge 2; \\ x_{2} \ge 4; \\ 0, x_{2} \ge 0 \\ x_{2} \le 2; \\ x_{2} \ge 4; \\ 0, x_{2} \ge 4; \\ 0, x_{2} \ge 0 \end{array} $			
					ANSWI	ER KEY					
1.		D	2.	D	3.	В	4.	В	5.	Α	
6.		С	7.	В	8.	В	9.	D	10.	С	
11.		D	12.	A	13.	С	14.	D	15.	C	
16.		A	17.	A	18.	B	19.	D	20.	A	
21.		D	22.	В	23.	C	24.	Α			

	COMPILATION OF PAST YEAR QUESTIONS										
(This:	is Vidhy	oday's unique compilat	tion of past attempt	s CA-F/CP1	questi	ons asked under I	Maths/Stats section.)				
			CHAP'	TER – 4			MONG				
		SIMPLE AND COMP	OUND INTEREST		NG AININ	NUTTY APPLICAT	IUNS				
1.	If an find ti	amount doubles at 5 me period?	% p.a. C.I. then [June 2009]	7.	If $P = 5$	= 4000 Rs., A = 4 000 Rs., T = 4 yrs	560, T = 2 yrs. Then , A = ?				
	(A)	16 years			(A)	6400					
	(B)	14 years			(B)	7200	1999				
	(C)	20 years	382362 문화전문		(C)	7400					
	(D)	18 years			(D)	8000					
2.	If effe compe semia	ective interest is 7% ound interest p.a. nnually.	then what is compounded	8.	If th comp annua	ne difference l ound interest at 1 ally for 2 years is	Detween simple & .0% p.a. compounded 11 Rs. then principal				
	(A)	7.109%			(1)	1000					
	(B)	7.243%			(A) (D)	1000					
	(L) (D)	7.122%			(B)	1100					
	(D)	7.07 70			(L)	1200	18. S. (* 1967) 1970 - Die Jahren Barry, 1970 - Die 1970 - Die Jahren Barry, 1970 - Die J				
3.	ا Find less tł	principal if simple intant the principal at 4%	erest is 340 Rs. p.a. for 8 years.		(D)	1500					
	(A)	600		9.	lf a su Rs in	um becomes Rs. 2 4 yrs then rate of	2688 in 3 yrs & 2784				
	(B)	500			N3. III	i yis then face of	[June 2000]				
	(C)	800		HYOD/		F 0/	[Julie 2009]				
	(D)	1000		YA KA UD		5%					
4.	If in 4	4 vrs. the price doub	les then rate of		(B)	8%					
	comp	ound interest is			(C)	6%					
	(A)	18%			(D)	4%					
	(B)	17.5%		10.	If the	e sum doubles	itself in 15 yrs at				
	(C)	18.2%			comp	ound interest the	n in how many years				
	(D)	18.9%				20					
5.	What	is effective interest	rate if rate of		(A)	30 years					
	comp	ound interest is 10% p	.a. compounded		(B)	60 years					
	3 time	es a year?			(C)	50 years					
	(A) (B)	10.24% 10 34%	68526		(D)	45 years	ENG: NO				
	(C)	10.55%		11.	Comp	ound interest or	n certain sum @ 5%				
	(D)	10.78%			for 1 intere	yr is Rs. 25 tl est of 2 yrs at th	hen find out simple ne same rate & sum.				
6.	If an intere	amount double in 5 st, then in how man	yrs, Compound y years it will		(A)	50.25	[Dec. 2009]				
	becon	ne 8 times.			(B)	50	(1)4233(1)				
	(A)	10 years			(C)	51					
	(B)	14 years			(D)	51.5					
	(C)	15 years			(-)						
	(D)	20 years									

- 35. In what time will a sum money double itself at 6.25% p.a. simple interest
 - [Dec. 2013] (A) 15 years
 - **(B)** 20 years 16 years
 - (C) (D)

- 36. If a sum triples in 15 yrs at Simple rate of interest then the rate of interest per annum will be [June 2014]
 - (A) 15%
 - **(B)** 12%
 - (C) 13.3%
 - (D) 14.5%
- 37. The Partners A& B together lent Rs. 3903 at 4% p.a. interest compounded annually. After a span of 7 years. A gets the same amount as B gets after 9 years. The share of A in the sum of Rs. 3903/- would have been.
 - 1875 (A) [June 2014]
 - **(B)** 2028
 - (C) 2130
 - 1940 (D)
- 38. How much amount is required to be invested every year as to accumulate Rs. 6.00.000 at the end of 10th year, if interest is compounded annually at 10% rate of interest? [Given : $(1.1)^{10} = 2.59374$
 - (A) 35430 [June 2014]
 - **(B)** 37380
 - (C) 37650
 - (D) 36144

- 39. A certain sum of money was invested at S.I. for 3 years. If it has invested at rate 7% higher, then the interest have been Rs. 882 more, then the sum is [Dec. 2014]
 - 4400 (A)
 - **(B)** 4200
 - 4500 (C)
 - (D) 4000

- 40. A certain sum of money double itself in 4 years at C.I. In how many years it will become 32 times to itself [Dec. 2014]
 - 8 years (A)
 - **(B)** 12 years
 - (C) 16 years
 - (D) 20 years
- 41. The future value of an annuity of Rs. 1,000 made annually for 5 years at the rate of interest 14% compound annually is

[Dec. 2014, May 2018]

- (A) 6430
- **(B)** 6570
- (C) 6610
- (D) 6715

- 42. A sum money will be doubled itself in 8 years at S.I. In how many years the sum will be tripled itself. [June 2015]
 - (A) 10 years
 - **(B)** 12 years
 - **(C)** 14 years

(D) 16 years

- 43. A sum of 44,000 is divided into 3 parts such that the corresponding interest earned after 2 years. 3 years and 6 years may be equal at the rate of simple interest rate 6% p.a., 8% p.a., & 6% p.a. respectively. Then the smallest part of the sum will be.
 - 9000 (A) [June 2015]
 - **(B)** 8000
 - (C) 6000
 - (D) 10000

- Suppose your mom decides to gift you Rs. 44. 10,000 every year starting from today for the next sixteen years. You deposit this amount in a bank as and when you receive and get 8.5% per annum interest rate compound annually. What is the present value of this money : Give that P (15,0.085) = 8.304236[Dec. 2015]
 - 93042 (A)
 - **(B)** 73042
 - (C) 83042
 - (D) 83542

[June 2009]

- **45.** Number of years a sum becomes 4 times itself at 12% p.a. simple interest is
 - (A) 20 years [Dec. 2015]
 - (B) 25 years(C) 30 years
 - (D) 40 years

- 46. On a certain sum rate of interest @ 10% p.a. SI is Rs. 90 & term is 2 year, Find compound interest for the same. [Dec. 2015]
 - **(A)** 90
 - **(B)** 92
 - **(C)** 94.5
 - **(D)** 98
- **47.** If an amount is kept at Simple Interest, it earns Rs. 600 in first 2 years but when kept at Compound Interest it earns at interest of Rs. 660 for the same period; then the rate of interest and principle amount respectively are. [June 2016, May 2018]
 - (A) 20%, 1500
 - **(B)** 20%, 3000
 - (C) 15%, 3000
 - **(D)** 15%, 1500
- 48. The difference between the simple interest and compound interest on a certain sum of money invested for 2 years at 5% p.a. is Rs. 30. Then the sum. [Dec. 2016]
 - **(A)** 15000
 - **(B)** 12000
 - **(C)** 10000
 - **(D)** 20000

- **49.** If a person lends Rs. 6000 for 4 years and Rs. 8,000 for 3 years at S.I. The total interest earned is Rs. 2400 then the rate of interest is. [Dec. 2016]
 - **(A)** 8%
 - **(B)** 10%
 - **(C)** 6%
 - **(D)** 5%

50. A sum of money amount to Rs. 7803 for one year at the rate of 4% compounded semiannually then the sum invested is

(A)	7000	[Dec. 2016]
(B)	7200	<u>ା</u> ର୍ଥ୍ୟ କ
(C)	7500	2000 2001 2001
(D)	7600	

- **51.** The time by which a sum of money is 8 times of itself if it doubles itself in 15 years interest compounded annually.
 - (A) 42 years(B) 43 years
 - (b) 45 years
 - (C) 45 years
 - **(D)** 46 years
- 52. Paul borrows Rs. 20,000 on condition to repay it with compound interest at 5% p.a. in annual instalment of Rs. 2,000 each. Find the number of years in which the debt would be paid off. [June 2009]
 - (A) 10 years
 - **(B)** 12 years
 - (C) 14 years

(D)

- 15 years
- **53.** Find the present value of an annuity of Rs. 1,000 payable at the end of each year for 10 years. If rate of interest is 6% compounding per annum (given $(1.06)^{-10} = 0.5584$):
 - **(A)** Rs. 7,360
 - **(B)** Rs. 8,360
 - (C) Rs. 12,000
 - (D) None of these

[June 2010]

- 54. The future value of an annuity of Rs. 5,000 is made annually for 8 years at interest rate of 9% compounded annually [Given that $(1.09)^8 = 1.99256$] is _____
 - (A) Rs. 55,142.22 [Dec. 2010]
 - **(B)** Rs. 65,142.22
 - (C) Rs. 65,532.22
 - **(D)** Rs. 57,425.22

VIDHYODAY

COMPILATION OF PAST YEAR QUESTIONS

- 55. Mr. X bought an electronic item for Rs. 1,000. What would be the future value of the same item after 2 years, if the value is compounded semi annually at 22% per annum? [June 2016]
 - Rs. 1,488.40 (A)
 - **(B)** Rs. 1,518.07
 - (C) Rs. 2,008.07
 - (D) Rs. 2,200.00

- 56. The future value of an annuity of Rs. 1,500 made annually for five years at interest rate 10% compounded annually is (Given that $(1.1)^5 = 1.61051$: [June 2017]
 - Rs. 9,517.56 (A)
 - Rs. 9,157.65 **(B)**
 - Rs. 9,715.56 (C)
 - (D) Rs. 9,175.65

- 57. The difference between the Compound interest and Simple interest at 10% per annum for 4 years on Rs. 10,000 is Rs. [June 2017]
 - (A) 650
 - **(B)** 640
 - (C) 641
 - (D) 600

- 58. How much amount is required to be invested every year as to accumulate Rs. 7,96,870 at the end of 10 years, if interest compounded annually at 10% given that A(10, 0.1) = 15.9374?[June 2017]
 - (A) Rs. 40,000
 - **(B)** Rs. 4,50,000
 - (C) Rs. 48,000
 - (D) Rs. 50,000

- 59. If compound interest on any sum at the rate of 5% for two years is Rs. 512.50 then the sum would be: [Dec. 2017]
 - Rs. 3,000 (A)
 - **(B)** Rs. 4,000
 - (C) Rs. 5,000
 - (D) Rs. 6,000

- 60. The effective rate of interest equivalent to the nominal rate of 7% converted monthly:
 - 7.26% [Dec. 2017] (A)
 - **(B)** 7.22% (C) 7.02%
 - (D) 7.20%

- 61. Mr. X invest Rs. 10,000 every year starting from today for next: 10 years suppose interest rate is 8% per annual compounded annually. Calculate future value of the annuity. [May 2018]
 - (A) Rs. 1,56,454.88
 - **(B)** Rs. 1,56,554.88
 - (C) Rs. 1,44,865.625
 - **(D)** None of these
- 62. How much amount is required to be invested every year so as to accumulate Rs. 3,00,000 at the end of 10 years, if interest is compounded annually at 10%?
 - **(A)** Rs. 18,823.65
 - **(B)** Rs. 1,56,554.88
 - **(C)** Rs. 1,44,865.625 (D)

None of these

63. If Rs. 1,000 be invested at interest rate of 5% and the interest be added to the principal every 10 years, than the number of years in which it will amount to Rs. 2,000 is: [May 2018]

(A)
$$16\frac{2}{3}$$
 years

- **(B)** $6\frac{1}{4}$ years
- 16 years (C)
- (D) $6\frac{2}{3}$ years

[May 2018]

64. A person borrows Rs. 5,000 for 2 years at 4% per annual simple interest. He immediately leads to another person at $6\frac{1}{4}$ %. Per annual for 2 years find his gain [May 2018]

in the transaction for year:

- (A) Rs. 112.50
- **(B)** Rs. 225
- Rs. 125 (C)

71.

- 65. If an amount is kept at S.I. it earns an interest of Rs. 600 in first two years but when kept at compound interest it earns an interest of Rs. 660 for the same period, then the rate of interest and principal amount respectively are: [May 2018]
 - 20%., Rs. 1,200 (A)
 - **(B)** 20%, Rs. 1,500

10%, Rs. 1,200

10%, Rs. 1,500

(C)

(D)

(D)

- 66. If Rs. 10,000 is invested at 8% per year compounded quarterly, then the value of the investment after 2 years is:
 - Rs. 11,716.59 (A) [Nov. 2018]
 - **(B)** Rs. 10,716.59
 - (C) Rs. 117.1659

- 67. A bank pays 10% rate of interest compounded annually. A sum of Rs. 400 is deposited in the bank. The amount at the end of 1 year will be [Nov. 2018]
 - Rs. 440 (A)
 - Rs. 439 **(B)**
 - (C) Rs. 441
 - (D) Rs. 442
- 68. The certain sum of money became Rs. 692/in 2 yrs and Rs. 800/- in 5 yrs then the principle amount is _____ [June 2019]
 - Rs. 520 (A)
 - **(B)** Rs. 620

(C)

(D)

Rs. 720

Rs. 820

- 69. A sum of money amount to Rs. 6,200 in 2 years and Rs. 7,400 in 3 years as per S.I. then the principal is [June 2019]
 - Rs. 3,000 (A)
 - **(B)** Rs. 3,500
 - (C) Rs. 3,800
 - (D) None

- 70. A sum was invested for 3 years as per C.I. and the rate of interest for first year is 9%, 2^{nd} year is 6% and 3^{rd} year is 3% p.a. respectively. Find the sum if the amount in three years is Rs. 550? [June 2019]
 - Rs. 250 (A)
 - **(B)** Rs. 300
 - **(C)** Rs. 462.16
 - Rs. 350 (D)
 - $P = Rs. 5,000 R = 15\% T = 4^{1/2} using I =$
 - PTR then I will be 100
 - Rs. 3,375 (A)
 - Rs. 3,300 **(B)**
 - (C) Rs. 3,735
 - **(D)** None

(C)

(D)

- 72. The effective rate of interest does not depend upon [June 2019]
 - Amount of Principal (A)

- **(B)** Amount of Interest
 - Number of Conversion Periods
 - None of these
- 73. A person wants to lease out a machine costing Rs. 5,00,000 for a 10 year period. It has fixed a rental of Rs. 51,272 per annum payable annually starting from the end of first year. Suppose rate of interest is 10% per annum compounded annually on which money can be invested. To whom this agreement is favourable? [June 2019]
 - (A) Favour of Lessee
 - **(B)** Favour of Lessor
 - **(C)** Not for both

- **(D)** Can't be determined
- 74. Let a person invest a fixed sum at the end of each month in an account paying interest 12% per year compounded monthly. If the future value of this annuity after the 12th payment is Rs. 55,000 then the amount invested every month is? [June 2019]
 - (A) Rs. 4,837
 - **(B)** Rs. 4,637
 - (C) Rs. 4,337
 - (D) Rs. 3,337

[June 2019]

		COMP	VILATION OF PA	AST YEA	AR QU	JESTIONS	VIDHYA KA UDAY		
75.	If P i annua	$^{2} = \text{Rs.96}$, and R = ally then P =	8% compounded [Iune 2019]	81.	Find t when	he effective rate of interest is payable	interest at 10% p.a. quarterly.		
	(A)	Rs. 14.000	0		(A)	10.38%	[Nov. 2019]		
	(B)	Rs. 15.000			(B)	5%			
	(C)	Rs 16 000			(C)	5.04%			
	(C) (D)	Rs. 17,000			(D)	4%			
76.	Determine the present value of perpetuity of Rs. 50,000 per month @ rate of interest 12% p.a. is [June 2019]		82.	What when popul year,	What will be the population after 3 years when present population is Rs. 25,000 and population increases at the rate of 3% in I year, at 4% in II year and at 5% in III year?				
	(A)	Rs. 45,00,000			(A)	Rs. 28,119	[Nov. 2019]		
	(B)	Rs. 50,00,000			(B)	Rs. 29,118			
	(L) (D)	Rs. 55,00,000 Rs. 60.00.000	2011 CS 112 296		(C)	Rs. 27,000	日本の日本		
			· · · · · · · · ·		(D)	Rs. 30,000	õx.		
77.	In sin 2,000 the eq intere	mple interest if the and the rate and tin quation $x^2 - 11x + 3$ est is	e principal is Rs. ne are the roots of 0=0 then simple [June 2019]	83.	The v value 10%	value of scooter is after 7 years if rat p.a.	Rs. 10,000 find its e of depreciation is [Nov. 2019]		
	(A)	Rs. 500			(A)	Rs. 4,782.96			
	(B)	Rs. 600			(B)	Rs. 4,278.69			
	(C)	Rs. 700			(C)	Rs. 42,079			
	(D)	Rs. 800	👋 VID	HYOD/	(D)	Rs. 42,000			
78.	78. A man invests Rs. 12,000 at 10% p.a. and 10^{10} p.a. and 10^{10} p.a. for another sum of managest 20% p.a. for another sum of managest 20\% p.a. for				84. SI = 0.125P at 10% p.a. Find time.				
	year.	The total investment	t earns at 14% p.a.		(A)	1.25 years	[Nov. 2019]		
	simpl	e interest the total in	ivestment is:		(B)	25 years			
	(A) (P)	Rs. 8,000	[Nov. 2019]		(C)	0.25 years			
	(в) (С)	Rs. 14,000	2009) 2009) 2009)		(D)	None			
	(D)	Rs. 16,000		85.	Scrap	value of a mach	nine valued at Rs.		
79.	The difference in simple interest of a sum invested of Rs. 1,500 for 3 years is Rs. 18. The difference in their rates is:		interest of a sum		10,00 depre	,000, after 10 eciation at 10% p.a.:	years within [Nov. 2019]		
				(A)	Rs. 3,48,678.44				
	(A)	0.4	[Nov. 2019]		(B)	Rs. 3,84,679.45			
	(B)	0.6			(C)	Rs. 4,00,000			
	(C)	0.8			(D)	Rs. 3,00,000			
80.	(D) Find 10,00	(D) 0.10Find the effective rate of interest on Rs. 10,000 on which interest is payable half		86.	The years princ	The difference between CI and SI for 2 years, is 21. If rate of interest is 5% find principal [Nov. 2019]			
	yearly	y at 5% p.a.	[Nov. 2019]		(A)	Rs. 8,400			
	(A)	5.06%			(B)	Rs. 4,800	E lectric		
	(B)	4%			(C)	Rs. 8,000			
	(C)	0.4% 2%	連然間		(D)	Rs. 8,200	資源		
	(U)	3%		 	()	1.5. 5,200			

- a.

which gives 5% per annum compounded

96. Which of the following statements is True? 101. A stock pays annually an amount of Rs. 10 (assume that the yearly cash flow? Are from 6th year onwards. What is the present identical for both annuities) [Nov. 2020] value of the perpetuity, if the rate of return is 20%? [Nov. 2020] The present value of an annuity due (A) is greater than the present value of (A) 20.1 an ordinary annuity **(B)** 19.1 **(B)** The present value of an ordinary (C) 21.1 annuity is greater than the present (D) 22.1 value of an annuity due (C) The future value of an ordinary 102. A certain sum amounted to Rs. 575 at 5% in annuity is greater than the future a time in which Rs. 750 amounted to Rs. value of an annuity due 840 at 4%. If the rate of interest is simple, The future value of an annuity due is find the sum-[Jan. 2021] (D) equal to future value of (A) 525 an ordinary annuity **(B)** 550 97. Rs. 2,500 is paid every year for 10 years to (C) 515 pay off a loan. What is the loan amount if (D) 500 interest rate be 14% per annum compounded annually? [Nov. 2020] 103. Find the amount of compound interest, if an (A) Rs. 15,847.90 amount of Rs. 50,000 is deposited in a bank **(B)** Rs. 13.040.27 for one year at the rate of 8% per annum compounded semiannually (C) Rs. 14,674.21 (D) Rs. 16,345.11 (A) 3,080 [Jan. 2021] **(B)** 4.080 98. An amount is lent at a nominal rate of 4.5% per annum compounded quarterly. What (C) 5,456 would be the gain in rupees over when 7,856 (D) compounded annually? [Nov. 2020] 104. The population of a town increase by 2% of (A) 0.56 the population at the beginning of the year. 0.45 **(B)** The number of year by which the total (C) 0.076 increases in population would be 40% is: 0.85 (D) (A) 7 years [Jan. 2021] **(B)** 10 years 99. What sum of money will produce Rs. 42,800 as an interest in 3 years and 3 months at (C) 17 years [Nov. 2020] 2.5% p.a. simple interest? (D) 19 years (approx.) (A) Rs. 3,78,000 **(B)** Rs. 5,26,769 Find the future value of annuity of Rs. 1,000 105. made annually for 7 year at interest rate of (C) Rs. 4,22,000 14% compounded annually (Given that (D) Rs. 2,24,000 $1.14^7 = 2.5023$ 100. The ratio of principal and the compound [Jan. 2021] interest value for three years (compounded annually) is 216 : 127. The rate of interest (A) Rs. 10,730.7 is: [Nov. 2020] **(B)** Rs. 5,365.35 (A) 0.1777 (C) Rs. 8,756 **(B)** 0.1567 (D) Rs. 9892.34 (C) 0.1666 0.1587 (D)

- 106. Two equal amounts of money an deposited in two banks each at 15% p.a. fix 3.5 year in the bank and fix 5 years in the either. The difference between the interest amount from the bank in Rs. 144. Find the sum Rs. 620 [Jan. 2021] (A) **(B)** Rs. 640 (C) Rs. 820 Rs. 840 **(D)** 107. The simple on sum at 4% p.a. for 2 years is Rs. 80. Find the CI on the came sum for the same period. [Jan. 2021] (A) Rs. 81.60 Rs. 80.80 **(B)** (C) Rs. 83.20 Rs. 82.30 (D)
- 108.Which is a better investment 9% p.a.
compounded quarterly or 9.1% p.a. simple
interest?[Jan. 2021]
 - (A) 9% compounded
 - **(B)** 9.1% S.T.
 - (C) Both are same
 - (D) Cannot be said
- **109.** The effective rate of interest corresponding to a nominal rate of 7% p.a. compounded quarterly is [Jan. 2021]
 - **(A)** 7.5%
 - **(B)** 7.6%
 - **(C)** 7.7%
 - **(D)** 7.18%
- **110.** Assuming that the discount rate is 7% p.a. how much would pay to receive Rs. 200 growing at 5% annually for ever?
 - **(A)** Rs. 2,500

Rs. 10,000

(B) Rs. 5,000(C) Rs. 7,500

(D)

- 111. A man invested one-third of his capital at 7% one fourth at 8% and the remainder at 10%. If the annual income is Rs. 561. The capital is- [Jan. 2021]
 - (A) Rs. 4,400
 - **(B)** Rs. 5,500
 - (C) Rs. 6,600
 - **(D)** Rs. 5,800

- 112. A sum of money is lent at C.I. Rate 20% p.a. 2 years. It would fetch Rs. 482 more if the interest is compounded half yearly. The sum is: [Jan. 2021]
 - **(A)** Rs. 19,800
 - **(B)** Rs. 19,900
 - (C) Rs. 20,000
 - **(D)** Rs. 20,100

- **113.** Rs. 800 is invested at the end of each month in an account paying interest 6% per year compounded monthly. What is the future value of this annually after 10th payment?
 - (A) Rs. 4,444 [Jan. 2021]
 - **(B)** Rs. 8,756
 - (C) Rs. 3,491
 - **(D)** Rs. 8,151.67

- 114. What 'i' denote the actual rate of interest in decimal, and n denote the number of conversion periods, the formula for computing the effective rate of interest E is given by. [Jan. 2021]
 - (A) $(1+i)^n$
 - **(B)** $(1+i)^n 1$
 - (C) $1 (1+i)^n$
 - (D) $(1+i)^{-n}$

- **115.** The present value of an Annuity immediate
is the same as[Jan. 2021]
 - (A) Annuity regular for (n 1) year plus the initial receipt in the beginning of the period
 - **(B)** Annuity regular for (n 1) years
 - (C) Annuity regular for (n + 1) years
 - (D) Annuity regular for (n + 1) years plus the initial receipt in the beginning of the period.
- **116.** If the desired future value after 5 years with 18% interest rate is Rs. 1,50,000, then the present value (in Rs.) is (Given that $(1.18)^5 = 2.2877$)?

(Give	n that (1.10)	= 2.2877)?
(A)	63,712	[Ju

63,/12	[July 2021]
65,568	
53,712	36672
41,712	

(B)

(C)

(D)

- **126.** A certain sum amounts to Rs. 15,748 in 3
years at simple interest at r% p.a. The same
sum amounts to Rs. 16,510 at (r+2)% p.a.
simple**[July 2021]**
 - **(A)** 10%
 - **(B)** 8%
 - **(C)** 12%
 - **(D)** 6%
- **127.** What is the difference (in Rs.) between the simple interest and the compound interest on a sum of Rs. 8,000 for $2\frac{2}{5}$ years at the

5rate of 10% p.a. when the interest iscompounded yearly?[July 2021]

- **(A)** 136.12
- **(B)** 129.50
- **(C)** 151.75
- **(D)** 147.20
- **128.** The future value of annuity of Rs. 2,000 for5 years at 5% compounded annually isgiven (in nearest Rs.) as:[July 2021]
 - **(A)** 51,051
 - **(B)** 21,021
 - (C) 11,051
 - **(D)** 61,254
- 129. A sum of Rs. x amounts to Rs. 27,900 in 3 years and to Rs. 41,850 in 6 years at a certain rate percent per annum when the interest is compounded yearly. The value of x is: [July 2021]
 - **(A)** 16,080
 - **(B)** 18,600
 - **(C)** 18,060
 - **(D)** 16,800

- **130.**Mr. X wants to accumulate Rs. 50,00,000 at
the end of 10 years. Then how much
amount is required to be invested every
year if interest is compounded annually at
10%? (Given that P(10, 0.10) =
15.9374298)**[Dec. 2021]**
 - (A) Rs. 3,13,726.87
 - **(B)** Rs. 4,13,726.87
 - (C) Rs. 3,53,726.87
 - **(D)** Rs. 4,53,726.87

- 131. Rahul invested Rs. 70,000 in a bank at the rate of 6.5% p.a. simple interest rate. He received Rs. 85,925 after the end of term. Find out the period for which sum was invested by Rahul. [Dec. 2021]
 - (A) 2 years
 - **(B)** 3 years
 - (C) 3.5 years
 - **(D)** 2.5 years

- 132. A company needs Rs. 10,000 in five years to replace as equipment. How much (in Rs.) should be invested now at an interest rate of 8% p.a. is order to provide for this equipment? [Dec. 2021]
 - **(A)** 6,000
 - **(B)** 6,805
 - (C) 10,000(D) 11,000

- 133. R needs money to pay Rs. 5,00,000 in 10 years. He invested a sum in a scheme at 9% rate of interest compounded half-yearly. How much amount (in Rs.) he invested?
 (1.046²⁰ = 2.41171)
 - A UDA(A) 3,07,321 [Dec. 2021] (B) 2,70,321 [Dec. 2021] (C) 2,07,321
 - **(D)** 3,40,321
 - **134.** An amount is lent at R% simple interest for R years and the simple interest amount was one-fourth of the principal amount. Then R is _____ [Dec. 2021]
 - **(A)** 5
 - **(B)** 6
 - (C) 5^{1/2}
 - **(D)** 6^{1/2}

- **135.** A sum of money is put at 20% compound interest rate p.a. At which year the aggregated amount just exceeds the double of the original sum?
 - (A) 6 [Dec. 2021]
 - 5
 - **(C)** 4

3

(B)

(D)

136.	The present value of Rs. 25,000 to be
	received after 10 years at 6% per annum
	compounded annually is Rs
	$(1.06^5 = 1.33823)$ [Dec. 2021]

- (A) Rs. 15,960
- **(B)** Rs. 13,960
- (C) Rs. 11,960
- (D) Rs. 17,960

С

В

132.

131.

136.

緊調

1.	В	2.	С	3.	В	4.	D	5.	В
6.	С	7.	Α	8.	В	9.	D	10.	D
11.	В	12.	В	13.	C	14.	В	15.	D
16.	С	17.	Α	18.	В	19.	Α	20.	С
21.	С	22.	С	23.	В	24.	С	25.	С
26.	D	27.	D	28.	С	29.	Α	30.	В
31.	В	32.	D	33.	В	34.	В	35.	С
36.	С	37.	Α	38.	С	39.	В	40.	D
41.	С	42.	D	43.	В	44.	Α	45.	В
46.	C	47.	Α	48.	VOBA	<i>4</i> 9.	D	50.	С
51.	С	52.	D 🛁	53.	AKAAIDA	<i>,</i> 54.	Α	55.	В
56.	В	57.	С	58.	D	59.	C	60.	В
61.	Α	62.	Α	63.	A	64.	В	65.	В
66.	Α	67.	Α	68.	В	69.	С	70.	С
71.	Α	72.	Α	73.	A	74.	C	75.	В
76.	В	77.	В	78.	В	79.	Α	80.	Α
81.	Α	82.	Α	83.	A	84.	Α	85.	Α
86.	Α	87.	Α	88.	A	89.	В	90.	Α
91.	Α	92.	В	93.	C	94.	В	95.	В
96.	Α	97.	В	98.	C	99.	В	100.	C
101.	Α	102.	D	103.	В	104.	C	105.	Α
106.	В	107.	Α	108.	A	109.	D	110.	D
111.	C	112.	C	113.	D	114.	В	115.	Α
116.	В	117.	В	118.	В	119.	A	120.	Α
121.	D	122.	A	123.	D	124.	В	125.	D
126.	В	127.	Α	128.	С	129.	В	130.	Α

ANSWER KEY

133.

С

134.

А

135.

С

В

		COMP	ILATION OF PA	AST YEA	R QU	JESTIONS	VIDHYODAY
(This i	is Vidhy	oday's unique compil	ation of past attempt	s CA-F/CPT	questi	ons asked under M	aths/Stats section.)
			CHAP PERMUTATION	TER – 5 & COMBIN	IATION	1	
1.	If ${}^{n}C_{18}$	$= {}^{n}C_{12} \operatorname{find} {}^{32}C_{n}$		7.	How	many numbers	are greater than
	(R)	420			40,00	48	II 1, 2, 3, 4 &J.
	(C)	286			(R)	24	
	(C) (D)	250	1999年1995 1月19日日 1月19日日		(C)	96	
		202			(0) (D)	72	
2.	$^{n}P_{3} =$	120 find n?			(2)		
	(A)	8		8.	$^{6}P_{r} =$	24 * 6C _r then r is?	
	(B)	5			(A)	3	
	(C)	7			(B)	4	
	(D)	6			(C)	5	56631645 1138298
3.	In ho	w many ways a com	mittee of a 7 be		(D)	6	
	made wome	from 8 men & 5 wo en are must in the con	omen such that 2 nmittee?	9.	How word	many arrangemen "EXAMINATION"	nts of the letter of be made such that
	(A)	1475			vowe]	ls come together?	
	(B)	1568			(A)	50300	
	(C)	1620		uvon/	(B)	48600	
	(D)	1748			(C)	64800	
4.	How	many necklaces can	be made by 40		(D)	72400	
	differ	ent beads?	, j	10.	In ho	ow many ways 7 and in 4 such that 1	men & 5 women
	(A)	39!			3 wor	nen?	there will be exactly
	(B)	$\frac{39!}{2}$			(A)	140	
	(C)	40!			(B)	35	
	(D)	40!			(C)	14	
	(D)	2			(D)	70	
5.	How 1 of the	many words can be for word LUCKNOW s	ormed from letter	11.	${}^{n}P_{3}$: ${}^{n-1}$	$^{1}P_{2} = 7 : 1 \text{ find } n?$	
	letter	s out of U, C, K should	come together?		(A)	6	
	(A)	720			(B)	7	
	(B)	360			(C) (D)	8 10	
	(C)	1440				10	
	(D)	120		12.	In h	ow many ways	5 Maths book, Biology book be
6.	(2n-1)! = 20n! then n is			arran the Bi	ged so that all Mat ology books are to	hs, all Accounts & all gether
	(A)	5			(A)	8460	-
	(B)	6			(B)	8064	
	(C)	4			(C)	8406	
	(D)	3			(D)	8640	
			1	09			

		COMPIL	ATION OF PA	ST YEA	R QU	ESTIONS	
13.	If 5! <i>x</i>	(x - 1) - 7! = 0, t	$hen \ x =$	19.	${}^{18}C_{r} =$	$^{18}C_{r+2}$, then $^{r}C_{5} =$	[June 2009]
	(A)	$\frac{24}{7}$			(A)	28	
	(R)	48			(B)	42	
	())	7 36			(C)	56	
	(C)	7			(D)	21	TERMANAN AND
	(D)	$\frac{30}{7}$		20.	Numb by 6 c	per of ways of paintin colours is	ng a face of a cube [June 2009]
14.	ways	are / paintings in a ro	om. How many e is a specific		(A)	15	
	painti	ing on either side of 1 pa	inting?		(B)	6	
	(A)	720			(C)	30	
	(B)	360			(D)	18	
	(C)	840		21.	(n+1)	! = 20(n-1)! Find n.	[Dec. 2009]
	(D)	1440			(A)	5	
15.	${}^{n}C_{6} =$	ⁿ C ₈ , find ⁿ P ₃			(B)	4	
	(A)	2184			(C)	3	
	(B)	3024			(D)	2	E18726*2
	(C)	1296		22.	In ho	w many ways lett	ers of the word
	(D)	2914			REGU	LATIONS be arrange	ed so that vowels
16.	In ho	w many ways a comr	nittee of 6 be	IYOD/	alway		[Dec 2009]
	made there	out of 7 boys and 4 are at least there are 2 a	girls such that zirls in it?	A KA UD	(R)	4:×3:	[Dec. 2009]
	(A)	273	<u> </u>		(C)	5!×6!	
	(B)	310			(D)	3!×4!	
	(C)	371		22			h
	(D)	425		23.	forme wome	ed from 4 men & 6 en are twice of man s	women such that elected?
17.	How be ma	many 6 digit telephone	e numbers can		(A)	144	
	(A)	9×9!			(B)	150	atu 3a
	(B)	900000			(C)	154	
	(C)	9×8!			(D)	172	
	(D)	None of these		24.	In ho	w many ways 6 b	ovs & 4 girls be
18.	In ho	w many ways 7 books	be arranged in		arran; togetl	ged in a row so t ner.	that all girls are [June 2010]
	corne	r.	[June 2009]		(A)	4!×6!	
	(A)	60			(B)	4!×7!	जिल्हेल्ल
	(B)	120			(C)	4!×5!	
	(C)	240			(D)	5!×6!	
	(D)	480					

		COMPI	LATION OF PA	ST YEA	R QU	ESTIONS	VIDHYA KA UDAY
37.	In a c and 3 they memb	company there are 7 Engineers. How ma form a Committee, i pers from each field is	CA's, 6 M.B.A.'s any ways can be if there are two ? [June 2012]	43.	A regu no. of (A)	ılar polygon has 44 sides are 11	diagonal then the [June 2013]
	(A)	720	[]]		(B)	12	
	(R)	864	E 200		(C)	9	
	(C)	926			(D)	10	
	(U) (D)	945		44.	In ho	w many ways the l	etter of the word
38.	The]	letter of the word	"VIOLENT" are		"ARTI that v	CLES" can be arran owels occupy even p	nged in a row so laces?
	arrang only. '	ged so that vowels oc The number of permu	cupy even places tations is		(A)	1440	[June 2013]
	(A)	72	[June 2012]		(B)	2880	
	(B)	144			(C)	720	
	(C)	36			(D)	8640	
	(D)	288		45.	If ¹⁵ C _r	$= {}^{15}C_{r+3}$ then r =?	[Dec. 2013]
39.	A mai	n has 3 sons and 6 s	chools within his		(A)	4	
	reach.	. How many ways ca L if No, two of them	n his sons go to		(B)	5	
	schoo	l?	[Dec. 2012]		(C)	6	1998年 1993年1月
	(A)	60			(D)	7	
	(B)	216		46.	In hov	v many ways can a fa	amily consists of 3
	(C)	124	(10) (10) (10) (10) (10) (10) (10) (10)	IYOD/	childr	en have different b	irthdays in a leap
	(D)	120	THE CARLY ID MA	A KA UD	year?	265 D	[Dec. 2013]
40.	If ¹³ C ₆	$+ 2^{13}C_5 + {}^{13}C_4 = {}^{15}C_x$	then x =		(A) (B)	366P ₃	
	(A)	4	[Dec. 2012]		(C)	365 (3	国際法律制度
	(B)	8	E SOSE		(C) (D)	366 (3	
	(C)	6			(2)		
	(D)	3		47.	If 6 til items	mes the number of taken 3 at a time is	permutations of n s equal to 7 times
41.	Numb	er of permutations	can be formed		the Nu	umbers of permutati	ons of (n-1) items
	from the tw	the letter of the wor	d "DRAUGHT", if		(A)	15	[June 2014]
	(4)	720	[Dec 2012]		(R)	18	Danie Zer IJ
	(R) (B)	360			(D) (C)	20	
	(C)	1440			(C) (D)	20	
	(D)	480			(D)	21	
42.	The to	otal number of shake	hands in a group	48.	¹⁰⁰⁰ C ₉₈ be?	$f_{3} = {}^{999}C_{97} + {}^{x}C_{901} $ th [June 2014	en value of x will & May 2018]
	of 10	persons to each other	are		(A)	1000	
	(A)	90	[June 2013]		(B)	98	
	(B)	10!			(C)	97	
	(C)	45			(D)	999	
	(D)	$\frac{10!}{2}$			~ /		
			1	12			

		COMPIL	ATION OF PA	ST YEA	R QU	ESTIONS	VIDHYODAY
60.	In how vacant (A)	many ways 4 member seats in a row. 1400	s can occupy 9 [Dec. 2016]	66.	There girls. 7 in a r never	are 10 students i The number of w ow when any tw come together:	in a class including 3 rays to arrange them yo girls out of three
	(B)	1920			(A)	${}^{8}P_{3} _{\overline{2}}$	[June 2016]
	(C)	2520			(B)	${}^{3}P_{3} 7$	
	(D)	3024			(C)	${}^{8}P_{3} 10$	
61.	Find th the le	ne number of arrangen tters of the word	nents in which 'MONDAY' be		(D)	None of these	
	arrang begin v	ed so that the words with 'M' and do not end	s thus formed with 'N'.	67.	The n section	naximum numbe n of 10 circles wil	r of points of inter l be: [June 2016]
	(A)	720	[June 2009]		(A)	2	
	(B)	120			(B)	20	
	(L) (D)	96 None			(C)	90	
	(D)	None			(D)	180	
62.	In how arrang while?	7 many ways can 17 b ed if 7 of them are blac	illiard balls be ck, 6 red and 4 [Iune 2009]	68.	If ¹⁰ C ₃	$+2.^{10}C_4 + {}^{10}C_5 =$	$= {}^{n}C_{5}$ then value of n
	(A)	4084080	1		ι <u>ς</u>	10	
	(B)	1			(R)	10	E147.43(E1
	(C)	8048040			(D) (C)	11	
	(D)	None of these				12	
63.	Out of	4 gents and 6 ladies,	a committee is	IYOUA		15	
	to be f commi compr	ormed. Find the numb ttee can be formed ises of at least 2 g	er of ways the such that it ents and the	× *69. ⁰⁰	The nu a set anothe	umber of parallelo of six paralle er set of four para	ograms, formed from l lines intersecting llel lines is:
	numbe	er of ladies should at l	east be double		(A)	360	[June 2017]
		04	[Dec. 2009]		(B)	90	
	(A) (B)	132			(C)	180	
	(C)	136			(D)	45	
	(D)	104		70.	If ⁿ P ₁₃	$:^{n+1}P_{12} = 3:4$, the	en the value of 'n'
64.	How n	nany different words of the word "I	can be formed		will be	2:	[Dec. 2017]
					(A)	13	
	(A) (P)	4050	[Dec. 2013]		(B)	15	
	(Б) (С)	5400			(C)	18	
	(D)	4500			(D)	51	
65.	In how of 4 te to inclu	y many ways can a sel achers and 8 students ade at least two teacher	ection of 6 out be done so as rs?	71.	The number of the points straight	umber of triangle oosing the vertic , seven of whic ht line, is:	e that can be formed es from a set of 12 ch lie on the same [May 2018]
	(A)	220	[June 2016]		(A)	185	E SCAEL
	(B)	672			(B)	175	
	(C)	596			(C)	115	
	(D)	968			(D)	105	

		COMPIL	ATION OF PA	ST YEA	AR QU	ESTIONS	
72.	The nu word I come t	umber of words from tl BHARAT, in which B a rogether, is	ne letters of the nd H will never [Nov. 2018]	78.	Three a row no. of	girls and five bo so that no two g ways of this arra	bys are to be seated in irls sit together. Total ngement are:
	(A)	360			(A)	14,400	[Nov. 2019]
	(B)	240			(B)	120	المالان المالي
	(C)	120			(C)	${}^{5}p_{3}$	
	(D)	None of the above			(D)	3!×5!	
73.	The va (A)	lue of N in $\frac{1}{7!} + \frac{1}{8!} = \frac{N}{9}$	is [Nov.2018]	79.	How n help o by 5, digits	many numbers ca of 2, 3, 4, 5, 6, 1 w given that it is are not repeating	an be formed with the which are not divisible a five-digit no. and g?
	(B) (C)	78 89			(A)	600	[Nov. 2019]
	(C) (D)	64			(B)	400	
	(-)				(C)	1200	
74.	Which statem	of the following	is a correct		(D)	1400	· · · · · · · · · · · · · · · · · · ·
	(A)	nn = nn	[]				
		$p_n - p_{n-1}$		80.	How 1 be for	many different gi med from a grou	roups of 3 people can p of 5 people?
	(D)	$p_n - p_{n-2}$			(A)	5	[Nov. 2019]
	(L)	$p_n = p_{n-3}$			(B)	6	E1406E1
	(D)	${}^{n}p_{n} = {}^{n.(n-1)}p_{n-1}$			(C)	10	
75.	If thes guest remain hands	se are 40 guests in a takes a shake hand ning guests. Then the t shake is	party. If each with all the otal number of	1YOD/ 81.	(D) In how at ran are to	9 w many ways can Idom from 6 boy be exactly 2 girls	A people be selected vs and 4 girls if there
	(B)	840			(A)	90	[Nov. 2019]
	(C)	1,560			(B)	360	<u>비양</u> 명비 문화상품성
	(D)	1,600			(U) (D)	92 480	
76.	If ¹¹	${}^{1}C_{x} = {}^{11}C_{2x-4}$ and	$x \neq 4$ than	82.	ⁿ P.: ⁿ	$P_{2} = 2:1$. Find n.	[Nov. 2019]
	the val	ue of ${}^7C_x =$	[June 2019]		(1)	- <u>2</u>	[]
	(A)	20			(A)	7	
	(B)	21			(B)	$\frac{r}{2}$	
	(C)	22			(C)	5	
77	(D) In how	23 v many ways can the c	rew of an eight		(D)	$\frac{2}{7}$	
,,.	member particu and 2 m	er boat be arrange ular of crew can row row on the other side?	ed so that 3 only one side [June 2019]	83.	A frui and 4 fruits	ty basket contain mangoes. How can be made so t	is 7 apples, 6 bananas, many selections of 3 hat all 3 are apples?
	(A) (B)	1,728			(A)	35 ways	[Nov. 2020]
	(C)	164			(B)	120 ways	
	(D)	126			(C)	165 ways	落 唐 祭 御 梁 前
	· · ·		1	 15 	(U)	70 ways	LEIW/WRY

		COMP	ILATION OF PA	ST YEA	AR QU	ESTIONS	
84.	Out of club c teams one gi	7 boys and 4 girls, a of 5 is to be chosen such that each team rl is:	team of a debate . The number of includes at least [Nov. 2020]	89.	There A and perso return	e are ten flight city B. The nu n can travel f n by different	ts operating between city umber of ways in which a from city A to city B and flight is:
	(A)	439			(A)	90	[Jan. 2021]
	(B)	429			(B)	95	
	(C)	419			(C)	80	
	(D)	441			(D)	78	
85.	If ⁿ p	$_{4} = 20 \ ^{n}p_{2}$ where er of permutations, th	p denotes the nen n is:	90.	How forme	many four-di	git odd numbers can be 0. 1. 2. 3. 4. 7 and 8?
	(A)	4	[Nov. 2020]		(A)	150	[Ian. 2021]
	(B)	2	e to series and the series of		(B)	300	[]]
	(C)	5			(C)	120	
	(D)	7				210	
86.	From	a group of 8 men	and 4 women, 4		(D)	210	
	person comm there	ns are to be sele- ittee so that at lea on the committee. In be done?	cted to form a st 2 women are how many ways	91.	In ho of the the vo	w many differ e word 'DETA owels occupy	rent ways can the letters AIL' be arranged so that only the odd positions?
			[100.2020]		(A)	32	[Jan. 2021]
	(A) (B)	168			(B)	36	
	(D) (C)	201			(C)	48	
	(D)	220		IYOD/	(D)	60	
				A KA UD	nc .	$\mathbf{a}^{n}\mathbf{c}$ $\mathbf{b}^{n}\mathbf{c}$	2 [Ian 2021]
87.	Eight	Chairs are numbered n and three men are	from 1 to 8. Two to be seated by	92.	Ե թ +	$-2 C_{P-1} + C_{P-1}$	$_{2} = ?$ [Jan. 2021]
	allowi	ng one chair for	each. First, the		(A)	$^{n+1}C_{P}$	
	wome numbe	n choose the chairs ered 1 to 4 and the	from the chairs n men select the		(B)	$^{n+2}C_{p}$	
	Thom	mbor of possible ar	concompont is		(C)	$\Gamma \Gamma C_{P+1}$	
	(A)	120	[lan. 2021]		(D)	$^{^{n+2}}C_{P-1}$	
	(B)	288	المراجع المراجع	02	1 hug	in and have as	wich as to simultan coucles
	(C)	32		93.	elevat	te two of its s	six branch heads. In how
	(D)	1440			many	ways can the	se elevations take place?
QQ	'n' lou	ake and 'n' corresp	onding kove are		(A)	12	[Jan. 2021]
00.	availa	ble but the actual co	ombination is not		(B)	3	പങ്കില
	known	n. The maximum nun	nber of trials that		(C)	6	
	are n	eeded to assigns t	the keys to the		(D)	15	
	(A)	(n-1)C	[Ian, 2021]	94.	If ⁿ p.	$=20^{n}$ p. ther	n the value of n is given
	(H) (B)	$(n+1)C_2$	[Julii: 2021]	211	by:	$20 P_4$ mor	[July 2021]
	(-)	<u>_n</u>			(A)	n = 5	
	(C)	$\sum_{k=2}^{\infty} (k-1)$			(B)	n = 3	
		$\kappa = 2$			(C)	n = 9	
	(D)	$\sum_{k=2}^{\infty} k$			(D)	n = 8	
		k=2					

ANSWER KEY

1.	A	2.	D	3.	В	4.	В	5.	С
6.	D	7.	Α	8.	В	9.	C	10.	D
11.	В	12.	D	13.	В	14.	D	15.	Α
16.	C	17.	В	18.	C	19.	С	20.	C
21.	В	22.	С	23.	C	24.	В	25.	C
26.	D	27.	С	28.	С	29.	С	30.	С
31.	В	32.	В	33.	В	34.	D	35.	В
36.	В	37.	D	38.	В	39.	D	40.	С
41.	С	42.	С	43.	A	44.	В	45.	С
46.	В	47.	D	48.	D	49.	С	50.	С
51.	Α	52.	D	53.	A	54.	С	55.	С
56.	D	57.	С	58. DH	YODAY	59.	Α	60.	D
61.	С	62.	A	63.	K K A C ^{U D A}	64.	В	65.	В
66.	Α	67.	С	68.	С	69.	В	70.	В
71.	A	72.	В	73.	A	74.	Α	75.	A
76.	В	77.	Α	78.	A	79.	Α	80.	С
81.	Α	82.	A	83.	A	84.	D	85.	D
86.	В	87.	D	88.	C	89.	Α	90.	В
91.	В	92.	В	93.	D	94.	С	95.	Α
96.	A	97.	В	98.	Α	99.	С	100.	C
101.	В	102.	D						

COMPILATION OF PAST YEAR QUESTIONS									
(This is Vidhyoday's unique compilation of past attempts	s CA-F/CPT questions asked under Maths/S	stats section.)							
CHAPT SEQUENCE AND SERIES-ARTHMET 1. If the series is in AP with common difference 2 & T ₁ , T ₃ , T ₇ are in GP find T ₂	TER - 6 FIC AND GEOMETRIC PROGRESSION 6. $1+1/3+1/3^2+=x$ $1+1/4+1/4^2+=y$ find x.	у							
(A) 4 (B) 6 (C) 8 (D) 10 2 If the cariac is on A D T $= {}^{1}$ T $= {}^{1}$ then	(A) 1 (B) $\frac{1}{2}$ (C) 2 (D) $\frac{1}{3}$								
2. If the series is an A.P. $I_p = \frac{1}{q}$, $I_q = \frac{1}{p}$ then, $T_{pq} = ?$ (A) 1 (B) pq (C) p+q (D) $\frac{1}{p+q}$	7. $\sqrt{2}$, $5\sqrt{2}$, $9\sqrt{2}$ find 9th term of (A) $29\sqrt{2}$ (B) $33\sqrt{2}$ (C) $37\sqrt{2}$ (D) None of these	of series.							
 3. Sum of all the integers between 2 & 100 which are divisible by 3 (A) 1430 (B) 1620 (C) 1595 (D) 1683 	8. How many terms of the series $256 + 128 + 64 + \dots$ will give (A) 7 (B) 9 (C) 8 A KA UDA (D) 10 9. If in an AP, T ₇ : T ₁₀ = 5:7	a total of 511							
4. If $k^{2} + k + 1$, $2k^{2} + k \otimes 3k^{2} - 4k + 1$ are in A.P. then K is (A) $\frac{1}{5}$ (B) 1 (C) $\frac{2}{5}$ (D) $\frac{1}{2}$	$T_8: T_{11} = ?$ (A) 6:7 (B) 15:17 (C) 17:23 (D) 21:25 10. $\sum n^2$ is (A) $\frac{n(n+1)}{2}$	[June 2009]							
 5. Divide 144 in 3 parts such that they are in A.P. & the largest is the double of smallest. Find the smallest part [June 2010] (A) 32 (B) 34 (C) 64 (D) 68 	(B) $\frac{n(n+1)(2n+1)}{6}$ (C) $\left[\frac{n(n+1)}{2}\right]^2$ (D) None of these 11. Sum of infinite GP is 15 & sur these term is 45. Find the com (A) $\frac{1}{2}$	n of square of mon ratio. [June 2009]							
1	(B) $\frac{1}{3}$ (C) $\frac{3}{4}$ (D) $\frac{2}{3}$								

12. If first terms of AP is -4 & last term of AP is -4		COMPILATION OF PA	ST YEA	AR QUE	STIONS	VIDHYODAY
140 then sum of its terms is 7171. Find the number of terms. (243): (243): t/*. (243): t/*	12.	If first terms of AP is -4 & last term of AP is	18.	Find the	product of :	
(A) 100 (A) 243 [June 2011] (B) 101 (B) 81 (C) 729 (D) 90 (C) 729 (D) (D) 13. Insert two geometric means between $1/\sqrt{2 k 2}$ (A) 132, 196 (B) 81 (A) $\sqrt{2}, \frac{1}{2}$ (A) 132, 196 (B) 132, 196 (B) $1, \sqrt{2}$ (B) 120, 190 (C) 152, 210 (C) (B) $\frac{1}{2}$ (D) (A) $\frac{1}{2}, 196$ (C) 152, 210 (C) (B) $\frac{1}{2}$ (D) (A) $\frac{1}{2}, 196$ (C) (C		146 then sum of its terms is 7171. Find the number of terms.		(243), (2	243) ^{1/6} , (243) ^{1/36}	∞
$ \begin{bmatrix} 9 & 101 \\ C & 80 \\ D & 90 \end{bmatrix} = \begin{bmatrix} 8 & 81 \\ C & 729 \\ D & 256 \end{bmatrix} = \begin{bmatrix} 728 \\ and 260 \end{bmatrix} = \begin{bmatrix} 728 \\ and 280 \end{bmatrix} = \begin{bmatrix} 788 \\ and 280 \end{bmatrix} $		(A) 100		(A) 2	243	[June 2011]
(C) 80 (C) 729 (D) 90 1.5 Insert two geometric means between (C) 1.7 (A) $\sqrt{2}, \frac{1}{2}$ (A) 1.32, 196 (B) $1, \sqrt{2}$ (B) 1.2, 196 (B) $1, \sqrt{2}$ (B) 1.2, 196 (B) $1, \sqrt{2}$ (C) 72, $\frac{1}{\sqrt{2}}$ (D) None of these (C) 1.4 1.1+1.1+1.1+1.1+ (A) $\frac{9}{2}$ (C) 1.4 1.5 (B) $\frac{1}{2}$ (D) (D) None of the above 15. If $a_{1, a_{2, a_{3}}$ as are in A.P. & $a_{1} = 2$ what should be the common difference such that (a) + a_{2} as a is min. (A) $\frac{9}{7}$ (D) p^{p+1} (B) $\frac{-5}{2}$ (C) $\frac{2}{5}$ (D) $4, 2, 13$ (Dec 2011) (A) $\frac{5}{7}$ (D) $4, 2, 25$ (D) $4, 2, 5$ (D) (B) $\frac{-5}{2}$ (D) $4, 2, 13$ (Dec 2011) (A) $5, 20$ (C) $6, 5, 20$ (C) $6, 5, 20$ (C) $6, 5, 20$ (C) $6, 5, 20$		(B) 101		(B) 8	81	
(D) 90 Lake (D) 256 (D) 256 13. Insert two geometric means between $1/\sqrt{2} \& 2$ (D) 13. Insert two geometric means between $1/\sqrt{2} \& 2$ (A) $\sqrt{2}, \frac{1}{2}$ (D) Insert two arithmetic means between 68 and 260 [June 2011], May 2018] (A) $\sqrt{2}, \frac{1}{\sqrt{2}}$ (D) None of these (A) 132, 196 14. 1-1+1+1+1+1+1+ [Dec 2009] (A) $\frac{9}{2}$ (D) 145, 190 (B) $\frac{1}{2}$ (D) None of the above (D) None of the above (D) $\frac{9}{2}$ (D) </th <th></th> <th>(C) 80</th> <th></th> <th>(C) 7</th> <th>729</th> <th></th>		(C) 80		(C) 7	729	
13. Insert two geometric means between $1/\sqrt{2 \ k \ 2}$ 19. Insert two arithmetic means between 68 and 260 [June 2011, May 2018] (A) $\sqrt{2}, \frac{1}{2}$ (A) $132, 196$ (B) $1, \sqrt{2}$ (B) $120, 190$ (C) $\sqrt{2}, \frac{1}{\sqrt{2}}$ (D) None of these 14. $1-1+1-1+1+1-1+$ [Dec. 2009] (A) 0 (B) $\frac{1}{2}$ (C) $145, 190$ (C) 1 $\frac{1}{2}$ (D) $145, 190$ (D) None of the above (C) $\frac{1}{2}$ (D) $\frac{1}{7^2}$ (D) None of the above (D) $p^{\frac{1}{7}-1}$ [June 2011] (B) $\frac{p^{\frac{1}{7}-1}}{10}$ [June 2011] (A) $\frac{5}{2}$ (C) p^{n+1} [June 2011] (B) $5, 20$ (C) $10, 15$ [June 2011] (B) $5, 20$ (C) $10, 15$ [June 2011] (A) 5 [Due 2011] (A) 5 [Due 2011] (A) $12, 13$ [Dec 2011] [A] $12, 13$ [Dec 2011] [A] $12, 13$ [Dec 2011] [A] 12		(D) 90		(D) 2	256	
(A) $\sqrt{2}, \frac{1}{2}$ (A) $132, 196$ (B) $1, \sqrt{2}$ (B) $120, 190$ (C)(C) $\sqrt{2}, \frac{1}{\sqrt{2}}$ (C) $(52, 210)$ (C)(D)None of these(D) $(145, 190)$ (D)14. $1-1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$	13.	Insert two geometric means between $1/\sqrt{2} \& 2$	19.	Insert t and 260	wo arithmetic me [June 2011,	ans between 68 , May 2018]
(B) $1,\sqrt{2}$ (B) $120, 190$ (C) (C) $\sqrt{2}, \frac{1}{\sqrt{2}}$ (C) $152, 210$ (C) (D) None of these (D) $145, 190$ (D) 14. $1-1+1-1+1-1+1-1+\dots$ [Dec. 2009] (A) $P^{\frac{9}{2}}$ [June 2011] (B) $\frac{1}{2}$ (D) None of the above (D) P^{n+1} P^{n+1} 15. If a_1, a_2, a_3 are in A.P. & $a_1 = 2$ What should ifference such that $a_1 = 2$ are in A.P. & $a_1 = 2$ What should ifference such that $a_1 = 2$ Find the number whose arithmetic mean is 12.5 and geometric mean is 10.5 (B) $-\frac{5}{2}$ (D) $4.2 + 2.3$ [Dec. 2011] (B) $-\frac{5}{2}$ (D) $4.2 + 2.5$ $-\frac{10}{2}$ (B) $-\frac{5}{2}$ (D) $4.2 + 2.5$ $-\frac{10}{2}$ (B) $-\frac{5}{2}$ (D) $4.2 + 2.5$ $-\frac{10}{2}$ (B) $-\frac{2}{2}$ (D) $4.2 + 2.5$ $-\frac{10}{2}$ (B) $-\frac{2}{2}$ (D) $4.2 + 2.5$ $-\frac{10}{2}$ (B) $-\frac{2}{2}$ (D) $4.2 + 2.5$ $-\frac{10}{2}$ (B) <th></th> <th>(A) $\sqrt{2}, \frac{1}{2}$</th> <th></th> <th>(A)</th> <th>132, 196</th> <th></th>		(A) $\sqrt{2}, \frac{1}{2}$		(A)	132, 196	
(C) $\sqrt{2}, \frac{1}{\sqrt{2}}$ (C) $152, 210$ (D) None of these 20. Geometric Mean of P, P ² , P ³ P ⁿ will be: 14. $1-1+1-1+1-1+$ [Dec. 2009] (A) $p^{\frac{n}{2}}$ [June 2011] (A) 0 (B) $\frac{1}{2}$ (C) $p^{\frac{n+1}{2}}$ [June 2011] (B) $\frac{1}{2}$ (C) $p^{\frac{n+1}{2}}$ (D) p^{n+1} (D) None of the above 721 Find the number whose arithmetic mean is 10. p^{n+1} 15. br the common difference such that price (a_{1+a_2}) a_3 is min. (A) $12, 13$ [Dec. 2011] (A) $\frac{5}{2}$ (D) $4, 2, 13$ [Dec. 2011] (A) $\frac{5}{2}$ (D) $4, 2, 5$ 400 40 $12, 13$ [Dec. 2011] (A) $\frac{5}{2}$ (D) $\frac{-2}{3}$ (D) $4, 25$ 400 5 16. $1+4/5+7/5^2+10/5^3+, \infty^0$ [June 2010] (B) 7 402 5 60 7 60 7 7 60 7 7 7 60 </th <th></th> <th>(B) $1,\sqrt{2}$</th> <th></th> <th>(B)</th> <th>120, 190</th> <th></th>		(B) $1,\sqrt{2}$		(B)	120, 190	
(b) None of these (c) 145, 190 If x_1, y_2 (d) None of these 20. Geometric Mean of P, P2, P3 Pa will be: 14. 1-1+1-1+1-1+1-1+ [Dec. 2009] (A) $p^{\frac{2}{5}}$ [June 2011] (A) 0 (B) $\frac{1}{2}$ (C) p^{a} (D) (C) 1 (C) p^{a} (D) p^{a+1} (D) (D) None of the above (D) p^{a+1} (D) p^{a+1} (D) 15. If a_1, a_2, a_3 are in A.P. & $a_1 = 2$ what should be the common difference such that p^{a} p^{a+1} (D) p^{a+1} (D) (A) $\frac{5}{2}$ (D) $\frac{5}{2}$ (D) $4.2, 13$ [Dec. 2011] (A) $\frac{5}{2}$ (D) 4.25 (D) 4.25 (D) (D) $-\frac{23}{5}$ (D) 4.25 (D) 4.25 (D) (B) $\frac{5}{2}$ (D) 4.25 (D) 4.25 (D) (D) $-\frac{23}{58}$ (D) 7 (C) 6 (D) 8 <		(C) $\sqrt{2}, \frac{1}{2}$		(C)	152, 210	
14. $1.1+1-1+1-1+1-1$ [Dec. 2009] (A) $P^{\frac{1}{2}}$ [June 2011] (A) 0 (B) $\frac{1}{2}$ (C) $P^{\frac{1}{2}}$ [June 2011] (B) $\frac{1}{2}$ (C) $P^{\frac{1}{2}}$ [June 2011] (C) $P^{\frac{1}{2}}$ [June 2011] (B) $\frac{p^{\frac{1}{2}}}{2}$ (C) $P^{\frac{1}{2}}$ [June 2011] (C) $P^{\frac{1}{2}}$ [June 2011] (B) $\frac{2}{2}$ (C) $P^{\frac{1}{2}}$ [June 2010] (A) 12, 13 [Dec. 2011] (B) $\frac{5}{2}$ (D) $\frac{7}{2}$ (D) 4, 25 (C) 10, 15 (D) $\frac{-2}{5}$ (D) 4, 25 (C) 10, 15 (D) (A) $\frac{2}{2}$ (D) $\frac{-2}{5}$ (D) 4, 25 (C) 10, 15 (D) (A) $\frac{2}{2}$ (D) $\frac{-2}{5}$ (D) 4, 25 (D) 10, 15 (D)		(D) None of these		(D)	145, 190	
14. $1-1+1-1+1-1+1-1+$ [Dec. 2009] (A) $P^{\frac{n}{2}}$ [June 2011] (A) 0 (B) $\frac{1}{2}$ (C) P^{n} (C) P^{n} (C) P^{n} (D) P^{n+1} (D) $P^{$			20.	Geometr	ric Mean of P, P ² , P ³	P ⁿ will be:
(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) None of the above 15. If a_1, a_2, a_3 are in A.P. & $a_1 = 2$ What should be the common difference such that we ($a_{1+} a_2$) a_3 is min. (A) $\frac{5}{2}$ (A) $\frac{5}{2}$ (C) 12, 13 [Dec. 2011] (A) $\frac{5}{2}$ (C) 10, 15 (C) 10, 4, 25 (B) $-\frac{1}{2}$ (D) 4, 25 (C) 10, 4, 25 (D) $-\frac{2}{5}$ (D) 4, 25 (D) 4, 25 (C) $\frac{3}{5}$ (D) 4, 2, 5 (D) 4, 25 (B) $-\frac{2}{5}$ (D) 4, 25 (D) 4, 25 (C) $\frac{3}{5}$ (D) 5, 20 (D) (D) 5 (B) $-\frac{2}{5}$ (D) 4, 25 (D) 4, 25 (D) (A) $\frac{23}{29}$ (D) (D) 8 (D) 8 (D) (B) $\frac{35}{5}$ (D) 8 (D) 8 (D) (D) (D) (D)	14.	$1-1+1-1+1-1+1-1+\dots$ [Dec. 2009]		(A) I	$p\frac{n}{2}$	[June 2011]
(B) $\frac{2}{2}$ (C)1(C)1(C) p^n (D)None of the above(C) p^n 15.If a_1 , a_2 , a_3 are in A.P. & $a_1 = 2$ What should be the common difference such that $p(a_1 + a_2)$ a_3 is min.Yata way are in the number whose arithmetic mean is 12.5 and geometric mean is 10.(A) $\frac{5}{2}$ (A)12, 13[Dec. 2011](A) $\frac{5}{2}$ (C)10, 15(C)(B) $-\frac{5}{2}$ (C)10, 15(C)(D) $\frac{2}{3}$ (D)4, 25(C)16. $1+4/5+7/5^2+10/5^3+oo$ [June 2010](A)5(B) $\frac{3}{48}$ (C) $\frac{3}{48}$ (D)(D) $\frac{2}{3}$ (D)8(C)(D) $\frac{2}{3}$ (D)8(C)17.If Sum (S_n) of 'n' terms of an Arithmetic Progression is (2n ² +n). What is the difference of its 10 ⁿ and 1 ⁿ term?(A)22000(A)40[June 2011](B)22500(C)23500(B)38(C)36(C)24500				(B) 1	$D^{\frac{n+1}{2}}$	
(C)11(D)None of the above(D) p^{n+1} 15.If a_1 , a_2 , a_3 are in A.P. & $a_1 = 2$ What should be the common difference such that $a_1^{(n)}$ ($a_1 + a_2$) a_3 is min.(A)12.1 and geometric mean is 10.(A) $\frac{5}{2}$ (A)12.1 3[Dec. 2011](A) $\frac{5}{2}$ (C)10.15(B) $-\frac{5}{2}$ (D)4.25(C) $\frac{2}{5}$ (D)4.25(D) $-\frac{7}{2}^{-5}$ (D)4.25(A) $\frac{23}{29}$ (D)(A)(B) $\frac{35}{48}$ (D)(C) $\frac{36}{16}$ (D)(D) $\frac{23}{23}$ (D)(D) $\frac{23}{23}$ (D)(D) $\frac{23}{35}$ (D)(A) 40 [June 2011](B) 32500 (D)(C) 36 (D)(D) 30		(B) $\frac{1}{2}$		(C)	p ⁿ	
 (b) None of the above 15. If a₁, a₂, a₃ are in A.P. & a₁ = 2 What should be the common difference such that we (a₁₊ a₂) a₃ is min. (A) 5/2 (B) -5/2 (C) 2/5 (C) 2/5 (C) -7/5 (D) -7/5 (E) /li>		(C) 1		(D)	p ⁿ⁺¹	
15. If a_1, a_2, a_3 are in A.P. & $a_1 = 2$ What should be the common difference such that $a_1 = 2$ (A) $a_1 = 2$, 13 (Dec. 2011) (A) $\frac{5}{2}$ (A) $\frac{5}{2}$ (B) $-\frac{5}{2}$ (C) $\frac{2}{5}$ (D) $-\frac{3}{5}$ 16. $1+4/5+7/5^2+10/5^3+\infty$ [June 2010] (A) $\frac{23}{29}$ (B) $\frac{35}{16}$ (D) $\frac{23}{58}$ (C) $\frac{35}{16}$ (D) $\frac{23}{58}$ (C) $\frac{35}{58}$ (A) 40 (D) 23.00 (A) $40.00000000000000000000000000000000000$		(D) None of the above	21	- Find the	number whose ar	rithmetic mean is
be the common underence such that $(a_{1+} a_{2}) a_{3}$ is min. (a) $\frac{5}{2}$ (b) $\frac{-5}{2}$ (c) $\frac{2}{5}$ (c) $\frac{2}{5}$ (d) $\frac{-2}{5}$ (e) $\frac{-2}{5}$ (f) $\frac{-2}{5}$ (f) $\frac{-2}{5}$ (g) $\frac{-2}{5}$ (h) $\frac{-2}{5}$ (h) $\frac{-2}{5}$ (h) $\frac{23}{29}$ (h) $\frac{23}{16}$ (h) $\frac{23}{58}$ (h) $\frac{23}{59}$ (h) $\frac{23}{59}$ (h) $\frac{24}{500}$ (h) $\frac{24}{500}$ (h) $\frac{24}{500}$ (h) $\frac{24}{500}$	15.	If a_1 , a_2 , a_3 are in A.P. & $a_1 = 2$ What should be the common difference such that	IYOD/	12.5 and	l geometric mean is	s 10.
(A) \$\frac{1}{2}\$ (B) \$\frac{1}{2}\$ (C) \$\frac{2}{5}\$ (D) \$\frac{2}{5}\$ (D) \$\frac{2}{5}\$ (D) \$\frac{2}{5}\$ (A) \$\frac{2}{3}\$ (D) \$\frac{2}{5}\$ (D) \$\frac{2}{2}\$ (B) \$\frac{3}{3}\$ arithmetic means between "a" and 22 is 42, then "a" is (Dec. 2011] (A) \$\frac{2}{3}\$ (B) \$\frac{3}{2}\$ (B) \$\frac{3}{3}\$ (B) \$\frac{3}{3}\$ (B) \$\frac{3}{3}\$ (B) \$\frac{3}{3}\$ (B) \$\frac{3}{3}\$ (C) \$\frac{3}{5}\$ (D) \$\frac{2}{3}\$ (D) \$\frac{2}{3}\$ (D) \$\frac{2}{3}\$ (D) \$\frac{2}{3}\$ (D) \$\frac{2}{3}\$ (A) \$\frac{2}{1}\$ (D) \$\frac{2}{3}\$ (A) \$\frac{2}{2}\$ (B) \$\frac{2}{2}\$ (A) \$\frac{2}{2}\$ (A) \$\frac{2}{2}\$ (A)<		$(a_{1+} a_2) a_3$ is min.	IA KA UD	(A)	12, 13	[Dec. 2011]
(C) $\frac{2}{2}$ (C) $10, 15$ (B) $\frac{-2}{5}$ (C) 3 $10, 15$ (D) $\frac{-2}{5}$ (D) $4, 25$ 16. $1+4/5+7/5^2+10/5^3+\infty$ [June 2010](A) $\frac{23}{29}$ (A) $\frac{23}{29}$ (C) 60 (B) $\frac{35}{48}$ (C) 35 (D) $\frac{23}{58}$ (C) 60 17.If Sum (S _n) of 'n' terms of an Arithmetic Progression is $(2n^2+n)$. What is the difference of its 10^{16} and 1^{18} term?(C) 36 (A) 40 [June 2011](B) 325 (C) 36 (D) 30 120 120		(A) $\frac{5}{2}$		(B)	5, 20	esse
(b) -2 (D) 4, 25 (C) -2/5 (D) -2 (D) 2/5 (D) -2 16. 1+4/5+7/5 ² +10/5 ³ +∞ [June 2010] (A) 5 (B) 2 (B) 2 (B) 2		-5		(C)	10, 15	
(C) $\frac{2}{5}$ (D) $\frac{-2}{5}$ 16. 1+4/5+7/5 ² +10/5 ³ +∞ [June 2010] (A) $\frac{23}{29}$ (B) $\frac{35}{48}$ (C) $\frac{35}{16}$ (D) $\frac{23}{58}$ 17. If Sum (S _n) of 'n' terms of an Arithmetic Progression is (2n ² +n). What is the difference of its 10 th and 1 st term? (A) 40 (D) 38 (C) 36 (D) 30				(D)	4, 25	
(D) $\frac{-2}{5}$ and 22 is 42, then "a" is[Dec. 2011]16. $1+4/5+7/5^2+10/5^3+∞$ [June 2010](A) $\frac{5}{23}$ (B) 7(C) 6(A) $\frac{23}{29}$ (C) $\frac{35}{16}$ (C) $\frac{35}{16}$ (D) 8(D) $\frac{23}{58}$ (C) $\frac{35}{58}$ (C) $\frac{35}{58}$ (C) $\frac{35}{58}$ (C) $\frac{35}{58}$ 17. If Sum (S _n) of 'n' terms of an Arithmetic Progression is $(2n^2+n)$. What is the difference of its 10 th and 1 st term?(A) 40(June 2011](B) 38(C) 36(C) 36(C) 23500(C) 23500(D) 30(C) 36(C) 24500(C) 24500		$(C) = \frac{1}{5}$	22.	If sum o	of 3 arithmetic me	ans between "a"
16. 1+4/5+7/5²+10/5³+∞ [June 2010] (A) 23/29 (B) 7 (A) 23/29 (B) 35/48 (C) 35/16 (C) 35/16 (C) 35/16 (C) 35/36 (C) 35/38 (C) 35/38 17. If Sum (Sn) of 'n' terms of an Arithmetic Progression is (2n²+n). What is the difference of its 10 th and 1 st term? (A) 22000 [Dec. 2011] (B) 38 (C) 36 (C) 36 (C) 23500 (C) 23500 (D) 30 (C) 36 (C) 36 (C) 24500 (C) 24500		(D) $\frac{-2}{5}$		and 22 i	s 42, then "a" is -	[Dec. 2011]
(A) $\frac{23}{29}$ (B) $\frac{35}{48}$ (C) $\frac{35}{16}$ (D) $\frac{23}{58}$ 17. If Sum (S _n) of 'n' terms of an Arithmetic Progression is $(2n^2+n)$. What is the difference of its 10 th and 1 st term? (A) 40 (June 2011] (B) 38 (C) 36 (D) 30	16.	$1+4/5+7/5^2+10/5^3+\infty$ [June 2010]		(A) :	5	
(H) 29 (B) $\frac{35}{48}$ (C) $\frac{35}{16}$ (D) $\frac{23}{58}$ 17. If Sum (S _n) of 'n' terms of an Arithmetic Progression is (2n ² +n). What is the difference of its 10 th and 1 st term? (A) 40 (D) 38 (C) 36 (D) 30		(A) $\frac{23}{23}$		(B) /	((
 (b) 44 (c) 35/16 (d) 23/58 17. If Sum (S_n) of 'n' terms of an Arithmetic Progression is (2n²+n). What is the difference of its 10th and 1st term? (A) 40 (I) 30 (B) 38 (C) 36 (D) 30 (C) 36 (D) 30 (C) 36 (D) 30 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36 (C) 36		29			0	
 (C) 16 (D) 23/58 17. If Sum (S_n) of 'n' terms of an Arithmetic Progression is (2n²+n). What is the difference of its 10th and 1st term? (A) 40 [June 2011] (B) 38 (C) 36 (D) 30 120 23. If each month Rs. 100 increases in any sum then find out the total sum after 10 month, if the sum of first month is Rs. 2,000 (A) 22000 [Dec. 2011] (B) 22500 (C) 23500 (D) 24500 				(D)	D	
 (D) ^{1/3}/₅₈ 17. If Sum (S_n) of 'n' terms of an Arithmetic Progression is (2n²+n). What is the difference of its 10th and 1st term? (A) 40 [June 2011] (B) 38 (C) 36 (D) 30 		(C) $\frac{16}{23}$	23.	If each r then fin	nonth Rs. 100 incr d out the total sur	eases in any sum
17. If Sum (Sn) of 'n' terms of an Arithmetic Progression is (2n ² +n). What is the difference of its 10 th and 1 st term? (A) 40 [June 2011] (B) 22500 [Dec. 2011] (A) 40 [June 2011] (D) 24500 [Dec. 2011] [Dec. 2011] (B) 38 [Dec. 2011] (D) 24500 [Dec. 2011] (D) 30 [Dec. 2011] (D) 24500 [Dec. 2011]		(D) $\frac{25}{58}$		if the su	m of first month is	Rs. 2,000
Progression is (2n ² +n). What is the difference of its 10 th and 1 st term? (B) 22500 (C) 23500 (A) 40 [June 2011] (C) 24500 (D) 24500 (D) 30 (D) 120 (D) 120	17.	If Sum (S_n) of 'n' terms of an Arithmetic		(A) 2	22000	[Dec. 2011]
(A) 40 [June 2011] (B) 38 (C) 36 (D) 30 [June 2011]		Progression is $(2n^2+n)$. What is the difference of its 10^{th} and 1^{st} term?		(B)	22500	
(h) (h) (h) (h) (B) 38 (D) 24500 (C) 36 (D) 24500		(A) 40 [June 2011]		(C) 2	23500	
(C) 36 (D) 30		(B) 38		(D) 2	24500	
(D) 30		(C) 36				
120		(D) 30				
			.20			

		COMPILATION OF PA	AST YEA	AR QU	JESTIONS	
24.	The sum of $(A) = 255$	all two digit odd numbers is	30.	In an sum (A.P. the commof n terms is 49.	non difference is 2 and . Find n if 7 th term is 13
	(\mathbf{R}) 233			(A)	10	[Dec. 2012]
	(b) 243			(B)	8	 635360
	(C) 247			(C)	9	
	(D) 240			(D)	7	
25.	If 5 th term product of f	n of a G.P. is (3) ^{1/3} , then the first nine terms is [Dec. 2011]	31.	If the term	sum of n terms is	$s is 2n^2 + 5n$ then is nth [Dec. 2012]
	(A) 27			(A)	4n+3	
	(B) 9			(B)	4n-3	
	(C) $\sqrt[3]{3}$			(C)	2n+3	
	(D) 3 ⁹			(D)	2n-3	3百法规注 回245级
26.	The sum of A.P. is 8. Fin the progres	f the third and ninth term of an nd the sum of the first 11 term of sion. [Dec. 2011]	32.	The f 2 and	irst term of G.P I sum to infinity	P. whose second term is r is 8 will be
	(A) 40			(A)	3	[Dec. 2012]
	(B) 41	(a):942(a)		(B)	4	
	(C) 44			(C)	5	
	(D) 48			(D)	6	
27.	In an A.P. in term and term by 1	f the 4 th term is 3 times the first 7 th term exceeds twice the 3 rd then the values of a and d are	33. HYODA YA KA UE	In an differ	A.P. If $S_n = 3n$ rence is '6' then 2	$n^2 - n$ and its common first term is [June 2013]
	respectivel	y. [June 2012]		(B)	1	G-2026
	(A) 3, 4			(C)	3	
	(B) 4, 3			(D)	5	
	(C) 2, 3		34	In an	A P if the sum	of 4 th & 12th terms is '8'
	(D) 3, 2		54.	then	sum of first 15 t	term is
28.	If the 8 th te	rm of an A.P. is 15 then the sum		(A)	75	[June 2013]
	of first 15 to	erm is [June 2012]		(B)	50	
	(A) 144 (B) 160			(C)	48	
	(\mathbf{B}) 109 (\mathbf{C}) 225			(D)	60	r an
	(D) 361		35.	There AM is	e are 'n' AMs b s 27 then 'n' = _	etween 7 & 71 and 5 th [June 2013]
29.	Find the	e sum of the series		(A)	14	
	$2, \frac{1}{y}, \frac{1}{y^2}, \frac{1}{y^3}$	∞ given that y > 2 is		(B)	16	
	(A) $\frac{y}{2-y}$	[June 2012]		(C)	15	
	(B) $\frac{y}{x}$			(D)	20	
	y-2					
	(C) $\frac{y}{y-2}$					
	(D) $\frac{y}{2y-2}$		121			
			121			

VIDHYODAY

	COMPILATION OF PAST YEAR QUESTIONS										
58.	The log x	sum of n terms + $\log \frac{x^2}{y} + \log \frac{x^3}{y^2} + \dots$ $n \int (x)$	of the series is [June 2016]	63.	A pe instalı forme instalı entire	rson pays Rs. nents, each instali r by Rs. 5. Th nent is Rs. 100. In amount be paid?	975 in monthly ment is less than e amount of I st what time will the [May 2018]				
	(A)	$\frac{1}{2} 2 \log \left(\frac{1}{y} \right) + \log x$	ку		(A)	26 months					
		Γ			(B)	15 months	താണം				
	(B)	$\frac{n}{2} \ln \log xy + \log \left(\frac{x}{y}\right)$			(C)	Both (A) and (B)					
					(D)	18 months					
	(C)	$\frac{n}{2} \left[n \log \left(\frac{x}{y} \right) - \log x \right]$		64.	If the and it term i	sum of n terms of a s common differenc s:	an AP is (3n ² – n) e is 6, then its first [May 2018]				
	(D)	$\frac{\pi}{2} \ln \log \left(\frac{\pi}{y} \right) + \log x$	y 💷 🕄 🖓 👘		(A)	3					
			L		(B)	2					
59.	The s $+(1)$	um of n terms of the se + $3 + 5$ + is	ries $1 + (1 + 3)$		(C)	4					
	1 (1	n(n+1)(2n-1)	June 2017 J		(D)	1					
	(A)	6		65	If the	Dth torm of an AD	is 'a' and the ath				
	(B)	$\frac{n(n+1)(n+2)}{6}$		05.	term i	s 'p', then its r th terr	n is				
		n(n+1)(2n+1)			(A)	p+q-r	[Nov. 2018]				
	(C)	$\frac{n(n+1)(2n+1)}{3}$		HYOD/	(B)	p+q+r					
	(D)	None of these		YA KA UD	(C)	p-q-r					
60.	The stimes	sum of first 20 terms of the sum of first 10 te	of a GP is 1025 rms of same GP		(D)	p-q					
	then	$\sqrt{2}$	[June 2017]	66.	The 3	rd term of a G.P. is	$\frac{2}{3}$ and the 6 th term				
	(A) (B)	2			is $\frac{2}{91}$, then the 1 st term i	S				
	(C)	2√2	思ジョ		(A)	6	[Nov. 2018]				
	(D)	$\frac{1}{2}$			(B)	$\frac{1}{2}$					
61.	The v	alue C such that a, –3, b,	5, c are in A.P. is:			3					
	(A)	-7	[June 2017]		(C)	9	· · · · · · · · · · · · · · · · · · ·				
	(B)	1			(D)	2					
	(C) (D)	13 9		67.	The su is 52. '	ım of the series –8, The number of term	–6, –4,n terms is n is				
62.	The s	sum of all numbers be which are divisible by	etween 100 and 11 will be:		(A)	11	[Nov. 2018]				
	(A)	44550	[Dec. 2017]		(B)	12					
	(B)	66770			(C)	13					
	(C)	55440			(D)	10					
	(D)	33440		24							

	COMPILATION OF PAST YEAR QUESTIONS										
78.	If the	AM and GM of two nu	mbers is 6.5 and	84.	In a	geometric pro	gression the 3 rd and 6 th				
	6 the	no.'s are:	[Nov. 2019]		terms	s are resp	ectively 1 and $-\frac{1}{8}$.				
	(A) (D)	3 and 2			The f	first term (a)	and common ratio are				
	(в) (С)	9 and 16			respe	ectively.	[Jan. 2021]				
	(C) (D)	None			(A)	4 and $\frac{1}{2}$					
79.	If AM 3.2, r	l and HM for two nur espectively. GM will be	nbers are 5 and		(B)	4 and $\frac{-1}{4}$					
	(A)	20	[Nov. 2019]		(C)	4 and $\frac{-1}{2}$					
	(B)	16				2					
	(C)	4			(D)	4 and $\frac{1}{4}$	THE MORE AND				
	(D)	5		85.	The s	sum of three	numbers in a geometric				
80.	Three	e numbers in G.P. with	h their Sum 130		progr	ression is 28.	When 7, 2 and 1are				
	and t	heir product 27,000 ar	e:		third	numbers r	respectively, then the				
	(A)	10, 30, 90	[Nov.2020]		result	ting number	s are in arithmetic				
	(B)	90, 30, 10			the of	riginal three n	umbers? [July 2021]				
	(L) (D)	(A) and (B) both			(A)	510					
	(D)	10, 20, 30	EIRSACS.		(B)	456					
81.	The whos	20^{th} term of arithme	etic progression	IYOD/	(C)	400					
	(A)	118	[Nov. 2020]	A KA UD		330					
	(B)	136		86.	The r $9 +$	number of terr must be	ns of the series: $5 + 7 +$ taken so that the sum				
	(C)	178			may l	be 480.	[July 2021]				
	(D)	210			(A)	20					
82.	Divid	e 69 into 3 parts whic	h are in A.P. and		(B)	10					
	are s	uch that the product o	of first two parts		(C) (D)	15 25					
	(A)	20 23 26	[100.2020]	~							
	(B)	21, 23, 25	•• ***•	87.	If the	sum of 'n' ter	ms of an AP (Arithmetic n^2 the fifth term is				
	(C)	19, 23, 27			Progr	ession) is 2	[July 2021]				
	(D)	22, 23, 24			(A)	20					
02	The	nth torma of	the corrige		(B)	50					
83.	3 + 7	$1 + 13 + 21 + 31 + \dots$	is		(C)	18					
			[Jan. 2021]		(D)	25					
	(A)	4n - 1		88.	If the	sum and proc	luct of three numbers in				
	(B)	$n^2 + 2n$	പക്ഷം		G.P. a of the	e series is	[Dec. 2021]				
	(C)	$n^2 + n + 1$			(A)	6					
	(D)	$n^{3}+2$			(B)	4					
					(C)	8					
			1	26	(D)	16					

	VIDHYODAY					
89.	The s term i (A) (B) (C) (D)	um of series 7 + 14 + is: 1071 971 1171 1271	21 + to 17 th [Dec. 2021]	91.	The largest value $\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^n} < 0.998$ (A) 9 (B) 6 (C) 7	of n for which is [Dec. 2021]
90.	The s The s (A) (B) (C) (D)	um of first n terms an eries is: 8, 14, 20, 26, 8, 22, 42, 68, 22, 68, 114, 8, 14, 28, 44,	AP is 3n ² +5n. [Dec. 2021]		(D) 8	

ANSWER KEY

1.	В	2.	A	3.	D	4.	С	5.	Α
6.	C	7.	В	8.	В	9.	С	10.	В
11.	D	12.	В	13.	В	14.	В	15.	В
16.	С	17.	C	18.	С	19.	A	20.	В
21.	В	22.	C	23.	D	24.	C	25.	Α
26.	С	27.	D	28.	С	29.	C	30.	D
31.	Α	32.	В	33.	Α	34.	D	35.	C
36.	Α	37.	С	38.	В	39.	В	40.	В
41.	С	42.	В	43.	С	44.	D	45.	C
46.	В	47.	Α	48.	В	49.	Α	50.	D
51.	С	52.	C	53.	В	54.	Α	55.	D
56.	В	57.	В	58.	D	59.	Α	60.	В
61.	D	62.	Α	63.	В	64.	В	65.	Α
66.	Α	67.	С 🛁	68.		69.	D	70.	В
71.	С	72.	Α	73.	С	74.	Α	75.	Α
76.	С	77.	C	78.	В	79.	C	80.	C
81.	В	82.	Α	83.	С	84.	C	85.	D
86.	Α	87.	C	88.	D	89.	Α	90.	Α
91.	D								

	COMPILATION OF F	PAST YEAR QUESTIONS	VIDHYODAY
13.	If $x = 1, 2, 3 Y = 4, 5, 6 \text{ on } a \rightarrow b \text{ mapping}$ $f(1) = 4, f(2) = 5, f(3) = 6 \text{ find } f^{-1}(x)$ (A) $x+3$ (B) $3-x$ (C) $x-3$ (D) $\frac{x+3}{2}$	19. If $A = \{1, 2, 3, 4, 5\}, B = C = \{(x,1), (y, 2), (y, 3), (z, x, A), A\}$ (A) A function (B) A relation (C) Not a function (D) None of these	{x, y, z, k} then)} is
14.	x ² + x - 1 = f(x), 4f(x) = f(2x) find x (A) $\frac{2}{3}$ (B) $\frac{3}{2}$ (C) $\frac{-4}{3}$ (D) $\frac{-3}{2}$	20. $A = \{x, x^2 - 3x + 2 = 0\},\$ $B = \{x, x^2 + 4x - 12 = 0\}$ what is $B - A = ?$ (A) $\{-6, 2\}$ (B) $\{2\}$ (C) $\{-6\}$ (D) $\{-6\}$	[June 2010]
15.	If there are total 40 people, out of which 25 know oracle, 28 know java & 7 know none Languages then how many people know both the languages. (A) 18 (B) 22 (C) 20 (D) 15	21. If the relation is defined as $1/x$ the value of A will be (A) All real number (B) All integers (C) All real number except 0 22. $F(x) = x + 1, g(x) = x^2 + 1.$	s $A \rightarrow R$ as $f(x) =$ [June 2010] ept 0 fog $(-2) = ?$
16.	What is $[(A \cup B) - B] \cap C$ (A) $A \cap C$ (B) $(A - B) \cap C$ (C) $(A - C) \cap B$ (D) $A - B$	(A) 4 (B) 6 (C) 8 (D) 10 23. If $f(x - 1) = x^2 - 4x + 8$ fin	d f (x + 1) =?
17.	Domain of function $y = \sqrt{x - a}$ is (A) $[a, \infty)$ (B) (a, ∞) (C) $(-\infty, a)$ (D) $(-\infty, a]$ F(x) = 2x + 3 then f(2x) - 2f(x) + 3 is (A) 1 [Dec. 2009] (B) 0	(A) x^2 (B) $x^2 - 4$ (C) $x^2 + 4$ (D) $x^2 + 1$ 24. There are 40 students, 30 o English, 25 of them passed of them passed in both. Assu- student has passed at lease How many student passed but no in Method	f them passed in in Maths and 15 uning that every t in one subject. in English only
	(D) 0 (C) 2 (D) 3	but no in Maths? (A) 15 (B) 10 (C) 12 (D) 14 130	[June 2011]

	COMPILATION OF PAST YEAR QUESTIONS										
36.	The number of elements in range of constant function isIn range of [Dec. 2012](A)Zero(B)Two(C)One(D)Infinite	42.	The range of a relation $\{(1, 0), (2, 0), (3, 0), (4, 0), (2, 0), (3, 0), (4, 0), (4, 0), (4, 0), (4, 0), (4, 0), (4, 0), (4, 0), (5, 0), (6,$	0), (0, 0)} is [June 2014]							
37.	If $f(x) = x + 2$, $g(x) = 7^x$ then gof $(x) =$ (A) $7^x + 2$ [June 2013] (B) $7 (x+2)$ (C) 7^{x+2} (D) None of these	43.	 (D) {0, 1, 2} There were 200 employ which 150 were ma employees were 160 ou married. What was the unmarried employees? (A) 20 	yees in an office in arried. Total male t of which 120 were number of female							
38.	If A = {1, 2, 3} then the relation R = {(1, 1), (2, 3), (2, 2), (3, 3), (1,2)} on A is: (A) Reflexive [June 2013] (B) Symmetric (C) Transitive (D) Equivalence	44.	(A) 20 (B) 10 (C) 5 (D) None of these $A = \{2, 3\}, B = \{4, 5, 3 \\ A \times (B \cap C)$	}, C = {5, 6} then [Dec. 2014]							
39.	Of the 200 candidates who were interviewed for a position at call center, 100 had a two wheeler, 70 had a credit card and 140 had a mobile phone. 40 of them had both a two wheeler and a credit card, 30 had both a credit card and mobile phone, 60 had both a two wheeler and a mobile phone and 10 had all the three. How many candidates had none of them? [Dec. 2013]	IYOD/ a ka ud 45.	(A) {(2, 5) (3, 5)} (B) {(3, 4) (4, 5)} (C) {(2, 4) (4, 5)} (D) {(3, 4) (5, 6)} F(x) = $\frac{x}{x-1}$, then $\frac{f(\frac{x}{y})}{f(\frac{y}{x})}$	Dec. 2014]							
	 (A) 20 (B) 10 (C) 30 (D) 0 		(A) $\frac{-y}{x}$ (B) $\frac{-x}{y}$ (C) $\frac{y}{x}$								
40.	$F(x) = (a - x^{n})^{\frac{1}{n}}, a > 0 \text{ and } n \text{ is positive}$ integer then $f[f(x)] =$ [Dec. 2013] (A) a^{n} (B) x^{n} (C) a (D) x	46.	(D) $\frac{x}{y}$ If N is the set of all natures set of all even natural methods defined By $f(x) = 2x, x$ [Dec. 2014, June 2015 & (A) One – one	Tal numbers, E is the umbers and f: $N \rightarrow E \in N$ then f is May 2018]							
41.	In a class of 50 students, 35 opted for maths, 37 opted for commerce. The number of such students who opted for both maths and commerce is [June 2014] (A) 12 (B) 2 (C) 22 (D) 15		 (B) Onto (C) One-one, onto (D) Into 								

		ESTIONS	VIDHYODAY				
59.	For a	ny two sets A and B, , where A' n liment of the set A	, A∩(A'UB)= represent the [Dec. 2010]	64.	If f(x)	$=\frac{x^2-25}{x-5}$, then f(5)	is [Dec. 2013]
	(A) (B) (C) (D)	A ∩ B A ∪ B A' ∪ B None of these		65	 (A) (B) (C) (D) 	0 1 10 Not defined = {1 2 3} and B = {	6473 Then the
60.	If f:F g:R- then f (A)	$R \rightarrow R, f(x) = x + 1,$ $\rightarrow R g(x) = x^{2} + 1$ $\log(-2)$ equals to 6	[Dec. 2010]		relatio (A) (B) (C)	function from A to Function from B to Both A and B	A District (June 2014)
61.	(B) (C) (D) If A⊂ true	5 –2 None B, then which one of	the following is [Dec. 2010]	66.	(D) If S = {(1, 1) and	Not a function {1, 2, 3} then the relat), (2, 2), (1, 2), (2, 1)}	tion is symmetric [Dec.2014]
	(A) (B) (C) (D)	$A \cap B = B$ $A \cup B = B$ $A \cap B = A'$ $A \cap B = \phi$		IYOD/ A KA UD 67.	(A) (B) (C) (D) Let A	Reflexive but not the Reflexive as well as Transitive but not r Neither transitive n be the set of squ	transitive eflexive or reflexive ares of natural
62.	If f($(x-1) = x^2 - 4x + 8$, the second s	hen $f(x+1) =$ [Dec. 2010]		numb	ers and let $x \in A$, $y \in$	A then [June 2016]
	(A) (B) (C) (D)	$x^{2} + 8$ $x^{2} + 7$ $x^{2} + 4$ $x^{2} - 4x$			(A) (B) (C) (D)	$X + Y \in A$ $X - Y \in A$ $\frac{x}{Y} \in A$ $xy \in A$	
63.	If f($x) = \log\left(\frac{1+x}{1-x}\right), \text{ ther}$	$f\left(\frac{2x}{1+x^2}\right) \text{ is}$ [June 2013]	68.	The f(x)=	range of function = $\frac{x}{x^2+1}$ is:	f defined by [June 2017]
	(A) (B) (C) (D)	f(x) 2f(x) 3f(x) -f(x)			(A) (B)	$\{x: \frac{-1}{2} < x < \frac{1}{2}\}$ $\{x: \frac{-1}{2} \le x < \frac{1}{2}\}$	
			1	34	(C) (D)	$\{x: \frac{1}{2} \le x \le \frac{1}{2}\}\$ $\{x: x > \frac{1}{2} \text{ or } x < \frac{-1}{2}\}$	}

ANSWER KEY

1.	A	2.	В	3.	С	4.	D	5.	C
6.	A	7.	Α	8.	В	9.	D	10.	С
11.	В	12.	D	13.	С	14.	В	15.	С
16.	В	17.	Α	18.	В	19.	С	20.	С
21.	С	22.	В	23.	С	24.	A	25.	В
26.	D	27.	В	28.	Α	29.	В	30.	В
31.	В	32.	С	33.	С	34.	В	35.	В
36.	С	37.	С	38.	Α	39.	В	40.	D
41.	С	42.	В	43.	В	44.	A	45.	В
46.	С	47.	В	48.	В	49.	С	50.	В
51.	В	52.	С	53.	Α	54.	Α	55.	В
56.	В	57.	A 🛁	58. IDMY	KAAJDA	59.	В	60.	Α
61.	Α	62.	С	63.	В	64.	D	65.	D
66.	С	67.	D	68.	С	69.	A	70.	С
71.	Α	72.	В	73.	В	74.	A	75.	С
76.	A	77.	В	78.	A	79.	D	80.	A
81.	D	82.	Α	83.	A	84.	С	85.	С
86.	В	87.	С	88.	С	89.	Α	90.	С
91.	В	92.	C	93.	В	94.	D	95.	Α
96.	D	97.	C						

	COMPILATION OF PAST YEAR QUESTIONS									
(This is V	Vidhyo	day's unique compilati	on of past attempts	s CA-F/CPT	questi	ons asked under Maths	/Stats section.)			
		S	CHAPT TATISTICAL DESC	FER – 8 CRIPTION	OF DA	ЪТА				
1. D ((((2. h	Diagran on vari (A) (B) (C) (D)	n for monthly house ous items can be repre Bar graph Line graph Pie-chart Rectangular ban graph of person Mr. A 10,00	hold expenses esented as	7.	Ogive (A) (B) (C) (D) For a	e is useful in calculating Quartile Median Both (A) & (B) None of these classification to be ade	[June 2010]			
M (. (((Mr. C which s (A) (B) (C) (D)	II,000, Mr. D 5,000, I series Individual Discrete Inclusive Exclusive	Mr. E 75,00 is		 (i) (i) (ii) (i) (iii) (i) (A) (B) 	Classes should be exhau Classes should be unam defined Only (ii) Both (i) & (ii)	istive ibiguously			
3. V (. (Which (A) (B) (C)	of the following is a sta Ram is 50 years old Height of Ram is 5'6" a and Hari 5'3" and 5'4" Height of Ram is 5'6" a 90 kg Sale of A was more tha	and of Shyam respectively, and weight is	9. IYODA a ka udi	(C) (D) Data (A) (B) (C)	Both (ii) & (iii) All of three collected from internet Primary Data Secondary Data Statistical Data	is [Dec. 2010]			
4. T (. (.	Гhe mi (A) (B)	d value of Class are kno Class length Class interval	own as [June 2009]	10.	(D) The p called	Time Series point where the two og l 1 st Quartile	ines intersect is [June 2011]			
5. If	(D) If we p than" c will be	Class marks Class size lot two points "less th on frequency distributi	an" and "more ton then graph [Dec. 2009]	11	(B) (C) (D)	2 nd Quartile 3 rd Quartile 4 th Quartile	rmed as:			
() () ()	(A) (B) (C) (D)	Histogram Pie-chart Frequency Curve Ogine			(A) (B)	[June 2011] Freq.of class Class Marks Freq.of class Class width	& 17, Dec. 2017]			
6. H (. ((Histogr (A) (B) (C) (D)	am helpful in finding AM GM Mode Median	[Dec. 2009]		(C) (D)	Freq.of class Total freq. None of these				

	COMPILATION OF P	AST YE	AR Q	UESTION	ÍS		HYODAY	
12.	The Chronological classification of data are classified on the basis of: [June 2011] (A) Size	17.	For a data on frequency distribution of weights 70, 73, 49, 57, 56, 44, 56, 71, 65, 62, 60, 50, 55, 49, 63 and 45 if we assume class length as 5, the number of class intervals will be					
			WIII	be		[Dec.	2012]	
	(C) Time 255743		(A)	5				
			(B)	0		[]		
13.	Arrange the following dimension wise: Pie- diagram, Bar-diagram and Cubic diagram. [Dec. 2009 & June 2011]		(C) (D)	8	8			
	(A) PD, BD, CD	18.	An e	exclusive seri	es is?	[Dec.	2012]	
	(B) BD, PD, CD		(A)	In which	lower lim	nit is not in	ncluded	
	(C) PD, CD, BD		(B)	In which	upper lin	nit is not i	ncluded	
	(D) CD, PD, BD		(C)	In which limits are	both upp included	er and lov l	ver	
14.	The frequency of class 20-30 in the following data is[Dec. 2011]		(D)	In which lower lim	both upp lits are no	er and ot include		
Cum Free	Class0-1010-2020-3030-4040-50nulative quency513283438	19.	A p follo	oie diagram owing data	used t	o repres [June	ent the 2013]	
	(A) 28	Soι	urce	Customers	Excise	Income Tax	Wealth Tax	
	(B) 13 (C) 6	Reve	nue in	120	180	240	180	
	(D) 15		The	central angle	es correst	 oonding te) income	
15.	Cost of sugar in a month under the heads		tax and wealth tax.					
	Raw Materials, labour, diect production and others were 12 20 35 and 23 units		(A)	(120°, 90	°)			
	respectively. What is the difference		(B)	(100°, 90°) (120°, 100°)				
	between the central angle for the larges and the smallest components of the cost of		(C)					
	sugar? [June 2012]		(D)	None of t	hese	_		
	(A) 85°(B) 90°	20.	The lowe	difference er limit of a	upper limit and led:			
	(C) 92°		(A)	Class wid	th	[Dec.	2013]	
	(D) 100°		(B)	Class size	•	Ģ		
16.	Data given below refers to marks gained by		(C)	Class leng	gth			
Class	a group of students [June 2012]		(D)	All of the above			19422945	
C.F.	15 38 65 84 100 Find the number of students getting more	21.	If th 24, _	If the class intervals are 10-14, 15-19, 20-24, Then the first class				
	than 30 marks.		(A)	10-14		[Dec.	2013]	
	(A) 65		(B)	9.5-14.5				
	(B) 184		(C)	9-15				
	(C) 35		(D)	None of t	hese			
	ע) 04	140						
22.The following data related to the marks of
groups of students[June 2014]

Marks	No. of students
More than 70%	7
More than 60%	18
More than 50%	40
More than 40%	60
More than 30%	75
More than 20%	100

How many students have got marks less than 50%.

- **(A)** 40
- **(B)** 25
- **(C)** 60
- **(D)** 50
- 23.TodrawHistogramthefrequencydistribution should be[June 2014]
 - (A) Inclusive type
 - **(B)** Exclusive type
 - (C) Inclusive and Exclusive type
 - (D) None of the above

24. The "less than" Ogive is of what shape

- (A) U-shaped curve [June 2014]
- (B) J-shaped curve
- (C) S-shaped curve
- (D) Bell-shaped curve
- 25. The most appropriate diagram to represent 5 year plan outlay of India in different economic sectors is [Dec. 2014]
 - (A) Pie diagram
 - (B) Histogram
 - (C) Line diagram
 - **(D)** Frequency polygon
- **26.** For construction of Histogram the class intervals of frequency distribution is
 - (A) Equal [Dec. 2014]
 - (B) Unequal
 - (C) Either Equal or Unequal
 - (D) None

- 27. 100 persons are divided into number of male female and employed/unemployed it refers to [Dec. 2014]
 - (A) Cardinal data
 - (B) Ordinal data
 - (C) Spatial data
 - (D) Temporal data
- **28.** If the fluctuations in the observed values are very small as compared to the size of the items, it is presented by **[Dec. 2014]**
 - (A) Z Chart
 - (B) Ogive Chart
 - (C) False Base Line
 - (D) Control Chart
- **29.** The number of observations between 150 and 200 based on the following data is [June 2015]

- 44. The primary rules that should be observed in classification
 - (i) As far as possible, the class should be of equal width
 - (ii) The classes should be exhaustive
 - (iii) The classes should be unambiguously defined

Then which of the following is correct

(A)	Only (i) and (ii)	[June 2010]
(B)	Only (ii) and (iii)	निक्छन
(C)	Only (i) and (iii)	
(D)	All (i), (ii) and (iii)	部姓
Mode	e can be obtained from	[Dec. 2010]
(1)	Frequency polygon	

- Frequency polygon (A)
 - **(B)** Histogram
 - Ogive (C)

45.

- All of the above (D)
- 46. The statistical measure computed from the sample observations alone have been termed as [Dec. 2010]
 - (A) estimate
 - **(B)** parameter
 - (C) statistic
 - attribute (D)
- 47. The Graphical representation by which median is calculated is called **[Dec. 2011]**
 - (A) **Ogive Curve**

(C)

(D)

(D)

(C)

(D)

Frequency Curve (B) Line diagram

Histogram

- 48. Which of the following is not a two dimensional diagram? [Dec. 2011]
 - (A) Square diagram
 - **(B)** Line diagram
 - Rectangular diagram (C)
 - Pie-chart
- 49. From which graphical representation, we can calculate partition values?

None of the above

- (A) Lorenz curve [June 2012]
- **(B)** Ogive curve Histogram

- 50. Curve obtained by joining the points whose x coordinates are the upper limits of the class intervals and y coordinates are the corresponding cumulative frequencies is [June 2015] called.
 - (A) **Frequency Polygon**
 - **(B)** Frequency curve
 - **(C)** Histogram
 - (D) Ogive

51. Find the number of observation between 250 and 300 from the following data:

Value more than:	200	250	300	500
No. of observation	56	38	15	0

[Dec. 2015]

(B) 23 (C) 15

38

(D) None of the above

52. For constructing a histogram the class intervals of a frequency distribution must be of the following type: [Dec.2016]

> (A) Equal

(A)

- **(B)** Unequal
- (C) Equal or Unequal
- (D) None of these
- Profits made by XYZ Bank which is a blue 53. chip company in different years refer to:
 - (A) An attribute [Dec. 2016]
 - **(B)** A discrete variable
 - (C) A continuous variable
 - **(D)** None of these
- 54. [Dec. 2016] Mode of presentation data
 - Textual presentation (A)
 - **(B)** Tabulation
 - (C) **Oral presentation**
 - (D) (A) and (B)

			CO	MPIL	ATIO	N OF PA	AST	YEA	R QI	UESTI	ONS			A KA UDAY
55.	The po and gr	oint of i eater th	ntersect an ogive	ion of l curve g	ess thai gives us	n ogive :			Data hims	are saic elf is re	l to be _ esponsib	if le for t	the inve	stigator ction of
	(A)	Mean			[June 2	2017]			the d	lata.			[Nov.2	2018]
	(B)	Mode				凝回			(A)	Prim	ary data			
	(C)	Media	n						(B)	Seco	ndary da	ata	2 2	1999 - C
	(D)	None o	of the ab	ove	Ö)			(C)	Mixe data	ked of primary and secondar ta			lary	
56.	Freque constr	ency o ruction o	lensity f	is u	sed in [May 2	n the 2 018]		_	(D)	None	of the a	bove		
	(A)	Histog	ram				6	1.	A su	ioning	graph of tota	for re	presenti sub n	arts in
	(B)	Ogive							statis	stics is:			[Nov.	2018]
	(C)	Freque	ency pol	ygon					(A)	A Pie	chart			
	(D)	None v	when the	e classes	s are of				(B)	A pic	tograph			
		unequ	al width						(C)	An og	give			
57.	Divide	d bar ch	art is co	onsidere	ed for				(D)	Histo	gram			68952
					[May 2	2018]	6	2.	The	number	of tin	nes a p	articula	r items
	(A)	Compa a varia	ring difi ble	ferent c	ompone	ents of			occu	rs in a cl	ass inte	rval is c	alled its:	:
	(B)	The re	lation of	fdiffere	nt				(A)	Mear	1		[Nov.	2018]
	(-)	compo	nents to	the tab	ole 🕵				(B)	Frequ	uency			
	(C)	(A) or	(B)				uvr	n n	(C)	Cum	ulative f	requenc	y Ka	
	(D)	(A) an	d (B)			VIDH	1 8 8 % 1 8 8 %	5 U D	(D)	None	e of the a	bove		EX-CEN
58.	The fo	llowing	frequen	cy distr	ibution		6	3.	An o	give is a	graphic	al repre	sentatio	n of
	v.	12	17	24	36	45							[Nov.	2018]
	л.	12	17	24	- 30	45			(A)	Cum	ulative f	requenc	y distrik	oution
	F:	2	5	3	8	9			(B)	A fre	quency	distribu	tion	
	is clas	sified as			[Nov. 2	2018]			(C)	Ungr	ound da	ta	25 15	ERAC Sector
	(A)	Contin	uous dis	stributio	on 🛃				(D)	None	of the a	bove		Boones.
	(B)	Discre	te distril	bution	38) D	900 C	6	4.						
	(C)	Cumul	ative fre	equency	distrib	ution		Cla	ss	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50
	(D)	None o	of the ab	ove]	Frequ	ency	4	6	20	8	3
59.	Histog graphi	ram i ically the	is use e value c	eful to of	o det [Nov.2	ermine 018]			For t	the class	s 20-30	. Cumul	ative fre	equency
	(A)	Arithm	netic me	an					is:				[Nov.	2018]
	(B)	Media	n						(A)	10			_	
	(C)	Mode				10 B			(B)	26				
	(D)	None o	of the ab	ove		521-15 			(C)	30				
60.									(D)	41				r

		COMPIL	ATION OF PA	ST YEA	R QU	ESTIONS	VIDHYODAY
65.	Whic	h of the following graph	is suitable for	72.	Statis	tics cannot deal with	data.
	cumu	lative frequency distrib	ution?		(A)	quantitative	[Nov.2020]
	(A)	Ogive	[June 2019]		(B)	qualitative	
	(B)	Histogram			(C)	textual	
	(C)	G.M			(D)	undetailed	
	(D)	A.M		72	Swoot	mass of a swoot dish is:	[Nov 2020]
66.	Histo	gram can be shown as	[June 2019]	73.	(4)	Attribute	[1107.2020]
	(A)	Ellipse			(R)	Discrete variable	
	(B)	Rectangle				Continuous variable	
	(C)	Hyperbola				Variable	
	(D)	Circle			(D)	variable	
67		Series is continuous	[lune 2019]	74.	Censu	s reports are used a	as a source of
07.	(4)	Open ended	Dune 2017]		(4)	_ uate. Secondary	[100.2020]
	(A) (P)	Evelusivo			(A) (P)	Drimary	E 14772
	(b) (C)	Class and ad			(B) (D)	Prinary Organiza	
						Organize	
	(U)	Unequal can intervals			(U)	Confidential	
68.	Ogive	e graph is used for findin	g	75.	Types	of cumulative frequen	cies are:
	(A)	Mean	[June 2019]	13. <i>1 (</i> 5. 75. 1	(A)	1	[Nov. 2020]
	(B)	Mode		1700/	(B)	2	
	(C)	Median	· · · · · · · · · · · · · · · · · · ·	IA KA UD	(C)	3	
	(D)	None			(D)	4	
69.	Histo	gram is used for finding		76.	You a	re an auditor of a firm	n and the firm
	(A)	Mode	[June 2019]		earns	a profit of Rs. 67,000) you stated to
	(B)	Mean			This is	s type of statistics	S.
	(C)	First quartile			(A)	Descriptive	[Nov.2020]
	(D)	None			(B)	Detailed	निर्देशन
70	The o	ranhical representation	of cumulative		(C)	Non detailed	
, 01	frequ	ency distribution is calle	ed.		(D)	Inferential	
	(A)	Histogram	[Nov. 2019]	77	The	are used usually	when we wants
	(B)	Historiagram			to exa	amine the relationship	between two
	(C)	Ogive			variał	oles.	[Nov. 2020]
	(D)	None			(A)	Bar Graph	
71.	The a	average of salaries in a	factory is Rs.		(B)	Pie Chart	
	47,00 saları	0. The Statement tha	t the average		(C)	Line Chart	
	عداما ی (۵۱	Descriptive statics	[1107. 2020]		(D)	Scatter Plot	
	(R)	Inferential					
	(C)	Detailed					
	(D)	Undetailed					
			1	45			

		COMPIL	ATION OF PA	AST YEA	AR QU	JESTIONS	VIDHYODAY
78.	Wher criter classi	n data are classified ac rion, then it is c ification.	cording to one alled [Nov. 2020]	84.	The descr (A)	left part of a table iption of rows is called. Caption	providing the [Jan. 2021]
	(A)	quantitative			(B)	Box – head	
	(B)	qualitative			(C)	Stub	
	(C)	simple			(D)	Body	
	(D)	factored	ELEXACT.	05	Mode	can be obtained from	
79.	A bar	chart is drawn for	[Jan. 2021]	05.		Eroquoncy polygon	[lan 2021]
	(A)	Continuous data	1940619		(B)	Histogram	Dan. 2021]
	(B)	Nominal data			(C)	Ogive	
	(C)	Time series data			(D)	All of the above	
	(D)	Comparing different	components	86.	Most provi	of the Commonly use de a.	ed distributions [Ian. 2021]
80.	A tab	ular presentation can be	e used for		(A)	Bell – Shaped	
			[Jan. 2021]		(B)	U Shaped	
	(A)	Continuous series dat			(C)	J – Shaped Curve	
	(B)	Nominal data			(D)	Mixed Curve	
	(C)	Time series data for l	onger period	87.	Whic	h of the following is a	suitable for the
	(D)	Primary data			graph frequ	ical representation o ency distribution?	f a Cumulative [Jan. 2021]
81.	A var know	riable with qualitative o	haracteristic is	IYOD/	(A)	Frequency polygon	63666
	(A)	Quality Variable	VIDH	YA KA UD	(B)	Histogram	
	(B)	An attribute			(C)	O give	
	(C)	A discrete variable			(D)	Ple chart	
	(D)	A continuous variable		88.	Swee	tness of sweet dish is.	[Jan. 2021]
02	The	an and an aiston of	r of data can be		(A)	An Attribute	
82.	verifi	ed by	[Jan. 2021]		(B) (C)	A discrete variable	
	(A)	Scrutiny			(C) (D)	A variable	
	(B)	Internal Checking					1
	(C)	External Checking		89.	simila	Means separating iter ar characteristics grou	ping them into
	(D)	Double Checking			vario	us classes:	[July 2021]
83.	From	a histogram one canno	ot compute the		(A) (B)	Classification Editing	
	(A)	Mode	[Jan. 2021]		(C)	Separation	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
	(R)	Standard deviation			(D)	Tabulation	
	رس) (C)	Median		90.	In g	graphical representat	tion of data,
	(D)	Mean			ideog	raphs are also called as	::[July 2021]
	()		-		(A) (P)	Picto-graphs	
					(B) (C)	Symmetry graphs	
					(D)	Pictograms	

- A graph that uses vertical bars to represent 91. data is called a: [July 2021]
 - (A) Line graph
 - **(B)** Scatter plot
 - (C) Vertical graphs
 - (D) Bar graph
- 92. In a graphical representation of data, the largest numerical value is 4 the smallest numerical value is 25. If classes desired are 4 then which class interval is: [July 2021]
 - **(A)** 45
 - 5 **(B)**
 - 20 (C)
 - (D) 7.5
- 93. Frequency density of a class interval is the ratio of [July 2021]
 - Class frequency to the total (A) frequency
 - **(B)** Class length to class frequency
 - (C) Class frequency to the cumulative frequency

Frequency of that class interval to (D) the corresponding class length

- 94. There were 200 employees in an office in which 150 were married. Total male employees were 160 out of which 120 were married. What was the number of female unmarried employees? [July 2021]
 - (A) 30
 - **(B)** 40
 - (C) 50
 - (D) 10
- 95. Data collected on religion from the census reports are: [July 2021]
 - (A) Primary data
 - Unclassified data **(B)**
 - (C) Sample data
 - (D) Secondary data

147

96. In a study about the male and female students of Commerce and Science departments of a college in 5 years, the following data's were obtained:

[Dec. 2021]

1995	2000
70% female students	75% female students
65% read Commerce	40% read Science
20% of male students read Science	50% of female students read Commerce
3000 total No. of students	3600 total No. of students

After combining 1995 and 2000 if x denotes the ratio of female commerce students to female Science student and y denotes the ratio of male commerce student to male Science student, then

- (A) $\mathbf{x} = \mathbf{y}$
- **(B)** x > y
- (C) x < y
- (D) $x \ge y$

- 97. A National Institute arranged its students data in accordance with different states. This arrangement of data is known as
 - (A) **Temporal Data**

[Dec. 2021]

- **(B) Geographical Data**
- (C) **Ordinal Data**
- **(D) Cardinal Data**
- 98. A student marks in five subject S1, S2, S3, S4 and S5 are 86, 79, 90, 88 and 89. If we need to draw a Pie chart to represent these markes, then what will be the Central angle for S3? [Dec. 2021]
 - 103.2° **(A)**
 - **(B)** 75°
 - (C) 105.6°
 - 94.8° (D)

(A)

99. Ogive curves cannot be used to determine

- [Dec. 2021]
- **(B)** Median

Mean

- **(C)** Mode
- (D) Range

100. The following data relate to the marks of a group of students:

Marka	Below	Below	Below	Below	Below
Marks	10	20	30	40	50
No. of	15	20	65	04	100
students	12	30	05	04	100

How many students got marks more than 30? [Dec. 2021]

- **(A)** 65
- **(B)** 50
- **(C)** 35
- **(D)** 43
- **101.** The following data relate to the marks of 48 students in Statistics:

56	10	54	38	21	43	12	22
48	51	39	26	12	17	36	19
48	36	15	33	30	62	57	17
5	17	45	46	43	55	57	38
43	28	32	35	54	27	17	16
11	43	45	2	16	46	28	45

What are the frequency densities for the class intervals 30-39, 40-49, 50-59?

[Dec. 2021]

- **(A)** 0.20, 0.50, 0.90
- **(B)** 0.70, 0.90, 1.10
- **(C)** 0.1875, 0.1667, 0.2083
- **(D)** 0.90, 1.00, 0.80
- 102.Multiple axis line chart is considered when[Dec. 2021]
 - (A) There is more than one time series
 - (B) The units of the variables are different
 - (C) In any case

(D) If there are more than one une series and unit of variables are different

1.	C	2.	Α	3.	В	4.	С	5.	D
6.	С	7.	С	8.	C	9.	В	10.	В
11.	В	12.	С	13.	A	14.	D	15.	C
16.	С	17.	В	18.	В	19.	A	20.	D
21.	В	22.	С	23.	В	24.	В	25.	Α
26.	C	27.	В	28.	C	29.	D	30.	В
31.	В	32.	С	33.	C	34.	В	35.	В
36.	Α	37.	С	38.	C	39.	В	40.	D
41.	Α	42.	В	43.	В	44.	В	45.	В
46.	C	47.	Α	48.	В	49.	В	50.	D
51.	В	52.	A	53.	C	54.	D	55.	C
56.	Α	57.	D	58.	В	59.	C	60.	Α
61.	Α	62.	В	63.	A	64.	C	65.	Α
66.	В	67.	В	68.	C	69.	A	70.	С
71.	В	72.	В	73.	Α	74.	A	75.	В
76.	D	77.	C	78.	C	79.	D	80.	В
81.	В	82.	Α	83.	В	84.	C	85.	В
86.	Α	87.	С	88.	Α	89.	Α	90.	D
91.	D	92.	В	93.	D	94.	D	95.	D
96.	C	97.	В	98.	В	99.	В	100.	C
101.	D	102.	D						

- 11. The average weight of 15 students of a class is 110 kg. if the average weight of first 5 students is 100 kg and the average weight of next 5 students is 125 kg then what is the average weight of remaining 5 students?
 - 103 Kg (A)
 - **(B)** 105 Kg
 - (C) 106 Kg
 - (D) 108 Kg

- 12. There are 11 students in a class out of which 3 students failed. The score of remaining 8 students is 10,14, 12, 20, 24, 11, 18, 22. What is the median score?
 - 16 (A)
 - **(B)** 14
 - (C) 18
 - (D) 12

13. Mode is calculate from

- Ogive (A)
- **(B) Frequency Polygon**
- (C) Histogram
- Pie-Chart (D)
- 14. If G is GM between a and b then $1/(G^2-a^2)+1/(G^2-b^2)$ is
 - (A) G^2
 - 1 **(B)** G^2
 - 1 (C) G
 - G (D)
- 15. A lady is travelling at the speed of 20 km/hr. if she returns back with higher speed and the average speed of journey is 24 km/hr., then the return speed is
 - (A) 25 Kmph
 - **(B)** 26 Kmph
 - 28 Kmph (C)

30 Kmph

- 16. If mean of x is 50 then what is mean of u = 10 + 5x
 - (A) 60

(D)

- 250 **(B)**
- 260 (C)
- 280 (D)

- 17. If the difference between mean and mode is 63. then the difference between mean and median will be
 - 21 (A)
 - **(B)** 20.6
 - 18 (C)
 - (D) 24
- 18. The average of 5 quantities is 6 and out of these the average of 3 quantities is 8. What is the average of the remaining two
 - (A) 1
 - 2 **(B)**
 - 3 (C)
 - (D) 4

- 19. If the Arithmetic mean between two numbers is 64 and the Geometric mean between them is 16, then the Harmonic Mean between them is
 - 48 (A)
 - **(B)** 40
 - 24 (C)

11	13 35	15 39	19 46	(x+2) 30
(A)	22			
(B)	23			
(C)	24			

- 21. Two average age of a group of 10 students was 20 years. The average age increased by two years when two new students joined the group. What is the average age of two new students who joined the group?
 - 22 years (A)
 - **(B)** 30 years
 - (C) 32 years
 - (D) 36 years

- - - (D) 25

		COMPILATION OF I	PAST YE	EAR Ç	UESTIONS	VIDHYA KA UDAY
22.	The n of nex	nean of first 3 terms is 14 and the mea xt 2 terms is 18. The mean of 5 numbe	n 28. r	G.M. (f 8, 4, 2 is	
	is	 		(B)	6	
	(A)	15		(C)	7	
	(B)	15.6		(D)	6.5	
	(C)	16		(=)		
	(D)	16.2	29.	The a	verage age of 15 s f these the average	tudents is 15 years.
23.	G.M. o the va	of three observations 40, 50 and x is 1 alue of x is)	14 ye years	ars and that of oth then the age of 15	her 9 students is 16 th student is
	(A)	2		(A)	10 years	
	(B)			(B)	11 years	
	(C)			(C)	12 years	
	(D)	<u>1</u>		(D)	None of these	
	(D)	4	30	G M (fahcdis3then	$GM of \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$
24.	A ma	in travels from Agra to Gwalior at	a f	(1)	2	a'b'c,d
	60 kn	nph. What is his average speed?	1	(A)	5 1	
	(A)	40 Kmph		(B)	3	inger
	(B)	50 Kmph		(C)	$\frac{1}{2}$	
	(C)	45 Kmph		(D)	3 ²	
	(D)	48 Kmph	MYO	The r	ean of the followir	ng data is 6 Find the
25.	If the	e mode of data is 18 and mean is 24 median is	NYA KA I	value	of P.	
	(A)	20	X:	-	4 6	10 P+5
	(B)		P:	3	2 3	1 2
	(C)	22		(A)	9	
	(D)	23		(B)	5	
26.	The N	Mean salary of a group of 50 person i	S	(C)	6	
	Rs. 5,	850. Later on it was discovered that th	9	(D)	7	
	salary wron	y of one of the employees has bee gly taken as Rs. 8,000 instead of Rs	1 5. 32.	Whic	n of the following st	atement is true?
	7,800). The corrected mean salary is:		(A)	Median is based	on all obseravations
	(A)	5854		(B)	The mode is the	nid value
	(B)			(C)	The median is th	e 2 nd Ouartile
	(C) (D)	No change		(D)	The mode is the !	5 th decile
27.	Whick	h of the following measures of centra] 33.	For t then	wo numbers A.M. I.M.?	= 10 and G.M. = 8
	methe	od?	•	(A)	1.6	
	(A)	Mode		(B)	3.2	
	(B)	Median		(C)	6.4	阿里が展
	(C)	Mean Dig Contraction of the second se		(U)	12.8	
	(D)	Both (B) and (C)			12.0	
			151			

- 10 (A)
- **(B)** 11
- 10.5 (C)
- (D) 10.7

- 35. The A.M. of square of first '2n' natural number is
 - $\frac{1}{6}(2n+1)(4n-1)$ (A)
 - **(B)** $\frac{1}{6}(2n-1)(4n-1)$
 - (C) $\frac{1}{6}(2n-1)(4n+1)$
 - **(D)** $\frac{1}{6}(2n+1)(4n+1)$
- 36. If the Harmonic mean of two numbers is 4 and Arithmetic mean (A) and Geometric mean (G) satisfy the equation $2A+G^2 = 27$ then the two numbers are
 - 2,4 (A)
 - 4,8 **(B)**
 - (C) 3,6
 - 6.9 (D)
- 37. There were 50 students in a class, 10 failed whose average marks were 2.5. The total marks of class were 281. Find the average marks of students who passed?
 - 5.6 (A)
 - 6 **(B)**
 - (C) 6.2
 - (D) 6.4
- 38. If the A.M. of two numbers is 30 and G.M. is 24 then will be those two numbers?
 - 24,36 (A)
 - 28,32 **(B)**
 - (C) 12,48
 - (D) 20,40
- 39. If the mean of data is 55.6 and the mode is 46, then the median is
 - (A) 51.6
 - 52.1 **(B)**
 - (C) 52.4
 - (D) 53.3

- _ is used for ordering the size of designed cloths.
 - (A) Mean
 - **(B)** Mode
 - (C) Median
 - (D) G.M.

VIDHYODAY

- 41. The mean of 10 observations is 14.4. Out of these mean of 4 observations is 16.5, then find the mean of remaining observations?
 - (A) 11.5
 - **(B)** 12
 - 12.5 (C)
 - (D) 13

- The mean of 6, 4, 1, 5, 6, 10 and 3 is 5. If each 42. number is added with 2, then the new mean is ___
 - 3.5 (A)
 - 6 **(B)**
 - (C)
 - (D) Unchanged

7

43. Which of the following is correct?

- 3 (Mean-Median) = Mean-Mode (A)
- Mean-Median = 3(Mean-Mode)**(B)**
- Mean-Median = 2 (Mean-Mode (C)
- (D) Mean-Mode = 2 (Mean-Median)
- 44. A person purchases 5 rupees worth of eggs from 10 different markets. You are to find average no. of eggs per rupee for all the markets taken together. What is the suitable form of average on this case?
 - (A) AM
 - **(B)** GM
 - (C) HM
 - (D)

- 45. G.M. = 6, A.M. = 6.5 then HM =
 - 5.8 (A)
 - 5 **(B)**
 - (C) 5.5
 - (D) 6

152

COMPILATION OF PAST YEAR QUESTIONS 46. A company' past 10 years average earnings 52. The sum of squares of deviation from mean was Rs. 40 crores. For obtaining the same of 10 observations is 250. Mean of the data average earnings for 11 years including these is 10. Find the co-efficient of variation. 10 years how much earning (in Rs.) must be 10% [June 2009] (A) made by the company in the 11th year? **(B)** 25% (A) 50 Crs. 50% (C) 40 Crs. **(B)** (D) 0% (C) 30 Crs. 53. If A be the A.M. of two positive unequal (D) Not possible quantities X and Y and G be their G.M., then; 47. The rate of return from three different (A) A < G[June 2009] shares are 100%, 200% and 400% respectively the average rate of return will **(B)** A > Gbe_ $A \leq G$ (C) 133.33 (A) (D) $A \ge G$ **(B)** 150 54. If the AM & GM of two numbers are 30 and 200 (C) 24 respectively. Find the no.'s (D) 266.66 12 and 24 [Nov. 2019] (A) 48. Mean of 7, 9, 12, x, 4, 11 and 5 is 9. Find the 48 and 12 **(B)** missing observation (C) 30 and 30 (A) 15 (D) 40 and 20 18 **(B) 55.** Find the mode of the following data: 20 (C) 19 (D) Class 3-6 6-9 9-12 12-15 15-18 18-21 Interval 49. If all the frequencies are equal than which 5 23 2 10 21 12 Frequency will doesn't exist. 25 [Nov. 2019] (A) (A) Mean 4.6 **(B) (B)** Median (C) 14.6 (C) Mode (D) 13.5 (D) None of these 56. Histogram is used to represent 50. is the reciprocal of the AM of [Nov.2019] (A) Mode reciprocal of observations. **(B)** Median (A) HM GM **(B)** (C) Percentile Both (C) (D) Quartile (D) None 57. Find the median of the following. The median of $x, \frac{x}{2}, \frac{x}{3}, \frac{x}{5}$ is 10. 51. CI 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 2 f 3 4 5 Find x where x > 0[June 2009] 6 (A) 24 35 [Nov. 2019] (A) **(B)** 32 32 **(B)** (C) 8 36 (C) (D) 37.5 (D) 16 153

VIDHYODAY

		С	OMPIL	ATION OF PA	ST YE	AR Ç	UESTIONS	VIDHYODAY
58.	Find th	e mode of t	he follow	ring:	63.	50 th F	Percentile is equal to	[Nov. 2020]
0-10	10-2	0 20-30	30-40	40-50 50-60		(A)	Median	
7	14	22	34	20 19		(B)	Mode	<u>ଲ</u> ାରେଜଲ
	(A)	32		[Nov. 2019]		(C)	Mean	
	(B)	34 61				(D)	None	
	(2)	25 42						1
	(C) (D)	25.42 35			64.	The	harmonic mean A	and B is $\frac{1}{3}$ and
59.	Find th	e median o	f the follo	owing:		harm	onic mean of C an	Ind D is $\frac{1}{5}$. The
CI	0 - 1	0 10 - 20	20 - 30	30 - 40 40 - 50		harm	onic mean of ABCD is	[Nov. 2020]
f	5	15	28	10 2			8	
	(A)	10.57		[Nov. 2019]		(A)	15	
	(B)	23.57				(B)	<u>1</u>	
	(C)	25				(D)	4	
	(D)	28				(C)	1	ार्च २ ३३ जन
						(9)	15	
60.	None $\sum_{n=1}^{n}$	$\frac{1}{x}$ $\frac{1}{x}$ $-x$ $\frac{1}{x}$ $\frac{1}{x}$	s equal to	[Nov. 2019]		(D)	5	
	i=	1	o oquun oo	[]		(-)	3	
	(A)	$\overline{x}\sum_{i=1}^{n} x_{i}$			65.	Whic extre	h one of these is l me values?	east affected by [Nov. 2020]
		n			IVOD	(A)	Mean	
	(B)	$n(\bar{x}\sum x_i)$			CA 86 A 55	(B)	Median	
		i=1			1 M 1 1 1 1 1 1	(C)	Mode	
	(C)	$\overline{x} - n \overline{x}$		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		(D)	None	
	(D)	Zero			66.	If the 9 res	AM and HM of two nupectively, then GM is	umbers are 6 and
61.	Given t	he weights	for the 1 $\frac{2}{2}$ \mathbf{n}^2 \mathbf{n}^2	numbers $1,2,3n$		(A)	7.35	[Nov.2020]
	are res	pectively 1	.= ,2= ,3=	.n [°] then weighted		(B)	8:5	Internet
	HM IS _	·		[NOV. 2020]		(C)	6.75	
	(A)	$\frac{2n+1}{4}$				(D)	None	
		$\frac{1}{2n+1}$			67.	From	the record on sizes of	of shoes sold in a
	(B)	$\frac{211+1}{6}$				shop,	one can compute	the following to
	(Γ)	2n + 1		E CORE		aeter	mine the most preferr	ed shoe size.
		3				(A) (D)	Mean	[Jan. 2021]
	(D)	2n + 1				(B) (C)	Median	
	(D)	2				(U)	Range	
62.	Which	measure	is suitab	ble for open-end	68	(D) Whic	h of the following m	easure does not
	(1)	Modian				posse	ess mathematical prop	erties?
	(A) (B)	Mean				(A)	Arithmetic mean	[]an.2021]
	(U) (C)	Mode				(B)	Geometric mean	
	(9) (D)	GM				(C)	Harmonic mean	建設業
		G1·1				(D)	Median	
				1	54			

[Jan.2021]

- 69. If y = 3 + (4.5) x and the mode for x-value is 20, then the mode for y-value is
 - **(A)** 3.225
 - **(B)** 12
 - **(C)** 24.5
 - **(D)** 93
- **70.** If there are two groups with n_1 and n_2 observations and H_1 and H_2 are respective harmonic means, then the harmonic mean of combined observation is **[Jan. 2021]**

(A)
$$\frac{n_1H_1 + n_2H_2}{n_1 + n_2}$$

(B) $\frac{n_1H_1 + n_2H_2}{H_1 + H_2}$

(C)
$$\frac{n_1 + n_2}{n_1 H_1 + n_2 H_2}$$

(D)
$$\frac{(n_1 + n_2)H_1 + n_1H_2 + n_2H_1}{n_1H_2 + n_2H_1}$$

71. There are n numbers. When 50 is subtracted from each of these number the sum of the numbers so obtained is – 10. When 46 is subtracted from each of the original n numbers, then the sum of numbers. So obtained is 70. What is the mean of the original n numbers? [July 2021]

Η,

- **(A)** 56.8
- **(B)** 25.7
- **(C)** 49.5
- **(D)** 53.8

- 72. The mean of 'n' observation is 'x'. If k is added to each observation, then the new mean is. [July 2021]
 - **(A)** k
 - **(B)** xk
 - (C) x-k
 - **(D)** x+k
- **73.** If y = 3 + 1.9x, and mode of x is 15, then the mode of y is: [July 2021]
 - **(A)** 15.9
 - **(B)** 27.8
 - **(C)** 35.7
 - **(D)** 31.5

	Item of expenditures									
Year	Salary	Fuel and Transport	Bonus	Interest on Loans	Taxes					
1998	288	98	3.00	23.4	83					
1999	342	112	2.52	32.5	108					
2000	324	108	3.84	41.6	74					
2001	336	133	3.68	36.4	88					
2002	420	142	3.96	49.4	98					

What is the average amount of interest per year which the company had to pay during this period? [July 2021]

- (A) 33.66(B) 36.66
- (C) 31.66

(**D**) 39.66

75. If there are 3 observations 15, 20, 25 then the sum of deviation of the observations from their AM is **[Dec. 2021]**

- **(A)** 0
- **(B)** 5
- **(C)** -5
- **(D)** 10

- **76.** If the AM and GM for 10 observations are both 15, then the value of HM is
 - (A) Less than 15
- [Dec. 2021]
- **(B)** More than 15
- **(C)** 15
- (D) Cannot be determined
- 77. If average mark for a group of 30 girls is 80, a group of boys is 70 and combined average is 76, then how many are in the boy's group?

(A)	21	[Dec. 2021]
(B)	20	जाहरू इन्हें के बा
(C)	22	
(D)	19	

		COMPILA	ATION OF PA	ST YE	AR Q	UESTIONS	
78.	If two then (variables a and b are r G.M. of c is equal to	elated by c = ab [Dec. 2021]		appro that ca	priate measure of an be used here is	f central tendency [Dec. 2021]
79.	(A) (B) (C) (D) For a media	G.M. of a + G.M. of b G.M. of a × G.M. of b G.M. of a - G.M. of b G.M. of a / G.M. of b moderately skewed in is twice the mean, th times the median.	distribution the nen the mode is	82.	 (A) (B) (C) (D) Along apartro f per availa 	Mean Mode Geometric mean Harmonic mean a road there a nents, marked as 1 ople residing in ble. A bus stop is to	re 5 buildings of , 2, 3, 4, 5. Number each building is b be setup near one
	(A) (B) (C)	3 2 $\frac{2}{2}$	[Dec.2021]		of the walke their l must positio	buildings so that d by the residents to buildings must be l consider involving on of the bus stop.	the total distance to the bus stop from cept minimum. One to find the [Dec. 2021]
80.	(D) The n	$\frac{3}{2}$	of observations		(A) (B) (C) (D)	Mean Median Mode Weighted mean	
	48, 36 (A) (B)	53 87	s [Dec. 2021]	83.	Given the Me	that Mean $= 70.20$ edian is expected to	and Mode = 70.50 , be.
01	(C) (D)	61 19		IYOD	(A) (B) (C)	70.15 70.20 70.30 70.35	[Dec. 2021]
01.	opinio their unlike	friends using the a ely, not sure, likely, n	new product to ttributes: most nost likely. The		(-)		

1.	В	2.	D	3.	С	4.	С	5.	Α
6.	С	7.	В	8.	Α	9.	D	10.	В
11.	В	12.	D	13.	С	14.	В	15.	D
16.	С	17.	Α	18.	С	19.	D	20.	В
21.	С	22.	В	23.	В	24.	Α	25.	С
26.	В	27.	С	28.	Α	29.	В	30.	В
31.	D	32.	С	33.	С	34.	D	35.	D
36.	С	37.	D	38.	С	39.	С	40.	В
41.	D	42.	С	43.	Α	44.	С	45.	С
46.	В	47.	С	48.	Α	49.	С	50.	Α
51.	Α	52.	С	53.	В	54.	В	55.	С
56.	Α	57.	В	58.	В	59.	В	60.	D
61.	С	62.	Α	63.	Α	64.	В	65.	В
66.	Α	67.	С	68.	D	69.	D	70.	D
71.	С	72.	D	73.	D	74.	В	75.	Α
76.	С	77.	В	78.	В	79.	В	80.	С
81.	В	82.	В	83.	С				
-									

VIDHYODAY

		COMPILA	TION OF PA	AST YEA	AR QU	ESTIONS	VIDHYODAY
24.	1 st Qu is 18.	artile is 142, Semi-Inter o Then median is	quartile range	31.	The a standa	verage of numbers and deviation 5. Find	is 20 and their the two numbers?
	(A)	150			(A)	(10, 30)	
	(B)	160			(B)	(15, 25)	
	(C)	165			(C)	(12, 18)	
	(D)	170			(D)	(15, 20)	
25.	Co-ef	ficient of QD is equal to		32.	If Vari	iance = 125.6, x =	40, coefficient of
	(A)	$\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$			(A)	28.01	
	(B)	$\frac{QD}{2} \times 100$			(A) (B)	27.6	
	(D)	Median A 100			(C)	25.6	建設長
	(C)	$\frac{\mathbf{q}_3-\mathbf{q}_1}{2}$			(D)	22.2	
	(D)	Both (A) and (B)		33	If sam	e amount is added	to or subtracted
26.	If eve	ry observation is increase	ed by 5 then		from a	all the value of the	individual series
	(A)	SD increases by 5	-		then the the	the standard deviat	tion and variance
	(B)	MD increased by 5	المالة بجدالها		(A)	Increase by same a	amount
	(C)	QD increased by 5	日本の日本		(B)	Decrease by same	amount
	(D)	None is affected			(C)	Remains unchange	ed E
27	The S	D of x is known to be 10 t	hen the SD of		(D)	May increase or de	ecrease
27.	50+5	ix is		34.	🔥 The SI	D of first n natural n	umbers is
	(A)	100	VIDH	YA KA UI	DAY	n^2+1	
	(B)	60			(A)	$\sqrt{\frac{6}{6}}$	
	(C)	50			(B)	$\frac{n^2-1}{12}$	
	(D)	5				$\sqrt{\frac{12}{n^2+1}}$	614626
28.	Find	the range of 6, 5, 4, 3, 1, 3,	6, 10, 8		(C)	$\sqrt{\frac{12}{12}}$	
	(A)	7	-, -, -		(D)	$\sqrt{\frac{n^2-1}{\epsilon}}$	
	(B)	8	ENGLANE			N 0	
	(C)	9		35.	If mea	an and coefficient of	of variation of the
	(D)	10			respec	tively. What will be	variance of them
29.	Find	the mean deviation about	mean of		(A)	16	
	4, 5,	6, 8, 3			(B)	4	
	(A)	1.20			(C)	256	
	(B)	1.35	具織領		(D)	80	
	(C) (D)	1.40		36.	The A	M and CV of a rand	lom variable x are
					(-15)	$+\frac{3x}{2}$).	ten the variance of
30.	If V(x	(2) = 23. Find variance of 2	x+10		$\langle \rangle$	2) 27	
	(A)	23			(A)	$\overline{2}$	
	(B) (C)	40 69			(B)	30 6	
	(U) (D)	92	间线感		(U) (D)	0 4	
		<i>)</i> <u>L</u>	1		(U)	т	

		COMPIL	ATION OF PA	ST YEA	AR QU	JESTIONS	VIDHYODAY
49.	Differ limit	rence between upper li of a class is known as.	mit and lower [Nov.2019]	55.	Whic of dis	n of the following is a p persion?	relative measure [Jan. 2021]
	(A)	Range			(A)	Range	
	(B)	Class mark			(B)	Mean deviation	
	(C)	Class size	5.322.53		(C)	Standard deviation	36,21,95 122 35
	(D)	Class boundary			(D)	Coefficient of quarti	le deviation
50.	SD fro addeo	om numbers 1, 4, 5, 7, 8 l to each then SD will be	is 2.45. If 10 is : [Nov.2019]	56.	Find t mean	he coefficient of mean for the data: 5, 7, 8, 10	deviation about), 11, 13, 19
	(A)	12.45			(A)	17.28	[Jan. 2021]
	(B)	24.5			(B)	28.57	
	(C)	12	約許將 同語感		(C)	32.11	
	(D)	Will not change			(D)	18.56	
51.	Whic dispe (A)	h of the following rsion is based on absolu Range	measure of te deviations? [Nov. 2020]	57.	lf a so cm) a 172, avera	chool has 14 teachers, re: 172, 173, 164, 178 173, 164, 178, 168, ge deviation of this da	their heights (in 3, 168, 169, 173, 169, 173 then ta from mean is:
	(B)	S.D			(A)	2.43 approx.	[July 2021]
	(C)	Mean Deviation			(B)	3.93 approx.	Deser
	(D)	Quartile Deviation			(C)	0	
52	Tho	hast statistical mass	ura usad for		(D)	2.92 approx.	
52.	comp	aring two series is Mean absolute deviat	[Jan. 2021]	IY 58.D. A KA UI	The s	standard deviation of er is:	1 to 9 natural [July 2021]
	(B)	Range	640 86		(A)	6.65	
	(C)	Coefficient of variatio	n Here a		(B)	2.58	
	(D)	Standard deviation	道然感		(C)	6.75	
53.	The 1	relationship between F	P-series and Q		(D)	5.62	
	series of P–3 of Q?	s is given by $2P - 3Q = 3$ Series is 18. What woul	10. If the range d be the range [Jan. 2021]	59.	The p $Q_3 =$	robable value of mean 40 and $Q_1 = 15$ is:	deviation when [July 2021]
	(A)	10			(A)	15	
	(B)	15 o			(B)	18.75	
	(C) (D)	9 12	透深燈 同花楽		(C)	17.50	
	(-)		_		(D)	0	
54.	It is stand	given that the mean (ard deviation (s.d.) is	X) is 10 and s 3.2. If the	60.	If the coeffi	numbers are 5, 1, 8 numbers are 5, 1, 8 numbers are 5, 1, 8	3, 7, 2 then the [July 2021]
	new r	nean and standard devia	ations are:		(A)	56.13%	
	(A)	$\overline{X} = 10$, s.d. = 7.2	[Jan. 2021]		(B)	59.13%	
	(B)	$\overline{X} = 10$, s.d. = 3.2			(C)	48.13%	
	(_) (^)	$\overline{X} = 14 \text{ sd} - 32$			(D)	44.13%	
		$\overline{X} = 11, \text{ s.d.} = 3.2$					
	(U)	$\Lambda = 14, S.u. = 7.2$					
			1	c1			

- 61. If every observation is increased by 7 then: [July 2021]
 - (A) Standard deviation increased by 7
 - (B) Mean deviation increased by 7
 - (C) Not affected at all
 - **(D)** Quartile deviation increased by 7
- 62. If the relationship between x and y is given by 2x + 3y = 10 and the range of y is 10, then what is the range of x?
 - (A) 10 [July 2021]
 - **(B)** 18
 - **(C)** 8
 - **(D)** 15
- **63.** The mean deviation of the numbers 3, 10, 6, 11, 14, 17, 9, 8, 12 about the mean is (correct to one decimal place):
 - (A) 8.7 [July 2021]
 - **(B)** 4.2
 - **(C)** 3.1
 - **(D)** 9.8

- 64. The marks secured by 5 students in a subject are 82, 73, 69, 84, 66. What is the coefficient of Range [Dec. 2021]
 - **(A)** 0.12
 - **(B)** 12
 - **(C)** 120
 - **(D)** 0.012

- 65. For a data having odd number of values, the difference between the first and the middle value is equal to the difference between the last and the middle value; similarly the difference between the second and middle values is equal to that of second last and middle value so on. Therefore, the middle value is equal to [Dec. 2021]
 - (A) Half of the range
 - **(B)** Half of standard deviation
 - (C) Mode

ANSWER KEY

1.	В	2.	С	3.	В	4.	В	5.	В
6.	В	7.	D	8.	D	9.	С	10.	Α
11.	D	12.	С	13.	Α	14.	Α	15.	С
16.	D	17.	В	18.	Α	19.	Α	20.	С
21.	В	22.	С	23.	C	24.	В	25.	D
26.	D	27.	С	28.	C	29.	D	30.	D
31.	В	32.	Α	33.	C	34.	В	35.	C
36.	В	37.	В	38.	В	39.	В	40.	В
41.	C	42.	В	43.	D	44.	В	45.	Α
46.	В	47.	D	48.	В	49.	C	50.	D
51.	C	52.	С	53.	D	54.	C	55.	D
56.	C	57.	С	58.	В	59.	Α	60.	В
61.	C	62.	D	63.	С	64.	В	65.	D

	COMPILATION OF PAST YE	EAR QUESTIONS
121.	In a group of 20 males and 15 females, 12 males and 8 females are service holders. What is the probability that a person selected at random from the group is a service holder given that the selected person is a male? [Dec. 2021] (A) 0.40 (B) 0.60 (C) 0.45 (D) 0.55	[Dec. 2021] (A) $\frac{1249}{3024}$ (B) $\frac{1247}{3004}$ (C) $\frac{1147}{3024}$ (D) $\frac{1}{2}$
122.	There are 3 boxes with the following composition: Box I : 7 Red + 5 White + 4 Blue balls Box II : 5 Red + 6 White + 3 Blue balls Box III : 4 Red + 3 White + 2 Blue balls One of the boxes is selected at random and a ball is drawn from it. What is the probability the drawn ball is red?	3. For a probability distribution, probability i given by, $P(Xi) = \frac{X_i}{k}, X_i = 1, 2, \dots, 9$. The value of k is [Dec. 2021] (A) 55 (B) 9 (C) 45 (D) 81

ANSWER KEY

1.	В	2.	C	3.	C	4.	D	5.	В
6.	Α	7.	С 👋	8. / DH	YODA	9.	D	10.	A
11.	В	12.	В	13.	KAAJDA'	⁶ 14.	С	15.	C
16.	Α	17.	В	18.	Α	19.	D	20.	C
21.	В	22.	D	23.	В	24.	С	25.	В
26.	В	27.	С	28.	D	29.	В	30.	В
31.	В	32.	С	33.	В	34.	С	35.	Α
36.	В	37.	D	38.	В	39.	С	40.	С
41.	Α	42.	В	43.	С	44.	D	45.	В
46.	В	47.	В	48.	В	49.	D	50.	C
51.	В	52.	В	53.	Α	54.	С	55.	C
56.	С	57.	D	58.	С	59.	С	60.	В
61.	D	62.	Α	63.	D	64.	Α	65.	В
66.	Α	67.	В	68.	В	69.	D	70.	D
71.	Α	72.	Α	73.	С	74.	Α	75.	В
76.	D	77.	D	78.	Α	79.	В	80.	D
81.	В	82.	С	83.	В	84.	В	85.	D
86.	А	87.	Α	88.	Α	89.	Α	90.	В
91.	В	92.	Α	93.	В	94.	Α	95.	В
96.	В	97.	Α	98.	D	99.	С	100.	D
101.	В	102.	D	103.	В	104.	Α	105.	С
106.	D	107.	С	108.	С	109.	Α	110.	D
111.	С	112.	С	113.	В	114.	С	115.	С
116.	D	117.	Α	118.	Α	119.	С	120.	C
121.	В	122.	A	123.	С				
				17	6				

		ESTIONS	VIDHYODAY				
12.	P(x = Poiss	= 0) = P(x = 2) find exp on's Distribution	pected value of [June 2009]	18.	If a d P (x =	listribution is such $= 2) = 9 P (x = 4)$ the	that P (6, p) and n p is
	(A)	2			(A)	$\frac{3}{4}$	[June 2010]
	(B)	4			(B)	$\frac{1}{2}$	
	(C)	$\sqrt{2}$				2 1	<u>ଲାନଙ୍କ</u> ଳା
	(D)	1			(L)	4	
13.	If x f	ollows a Binomial Distr	bution with E		(D)	$\frac{2}{3}$	
	(x) =	2, V (x) = $4/3$ find n	[Dec. 2009]	19.	Area	under Normal Distri	bution curve is
	(A)	15			(A)	2 units	[Dec. 2010]
	(B)	10			(B)	1 unit	E 40 A E
	(L) (D)	6			(C)	3 units	
	(D)	4			(D)	None of these	
14.	Binor parar	nial Distribution has neters	s how many [Dec. 2009]	20.	lf S Distri	tandard Deviatio bution is 2, what is i	n of Poisson's ts mode
	(A) (D)	Une			(A)	4	[Dec. 2010]
	(B)	I WO			(B)	3	
	(C) (D)	Four			(C)	Both (A) and (B)	
	(D)	FOUI			(D)	5	
15.	In a	Standard Normal Varia	ite, variance is [June 2010]	Y21D	In a N	lormal Distribution	: N (μ , σ^2) what is
	(A)	0	VIDHY	a ka ui	Ρ(μ-3	$3\sigma < x < \mu + 3\sigma$) [Dec.	2010 & June 2015]
	(B)	-1			(A)	68.5%	
	(C)	1			(B)	95.5%	
	(D)	2			(C)	99.2%	
16	In a Po	bisson's Distribution P ($x = 3$	= 5 P (x=5) find		(D)	99.73%	
	Standa	ard Deviation		22.	In a B	inomial Distribution	n B(n, p) mean is 6
			[June 2010]		(4)	<u>1</u>	[Dec 2010]
	(A)	4			(A) (D)	2 3	[<i>Dec.</i> 2010]
	(B)	2			(B)	4 1	
	(C)	1			(C)	3	
	(D)	0			(D)	$\frac{2}{3}$	
17.	In a are 9	Binomial Distribution t and 1/3 what is the var [June 2010]	he parameters iance	23.	lf x∼ indep stand	N (3.36) and y~N endent Normal v ard parameters of d	(5, 64) are two ariate will their istribution, then if
	(A)	1			(x+y) distri	\sim N (8, A) also bution. The value of	follows normal A will be
	(B)	0			(A)	10	[June 2011]
	(C)	2	惩罚帮 同整账		(B)	100	
	(D)	$\sqrt{2}$			(C)	50	
					(D)	1	
			1	78			

		COMPI	LATION OF PA	ST YEA	AR QU	JESTIONS	VIDHYODAY
46.	For a are 1	binomial distribution 5 and 1/3. Find mode:	the parameters	52.	An e proba	example of a bi-parameter of	netric discrete
	(A)	5	[Dec. 2015]			[Dec. 20	16 & May 2018]
	(B)	4	er: Air		(A)	Binomial distribution	1
	(C)	4 or 5			(B)	Poisson distribution	
	(D)	6			(C)	Normal distribution	
47.	Stand	lard Deviation of bino	mial distribution		(D)	Both (A) and (C)	
	is:		[Dec. 2015]	53.	In no	rmal distribution 95%	observation lies
	(A)	np			betw	een&	[Dec. 2017]
	(B)	npq			(A)	(μ-2σ, μ+2σ,)	
	(C)	\sqrt{npq}			(B)	(μ-3σ, μ+3σ,)	
	(D)	$(npq)^2$			(C)	(μ-1.96σ, μ+1.96σ,)	
48.	For a	a Poisson variate x, P(x=1) = P(x=2).		(D)	(μ-2.58σ, μ+2.58σ,)	
	What	t is mean of x?	[June 2016]	54.	Shap	e of Normal Distribution	n Curve:
	(A)	1					[Dec.2009]
	(B)	2			(A)	Depends on its paran	neters
	(C)	$\sqrt{2}$			(B)	Does not depend on i	ts parameters
	(D)	3			(C)	Either (A) or (B)	
49.	In a	discrete random v	variable follows	iyon	(D)	Neither (A) nor (B)	
	unifo value	rm distribution and a	ssumes only the The $P(x < 15)$ is	A 155.00	In a	Binomial Distribution,	if mean is к-
			[June 2016]		times be	the variance, then the	value of 'k' will
	(A)	$\frac{1}{2}$			(A)		Dune 2011]
	(B)	<u>1</u>			()	1	
	(2)	3 2			(B)	$\frac{1}{p}$	
	(C)	3			(C)	r 1 – n	1940 813
	(D)	$\frac{1}{4}$			(-)	- F 1	
50.	In Po	isson distribution μ_4 =	= 2 then find μ_2 .		(D)	$\frac{1}{1-p}$	
	(A)	3	[Dec. 2016]	56.	For b	inomial distribution	[June 2012]
	(B)	$\frac{3}{2}$			(A)	Variance < Mean	
	(C)	2			(B)	Variance = Mean	
	(D)	1			(C)	Variance > Mean	
F 1					(D)	None of the above	THIS CONTRACT
51.	is not	t possible	[June 2017]	57.	If a distri	random variable x f bution such that E(x)	ollows Poisson $= 30$, then the
	(A)	P(x > 60) = 0.30			varia	nce of the distribution i	S
	(B)	P(x>50) = 0.50			(A)	7	[Dec.2012]
	(C)	P(x < 60) = 0.40			(B)	5	
	(D)	P(x < 50) = 0.50			(D)	20	
			1	81	(-)	-	

		COMPIL	ATION OF PA	ST YEA	R QU	ESTIONS	VIDHYODAY
58.	In a n is 6, th	ormal distribution qua ne standard deviation w	artile deviation rill be	64.	If x an with	nd y are independent Mean and Standard	normal variates Deviation as μ_1
	(A)	4	[Dec.2012]		and μ	, and σ_1 and σ_2 respectively.	ctively, then $z =$
	(B)	9	-		x + y	also follows normal o	listribution with
	(C)	7.5					[Dec.2016]
	(D)	6			(A)	Mean = $\mu_1 + \mu_2$ and respectively	1 S.D. = 0
59.	For Po	oisson Distribution:	[June 2013]		(B)	Mean = 0 and S.D. =	$= \sigma_1^2 + \sigma_2^2$
	(A)	Mean and Standard D equal	eviations are		(C)	Mean = $\mu_1 + \mu_2$ and	IS.D.
	(B)	Mean and variance ar	e equal			$=\sqrt{\sigma_1^2+\sigma_2^2}$	
	(C)	Standard Deviation an equal	nd variance are		(D)	None of these	
	(D)	Both (A) and (B) are	correct	65.	Name Variar	the distribution whi	ch has Mean = [Dec. 2016]
60.	Which charac	i of the following steristic of a norm	g is not a al probability		(A)	Binomial	
	distrib	oution?	[June 2013]		(B)	Poisson	
	(A)	Mean of the norma	llv distributed		(C)	Normal	
		lies at the centre of its	s normal curve.		(D)	Chi-square	
	(B)	It is multi-modal		66.	If for	a distribution mean :	= variance, then
	(C)	The mean, median an	d mode are	NOD	the dis	stribution is said to be	
	(D)	It is a symmetric curv		A KA UD	(A)	Normal	[June 2017]
	(D)	it is a symmetric curv			(B)	Binomial	
61.	An ap deviat (S.D) o	proximate relation be ion (QD) and stand of normal distribution i	tween quartile lard deviation s:		(C) (D)	Poisson None of the above	
	(A)	5 QD = 4 SD	[June 2013]	67.	The va	ariance of a binomial o	listribution with
	(B)	4 QD = 5 SD			param	eters n and p is:	[May 2018]
	(C)	2 QD = 3 SD			(A)	$np^{2}(1-p)$	
	(D)	3 QD = 2 SDd			(B)	$\sqrt{np-(l-p)}$	
62.	T-test	can be used only wh	en the sample		(C)	np(1-p)	
	has be	en taken from Binomial Population	[Dec. 2014]		(D)	$n^2p^2(1-P)^2$	
	(B)	Poisson Population		68.	X is	a poisson variate	satisfying the
	(C)	Normal Population			follow	ing condition 9 $P(X =$	(4) + 90 (X = 6)
	(D)	Exponential Population	on		= P(X)	X = 2). What is the value of $X = 2$	lue of $P(X \le 1)$?
63.	The no	ormal curve is:	[June 2016]		(A)	0.5655	[May 2018]
	(A)	Positively skewed			(B)	0.6559	
	(B)	Negatively skewed			(C)	0.7358	
	(C)	Symmetrical			(D)	0.8201	
	(D)	All these					

- (A) -0.4082
- **(B)** 0.5

(D)

0.4082 (C)

-0.5

- 102. The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there?
 - e^{-3} (A)
 - e^0 **(B)**

(C)
$$e^{+3}$$

 e^{-1} (D)

- 103. Four unbiased coins tossed are simultaneously. The expected number of [Dec. 2021] heads is:
 - (A) 1 2
 - **(B)**
 - 3 (C) 4
 - (D)

- 104. If, for a Poisson distributed random variable X, the probability for X taking value 2 is 3 times the probability for X taking value 4, then the variance of X is [Dec. 2021]
 - (A) 4
 - 3 **(B)**
 - 2 (C)
 - 5 (D)

ANSWER KEY										
1.	В	2.	D 🍶	3.	В	4.	D	5.	A	
6.	C	7.	С	8.	D	9.	В	10.	С	
11.	С	12.	C	13.	С	14.	В	15.	С	
16.	В	17.	C	18.	С	19.	В	20.	С	
21.	D	22.	D	23.	В	24.	С	25.	D	
26.	Α	27.	C	28.	В	29.	С	30.	С	
31.	Α	32.	C	33.	D	34.	D	35.	В	
36.	С	37.	С	38.	С	39.	С	40.	С	
41.	Α	42.	A	43.	В	44.	В	45.	С	
46.	Α	47.	C	48.	В	49.	С	50.	С	
51.	С	52.	A	53.	С	54.	Α	55.	D	
56.	Α	57.	C	58.	В	59.	В	60.	В	
61.	D	62.	C	63.	С	64.	С	65.	В	
66.	C	67.	C	68.	С	69.	С	70.	D	
71.	В	72.	C	73.	Α	74.	D	75.	D	
76.	В	77.	D	78.	В	79.	Α	80.	Α	
81.	В	82.	В	83.	С	84.	Α	85.	Α	
86.	Α	87.	Α	88.	Α	89.	В	90.	Α	
91.	D	92.	В	93.	С	94.	Α	95.	Α	
96.	Α	97.	С	98.	В	99.	Α	100.	С	
101.	С	102.	A	103.	В	104.	С			

	COMPILATION OF PAST YEAR QUESTIONS									
33.	Three by two respec	competitors in a control o judges in the order f ctively. Calculate the Sp	est are ranked 1,2,3 and 2,3,1 earman's rank	38.	Correl of mea (A)	ation co Isureme depen	oefficient ent. dent	t is [May 2	of the 2 018]	e units
			Julie 2011j		(B)	indepe	endent		1 14	ମହାଳ
	(A) (D)	-0.5			(C)	both				
	(B)	-0.8			(D)	none			- ñ	
	(L) (D)	0.5		30	In cas	a shaa	d of an	autom	obilo ar	nd the
34.	If the is 25	0.8 covariance between vai and variance of X	riables X and Y	39.	distan applyi	ce requ ng brak	uired to es correl	stop stop is	the car	after
	respec	ctively 36 and 25, then	the coefficient			D			[May 2	018]
	of cori	relation is	[June 2012]		(A)	Positiv	ve			
	(A)	0.409			(B)	Negati	ive		<u>s</u>	
	(B)	0.416			(C)	Zero			11 12	
	(C)	0.833			(D)	None				89 2 8
	(D)	0.0277		40.	A rela	tionshii	$r^2 = 1$	$-\frac{500}{100}$	s not po	ossible
35.	The co	ovariance between two	variables is				<u> </u>	300	[Mary 2	010]
	(A)	Strictly positive	[May 2018]		(4)	Truco			[мау 2	010]
	(B)	Strictly negative			(A) (D)	False				
	(C)	Always Zero			(в) С(С)	Path			١	270 27
	(D)	Either positive or neg	ative or zero	IYOD/	(C) (D)	Nono				
36.	The co	pefficient of determina	tion is defined	A KA UD	ען	None				
	by the	formula	[May 2018]	41.	Rank	correla	tion coe	efficient	lies be [May 2	etween 018]
			[May 2010]		(A)	0 to 1				
	(A)	$r^2 = 1 - \frac{unexplained}{total var}$	iance		(B)	–1 to -	+1 inclus	sive of t	hese val	ue 336
		ovelained varia			(C)	–1 to ()		認識	
	(B)	$r^2 = \frac{explained variance}{total variance}$			(D)	Both				(1) (1)
	(C)	Both (A) and (B)		42.	Given	that				· · · · · · · · · · · · · · · · · · ·
	(D)	None			Х	-3	-3/2	0	3/2	3
37.	In wh directi	ich method of Deviat ions of change	ions, only the e (Positive		Y	9	9/4	0	9/4	9
	directi variab	ion/Negative direction les are taken into	on) in the account for		Then correla	Kari ation is	pearson'	's co	efficient [June 2	: of 019]
	calcula				(A)	Positiv	ve			
			[May 2018]		(B)	Zero			ا	8 P III
	(A)	Coefficient of SD			(C)	Negati	ive		調整	
	(B)	Coefficient of regressi	on 🚺		(D)	None			í í í	э л
	(C)	Coefficient of correlat	ion 🔲 🖓							
	(D)	None								
			1	90						

	COMPILATION OF PAST YEAR QUESTIONS										KA UDAY				
43.	Find	the p	orobabl	e erro	or if r	$=\frac{2}{\sqrt{10}}$	= and		47.	What the fol	is the coloring c	oefficier lata?	nt of co	rrelatio	n from
	n = 3	86			IJ	une 20	,)19]			x	1	2	3	4	5
	(A)	0.67	45								-	4	2	2	(
	(B)	0.06	7				SIQ.			У	5	4	3	Z	0
	(C)	0.52	87											[Nov. 2	2019]
	(D)	Non	e							(A)	0				
44.	Giver	n the fo	llowing	g series	:					(B)	-0.75				
	x	10	13	12	15	8	15			(C)	-0.85				
		10	15	12	15	-	15			(D)	0.82				994EC
	Y	12	16	18	16	7	18		48.	If the from	plotted j	points in	n a scatt	er diag	ram lie then
	The rank correlation coefficient r =								correl	ation is	iere te	10000	[Nov. 2	2019]	
					IJ	une 20	19]			(A)	Positiv	re			
		($5\sum d^2$	$+\sum^{2} \frac{m}{2}$	$n_1(m_1^2 -$	-1)				(B)	Negati	ve			s a la
	(A)	1		$\frac{\sum_{i=1}^{n}}{n(n^2)}$	12					(C)	Zero				
			F	- njn	.1)					(D)	None c	of these			99.0
	(B)	1	$6\left[\sum d\right]$	$\frac{1}{2} + \sum_{1=i}^{2} + \sum_{i=i}^{2} + \sum_{i$	m ₁ (m) 12	$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$	<u>_</u>		49.	Which correla	of t ation?	he fol	lowing	is sp [Nov. 2	ourious 2 020]
				n(n²	-1)		F VIE)HY	OD/	(A)	Correla	ation be	tween t	wo varia	ables
		($5\sum d^2$	$+\sum^{2} \frac{m}{2}$	$n_1(m_1^2 - m_1^2)$	-1)		AYR		(B)	Negati	ve corre	elation	onsnip	
	(C)	1	_	$\frac{\overline{i=1}}{n(n^2 - 1)}$	12	D				(C)	Bad re	lation b	etween	two var	iables
		($5\sum d^2$	$+\sum^{3} \frac{m}{2}$	$n_1(m_1^2 - 1)$	-1)				(D)	Very lo betwee	ow corre en two v	elation variables		
	(D)	1		$\frac{1}{n(n^2 - n(n^2 -$	12				50.	Scatte	r diagrai	m does	not help	us to?	
				mm	1)									[Nov. 2	2020]
45.	Deter	rmine icient	Spear	man's 1 th	rank e gi	corre ven	lation data			(A)	Find th	ne type o	of correl	ation	
	$\sum d^2$	$^{2} = 30.2$	n = 10	:	[J	une 20)19]			(B)	Identif correla	y wheth ated or r	ier varia iot	bles	
	(A) (B)	r = 0 $r = 0$).82).32							(C)	Detern correla	nine the ation	linear c	or non-li	near
	(C) (D)	r = (Non).40 e of the	e above		権利				(D)	Find th of corr	e nume elation	erical val coefficie	ue 🎽 nt 🖸	
46.	Find	the coe $3y = 2$	fficien	t of cor	relatio	n.			51.	The c	ovarianc	ce betw	veen tw	o varia [Nov. 2	bles is 2 020]
	4x +	3y = 4		[N	ov.201	9]				(A)	Strictly	v positiv	ve	_	
	(A)	-0.7	1	_		n yu:				(B)	Strictly	v negativ	ve		
	(B)	0.71					S.			(C)	Always	s Zero			
	(Ե) (D)	-0.5 0.5				۵Ŵ	8			(D)	Either	positive	e or nega	ative or	zero
		0.5													

- 52. For the set of observation {(1, 2), (2, 5), (3, 7), (4, 8), (5, 10)} the value of karl-person's coefficient of correlation is approximately given by [Jan. 2021]
 - **(A)** 0.755
 - **(B)** 0.655
 - **(C)** 0.525
 - **(D)** 0.985
- **53.** The straight-line graph of the linear equation y = a + b x, slope is horizontal if: [July 2021]
 - (A) b=1
 - $(B) \qquad b \neq 0$
 - (C) b = 0
 - (D) $a=b\neq 0$

- **54.** If the data points of (X, Y) series on a scatter diagram lie along a straight line that goes downwards as X-values move from left to right, then the data exhibit...... correlation.[**Dec. 2021**]
 - (A) Direct
 - **(B)** Imperfect indirect
 - (C) Indirect
 - (D) Imperfect direct

ANSWER KEY										
1.	D	2.	D	3.	Α	4.	В	5.	В	
6.	В	7.	В	8.	С	9.	В	10.	В	
11.	В	12.	В 🎽		YODA	14.	С	15.	Α	
16.	С	17.	В	18.	Α	19.	D	20.	В	
21.	С	22.	Α	23.	В	24.	В	25.	D	
26.	С	27.	A	28.	В	29.	D	30.	Α	
31.	Α	32.	A	33.	A	34.	С	35.	D	
36.	С	37.	С	38.	В	39.	A	40.	A	
41.	В	42.	В	43.	В	44.	В	45.	Α	
46.	Α	47.	Α	48.	В	49.	Α	50.	D	
51.	D	52.	D	53.	С	54.	С			

	ANSWER KEY										
1.	С	2.	А	3.	В	4.	Α	5.	С		
6.	С	7.	Α	8.	В	9.	В	10.	Α		
11.	В	12.	D	13.	С	14.	С	15.	В		
16.	С	17.	В	18.	С	19.	В	20.	A		
21.	С	22.	С	23.	В	24.	D	25.	В		
26.	D	27.	В	28.	Α	29.	D	30.	Α		
31.	В	32.	С	33.	В	34.	В	35.	С		
36.	В	37.	С	38.	Α	39.	Α	40.	С		
41.	В	42.	С	43.	Α	44.	В	45.	D		
46.	С	47.	В	48.	В	49.	В	50.	Α		
51.	С	52.	A								

		CC)MPILA	TION OF	PAST	YEA	R QUE	STION	5		YODAY KA UDAY
12.	Time	Reversal Test	and Fac	tor Reversal	1	.7.	Wholesa	le Price I	ndex (WPI)) is given	by
	Test	s satisfied by w	hich numb	er			(A) I	,		[June 2	2011]
			[Dec. 200	9, May 2018]			(B) F)			
	(A)	Laspayre's In	dex				(C) F				
	(B)	Paasche's Ind	ex				(D) E	3			
	(C)	Bowley's Inde	ex		1	0	Fichor's	idoəl inde	v is obtain	ad by:	
	(D)	Fisher Index				.0.		M of L &		20008 1	1]
13.	The p	rice index num	ber of Bow	vley is 150. If					г Цине р	2009&1	. 1]
	the pr	rice index numb	er of Lasp	ayre's is 180,					r D		
	calcul	ate Paasche's p	rice index	10& 13]			(C) (r Is of Land	。 1211日 111日	
	(A)	120	U	-			(D) F	<i>Reciproca</i>	IS OF L and	P —	
	(B)	133			1	.9.	The inde	x numbe	r of prices	at a place	e in the
	(C)	125					then the	re is:	with 2004	as the ba [June 2	se year 2011]
	(D)	None of these	Ì				(A) 2	25% Inci	ease	2	-
4.4			J	1			(B) 1	25% Inci	ease		然後回
14.	know	imer price in n s	laex num	[June 2010]			(C) 7	'5% Decr	ease	透	
	(A)	Cost of living	Index				(D) 1	.00% Inci	ease		8929-2
	(B)	Bowley's Inde	ex	(m)40-3(m)		20	The cim	nla inda	numbor	for the (urront
	(C)	Fisher's Index	x		2	.0.	year usi	ng simpl	e aggregat	tive meth	nod for
	(D) None of these				OHIAC		the follo	wing data	is	[Nov. 2	2011]
15				A10	HYA KI			odity l	Base Year	Curren	t Year
15.		Racovoar	Curron	t voor				-			it i cui
	1	Base year	Curren	nt year			Bas	se	Price	Pri	ce
		Base year 1970	Curren	nt year 75			Bas Wł	se leat	Price 80	Pri 10	lce 00
	1	Base year 1970 q ₀	Curren 197 1	nt year 75 q1			Bas Wł Ric Gra	se leat e um	Price 80 100 120	Pri 10 15 25	ice 00 50 50
	1	Base year 1970 q ₀ 6	Curren	nt year 75 q ₁ 5			Bas Wh Ric Gra Pul	se leat leat leat leat leat leat leat lea	Price 80 100 120 200	Pri 10 15 25 30	ce 00 50 50 00
	1	Base year 1970 q ₀ 6	Curren 197 1 3	nt year 75 91 5 5			Bas Wh Ric Gra Pul	se leat leat leat leat leat leat leat lea	Price 80 100 120 200	Pri 10 15 25 30	ce 00 50 50 00
	1 1 3	Base year 1970 qo 6 5	Curren 197 1 3 8	nt year 75 91 5 5			Bas Wh Ric Gra Pul (A) 1 (B) 1	se eat e m ses 50 75	Price 80 100 120 200	Pri 10 15 25 30	ce 00 50 50 00
	1 1 3 4	Base year 1970 90 6 5 8	Curren 197 1 3 8 10	nt year 75 q1 5 5 6			Bas Wh Ric Gra Pul (A) (B) (C)	se eat e m ses 50 .75 .60	Price 80 100 120 200	Pri 10 15 25 30	ce 00 50 50 00
	1 1 3 4 Calcul	Base year 1970 Qo 6 5 8 late Paasche's in	Curren 197 1 3 8 10 ndex no.	nt year 75 91 5 5 6			Bas Wh Ric Gra Pul (A) (B) (C) 1 (D)	se	Price 80 100 120 200	Pri 10 15 25 30	ce 00 50 50 00
	1 1 3 4 Calcul (A)	Base year 1970 qo 6 5 8 late Paasche's in 198.9	Curren 197 1 3 8 10 ndex no. [June 20	nt year 75 91 91 91 92 91 93 91 94 91 94 91 94 91 94 91 94 91 94 94 94 94 94 94 94 94 94 94 94 94 94	2	1	Bas Wh Ric Gra Pul (A) (B) (C) (D)	se eat e m ses 50 .75 .60 .30	Price 80 100 120 200	Pri 10 15 25 30	ce 00 50 50 00
	1 1 3 4 Calcul (A) (B)	Base year 1970 q 0 6 5 8 late Paasche's in 198.9 261.36	Curren 197 1 3 8 10 ndex no. [June 20	nt year 75 91 5 6 10& 12]	2	1.	Bas Wh Ric Gra Pul (A) (B) (C) 1 (D) Calculate the year	se	Price 80 100 120 200 of living in	Pri 10 15 25 30	ce 00 50 50 00 00 00 00 00 00 00
	1 1 3 4 Calcul (A) (B) (C)	Base year 1970 q 0 6 5 8 late Paasche's in 198.9 261.36 209.5	Curren 197 1 3 8 10 ndex no. [June 20	nt year 75 91 5 5 6 10& 12]	2	21.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (D) 1 Calculate the year	se	Price 80 100 120 200 of living in 970	Pri 10 15 25 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ce 00 50 50 00 00 00 00 00 00 00
	1 1 3 4 Calcul (A) (B) (C) (D)	Base year 1970 q ₀ 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5	Curren 197 1 3 8 10 ndex no. [June 20	nt year 75 91 5 6 10& 12]	2	2 1.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (C) 1 Calculate the year	se eat e m ses .50 .75 .60 .30 e the cost 1975 is 1975 is	Price 80 100 120 200 of living in 970 Qty.	Pri 10 15 25 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ce 00 50 50 00 00 00 00 00 00 00
16.	1 1 3 4 Calcul (A) (B) (C) (D)	Base year 1970 qo 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5 spayre's index	Curren 197 1 3 8 10 ndex no. [June 20 is 90 ar	At year 75 91 5 5 6 10& 12] 10& 12] 10& 12]	2	21.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (C) 1 (D) 1 Calculate the year mmodity A	se	Price 80 100 200 0 f living in 970 Qty. 6	Pri 10 15 25 30 30 endex num [June 2 197 Price 3	ce 00 50 50 00 00 00 00 00 00 00
16.	1 1 3 4 Calcul (A) (B) (C) (D) If Lass index	Base year 1970 q 0 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5 spayre's index is 160 then Fisl	Curren 197 1 3 8 10 ndex no. [June 20 is 90 ar her index i	At year 75 91 5 6 10& 12] 10& 12]	2	21.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (C) 1 (C) 1 Calculate the year mmodity A B	se eat e m ses .50 .75 .60 .30 e the cost 1975 is 1975 is 1975 is 10 Price 1 3 4	Price 80 100 200 200 0 living in 970 Qty. 6 5 8	Pri 10 15 25 30 30 4 4 4 4 5 5 5 5 5 5 7 7 7 7 7 7 7 7 7 7	ce 00 50 50 50 50 50 50 50 50 50
16.	1 1 3 4 Calcul (A) (B) (C) (D) If Lass index (A)	Base year 1970 qo 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5 spayre's index is 160 then Fisl 125	Curren 197 1 3 8 10 ndex no. [June 20 is 90 ar her index i	nt year 75 91 5 6 10& 12] 10& 12] 10& 12] 10& 12] 10& 12] 10& 12]	2	2 1.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (D) 1 Calculate the year mmodity A B C (A) 7	se ieat ieat ieat e ises .50 .75 .60 .30 e the cost 1975 is 1975 is 1° Price 1 .30 4	Price 80 100 200 200 200 200 200 200 20	Pri 10 15 25 30 30 4 4 4 5 5 5 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ce 00 50 50 50 50 50 50 50 50 70 75 75 Qty. 5 5 6
16.	1 1 3 4 Calcul (A) (B) (C) (D) If Lass index (A) (B) (C) (D) If Lass index (A) (B)	Base year 1970 q 0 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5 spayre's index is 160 then Fish 125 120	Curren 197 1 3 8 10 ndex no. [June 20 is 90 ar her index i	At year 75 91 5 6 10& 12] 10& 12] 10& 12] 10& 12] 10& 12] 10& 12] 10& 12]	2	21.	BasWhRicGraPul(A)1(B)1(C)1(D)1Calculatethe yearmmodityABC(A)2(B)2	se ieat ieat ieat e iss ses iss .50 .75 .60 .30 e the cost 1975 is 10 Price 1 3 4 .60.37 .45.23	Price 80 100 200 200 0f living in 970 Qty. 6 5 8 8	Pri 10 15 25 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ce 00 50 50 50 00 00 00 00 00 00
16.	1 1 3 4 Calcul (A) (B) (C) (D) If Lass index (A) (B) (C) (D) If Lass index (A) (B) (C)	Base year 1970 q 0 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5 spayre's index is 160 then Fish 125 120 110	Curren 197 1 3 8 10 ndex no. [June 20 is 90 ar her index i	At year 75 91 5 6 10& 12] 10& 12] 10& 12] 10& 12] 10& 12] 10& 12] 10& 12] 10& 12]	2	21.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (D) 1 Calculate the year mmodity A B C (A) 2 (B) 2 (B) 2 (B) 2 (C) 2	se ieat ieat ieat e ises .50 .75 .60 .30 e the cost 1975 is 10 Price 1 .30 .4 .60.37 .45.23 .10.54	Price 80 100 200 200 0 fliving in 0 70 0 Qty. 6 5 8 8	Pri 10 15 25 30 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ce 00 50 50 00 00 00 00 00 00 00
16.	1 1 1 3 4 Calcul (A) (B) (C) (D) If Last index (A) (B) (C) (D) If Last index (A) (B) (C) (D)	Base year 1970 q 0 6 5 8 late Paasche's in 198.9 261.36 209.5 236.5 spayre's index is 160 then Fish 125 120 110 None of these	Curren 197 1 3 8 10 ndex no. [June 20 is 90 ar her index i	At year 75 91 5 6 10& 12] 10& 12]	2	21.	Bas Wh Ric Gra Pul (A) 1 (B) 1 (C) 1 (D) 1 Calculate the year mmodity A B C (A) 2 (B) 2 (B) 2 (C) 2 (B) 2 (C) 2 (D) 2	se eat eat ses 50 75 60 .30 the cost 1975 is 10 Price 1 3 4 .60.37 .45.23 .10.54 .73.96	Price 80 100 200 200 0f living in 070 Qty. 6 5 8 8	Pri 10 15 25 30 30 4 4 4 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ce 00 00 00 00 00 00 00 00 00 0

Commodity	А	В	С	D	Е
Price in 2011	115	108	95	80	90
Price in 2012	125	117	108	95	95

VIDHYODAY

VIDHYODAY

42. Find the Paasche's Index number for prices from the following data taking 1970 as the

base	e year.	0]	June 2012]
Commodity	,	1970		1975
	Price	Commodity	Price	Commodity
А	1	6	3	5
В	3	5	8	5
С	4	8	10	6
(A)	261	.36		
(B)	265	.48		
(C)	274	.32		
(D)	282			
num whe sam	iber of ere eac e base y	two or mo h index nui rear can	re per nber e [iod of time, employs the Dec. 2013]
(A)	Inde	ex		
(B)	Abs	olute		
(C)	Rela	itive		
(D)	Sam	ple		
44.	pl structio	ay a very im n of index nu	iportan mbers.	t role in the
(A)	Wei	ghts	[June 2015]
(B)	Clas	ses		
(C)	(C) Estimations			
(D)	e			

45. Purchasing power of money is

[June 2016]

- (A) Reciprocal of price index number
- Unequal to price index number (C)

Equal to price index number

(D) None of these

(B)

- 46. In the year 2010 the monthly salary of a clerk was Rs. 24,000. The consumer price Index was 140 in the year 2010, which rises to 224 in the year 2016. If he has to be rightly compensated, what additional monthly salary should be paid to him?
 - (A) Rs. 14,400 [June 2016] Rs. 38,400
 - **(B)**
 - (C) Rs. 7,200 (D) None of these

203

- 47. The suitable index number for the comparison of changes in price level of [June 2016] every year is _____.
 - Fixed Base Index Number (A)
 - **(B)** Fisher's Ideal Index Number
 - (C) Chain Base Index Number
 - (D) Both (A) and (C)
- 48. Following is the data concerning to commodities A, B, C and D in the base period 1992 and current period 1993.

[Dec. 2016]

			_	_		
Commodities	Base Y	'ear 1992	Current Year 1993			
	Price	Quantity	Price	Quantity		
А	3	18	4	15		
В	5	6	5	9		
С	4	20	6	26		
D	1	14	3	15		

The Paasche's price index number is:

- 148.25 (A)
- **(B)** 146.41

(C)

144.25

- **(D)** None of these
- 49. If Laspeyre's index number (L) and Paasche's index number (P) are known, then one can compute Fisher's index number (F) by: [June 2017]
 - F = LP(A)
 - $\sqrt{F} = LP$ **(B)**
 - $F = \frac{1}{LP}$ (C)
 - $F^2 = LP$ **(D)**

Fishers index number is based on: 50.

[Dec.2017]

- (A) The arithmetic mean of Laspeyre's and Paasche's index numbers
- The median of Laspeyre's and **(B)** Paasche's index numbers
- (C) The mode of Laspeyre's and Paasche's index numbers

None of the above (D)

VIDHYODAY

[June 2019]

51. Price relative is equal to: [Dec.2017] 57. The cost of living index numbers in years 2015 and 2018 were 97.5 and 115 Price in the given year $\times 100$ respectively. The salary of a worker in 2015 (A) Price in the base year was Rs. 19500. How much additional salary was required for him in 2018 to maintain Price in the base year $\times 100$ the some standard of living as in 2015? **(B)** Price in the given year (A) 3000 (C) Price in the given year \times 100 **(B)** 4000 (D) Price in the base year $\times 100$ (C) 3500 **(D)** 4500 52. Time reversal & factor reversal are: (A) Quantity Index [May 2018] 58. The index number of prices at place in the Ideal Index **(B)** there is: Price Index (C) (A) (D) Test of adequacy **(B)** 53. A series of numerical figures which show (C) the relative position is called. (D) 25% decrease [May 2018] 59. (A) Index number (A) Squares **(B) Relative number (B)** (C) Absolute number **(C)** (D) None (D) 54. Which is called an ideal index numbers 60. [June 2019] (A) Laspeyre's index number **(B)** Pasche's index number (A) **(B)** (C) Fisher's index number (C) Marshall Edgeworth index number (D) (D) 55. In semi averages method, if the number of 61. values is odd then we drop: (A) [June 2019] **(B)** (A) First value (C) **(B)** Last value **(D)** (C) Middle value 62. (D) Middle two value 56. Which is not satisfied by Fisher's ideal index number? [June 2019] (A) (A) Factor Reversal Test **(B) Time Reversal Test (B)** (C) (C) **Circular Test** (D) None of the above (D) 204

- Index Numbers are expressed as
 - [Nov.2020]
 - Ratio
 - Percentages
 - Combinations
- In Laspeyre's index number is 110 and Fisher's ideal index number is 109. Then Paasche's index number is [Nov.2020]
 - 118
 - 110
 - 109
 - 108

[Jan.2021]

- The cost of living index is always
 - Price index number
 - **Ouantity** index number
 - Weighted index number
 - Value index number
- When the prices for quantities consumed of all commodities are changing in the same ratio, then the index numbers due to Laspeyre's and Paasche's will be: [Ian.2021]
 - Equal
 - Unequal
 - Reciprocal of Marshall Edge worth Index Number

VIDHYODAY

COMPILATION OF PAST YEAR QUESTIONS

63. The weighted aggregative price index turnover for 2001 with 2000 as the base year using Fisher's Index Number is:

[July 2021]

Commodity	Price (l	n Rs.)	Quantities		
	2000	2001	2000	2001	
А	10	12	20	22	
В	8	8	16	18	
С	5	6	10	11	
D	4	4	7	8	

- (A) 12.26
- **(B)** 112.20
- (C) 112.32

(D)

126.01

64. The weighted aggregative price index numbers for 2001 with 2000 as the base year using Paasche's index number is:

|--|

Commodity	Price (in Rs.)	Quan	Quantities	
	2000	2001	2000	2001	
А	10	12	20	22	
В	8	8	16 🤞	18	7
С	5	6	10 🧖	11/10	
D	4	4	7	8	

- (A) 112.32
- **(B)** 112.38
- (C) 112.26

(D)

65. The weighted aggregative price index numbers for 2001 with 2000 as the base year using Marshall Edgeworth index number is: [July 2021]

Commodity	Price in	ı (Rs.)	Quantities		
	2000	2001	2000	2001	
А	10	12	20	22	
В	8	8	16	18	
С	5	6	10	11	
D	4	4	7	8	
(A) 1	12.26				
(B) 1	12.20				
(C) 1	12.32				

(D) 112.38

33° 950
. Fail 12

205

- 66. The consumer price index goes up from 120 to 180 when salary goes up from 240 to 540, what is the increase in real terms? [July 2021]
 - 80 (A) **(B)** 150
 - (C) 360
 - (D) 240

- If P_{10} and P_{01} are index for 1 on 0 and 0 on 67. 1 respectively then formula $P_{_{01}}\!\times\!P_{_{10}}\!=\!1$ is used for [Dec. 2021]
 - **(A)** Unit Test
 - **Time Reversal Test (B)**
 - (C) Factor Reversal Test
 - (D) **Circular Test**
- 68. The weighted averaged of price relatives of commodities, when the weights are equal to the value of commodities in the current year, yields _____ index number.

[Dec. 2021]

- Fisher's ideal
- KA UDA(B) Laspeyres's
 - Paasches' (C)

(A)

- (D) Marshall-Edgeworth
- 69. From the following data base year:

[Dec.2021]	
------------	--

			•	-	
Commodity		Base year		Current year	
	Price	Quantity	Price	Quantity	
А	4	3	6	2	
В	5	4	6	4	
С	7	2	9	2	
D	2	3	1	5	

Fisher's Ideal Index is

- (A) 117.30
- **(B)** 115.43
- (C) 118.35
 - (D) 116.48

[Dec.2021]

- (A) Framing economics policies
- **(B)** Revealing trend
- (C) Forecasting
- (D) Identifying errors

- 71. The three index numbers, namely, Laspeyre, Paasche and Fisher do not satisfy [Dec. 2021] test.
 - Time reversal (A)
 - **(B)** Factor reversal
 - (C) Unit
 - (D) Circular

VIDHYA KA UDAY

ANSWER KEY									
1.	В	2.	В	3.	D	4.	D	5.	В
6.	С	7.	С	8.	D	9.	Α	10.	В
11.	В	12.	D	13.	А	14.	А	15.	В
16.	В	17.	A	18.	С	19.	В	20.	С
21.	Α	22.	В	23.	С	24.	D	25.	С
26.	В	27.	В	28.	D	29.	С	30.	D
31.	В	32.	С	33.	YODAY	34.	Α	35.	В
36.	С	37.	D 🛁	38.IDMY	KA A IDA'	⁷ 39.	С	40.	С
41.	В	42.	Α	43.	A	44.	Α	45.	A
46.	Α	47.	С	48.	В	49.	D	50.	D
51.	Α	52.	D	53.	Α	54.	С	55.	С
56.	В	57.	С	58.	A	59.	С	60.	D
61.	С	62.	Α	63.	D	64.	D	65.	A
66.	С	67.	В	68.	С	69.	Α	70.	D
71.	D								