

	INDEX - ERRORLESS MATHEMATICS						
SN		NAME OF THE CHAPTER	PAGE NO.	No. of MCQs			
Chapter 1	1A & 1B	1A & 1B Ratio and Proportion		136 MCQs			
	1C	Indices	17 - 25	91 MCQs			
	1D	Logarithms	26 - 35	120 MCQs			
Chapter 2		Equations	36 - 57	251 MCQs			
Chapter 3		Inequalities	58 - 75	59 MCQs			
Chapter 4		Time Value of Money	76 - 98	150 MCQs			
Chapter 5	5A	Permutation	99 - 121	156 MCQs			
	5B	Combination	122 - 134	114 MCQs			
Chapter 6	6A	Arithmetic Progression	135 - 149	162 MCQs			
	6B	Geometric Progression	150 - 164	152 MCQs			
	6C	Special Series	165 - 169	60 MCQs			
Chapter 7	7A	Sets	170 - 191	110 MCQs			
	7B	Relations	192 - 194	14 MCQs			
	7C	Functions	195 - 202	65 MCQs			
Chapter 8	8A	Differential Calculus	203 - 229	154 MCQs			
	8B	Integral Calculus	230 - 252	136 MCQs			

Note from CA Pranav Chandak:

- ❖ Hello My Dear students, this book is more than sufficient to get good marks in Mathematics. All you need to do is solve this book atleast twice before the exams.
- ❖ Exam Day Chart Book is also available on my website <u>www.pranavchandak.com</u> to help you in securing good marks in CA Foundation Mathematics.
- ❖ In case of any queries, feel free to contact me on 8888111134.
- Students are requested to Subscribe My YouTube Channel for Free Revision Videos.

STU	JDY PL	ANNER	REVIS	E किया :	???
SN	NAM	E OF THE CHAPTER	Fill the Do	ite of Compl	etion
			Self Study (After Class)	1 st Revision	2 nd Revision
Chapter 1	1A & 1B	Ratio and Proportion			
	1C	Indices			
	1D	Logarithms			
Chapter 2		Equations			
Chapter 3		Inequalities			
Chapter 4		Time Value of Money			
Chapter 5	5A	Permutation			
	5B	Combination			
Chapter 6	6A	Arithmetic Progression			
	6B	Geometric Progression			
	6C	Special Series			
Chapter 7	7A	Sets			
	7B	Relations			
	7C	Functions			
Chapter 8	8A	Differential Calculus			
	8B	Integral Calculus			

Scan QR Code to connect with CA Pranav Chandak Sir:

Youtube	Instgram	Telegram

CHAPTER 1A. RATIO

INTRODUCTION

- ❖ A Ratio is a comparison of two or more quantities of the same kind (units) by division.
- ❖ If a & b are two quantities of same kind (same units), then a/b is called ratio of a to b.
- ❖ It is written as a: b
- PC Note: Quantities to be compared must be in same units or capable of being converted in same units.

CQ1: Ratio b/w 150 gm & 2 kg = Ratio b/w 150 gm & 2000 gm = $\frac{150}{2000} = \frac{3}{40} =$ **3:40.**

CQ2: Ratio b/w 25 mins & 45 sec. = Ratio b/w (25×60) sec & 45 sec. = $\frac{1500}{45} = \frac{100}{3} = 100:3$.

CONCEPT 1: ANTECEDENT & CONSEQUENT

- * 'a' & 'b' are called terms of the ratio.
- 'a' is called first term or antecedent & 'b' is called second term or consequent.

CQ3. Find the ratio b/w 3 kg & 5 kg.

Solution: '3' is the antecedent & '5' is the consequent. Thus, Ratio = $\frac{\text{Antecedent}}{\text{Consequent}} = \frac{3}{5}$.

CQ4. Ratio of two quantities is 3:4. If antecedent is 15, consequent is ____. [Ans: 20]

(a) 16 (b) 60 (c) 22 (d) 20

POINTS TO BE NOTED:

- \diamond The order of the terms in a ratio is important. [Ex: 3:4 is not same as 4:3].
- ❖ Ratio must be expressed in lowest form (simplest form). [Ex: 12:16 = $\frac{12}{16}$ = $\frac{3\times4}{4\times4}$ = $\frac{3}{4}$ = 3:4]
- ❖ If both terms of a ratio are multiplied or divided by any same number (non-zero), ratio remains same.

CQ5: 3:4 is a ratio. Now if we multiply both 3 & 4 by any non-zero number (say Ex. by 4), we will get a new ratio 12:16, which is same as 3:4.

❖ If original quantity increases or decreases in the ratio a:b, then

New Quantity = Original Quantity $\times \frac{b}{a}$ [$\frac{b}{a}$ is called Factor Multiplying Ratio]

CQ6. Mr. PC weighs 56.7 kg. If he reduces his weight in the ratio 7: 6, find his new weight.

Solution: Original weight of Mr. PC = 56.7 kg; He reduces his weight in the ratio 7:6.

His new weight = $(56.7 \times 6)/7 = 48.6$ kg.

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

CONCEPT 2: INVERSE RATIO

[Ulta Ratio]

- ❖ Inverse Ratio of a: b = b: a and vice-versa.
- * Product of the ratio = 1.

CQ7. Ratio of two quantities is 5:7. If Consequent of its Inverse Ratio is 5, Antecedent is:

- (a) 5
- (b) $\sqrt{5}$
- (c)7
- (d) None

CONCEPT 3: DUPLICATE RATIO

[Multiplication of the Ratio with itself]

- ❖ A ratio multiplied by itself is called its duplicate ratio.
- Duplicate ratio of \mathbf{a} : $\mathbf{b} = \frac{\mathbf{a}}{\mathbf{b}} \times \frac{\mathbf{a}}{\mathbf{b}} = \mathbf{a}^2$: \mathbf{b}^2

Ex: (i) Duplicate ratio of 2:3 = 4: 9;

CONCEPT 4: SUB-DUPLICATE RATIO

[Ulta of Duplicate Ratio]

- Sub-duplicate ratio of $\mathbf{a} : \mathbf{b} = \sqrt{a} : \sqrt{b}$
- Sub-duplicate ratio of a^2 : $b^2 = a$: b

Ex: (i) Sub-duplicate ratio of 9:25 = $\sqrt{9}$: $\sqrt{25}$ = **3: 5**

CONCEPT 5: TRIPLICATE RATIO

[Ratio of Cubes of Terms]

- ❖ Triplicate ratio of a: b = a³: b³
 - Ex: (i) Triplicate ratio of 2: 3 = 8: 27

CONCEPT 6: SUB-TRIPLICATE RATIO

[Ulta of Triplicate Ratio]

- Sub-triplicate ratio of **a**: **b** = $\sqrt[3]{a}$: $\sqrt[3]{b}$
- Sub-triplicate ratio of a3: b3 = a: b

Ex: (i) Sub-triplicate ratio of 8:125 = $\sqrt[3]{8}$: $\sqrt[3]{125}$ = **2: 5.**

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

CONCEPT 7: COMPOUND RATIO

[Multiplication of Two Ratios]

Compound ratio of two ratios **a**: **b** & **c**: **d** = $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} = ac$: **bd**.

Ex: (i) Compound ratio of 3:4 & 5:7 = 15: 28.

Ex: (ii) Compound ratio of 2:3, 5:7 & 4:9 = 40: 189.

CONTINUED RATIO

❖ Continued Ratio is the relation between three or more quantities of the same kind.

❖ The continued ratio of three similar quantities a, b, c is written as a: b: c.

CQ8. A: B = 2: 3; B: C = 4: 5; & C: D = 6: 7, then A: B: C: D is

(a) 16: 22: 30: 35

(b) 16: 24: 15: 35 (c) 16: 24: 30: 35 (d) 18: 24: 30: 35

CQ9. If A: B = 2: 3, B: C = 4: 5, C: D = 6: 7 the A: D is____.

(a) 35:16

(b) 16:35

(c) 2:7

(d) None of these.

Space for PC Class Note:

1B. PROPORTION

INTRODUCTION

- Equality of two ratios is called a proportion.
- ❖ Four quantities a, b, c, d are said to be in proportion if a: b = c: d (a: b :: c: d).
- ❖ The quantities a, b, c, d are called terms of the proportion;
- ❖ 1st & 4th terms are called Extremes; 2nd & 3rd terms are called Means (middle terms).
- Product of Extremes = Product of Means

Ex: If
$$\frac{3}{5} = \frac{6}{10}$$
 then LHS = 3 × 10 = 30 & RHS = 6 × 5 = 30

PC NOTE: In a ratio a:b, both quantities must be in same unit but in proportion a: b = c: d, all 4 quantities need not be of the same type. First two quantities should be in same unit & last two quantities should be in same unit.

Ex: Rs. 6: Rs. 8 = 12 toffees: 16 toffees are in a proportion since 1^{st} two quantities are in same unit & last two are in same unit.

CONCEPT 1: CONTINUOUS PROPORTION [Same apply for more than 3 quantities]

Three quantities a, b, c (same units) are in continuous proportion if a: b = b: c.

`a" → 1st proportional; `b" → Mean proportional bet" a & c; `c" → 3rd proportional.

- If $\frac{a}{b} = \frac{b}{c}$, then $\mathbf{b^2} = \mathbf{ac}$; OR $\mathbf{b} = \sqrt{\mathbf{ac}}$.
- **CQ1.** Find the value of x if $\frac{10}{3}$: x :: $\frac{5}{2}$: $\frac{5}{4}$. [Ans: $\frac{5}{3}$]
- **CQ2.** Find the fourth proportional to $\frac{2}{3}$, $\frac{3}{7}$, 4. [Ans: $\frac{18}{7}$]
- CQ3. Find the third proportion to 2.4 kg, 9.6 kg. [Ans: 38.4 Kgs]
- **CQ4.** Find the mean proportion betⁿ 1.25 & 1.8. [Ans: 1.5]

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

CC	ONCEPT 2: PR	OPERTIES OF	PROPORTION \rightarrow If a:b = c:d then
1	Invertendo	b: α = d: c	Ex: If $\frac{3}{5} = \frac{6}{10}$ then $\frac{5}{3} = \frac{10}{6}$
2	Alternendo	a: c = b: d	Ex: If $\frac{3}{6} = \frac{5}{10}$ then $\frac{3}{6} = \frac{5}{10}$
3	Componendo	$\frac{a+b}{b} = \frac{c+d}{d}$	Ex: If $\frac{3}{5} = \frac{6}{10}$ then $\frac{3+5}{5} = \frac{6+10}{10}$ [Check $\frac{8}{5} = \frac{16}{10}$; $8 \times 10 = 5 \times 16$]
4	Dividendo	$\frac{a-b}{b} = \frac{c-d}{d}$	Ex : If $\frac{5}{3} = \frac{10}{6}$ then $\frac{5-3}{5} = \frac{10-6}{10}$ [Check $\frac{2}{5} = \frac{4}{10}$; 2 × 10 = 5 × 4]
5	Componendo & Dividendo	$\frac{a+b}{a-b} = \frac{c+d}{c-d}$	Ex : If $\frac{5}{3} = \frac{10}{6}$ then $\frac{5+3}{5-3} = \frac{10+6}{10-6}$ [Check $\frac{8}{2} = \frac{16}{4}$; $8 \times 4 = 2 \times 16$]
6	, ,		cios (Addendo) = (a + c + e +): (b + d + f +) en it comes out as $\frac{3+6+12+24}{5+10+20+40}$

(Only Addendo and Subtrahendo are equal to the Original Ratio)

CQ5. If a: b = c: d = 2.5:1.5, what are the values of (i) ad: bc & (ii) a+c: b+d?

Ans: (i) $\frac{a}{b} = \frac{c}{d} = \frac{5}{3}$; so, ad = bc, thus ad: bc = ad: ad [Substituting ad = bc], Thus ad: bc = 1:1.

Subtrahendo $\frac{a}{b} = \frac{c}{d} = \frac{a-c}{b-d}$ **Ex:** If $\frac{3}{5} = \frac{6}{10} = \frac{12}{20} = \frac{24}{40}$ then, $\frac{3}{5} - \frac{12}{20} = \frac{6}{10} - \frac{24}{40} \to 0$

(ii) $\frac{a}{b} = \frac{c}{d} = \frac{2.5}{1.5}$; Using the above given principle, we can say that $\frac{a+c}{b+d} = \frac{5}{3}$.

CONCEPT 3: INVERSE PROPORTION

- If 'a' & 'b' are related to each other such that an increase in 'b' results in proportionate decrease in 'a', then 'a' & b are said to be inversely related or in inverse proportion.
- This is expressed as $\mathbf{a} \propto \frac{1}{b}$. [a is inversely proportional to b]
- When $\mathbf{a} \propto \frac{1}{b}$, we can write $\mathbf{a} = \frac{\mathbf{k}}{\mathbf{b}}$, where k is the constant of probability.

PC Note: Inverse Proportion of a: b is b: a.

[Ex: 5/4 is in inverse proportion of 4/5].

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

POINTS TO	BE NOTED		
■ If a ∝ b o	and b $\propto c$, then $\mathbf{a} \propto \mathbf{c}$.		■ If $a \propto b$, then $ax \propto bx$.
■ If a × bc	$\frac{a}{c}$, then $\frac{b}{c} \propto \frac{a}{c}$ and $\frac{c}{c} \propto \frac{a}{c}$	<u>a</u> .	
CQ6. X vari	es inversely as y². G	iven that y = 2	for $x = 1$. Value of x for $y = 6$ will be
(a) 3	(b) 9	(c) 1/9	(d) - 1/9

Space for PC Class Note:

RATIO & PROPORTION - QUESTION BANK

SN		CHAP.	TER 1A. RATIO		Ans
Q1	Ratio exists only be	etween quantities of _	kind.		A
	(a) same	(b) bigger	(c) smaller	(d) None	
Q2	A ratio is a				C
	(a) unit	(b) term	(c) number	(d) function	
QЗ		erms in a ratio is impo			A
	(a) True	(b) False	(c) Partly True	(d) None	
Q4	A ratio is expresse				A
	(a) simplest	(b) complicated	(c) moderate	(d) functional	
Q5	Ratio has no unit.				A
	(a) True	(b) Partly True	(c) False	(d) None	
Q6	If a: b = c: d then _				C
	(a) ab = cd	(b) ac = bd	(c) ad = bc	(d) ab = ad	
Q7	4 ^{2.5} :2 ³ is same as	·			A
	(a) 4:1	(b) 2:1	(c) 16:1	(d) 80:1	
Q8	The ratio 3/2: 1/3:	1/8 is same as	·		C
	(a) 36: 3: 8	(b) 3: 8: 36	(c) 36: 8: 3	(d) 3: 36: 8	
Q9	If A: B = 2: 3, B: C=	4: 5, C: D= 6: 7. the A:	D is		В
	(a) 35:16	(b) 16:35	(c) 2:7	(d) None	
Q10	If A: B = 2: 3; B: C =	= 4: 5 and C: D = 6: 7,	then A: B: C: D is	•	C
	(α) 16:22:30:35	(b) 16:24:15:35	(c) 16:24:30:35	(d) 18:24:30:35	
Q11	The inverse ratio c	of 11:15 is			A
	(α) 15:11	(b) √11: √15	(c) 125:225	(d) None	
Q12	In the ratio 11/3: 1	3/4, antecedent is	·		В
	(a) 13/4	(b) 11/3	(c) Both (a) & (b)	(d) None	
Q13	The Duplicate Ratio	o of 3: 4 is			C
	(a) √3: 2	(b) 4:3	(c) 9: 16	(d) None	
Q14	The Sub Duplicate	Ratio of 25: 36 is			D
	(α) 6:5	(b) 36:25	(c) 50:72	(d) 5:6	
Q15	If p: g is the Sub D	uplicate Ratio of p - x	²: q - x² then x² is		D
	$(\alpha) \frac{p}{p+q}$	(b) $\frac{q}{p+q}$	(c) $\frac{pq}{pq}$	$(d) \frac{pq}{p+q}$	
040				p+q	
Q16	-	licate Ratio of 2s - p:	•	(d) None	A
0:5	(a) $p^2 = 6st$	(b) p = 6st	(c) 2p = 3st	(d) None	
Q17	The Triplicate Rati	o of 3: 2 is			A

	(a) 27:8	(b) 6:9	(c) 3:2	(d) 8:27	
Q18	The Triplicate Ra	tio of 4: 5 is			С
	(α) 125:64	(b) 16:25	(c) 64:125	(d) 120:46	
Q19	The Sub Triplicat	e Ratio of 8: 27 is	·		С
	(a) 27:8	(b) 24:81	(c) 2:3	(d) None	
Q20	If (4x+3): (9x+10)	is the Triplicate Ratio o	of 3: 4, then the value	of x is	С
	(a) 9	(b) 7	(c) 6	(d) 5	
Q21	Ratio compounde	d of Duplicate Ratio of	√5: √6 & Triplicate Ro	atio of 3: 5 is	С
	(a) 4:75	(b) 2:15	(c) 9:50	(d) 3:10	
Q22	-	unded of Duplicate Ratio riplicate Ratio of 125: 5		1: 3, Sub Duplicate Ratio of	D
	(a) 4:512	(b) 3:32	(c) 1:12	(d) 1:120	
Q23	If $5x^2 - 13xy + 6y^2$	= 0, then x: y is			В
	(a) (2:1) only	(b) (3:5) or (2:1)	(c) (5:3) or (1:2)	(d) (3:5)	
Q24	If 2A=3B and 4B=	5C, then A:C is			В
	(a) 4:3	(b) 15:8	(c) 8:15	(d) 3:4	
Q25	P, Q, and R are three cities. Ratio of average temperature between P & Q is 11:12 and that between P and R is 9:8. Ratio between average temperature of Q and R is				В
	(a) 22:27	(b) 27:22	(c) 32:33	(d) None	
Q26	his daughter's sh		tio 3:1. If the daughte	s share and wife's share to er gets Rs.10,000 less than	A
	(a) Rs. 16,250	(b) Rs. 8,250	(c) Rs. 15,250	(d) Rs.21,250	
Q27	If 40% of a numb to second numbe	•	nother number, what	is the ratio of first number	С
	(a) 2:5	(b) 3:7	(c) 5:3	(d) 7:3	
Q28	Two numbers are numbers is	e respectively 30% & 4	0% more than a thirc	d number. Ratio of the two	С
	(a) 3:4	(b) 14:14	(c) 13:14	(d) 4:3	
Q29	•	0 1		d in the ratio of 2:3. If the e salt and pepper that must	С
	(a) 4:3	(b) 2:6	(c) 2:3	(d) 3:2	
Q30		persons are in the ration t ages (in years) are		ir ages were in the ratio of	A
	(a) 50,70	(b) 70,50	(c) 40,56	(d) None	
Q31		s.187 in the form of 1 rup of each type of coins.	pee, 50 paise and 10 pa	aise coins in the ratio 3:4:5.	A
	(a) 102,136,170	(b) 136,102,170	(c) 170,102,136	(d) None	
	-				

	The numbers are	
	(a) (16,24) (b) (4,6) (c) (2,3) (d) None	
Q33	What quantity must be added to the terms of the ratio p+q : p-q to make it equal to $(p + q)^2$: $(p - q)^2$?	C
	(a) $(q+p) / 2p$ (b) $(q-p) / 2p$ (c) $(q^2 - p^2) / 2p$ (d) None	
Q34	The ratio between the speeds of two trains is 7:8. If 2^{nd} train runs 400 kms in 5 hours, speed of 1^{st} train is	D
	(a) 10 km/hr (b) 50 km/hr (c) 71 km/hr (d) 70 km/hr	
Q35	The angles of a triangle are in ratio 2:7:11. The angles are (a) $(20^{\circ},70^{\circ},90^{\circ})$ (b) $(30^{\circ},70^{\circ},80^{\circ})$ (c) $(18^{\circ},63^{\circ},99^{\circ})$ (d) None	С
Q36	If A, B and C started a business by investing Rs.1,26,000, Rs.84,000 and Rs.2,10,000. If at the end of the year profit is Rs. 2,42,000 then the share of each is	A
	(a) Rs.72,600, Rs.48,400, Rs.1,21,000 (b) Rs.48,400, Rs.1,21,000, Rs.72,600	
	(c) Rs.72,000, Rs.49,000, Rs.1,21,000 (d) Rs.48,000, Rs.1,21,400, Rs.72,600	
Q37	The ratio of the number of boys to number of girls in a school of 1,200 Students is 7:5. If 20 boys are newly admitted h the school, find how many new girls may be admitted so that the above ratio may change to 4: 3.	A
	(a) 40 (b) 140 (c) 60 (d) 58.	
Q38	Ratio of the number of boys to the number of girls in a school of 720 students is 3:5. If 18 new girls are admitted in the school, find how many new boys shall be admitted so that the ratio of the number of boys to the number of girls may change to 2:3.	С
	(a) 40 (b) 48 (c) 42 (d) 58.	
Q39	If a packet containing 12 glasses is dropped, ratio of broken glasses to unbroken glasses cannot be	В
	(a) 3:1 (b) 6:1 (c) 4:2 (d) 5:7	
Q40	The ages of A and B are in the ratio 3:1. Fifteen years hence, the ratio will be 2:1. Their present ages are	В
	(a) 30 years, 10 years (b) 45 years, 15 years	
	(c) 21 years, 7 years (d) 60 years, 20 years	
Q41	The population of a bacteria culture doubles in number every 12 minutes. The rata of the number of bacteria at the end of 1 hour to the number of bacteria at the beginning of that hour is	С
	(a) 64:1 (b) 60:1 (c) 32:1 (d) 16:1	
Q42	Rs.1,360 have been divided among A, B, C such that A gets $(2/3)$ of what B gets and B gets $(1/4)$ of what C gets. Then B's share is	С
	(a) Rs.120 (b) Rs.160 (c) Rs.240 (d) Rs. 320	
Q43	A sum of Rs. 53 is to be divided among A, B, C such that A gets Rs. 7 more than what B gets and B gets Rs. 8 more than what C gets. The ratio of three shares is (a) 18:25:10 (b) 18:10:25 (c) 25:18:10 (d) None	С
Q44	A & B together have Rs. 1,210. If $\frac{4}{15}$ of A's amount is equal to $\frac{2}{5}$ of B's amount, how much does B have?	В

	(a) Rs. 460	(b) Rs.484	(c) Rs.550	(d) Rs.664	
Q45	Rs. 1,300 is divid	ded amongst p, q, r & s s	such that $\frac{p share}{q share} = \frac{q sh}{r share}$	$\frac{are}{are} = \frac{r share}{s share} = \frac{2}{3}$. Then, P's share	В
	(a) Rs. 140	(b) Rs. 160	(c) Rs.240	(d) Rs. 320	
Q46		C are in the ratio 2:3: ly, what will be new rati		5%, 10% & 20% are given to	С
	(a) 3:3:10	(b) 10:11:20	(c) 23:33:60	(d) None	
Q47		· .		f 20% of the boys and 25% of e students does not get the	C
	(a) 56	(b) 70	(c) 78	(d) 80	
Q48	1	Firm are to be distribut fer by 40 and the measu		io. Suitable Ratio is the ratio	В
	(a) 280:2	(b) 16:56	(c) 80:7	(d) 40:14	
Q49	If $(a + b)$: $(b + c)$	(c + a) = 6:7:8 and (a	+ b + c) = 14, then the	e value of c =	A
	(a) 6	(b) 7	(c) 8	(d) 14	
Q50	If a: b = 3:4, the	value of (2a + 3b): (3a +	4b) =		A
	(a) 18:25	(b) 8:25	(c) 17:24	(d) None	
Q51	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, then $\frac{a+b+c}{c} = $				
	(a) 7	(b) 2	(c) 1/3	(d) 1/5	
Q52	If x: v = 2:3 then	(5x+2y): (3x-y) =			В
	(α) 19:3	(b) 16:3	— (c) 7:2	(d) 7:3	
Q53	If P: Q = 2:3 & X:	: Y = 4: 5, then 5PX + 3Q	Y: 10PX + 4QY =		С
	(a) 71:82	(b) 27:28	(c) 17:28	 (d) None	
Q54	1 1	x: y is			D
			(a) 7.0	(d) 27:29	
OFF	(a) 2:9		(c) 7:9	(U) 21:28	_
Q55		$ \eta \frac{a+b+c}{a+b-c} = \underline{\qquad}. $	12		A
	(a) 13	(b) $\frac{13}{9}$	(c) $\frac{13}{3}$	(d) None	
Q56	If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$ th	hen $\frac{pa+qc+re}{pb+qd+rf} = $			A
		(b) (p + q + r) k		(d) None	
Q57		$\frac{x+a}{xa} + \frac{x+b}{xb}$, when $x = \frac{2ab}{a+b}$; a	ĸ .		D
 /	1	$\frac{1}{xa} + \frac{1}{xb}$, when $x = \frac{1}{a+b}$; a		(4) 2	<i>-</i>
050	(a) 3		(c) 1	(d) 2	
Q58		ers whose sum is 72 can			С
	(a) 5:7	(b) 3:5	(c) 3:4	(d) 4:5	
Q59				numbers are	С
	(a) (200,305)	(b) (185,290)	(c) (245,350)	(d) (350,240)	

Q60	Ratio of numbers is 1:2:3 & sum of their squares is 504, then the numbers are	A
	(a) 6,12,18 (b) 3,6,9 (c) 4,8,12 (d) 5,10,15	
Q61	Three numbers which are in the ratio of 3:4:5 such that sum of their cubes is 1728.	A
	(a) 6,8,10 (b) 10,8,6 (c) 12,8,20 (d) None	
Q62	A person has assets worth Rs. 1,48,200. He wishes to divide it amongst his wife, son & daughter in ratio 3:2:1 respectively. From these assets, share of his son will be	С
	(a) Rs. 74,100 (b) Rs. 37,050 (c) Rs. 49,400 (d) Rs. 24,700	
Q63	Daily earnings of two persons are in the ratio 4:5 and their daily expenses are in the ratio 7:9. If each saves Rs. 50 per day, their daily incomes are	C
	(a) (40,50) (b) (50,40) (c) (400,500) (d) None	
Q64	A person on a tour has Rs. 9600 for his expense. But the tour was extended for another 16 days, so he has to cut down his daily expenses by Rs. 20. The original duration of the tour had been? (a) 48 days (b) 64 days (c) 80 days (d) 96 days	С
Q65	, , , , , , , , , , , , , , , , , , ,	Α.
GOO	A earns Rs. 150 in 12 hours; B ear ns Rs. 160 in 8 hours. Ratio of their earning is (a) 5:8 (b) 15: 16 (c) 45:32 (d) None	A
Q66	Arun earns Rs. 80 in 7 hours &Varun earns Rs. 90 in 12 hours. Ratio of their earnings is (a) 32:21 (b) 23:12 (c) 8:9 (d) None	A
Q67	A bag contains 23 number of coins in the form of 1 rupee, 2 rupee and 5 rupee coins. The total sum of the coins is Rs. 43. The ratio between 1 rupee and 2 rupees coins is 3:2. Then the number of 1 rupee coins	A
	(a) 12 (b) 8 (c) 10 (d) 16	
Q68	Find in what ratio will the total wages of the workers of a factory be increased or decreased if there be a reduction in the number of workers in the ratio of 15:11 and an increment in their wages in the ratio of 22:25.	A
	(a) Decrease in the ratio 6:5. (b) Increase in the ratio 6:5	
	(c) Decrease in the ratio 3:5 (d) Increase in the ratio 3:5	
Q69	Ratio in which the total wages of the workers of a factory get increased (or decreased), if there be a reduction of workers in the ratio 7:5 & an increase in their wages in the ratio 2:3 is	A
	(a) 14:15 (b) 15:14 (c) 4:1 (d) 1:4	
Q70	$15(2p^2 - q^2) = 7pq$ where p, q are positive then p: q	A
	(a) 5: 6 (b) 5: 7 (c) 3: 5 (d) 3:7	
Q71	If $p^x = q$, $q^y = r$, $r^z = p^6$ then the value of x.y.z is	D
	(a) 0 (b) 1 (c) 3 (d) 6	
Q72	First, second & third month salaries of a person are in the ratio 2:4:5. The difference between the product of the salaries of first 2 months & last 2 months is 4,80,00,000. Find the salary of the second month	D
	(a) Rs. 4,000 (b) Rs. 6,000 (c) Rs. 12,000 (d) Rs. 8,000	
Q73	The number which when subtracted from each of the terms of the ratio 19:31 reducing it to 1:4 is	A

	(a) 15	(b) 5	(c) 1	(d) None	
Q74	If 2x + 3 : 5x - 38	is the duplicate ratio	of $\sqrt{5}:\sqrt{6}$, then value of	of x is	С
	(a) 12	(b) 14	(c) 16	(d) 18	
Q75	The ratio compo	ınded of (a+b): (a-b) a	and $a^2 - b^2$: $(a + b)^2$ is	·	С
	(a) (a+b):1	(b) (α-b):1	(c) 1:1	(d) None	
Q76	The ratio of two (a) (200,305)	numbers is 7:10 and th (b) (185,290)	neir difference is 105. T (c) (245,350)	The numbers are (d) 350, 245	С
Q77				ne girls. What is the ratio of	В
	(a) 3:2	(b) 5:2	(c) 2:1	(d) 4:3	
Q78	The sides of a tr		$0.\frac{1}{2}:\frac{1}{3}:\frac{1}{4}$ and its perime	eter is 104 cm. The length of	В
	(a) 52 cm	(b) 48 cm	(c) 32 cm	(d) 26 cm	
Q79	the first has incr	eased by 10% and the	at of the second by Rs. s of the two types of ca	ears later when the price of 477, the ratio of the prices ars. (d) None	A
			(c) 948 & 1119		
Q80		_		shares be diminished by Rs. 4:5. Then B's share is (d) Rs.1,600	В
Q81	price of each ch			ch table being Rs. 150, the mber of tables, what is the	В
	(a) 4:3	(b) 3:4	(c) 2:5	(d) 2:3	
Q82	If $\frac{x}{2y} = \frac{3}{2}$, then the	e value of $\frac{2x+y}{x-2y}$ is			В
	(a) 5	(b) 7	(c) 2	(d) 7.1	
Q83	If $\frac{\sqrt{x+5} + \sqrt{x-16}}{\sqrt{x+5} - \sqrt{x-16}} = \frac{7}{3}$ t	hen x equals to			В
	(a) 10	(b) 20	(c) 30	(d) 40	
Q84	If $\frac{a^3+3a}{3a^2+1} = \frac{91}{37}$ then	'a' equals to			В
	000 1 2 07				

SN		CHAPTER 1	B. PROPORTION		Ans
Q85	The mean propor	tional between 12x² c	and 27y² is		A
	(α) 18xy	(b) 81xy	(c) 8xy	(d) None	
Q86	If 4, x and 9 are i	n proportional then	⁶ X ⁹ =		C
	(a) 36	(b) 6.5	(c) 6	(d) 24	
Q87	The fourth propo	rtional to 4,6,8 is $__$	·		A
	(a) 12	(b) 32	(c) 48	(d) None	
Q88	The third proport	tional to 12, 18 is	<u>.</u>		В
	(a) 24	(b) 27	(c) 36	(d) None	
Q89	If 50 is the third	proportional to 8 an	d X, then the value o	of X is	A
	(a) 20	(b) 2	(c) 10	(d) 1	
Q90	Mean proportion	between 24 and 54 i	s		D
	(a) 33	(b) 34	(c) 35	(d) 36	
Q91	If 'b' is the mean	proportional betwee	en a & c, then		A
	(a) b × b = ac	(b) b = $(a + c) / 2$	(c) $b = a + c$	(d) $b = (a - c) / 2$	
Q92	If a: b = 4:1 then	a+b/a =			В
	(a) 1	(b) 5/4	(c) 4/5	(d) None	
Q93	If a:b = c:d = 2.5	: 1.5, what are the vo	ulues of ad : be and	a+c : b+d?	C
	(a) 1: 2 and 5: 3	(b) 1: 3 and 4: 3	(c) 1: 1 and 5: 3	(d) 2: 1 and 3: 5	
Q94	What must be add	ded to each number	10, 18, 22, 38 to mak	e them proportional?	В
	(a) 5	(b) 2	(c) 3	(d) 9	
Q95		, ,	portion & their prod	uct of means is 4.8, find	A
	the product of ex		(-) 0 4	(-1) NI	
		(b) 2.4		(a) None	
Q96		tional to $(x^2 - y^2)$ and		. 1. X=V	D
	(a) (x + y)	(b) (x - y)	(c) $\frac{x+y}{x-y}$	$(d) \frac{x-y}{x+y}$	
Q97	The fourth propo	rtional to $2a$, a^3 , c is	·		D
	(a) ac/2	(b) ac	(c) 2/ac	(d) $\alpha^2 c/2$	
Q98	The fourth propo	rtional to $(a + b)$, $(a + b)$	- b)², (α - b) is	_·	В
	(a) (a+b)	(b) $(a^2 - b^2)$	(c) (a-b)	$(d) (a + b)^2$	
Q99		•	oportion. The fourth	term for which they will	В
	be in proportion		(-) 00	(-1\ NI=	
	(α) 45	(b) 40	(c) 32	(d) None	_
Q100	What least numb	er must be added t	o each one 6, 14, 1	18, 38 to make them in	В

	proportion?				
	(a) 1	(b) 2	(c) 3	(d) 4	
Q101	Ratio of 3 rd pro	portional to 12 and 3	30 & Mean proportion	nal between 9 and 25 is	В
	(a) 2:1	(b) 5:1	(c) 7:15	(d) 9:14	
Q102	Ratio of 3 rd pro	portional to 4 & 6 a	nd mean proportion	al between 9 & 25 is	В
	(a) 5:3	(b) 3:5	(c) 8: 5	(d) 5: 8	
Q103	If b is mean pro (b²+c²) is	•	and c, then the mea	n proportion bet ⁿ (α²+b²) &	A
	(a) b (a + c)	(b) a (b + c)	(c) c (a + b)	(d) abc	
Q104	The number wh	ich has the same ra	tio to 26 that 6 has	to 13 is	D
	(a) 11	(b) 10	(c) 21	(d) 12	
Q105	If four numbers	s 1/2, 1/3, 1/5, 1/x αι	re proportional then	x is	С
	(a) 6/5	(b) 5/6	(c) 15/2	(d) None	
Q106	Find two number	ers such that their A	AM is 18 and third pr	oportional to them is 144.	D
	(a) 9, 36	(b) 29, 56	(c) 18, 72	(d) None	
Q107	sells the mixtur	_	g and earns a profit	costing Rs.7.77 per kg and 17.5% on his Sale Price. In	A
	(a) 3:2	(b) 4:1	(c) 3:4	(d) 5:3	
Q108				has lead & tin in ratio 3:2	В
		u ø cobber in rue ic	atio 1:4, then amount	of tin in new alloy is	
·	(a) 36 kg		atio 1:4, then amount (c) 53 kg	of tin in new alloy is (d) 80 kg	
Q109	70 kgs of Alloy	(b) 44 kg I is mixed with 20 k nd alloy II has Zinc 8	(c) 53 kg kg of Alloy II. If alloy	·	A
Q109	70 kgs of Alloy the ratio 3:4 an	(b) 44 kg I is mixed with 20 k nd alloy II has Zinc 8	(c) 53 kg kg of Alloy II. If alloy	(d) 80 kg I has Copper and Zinc in	
Q109 Q110	70 kgs of Alloy the ratio 3:4 and the new alloy is (a) 48 kg	(b) 44 kg I is mixed with 20 k nd alloy II has Zinc 8 S (b) 52 kg ture contains 20% o	(c) 53 kg kg of Alloy II. If alloy & tin in the ratio 2:3 (c) 42 kg	(d) 80 kg I has Copper and Zinc in then the amount of Zinc in (d) None water. If 3 litres of water	
	70 kgs of Alloy the ratio 3:4 and the new alloy is (a) 48 kg	(b) 44 kg I is mixed with 20 k nd alloy II has Zinc 8 S (b) 52 kg ture contains 20% o	(c) 53 kg kg of Alloy II. If alloy & tin in the ratio 2:3 (c) 42 kg alcohol and the rest	(d) 80 kg I has Copper and Zinc in then the amount of Zinc in (d) None water. If 3 litres of water	A
	70 kgs of Alloy the ratio 3:4 and the new alloy is (a) 48 kg 15 litres of mix be mixed with in (a) 15% Three container milk & water. To (5:2) respective fourth container	(b) 44 kg I is mixed with 20 kmd alloy II has Zinc 8 (b) 52 kg ture contains 20% of the dit, % of alcohol in the (b) $16\frac{2}{3}$ % The mixtures containely. The contents of the ratio of milk	(c) 53 kg kg of Alloy II. If alloy tin in the ratio 2:3 (c) 42 kg alcohol and the rest e new mixture would (c) 17% es in the ratio 3:4:5. In milk and water in the fourt all these three con water in the fourt	(d) 80 kg I has Copper and Zinc in then the amount of Zinc in (d) None water. If 3 litres of water be (d) 18½% They are full of mixtures of the ratio of (4:1), (3:1) and tainers are poured into a h container is	A
Q110 Q111	70 kgs of Alloy the ratio 3:4 and the new alloy is (a) 48 kg 15 litres of mix be mixed with in (a) 15% Three container milk & water. To (5:2) respective fourth container (a) 4:1	(b) 44 kg I is mixed with 20 kmd alloy II has Zinc 8 (b) 52 kg ture contains 20% of the dit, % of alcohol in the (b) $16\frac{2}{3}$ % The mixtures containely. The contents of the ratio of milk (b) 151: 48	(c) 53 kg kg of Alloy II. If alloy & tin in the ratio 2:3 (c) 42 kg alcohol and the rest e new mixture would (c) 17% es in the ratio 3:4:5. In milk and water in the ratio con	(d) 80 kg I has Copper and Zinc in then the amount of Zinc in (d) None water. If 3 litres of water be (d) 18½ They are full of mixtures of the ratio of (4:1), (3:1) and tainers are poured into a	A B
Q110	70 kgs of Alloy the ratio 3:4 and the new alloy is (a) 48 kg 15 litres of mix be mixed with in (a) 15% Three container milk & water. To (5:2) respective fourth container (a) 4:1	(b) 44 kg I is mixed with 20 kmd alloy II has Zinc 8 (b) 52 kg ture contains 20% of the dit, % of alcohol in the (b) $16\frac{2}{3}$ % The mixtures containely. The contents of the ratio of milk	(c) 53 kg kg of Alloy II. If alloy tin in the ratio 2:3 (c) 42 kg alcohol and the rest e new mixture would (c) 17% es in the ratio 3:4:5. In milk and water in the fourt all these three con water in the fourt	(d) 80 kg I has Copper and Zinc in then the amount of Zinc in (d) None water. If 3 litres of water be (d) 18½% They are full of mixtures of the ratio of (4:1), (3:1) and tainers are poured into a h container is	A B

				1	
Q113	If a: b = 4:1 ther	$\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$ is			В
	(a) 1	(b) 5/2	(c) 4/5	(d) None	
Q114		ontain copper and : cg of copper is		. The zinc required to be	A
	(a) 10.67 kg	(b) 10.33 kg	(c) $9\frac{2}{3}$ kg	(d) 9 kg	
Q115	If 1 cup of milk i the 4 cup mixtur	•	mixture that is 2/5	flour &3/5 milk, what % of	С
	(a) 80%	(b) 75%	(c) 70%	(d) 65%	
Q116			• •	mes as heavy as Water. In es as heavy as water?	D
	(a) 1:1	(b) 2:3	(c) 1:2	(d) 3:2	
Q117				atio 5:3. If 4 litres of this water in new mixture will	В
	(α) 2:1	(b) 7:3	(c) 8:3	(d) 4:3	
Q118	If one type of rice of cost Rs. 13.84 is mixed with another type of rice of cost Rs. 15.54. the mixture is sold at Rs. 17.6 with a profit of 14.6% on selling price then in which proportion the two types of rice mixed?			A	
	(a) 3: 7	(b) 5: 7	(c) 7: 9	(d) None	
Q119	What must be oproportional?	added to each of	the numbers 6, 15,	20 and 43 to make them	С
	(a) 5	(b) 4	(c) 3	(d) 2	
Q120	A fraction bears	s the same ratio to	$\frac{1}{27}$ as $\frac{3}{7}$ does to $\frac{5}{9}$.	The fraction is	В
	(a) $\frac{7}{45}$	(b) $\frac{1}{35}$	$(c)^{\frac{45}{7}}$	(d) $\frac{5}{21}$	
Q121	If a: b = c: d the		·		С
	(a) ab = cd	(b) $ac = bd$	(c) $ad = bc$	(d) ab = ad	
Q122	If $\frac{1}{x}$: $\frac{1}{6} = \frac{25}{6}$: $\frac{1}{x}$ the	n x =			В
		(b) 6:5	(c) 5:1	(d) 1:5	
Q123	Find the value o	f x if 10/3: x :: 5/2:	5/4.		A
	(a) 5/3	(b) 3/5	(c) 2/5	(d) 1/5	
Q124	If a: b = 3:4, the	value of (2α + 3b):	(3α + 4b) is		A
	(α) 18:25	(b) 8:25	(c) 17:24	(d) None	
Q125	If a: b=1:2, then				A
		(b) 1/2	(c) 2	(d) -1/3	
Q126	If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k \text{ th}$	$nen \frac{pa+qc+re}{pb+qd+rf} = \underline{\hspace{1cm}}$	<u></u> .		A

	(a) k	(b) (p + q + r) k	(c) $\frac{1}{k}$	(d) None	
Q127	If $A = \frac{B}{a} = \frac{C}{a}$ then	A: B: C is			D
		(b) 2:5:3	(c) 2:3:5	(d) 1:2:5	
Q128	If p: q = 2: 3 & x	: y = 4: 5, then 5px + 3	Bqy: 10px + 4qy is _		С
	(a) 71:82	(b) 27:28	(c) 17:28	(d) None	
Q129	If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$ then	$\frac{a+b+c}{c}$ is equal to	·		В
	(a) 7	(b) 2	(c) 1/3	(d) 1/5	
Q130	If $\frac{a}{2} = \frac{b}{5} = \frac{c}{6}$, Then	$\frac{a+b+c}{a+b-c} = \underline{\hspace{1cm}}$			A
	_ ~ ~		(c) $\frac{13}{3}$	(d) None	
Q131	If x: y = 3: 4, the	\Rightarrow value of $x^2y + xy^2 = x^3$	+ y³ is		В
	(a) 13:12	(b) 12:13	(c) 21:31	(d) None	
Q132	If $(a + b)$: $(b + c)$	(c + a) = 6:7:8 and	(a + b + c) = 14, the	en c =	C
	(a) 8	(b) 7	(c) 6	(d) None	
Q133		37xy, then x: y is			A
	$(a) \frac{8}{9} \& \frac{-3}{8}$	(b) $\frac{3}{5}$ & $\frac{3}{7}$	(c) $\frac{3}{7} \& \frac{-2}{5}$	(d) $\frac{2}{5} \& \frac{-3}{5}$	
Q134	Electricity Bill of a certain establishment is partly fixed & partly variable as the number of units of electricity consumed. When in a certain month, 540 units are consumed & bill is Rs. 1,800. In another month, 620 units are consumed & bill is Rs. 2,040. In yet another month 500 units are consumed. Find the bill for that month. (a) Rs. 1,560 (b) Rs. 1,680 (c) Rs. 1,840 (d) Rs. 1,950			В	
Q135				and 20 carat gold is (5/6) d in 20 carat gold is (d) 8:5	В
Q136	is to be added t	o get a new mixture o	containing milk and	7:7. How much more water d water in the ratio 3:1?	A
	(a) 5 kg	(b) 6.5 kg	(c) 7.25 kg	(d) 8 kg	

1C. INDICES

INTRODUCTION

Continued Product: When two or more numbers are multiplied, it is called continued Product. Each number is called a 'factor'.

Ex: $a \times b \times c \times d$. [Here a, b, c, d are factors]

If the factor gets repeated in a continued product, it is called a 'power'

Ex: $2 \times 2 \times 2 = 2^3$.

'Factor' which multiplies is called the "base" & number of times it is multiplied is called the "power" or the "index". [Thus 'base' is '2' & 'power' is '3'].

LAWS OF INDICES	
1. $\alpha^m \times \alpha^n = \alpha^{m+n}$	Ex: $3^2 \times 3^1 = 3^{2+1} = 3^3$
2. $\alpha^m \div \alpha^n = \alpha^{m-n}$	Ex: $3^2/3^1 = 3^{2-1} = 3^1$
3. $(\alpha^m)^n = \alpha^{mn}$	Ex: $(3^2)^2 = 3^{2 \times 2} = 3^4$
4. $(\alpha b)^m = \alpha^m.b^m$	Ex: $(3.2)^2 = 3^2.2^2$
5. $(\alpha/b)^m = \alpha^m/b^m$	Ex: $(4/2)^2 = 4^2/2^2$
6. $\alpha^{-m} = \frac{1}{a^m} \& \frac{1}{a^{-m}} = \alpha^m$	Ex: $x^{-1/4} = 1/x^{1/4}$
7. $x^{\alpha} = x^{b}$, then $\alpha = b$	Ex: $3^x = 9$; $3^x = 3^2$; $x = 2$
8. $x^{\alpha} = y^{\alpha}$, then $x = y$	Ex: $\alpha^3 = 27$; $\alpha^3 = 3^3$; $\alpha = 3$
9. α° = 1	Ex: 5° = 1

SOME IMPORTANT RESULTS

1)
$$a^{1/n} = \sqrt[n]{a}$$

2)
$$\alpha^{m/n} = (\alpha^m)^{1/n} = \sqrt[n]{a^m}$$

3)
$$a\sqrt{a\sqrt{a\sqrt{a}...\infty}} = a$$

4)
$$\sqrt{a\sqrt{a\sqrt{a\sqrt{a}...n\ times}}} = \alpha \frac{(2^n-1)}{2^n}$$

CQ1. Find the value of p from $(\sqrt{4})^{-6}$ x $(\sqrt{2})^{-4}$ = 2^p

- (a) 16
- (b) 8
- (d) 4

CQ2. If $5^{(x+3)} = (25)^{(3x-4)}$, then the value of x is _____.

- $(\alpha)^{\frac{5}{11}}$
- (b) $\frac{11}{5}$
- (d) $\frac{13}{5}$

CQ3.
$$\left(\frac{x^a}{x^b}\right)^{\left(a^2+ab+b^2\right)} \times \left(\frac{x^b}{x^c}\right)^{\left(b^2+bc+c^2\right)} \times \left(\frac{x^c}{x^a}\right)^{\left(c^2+ca+a^2\right)}$$

- (α) 1

- (d) None of these

CQ4. The value of $\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a}$

- (α) 1
- (b) 0
- (c)2
- (d) None of these

BASIC FORMULAE			
$(a + b)^2 = a^2 + 2ab + b^2$	$a^3 - b^3 = (a - b) (a^2 - ab + b^2)$		
$(a - b)^2 = a^2 - 2ab + b^2$	$(a + b)^3 = a^3 + 3ab (a + b) + b^3$		
$\alpha^2 - b^2 = (\alpha + b) (\alpha - b)$	$(a - b)^3 = a^3 - 3ab (a - b) - b^3$		
$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$	$(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$		

USEFUL RESULTS

1) If
$$(a + b + c) = 0$$
, then $a^3 + b^3 + c^3 = 3abc$

2) If
$$a^{1/3} + b^{1/3} + c^{1/3} = 0$$
, then $(a + b + c)^3 = 27abc$

3) If
$$\alpha^x = k$$
, then $\alpha = k^{1/x}$

4) If
$$a^x = b^y$$
, then $a = b^{y/x}$

5) If
$$\alpha^x = b^x$$
, then $x = y (\alpha \neq 1)$

6) If
$$a^x = b^x$$
, then $a = b \ (x \ne 0, a, b > 0)$

7) If
$$a^x b^y = a^m b^n$$
, then $x = m \& y = n (a \ne b)$

8) If
$$x = \alpha^{1/3} - \alpha^{1/3}$$
, then $(x^3 + 3x) = (\alpha - \alpha^{-1})$

9) If
$$x = \alpha^{1/3} + \alpha^{1/3}$$
, then $(x^3 + 3x) = (\alpha + \alpha^{-1})$

Space for PC Class Note:

INDICES - QUESTION BANK

SN		CHAPTE	R 1C. INDICES		Ans
Q137	4x ^{-1/4} is expresse	d as			С
	(a) -4x ^{1/4}	(b) x ⁻¹	(c) $4/x^{1/4}$	(d) None	
Q138	The value of 2 × ((32) ^{1/5} is			С
	(a) 2	(b) 10	(c) 4	(d) None	
Q139	The value of 2 × ((256) ^{-1/8} is			A
	(a) 1	(b) 2	(c) 1/2	(d) None	
Q140	$2^{1/2} \times 4^{3/4} = $				В
	(a) A fraction	(b) An Integer	(c) 1	(d) None	
Q141	Simplify $\left(8a^{\frac{3}{2}} \div 27\right)$	$(x^{\frac{1}{2}})^{\frac{2}{3}}$			В
	$(\alpha) \frac{4a}{9x}$	(b) $\frac{4a}{9x^{1/3}}$	(c) 4a	(d) 1/3	
Q142	The Value of $\frac{1}{2} \times (2)$	216) ^{1/3} is			В
	(a) 2	(b) 3	(c) 2%	(d) None	
Q143	(64/512) ^{1/3} =				A
	(a) 1/2	(b) 1/4	(c)1/6	(d) None	
Q144	If $2^{x} = \sqrt[3]{32}$ then x	ζ =			D
	(a) 5	(b) 3	(c) $\frac{3}{5}$	(d) $\frac{5}{3}$	
Q145	The value of $\frac{1}{(216)}$	$\frac{1}{3} + \frac{1}{(256)^{-\frac{3}{4}}} + \frac{1}{(32)^{-\frac{1}{5}}}$ is	·	J	A
		(b) 105		(d) 109	
Q146	The value of $\sqrt[3]{x^{12}}$	$\overline{x} \times \sqrt[3]{x^6}$ is			В
	(a) x ⁷	(p) x _e	(c) 1	(d) None	
Q147	The value of [(10)) ¹⁵⁰ ÷ (10) ¹⁴⁶] is			В
	(a) 1000	(b) 10000	(c) 100000	(d) 10 ⁶	
Q148	The expression ($\frac{1}{216}$) $\frac{-\frac{2}{3}}{2}$ \div $\left(\frac{1}{27}\right)^{-4/3}$ in the	simplified form is	·	С
	$(a) \frac{3}{4}$	(b) $\frac{2}{3}$	$(c)\frac{4}{9}$	(d) $\frac{1}{8}$	
Q149	The value of 5 ^{1/4} :	x (125) ^{0.25} is		-	В
	(a) √5		(c) ³ √5	(d) 25	
Q150	$(P^3Q^4Z^6/P^4R^{100})^0 =$	•			С
	(a) O	(b) 2/3	(c) 1	(d) None	
Q151	Which one is true	e?			A

	(a) $x^{2/3} = \sqrt[3]{x^2}$	(b) $x^{2/3} = \sqrt{x^3}$	(c) $x^{2/3} > \sqrt[x]{x^2}$	(d) $x^{2/3} < \sqrt[x]{x^2}$	
Q152	If $10^{x}/10^{y} = 100$, the second	then x =			Α
	(a) y+2	(b) y-2	(c) 2-y	(d) 2y	
Q153	$\sqrt{a^{3/4}b^{2/3}c^4}$; $\sqrt[3]{a^6b}$	$-3c^{6}$			A
	(a) $a^{-13/8}b^{4/3}$	(b) $a^{-1/8}b^{1/3}$	(c) α ⁻⁸ b³	(d) 1	
Q154	Find the value of	$(2^{7+2\alpha})/(3^{3\alpha+11})$ for α	= -4.		В
	(a) 2/3	(b) 3/2	(c) 1	(d) -2/3	
Q155	The value of $\left(\frac{x^4}{y^{-8}}\right)$	$\int_{1}^{1/4} when x = 2, y = 3$	3 is		В
	$(\alpha)^{\frac{2}{9}}$	(b) 18	(c) $2\sqrt{3}$	(d) None	
Q156	If $16 \times 8^{n+2} = 2^m$, t	hen m =			D
	(a) n + 8	(b) 2n + 10	(c) 3n + 2	(d) 3n + 10	
Q157	If $3^x - 3^{x-1} = 162 \text{ t}$	hen the value of x is	S		Α
	(a) 5	(b) 4	(c) 6	(d) None	
Q158	If $\frac{9^n \times 3^5 \times 27^3}{3 \times (81)^4} = 27 \text{ t}$	hen n equals to	·		C
	(a) O	(b) 2	(c) 3	(d) 4	
Q159		27) ^{-1/3} x (32/243) ^{-1/5} is			A
		(b) 4/9	(c) 2/3	(d) None	
Q160	$X^{\alpha-b} \times X^{b-c} \times X^{c-\alpha} = $			e la co	В
	(a) x	• • •	(c) 0	(d) None	
Q161				ue of that function is	В
0400		(b) 1	(c) -1	(d) ∞	
Q162	(a) 4	$49 = 7^n$, then n equals (b) $= 7^n$	(c) 8	(d) 16	С
Q163	If $x^{-3}y^{-4} \times 8^{-1}x^4y^3$		(0) 0	(4) 10	D
Q 100	· ·	(b) $\frac{xy}{2}$	(c) 2 ^x	(d) None	
Q164), then the value of	<u> </u>		В
	$(\alpha) \frac{5}{11}$		(c) $\frac{11}{3}$	(d) $\frac{13}{5}$	
Q165			3	5	С
	,	then x equals to			
	(a) 1		(c) 9	(d) 3 ⁿ	
Q166	If $\frac{3}{4} = \frac{6}{x} = \frac{9}{y}$, then				D
	(a) 4	(b) 8	(c) 12	(d) 20	
Q167	If 4(2 ⁿ) = 256; n =	·			C

	(a) 4	(b) 5	(c) 6	(d) None	
Q168	If $2^{x} - 2^{x-1} = 4$.	, then the value of x×=			В
	(a) 26		(c) 28	(d) 29	
Q169	Solve for x if				В
		(b) 16	(c) 4	(d) $\sqrt{2}$	
Q170		28. Find the value of x			В
	(a) 1		(c) 1/3	(d) 0	
Q171	Solve for 'z' i				D
	(a) 5 ⁻¹	(b) 1	(c) 1 / 12	(d) 12	
Q172		tion $\frac{2^{x+3} \times 3^{2x-y} \times 5^{x+y+3} \times 6^{x+1}}{6^{x+1} \times 10^{y+3} \times 15^{x}}$			С
	(a) -1			(d) 10	
Q173	<u> </u>		· · ·	will be greater than 1?	D
u 170		-	(c) 5	(d) 6	
Q174			\-\/-	(-7) -	A
	Solve for "x"	if $\frac{25^{x+2}}{\sqrt{5}} = \left(\frac{1}{5}\right)^{x-7.5}$	4.5.4.	4 b	
			(c) 3/4	(d) -3/4	
Q175		$f 12^{2b+4} = 3^{3b} \times 4^{b+8}$. In	C
	(a) -1		(c) 4	(d) -2	
Q176		$x^{a^3}.x^{b^3}.x^{3ab(a+b)} = (2^5)^{a^3}.x$			A
	+	(b) 3		(d) 0	
Q177	If $\frac{9^{y} \cdot 3^{2}(3^{-y})^{-1} - 3^{2}}{3^{3x} \cdot 2^{3}}$	^{27y} = 1 then x - y =	·		В
	(a) -1	(b) 1	(c) O	(d) None	
Q178					В
	$\frac{6^{\text{m}}.10^{\text{m}+2}.15^{\text{m}}}{(\alpha)^{\frac{1}{m}}}$	(b) $\frac{1}{}$	$(c)^{\frac{1}{\alpha}}$	(d) None	
0400	45	50	(0)9	(4) 110110	
Q179	$\left((x^m)^{1-\frac{1}{m}}\right)^{\overline{m-1}}$	=			A
	(a) x	(b) $\frac{1}{50}$ = (b) 1	(c) O	(d) None	
Q180		nd 2 ^b = 1024, then find	the value of $\frac{4a+6b}{6b-3c}$		С
	(a) 1	(b) 0	(c) 2	(d) 3	
Q181	Simplification	n of $\frac{2^{n+3}-10\times 2^{n+1}}{2^{n+1}\times 6}$ gives			A
	(a) -1	(b) 1	(c) 0	(d) None	
Q182		on $\frac{3^{2n+1}+3^{2n-1}}{3^{2n+3}-3^{2n+2}}$ simplifie			A
				(d) No	
	$(a) \frac{5}{27}$	(b) 1	(c) 8 ^{3/7}	(d) None	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q183	If $a^x = b$; $b^y = c$; c^z	= α then xyz is	·		A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•		(d) None	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q184	The value of $\frac{(6^4)^2(8^4)^2}{(6^2)^3}$	$\frac{(3)^4(2)^3(3^2)^2}{(3)^4(2)^3(3^2)^2}$ is	_·		В
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					(d) None	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q185					В
$\begin{array}{c} \text{(a) 4} & \text{(b) 8}\sqrt{2} & \text{(c) 1} & \text{(d) 2} \\ \textbf{Q187} & \text{If } a^m.a^n = a^{mn}, \text{ then } m(n-2) + n(m-2) \text{ is} \underline{} \\ \text{(a) 1} & \text{(b) -1} & \text{(c) 0} & \text{(d) None} \\ \end{array}$					(d) None	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q186	If x, y, z are all po	sitive, find the value	$=$ of xyz if $z^x = x$, $z^y =$	y, y ^y = x	В
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(a) 4	(b) $8\sqrt{2}$	(c) 1	(d) 2	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q187	If $\alpha^m \cdot \alpha^n = \alpha^{mn}$, then	m(n - 2) + n(m - 2) is	·		С
$\begin{array}{c} \text{(a) x} & \text{(b) 1/x} & \text{(c) 1} & \text{(d) None} \\ \hline \textbf{Q189} & \text{If } \frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c} \text{ then (b-c) x} + (c-a) \text{ y} + (a-b) \text{ z is } \underline{} \\ \text{(a) 1} & \text{(b) 0} & \text{(c) 5} & \text{(d) None} \\ \hline \textbf{Q190} & \text{If } x + y = a \text{ and } xy = b \text{ then the value of } 1/x^3 + 1/y^3 \text{ is } \underline{} \\ \text{(a) (a) } \frac{a^3 - 3ab) / b^3 & \text{(b) (a) } \frac{a^3 - 3a) / b^3 & \text{(c) (a) } \frac{a^3 - 3}{3} / b & \text{(d) (a) } \frac{a^3 - 3}{3} / b^2 \\ \hline \textbf{Q191} & \text{If } x^{1/p} = y^{1/q} = z^{1/r} \text{ and } xyz = 1, \text{ then the value of } p+q+r \text{ is } \underline{} \\ \text{(a) 1} & \text{(b) 0} & \text{(c) } 1/2 & \text{(d) None} \\ \hline \textbf{Q192} & \text{If } a^p = b^q = c^r \text{ and } b^2 = ac \text{ the value of } q(p+r)/pr \text{ given by} \\ \text{(a) 1} & \text{(b) -1} & \text{(c) 2} & \text{(d) None} \\ \hline \textbf{Q193} & \text{If } 2^x = 3^y = 6^{-z}, \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \underline{} \\ \text{(a) 1} & \text{(b) 0} & \text{(c) 1} = 2 & \text{(d) None} \\ \hline \textbf{Q194} & \text{If } (5.678)^x = (0.5678)^y = 10^z \text{ then} \\ \text{(a) } \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1 & \text{(b) } \frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0 & \text{(c) } \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1 & \text{(d) None} \\ \hline \textbf{Q195} & \text{If } 2^a = 3^b = (12)^c \text{ then } \frac{1}{c} - \frac{1}{b} - \frac{2}{a} = \underline{} \\ \text{(a) 1} & \text{(b) 0} & \text{(c) 2} & \text{(d) None} \\ \hline \textbf{Q196} & \text{If } 2^a = 4^b = 8^c \text{ and abc} = 288 \text{ then the value of } \frac{1}{2a} + \frac{1}{4p} + \frac{1}{8c} \text{ is given by} \\ \text{(a) } \frac{1}{8} & \text{(b) } - \frac{1}{8} & \text{(c) } \frac{196}{96} & \text{(d) } - \frac{11}{96} \\ \hline \textbf{Q197} & \text{If } a^p = b^q = c^r = d^s \text{ and ab} = cd \text{ then the value of } \frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = \underline{} \\ \text{(a) } \frac{1}{a} & \text{(b) } \frac{1}{b} & \text{(c) 0} & \text{(d) 1} \\ \hline \textbf{Q198} & \text{If } 3^a = 5^b = (75)^c; \text{ then ab } - c \text{(2}a + b) = \underline{} \\ \hline \textbf{Q198} & \text{If } 3^a = 5^b = (75)^c; \text{ then ab} - c \text{(2}a + b) = \underline{} \\ \hline \textbf{Q199} & \text{(d) 1} \\ \hline \textbf{Q198} & \text{(d) 1} \\ \hline \textbf{Q199} & (d$		(a) 1	(b) -1	(c) 0	(d) None	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q188	$[1-\{1-(1-x^2)^{-1}]$	$\left\{-1\right\}^{-\frac{1}{2}} = \underline{\qquad}$			A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) x	(b) 1/x	(c) 1	(d) None	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Q189	If $\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{a}{a}$	$\frac{z}{+b-c}$ then (b-c) x + (c	c-a) y + (a-b) z is	·	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q190	If $x + y = a$ and xy	= b then the value o	f 1/x³ + 1/y³ is	·	A
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) (a³ - 3ab) / b³	(b) (a³ - 3a) / b³	(c) (a³ - 3) / b	(d) $(a^3 - 3) / b^2$	
Q192 If $a^p = b^q = c^r$ and $b^2 = ac$ the value of $q(p+r)/pr$ given by C (a) 1 (b) -1 (c) 2 (d) None Q193 If $2^x = 3^y = 6^{-z}$, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{z}$. B (a) 1 (b) 0 (c) 2 (d) None Q194 If $(5.678)^x = (0.5678)^y = 10^z$ then B (a) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$ (b) $\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$ (c) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1$ (d) None Q195 If $2^a = 3^b = (12)^c$ then $\frac{1}{c} - \frac{1}{b} - \frac{2}{a} = \frac{1}{a}$ B (a) 1 (b) 0 (c) 2 (d) None Q196 If $2^a = 4^b = 8^c$ and abc = 288 then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by C (a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$ Q197 If $a^p = b^q = c^p = d^s$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = \frac{1}{r}$ C Q198 If $3^a = 5^b = (75)^c$; then $ab - c(2a + b) = \frac{1}{2a}$ B	Q191	If $x^{1/p} = y^{1/q} = z^{1/r} \alpha i$	nd xyz = 1, then the	value of p+q+r is	·	В
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) 1	(b) 0	(c) 1/2	(d) None	
Q193 If $2^x = 3^y = 6^{-z}$, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} =$ B (a) 1 (b) 0 (c) 2 (d) None Q194 If $(5.678)^x = (0.5678)^y = 10^z$ then $(0) \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$ B (a) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$ (b) $\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$ (c) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1$ (d) None Q195 If $2^a = 3^b = (12)^a$ then $\frac{1}{c} - \frac{1}{b} - \frac{2}{a} =$ B (a) 1 (b) 0 (c) 2 (d) None Q196 If $2^a = 4^b = 8^a$ and abc = 288 then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by (a) $\frac{1}{8}$ C Q197 If $a^p = b^q = c^p = d^s$ and ab = cd then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} =$ C Q198 If $3^a = 5^b = (75)^a$; then $ab - c(2a + b) =$ B	Q192					C
(a) 1 (b) 0 (c) 2 (d) None Q194 If $(5.678)^x = (0.5678)^y = 10^z$ then (a) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$ (b) $\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$ (c) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1$ (d) None Q195 If $2^a = 3^b = (12)^c$ then $\frac{1}{c} - \frac{1}{b} - \frac{2}{a} = $ (a) 1 (b) 0 (c) 2 (d) None Q196 If $2^a = 4^b = 8^c$ and abc = 288 then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by (a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$ Q197 If $a^p = b^q = c^r = d^s$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = $ (a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) 0 (d) 1 Q198 If $3^a = 5^b = (75)^c$; then $ab - c$ (2a + b) =				(c) 2	(d) None	
Q194 If $(5.678)^x = (0.5678)^y = 10^z$ then $(a) \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1 \qquad (b) \frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0 \qquad (c) \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1 \qquad (d) \text{ None}$ Q195 If $2^a = 3^b = (12)^c$ then $\frac{1}{c} - \frac{1}{b} - \frac{2}{a} = $. $(a) 1 \qquad (b) 0 \qquad (c) 2 \qquad (d) \text{ None}$ Q196 If $2^a = 4^b = 8^c$ and $abc = 288$ then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by $(a) \frac{1}{8} \qquad (b) - \frac{1}{8} \qquad (c) \frac{11}{96} \qquad (d) - \frac{11}{96}$ Q197 If $a^p = b^q = c^r = d^s$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = $. $(a) \frac{1}{a} \qquad (b) \frac{1}{b} \qquad (c) 0 \qquad (d) 1$ Q198 If $3^a = 5^b = (75)^c$; then $ab - c (2a + b) = $.	Q193	If $2^x = 3^y = 6^{-z}$, $\frac{1}{x} + \frac{1}{3}$	$\frac{1}{z} + \frac{1}{z} = $			В
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(a) 1	(b) 0	(c) 2	(d) None	
Q195 If $2^a = 3^b = (12)^c$ then $\frac{1}{c} - \frac{1}{b} - \frac{2}{a} =$ (a) 1 (b) 0 (c) 2 (d) None Q196 If $2^a = 4^b = 8^c$ and abc = 288 then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by (a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$ C Q197 If $a^p = b^q = c^r = d^s$ and ab = cd then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} =$ C (a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) 0 (d) 1 Q198 If $3^a = 5^b = (75)^c$; then ab - c (2a + b) = B	Q194					В
(a) 1 (b) 0 (c) 2 (d) None Q196 If $2^{a} = 4^{b} = 8^{c}$ and $abc = 288$ then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by (a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$ Q197 If $a^{p} = b^{q} = c^{r} = d^{s}$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = \frac{1}{2a}$. (a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) 0 (d) 1 Q198 If $3^{a} = 5^{b} = (75)^{c}$; then $ab - c(2a + b) = \frac{1}{2a}$.		$(a) \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$	(b) $\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$	$(c)\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1$	(d) None	
(a) 1 (b) 0 (c) 2 (d) None Q196 If $2^{a} = 4^{b} = 8^{c}$ and $abc = 288$ then the value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is given by (a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$ Q197 If $a^{p} = b^{q} = c^{r} = d^{s}$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = \frac{1}{2a}$. (a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) 0 (d) 1 Q198 If $3^{a} = 5^{b} = (75)^{c}$; then $ab - c(2a + b) = \frac{1}{2a}$.	Q195	If $2^{\alpha} = 3^{b} = (12)^{c}$ the	$ en \frac{1}{c} - \frac{1}{b} - \frac{2}{a} = \underline{\qquad} $	<u></u> ·		В
(a) $\frac{1}{8}$ (b) $-\frac{1}{8}$ (c) $\frac{11}{96}$ (d) $-\frac{11}{96}$ Q197 If $a^p = b^q = c^p = d^s$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = \frac{1}{q} - \frac{1}{r} - \frac{1}{r} - \frac{1}{s} = \frac{1}{q} - \frac{1}{r} - \frac{1}{r} - \frac{1}{s} = \frac{1}{q} - \frac{1}{r} - \frac{1}{r}$					(d) None	
Q197 If $a^p = b^q = c^r = d^s$ and $ab = cd$ then the value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = $ (a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) 0 (d) 1 Q198 If $3^a = 5^b = (75)^c$; then $ab - c(2a + b) = $	Q196	If $2^a = 4^b = 8^c$ and (abc = 288 then the	value of $\frac{1}{2a} + \frac{1}{4b} + \frac{1}{8c}$ is	given by	C
(a) $\frac{1}{a}$ (b) $\frac{1}{b}$ (c) 0 (d) 1 Q198 If $3^a = 5^b = (75)^c$; then $ab - c(2a + b) = $		$(\alpha)\frac{1}{8}$	(b) $-\frac{1}{8}$	(c) $\frac{11}{96}$	(d) $-\frac{11}{96}$	
Q198 If $3^a = 5^b = (75)^c$; then $ab - c(2a + b) =$	Q197	If $a^p = b^q = c^r = d^s$ an	dab = cd then the	value of $\frac{1}{p} + \frac{1}{q} - \frac{1}{r} - \frac{1}{s} = \frac{1}{q}$	=	C
	1	$(\alpha)^{\frac{1}{\alpha}}$	(b) $\frac{1}{1}$	(c) 0	(d) 1	
(a) 1 (b) 0 (c) 3 (d) 5		, a	<u> </u>			<u> </u>
	Q198	+		=		В

Q199	Using $(a - b)^3 =$	a^3 - b^3 - 3ab (a -b) tic	k the correct	of these when $x = p^{1/3} - p^{-1/3}$	B
	$(a) x^3 + 3x = p + a$	$1/p$ (b) $x^3 + 3x = p - 1/p$	$'p$ (c) $x^3 + 3x =$	= p+1 (d) None	
Q200	If $x = 3^{1/3} + 3^{-1/3}$, then $3x^3$ - $9x$ is	·		В
	(a) 15	(b) 10	(c) 12	(d) None	
Q201	If $x = 5^{1/3} + 5^{-1/3}$	then the value of 5x ³	+ 15x is		В
	(a) 25	(b) 24	(c) 27	(d) 28	
Q202	On simplification	$\operatorname{Dn}\left[\frac{\frac{a}{xa-b}}{\frac{a}{xa+b}} \div \frac{\frac{b}{xb-a}}{\frac{b}{xb+a}}\right]^{a+b} = \underline{\qquad}$	·		D
	(a) 1	(b) -1	(c) 0	(d) None	
Q203	If $a^b = b^a$ then	the value of $\left(\frac{a}{b}\right)^{\frac{a}{b}} - a^{\frac{a}{b}}$	¹ =	[Hint: Put a = 4 & b = 2]	С
	(a) a	(p) p	(c) 0	(d) None	
Q204	If $x = \sqrt{2 - \sqrt{2 - 2}}$	-√2 ∝ ; X =	.·		В
	(a) -2	(b) 1	(c) 2	(d) 0	
Q205	If $p + q + r = 0$,	$x^{p^2q^{-1}r^{-1}}x^{p^{-1}q^2r^{-1}}x^{p^{-1}q^{-1}}$	¹ r ² = [Hint:	$a + b + c = 0$; $a^3 + b^3 + c^3 = 3abc$	C
	(a) x	(b) x ²		(d) x ⁴	
Q206	$\frac{1}{1+v(b-a)+v(c-a)}+$	$\frac{1}{1+x^{(a-b)}+x^{(c-b)}}+\frac{1}{1+x^{(b-c)}}$	= = =		В
	(a) $x^{(a-b-c)}$		(c) 0	(d) None	
Q207	$\left(X^{\frac{b+c}{c-a}}\right)^{\frac{1}{a-b}} \times \left(X^{\frac{c+a}{a-b}}\right)^{\frac{1}{a-b}}$	$\int_{\overline{b-c}}^{1} \times \left(x_{\overline{b-c}}^{a+b}\right)^{\frac{1}{c-a}} = \underline{\qquad}.$			A
	(a) 1	(b) 3	(c) -1	(d) 0	
Q208	Product of $x^{2^{n-1}}$	$x^{1} + y^{2^{n-1}}$ and $x^{2^{n-1}} - y^{2^{n-1}}$	$v^{2^{n-1}} = \Gamma \text{Hin}$	t: Use $(a - b) (a + b) = a^2 - b^2$	A
		(b) $x^2 - y^2$			
Q209	-	•	•	mong h, k, m, n and p only.	В
u		b=2, m=5, n=2, k=4, h=		mong n, k, m, n and p omy.	
	(a) m = $\sqrt[4]{hnpk}$, , ,	(b) h(m-p) =	= k(m-n)	
	(c) $m = \frac{hn}{kp}$		(d) m(h-k) =	- p(n-p)	
Q210	$\left(\frac{x^b}{x^c}\right)^{b+c-a} \times \left(\frac{x^c}{x^a}\right)$	$c+a-b \times \left(\frac{x^a}{x^b}\right)^{a+b-c} = \underline{\qquad}$	·		A
	(a) 1	(b) 0	(c) -1	(d) None	
Q211	$\left \left(\frac{x^a}{x^{-b}} \right)^{\left(a^2 - ab + b^2 \right)} \right\rangle$	$\times \left(\frac{x^b}{x^{-c}}\right)^{(b^2-bc+c^2)} \times \left(\frac{x^c}{x^{-a}}\right)^{(b^2-bc+c^2)}$	(c^2-ca+a^2) equals	s to	С
	(a) 1	(b) $x^{-2(a^2+b^2+c^2)}$	(c) $x^{2(a^3+b^3)}$	$(d) x^{-2(a^3+b^3+c^3)}$	
Q212		, then find $(1/2)^b \times \frac{1}{\sqrt{3}}$		[Hint: Put x=2 & y =1]	С

Q213	$(a+b)$ $\frac{xa^2}{b^2}$ \times $(b+c)$ $\frac{xb^2}{a^2}$	$\times \sqrt[(c+a)]{\frac{x^{c^2}}{x^{a^2}}} = \underline{\hspace{1cm}}$			A
		(b) 0	(c) -1	(d) None	
Q214		$a \times \left(\frac{x^a}{x^b}\right)^{1/ab}$ equals to			C
	,	(b) 0	(c) 1	(d) None	
Q215		$\frac{(x^{a}x^{b}x^{c})^{2}.(x^{c+a})^{2}}{(x^{a}x^{b}x^{c})^{4}}$ is	·		В
		(b) 1	(c) 0	(d) x	
Q216	If $x = 5 + 2\sqrt{6}$, th	en $\frac{(x-1)}{\sqrt{x}}$ is equal to _			В
	(a) √2	V X	(c) √3	(d) 2√3	
Q217	$\{(x+y)^{2/3}(x-y)^3$	$\sqrt{(x+y)} \times \sqrt{(x-y)^3}$	⁶ equals		D
		•	(c) (x-y)	(d) (x+y)	
Q218	If $\alpha = xy^{m-1}$; $b = xy^{m-1}$	y^{n-1} ; c = xy^{p-1} , then α^{n-p}	o × p _{b-w} × c _{w-v} =	·	A
	(a) 1	(b) -1	(c) 0	(d) None	
Q219	$1/(1+a^{m-n}+a^{m-n})$	$(-p) + 1/(1 + a^{n-m} + a^n)$	$(-p) + 1/(1 + a^{p-m} + a^{p-m})$	$^{p-n}$) is equal to	C
	(a) 0	(b) a	(c) 1	(d) 1/a	
Q220	The value of $(\frac{x^a}{x^b})^a$	$a+b \times (\frac{x^b}{x^c})^{b+c} \times (\frac{x^c}{x^a})^{c+a}$	=		A
	(a) 1	(b)0	(c) 2	(d) None	
Q221	$\left(\frac{x^a}{v^b}\right)^{(a^2+ab+b^2)} \times \left(\frac{x^b}{v^c}\right)$	$(b^2+bc+c^2)_{\times} (\frac{x^c}{v^a}) (c^2+ca+a^2)$			A
	(a) 1	(b) 0	(c) -1	(d) None	
Q222	If $\alpha = x^{q+r}$. y^b , $b =$	$x^{r+b}.y^{q}, c = x^{p+q}.y^{r}, the$	en α ^{q-r} × b ^{r-q} × c ^{b-q} = _	·•	В
	(a) O	(b) 1	(c) -1	(d) 2	
Q223	If $xy^{p-1} = \alpha$, $zy^{q-1} = \alpha$	= b, and $xy^{r-1} = c$ then	$a_{d-b} p_{b-b} c_{b-d} = $		A
	(a) 1	(b) 0	(c) p+q+r-1	(d) None	
Q224	$\left[\frac{x^{ab}}{x^{a^2+b^2}}\right]^{a+b} \times \left[\frac{x^{bc}}{x^{b^2+c}}\right]$	$\left[\frac{x^{ca}}{x^{c^2+a^2}}\right]^{c+a} \times \left[\frac{x^{ca}}{x^{c^2+a^2}}\right]^{c+a} = \underline{\qquad}$			С
	(a) x^{-2a^3}	(b) x^{2a^3}	$(c)x^{-2(a^3+b^3+c^3)}$	(d) $x^{2(a^3+b^3+c^3)}$	
Q225	If abc=1, $\left(\frac{1}{1+a+b^{-1}}\right)$	$\frac{1}{1+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}} = \frac{1}{1+c+a^{-1}}$	=		В
	(a) O	(b) 1	(c) $\frac{1}{ab}$	(d) ab	
Q226	If abc = 2 then t	he value of $\frac{1}{1+a+2b^{-1}}$	$+\frac{1}{1+\frac{b}{2}+c^{-1}}+\frac{1}{1+a^{-1}+c}=$ _	·	A
	(a)1	(b) 2	(c) $\frac{1}{2}$	(d) $\frac{3}{4}$	
Q227	If $xy^{p-1} = \alpha$, $xy^{q-1} =$	= b, and $xy^{r-1} = c$; ther			A
	(a) 1	(b) 0	(c) p+q+r-1	(d) None	

1D. LOGARITHMS

TRANSFORMATION FORMULA

 \star If $a^x = b$

[Exponential Form]

 $rac{1}{a}$ then $\log_a b = x$

[Logarithmic Form]

PC Note: These are not two different formulae. They are just transformation of each other & should be used to change one form into other form. Following are some examples for better understanding.

CQ	Exponential Form	Logarithmic Form	Read as
1	2 ⁴ = 16	Log ₂ 16 = 4	Log of 16 to the base 2 = 4
2	10 ³ = 1000	Log ₁₀ 1000 = 3	Log of 1000 to the base 10 = 3
3	$3^{-4} = \frac{1}{81}$	$Log_3 \frac{1}{81} = -4$	Log of $\frac{1}{81}$ to the base 3 = -4
4	100 ^{1/2} = 10	Log ₁₀₀ 10 = 1/2	Log of 10 to the base 100 is ½

Mentos Zindagi:

- Log apne side me positive logo ko hi rakhte hai [a & b should be +ve].
- Log 'x' ko apne se dur rakhte hai [Therefore 'x' should be on other side of Log]
- If NO BASE is given in the question, it is always taken as 10 [In this chapter]
- Some Conditions w.r.t. a, b & x
 - @ a & b > 0: a ≠ 1
 - Base of Log > 1 [If Base = 1, then Value of b will always be 1 (1^{x}) .]
 - Number (b) > 0 [Log 0 → Does not Exist.]

FUNDAMENTAL LAWS OF LOGARITHMS

- Log 10 = 1 [Because since base is not given, it is taken as 10] 1.
- Log 1 = 0[Log of 1 to any Base = 0; (Since α^0 = 1, $\log_a 1$ = 0)]
- $Log M + Log N = Log (M \times N)$ [PC Note: Log M + Log N \neq Log (M + N)] 3.

CQ5: Log 6 + Log 5 = Log 30

CQ6: Log X + Log X^2 = Log $X.X^2$ = Log X^3

Log M - Log N = Log (M/N)[PC Note: Log (M - N) ≠ Log M - Log N]

5.
$$\log (M^N) = N. \log M$$
 [PC Note: $(\log M)^N \neq N. \log M$]

CQ8: Log
$$25 = \text{Log } 5^2 = 2. \text{Log } 5$$

6.
$$\log_N^b M^a = (a \times \frac{1}{b}) \times \log_N M$$

- i. Jo Number ka Log nikalna hai uska power "jaisa ka waise" bahar aayega.
- ii. Base ka power "reciprocal" me bahar aayega.

7.
$$\log_{M} M = 1$$
 [Log of any number to same base = 1 (Since $\alpha^{1} = \alpha$, $\log_{\Omega} \alpha = 1$)]

8. Log 1 = 0 [Log of 1 to any Base = 0; (Since
$$\alpha^0$$
 = 1, \log_{α} 1 = 0)]

9.
$$\log_N M = \frac{\log M}{\log N}$$
 [Base Changing Rule.]

CQ9:
$$\log_4 8 = \frac{\log_2 8}{\log_2 4} = \frac{3 \log_2 2}{2 \log_2 2} = \frac{3}{2}$$

10.
$$\log_{\mathbb{C}} A = \log_{\mathbb{B}} A \times \log_{\mathbb{C}} B$$

LHS
$$\rightarrow$$
 Log_C A = $\frac{Log A}{Log C}$

RHS
$$\rightarrow$$
 Log_B A \times Log_C B = $\frac{Log A}{Log B} \times \frac{Log B}{Log C} = \frac{Log A}{Log C}$

11.
$$\log_{N} M = \frac{1}{\log_{M} N}$$

CQ10:
$$\log_5 10 = \frac{1}{\log_{10} 5} = \frac{1}{\log_{10} \frac{10}{2}} = \frac{1}{\log_{10} 10 - \log_{10} 2} = \frac{1}{1 - 0.3010} = \frac{1}{0.6990} = 1.43$$

12.
$$a^{\log_a x} = x$$
 $a^{\log_a x} = x^{\log_a a} = x^1 = x$ [Inverse logarithm Property]

POINTS TO BE NOTED

- If NO BASE is given in the question, it is always taken as 10 in numerical calculations.
- The Domain of Logarithmic function is $(0, \infty)$ i.e $0 < x < \infty$.

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

LOGARITHMS - QUESTION BANK

SN		СНАВТЕ	R 1D. LOGARITHMS		Ans	
	1000000110					
Q228	(a) -4	the base 0.1 =	 (c) ¼	(d) None	В	
Q229			(0) 74	(d) None	A	
G229	$Log_{\sqrt{2}} 64 = $ (\alpha) 12		(c) 1	(d) None	^	
Q230		he base 9 =		(a) None	C	
G 250	(α) 2	(b) 1/2	(c) -2	(d) None		
Q231	Log (1/81) to the base 3 =					
G 201	_	(b) 1/4		(d) None	C	
Q232	$Log_{3\sqrt{2}} 324 = $ _			.,,	С	
	•	(b) 3	(c) 4	(d) 1		
Q233		128) x Log ₆ 1/216 is		(,	A	
		(b) 7		(d) -2/7		
Q234				(u) 2/ /	В	
G 234	(α) 12	(h) -12	 (c) 1/12	(d) -1/12	В	
Q235	(a) 12 (b) -12 (c) 1/12 (d) -1/12 Find the base if Logarithm of 32 is 10/3.					
G 200		(b) 20/9		(d) 4	C	
Q236	If $2\log x = 4\log 3$, then $x =$					
Q200	(a) 3		(c) 81	(d) 27	В	
Q237			. ,		A	
	$\frac{3 + \log_{10} 343}{2 + \frac{1}{2} \log(\frac{49}{4}) + \frac{1}{3} \log(\frac{1}{125})} = \underline{\hspace{1cm}}.$					
	(a) 3	(b) 3/2	(c) 2	(d) 1		
Q238			[Log 2 = 0.3010 and 1	-	C	
	(a) 1	(b) 2	(c) 1.5482	(d) None		
Q239	$Log (Logx^2) - Log (Logx) = $					
	(a) 2	(b) Log 2	(c) Log x	(d) Log \sqrt{x}	С	
Q240	$Log(\sqrt[3]{a^2} \times \sqrt[2]{b^3}) = \underline{\qquad}.$					
	$(a) \frac{3}{2} \log a + \frac{2}{3} \log b$		(b) 6Log ab			
	(c) $\frac{2}{3}$ Log $\alpha + \frac{3}{2}$	Log b	(d) None			
Q241	Value of log ₃ 2log ₄ 3log ₅ 4 log ₁₅ 14log ₁₆ 15 is				D	
	(a) 1/3	(b) ½	(c) 1/5	(d) 1/4		
Q242	Log₃ 5 x log₅ 4	$x \log_2 3 = $			Α	
	(a) 2	(b) 5	(c) -2	(d) None		

Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Q243	Value of 16 Log	$\frac{64}{60}$ + 12 Log $\frac{50}{48}$ + 7 Lo	og 81/80 + Log 2 is	_•	В
	(a) O	(b) 1	(c) 2	(d) -1	
Q244	$7 \log \left(\frac{16}{15}\right) + 5 \log \left(\frac{16}{15}\right)$	$g\left(\frac{25}{24}\right) + 3Log\left(\frac{81}{80}\right) = 1$	·		С
	(13)	(24) (00)	(c) Log 2	(d) Log 3	
Q245	$\log_3 \sqrt[4]{729 \sqrt[3]{9^{-1} \cdot 27^{\frac{4}{3}}}} = \underline{\qquad}.$				В
	(α) -5/3	(b) 5/3	(c) 3/5	(d) -3/5	
Q246	If $x^{2\alpha-3}y^{2\alpha} = x^{6-\alpha}y^5$	5a then the value of	a.Log (x/y) is	_•	A
	(a) 3 Log x	(b) Log x	(c) 6 Log x	(d) 5 Log x	
Q247	Log[1 - {1 - (1 -	$(-x^2)^{-1}\}^{-1}]^{-1/2}$ can b	e written as		В
	(a) Log x ²	(b) Log x	(c) Log 1/x	(d) None	
Q248	Log (α - 9) + Log	g a = 1, the value of	'α' is		В
	(a) O	(b) 10	(c) -1	(d) None	
Q249	If $\frac{1}{\log_{x} 10} + 2 = \frac{2}{\log_{5} 10^{9}}$ then the value of x is				
	(a) 5	(b) 0.25	(c) 0.5	(d) 25	
Q250	Find the value of x if $Log(x + \frac{1}{x}) + Log 2 = Log 5$				
	(a) O	(b) 3 or $\frac{1}{3}$	(c) $\frac{1}{2}$ or 2	(d) 1	
Q251	If 3 + $Log_{10}x = 2Log_{10}y$; then value of x in terms of y will be				
	(a) (2/3) y	(b) Y ² /10	(c) 10y	(d) Y ² /1000	
Q252	If $Log_{10}^{y} = 1 + 2$	Log ₁₀ x - Log ₁₀ z; the	en value of $\frac{yz}{x^2}$ is	·	A
	(a) 10	(b) $\frac{1}{10}$	(c) 100	(d) $\frac{1}{100}$	
Q253	If $\frac{\log x}{2} = \frac{\log y}{3} = \frac{\log z}{5}$, then yz in terms of x is				D
		(b) x ²	(c) x ³	(d) x ⁴	
Q254	If $\frac{log_817}{log_923} - \frac{log_{2\sqrt{2}}1}{log_323}$	7 - =			D
	0,	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) 0	
Q255	If Log _e M + Log _e	$N = Log_e (M + N), th$	nen find M as a funct	ion of N.	D
	(a) 1/N	(b) N ²	(c) $N^2 \times (N-1)$	(d) $N/(N-1)$	
Q256	On solving Log $t + Log(t - 3) = 1$ we get the value of t as (base 10)				A
	(a) 5	(b) 2	(c) 3	(d) 0	
Q257	On solving the	equation log3[log2(lo	$[g_3t]$ = 1 we get value	e of t as	D
	(a) 8	(b) 18	(c) 81	(d) 6,561	
Q258	On solving Log ₁ ,	$\log_{10}(\log_{10}(\log_{4} 32)) = 2 \text{ w}$	ve get the value of t	as	С

	(a) 5/2	(b) 25/4	(c) 625/16	(d) None	
Q259	If $\log\left(\frac{a+b}{2}\right) = \frac{1}{2}$	(Log a + Log b), the	n		В
	(a) a = b/2	(b) $\alpha = b$	(c) $\alpha = b^2$	(d) $\alpha^2 = b$	
Q260	If $Log(x + y) =$	$\log\left(\frac{3x-3y}{2}\right)$, $\log x - \log x$.og y =		С
		(b) Log 3		(d) Log 6	
Q261	If $Log_2[Log_3(Log_2 x)] = 1$, then $x =$.				
	(a) 128	(b) 256	(c) 512	(d) None	
Q262	Value of Log ₂ [Lo	og ₂ {Log ₃ (Log ₃ (27 ³))}]	is		В
	(a) 1	(b) 0	(c) 2	(d) 3	
Q263	If Log _e 2. Log _b 6	625 = Log ₁₀ 16. Log _e 10	, then b =		В
	(a) 4	(b) 5	(c) 1	(d) e	
Q264	Given that Log ₁	$_{0}2 = x \text{ and Log}_{10} 3 = y_{9}$	the value of Log ₁₀ 60	is expressed as	. B
	(a) x - y + 1	(b) $x + y + 1$	(c) x - y - 1	(d) None	
Q265	Sum of the series $Log_{\alpha}b + Log_{\alpha}^{2}b^{2} + Log_{\alpha}^{3}b^{3} + Log_{\alpha}^{n}b^{n}$ is given by				
	(a) Log _a b ⁿ	(b) Log _a nbn	(c) n Loga ⁿ b ⁿ	(d) None	
Q266	Value of the following expression $a^{\log_a b. \log_b c. \log_c d. \log_d t}$ is given by				A
	(a) t	(b) abcdt	(c) $(a+b+c+d+t)$	(d) None	
Q267	$\frac{1}{1 + log_a(bc)} + \frac{1}{1 + log_b(ca)} + \frac{1}{1 + log_c(ab)}$ is				В
		(b) 1		(d) -1	
Q268		+ Log $\frac{b^n}{c^n}$ + Log $\frac{c^n}{a^n}$ is _			A
	(a) 0	ŭ u	 (c) -1	(d) None	
0000				(d) None	
Q269	_	· ·	e of α ⁴ b³c ⁻² is		В
	(a) O	(b) 1	(c) -1	(d) None	
Q270	If $\log 2 + \frac{1}{2} \log \alpha + \frac{1}{2} \log b = \log (\alpha + b)$, then				
	(a) a = b	(b) a = - b	(c) $\alpha = 2$, $b = 0$	(d) $\alpha = 10$, $b = 1$	
Q271	If $a^3 + b^3 = 0$, then the value of Log $(a + b) - \frac{1}{2}(\text{Log } a + \text{Log } b + \text{Log } 3) =$				A
	(a) O		(c) -1	(d) 3	
Q272	Log (x - y) - Log	$\frac{1}{3}$ 5 - $\frac{1}{3}$ Log x - $\frac{1}{3}$ Log y	= 0, then $\frac{x}{y} + \frac{y}{x} = $	·	С
	(a) 25	(b) 26	y x (c) 27	(d) 28	
Q273	Given that Loa	2 = 0.3010, Log 3 = 0).4771, The value of L	.og ₈ 81 is	A
	$(\alpha) \frac{9542}{4515}$	(b) $\frac{9442}{4515}$	$(c)\frac{4515}{9442}$	(d) None	
	4313	$-7\sqrt{\log_7 5}$ is	7442		

	(a) Log 2	(b) 1	(c) 0	(d) None	
Q275	If x = log _{2α} α; y =	$\log_{3\alpha} 2\alpha$; $z = \log_{4\alpha} 3$	α; xyz + 1 = [Q	109 Pg 3.20 of SC]	В
	(a) 2xy	(b) 2yz	(c) 2zx	(d) None	
Q276	If $Log_{\alpha}b = Log_{b}c =$	= Log _c a, then	_·		C
	(a) a> b > c	(b) a < b < c	(c) $a = b = c$	(d) a < b < c	
Q277	If $Log_{\alpha}(ab) = x$, the	nen Log $_{b}(ab)$ is	·		C
	$(\alpha)\frac{1}{x}$	(b) $\frac{x}{x+1}$	$(c)\frac{x}{x-1}$	(d) $\frac{x}{1-x}$	
Q278	Value of $\frac{\text{Log } a}{\text{Log } a} \frac{(\log b)}{(\log a)}$				A
	(α) -1	•	(c) Log _a b	(d) Log _α (αb)	
Q279		then the value of La		· ·	A
		(b) $1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!}$	-	(d) None	
Q280				1 Log _b ca; N = 1 + Log _c ab.	A
			-	[Q114 Pg 3.20 of SC]	
	(a) O	(b) 1	(c) -1	(d) 3	
Q281	If $a^2 + b^2 = 7ab$, t	hen the value of Log	$\left(\frac{a+b}{3}\right) - \frac{\log a}{2} - \frac{\log b}{2}$ is	s	A
	(a) O	(b) 1	(c) -1	(d) 7	
Q282	If $x^2 + y^2 = 11xy$, the	nen 2 Log (x - y) =			С
	(a) Log 3 + Log x	+ Logy	(b) 3Log3 + Log	x + Log y	
	(c) 2.Log 3 + Log	x + Log y	(d) None		
Q283	If $a^3 + b^3 = 0$; then Log $(a + b) - \frac{1}{2} (\text{Log } a + \text{Log } b + \text{Log } 3) =$				A
	[Hint: (a+b)³= a³ -	+ b³ + 3ab(a+b)]			
	(a) O	(b) 1	(c) -1	(d) None	
Q284	If $\frac{\log x}{l+m-2n} = \frac{\log y}{m+n-2n}$	$\frac{1}{n} = \frac{\log z}{n+l-2m}$, then x^2y^2z	2 =		D
		(b) -1		(d) 1	
Q285	If Logabe = x, Log	g _b ca = y, Log _c ab = z,	$\frac{1}{r+1} + \frac{1}{r+1} + \frac{1}{r+1} = $		D
	(a) O		(c) x+y+z	(d) 1	
Q286	If $\frac{\log x}{a-r} = \frac{\log y}{r-r} = \frac{1}{x}$	$\frac{\log p}{1-q}$, $X^{q+r}Y^{r+p}Z^{p+q} = $			A
	$(\alpha) x^p y^q z^x$	- · · · ·	(c) 0	(d) xyz	
Q287		2 + Log ₂ (3 ^{x-1} + 1) the	n x =		D
	(a) O		(c) 2	(d) 1 or 2	
Q288	Value of Log₅(1+	$(\frac{1}{5}) + \log_5(1 + \frac{1}{6}) + \log_5(1 + \frac{1}{6})$	$\log_5 \left(1 + \frac{1}{7}\right) + \log_5 \left(1 + \frac{1}{7}\right)$	$-\frac{1}{624}$) is	С
	(a) 5	(b) 4	(c) 3	(d) 2	

Q289	$\log \left\{ log_{ab}a + \frac{1}{log_bal} \right\}$	-} =			С
	(a) Log ab		(c) 0	(d) None	
Q290	Log (1 x 2 x 3) =				D
	(a) Log2	(b) Log 3	(c) 1	(d) Log1+Log2+Log3	
Q291	Log (3 + 7) =	_•			A
	(a) 1	(b) 3	(c) O	(d) ∞	
Q292	$Log (1^2 + 2^2 + 3^2) =$				В
	(a) Log 2 - Log 7	(b) Log 2 + Log 7	(c) 1	(d) None	
Q293	Log (3 - 2) =				O
	(a) 4	(b) 3	(c) 0	(d) ∞	
Q294	$Log_28 = $				C
	(a) 2	(b) 8	(c) 3	(d) None	
Q295	$log_{2\sqrt{3}}$ 1728 =	·			C
	(a) $2\sqrt{3}$	(b) 2	(c) 6	(d) None	
Q296	If Log $a\sqrt{2} = 1/6$, f	ind the value of 'a'			A
	(a) 8	(b) 4	(c) 3	(d) 1	
Q297	Logarithm of 21952 to the base of $2\sqrt{7}$ & 19683 to the base of $3\sqrt{3}$ are.				A
	(a) Equal	(b) Not equal	(c) Different	(d) None	
Q298	Given Log 2 = 0.03010 and Log3 = 0.4771 the value of Log 6 is				O
	(a) 0.9030	(b) 0.9542	(c) 0.7781	(d) None	
Q299	$\frac{1}{2}$ Log ₁₀ 25 - 2 Log ₁₀ 3 + Log ₁₀ 18 =				В
	(a) O	(b) 1	(c) Log ₁₀ 3	(d) None	
Q300	$\log \frac{75}{16} - 2 \log \frac{5}{9} + \log \frac{32}{243}$ reduces to				С
	(a) 2 Log 2	=	(c) Log 2	(d) 4 Log 2	
Q301	$Log_b(\alpha). Log_c (b) Log_a(c) = \underline{\hspace{1cm}}.$				В
4001	(a) O	(b) 1	(c) -1	(d) None	
Q302		= 0; then x =		, ,	В
	(a) 2	(b) 3	 (c) 4	(d) None	
Q303		7. Log ₁₁ 9. Log ₂₁ 11 =			A
			(c) 1	(d) None	• •
Q304	Value of Log (1+2+3+ +n) =				В
	(a) $\log 1 + \log 2 + \dots + \log n$ (b) $\log n + \log (n+1) - \log 2$				-
	(c) 0	Ŭ	(d) 1		
Q305	The equivalent fo	rm of the equation L	og (x-2) + Log (x+3)) = O is	C
	The equivalent form of the equation Log $(x-2) + \text{Log}(x+3) = 0$ is				

	(a) $x^2 + x - 5 = 0$	(b) $x^2 - x - 5 = 0$	(c) $x^2 + x - 7 = 0$	(d) None	
Q306	$\frac{1}{\log_{10}(abc)} + \frac{1}{\log_{10}(abc)}$	$\frac{1}{\log_{ca}(abc)}$ is			С
	(a) O			(d) -1	
Q307		$\log \frac{b^2}{ca} + \log \frac{c^2}{ab}$ is			Α
	(a) O	(b) 1		(d) None	
Q308	If $\frac{\log a}{\log b} = \frac{\log b}{\log b} = \frac{\log a}{\log b}$	$\frac{c}{v}$; value of abc is			В
		(b) 1		(d) None	
Q309		$o = \frac{1}{5} \text{Log c}$; value of			A
	(a) O		(c) -1	(d) None	
Q310	If $\frac{1}{\log_2 t} + \frac{1}{\log_2 t} + \frac{1}{\log_2 t}$	$\frac{1}{\log t} = \frac{1}{\log a_t}$ then the vo	alue of z is		A
			(c) a(b+c)	(d) (a+b) c	
Q311		$-\frac{1}{\log_{VZ}(xyz)} + \frac{1}{\log_{ZX}(xyz)}$			С
	(a) Log xyz		(c) 2	(d) None	
Q312	If $a^2 + b^2 = c^2$, $\frac{1}{\log x}$	$\frac{1}{\log_{c-b}a}$ is			A
	(a) 2		(c) Log abc	(d) 0	
Q313	Log 6 +log 5 is exp	oressed as			В
	(a) Log11	(b) Log 30	(c) Log 5/6	(d) None	
Q314	Log 32/4 is equal				В
	(a) log 32 / log 4	(b) log 32 - log4	(c) 8	(d) None	
Q315			1 then the value of lo		С
			(c) 1.3801	(d) 1.8301	
Q316		$\log_{16} x = \frac{21}{4}$, then x ed			A
	(a) 8	(b) 4	(c) 2	(d) 16	
Q317		ue of log ₂ . log ₂ log ₂ 16			C
	(a) O	(b) 2		(d) None	
Q318		$\log_{y}^{x}.\log_{z}^{y}.\log_{x}^{z}]^{3} = 1$. Is	С
	(a) O	(b) — 1		(d) 3	
Q319		$=\frac{1}{\log_z t}$ then the value			A
		(b) a+b+c		(d) (a+b) c	
Q320	If $\log x = \alpha + b$; $\log x$	$y = \alpha$ -b then $\log \frac{10 x}{y^2}$	=,		A
	(a) 1-a+3b	(b) α-1+3b	(c) a+3b+1	(d) 1-b+3a	

Q321	X = 1+ logp qr, y	= 1+ logq rp, z = 1+log	pp then find $\frac{1}{x} + \frac{1}{y}$	$+\frac{1}{z} = $	В
			(c) 2		
Q322	If $x = Log_{\alpha}bc y =$	Log _b ca z = Log _c ab t	then value of xyz - x	- y - z is	D
	(a) O	(b) 1	(c) -1	(d) 2	
Q323	If $x = Log_{2\alpha} \alpha$, $y = Log_{3\alpha} 2\alpha$, $z = Log_{4\alpha} 3\alpha$ then $xyz + 1 = $				В
	(a) 2 xy	(b) 2yz	(c) 2zx	(d) None	
Q324	If $\frac{1}{\log_a x} + \frac{1}{\log_c x} = \frac{2}{\log_b x}$, then a, b, c are in				A
	(a) G.P	(b) A.P	(c) H.P	(d) None	
Q325	3.Log x + 3.Log >	κ ³ + 3.Log x ⁵ + + 3	3.Log $x^{2n-1} = $		A
		(b) n(n+1) Log a		(d) None	
Q326	If x = 1983! ; the	en value of $\frac{1}{\log_2 x} + \frac{1}{\log_3 x}$	$\frac{1}{1 + \frac{1}{\log x} + \dots + \frac{1}{\log x}}$	is	В
			(c) 2	(d) 3	
Q327		of digits in 2 ⁶⁴ . [Giv		010]	В
	(a) 19	(b) 20		(d) 16.	
Q328	If $Log_4(x^2 + x) - Log_4(x + 1) = 2$, then the value of x is				D
	(a) 2	(b) 4	(c) 8	 (d) 16	
Q329	Log ₁₀ 10 + Log ₁₀ 100 + Log ₁₀ 1000 + Log ₁₀ 10000 + Log ₁₀ 100000 is				A
		(b) Log ₁₀ 11111			
Q330	$\frac{1}{\log_{a/b}(x)} + \frac{1}{\log_{b/c}(x)} + \frac{1}{\log_{c/a}(x)}$ is			A	
		,	(c) 3	(d) -1	
Q331	(a) 0 (b) 1 (c) 3 (d) -1 $Log_b(a^{1/2}) Log_c(b^3) Log_a(c^{3/2}) = \underline{\hspace{1cm}}.$				D
4001	(a) O			(d) 9/4	
Q332		= Log (m + n), then			A
	(a) m + n = 1		(c) m - n = 1	(d) $m^2 n^2 = 1$	
0000				(4)	
Q333	$(\alpha) 1.5249$	3.4751, then Log ₁₀ 0.02 (b) 2 .4751	(c) 1.2986	(d) — 1 5249	B &
Q334		$g(a - b) - Log(a^2 - b^2)$			
Q 004		g(α - b) - cog(α - b) (b) α - b			A
Q335					В
-500	If $a^2 + b^2 = 0$, and $a + b \neq 0$ then the value of Log $(a + b)$ is (a) Log $a + \text{Log } b + \text{Log } 2$ (b) $\frac{1}{2}(\text{Log } a + \text{Log } b + \text{Log } 2)$				
	(a) $\log a + \log b + \log 2$ (b) $\frac{1}{2}(\log a + \log b + \log 2)$ (c) $\log a + \log b$ (d) None				
Q336	(c) Log α + Log β (d) None If Log _{x+2} ($x^3 - 3x^2 - 6x + 8$) = 3, then $x = $				В
	1 11 LOGX+2(A OX	0/ 0/ - 0, then X -	·		₽

Q337	If $\log \frac{x+y}{5} = \frac{1}{2}(\log x)$	x + Log y), then $\frac{x}{y} + \frac{y}{x}$	=		В
	(a) 20	(b) 23	(c) 22	(d) 21	
Q338	If $\log \frac{a+b}{3} = \frac{1}{2} (\log \frac{a+b}{3})$	α + Log b) then the	value $\frac{a}{b} + \frac{b}{a}$ is		С
	(a) 2	(b) 5	(c) 7	(d) 3	
Q339	If $\log \frac{x+y}{7} = \frac{1}{2}$ (Log	x + Log y), then			С
	, -		(c) $\frac{x}{y} + \frac{y}{x} = 47$	(d) None	
Q340	If Log (2α - 3b) = (Log a - Log b, then a	=		Α
	(a) $3b^2/(2b - 1)$	(b) 3b/(2b - 1)	(c) $b^2/(2b + 1)$	(d) 3b ² (2b + 1)	
Q341	If $\frac{\log 3}{x-y} = \frac{\log 5}{y-z} = \frac{\log 5}{z-z}$	$\frac{7}{x}$, then $3^{(x+y)}$. $5^{(y+z)}$. $7^{(z)}$	+x) =		C
	(a) 2	(b) 10	(c) 1	(d) 0	
Q342	If $Log_{30} 3 = \alpha$, Log	₃₀ 5 = b, then Log ₃₀ 8	=	[Hint: Find (a + b)]	A
	(a) 3(1 - a - b)	(b) $(a - b + 1)$	(c) (a + b)	(d) $1(a - b + 1)$	
Q343	If $x = Log_{\alpha}bc$, $y = 0$	$log_b ca, z = log_c ab,$	then		A
	(a) $xyz = x + y + z$	+ 2	(b) $xyz = x + y + z$	+ 1	
	(c) $x + y + z = 1$		(d) xyz = 1		
Q344	If α = Log 24 12, b	= Log $_{36}$ 24, and c = L	og ₄₈ 36, then 1 + ab	C =	C
	(a) 1	(b) 2	(c) 2bc	(d) abc	
Q345	If $x = Log_{2\alpha} \alpha$, $y = 0$	$\log_{3\alpha} 2\alpha$, $z = \log_{4\alpha} 3\alpha$	then value of yz (2	- x) is	Α
	(a) 1	(b) -1	(c) 2	(d) -2	
Q346	$(bc)^{\log \frac{b}{c}} \cdot (ca)^{\log \frac{c}{a}} \cdot (a)^{\log \frac$	$(b)^{\operatorname{Log}^{\frac{a}{b}}} = \underline{\qquad}$	[Hint: Equate it as	x & then take log]	В
	(a) O	(b) 1	(c) -1	(d) None	
Q347	$X^{18} = y^{21} = z^{28}$, then 3	, $3\log_y x$, $3\log_z y$, $7\log_x x$	z are in		Α
	(α) ΑΡ	(b) GP	(c) HP	(d) None	

CHAPTER 2. EQUATION

INTRODUCTION

- * Meaning of Equation: Equation is defined to be a mathematical statement of equality. (Two algebraic expressions are connected by sign of equality (=), they form an equation).
- ❖ Conditional Equation: If the equality is true for some variables, it is conditional equation.
- * Identity: If the given equality is true for all variables, it is called an identity.

[When LHS = RHS for all the values of variables]

Ex: $\frac{x+2}{3} + \frac{x+3}{2} = 3$ is true only for x = 1. So it is a conditional equation.

Identity: $\frac{x+2}{3} + \frac{x+3}{2} = \frac{5x+13}{6}$ is an identity since it satisfy all the values of 'variable x'.

Variable: It is a quantity whose value varies (changes). Generally denoted by x, y, z.

Constant: It is a quantity whose value does not change. Generally denoted by a, b, c.

Solution/Root: Value of variable which satisfies equation. [LHS=RHS when substituted].

SOME IMPORTANT POINTS TO BE KEPT IN MIND WHILE SOLVING THE QUESTIONS:

- ❖ Addition/subtraction of same quantity to both sides of an equation does not change equⁿ.
- Multiplication/Division of same non-zero number to both sides of an equation does not change the equation.

TRANSPOSITION RULE: Any term of equation taken to the other side by changing its sign.

Transposition is done to take unknown quantities to one side & known quantities to other side

❖ A term may be transferred from one side to another side by changing its sign.

[+ve to -ve or -ve to +ve]

- ❖ A Multiplier may be removed from one side by making it divisor on other side of equation.
- ❖ A Divisor may be removed from one side by making it multiplier on other side of equation.

CONCEPT 1: LINEAR EQUATION IN ONE VARIABLE

[Highest Degree = 1]

- An equation in which highest power of the variable is 1 is called a Linear (simple) equation.
- A simple equation has only one root.
- It is in the form ax + b = 0; (Where a, b are numbers)

CONCEPT 2: SIMULTANEOUS LINEAR EQUATION IN TWO VARIABLES [Highest Degree = 1]

■ General form $\rightarrow ax + by + c = 0$; [a, b $\neq 0$ & a, b, c \rightarrow Constant].

Methods of solving simultaneous linear equation in two variables:

Substitution Method: Any one variable is written in terms of another variable in any one equation & then obtained value is substituted in other equation.

CQ8: Solve: 6x + 5y - 16 = 0 and 3x - y - 1 = 0 we get values of x, y as

Solution: 6x + 5y - 16 = 0 -----(i)

and

$$3x - y - 1 = 0$$
 -----(ii)

Now from (2), we get y = 3x - 1 -----(iii);

Substitute the value of y in (i), 6x + 5(3x - 1) - 16 = 0.

6x + 15x - 5 - 16 = 0;

21x - 21 = 0; 21x = 21;

x = 1

Now Put x = 1 in (iii); we get y = 3(1) - 1 = 3 - 1 = 2. Thus (x, y) = (1, 2)

PC Note:

- Sign of variable with same co-efficient is opposite → Add the equations.
- Sign of variable with same co-efficient is same → Subtract the equations.

TEST OF CONSISTENCY FOR A SYSTEM OF EQUATIONS $[a_1x + b_1y + c_1 = 0 & a_2x + b_2y + c_2 = 0]$

- ❖ Consistent System → System having at least one Solution.
- ❖ Inconsistent System → System having NO Solution.

No. of Solutions	Condition	System of Equations	Lines intersect at
Unique Solution	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$	Consistent	One Point
No solution	$\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$	Inconsistent	Parallel
Infinite solutions	$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	Consistent	Coincident

SIMULTANEOUS LINEAR EQUATION WITH THREE VARIABLES → Solve by Option Method.

CONCEPT 3: QUADRATIC EQUATION

[Highest degree = 2]

- ❖ General form $ax^2 + bx + c = 0$; where $a \neq 0 \& a, b, c \rightarrow Constant$.
- A quadratic equation has got two roots.
- ❖ Pure QE: If b = 0; → Affected QE: When $b \neq 0$

[Not for Exam]

CONSTRUCTION OF A QUADRATIC EQUATION

1. We have
$$ax^2 + bx + c = 0$$

2. Dividing it by 'a', we will get
$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

1. We have
$$\mathbf{a} x^2 + \mathbf{b} x + \mathbf{c} = \mathbf{0}$$
2. Dividing it by 'a', we will get $x^2 + \frac{b}{a} \times + \frac{c}{a} = 0$
3. Take '-' common from b, $x^2 - (-\frac{b}{a}) \times + \frac{c}{a} = 0$
4. $\mathbf{x}^2 - (\mathbf{sum of roots}) \times + \mathbf{Product of roots} = \mathbf{0}$

4.
$$x^2$$
 –(sum of roots)x + Product of roots = 0

ROOTS OF A QUADRATIC EQUATION

$$(1)\frac{-b+\sqrt{b^2-4ac}}{2a}$$
 (2) $\frac{-b-\sqrt{b^2-4ac}}{2a}$

Adding (1) & (2), we get $(-\frac{b}{a})$ & Multiplying (1) & (2), we get $\frac{c}{a}$. $b^2 - 4ac \rightarrow Discriminant$

$$b^2 - 4ac \rightarrow Discriminant$$

PC Note: Sum of roots =
$$(-\frac{b}{a})$$
 & Product of roots = $\frac{c}{a}$

NATURE OF THE ROOTS

Value of $b^2 - 4ac$	Nature of Roots	Example	Roots
Zero	Real, Equal & rational	$x^2 - 6x + 9 = 0$	3, 3
Perfect Square	Real, unequal & rational	$x^2 - 6x - 16 = 0$	8, -2
Not a Perfect Square	Real, unequal & irrational	$x^2 - 6x + 7 = 0$	$(3 + \sqrt{2}), (3 - \sqrt{2})$
Negative	Imaginary (Complex No.)	$x^2 - 6x + 7 = 0$	No Solution

POINTS TO BE NOTED

- **Irrational** roots occur in **conjugate pairs**. One root is $(a + \sqrt{b})$, other root will be $(a \sqrt{b})$.
- Roots are equal in magnitude (value) but opposite in sign, Sum of roots = 0 & so $\frac{b}{a}$ = 0 & **b=0**.
- If one root is reciprocal to other root, then their product is 1 & thus $\frac{c}{a}$ = 1 i.e. $\mathbf{c} = \mathbf{a}$.

CQ10: Examine the nature of the roots of $x^2 - 8x^2 + 16 = 0$ [Real & Equal]

CQ11: Examine the nature of the roots of $3x^2 - 8x + 4 = 0$ [Real, rational & unequal]

CQ12: Examine the nature of the roots of $5x^2 - 4x + 2 = 0$ [Imaginary]

CQ13: Examine the nature of the roots of $2x^2 - 6x - 3 = 0$ [Real, irrational & unequal]

SOME USEFUL RESULTS REQUIRED TO SOLVE QUESTIONS OF ROOTS OF QUADRATIC EQⁿ

$(a + b)^2 = a^2 + b^2 + 2ab \rightarrow a^2 + b^2 = (a + b)^2 - 2ab$	$\frac{1}{a} + \frac{1}{a} = \frac{a+b}{a}$	$\frac{1}{a^2} + \frac{1}{b^2} = \frac{a^2 + b^2}{(ab)^2}$	$\frac{1}{a} - \frac{1}{a} = \frac{a-b}{a}$
$\alpha - b = \sqrt{(a+b)^2 - 4ab}$	$\frac{a}{a}$ $\frac{b}{b}$ $\frac{ab}{ab}$	$\overline{a^2}$ $\overline{b^2}$ $\overline{(ab)^2}$	$\frac{1}{b}$ $\frac{1}{a}$ $\frac{1}{ab}$
$a^2 - b^2 = (a + b) (a - b)$			
$a^3 + b^3 = (a + b)^3 - 3ab (a + b)$	$\alpha^3 - b^3 = (\alpha -$	b)3 + 3ab (a - b)	

ROOTS OF EQUATION

- If $p + \sqrt{q}$ is the root, then $p \sqrt{q}$ is also a root.
- If p + iq is a root, then p iq is also a root. (Where $i^2 = -1$)
- Sum of the roots = $\alpha + \beta$ = -b/a,

Product of the roots = $\alpha\beta$ = c/a.

- An equation with roots $\alpha \& \beta$ is given by $(x \alpha)(x \beta) = 0$, $x^2 (\alpha + \beta)x + \alpha\beta = 0$
- If one root is reciprocal of the other roots $(\alpha, 1/\alpha)$ their product is also 1. Also $\alpha = c$
- If roots are equal in magnitude but opposite in sign $(\alpha, -\alpha)$ then b will be 0
- If a + b + c = 0, then one of the roots = 1, and the other root = c/a [Ex. $x^2 + 5x 6$]
- If a b + c, then one root is -1 and other is -c/a

 $[\mathbf{Ex.} \ \mathbf{x}^2 + 6\mathbf{x} + 5 = 0]$

• If $\alpha \& \beta$ are the roots of $ax^2 + bx + c = 0$, then $1/\alpha$, $1/\beta$ will be roots of $cx^2 + bx + \alpha = 0$

RELATIONSHIP BETWEEN SIGN OF A, B, C AND THE ROOTS

Sign of a, b, c	a & c same and b opposite	a, b, c same sign	a & c opposite sign
Sign of Roots	Both are Positive	Both are Negative	Opposite Sign

USEFUL FACTORS TO GET SUM & PRODUCT OF ROOTS I.E. ($\alpha + \beta$) & $\alpha\beta$

1)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - \alpha\beta$$

2)
$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2\alpha^2\beta^2$$

3)
$$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$$

4)
$$\alpha^3 - \beta^3 = (\alpha - \beta)(\alpha^2 + \alpha\beta + \beta^2)$$

5)
$$(\alpha - \beta) = \sqrt{(\alpha + \beta)^2 - 4\alpha\beta}$$

6)
$$\alpha^2 - \beta^2 = (\alpha + \beta)(\alpha - \beta)$$

7)
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{(\alpha + \beta)}{\alpha \beta}$$

8)
$$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{(\alpha \beta)^2}$$

9)
$$\frac{1}{\beta} - \frac{1}{\alpha} = \frac{(\alpha - \beta)}{\alpha \beta}$$

CUBIC EQUATION

[Highest degree = 3]

■ Format of Cubic equation $\rightarrow ax^3 + bx^2 + cx + d$ [Where a, b, c, d are number & a \neq 0]

PC Note: Solve by Option Method to save time & efforts in Exams.

RELATION BETWEEN ROOTS AND CO-EFFICIENT

1)
$$\alpha + \beta + \gamma = \frac{-b}{a}$$

2)
$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a}$$

3)
$$\alpha\beta\gamma = \frac{-d}{a}$$

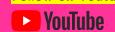
4)
$$\alpha^2 + \beta^2 + \gamma^2 = \frac{b^2 - 2ac}{a^2}$$

5)
$$\alpha^3 + \beta^3 + \gamma^3 = \frac{3abc - b^3 - 3a^2d}{a^3}$$

RELATIONSHIP BETWEEN SIGN OF α , b, c, d and of the roots

Sign of a, b, c, d	a, b, c, d are Positive	a, c same & b, d opposite sign	a, c same & b, d = 0
Sign of Roots	All roots are Negative	All roots are Positive	No real roots except 0

EQUATIONS — QUESTION BANK


SN		CHAPTE	R 2. EQUATION		Ans
Q1	If 2x+y = y+14, then	x is			В
	$(\alpha)^{\frac{7}{2}}$	(b) 7	(c) 14	(d) 21	
Q2	The root of the equa	ation $\frac{x+4}{4} + \frac{x-5}{3} = 11$ is _	·		A
	(a) 20	(b) 10		(d) None	
QЗ	The root of the equa	ation $\frac{x+24}{5} = 4 + \frac{x}{4}$ is			С
	(a) 6	(b) 10	(c) 16	(d) None	
Q4	Pick up the correct	value of x for which $\frac{x}{30}$	$=\frac{2}{45}$		С
		(b) x = 5		(d) None	
Q5	For the values of p	= - 5 and q = 6, the valu	ue of the expression 6p	o + 5q is	С
	(a) 2	(b) -1	(c) 0	(d) 1	
Q6	If $\frac{1}{2}x + \frac{1}{4}x + \frac{1}{8}x = 14$,	then x is			D
	(a) 4	(b) 8	(c) 12	(d) 16	
Q7	If $2x+5 = -25$ and $-3y$	y -6 = 48, then xy is	·		D
	(a) -270	(b) -90	(c) 90	(d) 270	
Q8	The equation $\frac{12x+1}{4}$ =	$=\frac{15x-1}{5}+\frac{2x-5}{3x-1}$ is true for _	·		D
	(a) x = 1	(b) $x = 2$	(c) $x = 5$	(d) $x = 7$	
Q9	If $\frac{3}{4} = \frac{6}{x} = \frac{9}{y}$, then x +	· y			D
	(a) 4	(b) 8	(c) 12	(d) 20	
Q10	If $\frac{a-b}{b} = \frac{2}{3}$, what is the				D
	(a) 1/2		(c) 3/2	(d) 5/3	
Q11	Solve the equation 1	7 ^{3-6x} = 1 for x =	_•		С
	(a) -3	(b) 3/2	(c) ½	(d) -1/2	
Q12	Pick up the correct	value of x for which $\frac{x}{0.5}$	$-\frac{1}{0.05} + \frac{x}{0.005} - \frac{1}{0.0005} = 0$		C
	$(\alpha) x = 0$	(b) $x = 1$	(c) x = 10	(d) None	
Q13	Which one is a linea	r equation?			D
	(a) ax + b < 0	(b) ax + b >0	(c) Both (a) or (b)	(d) Not (a) & (b)	
Q14	Solve $2^{x-2} + 2^{3-x} = 3$				C
		(b) $x = 3$ or $x = 5$		(d) $x = 1 \text{ or } x = 2$	
Q15	•	⁻¹ = 25 ^{xy} we get the follo	•	. 1	A
	(a) $(1, 2), \left(\frac{-1}{4}, \frac{-1}{2}\right)$		(c) 0, 3	(d) 1, 3.	
Q16		then values of x are _		() 2 2	D
	(α) O, 1	(b) 1, 2	(c) 0, 3	(d) 0, -3	

Q17	If $6 = 2x + 4y$, who	at is the value of x + 2	2y is		В
	(a) 2	(b) 3	(c) 6	(d) 8	
Q18	Solve for y in the	equation $\frac{y+11}{6} - \frac{y+1}{9} =$	$\frac{y+7}{4}$ and the value of y is	s	D
	(a) -1	(b) 7	(c) 1	(d) $-\frac{1}{7}$	
Q19	The solution of th	e equation (p + 2) (p	- 3) + (p + 3) (p - 4) = p ((2p - 5) is	Α
	(a) 6	(b) 7	(c) 5	(d) None	
Q20	The satisfying val	ues of x for the equa	tion $\frac{1}{x+p+q} = \frac{1}{x} + \frac{1}{p} + \frac{1}{q}$ are	e	В
			(c) (p, -q)		
Q21	If $\frac{a}{2} + \frac{b}{2} = 3$, what	is the value of 2a+2b?	?		С
	(a) 6	(b) 8	(c) 12	(d) 16	
Q22	If $a+b=5$ and $\frac{c}{2}=3$	B, what is the value of	f 2a+2b+2c?		С
	(a) 14	(b) 16	(c) 22	(d) 20	
Q23	If a-b=p and a+b=	=k, then α²-b²			A
	(a) pk	(b) $p^2 - k^2$	(c) p + k	$(d) \frac{p^2}{k^2}$	
Q24	If b(x+2y) = 60 an	d by = 15, what is the	value of bx?	·	С
	(a) 20	(b) 25	(c) 30	(d) 45	
Q25	If $xy + z = y$, what	is x in terms of y and	d z?		В
	$(\alpha) \frac{y+z}{y}$	(b) $\frac{y-z}{y}$	(c) 1 - z	(d) $\frac{z-y}{y}$	
Q26	If $\frac{1}{n+a} = r$ and $p \neq a$	-q, what is p in terms	s of r and q?		D
	$(\alpha) \frac{rq-1}{q}$		$(c)\frac{r}{1+ra}$	(d) $\frac{1-rq}{r}$	
Q27		y, what is x in terms o	14	·	С
	$(\alpha) \frac{y+1}{y-1}$	(b) $\frac{y+1}{y}$	$(c)\frac{y}{y-1}$	$(d) \frac{y}{y+1}$	
	-	,	,		
Q28	The solution of the (α) (1, -1)	e set of equations 3x (b) (1, 1)	+4y = 7 & 4x - y = 3 is (c) (2, 1)	· (d) (1, -2)	В
Q29). The values of x and y		D
Q Z O	(a) $x = 4$ $y = 12$	•	(c) $x = 5 y = 4$	(d) None	
Q30		<u> </u>	1 and 9x - 5y = 41 have	solutions given by	С
	(a) (-4-1)	(b) (-14)	(c) (4-1)	(d) (3 7)	
Q31	$\frac{x}{p} + \frac{y}{q} = 2$; x + y = (p	+ q) are satisfied by	the values given by the	e pair	A
			(c) $(x = 1 y = 1)$		
Q32	The values of x ar	nd y satisfying the eq	uations $\frac{x}{2} + \frac{y}{3} = 2$; x + 2y =	8 are	С
	(a) (3, 2)		(c) (2, 3)	(d) None	
Q33	Which of the follo	wing sets (x, y) will so	atisfy the equation 23xy	= 23 ^{yx} & 144 ^x = 12 ^y	С
	(a) (1,1)	(b) (0,1)	(c) (1,2)	(d) (2,1)	

Q34	If $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$ and $\frac{1}{x} - \frac{1}{y} = \frac{1}{4}$	³ / ₄ , then x is			D
	$(\alpha)^{\frac{1}{4}}$	(b) $\frac{1}{2}$	(c) 1	(d) 2	
Q35	$\frac{3}{x+y} + \frac{2}{x-y} = 3; \ \frac{2}{x+y} + \frac{3}{x-y}$	$\frac{1}{v} = 3\frac{2}{3}$. Find the values	s of x & y which satisfy	the equations	D
	(α) (1, 2)	(b) (-1, -2)	(c) $\left(1,\frac{1}{2}\right)$	(d) (2, 1)	
Q36	When the system is in	consistent, there is _	solution.		A
	(a) No	(b) Finite	(c) Infinite	(d) Identical	
Q37	2^{x} . $4^{y} = 32 \& 3^{x} \div 9^{y} = 32 \& 3^{x} $	3. Find the solution se	t.		A
	(a) $x = 3$, $y = 1$	(b) x = y = 2	(c) $x = y = 1$	(d) $x = y = 3$	
Q38	Solve for x and y: $\frac{4}{x}$	$\frac{5}{y} = \frac{x+y}{xy} + \frac{3}{10}$ and $3xy = \frac{1}{2}$	10(y - x). The value of x	x and y is	D
	(a) (5, 2)	(b) (-2, -5)	(c) (2, -5)	(d) (2, 5)	
Q39	The pair satisfying the equations $x + 5y = 36, \frac{x+y}{x-y} = \frac{5}{3}$ is given by				
	(a) (16, 4)		(c) (4, 8)	(d) None	
Q40	Solve for x, y and z: 2	2x - y + z = 3; x + 3y -	2z = 11; 3x - 2y + 4z =	1.	В
	(a) x= -5, y=4, z= -2		(b) $x = 3$, $y=2$, $z = -1$		
	(c) x=3, y= -3, z=6		(d) x= -8, y= -5, z= -1		
Q41	Solve for x, y and $z: \frac{1}{x}$	$+\frac{1}{y} + \frac{1}{z} = 5$; $\frac{2}{x} - \frac{3}{y} - \frac{4}{z} =$	$-11, \frac{3}{x} + \frac{2}{y} - \frac{1}{z} = -6$		A
	(a) $x = \frac{1}{2}, y = -\frac{1}{3}, z = \frac{1}{6}$	(b) $x =$	$=\frac{1}{2}$, $y=-\frac{3}{5}$, $z=\frac{2}{5}$		
	(c) $x = \frac{4}{5}, y = -\frac{2}{5}, z = \frac{1}{6}$	(d) x =	$= -\frac{1}{2}, y = \frac{1}{3}, z = -\frac{1}{6}$		
Q42	Solve for x, y and $z: \frac{x}{x+}$				A
	(a) $x = 105$, $y = 210$, $z = 210$				
	(c) $x = 100$, $y = 200$, z	= 300 (d) x=1	120, y=150, z=450		
Q43	Solving 9x + 3y - 4z =	3x + y - z = 0 and $2x -$	5y - 4z = -20 following	g roots as obtained	C
	(a) 2, 3, 4	(b) 1, 3, 4	(c) 1, 2, 3	(d) None	
Q44	$\frac{x}{4} = \frac{y}{3} = \frac{z}{2}7x + 8y + 5z =$	62. Solve			A
	(a) (4, 3, 2)	(b) (2, 3, 4)	(c) (3, 4, 2)	(d) (4, 2, 3)	
Q45	$\frac{xy}{x+y} = 20, \ \frac{yz}{y+z} = 40, \frac{zx}{z+x}$	= 24. Solve			D
	(a) (120, 60, 30)	(b) (60, 30, 120)	(c) (30, 120, 60)	(d) (30, 60,120)	
Q46	2x + 3y + 4z = 0, $x + 2$	7y - 5z = 0, 10x + 16y -	6z = 0 Solve.		A
	(a) (O, O, O)	(b) (1, -1, 1)	(c) (3, 2, -1)	(d) (1, 0, 2)	
Q47	$\frac{xy}{y-x} = 110, \ \frac{yz}{z-y} = 132, \ \frac{z}{z}$	$\frac{zx}{1+x} = \frac{60}{11}$. Solve			В
			(c) (11, 10, 12)	(d) (12, 10, 11)	
Q48	Find values of x, y and	d z -3x - 4y + 70z — 0,	2x + 3y - 10z = 0, x + 2	2y + 3z = 13	D
	(a) (1, 3, 7)	(b) (1, 7, 3)	(c) (2, 4, 3)	(d) (-10, 10, 1)	
Q49	If α & β are the roots	s of $x^2 = x + 1$ then value	ue of $\frac{\alpha^2}{\beta} - \frac{\beta^2}{\alpha}$ is		D
			ρ α		

	(a) 2√5	(b) √5	(c) 3√ <u>5</u>	(d) -2√5	
Q50	If one roots of $5x^2$	+ 13x + p = 0 be recipr	ocal of the other the	n the value of p is	В
	(α) -5	(b) 5	(c) 1/5	(d) -1/5	
Q51	If one root of equa	tion $x^2 + 7x + p = 0$ be r	eciprocal of the othe	er then value of p is	A
	(a) 1	(b) -1	(c) 7	(d) -7	
Q52	If one root of the	equation is 2 - $\sqrt{3}$, form	n the equation.		D
	(a) $x^2 - 2x + 2 = 0$	(b) $x^2 - 3x + 1 = 0$	(c) $x^2 - 5x + 5 = 0$	(d) x^2 - 4x + 1 = 0	
Q53	Root of the equation	on $x^2 - 8x + m = 0$ exce	eds the other by 4 the	en the value m is	D
	(a) m = 10	(b) $m = 11$	(c) $m = 9$	(d) $m = 12$	
Q54	If the roots of the	equation 2x² + 8x - m³	= 0 are equal then va	llue of m is	D
	(a) -3	(b) -1	(c) 1	(d) -2	
Q55	Equation $\left(\frac{1-m}{2}\right)x^2$	$\left(\frac{1+m}{m}\right)x + m = 0$ has got	two values of x to sat	tisfy equation given as	A
	\ 1/	(b) $\left(1, \frac{m}{1-m}\right)$	$(C)\left(1,\frac{1-m}{1-m}\right)$	$(d)\left(1,\frac{1}{1-m}\right)$	
Q56	The values of $4+{4+{4}}$	1			В
	4	$4 + \frac{1}{4 + \frac{1}{4 + \dots \infty}}$			
	(a) $1 \pm \sqrt{2}$	(b) $2 \pm \sqrt{5}$	(c) $2 \pm \sqrt{3}$	(d) None	
Q57	The condition that	one of the roots of ax	2 + bx + c = 0 is twice	the other is	A
	(a) $b^2 = 4ca$	(b) $2b^2 = 9(c + a)$	(c) $2b^2 = 9ca$	(d) $2b^2 = 9(c - a)$	
Q58	The roots of the ed	quation x² + kx + 12 will	differ by unity only if		D
	(a) $k = \pm \sqrt{12}$	(b) $k = \pm \sqrt{48}$	(c) $k = \pm \sqrt{47}$	(d) $k = \pm 7$	
Q59	If the roots of ax2	+ bx + c = 0 are in the	ratio $\frac{p}{}$ then the value	$e ext{ of } \frac{b^2}{}$ is	В
			4 32	()	
	$(\alpha) \frac{(p+q)^2}{(pq)}$	(b) $\frac{(p+q)}{(pq)}$	$(c)\frac{(p-q)^2}{(pq)}$	$(d)\frac{(p-q)}{(pq)}$	
Q60	If $\frac{x-a^2-b^2}{c^2} + \frac{c^2}{x-a^2-b^2} =$	= 2 the value of			C
		(b) $-\alpha^2 - b^2 - c^2$	(c) $\frac{1}{x^2+x^2+x^2}$	(d) 1	
Q61		-(a + b)x + ab = 0 we	u ib ic		Α
GOI	(a) a, b	(a + b)x + ab = 0 we	(c) b	 (d) None	A
Q62				$\alpha\beta + \alpha + \beta$) & $(\alpha\beta - \alpha - \beta)$ is	Α.
G02		equation $x^2 - 3x + 6 = 0$ (b) $2x^2 - 6x + 12 = 0$			A
000					
Q63	11 a&B are the roo	its of equation x2 - 5x	+ 6 = 0, then equation	n with roots $(\alpha^2+\beta)$ & $(\alpha+\beta^2)$ is	A
	$(\alpha) x^2 - 9x + 99 = 0$	(b) $x^2 - 18x - 90 = 0$	(c) $x^2 - 18x + 77 = 0$) (d) None	
Q64	Solving equation z ¹	° - 33z ⁵ + 32 = 0 the fo	llowing values of z are	e obtained	A
	(α) 1, 2		(c) 2, 4	(d) 1, 2, 3	
Q65					
	Solve 4x - 3.2x+2 + 25	5 = O			A

Q66	Solving $4^{x}.2^{y}$ = 128 and 3^{3x+2y} = 9^{xy} we get the following roots	С
	(a) $\frac{7}{4}, \frac{7}{2}$ (b) 2, 3 (c) Both (a) and (b) (d) 13	
Q67	$4^{x} - 3.2^{x+2} + 2^{5} = 0$, $x = $	D
	(a) 4, 8 (b) -2, -3 (c) 2, 6 (d) 2,3	
Q68	If $\frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$ the roots of the equation are	A
	(a) $a, \frac{b^2}{a}$ (b) $a^2, \frac{b}{a^2}$ (c) a, b^2 (d) None	
Q69	If the roots of the equation p (q - r) x^2 + q (r - p) x + r (p - q) = 0 are equal, then $\frac{2}{a}$ =	D
	(a) $\frac{1}{r} + \frac{1}{p}$ (b) $\frac{1}{rp}$ (c) RP (d) $\frac{1}{r} - \frac{1}{p}$	
Q70	Solving equation $\left(x - \frac{1}{x}\right)^2 - 6\left(x + \frac{1}{x}\right) + 12 = 0$ we get roots as follows (one of them)	В
	(a) 0 (b) 1 (c) -1 (d) None	
Q71	If $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{a}{x-b}$ then the values of x are	В
	(a) 0, (a +b), (a - b) (b) 0, (a+b), $\frac{a^2+b^2}{a+b}$ (c) 0, (a - b), $\frac{a^2+b^2}{a+b}$ (d) None	
Q72	The roots of the equation $x^2 + (2p - 1)x + p^2 = 0$ are real if	D
G/12	(a) $P \ge 1$ (b) $P \le 4$ (c) $P \ge 1/4$ (d) $P \le 1/4$	
Q73	The condition that one of the roots of $ax^2 + bx + c = 0$ is thrice the other is	A
	(a) $3b^2 = 16ca$ (b) $b^2 = 9ca$ (c) $3b^2 = -16ca$ (d) $b^2 = -9ca$	
Q74	If p \neq q and p ² = 5p - 3 and q ² = 5q - 3; the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is	В
	(a) $x^2 - 19x + 3 = 0$ (b) $3x^2 - 19x - 3 = 0$ (c) $3x^2 - 19x + 3 = 0$ (d) $3x^2 + 19x + 3 = 0$	
Q75	If L+M+N=O and Ltd N are rational, the roots of the equation	В
	$(M+N+L) x^2 + (N+L-M) X + (L+M-N) = 0$	
	(a) Real & irrational (b) Real & rational	
020	(c) Imaginary & equal (d) Real & equal.	
Q76	Solving equation x^2 - 24x +135 = 0 we find value(s) of x is (a) 9, 6 (b) 9, 15 (c) 15, 6 (d) None	В
Q77	Solving equation $z + \sqrt{z} = \frac{6}{25}$ the value of z works out to	С
	(a) 1/5 (b) 2/5 (c) 1/25 (d) 2/25	
Q78	Solution of the quadratic equation $(a + b - 2c) x^2 + (2a - b - c) x + (c + a - 2b) = 0$ is	. В
	(a) $x = 1$ (b) $x = -1$ (c) $x = 2$ (d) $x = -2$	
Q79	Solving $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} - \frac{5}{2} = 0 \& x + y - 5 = 0$, we get the roots as under	A
	(a) 1, 4 (b) 1, 2 (c) 1, 3 (d) 1, 5	
Q80	Solving $x^2 + xy - 21 = 0$ and $xy - 2y^2 + 20 = 0$ we get the roots as under	С
	(a) \pm 1, \pm 2 (b) \pm 2, \pm 3 (c) \pm 3, \pm 4 (d) None	
Q81	When $\sqrt{2z+1} + \sqrt{3z+4} = 7$ the value of z is given by	D
	(a) 1 (b) 2 (c) 3 (d) 4	

Q82	Solving $x^2 + xy + y^2 = 37$	and 3xy + 2y² = 68 w	e get the following roo	ots	A
	_		(c) ± 2 , ± 3	(d) None	
Q83	Solving $x + 2y + 2z = 0, 3$	$3x - 4y + z = 0 \text{ and } x^2$	$+ 3y^2 + z^2 = 11 \text{ followin}$	g roots are obtained	A
	(a) 2, 1, -2 & -2, -1, 2	•	(b) 2, 1, 2 & -2, -1, -2	•	
	(c) Only 2, 1, -2		(d) Only -2, -1, 2		
Q84	Solving equation $6\left[\sqrt{\frac{x}{1-x}}\right]$	$+\sqrt{\frac{1-x}{x}}$] = 13 following	g roots are obtained		A
	$(\alpha) \frac{4}{13}, \frac{9}{13}$ (b)	$(-1)^{-4}, \frac{-9}{13}$	$(c)\frac{4}{13},\frac{5}{13}$	(d) $\frac{6}{13}$, $\frac{7}{13}$	
Q85	Solving $\frac{x+\sqrt{12p-x}}{x-\sqrt{12p-x}} = \frac{\sqrt{p}+1}{\sqrt{p}-1}$, for	ollowing roots are o	btained		В
	, .	o) Both 3p and -4p		(d) -3p 4p	
Q86	Solving $\sqrt{y^2 + 4y - 21} + 4y$	$\sqrt{y^2 - y - 6} = \sqrt{6y^2 + 6y^2}$	5y - 39 following roo	ts are obtained	В
	(a) 2, $3,\frac{5}{3}$ (b)	$(3, 3, -\frac{5}{3})$	(c) -2, -3, $\frac{5}{3}$	(d) -2, -3, $-\frac{5}{3}$	
Q87	Solving equation $\left(x-\frac{1}{x}\right)^2$	$\frac{1}{x^2} - 10\left(x - \frac{1}{x}\right) + 24 = 0$) we get roots as follo	vws	D
			(c) -1	(d) None	
Q88	Solving x ³ - 6x ² + 11x - 6	= 0 we get the follow	wing roots as		С
				(d) -1, -2, -3	
Q89	Solving $x^3 + 9x^2 - x - 9 = 0$	O we get the followi	ng roots as		A
	$(\alpha) \pm 1, -9$ (b)		(c) ± 1, 9	(d) None	
Q90	Solve $x^3 - 7x + 6 = 0$				В
	(a) $x = -4, -2, -3$ (b)	o)x = 1, 2, -3	(c) $x = 5, 6, -1$	(d) x = 7, 2, -5	
Q91	Solve for real x: x³ + x +	2 =0			С
	(a) x = -4 (b)	(x) = 4	(c) $x = -1$	(d) $x = -3$	
Q92	The solution of the equa	ation $x^3 - 5x^2 + 6x = 0$) is		C
	(α) 2, 3 (b	o) 0, -2, -3	(c) 0, 2, 3	(d) None	
Q93	The equation $y^3 - 7y + 6$	= 0 is satisfied by _	·		A
	(α) 1, 2, -3 (b) 1, 2, 3	(c) -1, -2, 3	(d) 1, -2, 3	
Q94	The equation $x^3 - x^2 - 12x$	x = 0 is satisfied by	·		В
	(a) 1, 4, -3 (b	o) 0, 4, -3	(c) 0, -4, 3	(d) None	
Q95	Solve $x^3 - 6x^2 + 5x + 12 =$	0			В
	(α) 1, 3, 4 (b	o) -1, 3, 4	(c) 1, 6, 2	(d) 1, -6, -2	
Q96	Solve $x^3 - 5x^2 - 2x + 24 =$	O given that two of	its roots being in the	ratio of 3:4.	A
	(α) -2, 4, 3 (b	o) -1, 4, 3	(c) 2, 4, 3	(d) -2, -4, -3	
Q97	The cubic equation x³+	$2x^2 - x - 2 = 0$ has 3	roots namely		В
	(α) (1, -1, 2) (b	o) (-1, 1, -2)	(c) (-1, 2, -2)	(d) (1, 2, 2)	
Q98	(x-1), (x² + 3x + 2) are th	e factors of the left	- hand side of the eq	uation, then	A
	(a) $x^3 + 2x^2 - x - 2 = 0$		(b) $x^3 + x^2 - 20x = 0$		
	(c) $x^3 - 3x^2 - 4x + 12 = 0$		(d) $x^3 - 6x^2 + 11x - 6 =$	0	

Q99	The equation $3x^3 + 5x$	² = 3x + 5 has act 3 rc	oots and hence the fac	tors of LHS of $3x^3 + 5x^2 - 3x$	С
	- 5 = 0 are				
	(a) $(x-1)$, $(x-2)$, $(x-5/$	3)	(b) (x-1), (x+1) (3x-5)		
	(c) $(x+1)$, $(x-1)(3x+5)$		(d) (x-1), (x+1), (x-2)		
Q100	The roots of $x^3 = x^2$ -	x - 1 are			A
	(α) (-1, -1, 1)	(b) (1, 1, -1)	(c) (-1, -1, -1)	(d) (1, 1, 1)	
Q101	The satisfying value o	of $x^3 + x^2 - 20x = 0$ are	·		D
	(a) (1, 4, -5)	(b) (2, 4, -5)	(c) (0, -4, 5)	(d) (0, 4, -5)	
Q102	The roots of the cubi	c equation x³ + 7x² - 2	21x - 27 = 0 are	,	В
	(a) (-3, -9, -1)	(b) (3, -9 -1)	(c) (3, 9, 1)	(d) (-3, 9, 1)	
Q103	Solve $x^3 + 3x^2 - x - 3 =$	· O give that the roots	s are in arithmetical p	rogression	С
	(a) -1, 1, 3	(b) 1, 2, 3	(c) -3, -1, 1	(d) -3, -2, -1	
Q104	Solve x ³ - 7x ² + 14x - 8	B = 0 given that the ro	oots are in geometrica	ıl progression.	В
	(a) ½, 1 2	· ·	(c) 1/2, -2, 2	. •	
Q105	The rational root of t	the equation 2x ³ - x ² -	- 4x + 2 = 0 is		A
	(a) 1/2	(b) -½	(c) 2	(d) -2	
Q106	If the sum of a numb	er and the original r	number increased by 5	5 is greater than 11, which	D
	could be a possible v		, , , , , , , , , , , , , , , , , , , ,	9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
	(a) -5	(b) -1	(c) 1	(d) 4	
Q107	The sum of two numb	ers is 52 and their dif	ference is 2. The numb	pers are	С
	(a) 17 and 15	(b) 12 and 10	(c) 27 and 25	(d) None	
Q108	The age of a person	is twice the sum of th	e ages of his two sons	and five years ago his age	D
	was thrice the sum o	f their ages. Find his	present age.		
	(a) 60 years	(b) 52 years	(c) 51 years	(d) 50 years	
Q109				sons and 5 years hence his	D
			ind the present age o		
	(a) 65 years	(b) 25 years	(c) 35 years	(d) 45 years	
Q110		- ·		o, when a young member is	В
		•	, ,	outgoing nests by	
0445	(a) 11 years	(b) 24 years	(c) 28 years	(d) 16 years	
Q111			_	years and a new teacher by 2 years, the age of new	С
	teacher is	ange readoes the ave	rage age or the starr	by 2 years, the age of new	
	(a) 28 years	(b) 25 years	(c) 20 years	(d) 18 years	
Q112	If thrice of A's age 6	years ago be subtra	cted from twice his pr	esent age the result would	В
	_	ent age. Find A's prese	The state of the s		
	(a) 6 years	(b) 9 years	(c) 12 years	(d) 10 years	
Q113	Y is older than X by	7 years. 15 years bac	k, the ratio of their a	ges was 3:4. Their present	A
	~~~				ĺ
	ages are (a) (X = 36 Y = 43)		(c) (X = 43 Y = 50)		









Q114		-		y 5 is greater than 11, which	D
	(a) -5	value of the number' (b) -1	(c) 1	(d) 4	
Q115		the squares of two number, then the num		uare of the smaller number is	A
	(a) 9, 6 or 9, -6	(b) 5, 6, or 5, 4	(c) 9, 5 or 9, -5	(d) 6, 7 or -7, 6	
Q116	A number between digits are reversed (a) 54		imes the sum of its di (c) 45	gits. If 9 be added to it the  (d) 55	С
0443	, ,	• • • • • • • • • • • • • • • • • • • •			
Q117	The sum of the digits of a 2 digit number is 10. If 18 be subtracted from it the digits in the resulting number will be equal. The number is				В
	(a) 37	(b) 73	(c) 64	(d) None	
Q118			fraction is 8. If 3 is a omes 3/4. Then the frac	added to both the numerator ction is	С
	(α) 1/5	(b) 2/5	(c) 3/5	(d) 4/5	
Q119	The denominator of fraction becomes $\frac{3}{4}$ .		the numerator by 5 an	nd if 3 be added to both the	C
	$(\alpha)^{\frac{15}{17}}$	(b) $\frac{13}{17}$	(c) $\frac{12}{17}$	(d) $\frac{11}{17}$	
Q120	Difference betweer	a number and its po (b) 25	ositive square root is 1 (c) 16	2; find the numbers.	С
Q121	digit in the unit plac	ce is 3 more than the	and the sum of digits adjust in the tenth place	of that number is 4:1. If the ce, what is that number?	С
	(a) 24	(b) 63	(c) 36	(d) Data insufficient	
Q122	multiplied by the sm	naller one is 12; the t	wo numbers are		С
	(a) $3\sqrt{2}$ , $2\sqrt{3}$	(b) $5\sqrt{2}$ , $3\sqrt{5}$	(c) $2\sqrt{2}$ , $5\sqrt{2}$	(d) None	
Q123	The sum of two num are	bers is 45 and the m	neal proportional betw	veen them is 18. The numbers	С
	(a) (15, 30)	(b) (32, 13)	(c) (36, 9)	(d) (25, 20)	
Q124	There are two cons The numbers are	·		of their reciprocals is 1/240.	A
	(a) (15, 16)	(b) (17, 18)	(c) (13, 14)	(d) (12, 13)	
Q125	The difference of tware		is 3 and the sum of thei	ir squares is 89. The integers	В
	(a) (7, 4)	(b) (5, 8)	(c) (3, 6)	(d) (2, 5)	
Q126	digits is 9. The num	_	changing the first and	ero and the sum of the other I third digit is more than the	D
	(α) 801	(b) 603	(c) 702	(d) 306	
Q127				s twice the digit in the unit's ersed. Find the number.	D









	(a) 96	(b) 62	(c) 38	(d) 42	
Q128		ut reversing only c		ts are reversed the number is is increases the number by 36.	C
	(a) 327	(b) 372	(c) 237	(d) 273	
Q129				ds twice the greater one by 18 ether 21. Numbers are	В
	(a) (45, 36)	(b) (50, 38)	(c) (54, 45)	(d) (55, 41)	
Q130	On two numbers 1/5 numbers are	•	is equal to 1/3 rd of the s	maller and their sum is 16. The	A
	(a) (6, 10)	(b) (9, 7)	(c) (12, 4)	(d) (11, 5)	
Q131	A number consisting the digits are reve			digits and if 27 be added to it	C
	(a) 63	(b) 35	(c) 36	(d) 60	
Q132	increased by 2. It i	•	½ when both its num en both are increased b	erator and denominator are y 12.	A
	(a) 3/8	(b) 5/8	(c) 3/8	(d) 2/3	
Q133	If a number of whic (a) 50	h the half is great (b) 40	er than 1/5 th of number ! (c) 80	by 15 then number is  (d) None	С
Q134	The fourth part of a	a number exceeds	the sixth part by 4. The	number is	С
	(a) 84	(b) 44	(c) 48	(d) None	
Q135	Rs. 14 is divided be the share of 8, the			e of A is equal to two thirds of	D
	(a) Rs.6	(b) Rs.10	(c) Rs.9	(d) Rs.8	
Q136		s needed to feed 2		kens is 30 less than twice the y kilograms of corn are needed	С
	(a) 70	(b) 110	(c) 140	(d) 190	
Q137	Divide 50 into two	parts such that t	he sum of their recipro	ocals is 1/12. The numbers are	D
	(a) (24, 26)	(b) (28, 22)	(c) (27, 23)	(d) (20, 30)	
Q138		sized and the shor	test pieces are 23 cms s	The longest piece is 3 times as shorter than the longest piece.	С
	(a) 27 cm	(b) 5 cm	(c) 4 cm	(d) 9 cm	
Q139	·		rod was 2 metre shorte ed. What is the length o	r and each metre costs Rs.1.00 if the rod?	A
	(a) 12m	(b) 22m	(c) 20m	(d) 32m	
Q140			=	er tar and further travels the average speed over the whole	В









	(α) 35km per hour	(b) 40 Km per hour	(c) 42 Km per hour	(d) 45 Km per hour	
Q141	On a certain map, 3 represent?	3/8 of an inch represe	ents 120 miles. How m	any miles does 13/4 inches	D
	(a) 300	(b) 360	(c) 400	(d) 560	
Q142	If four pens cost Rs Rs. 29.407	.1.96, what is the gree	atest number of pens	that can be purchased for	С
	(α) 11	(b) 14	(c) 15	(d) 16	
Q143	A freight train and a passenger train start towards each other at the same time from two towns that are 500 miles apart. After 3 hours the trains are still 80 miles apart. If the average rate of speed of the passenger train is 20 miles per hour faster than the average rate of speed of the freight trains, what is the average rate of speed, in miles per hour, of the freight train?				D
	(a) 40	(b) 45	(c) 50	(d) 60	
Q144		•	•	of a lake in one quarter of our. What was the length in	В
	(a) 6	(b) 9	(c) 12	(d) 15	
Q145	from 10:40 a.m. to 1:	00 p.m. of the same d	ay?	w many miles does it travel	D
	(α) 165	(b) 150	(c) 120	(d) 105	
Q146		aphs are Rs.80 and R		ear. The total cost of 5 and en the cost for 10 copies of	В
	(a) Rs.140	(b) Rs.90	(c) Rs.150	(d) Rs.130	
Q147	respectively. The lin	ear equation of the to	otal cost line is	? Rs.6800/- and Rs.10400/-	C
	(a) $y = 6x + 1,000$	(b) $y = 5x + 5,000$	(c) $y = 6x + 5,000$	(d) None	
Q148	If in Question No. 14 the level of		Rs.8 per unit the bre	eak even point will arise at	C
	(α) 1,500 units	(b) 2,000 units	(c) 2,500 units	(d) 3,000 units	
Q149		of Question No. 147 ve to be elevated to	if a profit of 2000/-	is to be earned sale and	В
	(a) 3,000 units	(b) 3,500 units	(c) 4,000 units	(d) 3,700 units	
Q150	If instead in terms maintain production		f a loss of 3,000/- Is	budgeted the factory may	A
	(a) 1,000 units	(b) 1,500 units	(c) 1,800 units	(d) 2,000 units	
Q151	equation of the tota	l cost line is		00 bulbs for Rs.1200/ The	В
	(a) $2x - y + 100 = 0$	(b) $2x - y + 400 = 0$	(c) $1x - y + 400 = 0$	(d) None	
Q152	If in terms of Quest would be	ion No. 151, the facto	ry intends to produce	e 1000 butts the total cost	A
	(α) Rs.2,400	(b) Rs.2,200	(c) Rs.2,300	(d) Rs.2,100	







Q153	•	e cost one to be li		nd 125 T.V. sets at a cost of on of the line and then use	С
	(a) Rs.3,52,500 (b)	Rs.1,32,500	(c) Rs.2,42,500	(d) Rs.3,62,500	
Q154	earning Rs.50, investment	required be	·	nd Rs.20 respectively. For	D
	(a) Less than Rs.500 (b)			(d) Rs.486	
Q155	The equation in terms of	Question No. 154 i			С
	(a) $7x - 9y + 1100 = 0$		(b) 7x - 90y + 1000 =		
	(c) $7x - 90y + 1100 = 0$		(d) 7x - 90y - 1100 = 0	0	
Q156	Rs.6,500 an investment of	Rs.90,000 would	yield income of		В
	(a) Rs.7,500 (b)	Rs.8,000	(c) Rs.7,750	(d) Rs.7,800	
Q157	In terms of Question No.	156 an Investment	Rs.50,000 would yield	d income of	A
	(a) Exactly Rs.5,000		(b) Little over Rs.5,0	00	
	(c) Little less than Rs.5,00	00	(d) At least Rs.6,000		
Q158	The equation in terms of	Question No. 157 i	s .		В
	(a) $3x + 40y + 25,000 = 0$		(b) 3x - 40y + 50,000	= 0	
	(c) $3x - 40y + 25,000 = 0$		(d) 3x - 40y - 50,000		
Q159	per hour. How many minu 700 packages?	tes will the two m	achines working toget	ine can seal 140 packages ther take to seal a total of	С
	(a) 48 (b)	72	(c) 84	(d) 90	
Q160	If x people working toget the same job can one per		-	ob in H hours, what part of	A
	$(a) \frac{k}{xH} $ (b)	$\frac{H}{xk}$	(c) $\frac{k}{x+H}$	(d) $\frac{kH}{x}$	
Q161	The demand and supply e			$4q + 7p = 17$ and $p = \frac{q}{3} + \frac{7}{4}$ nen the equilibrium price &	A
	(a) $2, \frac{3}{4}$ (b)	$3,\frac{1}{2}$	(c) $5, \frac{3}{5}$	(d) None	
Q162	For a certain commodity rupees per kg. is d=100 (' in rupees per kg is s = 78 Find the market price and	, the demand equ 10-p). The supply e 5 (p-3). The marke d quantity that wi	uation giving demand equation giving the sup et price is such at wh	'd' in kg. for a price 'p' in oply 's' in kg. for a price 'p' iich demand equals supply.	С
	(a) 7,500, 600 (b)	6,300, 300	(c) 7,300, 300	(d) 7,600, 300	
Q163	The wages of 8 men and determine the wages of 6	· · · · · · · · · · · · · · · · · · ·		Rs.4.50 more than 5 boys	В
	(a) (Rs.1.50, Rs.3) (b)	(Rs.3, Rs.1.50)	(c) (Rs.2.50, Rs.2)	(d) (Rs.2, Rs.2.50)	
Q164		ad of doing so th	e student divides the	o half by 4 and then to add given number by 5. If the is	С









	(a) 320	(b) 400	(c) 480	(d) None	
Q165	If x+4x-3x+8=0, then	า x			A
4.00	(a) -4	(b) -2	(c) O	(d) 6	
Q166	If 2x+5=-25 and -3y	-6=48, then xy	,		D
	(a) -270	(b) -90	(c) 90	(d) 270	
Q167	If $\frac{1}{x} + \frac{1}{y} = \frac{1}{4}$ and $\frac{1}{x} - \frac{1}{y}$	= \frac{3}{4}, then x			D
	$(\alpha)\frac{1}{4}$	(b) $\frac{1}{2}$	(c) 1	(d) 2	
Q168	A linear equation h	as			Α
	(a) 1 root	(b) 2 roots	(c) 3 roots	(d) No roots	
Q169	If $4x + 5y = 83$ and $\frac{3}{2}$	$\frac{3x}{2y} = \frac{21}{22}$ , then y-x =	·		В
	(a) 3	(b) 4	(c) 7	(d) 1	
Q170	The solution of simu	ltaneous linear equat	ions 2X +3Y = 17, 3X -2	2Y = 6 is	С
	(a) X =4, Y =4	(b) X =3, Y =4	(c) X =4, Y =3	(d) X =3, Y =3	
Q171	The value of $\frac{16x^{-1}}{4x^{2/3}}$ is				С
	(α) 4x- ^{3/5}	(b) 4x ^{5/3}	(c) 4x ^{-5/3}	(d) None	
Q172	Solving 6x + 5y - 16=	= 0 and 3x-y-1 = 0 we (	get values of x, y as _	·	В
	(α) 1,1	(b) 1,2	(c) -1,2	(d) 0,2	
Q173	$\frac{x}{p} + \frac{y}{q} = 2$ , x+y = p+q of	are satisfied by the vo	alues given by the pai	r	A
	(a) (x = p y = q)	(b) (x-q y-p)	(c) $(x = 1 y = 1)$	(d) None	
Q174	1.5x + 2.4y = 1.8 2.5(	x + 1) = 7y have solutio	ons		В
	(a) (0.5, 0.4)	(b) (0.4, 0.5)	(c) $\frac{1}{2}$ , $\frac{2}{5}$	(d) (2, 5)	
Q175	Value of k for which	roots are equal of gi	ven equation 4x² - 12x	x + k = 0 is	В
	(a) 144	(b) 9	(c) 5	(d) None	
Q176	Solve $X^2 - 5X + 6 = 0$				В
	(a) 5 and 3	(b) 3 and 2	(c) 4 and 3	(d) 5 and 2	
Q177	If $\frac{x-bc}{b+c} + \frac{x-ca}{c+a} + \frac{x-ab}{a+b} =$	a + b + c the value of	x is		D
		(b) a (a + b + c)		(d) ab + be + ca	
Q178	If $\frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{x-3}{x+3} - \frac{x+3}{x+3}$	$\frac{3}{3}$ then the values of x	are		A
	(α) O, ±√6	(b) 0, ±√3		(d) None	
Q179	The values of x in th	ne equation $7(x + 29)^2$	+ 59 ² = 35xp + 117p ² ar	re	A
	(α) (4p, -3p)	(b) (4p, 3p)	(c) (-4p, 3p)	(d) (-4p, -3p)	
Q180	The solution of the	equation $\frac{6x}{x+1} + \frac{6(x+1)}{x} =$	13 are		D
	(a) (2, 3)	(b) (3, -2)		(d) (2, -3)	
Q181	The solution of the	equation 3x² -17x + 24			С
	(a) (2, 3)	(b) $(2,3\frac{2}{3})$		(d) $(3,\frac{2}{3})$	
	1	\ 3/	\ 3/	\ 3/	







Q182	-1 3(3x ² +15	$(5^{1})$ 2 2 $(2x^{2}+96)$			С
GIOZ	9		6 has got the solution		
			(c) (1, -1)		
Q183		_	- 5)] / [(x - 3) × (x + 6)]		A
	(a) 1	(b) 2		(d) No root	
Q184		then values of x are _			D
	(α) (O, 1)	(b) (1, 2)	(c) (0, 3)	(d) (0, -3)	
Q185	Solve $(x - \frac{1}{x})^2 + 2(x + \frac{1}{x})^2$	$+\frac{1}{x}$ = $7\frac{1}{4}$ .			A
	(a) $x = \frac{-9 \pm \sqrt{65}}{4}$ or $x = \frac{1}{2}$	$2\frac{1}{2}$	(b) $x = \frac{-9 \pm \sqrt{55}}{4}$ or $x =$	$=3\frac{1}{2}$	
	(c) $x = \frac{-9 \pm \sqrt{45}}{4}$ or $x = -\frac{1}{4}$	4 <del>1</del>	(d) $x = \frac{-9 \pm \sqrt{35}}{4}$ or $x =$	2	
	4	2	(d) X = 4 01 X =	2	
Q186	Solve $2^{x-2} + 2^{3-x} = 3$	(1-) 0 5	(-) 0 0	(-1) 4 0	C
			(c) $x = 2$ or $x = 3$	(a) $x = 1$ or $x = 2$	
Q187		equation x - $\sqrt{25-x2}$ =		. h	D
	(a) x = -3	(b) x = ±5	(c) x = 1	(d) x = 4	
Q188		e of x for the equation			A
	(a) 4, -4	(b) -4, -4	(c) 2, 6	(d) 6, 2	
Q189	Solving equation $\frac{6x+}{4}$	$\frac{2}{x^2} + \frac{2x^2 - 1}{2x^2 + 2} = \frac{10x - 1}{4x}$ we ge	t roots as		В
	(α) ±1	(b) +1	(c) -1	(d) o	
Q190	Solve for x, 4* - 3.2**	$+2 + 2^5 = 0$			D
	(a) 4, 8	(b) -2, -3	(c) 2, 6	(d) 2, 3.	
Q191	Solving 9° = 3° and5°	+y+1 = 25 ^{xy} we get the f	`ollowing roots as		A
	(a) $(1, 2), \left(\frac{-1}{4}, \frac{-1}{2}\right)$	(b) 0, 1, 3	(c) O, 3	(d) 1, 3	
Q192			ng roots are obtained		С
GIOZ	(a) $3 + 2\sqrt{3}$ , $3 - 2\sqrt{3}$		(c) All the above	(d) None	
Q193					D
G 190		,	18 = 0 we get roots as		b
	(a) O	(b) 1		(d) - 2 ± √3	
Q194	- '		the roots as under		A
	(a) ± 3, ± 4			(d) 0, -3, -4	
Q195	$\frac{1}{x^2} + \frac{1}{y^2} - 13 = 0$ and $\frac{1}{x}$	$+\frac{1}{y}-5=0$ we get the	e roots as under	_·	В
	$(\alpha) \frac{1}{8}, \frac{1}{5}$	(b) $\frac{1}{2}, \frac{1}{3}$	(c) $\frac{1}{13}$ , $\frac{1}{5}$	(d) $\frac{1}{4}, \frac{1}{5}$	
Q196		of the roots of x ² - 8x			A
	(a) Roots are real a			rational and unequal	
		·		irrational and unequal	
Q197		of the roots of 3x ² - 8		·	С
· -	(a) Roots are real a		(b) Roots are imag	inary and unequal	
		•	· ·	irrational and unequal	







Q198	Examine the nature of the roots of $5x^2-4x$	+2 = O	A	
	(a) Roots are imaginary and unequal			
		(d) Roots are real, irrational and unequal		
Q199	Examine the nature of the roots of $2x^2$ - 6	x - 3 = 0	D	
	(a) Roots are real and unequal	(b) Roots are imaginary and unequal		
	(c) Roots are real, rational and unequal	(d) Roots are real, irrational and unequal		
Q200	The equation $ax^2 + bx + c = 0$ does not have	ve any solution if	В	
	(a) $b^2$ - 4ac = 0 (b) $b^2$ - 4ac < 0	(c) $b^2 - 4ac > 0$ (d) $b^2 + 4ac = 0$		
Q201	The equation $ax^2 + bx + c = 0$ does not have	ve any solution if	В	
	(a) $b^2 - 4ac = 0$ (b) $b^2 - 4ac < 0$	(c) $b^2 - 4ac > 0$ (d) $b^2 + 4ac = 0$		
Q202	In the equation $a x^2 + bx + c = 0$ , the roots	s are determined from	В	
	(a) $b^2 < 4ac$ (b) $b^2 - 4ac$	(c) $b^2 > 4ac$ (d) $b^2 = 4ac$		
Q203	The roots of a $x^2$ + bx + c = 0, are real and	d unequal if	С	
	(a) $b^2 < 4ac$ (b) $b^2 - 4ac$	(c) $b^2 > 4ac$ (d) $b^2 = 4ac$		
Q204	If $b^2$ - $4ac = 0$ the roots are		В	
	(a) Real & Unequal	(b) Real & Equal		
	(c) Irrational & Unequal	(d) Rational & Unequal		
Q205	If $\alpha$ & $\beta$ be the roots of $x^2 + 7x + 12 = 0$ , fin	d equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$	В	
	(α) x ² - 40x + 49 -0	(b) $x^2 - 35x + 39 = 0$		
	(c) $x^2 - 50x + 49 = 0$	(d) $x^2 - 40x - 49 = 0$		
Q206	If $\alpha$ , $\beta$ be the roots of $2x^2-4x-1=0$ , find th	e value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ .	С	
	(a) -42 (b) -22	(c) -32 (d) -52		
Q207	If $\alpha$ $\beta$ are roots of equation $x^2$ - $5x$ + $6$ = $0$	the equation with roots $(\alpha^2 + \beta)$ and $(\alpha + \beta^2]$ is	. <b>A</b>	
	(a) $x^2 - 9x + 99 = 0$	(b) $x^2 - 18x + 90 = 0$		
	(c) $x^2 - 18x + 77 = 0$	(d) None		
Q208	If $\alpha$ $\beta$ be the roots of the equation $2x^2$ - $4$ .	x - 3 = 0 the value of $\alpha^2 + \beta^2$ is	A	
	(a) 5 (b) 7	(c) 3 (d) -4		
Q209	If p and q are the roots of $x^2 + x + 1 = 0$ th	ien the values of p³ + q³ becomes	D	
	(a) 2 (b) -2	(c) 4 (d) -4		
Q210	The roots of the equation $(q - r) \times x^2 + (r - r)$	-p) × x + (p - q) = 0 are	D	
	(a) (r - p) / (q - r), 1	(b) (p - q) / (q - r), 1		
	(c) (q - r) / (p - q), 1	(d) (r - p) / (p - q), 1		
Q211	Roots of equation $ax^2 - bx + c = 0$ are two	o consecutive integers then $b^2$ - $4ac$ is	A	
	(a) 3 (b) -2	(c) -1 (d) 1		
Q212	If $\alpha$ , $\beta$ be the roots of a quadratic equation	on if $\alpha + \beta = -2$ , $\alpha \beta = -3$ Find quadratic equation	В	
	·	(c) $x^2 - 2x - 3 = 0$ (d) $x^2 - 2x + 7 = 0$		
Q213			С	
10	If $\alpha$ , $\beta$ are the roots of the quadratic equ	equivil $2x^2 - 4x = 1$ , then the value of $\frac{1}{\beta} + \frac{1}{\alpha}$		







	(α) -11	(b) 22	(c) -22	(d) 11	
Q214		s of a two digit numb will be equal. The nu		racted from it the digits in	В
	(a) 37	(b) 73	(c) 75	(d) None	
Q215	the smaller is 2. The	numbers are	•	larger number is divided by	D
	(a) (16, 20)	(b) (60, 20)	(c) (60, 30)	(d) (80, 40)	
Q216	Divide 25 into two p	arts so that sum of the	eir reciprocals is $\frac{1}{6}$ .		D
	(a) 12 and 13	(b) 9 and 16	(c) 11 and 14	(d) 10 and 15	
Q217	Divide 56 into two second by 48. The po		e times the first par	t exceeds one-third of the	A
	(a) (20,36)	(b) (25, 31)	(c) (24, 32)	(d) None	
Q218	The hypotenuse of a sides is 4cm. The sid		e is 20 cm. The differe	ence between its other two	В
	(α) (11cm, 15cm)	(b) (12cm, 16cm)	(c) (20cm, 24cm)	(d) None	
Q219	Two squares have s sides of the squares		cms. The sum of their	r squares is 625 sq.cm. The	C
	(a) (10cm, 30cm)	(b) (12cm, 25cm)	(c) (15cm, 20cm)	(d) None	
Q220	Rs. 2 more than thri	·	cles and the total cost	of production per article is t of production is Rs. 800 on	A
	(α) 16	(b) 14	(c) 18	(d) 15	
Q221	, ,	of $x^3 + x^2 - 20x = 0$ are			В
	(a) (1, 4, -5)	(b) (2, 4, -5)	(c) (0, -4, 5)	(d) (0, 4, -5)	
Q222		then value of (2x + 3)	• ,		A
	(a) 4, -1, 2	(b) -4, 2, 1	(c) 2, -4, -1	(d) None	
Q223		(b) cubic equation	(c) linear equation	(d) None	В
Q224	Roots of the cubic e	quation $x^3 - 7x + 6 = 0$	are		С
	(a) 1, 2, 3	(b) 1, -2, 3	(c) 1, 2, -3	(d) 1, -2, -3	
Q225	8 is the solution of to (a) $\frac{x+4}{4} + \frac{x-5}{3} = 11$	he equation (b) $\frac{x+4}{2} + \frac{x+10}{9} = 8$	$(c)^{\frac{x+24}{5}} = 4 + \frac{x}{4}$	$(d)\frac{x-15}{10} + \frac{x+5}{5} = 4$	В
Q226	Solution for the pair	of equations $\frac{1}{16x} + \frac{1}{15y}$	$=\frac{9}{30},\frac{1}{300}-\frac{1}{350}=\frac{4}{45}$ is gi	ven by	A
	$(\alpha)\left(\frac{1}{4},\frac{1}{3}\right)$		(c) (3, 4)		
Q227	If 5x+y=19 and x-3y=	7, then x+y			С
	(a) -4	(b) -1	(c) 3	(d) 4	
Q228	Two variables x and (a) 8.80	y are related by 7x + (b) 8.86	7y + 13 = 0 and x = 7, (c) -8.80	then y is (d) -8.86	D







Q229	$\frac{4x}{3} - 1 = \frac{14}{15}x + \frac{19}{5}$ . Find $x = $			A
	(a) 12 (b) 15	(c) 20	(d) 8	
Q230	1.5x + 3.6y = 2.1; $2.5(x + 1) = 6y$			A
	(a) (0.2, 0.5) (b) (0.5, 0.2)	(c) (2, 5)	(d) (-2, -5)	
Q231	Solving equation $3x^2 - 14x + 8 = 0$ we get	roots as		С
	(a) $\pm 4$ (b) $\pm 2$	(c) 4, 2/3	(d) None	
Q232	If $\alpha\beta$ are the roots of equation $x^2 - 5x + 6$ (a) $x^2 - 6x + 5 = 0$ (b) $2x^2 - 6x + 5 = 0$	•	· · · · · · · · · · · · · · · · · · ·	A
Q233	If $\alpha$ and $\beta$ are the roots of the equation	$ax^2 + bx + c = 0$ , then	(α+ β) ² is	C
	(a) $-b^2/a^2$ (b) $c^2/a^2$	(c) $b^2/a^2$	(d) bc / a	
Q234	A quadratic polynomial $f(x) = ax^2 + bx + c$ over R if & only if	for all $x \in R$ can be fac	ctorized into rational factors	D
	(a) $b^2 - 4ac > 0$	(b) $b^2 - 4ac = 0$		
	(c) b ² - 4ac < 0		fect square or b²-4ac=0	
Q235	Solving $(b - c) x^2 + (c - a) x + (a - b) = 0$ , r			A
	(a) $\frac{a-b}{b-c}$ , 1 (b) (a - b) (a - c),	1 (c) $\frac{b-c}{a-b}$ , 1	(d) None	
Q236	Solving equation $3x^2 - 14x + 16 = 0$ we ge	t roots as		В
	(a) $\pm 1$ (b) $(2, \frac{8}{3})$	(c) 0	(d) None	
Q237	Value of $\sqrt{6\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}} \dots \infty = $			В
	(a) 3 (b) 6	(c) $\sqrt{42}$	(d) $3\sqrt{2}$	
Q238	12 years after a man will be 4 times as h	ne was 12 years ago, hi	is present age is	В
	(a) 25 years (b) 20 years	(c) 28 years	(d) 30 years	
Q239	10 years ago, age of the father was 4 tin will be twice that of his son. Present age	•	•	A
	(a) (50, 20) (b) (60, 20)	(c) (55, 25)	(d) None	
Q240	Ten years ago a father was 12 times as as old as his son. Then their present age		years hence he will be twice	В
	(a) 12 yrs, 24 yrs (b) 12 yrs, 34 yrs	(c) 24 yrs, 42 yrs	(d) 12 yrs,42 yrs	
Q241	Sum of 2 natural numbers is 8 & sum of t	•		A
	(a) 3 and 5 (b) 6 and 2	(c) 7 and 1	(d) 4 and 4	
Q242	The sum of two numbers is 38 and their			A
	(a) 20, 18 (b) 10, 12	(c) 17, 15	(d) None	
Q243	Two numbers are in the ratio 2:3 and that are		•	В
	(a) 12,18 (b) 16,24	(c) 14,21	(d) None	
Q244	The sum of the two numbers is 8 and the form an equation in x and hence find the	e numbers. The number	es are	C
	(a) (7, 10) (b) (4, 4)	(c) (3, 5)	(d) (2, 6)	









Q245	Five times of a posinumber is	tive whole number is	3 less than twice the	square of the number. The	A
	(a) 3	(b) 4	(c) -3	(d) 2	
Q246		raction is increased b sed by 4 & denominato	•	y 1 it becomes 1. Again, if Fraction =	С
	(a) 3/8	(b) 5/8	(c) 7/8	(d) 1/8	
Q247		•	·	times the digit in the unit's sed. The number is	С
	(a) 39	(b) 92	(c) 93	(d) 94	
Q248		raction exceeds nume by unity. The fraction is		dded to the numerator the	D
	(a) 5/7	(b) 1/3	(c) 7/9	(d) 3/5	
Q249	pm, a passenger tro	•	on, going south at a ra	f 50 miles per hour. At 1:00 te of 60 miles per hour. At	В
	(a) 3:00 pm	(b) 4:00 pm	(c) 4:30 pm	(d) 5:00 pm	
Q250		•	•	pe the same manuscript. If ill they complete the typing	A
	(a) 2:24 pm	(b) 2:30 pm	(c) 2:40 pm	(d) 3:00 pm	
Q251	· ·	•	_	or Rs.380. considering cost estimated as	С
	(a) Rs.400	(b) Rs.420	(c) Rs.440	(d) None	





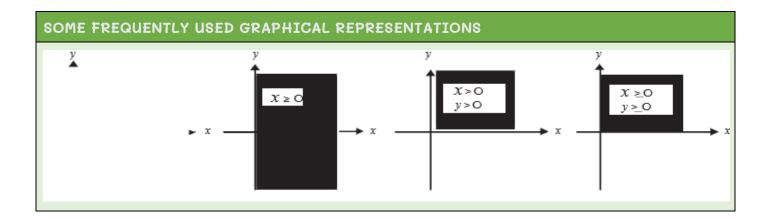




## **CHAPTER 3. INEQUALITIES**

#### **INTRODUCTION**

- Inequalities are statements where two quantities are unequal but a relationship exists between them.
- A quantity may be greater than, less than,  $\geq$ ,  $\leq$  to the other quantity.


Ex: x < 10, y > 2,  $x + y \ge 25$ ,  $x - y \le 12$  etc.

#### LINEAR INEQUALITIES IN ONE VARIABLE AND THE SOLUTION SPACE

- Linear Inequality: Any linear function that involves an inequality sign is linear inequality.
- Solution Space: Values of the variables that satisfy an inequality are called the solution space

#### POINTS TO REMEMBER

- ✓ If both sides are multiplied/divided by any negative number, inequality sign CHANGES.
  - Ex: 6X < -18; If we divide both sides by -6, X > 3. The inequality sign will change.
  - **Ex:** If a > b & c < 0, then ac < bc & a/c < b/c.
- ✓ If both sides are multiplied/divided by positive number, inequality sign 'NO CHANGE'
  - **Ex:** 5X < 20; If we divide both sides by 5, X < 4. The inequality sign won't change.
  - Ex: If a > b & c > 0, then ac > bc & a/c > b/c.
- ✓ NO CHANGE if any number is added or subtracted to both sides of inequality.
  - **Ex:** If a > b, then a + c > b + c & a c > b c.
- ✓ If a > b & c > d, then a + c > b + d
- ✓ If a < b & c < d, then a + c < b + d.

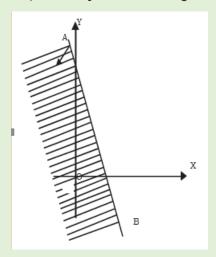






#### LINEAR INEQUALITIES IN TWO VARIABLES

Let us now consider a linear inequality in two variables given by 3x + y < 6


Inequality mentioned above is true for certain pairs of numbers (x, y) that satisfy 3x + y < 6.

#### Steps to solve linear inequalities in two variables:

- 1. Replace the inequality by an equality & then you will get 3x + y = 6.
- 2. Now substitute two convenient values for x & y so that we get two points.

Let x = 0 so that y = 6. Let y = 0, so that x = 2. You will get two points (0,6) & (2,0).

3. Plot these points on co-ordinate plane & join them to get a line of the linear equation.



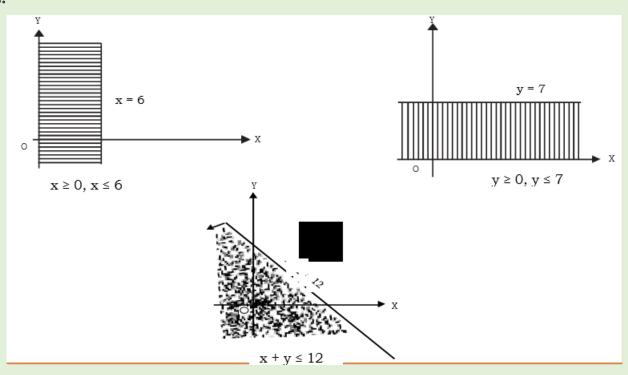
#### **PC NOTE**

- > If Plotted line is intersecting (touching) x & y axis, then for
  - "Less than' inequality → Solution = Part Below the line.
  - Greater than' inequality → Solution = Part Above the line.

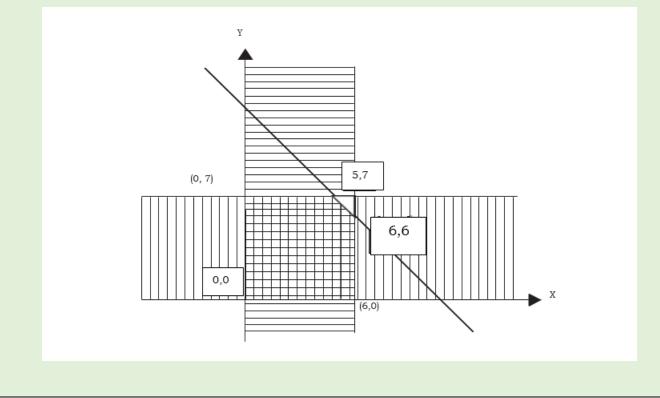
Since in our example, we had 3x + y < 6, i.e 'Less than' inequality, the solution will be the part below the line as shown in the figure on the left side.

- If Plotted line is NOT intersecting (touching) both x & y axis, then we take any point on either side of the line.
  - If that point satisfies the inequality, the part in which the point lies will be our solution.
  - If that point does not satisfies the inequality, the part on the other side of the point will be our solution.








**CQ1:**  $x \le 6$ ,  $y \le 7$ ,  $x + y \le 12$ ,  $x \ge 0$ ,  $y \ge 0$ . Find the solution space.

Ans:



By superimposing the above three graphs, we determine the common region in the xy plane where all the five inequalities are simultaneously satisfied.







#### **OPTIMAL SOLUTION**

- ✓ The objective function attains a maximum or a minimum value at one of the corner points of the feasible solution known as extreme points of the solution set.
- ✓ Once these extreme points (the points of intersection of lines bounding the region) are known, a compact matrix representation of these points is possible. We shall denote the matrix of the extreme points by E.
- ✓ The coefficients of the objective function may also be represented by a column vector. We shall represent this column vector by C.
- ✓ The elements in the product matrix EC shows different values, which the objective function attains at the various extreme points.
- ✓ The largest & the smallest elements in matrix EC are respectively the maximum and the minimum values of the objective function.
- ✓ The row in matrix EC in which this happens is noted and the element in that row indicates the appropriate pairing and is known as the optimal solution.

In the above example;

$$E = \begin{bmatrix} 0 & 0 \\ 0 & 7 \\ 5 & 7 \\ 6 & 0 \\ 6 & 6 \end{bmatrix}, C = \begin{bmatrix} 1 \\ 2 \end{bmatrix} y$$

$$EC = \begin{bmatrix} 0 & 0 \\ 0 & 7 \\ 5 & 7 \\ 6 & 0 \\ 6 & 6 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \times 1 + 0 \times 2 \\ 0 \times 1 + 7 \times 2 \\ 5 \times 1 + 7 \times 2 \\ 6 \times 1 + 0 \times 2 \\ 6 \times 1 + 6 \times 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 14 \\ 19 \\ 6 \\ 18 \end{bmatrix}$$

The given objective function viz. Z = x + 2y is maximum at the points (5, 7) present in the third row of the matrix E.

Thus, optimal solution is x = 5, y = 7, & the maximum value of the objective function is 19.

#### Steps to be followed under graphical solution to a linear programming problem.

- Determine the region that satisfies the set of given inequalities.
- Ensure that the region is bounded*.
- If the region is not bounded, either there are additional hidden conditions which can be used to bound the region or there is no solution to the problem.
- Construct the matrix E of the extreme points, & the column vector C of the objective function.
- Find the matrix product EC.
- For maximization, determine the row in EC where the largest element appears; while for minimization, determine the row in EC where the smallest element appears.





Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

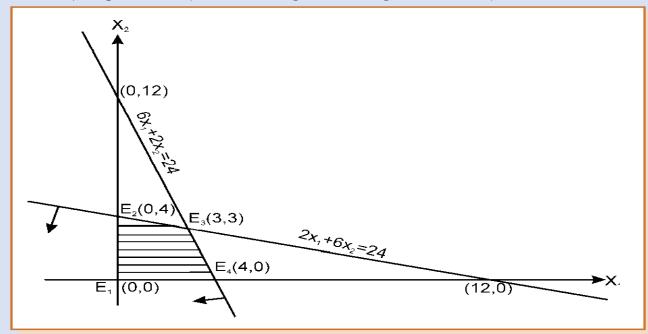
Instagram Whatsapp: 8888111134



The objective function is optimized corresponding to the same row elements of the extreme point matrix E.

**PC Note:** If the slope of the objective function be same as that of one side of feasible region, there are multiple solutions to the problem. However, the optimized value of the objective function remains the same.

CQ2: A manufacturer produces two products A and B, and has his machines in operation for 24 hours a day. Production of A requires 2 hours of processing in machine M1 & 6 hours in machine M2. Production of B requires 6 hours of processing in machine M1 & 2 hours in machine M2. The manufacturer earns a profit of Rs. 5 on each unit of A and Rs. 2 on each unit of B. How many units of each product should be produced in a day in order to achieve maximum profit?


**Solution:** Let  $x_i$  be the number of units of type A product to be produced, and  $x_i$  is that of type B product to be produced.

Formulation of L.P.P: Maximize  $Z = 5x_1 + 2x_2$  subject to the constraints,

$$2x_1 + 6x_2 < 24$$
;  $6x_1 + 2x_2 < 24$ ;  $x_1 \ge 0, x_2 \ge 0$ 

For the line  $2x_1 + 6x_2 = 24$ ; Let  $x_1 = 0$ , so that  $x_2 = 4$ ; Let  $x_2 = 0$ , so that  $x_1 = 12$ .

For the line  $6x_1 + 2x_2 = 24$ ; Let  $x_1 = 0$ , so that  $x_2 = 12$ ; Let  $x_2 = 0$ , so that  $x_1 = 4$ .



The shaded portion in the diagram is the feasible region and the matrix of the extreme points  $E_1$ ,  $E_2$ ,  $E_3$  and  $E_4$  is





$$\mathsf{E} = \begin{bmatrix} \mathsf{X}_1 & \mathsf{Y}_2 \\ \mathsf{0} & \mathsf{0} \\ \mathsf{0} & \mathsf{4} \\ \mathsf{3} & \mathsf{3} \\ \mathsf{4} & \mathsf{0} \end{bmatrix} \begin{matrix} \mathsf{E}_1 \\ \mathsf{E}_2 \\ \mathsf{E}_3 \\ \mathsf{E}_4 \\ \end{bmatrix}$$

The column vector for the objective function is  $C = \begin{bmatrix} 5 \\ 2 \end{bmatrix} x_1 x_2$ 

The column vector the values of the objective function is given by

$$EC = \begin{bmatrix} 0 & 0 \\ 0 & 4 \\ 3 & 3 \\ 4 & 0 \end{bmatrix} \begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \times 5 + 0 \times 2 \\ 0 \times 5 + 4 \times 2 \\ 3 \times 5 + 3 \times 2 \\ 4 \times 5 + 0 \times 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 8 \\ 21 \\ E_{3} \\ E_{4} \end{bmatrix}$$

Since 21 is the largest element in matrix EC, therefore the maximum value is reached at the extreme point  $E_3$  whose coordinates are (3,3).

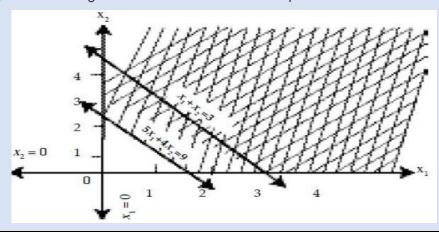
Thus, to achieve maximum profit the manufacturer should produce 3 units each of both the products A and B.

**CQ3:** Graph  $5x_1 + 4x_2 \ge 9$ ,  $x_1 + x_2 \ge 3$ ,  $x_1 \ge 0$ ,  $x_2 \ge 0$ ; & mark the common region.

**Solution:** We draw the straight lines  $5x_1 + 4x_2 = 9$  and  $x_1 + x_2 = 3$ .

Table for 
$$5x_1 + 4x_2 = 9$$

$$\begin{array}{c|cccc}
 X_1 & 0 & 9/5 \\
 X_2 & 9/4 & 0
 \end{array}$$


Table for 
$$x_1 + x_2 = 3$$

$X_1$	0	3
$X_2$	3	0

Now, if we take the point (4, 4), we find  $5x_1 + 4x_2 \ge 9$ ; i.e.,  $5.4 + 4.4 \ge 9$ ; or,  $36 \ge 9$  (True)

$$x_1 + x_2 \ge 3$$
; i.e.,  $4 + 4 \ge 3$ ;  $8 \ge 3$  (True);

Hence (4, 4) is in the region which satisfies the inequalities.









#### HOW TO FORM INEQUATION FROM WORD PROBLEMS

CQ4: A fertilizer company produces two types of fertilizers called Grade I & Grade II. Each of these types is processed through two critical chemical plant units. Plant A has maximum 120 hrs & Plant B has maximum of 180 hrs available in a week. Manufacturing one bag of grade I fertilizer requires 6 hours in Plant A and 4 hours in plant B. Manufacturing one bag of Grade II fertilizer requires 3 hrs in Plant A and 10 hours in Plant B.

Answer: Firstly, we need to identify the key factor (factor having restrictions or conditions).

Here we have limited Machine Hours & thus Machine hours becomes our Key Factor.

Always arrange 'Key Factor' in columns & other given data in rows.

Particulars	Machine A	Machine B
Chemical Grade I	6 hrs	4 hrs
Chemical Grade II	3 hrs	10 hrs
Maximum Available Time	120 Hours	180 Hours

Now let's assume that we will produce x units of Chemical Grade I & y units of Chemical Grade II.

Thus, 
$$6x + 3y \le 120 \& 4x + 10y \le 180$$
.

CQ5: Two machines produce two grades of plywood, Grade A & Grade B. In one hour of operation, machine 1 produces 2 units of Grade A & 1 unit of Grade B, while machine II produces 3 units of grade A & 4 units of grade B. Machines are required to meet a production schedule of at least 14 units of grade A & 12 units of grade B.

**Answer:** Let Machine I operate for x hours & Machine II operate for y hours.

Particulars	Grade A	Grade B
Machine I	2 units	1 unit
Machine II	3 units	4 units
Minimum Quantity required	14 units	12 units

Thus,  $2x + 3y \ge 14$ ,  $x + 4y \ge 12$ ,  $x \ge 0$ ,  $y \ge 0$ 





# **INEQUALITIES — QUESTION BANK**

SN		CHAPTER	8. INEQUILITIES		Ans
Q1	Solution set of an _	cαn be represente	ed on a number line.		A
	(a) inequation (b) equation (c) Either (a) or (b) (d) Not (a) & (b)				
Q2	When an inequation	is multiplied or divide	by sar negative number, ine	quation —direction.	A
	(a) Changes	(b) Doesn't Change	(c) Either (a) or (b)	(d) Not (a) & (b)	
QЗ	The inequalities x ≥	0, y ≥0 indicates	_·		A
	(a) First quadrant		(b) Second quadrant		
	(c) Third quadrant		(d) Fourth quadrant		
Q4	The inequalities x <	O, y > 0 represents	·		В
	(a) First quadrant		(b) Second quadrant		
	(c) Third quadrant		(d) Fourth quadrant		
Q5	5X < 20 implies				A
	(a) $X < 4$		(b) X > 4		
	(c) X less than equal	to 4	(d) X greater than equal to	) 4	
Q6	4x > -16 implies	·			C
	(a) X ≥ -4	(b) X <-4	(c) X >-4	(d) X ≤-4	
Q7	-6X < -18 implies				
	(a) $X < 3$	(b) X > 3	(c) $X = 0$	(d) X = 3	
Q8	X > - 3 Implies	·			С
	(a) -2x <6	(b) 2x >-6	(c) Both (a) or (b)	(d) Not (a) & (b)	
Q9					A
	(α) -2X >6	(b) 2X > -6	(c) Both (a) or (b)	(d) Not (a) & (b)	
Q10					В
	(a) O	(b) 1	(c) -1	(d) -2	
Q11	Solve for real 'x' if 5	x - 2 ≥2x + 1 & 2x + 3 <	18 - 3x.		С
	(a) 1 < x < 3	(b) - 1 > x > - 3	(c) 1 ≤ x < 3	(d) $x = 3$	
Q12	If $m < n \& \alpha < b$ , the				D
<b>G</b> 12	(a) $m - a < n - b$	(b) ma <nb< td=""><td>(c) m/a &lt; n/b</td><td>(d) m + a &lt; n + b</td><td></td></nb<>	(c) m/a < n/b	(d) m + a < n + b	
013	13 If a < b & c < 0 then				В
G 10	(a) a/c< b/c	 (b) a/c > b/c	(c) a/c = b/c	(d) a/c = 0	<b>B</b>
014	If p - q = - 3 then		(0) 4/0 2/0	(4) 4, 5	^
G14	(a) p< q = -3 then	(p) b > d	(c) p = q	(d) p = 0	A
045	<u> </u>		(ο, ρ - ϥ	(α) ρ - 0	_
<b>Q15</b>	5 If $x \le 0$ , then $2/x + 8/x$ is				D
	$(a) \ 2 \le x \le 3$ $(b) \ge 0$ $(c) \ge 4$ $(d) \le -1$				
Q16	What is the smallest integer value of x in $4 - 3x < 11 = $			В	
	(a) -3	(b) -2	(c) -1	(d) 0	







Q17	What is the largest integer value of p that satisfies the inequality $4 + 3p ?$	A				
	(a) -2 (b) -1 (c) 0 (d) 1					
Q18	A dealer has only Rs. 5760 to invest in fans (x) & sewing machines (y). Cost per unit of fans and sewing machine is Rs. 360 & Rs.240 respectively. This can be shown by	D				
	(a) $360x + 240y \ge 5760$ (b) $360x + 240y \le 5760$					
	(c) 360x + 240y = 5760 (d) None of these					
Q19	An employer recruits experienced (x) & fresh workmen (y), But he cannot employ more than 9 people.	В				
	(a) $x + y \neq 9$ (b) $x + y \leq 9$ (c) $x + y \geq 9$ (d) None					
Q20	Experienced person (x) does 5 units of work while a fresh one (y) does 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as	С				
	(a) $5x + 3y \le 30$ (b) $5x + 3y > 30$ (c) $5x + 3y \ge 30$ (d) None					
Q21	Rules demand that employer should employ not more than 5 experienced hands to 1 fresh one. Express as	С				
	(a) $y \ge x/5$ (b) $5y \ge x$ (c) Both (a) and (b) (d) $5y \le x$					
Q22	Union forbids him to employ less than 2 experienced persons to each fresh person. This can be expressed as	D				
	(a) $x \le y/2$ (b) $y \le x/2$ (c) $x \ge 2y$ (d) Both (b) & (c)					
Q23	hours for assembly, 5 man-hours for painting &1 man- hour for testing. Model B requires 6 man-hours for assembly, 4-man hours for painting & 2 man hours for testing. There are 300 man-hours available in the assembly shop, 120 man-hours in painting shop and 50 man-hours available in testing division. (a) $15x + 6y \le 300$ , $x + 2y \le 50$ , $5x + 4y \le 120$ (b) $15x + 6y \le 300$ , $x + 2y \ge 50$ , $5x + 4y \ge 120$					
	(c) $15x + 6y \ge 300$ , $x + 2y \le 50$ , $5x + 4y \ge 120$ (d) $15x + 6y \le 300$ , $x + 2y \le 50$ , $5x + 4y \le 120$					
Q24	A company produces two types of leather belts, say A and B. Belt A is of superior quality and belt B is of lower quality. Each belt of type A requires twice as much as time required by a belt of type B. If all belts were of type B, the company could produce 1000 belt per day. But the supply of leather is sufficient only for 800 belts per day. Belt A requires fancy buckles and only 400 fancy buckles are available per day. For belt of type B only 700 buckles are available per day. Assuming that the company produces x unit of belt A and y units of belt B:  (a) $x + 2y \ge 1000$ , $x + y \ge 800$ , $x \ge 400$ ; $y \le 700$ (b) $x + 2y \ge 1000$ , $x + y \le 800$ , $x \ge 400$ ; $y \ge 700$					
	(d) $x + 2y \le 1000$ , $x + y \ge 800$ , $x \le 400$ ; $y \ge 700$					
Q25						









Machine	A	В	Total Time available
M1	3	3	36
M2	5	2	50
МЗ	2	6	60

Constraints can be formulated taking  $x_1$  = No. of units A &  $x_2$ =No. of unit of B as ___.

- (a)  $x_1 + x_2 \le 12$ ;  $5x_1 + 2x_2 \le 50$ ;  $2x_1 + 6x_2 \le 60$ ;
- (b)  $3x_1 + 3x_2 \ge 36$ ;  $5x_1 + 2x_2 \le 50$ ;  $2x_1 + 6x_2 \ge 60$ ;
- (c)  $3x_1 + 3x_2 \le 36$ ;  $5x_1 + 2x_2 \le 50$ ;  $2x_1 + 6x_2 \le 60$ ;
- (d) None of these

Vitamins A and B are found in food  $F_1$  and  $F_2$ . One unit of  $F_1$  contains 20 units of vitamin A &30 units of vitamin B. One unit of food  $F_2$  contains 60 units of vitamin A &40 units of vitamin B. Cost per unit of  $F_1\&F_2$  are Rs. 3 &Rs. 4 respectively. The minimum daily requirement of vitamin A &B is 80 &100 units respectively.

Problem is to determine mixture of  $F_1 \& F_2$ , which meets the requirement at minimum cost.

- (a)  $20x_1 + 60 \ x_2 \le 80$ ,  $30x_1 + 40x_2 \le 100$ ,  $x_1 \le 0$ ;  $x_2 \le 0$
- (b)  $20x_1 + 60 x_2 \ge 80$ ,  $30x_1 + 40x_2 \le 100$ ,  $x_1 \ge 0$ ;  $x_2 \le 0$
- (c)  $20x_1 + 60 x_2 \ge 80$ ,  $30x_1 + 40x_2 \ge 100$ ,  $x_1 \ge 0$ ;  $x_2 \ge 0$
- (d)  $20x_1 + 60 \ x_2 \le 80$ ,  $30x_1 + 40x_2 \ge 100$ ,  $x_1 \le 0$ ;  $x_2 \ge 0$

A firm produces two types of gadgets A &B, which are first processed in the foundary, and then sent to another machine for finishing. The number of man-hours for the firm available per week are as follows:

Particulars	Foundry	Machine-shop			
А	10	5			
В	6	4			
Capacity per week (man hours)	100	600			

Let the firm manufacture x units of A and y units of 8. The constraints are:

- (a)  $10x + 6y \le 1000$ ,  $5x + 4y \ge 600$ ,  $x \ge 0$ ;  $y \le 0$
- (b)  $10x + 6y \le 1000$ ,  $5x + 4y \le 600$ ,  $x \ge 0$ ;  $y \ge 0$
- (c)  $10x + 6y \ge 1000$ ,  $5x + 4y \le 600$ ,  $x \le 0$ ;  $y \ge 0$
- (d)  $10x + 6y \ge 1000$ ,  $5x + 4y \ge 600$ ,  $x \le 0$ ;  $y \le 0$
- Q28 A firm plans purchase hens (x) for its canteen. There cannot be more than 20 hens.
  - $(a) x \leq 20$
- (b) x = 20
- (c) x > 20

(d) None

Q29 In a class of boys (x) & girls (y), maximum seating capacity is 360. This can be shown by _____.

- (a)  $x + y \le 360$
- (b)  $x + y \ge 360$
- (c)  $x + y \neq 360$
- (d) None

Q30 Mr. A plans to invest upto Rs. 30,000 in two stocks X and Y. Stock X (x) is priced at Rs.175 & Stock Y (y) at Rs. 95 per share. This can be shown by _____.

(a)  $175x + 95y \le 30,000$ 

(b)  $175x + 95y \ge 30,000$ 

(c) 175x + 95y = 30,000

(d) None







(a) 11011



Q31	A dietitian wishes to	_						D
		vitamin A, 7 units of vitamin B, 10 units of vitamin C &12 units of vitamin nt per Kg. of each food is shown below:						
	Particulars	A		В		С	D	
	Food I	2		1		1	2	
	Food II	1		1		2	3	
	Assuming x units of f	ood I is to be mix	ked v	vith y units of	food II,	expressed	as -	
	(α) 2x+y≤9; x+ y ≤7; x	(+2y≤10; 2x+3y≤12;	; x>0	, y>0				
	(b) 2x+y≥30; x +y ≤7;	y+2y≥10; x+3y≥12						
	(c) 2x+y≥9; x+ y ≥7; y	y+ y ≤10; x+3y≥12						
	(d) 2x+y≥9; x + y ≥7;	y+2y≥10; 2x+3y≥12	2; x≥0	), y≥0.				
Q32	A man makes two ty table. Both the prodeach product in hou follows:	ducts are proces	sed (	on two machir	ies M1 d	and M2. The	time required for	С
	Machine	Chair		Table		Αvα	ilable Time	
	M ₁	3		3			36	
	M ₂	5		2			50	
	(a) $x + y \le 12$ , $5x + 2y$	$ (a) x + y \le 12, 5x + 2y \ge 50, x \le 0; y \ge 0 $ (b)			2, 5x + 2	$2y \le 50, x \ge 1$	O; y ≤ O	
	(c) $x + y \le 12$ , $5x + 2y$	$+ y \le 12, 5x + 2y \ge 50, x \le 0; y \ge 0$ (b) $x + y \ge 12, 5x + 2y \le 50, x \ge 0; y \le 0$ $+ y \le 12, 5x + 2y \le 50, x \ge 0; y \ge 0$ (d) $x + y \ge 12, 5x + 2y \ge 50, x \le 0; y \le 0$						
Q33	Solve for real 'x' if (	x - 4) / (2x - 3) ≤ (	)					В
	(a) $x = 1/8 \text{ or } 2/3$	(b) 1.5 < x ≤ 4		(c) $x = 4 \text{ or } $	3/2	(	d) x≥4	
Q34	If xy > 1 and z < 0, w	hich of the follow	ing s	statements mu	st be tr	ue?		С
	I. $x > z$	II. xyz <	: -1			III. xy/z	< 1/z	
	(a) I only	(b) II only		(c) III only		(	d) II and III	
Q35	If $A = x - 2^{-1}$ , $B = x +$	$2^{-1}$ and $A^2 - B^2 > 0$	), the	en				В
	(a) $x > 0$	(b) $x < 0$		(c) $x = 0$		(	d) x = A + B	
Q36	When x > 0, value of	f  x  is						C
	(a) 0 (b) -x (c) x (d) 1							
Q37	Common region repr	esented by in eq	ualit	ies 2x + y ≥ 8,	x + y > '	12, 3 x + 2y	≼34 is	С
	(a) Unbounded (b) In feasible							
	(c) Feasible and bounded (d) Feasible and unbounded							
Q38	The union forbids the employer to employ less than 2 experienced persons (x) to each fresh person (y). This situation can be expressed as			В				
	(a) $x \le y/2$ (b) $y \le x/2$ (c) $y \ge x/2$ (d) None							
Q39	A fertilizer company produces two types of fertilizers called Grade I and Grade II. Each of these types is processed through two critical chemical plant units. Plant A has maximum 120 hrs available in a week and Plant B has maximum of 180 hrs available in a week. Manufacturing one bag of grade I fertilizer requires 6 hours in Plant A and 4 hours in plant B.			С				







Manufacturing one bag of Grade II fertilizer requires 3 hrs in Plant A & 10 hours in Plant B.

(a) 
$$6x + 3y \le 120$$
,  $4x + 10y = 180$ 

(b) 
$$6x + 3y = 120$$
,  $4x + 10y > 180$ 

(c) 
$$6x + 3y \le 120$$
,  $4x + 10y \le 180$ 

(d) 
$$6x + 3y < 120$$
,  $4x + 10y < 180$ 

**Q40** A man makes two types of furniture: chairs and tables. Profits are Rs. 20 per chair and Rs. 30 per table. Both the products are processed on two machines M1 & M2. Time required for each product in hours and total time available in hours per week on each machine are as follows:

Machine	Chair	Table	Available Time
M ₁	3	3	36
$M_1$	5	2	50

Constraints can be formulated by taking x = no. of chairs, y = no. of tables produced as:

(a) 
$$x + y \le 12$$
,  $5x + 2y \ge 50$ ,  $x \le 0$ ;  $y \ge 0$ 

(b) 
$$x + y \ge 12$$
,  $5x + 2y \le 50$ ,  $x \ge 0$ ;  $y \le 0$ 

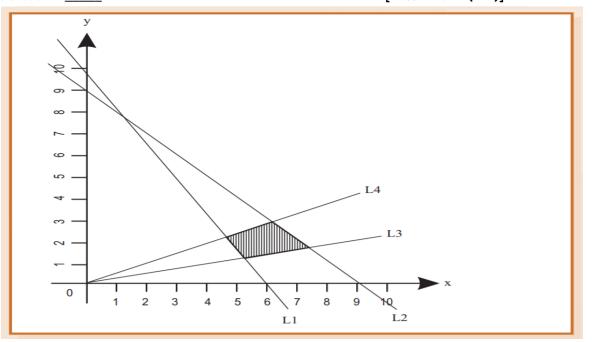
(c) 
$$x + y \le 12$$
,  $5x + 2y \le 50$ ,  $x \ge 0$ ;  $y \ge 0$  (d)  $x + y \ge 12$ ,  $5x + 2y \ge 50$ ,  $x \le 0$ ;  $y \le 0$ 

(d) 
$$x + y \ge 12$$
,  $5x + 2y \ge 50$ ,  $x \le 0$ ;  $y \le 0$ 

Suppose a man needs a minimum of 50 units of carbohydrate, 40 units of proteins per month for good health. He is taking food at two places, viz., A and B, food at A contains 4 and 5 units of carbohydrates and proteins respectively.

Express this in the form of linear inequalities assuming the man is in good health. Let  $x_1$  and  $x_2$ represent carbohydrates and proteins respectively. Then mathematical inequalities are:

(a) 
$$4x_1 + x_2 \ge 50$$
,  $5x_1 + 3x_2 \le 40$ ,  $x_1 \ge 0$ ;  $x_2 \le 0$ 


(b) 
$$4x_1 + x_2 \le 50$$
,  $5x_1 + 3x_2 \ge 40$ ,  $x_1 \le 0$ ;  $x_2 \ge 0$ 

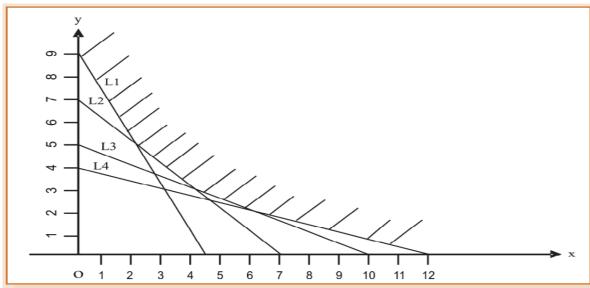
(c) 
$$4x_1 + x_2 \ge 50$$
,  $5x_1 + 3x_2 \ge 40$ ,  $x_1 \ge 0$ ;  $x_2 \ge 0$ 

(d) 
$$4x_1 + x_2 \le 50$$
,  $5x_1 + 3x_2 \le 40$ ,  $x_1 \le 0$ ;  $x_2 \le 0$ 

Q42 refers to_

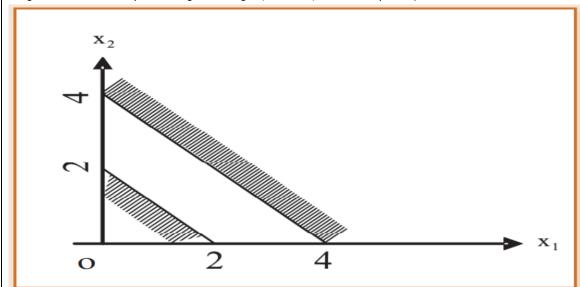
L1: 5x + 3y = 30; L2: x + y = 9; L3: y = x/3; L4: y = x/2. Common region (shaded part) [ICAI SM Q1(viii)]




- (a)  $5x+3y \le 30$ ;  $x+y \le 9$ ;  $y \le 1/5x$ ;  $y \le x/2$
- (b)  $5x+3y\ge30$ ;  $x+y\le9$ ;  $y\ge x/3$ ;  $y\le x/2$ ;  $x\ge0$ ,  $y\ge0$
- (c)  $5x+3y\ge30$ ;  $x+y\ge9$ ;  $y\ge x/3$ ;  $y\ge x/2$ ;  $x\ge0$ ,  $y\ge0$  (d) 5x+3y>30; x+y<9;  $y\ge9$ ;  $y\le x/2$ ;  $x\ge0$ ,  $y\ge0$






Q43 Common region (Shaded part) expressed by the set of inequalities is [ICAI SM Q3]

L2: x + y = 7; L3: y = x+2y = 10; L1: 2x + y = 9; L4: x+3y=12



- (a)  $2x+y \le 9$ ;  $x+y \ge 7$ ;  $x+2y \ge 10$ ;  $2x+3y \ge 12$
- (b)  $2x+y \ge 9$ ;  $x+y \le 7$ ;  $x+2y \ge 10$ ;  $x+3y \ge 12$
- (c)  $2x+y \ge 9$ ;  $x+y \ge 7$ ;  $y+2y \ge 10$ ;  $x+3y \ge 12$ ;
- (d) None of these

Q44 Region indicated by shading in the graph is expressed by inequalities. [ICAI SM Q5]



- (a)  $x_1 + x_2 \le 2$ ;  $2x_1 + 2x_2 \ge 8$ ;  $x_1 \ge 0$ ,  $x_2 \ge 0$
- (b)  $x_1 + x_2 \le 2$ ;  $2x_1 + x_2 \le 4$

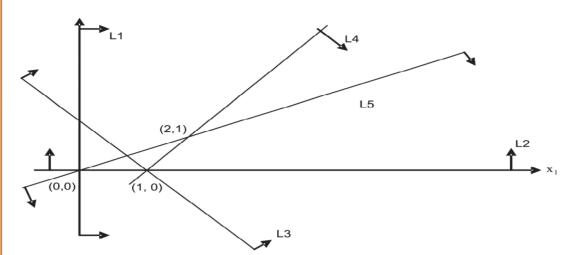
(c)  $x_1 + x_2 \ge 2$ ;  $2x_1 + 2x_2 \ge 8$ 

(d)  $x_1 + x_2 \le 2$ ;  $2x_1 + 2x_2 > 8$ 

Q45 Two machines (I and II) produce two grades of plywood, Grade A and Grade B. In one hour of operation, machine I produces 2 units of Grade A and one unit of Grade B, while machine II, in one hour of operation produces 3 units of grade A and four units of grade B. The machines are required to meet a production schedule of atleast 14 units of grade A and 12 units of grade B.

- (a)  $2x + 3y \ge 14$ ,  $x + 4y \ge 12$ , x > 0,  $y \ge 0$
- (b)  $2x + 3y \le 14$ , x + 4y = 12, x > 0, y > 0
- (c)  $2x + 3y \ge 14$ ,  $x + 4y \ge 12$ ,  $x \ge 0$ ,  $y \ge 0$
- (d) 2x + 3y = 14, x + 4y = 12,  $x \ge 0$ ,  $y \ge 0$

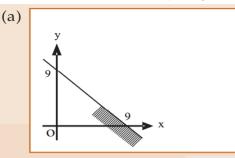
► YouTube



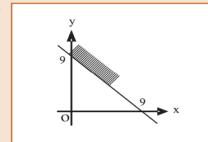



C




Q46 Common region indicated on the graph is expressed by the set of five inequalities.




- (a) L1:  $x_1 \ge 0$ ; L2:  $x_2 \ge 0$ ; L3:  $x_1 + x_2 \le 1$ ; L4:  $x_1 x_2 \ge 1$ ; L5:  $-x_1 + 2x_2 \le 0$
- (b) L1: $x_1 \ge 0$ ; L2:  $x_2 \ge 0$ ; L3:  $x_1 + x_2 \ge 1$ ; L4: $x_1 x_2 \ge 1$ ; L5:  $-x_1 + 2x_2 \le 0$
- (c) L1: $x_1 \le 0$ ; L2:  $x_2 \le 0$ ; L3:  $x_1 + x_2 \ge 1$ ; L4: $x_1 x_2 \ge 1$ ; L5:  $-x_1 + 2x_2 \le 0$
- (d) None of these [ICAI SM Q7]

Graph to express the inequality  $x + y \le 9$  is Q47

[ICAI SM Q1(v)]

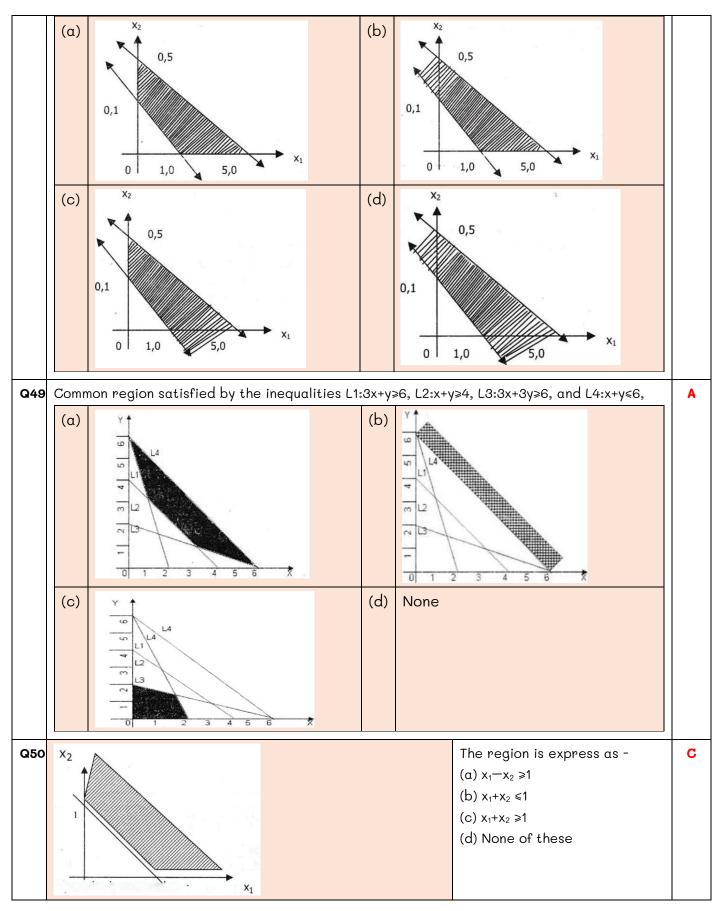


(b)



(c)

(d) none of these

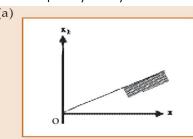

The inequalities  $X_1 + 2x_2 \le 5$ ,  $x_1 + x_2 \ge 1$ ,  $x_1 \ge 0$ ,  $x_2 \ge 0$  represents the region

A



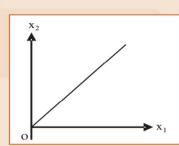




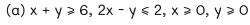





The inequality  $-x+2y \le 0$  is indicated on the graph as:


[ICAI SM Q6(iii)]

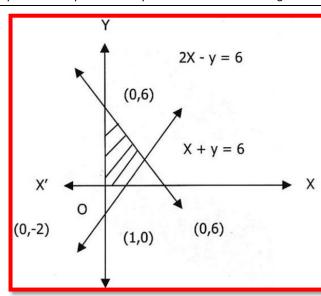
(a)



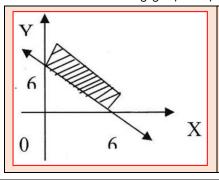

(d) none of these

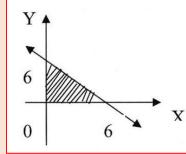
(c)

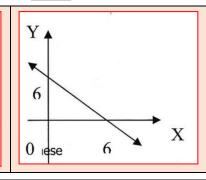



By lines x + y = 6, 2x - y = 2, the common region shown is the diagram refers to




(b) 
$$x + y \le 6$$
,  $2x-y \le 2$ ,  $x \ge 0$ ,  $y \ge 0$ 


(c) 
$$x + y \le 6$$
,  $2x - y \ge 2$ ,  $x \ge 0$ ,  $y \ge 0$ 


(d) None of these

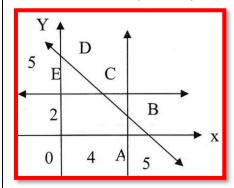


Which of the following graph represents the inequality  $x + y \le 6$  is







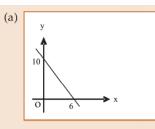




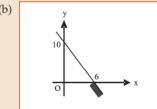



**Q54** Given conditions  $x+y \ge 5$ ,  $x+y \le 5$ ,  $0 \le x \le 4$  and  $0 \le x \ge 2$ 

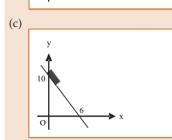
C




then the common region under these conditions is

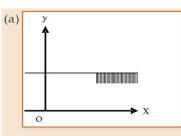

- (a) ECDE
- (b) EOABCE
- (c) Line segment CD
- (d) Line segment BC

Graph to express the inequality  $5x + 3y \ge 30$  is

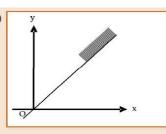

C

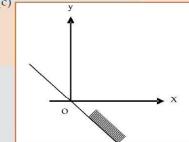


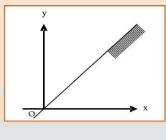
(b)



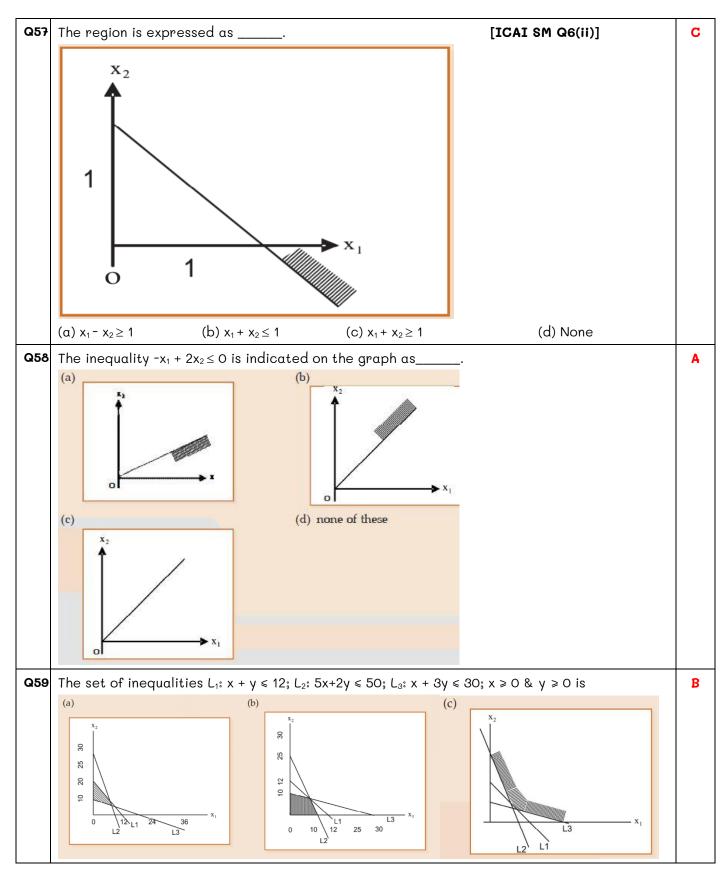

(d) none of these





**Q56** The graph to express the inequality  $y \le \frac{x}{2}$  is indicated by__


D




(b)

















# CHAPTER 4. TIME VALUE OF MONEY

## Meaning of Some Important Terms

- Interest: Interest is the price paid by a borrower for use of a lender's money.
- **Principal:** Principal is the initial amount lent/borrowed.
- Rate of Interest: The rate at which the interest is charged for a defined period of time for use of principal (generally on yearly basis) is known as rate of interest. It is usually expressed as percentages.
- Time: It is no. of years for which the principle is borrowed or loaned.
- Accumulated amount (Balance): It is the final value of an investment. [Principal + Interest].

#### **CONCEPT 1: SIMPLE INTEREST**

- Simple interest is the interest computed on the principal for the entire period of borrowing.
- Interest is calculated on the original principal and not on interest previously earned.

NO Interest is paid on Interest Earned.

**Simple Interest (SI)** = Principal (P)  $\times$  Rate of Interest (R)  $\times$  Time in years (T).

Accumulated Amount (A) = P + SI = P + PRT = P (1 + RT).

PC NOTE: Sometimes, we are given two different accumulated amounts for two time period & we have to find out interest, principal & Rate of Interest. Let two accumulated amounts be A1 &  $A_2$  & time period be  $T_1$  &  $T_2$ 

Interest per year = 
$$\frac{A_2 - A_1}{T_2 - T_1}$$
;

Rate of Interest = 
$$\frac{A_1 - A_2}{A_1 T_2 - A_2 T_1} \times 100$$

## How to find <u>Time or Rate</u> to multiply a sum at S.I.

Particular	Sum is 1.5 times	Sum is Doubled	Sum is Trebled	Sum is 4 times
Time Req. (Yrs)	$T = \frac{o.5}{R} \text{ yrs}$	$T = \frac{1}{R} \text{ yrs}$	$T = \frac{2}{R} \text{ yrs}$	$T = \frac{3}{R} \text{ yrs}$
Rate Req.	$R = \frac{o.5}{T}$	$R = \frac{1}{T}$	$R = \frac{2}{T}$	$R = \frac{3}{T}$

CQ1: A sum of money amount to Rs. 6,200 in 2 years and Rs. 7,400 in 3 years. The principal & rate of interest are:

(a) Rs. 3,800, 31.57%

(b) Rs. 3,000, 20% (c) Rs. 3,500, 15%

(d) None

**CQ2:** Calculate the simple interest on Rs. 50,000 at 12% simple interest for 5 years?







**CQ3:** Sania Mirza deposited Rs. 50,000 in a bank for 20 years with interest rate of 5.5% p.a. How much interest would she earn? Find the final value of her investment.

**CQ4:** Find rate of interest if amount owed after 6 months is Rs. 1050 & borrowed amount is Rs. 1000.

**CQ5:** Katrina gave Rs. 70,000 as loan to Salman Khan @ 6.5% p.a. SI. She received Rs. 85,925 after the end of term. Find out the period for which loan was given by Katrina to Salman Khan.

**CQ6:** Sharmaji deposited a particular amount in a bank for 7.5 years @ 6% p.a. SI. He received Rs. 1,01,500 at the end of the term. Compute initial deposit of Sharmaji.

**CQ7:** Rs. 46,875 was lent out at SI & at the end of 1 year & 8 months, total amount was Rs. 50,000. Find R.

**CQ8:** What amount will produce Rs. 28,600 as an interest in 3 years and 3 months at 2.5% p.a. simple interest?

CQ9: In what time will Rs. 85,000 amount to Rs. 1,57,675 at 4.5 % p.a.?

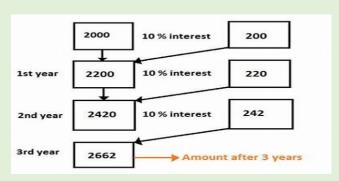
CQ10: A sum doubles itself in 10 years. Find interest rate.

(a) 10 %

(b) 12 %

(c) 15 %

(d) 20 %


#### **CONCEPT 2: COMPOUND INTEREST**

- If the interest of a period is added to the principal & interest for next period is calculated on revised principal [Original Principal + Interest], it is called compound interest.
- In CI, principal does not remain same, i.e Principal goes on changing every year.

Interest is charged on Interest Earned.

#### **Amount (A)** = $P (1 + R)^T$

Interest (I) = A - P



**CQ11:** PC deposited Rs. 1 crore in a nationalized bank for 3 years. If the rate of interest is 7% p.a. Calculate the interest after 3 years if interest is compounded annually. Also calculate the amount at the end of third year.





#### **Conversion Period**

The fixed period at the end of which the interest is calculated & added to the principal is called conversion period.

Ex: When the interest is calculated & added to the principal every 6 months, conversion period is six months. In this case number of conversion periods per year (denoted by K) would be two.

Conversion period & frequency	Number of Conversion Period in a Year (K)	Formula to be used
12 Months (Annually)	1	$A = P (1 + R)^T$
6 Months (Semi annually)	2	$\mathbf{A} = P \left(1 + \frac{R}{2}\right)^{2T}$
3 Months (Quarterly)	3	$\mathbf{A} = P \left(1 + \frac{R}{4}\right)^{4T}$
1 Month (Monthly)	12	$\mathbf{A} = P \left(1 + \frac{R}{12}\right)^{12T}$
1 Day (Daily)	365	$\mathbf{A} = P \left(1 + \frac{R}{365}\right)^{365T}$

Formula to be used: Amount (A) = P  $(1 + \frac{R}{\kappa})^{KT}$  where 'K' is no. of conversion per year.

#### PC Note:

- If rate of interest is same, CI increases with increase in frequency of compounding.
- If nothing is mentioned in the problem, the interest is taken as 1 yr.
- SI & CI. Are equal for the first conversion period on same sum and same rate
- Amount for CI (P,  $A_1$ ,  $A_2$ ,......) form a GP, where r = (1 + i). Also true for intervals.
- CI for each period also forms a GP, where  $r = (1 + i) [CI_{2nd} CI_{1st} = SI \text{ on } CI_{1st})$
- CI formula can be used in case of uniform periodical increase at fixed rate like **population** growth. In case of uniform decrease like depreciation (W.D.V basis) i is replaced by -i.

## Years required for a Sum to Double at CI with annual compounding

Thumb Rule	R = 10%	R = 11%	R = 12%	R = 13%	R = 14%
$T = 0.35 + \frac{0.69}{R}$	7.25 Yrs.	6.62 Yrs	6.1 Yrs	5.65 Yrs	5.27 Yrs

CQ12: Rs. 10,000 is invested at annual rate of interest of 10%. What is the amount after 2 years if compounded?

(a) Annually

(b) Semi-annually

(c) Quarterly

(d) Monthly





### Points to Remember

- Different Interest Rate for different year  $(R_1, R_2, R_3) \rightarrow A_n = P(1+R_1) (1+R_2) (1+R_3) \dots (1+R_n)$ . [Use Calculator as:  $A_n = (1 + R_1\% + R_2\% + R_3\% + .... + R_n\%) \times P$
- Time required for a sum to double itself @ 'R' rate of interest (CI) =  $[0.35 + \frac{0.69}{R}]$  years.
- CI for 1st year = SI for 1st year. But then 2nd year onwards, CI & SI will be different.

## For Annual Compounding only

- CI for 2 years SI for 2 years =  $PR^2$
- CI for 3 years SI for 3 years =  $PR^2(R+3)$
- $\mathbf{R} = \frac{2 \left( C I_2 S I_2 \right)}{2 \left( C I_2 S I_2 \right)}$

#### CONCEPT 3: NOMINAL RATE & EFFECTIVE RATE OF INTEREST

- 1. Nominal Rate: Annual Compound Interest Rate is called N.R. [Compounded annually]
  - It is the stated interest rate. It is the simplest type of interest rate.
  - This rate works according to the simple interest & does not take into account the compounding periods.

CQ13: If a bank pays 5% compounded annually on a savings account, then 5% is the nominal interest rate

2. Effective Rate of Interest (E): If the amount is compounded more than once a year, the actual rate of interest (we got) is called effective rate of interest. If we compound the interest more than once a year, effective interest rate for the year will be more than actual interest rate per annum.

It is the actual equivalent annual rate of interest at which an investment grows in value when interest is credited more often than once a year.

 $\mathbf{E} = (\mathbf{1} + \frac{R}{r})^{\kappa} - \mathbf{1}$  [E = Effective interest rate; R = Interest rate per annum; K = No. of conversion period]

PC Note: Effective rate of Interest is relevant when the amount is compounded more than one a year. Effective Interest Rate has nothing to do with Principal. It is related to interest rate & frequency of compounding.

CQ14: Rs. 5,000 is invested in Term Deposit Scheme that fetches interest 6% per annum compounded quarterly. What will be the interest after one year? What is effective rate of interest? [Interest = Rs, 306.82;

CQ15: Which is better investment? (i) 3% p.a compounded monthly or (ii) 3.2% p.a SI.  $[(1+0.0025)^{12} = 1.0304]$ 









**Solution:** K = 12 times; E =  $(1 + \frac{R}{K})^n - 1$ ; E =  $(1 + \frac{3}{12})^{12} - 1$ ; = 1.0304 -1 = 0.0304. Thus, **E = 3.04%** 

**Answer:** Effective rate of interest < 3.2% & thus SI @ 3.2% per year is the better investment.

#### JUST FOR KNOWLEDGE

Real Rate of Return: It is so named because it states the 'real rate' that lender or investor receives after taking the effect of inflation. [Interest rate that exceeds the inflation rate]

Real Rate of Return = Nominal Rate of Return - Inflation.

#### How Banks attract customers?

While charging interest, they advertise the nominal rate, which is lower and does not reflect how much interest the consumer would owe on the balance after a full year of compounding. While paying interest on saving deposit accounts, they generally advertise the effective rate because it looks higher than the nominal rate.

PC NOTE: More the compounding period in a year, more expensive the loan becomes. So choose a loan in which the interest is compounded annually.

#### **CONCEPT 4: ANNUITY**

- Annuity can be defined as a sequence of periodic payments (or receipts) regularly over a specified period of time.
- When we pay (or receive) a fixed amount of money periodically over a specified time period we create an annuity.

Ex: Payment of life insurance premium, EMI of a loan, receipt of pension.

#### Features of Annuity:

- > Amount paid (or received) must be constant over the period of annuity &
- > Time interval between two consecutive payments (or receipts) must be the same.

## Types of Annuity Based on Mode of Payment.

- Annuity regular: Payment is made @ end of each period [Preferred when nothing is said in question]
- Annuity Due/Annuity Immediate: Payment is made @ beginning of each period.

Perpetuity: Annuity where the receipt (or payment) takes place forever. Since the payment is forever we cannot compute a future value of perpetuity. However we can compute the present value of the perpetuity.





#### SOME TERMS RELATED TO ANNUITY

TERMS	MEANING OF TERMS
Periodic Payment	Size of each Payment of Annuity.
Annual Rent	Sum of all payments made in one year of an annuity
Payment Period	Time between two successive payments of an annuity.
Terms	Total time from first payment period to the last period
Amount	Total worth of all the payments at conclusion of an annity.
Present Value	Sum of the present values of all the payments of an annuity.
Sinking Fund	Money accumulated at CI by regular & equal payments for replacement of a wasting asset or liquidation of a loan

### **CONCEPT 5: FUTURE VALUE OF ANNUITY**

- Future value is the cash value of an investment (done today) in the future.
- It is tomorrow's value of today's money compounded at the given rate of interest.

CQ16: Suppose you invest Rs. 1,000 in FD @ 7% p.a. At the end of 1st year, you will have Rs. 1,070. Rs. 1,070 is the future value of Rs. 1,000 invested for one year at 7%.

We can say that Rs. 1000 today is worth Rs. 1070 in one year's time if the interest rate is 7%.

Thus Rs. 1,144.90 is the future value of Rs. 1,000 invested for two years at 7%.

## EXPLANATORY TABLE OF Rs. 1 invested for 4 years @ 6%

End of year	Amount Deposit (Rs.)	Future value at the end of 4 th year (Rs)
0	_	-
1	Rs. 1	$1(1 + 0.06)^3 = 1.191$
2	Rs. 1	$1(1 + 0.06)^2 = 1.124$
3	Rs. 1	1 (1 + 0.06) ¹ = 1.060
4	Rs. 1	1 (1 + 0.06) ^O = 1
Future Value		4.375





## A. FUTURE VALUE OF ANNUITY REGULAR [If nothing is given, we consider it "regular"]

 $FV = P\left[\frac{(1+R)^n - 1}{R}\right]$  where, P = Amount deposited, R = Rate of Interest, N = No. of years (conversion).

**CQ17:** Find FV of an annuity of Rs. 500 made annually for 7 years @ 14%. [(1.14)7 = 2.5023]

#### B. FUTURE VALUE OF ANNUITY DUE

[FV of annuity regular  $\times$  (1+R).]

CQ18. Find FV of an annuity of Rs. 500 made annually for 7 years at interest rate of 14% compounded annually. Given that (1.14)7 = 2.5023. [Ans: Rs. 5365.35]

CQ19: Z invests Rs. 10,000 every year starting from today for next 10 yrs. Interest rate is 8% p.a compounded annually. Find FV of annuity. [(1 + 0.08)10 = 2.15892500] [Ans: Rs. 1,56,454.875]

#### **CONCEPT 6: PRESENT VALUE OF ANNUITY**

- Present value is today's value of tomorrow's money discounted at the interest rate.
- PV of an annuity = Sum of PV of all the periodic payments discounted @ given rate.

PC Note: FV & PV are related to each other in fact they are the reciprocal of each other.

CQ20: You invested Rs. 1000 at 7% & get Rs. 1,070 at the end of the year. If Rs. 1,070 is FV of today's Rs. 1000; then Rs. 1,000 is the PV of tomorrow's Rs. 1,070. If we invest Rs. 1,000 for two years at 7% p.a, we will get Rs. 1,144.90 after 2 years. It means Rs. 1,144.90 is the FV of today's Rs. 1,000 at 7% & Rs. 1,000 is PV of Rs. 1,144.90.

CQ21: PV of Rs. 1 to be received after 2 yrs compounded annually at 10% interest rate is?

[Ans: 0.83]

**CQ22:** Find PV of Rs. 10,000 to be required after 5 years if interest rate = 9%. [(1.09)5=1.5386]

[Ans: 6499.42]

#### A. PRESENT VALUE OF ANNUITY REGULAR

PV of an annuity (A) = Sum of PV of all the periodic payments discounted @ given rate.

$$PV = \frac{A}{(1+R)^1} + \frac{A}{(1+R)^2} + \frac{A}{(1+R)^3} + \frac{A}{(1+R)^4} + \dots \frac{A}{(1+R)^N}$$

**PV = A**  $\left[\frac{(1+R)^n-1}{R(1+R)^n}\right]$  where, A = Installment Amount, R = Rate of Interest, n = No. of years (conversion).

CQ23: S borrows Rs. 5,00,000 to buy a house. If he pays equal installments for 20 years and 10% interest on outstanding balance what will be the equal annual installment? [Ans: 58,730]

CQ24: Rs. 5,000 is paid every year for ten years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually? [Ans: 26,080]



#### B. PRESENT VALUE OF ANNUITY DUE

- > Compute PV of annuity as if it were a annuity regular for one period short.
- > Add initial cash payment/receipt to the step 1 value.

**CQ25:** Your mom decides to gift you Rs. 10,000 every year starting from today for the next 5 years. You deposit this amount in a bank as and when you receive and get 10% p.a compounded annually. Find PV of this annuity?

**Sol**ⁿ: It is an annuity immediate. For calculating value of the annuity immediate following steps will be followed:

**Step 1:** Present value of the annuity as if it were a regular annuity for one year less i.e. for four years. = Rs.  $10,000 \times P(4,0.10)$ ; = Rs.  $10,000 \times 3.16987$ ; = Rs. 31,698.70.

**Step 2:** Add initial cash deposit to the step 1 value: Rs. (31,698.70+10,000) = **Rs. 41,698.70.** 

#### **CONCEPT 7: SINKING FUND**

It is the fund credited for a specified purpose by way of sequence of periodic payments.

Size of Sinking Fund Deposit (A) =  $P \times \left[ \frac{(1+R)^N - 1}{R} \right]$ 

Where, A = Total amount to be saved (FV)

P = Periodic Payment

**CQ26:** How much amount is required to be invested every year so as to accumulate Rs. 3,00,000 at the end of 10 years if interest is compounded annually at 10%?

**Answer:** A = 3,00,000; N = 10; R = 0.1. we know that  $\mathbf{A} = \mathbf{P} \times \left[ \frac{(1+R)^N - 1}{R} \right]$ ;

**Thus**, 3,00,000 =  $P \times \left[ \frac{(1+0.1)^{10}-1}{0.1} \right]$ ; 3,00,000 =  $P \times 15.9374246$ ; Therefore P =**Rs. 18,823.6.** 

#### SOME OTHER IMPORTANT APPLICATIONS

- 1. <u>LEASING:</u> Leasing is a financial arrangement under which owner of the asset (lessor) allows the user of the asset (lessee) to use asset for a defined period of time for a consideration (lease rental) payable over a given period of time. It is like taking an asset on rent.
  - ➤ If Cost of asset > PV of lease rental → Lease
  - ➤ If Cost of asset < PV of lease rental → Buy

**CQ27:** ABC Ltd. wants to lease out an asset costing Rs. 10 lacs for 5 years. It has fixed a rental of Rs. 3.1 lacs p.a payable annually starting from the end of first year. Suppose rate of interest is 12% p.a compounded annually on which money can be invested by the company. Is this agreement favourable to the company?

Answer: Here we have to compute PV of the annuity of Rs. 3,10,000 for 5 years @ 12%p.a.





Follow on Youtube & Telgram for Revision - Pranav Chandak Academy

Vhatsapp: 888811113



PV Factor for 5 years @ 12% = 3.604776. Thus, PV of Lease annuity =  $3,10,000 \times 3.604776 = Rs$ . 11,17,480.

Since PV of Lease annuity > initial cost of the asset, Leasing is favourable to the lessor.

**CQ28:** A company is considering proposal of purchasing a machine either by making full payment of Rs. 4,000 or by leasing it for 4 years at lease rent of Rs. 1,250. Which option is preferable if rate is 14% p.a.? [Lease]

- 2. <u>CAPITAL EXPENDITURE (INVESTMENT DECISION)</u>: Purchasing an asset (Cash outflows) today in anticipation of Future economic benefits (cash inflow).
  - ➤ If PV of cash inflow > PV of cash outflow → Invest
  - ➤ If PV of cash inflow < PV of cash outflow → Do NOT invest.

**CQ29:** A machine with useful life of 7 years costs Rs. 10,000 while another machine with useful life of 5 years costs Rs. 8,000. The first machine saves labour expenses of Rs. 1,900 annually & second one saves labour expenses of Rs. 2,200 annually. Determine preferred course of action. Assume cost of borrowing as 10% p.a.

**Answer:** (i) PV of annual cost savings for  $1^{st}$  machine = Rs. 1,900 × 4.86842 = Rs. 9,250.

Cost of 1st machine = Rs. 10,000 & it saves Rs. 9,250. Thus, it costs Rs. 750 more than labour cost it saves.

(ii) PV of annual cost savings of  $2^{nd}$  machine = Rs. 2,200 × 3.79079 = Rs. 8,339.74.

Cost of  $2^{nd}$  machine = Rs. 8,000 & it saves Rs. 8339.74. Thus, effective savings in labour cost = Rs. 339.74. Hence, the second machine is preferable.

**3.** <u>VALUATION OF BOND:</u> A bond is a debt security in which issuer owes holder a debt and is obliged to repay the principal and interest. They are generally issued for a fixed term.

Value of Bond = PV of Interest Paid + PV of Maturity Amount.

**CQ30:** An investor intends purchasing a 3 year Rs. 1,000 par value bond having nominal interest rate of 10%. At what price the bond may be purchased now if it matures at par and the investor requires a return of 14%?

**Answer:** Interest on bond for every year = Rs. 100. Maturity Amount = Rs. 1,000.

PV of Bond = 
$$\frac{100}{(1.14)^1} + \frac{100}{(1.14)^2} + \frac{100}{(1.14)^3} + \frac{1000}{(1.14)^3} = 87.719 + 76.947 + 67.497 + 674.972 = 907.125.$$

Thus, the bond should be purchased @ Rs. 907.125 or less than it.







## **CONCEPT 8: PERPETUITY**

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date & continue indefinitely or perpetually.

Ex: Fixed coupon payments on permanently invested (irredeemable) sums of money.

## A. PV of "Multi period perpetuity":

 $PVA_{\infty} = \frac{P}{R}$  where, P = Payment/Receipt each period; R = Rate of Interest per each period

**CQ31:** If I want to retire & receive Rs. 30,000 every month & I want my family to receive the same monthly payment after my death. I can earn an interest of 8% p.a. How much will I need to set aside to achieve my perpetuity goal? How much should I invest to get the amount from today itself?

[Ans: Rs. 45,00,000]

B. PV of "Growing Perpetuity": Perpetuity which grows at constant rate.

**PVA = 
$$\frac{P}{R-g}$$** where, g = Growth rate

**CQ32:** I want to receive Rs. 10,000 forever. Interest rate is 8% & the rate at which perpetuity grows is 3%. Advise me the amount to be invested. [Ans: Rs.2,00,000

**Answer:** PVA = 
$$\frac{P}{R-g} = \frac{10,000}{(8-3)\%} = \frac{10,000}{5\%} = \text{Rs. } 2,00,000.$$

#### **CONCEPT 9: NET PRESENT VALUE (NPV)**

**NPV** = PV of Cash Inflow - PV of Cash Outflow.

RULES TO MAKE DECISION: If NPV > 0 → Accept; If NPV < 0 → Reject

**CQ33:** Compute NPV for a project with a net investment of Rs. 1,00,000 & net cash inflows for year 1, 2, 3 is Rs. 55,000, Rs. 80,000 & Rs. 15,000 resp. Cost of capital is 10%? [PVIF @ 10% for 3 years: 0.909, 0.826 & 0.751]

Solution: Since NPV of the project is positive, the company should accept the project.

Year	Net Cash Flows	PVIF @ 10%	Discounted Cash Flows
0	(1,00,000)	1.000	(1,00,000)
1	55,000	0.909	49,995
2	80,000	0.826	66,080
3	15,000	0.751	11,265
Net Pres	ent Value	27,840	







#### **COMPOUND ANNUAL GROWTH RATE (CAGR)**

- Compounded Annual Growth Rate (CAGR) is a mean annual growth rate of an investment over a specific period of time (generally longer than one year).
- The CAGR calculate is a useful tool when determining an annual growth rate on an investment whose value has fluctuated widely from one period to the next.
- CAGR is often used to describe the growth over a period of time of some element of the business like revenue, units delivered, registered users, etc.

CAGR (t_o, t_n) = 
$$\left[ \frac{V(t_n) \frac{1}{t_n - t_o}}{V(t_o)} \right] - 1$$

where,  $t_0$  = Starting period &  $t_n$  = Ending period

CQ34: Revenues of a company for 4 years, Calculate Compound annual Growth Rate.

Year	2013	2014	2015	2016
Revenues	100	120	160	210

**Answer:**  $t_n - t_0 = 2016 - 2013 = 3$ .

**CAGR**_(0,3) of Revenues = 
$$\left[\frac{210^{\frac{1}{3}}}{100^{\frac{1}{3}}}\right] - 1 = 1.2774 - 1 = 0.2774 = 27.74\%$$

## **Space for PC Class Note:**







# TIME VALUE OF MONEY - QUESTION BANK

SN	CHAPTER 4. TIME VALUE OF MONEY	Ans				
	EXERCISE 4.1 — SIMPLE INTEREST					
Q1	The amount charged for a defined length of time for use of the principal, generally on a yearly basis is known as					
	(a) Balance (b) Rate of interest (c) Principal (d) Interest					
Q2	The principal remains constant for the whole loan period in interest  (a) Simple (b) Compound (c) Effective (d) Annuity	A				
Q3	In the formula A = P + I, A is known as  (a) Simple interest (b) Compound interest (c) Balance (d) Principal	С				
Q4	Interest computed on the principal for entire period of borrowing is called  (a) Simple Interest (b) Compound Interest (c) Balance (d) All	A				
Q5	Simple Interest on Rs. 3,500 for 3 years at 12% p.a. is  (a) Rs.1,200 (b) Rs.1,260 (c) Rs.2,260 (d) None	В				
Q6	$P = 5000 \ R = 15 \ T = 4 \ \frac{1}{2} \ using \ I = PRT/100. \ I \ will \ be \$ (a) Rs. 3,375 (b) Rs. 3,300 (c) Rs. 3,735 (d) None	A				
Q7	Find simple interest on Rs.1,025 at 7.5% p.a. for 4.5 years.  (a) Rs. 405.59 (b) Rs. 375.45 (c) Rs. 345.94 (d) Rs.354.94	С				
Q8	In what time will Rs. 85,000 amount to Rs. 1,57,675 at 4.5% p.a?  (a) 20 years  (b) 15 years  (c) 22 years  (d) 19 years	D				
Q9	P = Rs. 12,000; A= Rs. 16,500; T = 2.5 years. Interest rate will be  (a) 15% (b) 12% (c) 10% (d) None	A				
Q10	A person borrowed Rs. 4,000 & after 6 months, amount paid was Rs. 4,050. Find the rate of interest?	С				
Q11	(a) 5% (b) 25% (c) 2.5% (d) 20%  A Sum of Rs.46,875 was lent out at simple interest and at the end of 1 yr and 8 months, the total amount was Rs.50,000. Find the rate of interest?					
	(a) 4% (b) 5% (c) 4.5% (d) 6%					
Q12	A sum doubles itself in 10 years. Find interest rate?  (a) 10% (b) 12% (c) 15% (d) 20%	A				
Q13	Capital required to earn a monthly interest of Rs.800 p.m. at 5 % at SI is  (a) Rs.1,87,000 (b) Rs.40,000 (c) Rs.1,28,000 (d) Rs.1,92,000	D				
Q14	A sum of money amounts to Rs. 795 in 4 years and Rs. 850 in 5 years. Sum is  (a) Rs. 520 (b) Rs. 630 (c) Rs. 575 (d) Rs. 685	С				
Q15	A sum of money amount to Rs.6,200 in 2 years and Rs.7,400 in 3 years. The principal	A				







	and rate of interest are	
	(a) Rs.3,800, 31.57% (b) Rs.3,000, 20% (c) Rs.3,500, 15% (d) None	
Q16	Mr. Kapil deposited some amount in a bank for 7.5 years at 6% SI. Mr. Kapil received Rs. 1,01,500 at the end of the term. Compute initial deposit of Kapil.  (a) Rs. 1,00,000 (b) Rs.70,000 (c) Rs.75,000 (d) Rs.86,500	В
Q17	Rahul invested Rs. 70,000 in a bank at the rate of 6.5% p.a. simple interest rate. He received Rs. 85,925 after the end of the term. Find out the period for which sum was invested by Rahul.	В
	(a) 2.5 years (b) 3.5 years (c) 4 years (d) 3 years	
Q18	Simple interest on Rs. 1,500 for 6 years at 5 % p.a. is  (a) Rs.400 (b) Rs. 300 (c) Rs.450 (d) Rs.500	С
Q19	What will be the final value of investment for the principal value of Rs. 80,000 for 4 years @ 10% p.a. rate of interest?  (a) Rs.83,200 (b) Rs. 1,12,000 (c) Rs.82,300 (d) None	В
000		
Q20	A = Rs. 5,200; R = 5% p.a; T = 6 years. Principal will be  (a) Rs.2,000 (b) Rs.4,000 (c) Rs.3,000 (d) None	В
Q21	Sachin deposited Rs.1,00,000 in his bank for 2 years at simple interest of 6%. How much interest would he earn? How much would be the final value of deposit?  (a) Rs.6,000, Rs.1,06,000  (b) Rs.15,000, Rs.1,15,000  (c) Rs.11,600, Rs.1,11,600  (d) Rs.12,000, Rs.1,12,000	D
Q22	P = Rs.10,000 1= Rs.2,500 R = 12.5% Simple Interest. The number of years T will (a) $1^{1}/_{2}$ years (b) 2 years (c) 3 years (d) None	В
Q23	The sum required to earn a monthly interest of Rs. 1,200 at 18% p.a. SI is  (a) Rs. 50,000 (b) Rs. 60,000 (c) Rs. 80,000 (d) None	С
Q24	Rs. 3,52,000 will produce Rs. 28,600 interest in - years at 2.5% p.a. simple interest.  (a) 2 years 2 months  (b) 3 years 3 months  (c) 4 years 4 months  (d) 5 years 5 months	В
Q25	Sum of money doubles itself in 10 years. No. of years it would trebles itself is  (a) 25 years (b) 15 years (c) 20 years (d) None	С
Q26	A sum of money that will give Rs. 1, as interest per day at 10% p.a. SI is  (a) Rs. 3,800 (b) Rs. 3,000 (c) Rs. 3,650 (d) Rs. 3,500	С
Q27	Rs. 80,000 is invested to earn a monthly interest of Rs. 1,200 @ — p.a. SI.  (a) 12% (b) 14% (c) 16% (d) 18%	D
Q28	What sum of money produce Rs. 28,600 interest of 3 yrs & 3 mths at 2.5% p.a. SI? (a) Rs. 3,52,000 (b) Rs. 3,65,000 (c) Rs. 3,25,000 (d) Rs.3,56,000	A
Q29	Interest on a certain sum of money 2.5 years at 3.25 % p.a. is 390. The sum is (a) Rs. 4,800 (b) Rs. 2,100 (c) Rs. 4,700 (d) Rs. 4,900	A









	70.7			0	
Q30		•	ears at a certain rate o % it would amount to ho	•	D
	(α) Rs. 2,080	(b) Rs. 2,050	(c) Rs. 2,250	(d) Rs. 2,180	
Q31	at 1 % higher rate	it would have fetch	a certain rate for 3 yea ned Rs. 63 more. The sum	is	С
	(a) Rs. 2,400	(b) Rs. 2,200	(c) Rs. 2,100	(d) Rs. 2,480	
Q32	•	and 3.5 years resp	posited in two different pectively. If the differe		В
	(a) Rs. 1,200	(b) Rs. 1,000	(c) Rs. 1,400	(d) Rs. 1,350	
Q33	A certain principa rate of interest p.		300 in 2 years & to Rs. 3,	220 in 5 years. The	В
	(a) 6.33 %	(b) 5.55 %	(c) 2.25%	(d) 6.6 %	
Q34	Sum of money doub	oles itself in 25 year	s. No. of years it would	trebles itself is	A
	(a) 50 years.	(b) 37.5 years.	(c) 75 years.	(d) None	
Q35	Number of years a	sum takes to beco	me 4 times @ 12% SI is _	·	C
	(a) 24 years.	(b) 26 years.	(c) 25 years.	(d) None	
Q36	If the interest on years, rate of inte		chan the interest on Rs. 2	2,000 by Rs. 64 in 4	В
	, (α) 5%	(b) 4%	(c) 3.5	(d) 6 %	
		EXERCISE 4.2 -	COMPUND INTEREST		
Q37	Compute the com		n Rs. 4,000 for 1 ½ y	vears at 10% p.a.	С
	(a) Rs. 360.50	(b) Rs. 600	(c) Rs. 630.50	(d) Rs. 625	
Q38	Determine CI on R (1+3%) ¹² = 1.42576.	s. 1,000 at 6% com	pounded semi-annually fo	or 6 yrs. Given that	A
	(a) Rs. 425.76	(b) Rs. 445.26	(c) Rs. 520.40	(d) Rs. 260.20	
Q39	On what sum will th	ne compound Intere	est at 5% p.a. for 2 yrs co	ompounded annually	A
	(a) Rs. 16,000	(b) Rs. 17,000	(c) Rs. 18,000	(d) Rs. 19,000	
Q40	On what sum will the Rs. 4725.90?	ne compound Intere	est at 7% p.a. for 3 yrs co	ompounded annually	D
	(a) Rs. 22,000	(b) Rs. 26,000	(c) Rs. 24,000	(d) Rs. 21,000	
Q41	The C.I. on Rs. 4,00	00 for 6 months at 1	2% p.a. payable quarter	ly is	A
	(a) Rs. 243.60	(b) Rs. 240	(c) Rs. 243	(d) None	
Q42	Rs. 4,000 is invest done monthly, is	•	amount after two years	s if compounding is	A
	(α) Rs. 4,881.16	(b) Rs. 4,818.16	(c) Rs. 4,888.16	(d) None	
	i .				









Q43			p.a. compound interes	et payable half-yearly,	A
	then principal (P)		( ) D	( ) ) )	
	(a) Rs. 890		(c) Rs. 800	(d) None	
Q44	tind the rate, if compounded half		unt to Rs. 2,31,525 in 19	/2 year interest being	D
	(a) 15%	(b) 11%	(c) 8%	(d) 10%	
Q45	•	yields CI of Rs. : rate % is	200 & Rs. 220 at the	end of 1st & 2nd year	С
	(a) 20	(b) 15	(c) 10	(d) 5	
Q46	CI on half-yearly 3 rd year 9% p.a.	rates on Rs. 10,00	00, the rate for $1^{\rm st}$ & $2^{\rm nd}$	years being 6% & for	A
	(a) Rs. 2,290	(b) Rs. 2,287	(c) Rs. 2,285	(d) Rs. 2,283	
Q47	A sum of money pyears. Find interes		o Rs. 2,205 in 2 years a	nd to Rs. 2,315.25 in 3	В
	(a) 10%	(b) 5 %	(c) 8 %	(d) 6 %	
Q48	Find the least no. be more than do	•	s in which the sum of mo	ney put @ 20 % CI will	D
	(a) 1 year	(b) 2 years	(c) 3 years	(d) 4 years	
Q49	In how many year	rs will a sum of mor	ney double at 5% p.a. cc	ompound interest?	В
	(a) 15 years 3 mo		(b) 14 years 2 mont		
	(c) 14 years 3 mo		(d) 15 years 2 mont	hs	
Q50		·	.α C.I, P will be	. h	D
	(a) Rs.4,000		(c) Rs.4,500	(d) None	
Q51	sum of money inve	ested for 2 years 5	interest and compound 5% p.a. is Rs. 30. Then th	ne sum is	В
	(a) 10,000	(b) 12,000	(c) 13,000	(d) None	
Q52		ney when compound rs, the Rate of Inte	ded annually becomes Rerest is	s. 1,140 in 2 years and	С
	(a) 30%	(b) 40%	(c) 50%	(d) 60%	
Q53	For a 10-year de interest payable	•	st rate payable annual	ly is equivalent to 5%	A
	(α) 5.1%	(b) 4.9%	(c) 6.0%	(d) None	
Q54	What annual rate of interest compounded annually doubles an investment in 7 years? [Given that $2^{1/7}$ =1.104090]				
		o oo. oot oop		n that 2 ^{1/7} =1.104090]	
		(b) 11.50%		that 2 ^{1/7} =1.104090] (d) 10.26%	
Q55	years? (a) 10.41%  Rs.16,000 investe	(b) 11.50%	[Giver	(d) 10.26%	В









Q56					
	be Rs. 85? (a) 4.5 Years (b) 2.5 Years (c) 2 Years (d) 5 Years				
Q57	In what time will a sum of Rs. 800 at 5% p.a. compound interest amount to Rs. 882?	D			
	(a) 1 years (b) 5 years (c) 4 years (d) 2 years				
Q58	Saina deposited Rs.1,00,000 in a nationalized bank for three years. If the rate of interest is 7% p.a. Calculate the interest that bank has to pay Saina after 3 yrs if interest is compounded annually. Also calculate amount at the end of third year.				
	(a) Rs.1,23,000 (b) Rs.1,22,504.30 (c) Rs.1,20,550.20 (d) Rs.1,35,256				
Q59	In what time will Rs. 8,000 amounts to Rs. 8820 at 5% p.a. interest compounded half-yearly?				
	(a) 3 years (b) 2 years 5 months (c) 2.5 years (d) 2 Years				
Q60	At what rate CI does a sum of money becomes four fold in 2 years?	В			
	(a) 150 % (b) 100 % (c) 200 % (d) 400 %				
Q61	What interest rate compounded annually which doubles an investment in 2 years? (a) 46.04125 % (b) 14.142135 % (c) 41.42135 % (d) None	С			
Q62	The time by which a sum of money would treble itself at 8 % p.a CI is  (a) 14.28 years (b) 14 years (c) 12 years (d) 15 years	A			
Q63	In how many years a sum of money treble at 5% p.a. CI payable on half-yearly?  (a) 18 years 7 months  (b) 19 years 6 months  (c) 20 years 8 months  (d) 22 years 3 months	D			
Q64	In how many years a sum will double at 10% p.a. compound interest?  (a) 8 years 3 months  (b) 7 years 3 months  (c) 7 years 6 months  (d) 8 years 2 months	В			
Q65	Difference b/w SI & CI on a sum in 2 years at 15 % p.a. is Rs. 144. The sum is  (a) Rs. 6,000 (b) Rs. 6,200 (c) Rs. 6,300 (d) Rs. 6,400	D			
Q66	CI on a certain sum for 2 years is Rs. 41 & SI is Rs. 40. Find interest rate.  (a) 4%  (b) 5%  (c) 6%  (d) 8%	В			
Q67	CI on a certain sum for 2 years is Rs. 41.60 & SI is Rs. 40. Find the sum.  (a) Rs. 500 (b) Rs. 400 (c) Rs. 250 (d) Rs. 300	С			
Q68	Difference between the S.I. & the C.I. on Rs.2,400 for 2 years at 5% p.a is  (a) Rs.5 (b) Rs.10 (c) Rs.16 (d) None	D			
Q69	Difference b/w CI & SI on a sum for 2 years at 6% p.a. is Rs. 13.50. Find the sum? (a) Rs.3,750 (b) Rs.2,750 (c) Rs.4,750 (d) None	A			
Q70	Difference b/w CI & SI on a sum for 2 years at 4% p.a. is Rs. 1. The sum is  (a) Rs. 625 (b) Rs. 630 (c) Rs. 640 (d) Rs. 635	A			









Q71	Difference b/w SI & C	CI on certain sum f	or 3 years at 5% pa is Rs.	76.25. Find sum.	D
	(a) Rs. 5,000 (b	o) Rs. 8,000	(c) Rs. 9,000	(d) Rs. 10,000	
Q72	Difference b/w SI and	d CI on Rs. 1,200 fo	or 4 years at 10% p.a. is _	·	A
	(a) Rs. 77 (b	o) Rs. 480	(c) Rs. 80	(d) Rs. 557	
Q73	CI on a certain sum for the same time.	or 2 years at 10 %	p.a. is Rs. 420. Find SI at	the same rate &	A
	(α) Rs. 400 (b	o) Rs. 350	(c) Rs. 380	(d) Rs. 375	
Q74	Difference b/w CI & S	SI at 5% pa for 4 y	/ears on 20,000 is		D
	(a) Rs. 250 (b	o) Rs. 277	(c) Rs. 300	(d) Rs. 310.	
Q75			years if interest is comp (c) 10.38%	ounded annually. (d) 9%	С
Q76	The principal goes on (a) simple interest (C) effective interest		ear in  (b) compound interest  (d) All of the above		В
Q77	P = Rs. 1,000; R = 5% γ (α) Rs.1,215, Rs.215 (c) Rs.2,115, Rs.115	p.a; n = 4. Amount	and Cl are (b) Rs.1,125, Rs.125 (d) None		A
Q78	years at annual comp		of interest of 10%. The ai	mount after two	В
Q79	Rs.100 will become af		6 p.a. Calculated CI annuc		C
Q80		ut 5% CI for 2 year o) Rs.350	es. The interest for the second (c) Rs.450	cond year is (d) Rs.393.75	D
Q81		For $1^{1}/_{2}$ years at 10 a) Rs.2,522	% p.a. payable half-yearly (c) Rs.2,500	/ is (d) None	В
Q82	years if compounding		nterest of 10% p.a. The a y, is (c) Rs.2341	mount after two (d) None	A
Q83		•	when interest is payable (c) Rs.4,152.51	quarterly is (d) None	С
Q84	years if compounding	is done quarterly	interest of 10% p.a. The a , is (c) Rs.3,655.20	mount after two (d) None	С
Q85	C.I on Rs.1,000 for 10		he interest being paid quo (c) Rs.489		C









Q86	Rs. 2,000 is invested at 10% p.a. What is the amount after 2 yrs if compounding is done (a) Annually (b) Semi-Annually (c) Quarterly (d) Monthly.				
	· ·	•		444	
			(b) 2,420; 2,431; 2,437; 2		
			(d) 2,420; 2,431; 2,468; 2		_
Q87	A sum of money at be 9 times itself?	CI amounts to thric	e itself in 3 years. In how	many years will it	D
	(a) 18	(b) 12	(c) 9	(d) 6	
Q88	A sum of money tritself. (C.I)		ears. The number of years	s it would double	D
	(a) 13.2 years	(b) 15.2 years	(c) 10 years	(d) 12.6 years	
Q89	beginning of that population be 40%	year. The number is	every year by 2% of the i	cotal increase of	O
	(a) + years	(b) 10 years	(c) 17 years (approx)	(d) None	
Q90		n which the populo	o 1,000 are 39.4 and 19.4 ation will be doubled assu	' '	A
	(a) 35 yrs	(b) 33 yrs	(c) 25 yrs	(d) None	
		EFFECTIVE R	ATE OF INTEREST		
Q91	Effective rate of i	nterest correspond	ling to a nominal rate 3%	p.a. payable half	O
	(a) 3.2% p.a.	(b) 3.25% p.α	(c) 3.0225 % p.a	(d) None	
Q92	Effective rate of ir	nterest for 3% p.a.	compounded monthly is		С
	[Given that (1+0.00	$(25)^{12} = 1.0304$			
	(a) 3%	(b) 3.02%	(c) 3.04%	(d) 3.01%	
Q93	Effective rate of in quarterly is	•	ng to a nominal rate of 7%	p.a. compounded	С
	(a) 7%	(b) 7.5%	(c) 7.19%	(d) None	
Q94	Find the effective	rate of interest if I	= Rs.1,800, P = 18,000, t =	1 year	A
	(a) 10%	(b) 9%	(c) 18%	(d) None	
Q95	•		ctive rate of interest if ar at the rate of 8% p.a. c		В
	(a) Rs. 1426, 7.56%		(b) Rs. 1632, 8.16%		
	(c) Rs. 1326, 7.35%		(d) Rs. 1744, 8.55%		
Q96			9% p.a. compounded mon- cided to find effective rat	,	С
	(a) 9%	(b) 9.25%	(c) 9.38%	(d) None	









Q97	In how many years will a sum of Rs. 800 amounts to Rs. 926.10 at 10% interest compounded half yearly?	С				
	(a) 3 years (b) 2 years (c) 3/2 years (d) 4 years					
Q98	Find the sum which invested at 4% p.a. compounded twice a year becomes Rs. 78,030 $@$ end of 1styear.	В				
	(a) Rs. 73,000 (b) Rs. 75,000 (c) Rs. 74,225 (d) Rs. 76,000					
	EXERCISE 4.3: PRESENT VALUE & FUTURE VALUE OF ANNUITY					
Q99	Present value of Rs. 1 to be received after 2 yrs compounded annually at 10% is $-\cdot$	В				
	(a) Rs. 0.9090 (b) Rs. 0.8264 (c) Rs. 0.7513 (d) Rs. 0.6830					
Q100	Present value of annuity of Rs. 5,000 p.a. for 12 yrs at 4% p.a. C.I. annually is	В				
	(a) Rs. 46,000 (b) Rs. 46,925 (c) Rs. 15,000 (d) None					
Q101	The present value of an annuity of Rs. 3,000 for 15 years at 4.5% p.a CI. is  (a) Rs. 23,809.41 (b) Rs. 32,219.41 (c) Rs. 32,912.41 (d) None	В				
Q102	The present value of an annuity of Rs. 80 p.a for 20 years at 5% p.a is  (a) Rs. 997 (appx) (b) Rs. 900 (c) Rs. 1,000 (d) None	A				
Q103	A person invested money in bank paying 6% Compounded semi annually. If the person expects to receive Rs. 8000 in 6 years, what is present value of investment?	1				
	(a) Rs. 5,000 (b) Rs. 4,611.03 (c) Rs. 5,611.03 (d) None					
Q104	Find PV of ordinary annuity of 8 Quarterly payments of Rs. 500, interest = 8% p.a. compound quarterly.	C				
	(a) Rs. 4,292.50 (b) Rs. 4,725.00 (c) Rs. 3,662.50 (d) Rs.3,266.50					
Q105	Company borrows Rs. 10,000 on condition to repay it with CI at 5% p.a. by annual installments of Rs.1,000 each. Number of years by which debt will be clear is					
	(a) 14.2 years (b) 10 years (c) 12 years (d) None					
Q106	each installation to cover the principal and at 4% p.a. CI is	C				
	(a) Rs. 587.87 (b) Rs. 587 (c) Rs. 578.87 (d) None					
Q107	Raja aged 40 wished his wife Rani to have Rs. 40 Lacs at his death. If his expectation of life is another 30 years & he starts making equal annual investments commencing now at 3% compound interest p.a. how much should he invest annually?					
	(a) Rs. 82,077 (b) Rs. 83,450 (c) Rs. 84,419 (d) Rs. 84,080					
Q108	3,00,000 at the end of 10 years if interest is compounded annually at 10%?	В				
	(a) Rs. 18,222 (b) Rs. 18,823 (c) Rs. 18,725 (d) Rs. 18,955					









Q109	invest in CDs of a leading Nationalized Bank at 8% p.a. What money is required to				
	be invested now?				
	(a) Rs. 15,20,912 (b) Rs. 20,26,300				
	(c) Rs. 19,74,040 (d) Rs. 20,63,000				
Q110	The present value of Rs.10,000 due in 2 years at 5% p.a. compound interest when the interest is paid on yearly basis is	A			
	(a) Rs.9,070 (b) Rs.9,059 (c) Rs.9,061 (d) Rs.9,060				
Q111	Find the present value of Rs.10,000 to be required after 5 years if the interest rate be 9%. Given that $(1.09)^5 = 1.5386$ .	A			
	(a) Rs.6,499.42 (b) Rs.7,459.33 (c) Rs.6,544.50 (d) Rs.6,994.62				
Q112	A = Rs.1,200 N = 12 yrs I =0.08 V = using the formula $v = A/I \{1-(1+i)^{-n}\}$	D			
	(α) Rs.3,039 (b) Rs.3,990 (c) Rs.9,930 (d) None				
Q113	The present value of an annuity of Rs.3,000 for 15 years at 4.5% p.a Cl is  (a) Rs. 23,809.41 (b) Rs. 32,809.41 (c) Rs. 32,908.41 (d) None	В			
Q114	Suppose your mom decides to gift you Rs.10,000 every year starting form today for next 5 years. You deposit this amount in a bank as and when you receive and get 10% p.a. interest rate compounded annually. What is present value of this annuity?	С			
	(a) Rs.40,702.70 (b) Rs.42,533.21				
	(c) Rs.41,698.70 (d) Rs.43,883.33				
Q115	The amount received on an annuity of Rs. 150 for 12 years at 3.5% p.a CI is	A			
	(a) Rs. 2,190.28 (b) Rs. 1,290.28 (c) Rs. 2,180.28 (d) None				
Q116	Amount of an annuity after 25 years at 5 % C.I. is Rs. 50,000, the annuity will be (a) Rs. 1,406.90 (b) Rs. 1,046.90 (c) Rs. 1,146.90 (d) None	В			
Q117	Given annuity of Rs. 100 amounts to Rs. 3,137.12 at 4.5% p.a. C.I. No. of years =	В			
	(a) 25 years (appr) (b) 20 years (appr) (c) 22 years (d) None				
Q118	You invest Rs. 3,000 in a 2-year investment that pays you 12% pa. Calculate FV.	A			
	(α) Rs. 3,763.20 (b) Rs. 3,360.00				
	(c) Rs. 3,565.60 (d) Rs. 3,663.55				
Q119	Z invests Rs. 10,000 every year starting from today for next 10 years. Suppose interest rate is 8% p.a. compounded annually. Calculate FV. [(1+.08) ¹⁰ =2.15892500]	В			
	(a) Rs. 1,50,580 (b) Rs. 1,56,454 (c) Rs. 1,58,652 (d) Rs. 1,56,902				
Q120	A person invests Rs. 500 at the end of each year with a bank which pays interest at 10% p.a. annually. The amount standing to his credit one year after he has made his yearly investment for the 12 th time is	A			
	(a) Rs. 11,761.35 (b) Rs. 10,000 (c) Rs. 12,000 (d) None				









Q121	December of De 10,000 due in 2 years at 5% as a company distance tie	A
GIZI	Present value of Rs. 10,000 due in 2 years at 5% p.a. compound interest is  (a) Rs. 9,070 (b) Rs. 9,059 (c) Rs. 9,061 (d) Rs. 9,060	^
Q122	Find PV of Rs. 500 due after 10 years (R= 10%) is compounded half yearly	
	(a) Rs. 188.40 (b) Rs. 193.94 (c) Rs. 138.94 (d) Rs. 50.00	
Q123	Alibaba borrows Rs. 6 Laths Housing Loan at 6% repayable in 20 annua Installments commencing at the end of the first year. How much annual payment is necessary?	
	(a) Rs. 52,420 (b) Rs. 52,419 (c) Rs. 52,310 (d) Rs. 52,320	
Q124	Johnson left Rs. 1,00,000 with the direction that it should be divided in such a way that his minor sons Tom Dick and Harry aged 9, 12 and 15 years should each received equally after attaining the age 25 years. The rate of interest being 3.5% how much each son will receive after getting 25 years old?	۱
	(a) Rs. 50,000 (b) Rs. 51,994 (c) Rs. 52,000 (d) None	
Q125	Find the amount received on annuity if payment of Rs. 7,000 is made annually for 7 years at 6% p.a.	D D
	(a) Rs. 48,756 (b) Rs. 50,857 (c) Rs. 50,363 (d) Rs. 58,756	
Q126	Rs. 200 is invested at the end of each month in an account paying interest 6%p.c compounded monthly. FV of this annuity after 10 th payment? [(1.005) ¹⁰ = 1.0511]  (a) Rs. 210.22  (b) Rs. 2,050  (c) Rs. 2,025  (d) Rs. 2,044	ı D
	EXERCISE 4.4: SINKING FUND	
Q127	EXERCISE 4.4: SINKING FUND  A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can earn interest at 4% p.a?	
Q127	A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of years. Now much provision needs to be made out of profits each year if sinking	
Q127	A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can earn interest at 4% p.a?  (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035	S C
	A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can earn interest at 4% p.a?  (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035  A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a?  (a) Rs. 16,500 (b) Rs. 16,000 (c) Rs. 16,050 (d) Rs. 16,005	S C
Q128	A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can earn interest at 4% p.a?  (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035  A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a?  (a) Rs. 16,500 (b) Rs. 16,000 (c) Rs. 16,050 (d) Rs. 16,005  A person bought a house paying Rs. 20,000 cash &Rs. 4000 at the end of each year for 25 yrs @ 5% p.a C.I. The cash price is  (a) Rs. 75,000 (b) Rs. 76,000 (c) Rs. 76,392 (d) None  A machine depreciates at 10% of its value at the beginning of a year. The cost and scrap value realized at the time of sale being Rs. 23,240 and Rs. 9,000 respectively for how many years the machine was put to use?	G C C C C
Q128 Q129	A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can earn interest at 4% p.a?  (a) Rs. 12,006 (b) Rs. 12,040 (c) Rs. 12,039 (d) Rs. 12,035  A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of 25,000. What amount should set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a?  (a) Rs. 16,500 (b) Rs. 16,000 (c) Rs. 16,050 (d) Rs. 16,005  A person bought a house paying Rs. 20,000 cash &Rs. 4000 at the end of each year for 25 yrs @ 5% p.a C.I. The cash price is  (a) Rs. 75,000 (b) Rs. 76,000 (c) Rs. 76,392 (d) None  A machine depreciates at 10% of its value at the beginning of a year. The cost and scrap value realized at the time of sale being Rs. 23,240 and Rs. 9,000	G C C C C C C C C C C C C C C C C C C C









	(a) 4.5 years	(b) 5.4 years	(c) 5 years	(d) None	
Q132			stimated to be 10 yea o value at the end of	rs cost Rs. 10,000. Rate its life is	A
	(a) Rs. 3,483	(b) Rs. 4,383	(c) Rs. 3,400	(d) None	
Q133	the rest of his life. yearly. What is equ	His life expectation ivalent lump sum p	on is 13 yrs. Interest@ pension?	If yearly installment for 4% p.a is payable half	C
	(a) Rs. 1,45,000		(c) Rs. 1,44,800	(d) Rs. 1,44,700	
Q134	&agreed to pay the 20 equal half year	e balance with int ly installments. If	erest at 12% p.a. cor	Rs. 2 lace on purchase mpounded half yearly in d after 6 months from (d) None	A
Q135				Il contribute Rs. 12,000	С
4.133		irs. Assume borro	wing cost is 10% p.a	. compounded annually.	
	(α)Yes, Rs. 55,378.6		(b)No, Rs. 48,800.0		
	(c) No, Rs. 45,489.4	8	(d)Yes, Rs. 52,366.	.71	
Q136	•			iscount yield of 6% will effective annual return.	C
	(a) Rs. 99.05, 6.00%	, ,	(b) Rs. 99.00, 5.29	%	
	(c) Rs. 99.26, 6.21%		(d) Rs. 99.75, 6.08	%	
Q137	interest rate of 10°	%. At what price t	•	ue bond having nominal hased now if it matures	С
	(a) Rs. 1,026.29	(b) Rs. 995.22	(c) Rs. 826.36	(d) Rs. 907.125	
Q138			be invested at 10% ( - A /I find V and V wil		С
	(a) Rs. 2,000	(b) Rs. 2,500	(c) Rs. 3,000	(d) None	
		PRACTICE	QUESTION BANK		
Q139	•		nts to Rs.1,000 in 4 y every year are	ears and Rs.1,400 in 12 	В
	(a) 600,133 $\frac{1}{3}$	(b) 800,50	(c) 750,150	(d) 850,75	
Q140	A sum of money am semiannually, sum is		for one year at the r	rate of 4% compounded	В
	(a) 7,000	(b) 7,500	(c) 7,750	(d) 8,000	
Q141				C.I. at 7% p.a. in annual bt to paid off is	D









	(a) 10 years	(b) 12 years	(c) 11 years	(d) 13 years	
Q142			nnual rate of interest rn is 16%, what is the	of 14%. Interest is paid value of the bond?	D
	(a) Rs. 925	(b) Rs. 952	(c) Rs. 950	(d) Rs. 945	
Q143	A sum of money w will be tripled itse		f in 8 years at S.I. In	how many years the sum	U
	(a) 20 years	(b) 12 years	(c) 16 years	(d) None	
Q144	earned after 2 ye interest are 6% p sum will be	ears, 3 years and o.a., 8% p.a., & 6%	6 years may be equa p.a. respectively. Th	corresponding interest al at the rate of simple nen the smallest part of	В
	(a) Rs. 4,000	(b) Rs. 8,000	(c) Rs. 10,000	(d) Rs. 12,000	
Q145		•	d at S.I for 3 years. I een 882/- more, then (c) Rs. 4,200	f it has invested at rate the sum is  (d) Rs. 2,800	C
Q146	year. When its va	lue would reduce b	y 90%?	its opening value each	В
	(a) 14 years 6 mor		(b) 14 years 2 moi	nths	
	(c) 14 years 5 mor		(d) None		
Q147			s estimated to be 5 ye p value at the end of	ears cost Rs. 5,000. Rate its life is	A
	(a) Rs.2,952.45	(b) Rs.2,500.00	(c) Rs.3,000.00	(d) Rs.2,559.50	
Q148		Rs. 4,90,740 is de lue would reduce t	•	its opening value each	В
	(a) 4 years 6 mon	ths	(b) 5 years 7 mon	ths (approx.)	
	(c) 4 years 5 mont	ths	(d) None		
Q149	ABC Ltd wants to lease out an asset costing Rs.3,60,000 for a 5 year period. It has fixed rental of Rs.1,05,000 p.a. payable annually starting from the end of first year. Suppose rate of interest is 14% p.a. compounded annually on which money can be invested by the company. Is this agreement favourable to the company?  (a) Favourable, Rs.3,20,022.22  (b) Unfavourable, Rs.2,89,725.22  (c) Unfavourable, Rs.2,99,376.78  (d) Favourable, Rs.3,60,473,40				
Q150	A machine with u	seful life of 7 vear	es cost Rs.10.000 whil	e another machine with	В
	useful life of 5 y Rs.1,900 annually Determine the procompounded p.a.	rs costs Rs.8,000 and the second or	. The 1 st machine same ne saves labourexpens of action. Assume cos ost savings]	ves labour expenses of ses of Rs.2,200 annually. st of borrowing as 10%	
	(a) No, Rs.750.36		(b) Yes, Rs.8,339.		
	(c) No, Rs.9,250.22	_	(d) Yes, Rs.5,366.0		







# **CHAPTER 5A. PERMUTATION**

#### INTRODUCTION OF PERMUTATION & COMBINATION

#### **PERMUTATION:**

- Permutation means arrangement of the things (objects) under consideration.
- In permutation, order of the things is important.
- In Permutation (a, b) & b, a) are two different arrangements.

#### **COMBINATION:**

- Combination means selection of the things under consideration.
- In combination, order of the things is not important.
- In combination (a, b) & b, a) are same selection.

#### **FUNDAMENTAL PRINCIPLES OF COUNTING**

### A. Multiplication Rule [AND]

[When two tasks are dependent on each other]

If certain thing may done in 'm' different ways & after finishing it, a second thing can be done in 'n' different ways, total no. of ways of doing both things one after the another =  $(m \times n)$  ways.

PC Note: Used when the statements are connected by "AND".

CQ1: If one can go to school by 5 different buses and then come back by 4 different buses then total number of ways of going to and coming back from school [Ans:  $5 \times 4 = 20.1$ ]

CQ2: There are 4 routes for going from Dumdum to Sealdah & 5 routes for going from Sealdah to Chandni. In how many different ways can you go from Dumdum to Chandni Via Sealdah?

(a) 9

(b) 1

(c) 20

(d) None

#### B. Addition Rule [OR]

[When two tasks are independent]

It there are two alternative jobs which can be done in 'm' ways & in 'n' ways respectively then either of two jobs can be done in (m + n) ways.

PC Note: Used when the statements are connected by "OR"

CQ3: If one wants to go school by bus where there are 5 buses or by auto where there are 4 autos, then total number of ways of going school [Ans: 5 + 4 = 9.]

CQ4: A certain Job requires drawing or printing. There are 3 painter & 4 printing machines. The number of ways the job can be completed is:

(a) 12

(b) 1

(c) 10

(d) 2





#### THE FACTORIAL

- Continuous Product of all integers from 1 to 'n' BOTH Inclusive.
- The factorial 'n' is denoted as n! or n.
- $\mathbf{n}! = 1.2.3.4.5.6....(n-2) (n-1)n.$
- 0! = 1.

PC Note: While solving the question, all the factorials in the question shall be reduced upto the lowest factorial given in the question.

O!	1!	2!	3!	4!	5!	6!	7!	8!	9!	10!
		2 × 1	3 × 2!	4 × 3!	5 × 4!	6 × 5!	7 × 6!	8 × 7!	9 × 8!	10 × 9!
1	1	2	6	24	120	720	5040	40320	362880	3828800

**CQ5:** Find 4! & 6!

**Ans:** (i) 
$$4! = 1 \times 2 \times 3 \times 4 = 24$$
;

(ii) 
$$6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6 = 720$$

**CQ6:** Find (i) 
$$\frac{9!}{6!} = \frac{9.8.7.6!}{6!} = 9.8.7 = 504$$
; (ii)  $\frac{n!}{(n-1)!} = \frac{n(n-1)!}{(n-1)!} = n$ ; (iii)  $\frac{11!}{7!} = 11.10.9.8 = 7920$ .

(ii) 
$$\frac{n!}{(n-1)!} = \frac{n(n-1)!}{(n-1)!} = n$$
;

(iii) 
$$\frac{11!}{7!}$$
 = 11.10.9.8 = 7920.

**CQ7:** Find n if 
$$(n+1)! = 30(n-1)!$$

[Answer: 
$$n = 5$$
]

**CQ8:** Find x if 
$$\frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!}$$

**Ans:** Reducing all factorials to the lowest factorial in the question, we have  $\frac{1}{9!} + \frac{1}{10.9!} = \frac{x}{11.10.9!}$ 

Cancelling 
$$\frac{1}{9!}$$
 from both sides, we have  $1 + \frac{1}{10} = \frac{x}{11.10}$ ;  $\frac{11}{10} = \frac{x}{11.10}$ ;

$$\frac{11}{10} = \frac{x}{11.10}$$

Cancelling 10 from both sides, we have 
$$11 = \frac{x}{11}$$
,  $x = 11.11 = 121$ .

## **PERMUTATIONS**

- **Definition:** The number of ways of arranging all or some of the given things out of given things is called permutations.
- The order in which person (objects) are arranged is important.
- No. of Permutations of 'r' different object out of 'n' different object =  $\frac{nP_r}{(n-r)!}$  [O  $\leq$  r  $\leq$  n]

**CQ9:** Calculate ⁵P₃; ¹⁰P₂; ¹¹P_{5.}

**Solution:** ⁵P₃ means out of 5 people (objects), we have to select any 3 people (objects).







$${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5.4.3.2!}{2!} = 5 \times 4 \times 3 = 60;$$

$${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5.4.3.2!}{2!} = 5 \times 4 \times 3 = 60;$$
  ${}^{10}P_{2} = \frac{10!}{(10-2)!} = \frac{10!}{8!} = \frac{10.9.8!}{8!} = 10 \times 9 = 90,$ 

$$^{11}P_5 = \frac{11!}{(11-5)!} = \frac{11.10.9.8.7.6!}{6!} = 11 \times 10 \times 9 \times 8 \times 7 = 55440.$$

**CQ10:** If  $^{n}P4 = 5040$ , then the value of 'n' is ____

- (a) 8
- (b) 9
- (c) 10
- (d) 6

**CQ11:** If  ${}^{n}P_{3}$ :  ${}^{n}P_{2} = 3$ :1, then n is equal to _____.

- $(\alpha)$  7
- (b) 4
- (c) 5
- (d) None of these

**CQ12:** If  $^{x+y}P_2 = 90$  and  $^{x-y}P_2 = 30$  then _____.

- $(\alpha) x = 4y$
- (b) x = 2
- (c) x = y
- (d) 4x = y

**CQ13:** If  ${}^{56}P_{r+6}$ :  ${}^{51}P_{r+3} = 30800$ : 1, find 'r'.

- (a) 31
- (b) 41 (c) 51
- (d) 21

CQ14: How many 3 letter words can be formed using the letters of the words (a) SQUARE & (b) **HEXAGON?** 

Ans: Since the word 'SQUARE' consists of 6 different letters, the number of permutations of choosing 3 letters out of six equals  ${}^6P_3 = 6 \times 5 \times 4 = 120$ .

Since 'HEXAGON' contains 7 different letters, number of permutations is  ${}^{7}P_{3} = 7 \times 6 \times 5 = 210$ .

CQ15: There are 5 guests in a party & only 3 chairs are there. In how many ways can the guests be seated?

Ans: There are 3 chairs & 5 guests. It is obvious that 2 guest will not occupy same chair.

1st Chair → can be occupied by any 1 of the 5 guests = 5 ways &

 $2^{nd}$  Chair  $\rightarrow$  can be occupied by any 1 of the remaining 4 guests = 4 ways &

 $3^{rd}$  chair  $\rightarrow$  can be occupied by any 1 of the remaining 3 guests = 3 ways.

Total number of ways =  $5 \times 4 \times 3 = 60$  ways.

Chair 1	Chair 2	Chair 3
5 Guests (ways)	4 Guests (ways)	3 Guests (ways)

CQ16: In how many different ways can 3 students be associated with 4 CAs, assuming that each chartered accountant can take at most one student?

**Ans:** 1st student can be associated with any of the 4 CAs = 4 ways;

2nd student can be associated with any of the remaining 3 CAs = 3 ways;

 $3^{rd}$  student can be associated with any of the remaining 2 CAs = 2 ways; [Ans =  $4 \times 3 \times 2 = 24$ ]

Alternate Method: Number of permutations of choosing 3 persons out of 4.

Hence, answer is  ${}^4P_3 = 4 \times 3 \times 2 = 24$ .





**CQ17:** When Dr. Ram arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only one patient at a time, find the number of ways, he can schedule his patients (a) if they all want their turn, and (b) if 3 leave in disgust before Dr. Ram gets around to seeing them.

**Ans:** (a) There are 12 patients and all 12 wait to the see doctor. Therefore number of ways = 12! Ways.

(b) There are 12-3 = 9 patients. They can be seen  $^{12}P_9 = 79,833,600$  ways.

CQ18: How many 4 digit numbers can be formed from 1, 2, 3, 4, 5. [Repetition not allowed]

**Ans:**  $5 \times 4 \times 3 \times 2 = 120$  ways.

Ten thousand place Thousand place		Tens Place	Unit Place	
Can be filled in 5	Can be filled in 4	Can be filled in 3	Can be filled in 2 ways	
ways	ways	ways		

**CQ19:** How many 4 digits numbers can be formed by using 1, 2, 3,4,5,6,7,8,9, no digit being repeated in any number?

**Ans:** We have 9 digits &we have to find the number of permutations of these taken 4 at a time, which is  ${}^{9}P_{4}$ . =3024 ways.

#### CONCEPT 1: PERMUTATION OF 'n' THINGS TAKEN ALL AT A TIME

Number of permutations of n different things taken all n things at a time = n!

Here r = n, Thus,  ${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$ .

CQ20: In how many different ways can five persons stand in a line for a group photograph?

Ans: Here we know that the order is important. Hence, this is the case of number of permutations of five things taken all at a time. Thus 5! = 120 ways.

#### TABULAR SUMMARY OF DIGITS

Available	Taken at a time	All Possible Arrangements	No. of ways	Formula
1, 2, 3	3 digits 123, 132, 213, 231, 312, 321. 6 ways		³p₃	
1, 2, 3	2 digits	25, 27, 52, 72, 75	6 ways	³ p ₂
1, 2, 3	1 digit	2, 5, 7	3 ways	³p₁





## CONCEPT 2: PERMUTATION OF DIFFERENT THINGS WITH RESTRICTIONS

No. of permutations of n distinct objects taken 'r' at a time when a particular object is not included in any arrangement =  $\binom{(n-1)}{P_r}$ 

**Explanation:** If there are 'n' person & we have to select 'r' out of them. But one person is not taken. Thus, we have only (n-1) person (objects) to select 'r' person (objects).

No. of permutations of n distinct objects taken r at a time when a particular object is always included in any arrangement =  $\binom{(n-1)}{r-1}$ . [Person to be included is fix]

**Explanation:** If there are 'n' person & we have to select 'r' out of them. But one person is always taken. Thus, we have to arrange only (r-1) persons & we have only (n-1) person (objects) left since 1 person is already taken.

**CQ21:** How many 4 digits numbers can be formed by using 1,2,3,4,5,6,7,8,9 such a that the numbers will (i) begin with a specified digit

(ii) begin with a specified digit and end with a specified digit?

**Ans:** (i) No. begin with a specified digit, then to arrange 8 digits out of 3. Thus  ${}^{8}P_{8}$  = 336.

- (ii) Numbers begin with a specified digit & end with another specified digit. Then we have to find the number of permutations of 7 things taken 2 at a time, which is  ${}^{7}P_{2} = 42$  ways.
- No. of permutations of 'n' distinct objects taken 'r' at a time when a particular object is always to be included in any arrangement =  $P.^{(n-1)}P_{(r-1)}$ . [Person to be included is not fix].

**Explanation:** If there are 'n' person & we have to select 'r' out of them. But one person is always to be included which is not fix. So, we can fix any of the 'r' person. Thus, fixing a person can be done in 'r' ways. Now we are left with only (r-1) persons & we have only (n-1) person (objects) left since 1 person is already taken. Thus, we have to arrange (r-1) persons out of (n-1) persons.

■ No. of Permutations when 2 things are always together out of 'n' things = (n-1)! × 2!

**Explanation**: Suppose we have to arrange n things out of n things, A1 & A2 should always come together. Thus, we have total (n-2) thing out of which we have to arrange (n-2) things. This can be done in (n-2)! ways. The 2 thing can be arranged in 2! ways. [A1 & A2 or A2 & A1]

■ TWO THINGS ARE NEVER TOGETHER = TOTAL NUMBER OF WAYS — "ALWAYS TOGETHER" WAYS

```
= n! - (n-1)! \times 2! \Rightarrow (n-1)! (n-2)
```

**Explanation**: We will subtract the number of ways when things are always together from total number of ways. This will give us the number of ways when 2 things are never together.

**CQ22:** In how many ways 10 examination papers can be arranged so that best & worst paper never come together?

**Ans:** (i) Total number of permutations of 10 papers without any restriction is  ${}^{10}P_{10} = 10!$ 

(ii) Let us regard the worst and the best papers together as one paper.

Now we have (10 - 1) papers which can be arranged in  ${}^{9}P_{9}$  ways = 9! Ways.









Now these 2 papers (i.e best and worst papers) can be arranged internally in 2! Ways.

The number of ways the two papers are always together is  $(9! \times 2!)$ 

(iii) No. of ways that the best and worst paper never come together = Total number of permutations without restrictions - number of ways two papers are always together

 $= 10! - (9! \times 2!) = 9! [10-2] = 9! \times 8.$ 

CQ23: There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how many ways can these be placed on a shelf if the books on same subject are to be together?

Ans: Consider the books on each subject as one unit. Now there are 3 units. They can be arranged in 3! Ways.

6 Economics books can be arranged among themselves internally in 6! ways.

3 Mathematics books can be arranged internally in 3! ways.

2 books on Accountancy can be arranged internally in 2! ways.

Total number of arrangements =  $3! \times 6! \times 3! \times 2! = 51,840$ .

CQ24: How many different arrangements can be made by using all the letters of word MONDAY?

**Ans:** MONDAY has different letters. So, 6 different letters arranged in  ${}^{6}P_{6} = 6! = 720$  ways.

CQ25: In Q24, how many of these arrangement being with A?

Ans: Suppose all words begin with A. Remaining 5 places filled with remaining 5 letters ⁵P₅

CQ26: In Q24, how many of this arrangement begin with A & end with D?

**Ans:** Suppose all words begin with A & end with D. Remaining 4 Places can be filled in

 ${}^{4}P_{4}$ = 4! Ways = **24 Ways.** 

**CQ27:** In Q24, how many arrangements are there in which vowels A & O occur together?

Ans: The vowels are A & O. Let us take them as one letter, then remaining 5 letters can be arranged in  ${}^{5}P_{5}=5!=120$  ways. These two vowels can be arranged amongst themselves internally in 2! = 2 ways. So total numbers of ways = 2*120 = 240 ways.

CQ28: In Q24, how many words can be formed such that consonants occur together?

[**Ans:** 144 ways.]

**CQ29:** In Q24, how many words can be there such that the vowels A, O occupy even places?

[**Ans:** 144 ways]





## CONCEPT 3: PERMUTATION OF 'r' out of 'n' things WHEN REPETITION IS ALLOWED

If repetition is allowed, Number of ways or arranging 'r' things out of 'n' things =  $n^r$ .

CQ30: How many telephones connections may be allotted with 8 digits from the no. 0 to 9?

(a) 10⁸

(b) 10!

(c) ¹⁰C₈

(d) 10P8

## CONCEPT 4: PERMUTATION OF SIMILAR THINGS TAKEN ALL AT A TIME

The number of ways in which 'n' things can be arranged taking all at a time, when 'p' things are similar of one type, 'q' things are similar of 2nd type, 'r' things are similar of 3rd type & remaining things are different = -

CQ31: In how many ways can 17 billiard balls be arranged, if 7 of them are black, 6 red & 4 [Ans:  $\frac{17!}{7! \times 6! \times 4!}$ ] white?

**CQ32:** How many permutations can be made out of the letters of the word?

(i) MATHEMATIC

(ii) COMMERCE:

(iii) EXAMINATION?

Ans: (i) The word MATHEMATICS Contains 11 words in which, A appears 2 times: T appears 2 times: M appears 2 times and the remaining letters H, E, C, and S appear only once. Therefore required number of permutations = 11!/2!2!2!

(ii) Here M appears 2 times. E appears two times and O appears 2 times out of 8 words of COMMERCE.

Therefore required number of permutations= 8!/2!2!2! =5040.

(iii) The word EXAMINATION has 11 words, out which A appears 2 times, I appear 2 times, N appears 2 times.

Therefore required number of permutations=11! /2!*2!*2! = 4989600.

CQ33: The number of arrangements that can be made with the word 'assassination' is

(a)  $13! \div [3! \times 4! \times (2!)^2]$ 

(b)  $13! \div [3! \times 4! \times 2!]$ 

(c) 13!

(d) None

CQ34: (i) How many different words can be formed with the letters of the word BHARAT?

(ii) How many of these begin with B and End T?

(iii) In how many of these B and H are never together?

Ans: (i) 6! /2! =360.

(ii) **4! /2! =12.** 

(iii) 360 - 120 = 240.





#### **CONCEPT 5: CIRCULAR PERMUTATIONS**

- Arrangement of things along a circle is known as circular permutations.
- abod, dabo, odab, boda are different in a line but they are same in circular permutation as there is no beginning nor ending in the circle.
- Number of circular permutation of 'n' different things taken 'r' at a time =  $\frac{nPr}{r}$
- A. Clockwise & anti-clockwise are different arrangements: No. of circular permutations of n different things chosen at a time is (n-1)!

**Explanation:** In line permutation, no. of ways or arranging n things = n!. Then why do we have (n-1)! in circular permutation. The reason is simple:

Let us assume that we have 6 people and 6 chairs.

The number of ways in which 1st person can sit = 1 way only because for the 1st person, all the arrangements will be same irrespective of the chair he sit at.

2nd person can sit in 5 ways. Because for him, the arrangements won't be same for all chairs because 1 chair is already occupied. 3rd person can sit in 4 ways;

4th person can sit in 3 ways; 5th person in 2 ways & 6th persons in 1 way.

Thus answer = 5.4.3.2.1 = 5! which is equal to (6-1)!

[PC Note: Mostly used in case of "Sitting arrangement of Person" examples]

**CQ35:** How many ways can 4 persons sit at a round table?

[Ans: 3! ways]

B. Clockwise & anti-clockwise are same arrangements: No. of circular permutations of n different things chosen at a time is  $\frac{(n-1)!}{2}$ .

[PC Note: Mostly used in case of "Necklace & garlands" examples]

#### SUM OF ALL Nos FORMED OUT OF 'n' DIGITS

 $(n-1)! \times Sum of digits \times (1111....n times)$ 

CQ36: Compute the sum of 4 digits numbers which can be formed with the four digits 1, 3, 5, 7, if each digit is used only once in each arrangement.

**Ans:**  $(n-1)! \times Sum \ of \ digits \times (1111....n \ times) = (4-1)! \times (1+3+5+7) \times 1111 = 6.16.1111 = 106656.$ 

PC Note: If the digits include 'ZERO', Answer = (i) - (ii)

(ii) Solve by **ignoring 'O'** (i) Solve as per above given formula including 'O';

CQ37: Find the sum of all numbers greater than 10,000 formed by using the digits 0, 2, 4, 6, 8.

**Ans:** (i) 53,33,280 - (ii) 1,33,320. Thus, the required Sum 51,99,960.





### SOME EXAMPLES

CQ38: How many 4 digits numbers can be formed out of the digits 1,2,3,5,7,8,9, if no digit is repeated in any number? How many of these will be greater than 3000?

Ans: 7 different digits and 4 digit number is to be formed using any 4 of these digits.

This is same as the permutations of 7 different things taken 4 at a time.

Hence, the number of four-digit numbers that can be formed =  ${}^{7}P_{4}$  = 7 × 6 × 5 × 4 × = 840 ways.

Next, there is the restriction that the four-digit numbers so formed must be greater than 3,000. Thus, it will be so if the first digit-that in the thousand's position, is one of the five digits 3, 5, 7, 8, 9. Hence, the first digit can be chosen in 5 different ways; when this is done, the rest of the 3 digits are to be chosen from the rest of the 6 digits without any restriction and this can be done in  6P_3  ways. [Ans:  $5 \times ^6P_3 = 5 \times 6 \times 5 \times 4 = 5 \times 120 = 600$ .]

CQ39: Find the total number of numbers greater than 2000 that can be formed with the digits 1, 2, 3, 4, 5 no digit being repeated in any number.

Ans: 5 Digit Numbers: All the 5 digits numbers that can be formed with the given 5 digits are greater than 2000. This can be done in ⁵P₅ ways = **120 ways**.

4 Digit Number: Greater than 2000. Thus, Thousand place can have 2, 3, 4, 5 only.

Thousand Place	Hundred Place	Ten's Place	Unit place
4 ways [cannot have 1]	4 ways [can have 1 also]	3 ways	2 ways

This can be done in  $4 \times 4 \times 3 \times 2 = 96$  ways. Total Number of ways = 120 + 96 = 216 ways.

CQ40: There are 6 students of whom 2 are Indians, 2 Americans, and the remaining 2 are Russians. They have to stand in a row for a photograph so that the two Indians are together, the two Americans are together and so also the two Russians. Find the number of ways in which they can do so. [Ans: 48]

CQ41: A family of 4 brothers and 3 sisters is to be arranged for a photograph in one row. In how many ways can they be seated if (i) all the sisters sit together, (ii) no two sisters sit together?

Ans: (i)  $5! \times 3!$  ways = 720 ways.

(ii)  ${}^{5}P_{3} \times 4! = 60 \times 24 = 1440$  ways.

CQ42: 6 boys & 5 girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done.

Ans: 6! × 5!.

PERMUTATION OF DISSIMILAR THINGS (ALL DIFFERENT) UNDER RESTRICTION







Cases	Formula	If n = 8, r = 3
A particular thing is NOT INCLUDED	ⁿ⁻¹ P _r	⁷ P ₃
A particular thing is ALWAYS INCLUDED	r( ⁿ⁻¹ P _{r-1} )	3( ⁷ P ₂ )
'm' particular thing ALWAYS TOGETHER	(n - m + 1)! m!	
2 particular ALWAYS TOGETHER	(n — 1)! 2!	7! × 2!
3 particular ALWAYS TOGETHER	(n — 2)! 3!	6! × 3!
4 particular ALWAYS TOGETHER	(n — 3)! 4!	5! × 4!
'm' particular thing NEVER TOGETHER	n! — [(n — m +1)! m!]	
2 particular NEVER TOGETHER	$(n-2) \times (n-1)!$	6 × 7!
3 particular NEVER TOGETHER	$(n-3) \times (n+2) \times (n-1)!$	5 × 10 × 6!
NO TWO are together out of 'r' things & no restriction on remaining 'q' things	$q! \times {}^{(q+1)}P_r$	
Forming numbers including ZERO	$^{n}P_{r} - ^{n-1}P_{r-1}$	$^{8}P_{3} - ^{7}P_{2}$
SUM of ALL no. formed out of 'n' digits	$(n-1)! \times (Sum of all digits)$	× (111111 n times)

### PERMUTATION OF SIMILAR THINGS (2 ALIKE GROUPS) UNDER RESTRICTION

Cases	Formula	n = 8, p = 2, q = 3
'm' particular ALWAYS TOGETHER	[n - m + 1)! m!] / (p! × q!)	
2 particular ALWAYS TOGETHER	[n — 1)! 2!] / (p! × q!)	(7! × 2!) / ((2! × 3!)
3 particular ALWAYS TOGETHER	[n - 2)! 3!] / (p! × q!)	(6! × 3!) / ((2! × 3!)
4 particular ALWAYS TOGETHER	[n - 3)! 4!] / (p! × q!)	(5! × 4!) / ((2! × 3!)
'm' particular NEVER TOGETHER		
2 particular NEVER TOGETHER	$[(n-2)(n-1)!]/(p! \times q!)$	(6 × 7!) / ((2! × 3!)
2 particular NEVER TOGETHER	$[(n-3)(n+2)(n-1)!]/(p! \times q!)$	(5 × 10 × 6!) / ((2! × 3!)







### PERMUTATION OF DISSIMILAR THINGS IN A CIRCLE UNDER RESTRICTION

		1
Cases	Formula	If n = 8,
'm' particular ALWAYS TOGETHER	[(n - 1) - m + 1)! m!	
2 particular ALWAYS TOGETHER	[(n - 1) - 1)! 2!	6! × 2!
3 particular ALWAYS TOGETHER	[(n - 1) - 2)! 3!	5! × 3!
4 particular ALWAYS TOGETHER	[(n - 1) - 3)! 4!	4! × 4!
'm' particular NEVER TOGETHER		
2 particular NEVER TOGETHER	$[(n-1)-2] \times [(n-1)-1]!$	5 × 6!
2 particular NEVER TOGETHER	(n - 4) (n +1) (n - 3)!	4 × 9 × 5!
NO TWO are together out of 'r' things & no restriction on remaining 'q' things	(q — 1)! × ^q P _r	

**Space for PC Class Note:** 







# **PERMUTATION — QUESTION BANK**

SN		CHAPTER	5A. PERMUTATION		Ans
	FACTORIAL &	FUNDAMENTAL R	CULE OF COUNTING & "F	P, FORMULA	
Q1	Find n if ${}^{n}P_{3} = 60$				В
	(a) 4	(b) 5	(c) 6	(d) 7	
Q2	Find the value of	n if (n+1)! = 42 (n-1)!			A
	(a) 6	(b) -7	(c) 7	(d) -6	
QЗ	⁶ P _r = 360 then fin	dr?			A
	(a) 4	(b) 5	(c) 6	(d) None	
Q4	If ${}^{n}P_{4} = (20) {}^{n}P_{2}$ th	en the value of n is .	·		C
	(a) 5	(b) 6	(c) 7	(d) 8	
Q5	If ${}^{7}P_{n} \div {}^{7}P_{n-3} = 60$	the value of n is			C
	(α) 8	(b) 4	(c) 5	(d) 2	
Q6	If ${}^5P_r = 60$ , then t	he value of 'r' is			A
	(a) 3	(b) 2	(c) 4	(d) None	
Q7	If ${}^{11}P_r = {}^{12}P_{r-1}$ , then the value of 'r' is				
	(a) 6	(b) 7	(c) 9	(d) 8	
Q8			alcutta & Delhi. The number lhi & return by a different	•	В
	(a) 99		(c) 80	(d) None	
Q9	$\frac{0! \times 5!}{2!} = $				A
	= -	(b) 0	(c) 120	(d) None	
Q10	In ⁿ P _r , n is always		(0) 120	(4) 110110	С
Q IO			(c) A positive integer	(d) None	
Q11	In ⁿ P _r , the restric	ction is .	-		В
		 (b) n ≥ r	(c) n ≤ r	(d) None	
Q12	$^{n}P_{r} \div {}^{n-1}P_{r-1}$ is	·			A
	(a) n	(b) n!	(c) (n-1)!	(d) ⁿ C _n	
Q13	In ${}^{n}P_{r} = n.(n-1).(n$	-2)(n - r -1), ı	number of factor is		D
	(a) n	(b) r- 1	(c) n- r	(d) r	
Q14	$^{(n-1)}P_r + p.^{(n-1)}P_{(r-1)} =$				С
		$\frac{\text{(b)}  \underline{ n } / (\underline{ r }  \underline{ n-r })$	(c) ⁿ P _r	(d) None	
Q15	O! =				В
	(a) O	(b) 1	(c) ∞	(d) -1	







Q16	Compute the valu	ue of 8!			D
	· ·	(b) 3,62,880	(c) 720	(d) 40,320	
Q17	4P4 is equal to				В
	_	(b) 24	(c) O	(d) None	
Q18	The value of ¹¹ P ₉ i	s equal to			В
		(b) $\frac{11!}{2!}$	(c) $\frac{11! \times 2!}{9!}$	(d) None	
Q19	If "P4 = 5040, the	n the value of 'n' is_	·		C
	(a) 8	(b) 9	(c)10	(d) 6	
Q20	If. ${}^{n}P_{3}: {}^{n}P_{2} = 3:1$ , t	then n is equal to			C
	(a) 7	(b) 4	(c) 5	(d) None	
Q21	If ${}^{56}p_{r+6}$ : ${}^{54}p_{r+3} = 30$	800:1, find 'r'.			В
	(a) 31	(b) 41	(c) 51	(d) 21	
Q22	If (n +1)! = 20 (n -	1)!, then value of n is	•		С
	(a) 6	(b) 5	(c) 4	(d) None	
Q23	$^{m+n}P_2 = 56, ^{m-n}P_2 =$	30, then			В
	(a) $m = 6$ , $n = 2$	(b) $m = 7$ , $n = 1$	(c) $m = 4$ , $n = 4$	(d) None	
Q24	If $x+yP_2 = 90 \& x-yP_2$	2 = 30 then			В
	(a) x = 4y	(b) $x = 2$	(c) $x = \lambda$	(d) $4x = y$	
Q25	1.1! + 2. 2! + 3.3! +	4.4! +(n-1) (n-1)!	+ n.n!		В
	(a) n(n+1) (n+1)!	(b) $(n+1)! - 1$	(c) (n+1)! + 1	(d) (n+1)!	
Q26	Value of $\sum_{r=1}^{10} r$ . r $P$ .	r is			В
		(b) $^{11}P_{11}$ -1	(c) ${}^{11}P_{11}+1$	(d) None	
Q27	If $^{n+3}P_6 \div ^{n+2}P_4 = 14$	the value of n is			В
	(a) 8	(b) 4	(c) 5	(d) 2	
Q28		dni. In how many d	mdum to Sealdah & 5 rou [.] Ifferent ways can you go		С
	(a) 9	(b) 1	(c) 20	(d) None	
Q29			tation A to station B. In h returning you make a cho		C
	(a) 6	(b) 12	(c) 36	(d) 30	
Q30	In Question No.2 number of ways.	9, if you decided to	take the same route you	u may do it in —	A
	(a) 6	(b) 12	(c) 36	(d) 3	
Q31	In Question No.29	, if you decided not	take the same route you m	ay do it in number	D
	_ i		<u> </u>		

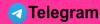






	- C				
	of ways. (a) 6	(b) 12	(c) 36	(d) 30	
Q32	If six times the	e number permutat	ions of n things taken	3 at a time are equal to chosen 3 at a time, find	D
	(a) 18	(b) 9	(c) 36	(d) 21	
Q33	of arrangemen	its of 2 boys. The nu	mber of boys in the gr	-	С
	(a) 10	(b) 8	(c) 6	(d) None	
Q34	·	des you Maruti Car ices are open to yo		rns & 5 different colours.	С
	(a) 2	(b) 7	(c) 20	(d) 10	
	BA	SIC QUESTIONS	WITH SIMPLE REST	RICTIONS	
Q35	How many diffe	erent words can be	formed from letters o	of the word 'TRIANGLE?	A
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	
Q36	Number of wor	eds that can be forr (b) 24	med by using all the let (c) 125	ters of the word 'DELHI'. (d) 130	A
Q37					
	(a) 6!	(b) 5!	(c) ⁶ P ₅	(d) 5	
Q38	How many 7 let	tter words can be f	ormed using letters of	the words "SPECIAL"?	A
	(a) 5,040	(b) 6	(c) 840	(d) 450	
Q39	How many arro	angements can be m	nade by using all the le	tters of word "Monday"?	В
	(a) 120	(b) 720	(c) 41	(d) 51	
Q40	Find how many (a) $^{10}P_5$	five letter words c (b) 10C5	an be formed out of th	ne word "LOGARITHMS". (d) None	A
Q41	•	enter a railway co s they can seat the	<u> </u>	are 5 vacant seats. The	A
	(a) 60	(b) 50	(c) 70	(d) 40	
Q42	and the second s		ay compartment havir occupy the seats is	ng six vacant seats. The	D
	(a) 25	(b) 31	(c) 32	(d) 30	
Q43		g always occurs is ₋	·	n 4 at a time in which one	В
	(a) 2,015	(b) 2,016	(c) 2,014	(d) None	
Q44		permutations of 10 g never occurs is _	_	4 at a time in which one	C
	(a) 3,020	(b) 3,025	(c) 3,024	(d) None	










	•			В
(a) 720	(b) 96	(c) 120	(d) None	
In how many w	ays it is possible to (b) $^6\mathrm{C}_6$	write the word 'ZEN' (c) ⁶ P ₀	ITH' in a dictionary? (d) None	A
How many telep 0,1,2,9?	ohones connections	may be allotted with	8 digits from the numbers	A
(a) 10 ⁸	(b) 10!	(c) ¹⁰ C ₈	(d) ¹⁰ P ₈	
Eleven student can be won?	s are participating	in a race. In how ma	any ways the first 5 prizes	В
(a) 44,550	(b) 55,440	(c) 120	(d) 90	
		nts of 7 persons in a	a row if 2 persons occupy	C
(α) 5!	(b) 6!	(c) 2! x 5!	(d) None	
the middle sea	t is			В
(a) 5!	(b) 6!	(c) 2! x 5!	(d) None	
The number of (a) 102	different ways in wh (b) 120	nich 5 girls may be a (c) 100	rranged in a row is (d) 210	В
		ge having 8 seats. In	how many ways they may	A
(α) ⁸ P ₃	(b) ⁸ C ₃	(c) ⁸ C ₅	(d) None	
	QUESTIONS	BASED ON DIGIT	S	
			can be formed out of the	A
(a) 72	(b) 27	(c) 70	(d) None	
How many num	bers between 1000	& 10000 can be form	ned with 1, 2, 9?	D
(a) 3024	(b) 60	(c) 78	(d) None	
How many nu 0,4,4,5,5,5,3?	mbers higher than	a million can be	formed with the digits	D
(a) 420	(b) 360	(c) 7!	(d) None	
How many three odd?	ee-digit numbers ar	e there, with distind	ct digits, with each digits	В
(a) 120	(b) 60	(c) 30	(d) 15	
	· -	 een 100 & 1,000 cαn	be formed with the digits	A
(a) 210	(b) 200	(c) 110	(d) None	
	arranged so the ———————————————————————————————————	arranged so that the words thus  (a) 720 (b) 96  In how many ways it is possible to (a) °P6 (b) °C6  How many telephones connections (o,1,2,9?)  (a) 108 (b) 10!  Eleven students are participating can be won?  (a) 44,550 (b) 55,440  Total number of sitting arrangement the end seats is  (a) 5! (b) 6!  Total number of sitting arrangement the middle seat is  (a) 5! (b) 6!  The number of different ways in whice the middle seat is  (a) 102 (b) 120  3 persons go into a railway carriage occupy the seats?  (a) °P3 (b) °C3  CUESTIONS  Number of 4-digit numbers greated digits 3,4,5,6 & 7 (no. digit is repeated digits 3,4,5,6,6 & 7 (no. digit is repeated digits 3,4,5,5,5,3?  (a) 420 (b) 360  How many numbers between 1000 (a) 3024 (b) 60  The number of numbers lying between 12,2,3,4,5,6,7 is	arranged so that the words thus formed begin with the control of t	In how many ways it is possible to write the word 'ZENITH' in a dictionary? (a) ${}^{\circ}P_{8}$ (b) ${}^{\circ}C_{6}$ (c) ${}^{\circ}P_{0}$ (d) None  How many telephones connections may be allotted with 8 digits from the numbers 0,1,2,9? (a) 108 (b) 101 (c) ${}^{\circ}C_{6}$ (d) ${}^{\circ}P_{0}$ Eleven students are participating in a race. In how many ways the first 5 prizes can be won? (a) 44,550 (b) 55,440 (c) 120 (d) 90  Total number of sitting arrangements of 7 persons in a row if 2 persons occupy the end seats is (a) 51 (b) 61 (c) 21 x 51 (d) None  Total number of sitting arrangements of 7 persons in a row if one person occupies the middle seat is (a) 51 (b) 61 (c) 21 x 51 (d) None  The number of different ways in which 5 girls may be arranged in a row is (a) 102 (b) 120 (c) 100 (d) 210  3 persons go into a railway carriage having 8 seats. In how many ways they may occupy the seats? (a) ${}^{\circ}P_{3}$ (b) ${}^{\circ}C_{3}$ (c) ${}^{\circ}C_{5}$ (d) None  QUESTIONS BASED ON DIGITS  Number of 4-digit numbers greater than 5,000 that can be formed out of the digits 3,4,5,6 & 7 (no. digit is repeated). (a) 72 (b) 27 (c) 70 (d) None  How many numbers between 1000 & 10000 can be formed with 1, 2, 9? (a) 3024 (b) 60 (c) 78 (d) None  How many numbers higher than a million can be formed with the digits 0,4,4,5,5,3,3? (a) 420 (b) 360 (c) 71 (d) None  How many three-digit numbers are there, with distinct digits, with each digits odd? (a) 120 (b) 60 (c) 30 (d) 15  The number of numbers lying between 100 & 1,000 can be formed with the digits 1,2,3,4,5,6,7 is









Q58	How many six 9,5,3,1,7,0?	digits numbers co	an be formed with the	e permutation of digits	A
	(a) 600	(b) 720	(c) 120	(d) None	
Q59	In terms of Qu	estion No.58, how r (b) 720	nany numbers will have (c) 120	O's in ten's palace? (d) None	C
Q60	How many 3 di	git numbers are the	ere if repetition of digi	ts is not allowed? (d) °C ₃	A
Q61	The number of without repeti	<del>-</del>	that can be formed us	sing the digits 1, 7, 6 & 9	A
	(a) 24	(b) 46	(c) 64	(d) 90	
Q62	No. of 4 digit r repeated) is _		e formed out of the fig	ures 0,1,2,3,4 (no digit is	С
	(a) 120	(b) 20	(c) 96	(d) None	
Q63	2,3,4,0,8,9 is _	·		e formed with the digits	D
	(a) 124	(b) 120	(c) 125	(d) None	
Q64	How many six repeated)?	digit numbers can	be formed out of 4,5	,6,7,8,9 (no digits being	В
	(a) 6! - 5!	(b) 6!	(c) 6! + 5!	(d) None	
Q65				by 5 formed with 0, 1, 2, each number is	C
	(a) 150	(b) 152	(c) 154	(d) None	
Q66	How many four (Without repet		be formed by using 1, 2	2 7?	A
	(a) ⁷ P ₄	(b) ⁷ P ₃	(c) ³ C ₄	(d) None	
Q67	•	digits numbers car ater than 3,400)	n be formed by using 1,	2,7?	С
	(a) 500	(b) 550	(c) 560	(d) None	
Q68		even numbers grea ut repetition is		oe formed with the digits	C
	(a) 110	(b) 112	(c) 111	(d) None	
Q69	How many 4 di 5, 7, 8, 9?	git numbers greate	er than 7,000 can be fo	rmed out of the digits 3,	C
	(a) 24	(b) 48	(c) 72	(d) 50	_
		ALWAYS TOGET	HER & NEVER TOGE	THER	
Q70	•	umber of ways car ks are not togethei	<u> </u>	d on a shelf so that two	A







	(a) (n-2) (n-1)!	(b) (n-1) n!	(c) (n-2) n!	(d) (n-2) (n-1)	
Q71			d in such a way that t f arrangements is	he best & worst papers 	С
	(a) 9.8!	(b) 10 <b>!</b>	(c) 8.9!	(d) None	
Q72		rs 5 Sanskrit, 3 Engl ie language togethe		e arranged keeping the	A
	(a) 5! × 3! × 3! × 3	! (b) 5! × 3! × 3!	(c) ⁵ P ₃	(d) None	
Q73	In how many way come together?	s can the word 'STF	RANGE' be arranged s	o that the vowels never	A
	(a) 7! - 6! X 2!	(b) 7! - 6!	(c) ³ P ₆	(d) None	
Q74	In how many wa	•	trange' be arranged	so that the vowels are	A
	(α) 6! x 2!	(b) 7!	(c) 7! ÷ 2!	(d) None	
Q75		akers A, B, C, D & e& before B is		s in which A will speak	A
	(a) 24	(b) 120	(c) 15	(d) None	
Q76	-	rent books on phys		ry, 2 different books on books on same subject	В
	(a) 5,760	(b) 34,560	(c) 120	(d) 11 <b>!</b>	
Q77	How many arrang		le out of the word DRA	UGHT, the vowels never	A
	(a) 720	(b) 360	(c) 840	(d) 670	
Q78	In how many way always next to E		of the word PENCIL be	e arranged so that N is	D
	(a) 60	(b) 40	(c) 720	(d) 120	
Q79	The total number together in any o		ements of 7 persons in	n a row if 3 persons sit	В
	(α) 5!	(b) 6!	(c) 2! x 5!	(d) None	
Q80		rrangements of the		AILURE, so that vowels	A
	(a) 576	(b) 676	(c) 570	(d) None	
Q81		ays the letters of t		to be arranged so that	O
	(a) 20	(b) 60	(c) 24	(d) 32	
	(3-7 = -		` '	(d) 02	
Q82	If 5 books of Eng		· · ·	are to be arranged in a	C









Q83	In how many v	ways the letters of	the word 'FAILURE' ca	n be arranged with the	A
		the four vowels are		G	
	(a) (4!) ²	(b) 4!	(c) 7!	(d) None	
Q84	together?	·	_	such that 2 'r's come	O
	(a) 400	(b) 440	(c) 360	(d) None	
Q85	In how many w	•	ANGE' be arranged suc	ch that the 2 'r's & 2 'a's	A
	(a) 120	(b) 130	(c) 140	(d) None	
Q86	row. In how m	any ways can they b	e seated if all the siste		A
	(a) 720	(b) 640	(c) 840	(d) 600	
Q87	row. In how m	any ways can they b	e seated if no two sist	-	В
	(a) 840	(b) 1,440	(c) 2,210	(d) 1,020	
Q88	British. They h together, the ways such an	ave to stand in a ro two Germans are to arrangement can be	w for a photograph so gether & so also the tw made is	s & the remaining 2 are that the two Indians are vo British. The number of	A
	(a) 48	(b) 8	(c) 16	(d) 24	
	FIXED PLAC	ES (EVEN/ODD) +	NO TWO GIRLS/BO	YS SIT TOGETHER	
Q89	5 Boys & 4 gir such arranger		in row. If girls occupy	even places, then no. of	D
	(a) 288	(b) 2808	(c) 2008	(d) 2880	
Q90		ways in which the le ways occupy the odd		BILE be arranged so that	A
	(a) 36	(b) 63	(c) 30	(d) None	
Q91	In how many wonly the odd p		re' can be arranged so	that consonants occupy	В
	(a) 4!	(b) (4!) ²	(c) 7! ÷ 3!	(d) None	
Q92	-	vays can be letters even places only?	of the word 'VIOLENT'	be arranged so that the	D
	(a) 1,440	(b) 240	(c) 480	(d) 144	
Q93		ways the letters of cupy only odd position		n be arranged such that	D
	(a) 1,440	(b) 240	(c) 480	(d) 144	
Q94	In how many w	•	[RANGE' be arranged s	o that the vowels occupy	C







	(α) ⁵ P ₅	(b) ⁵ P ₅ x ⁴ P ₄	(c) ⁵ P ₅ x ⁴ P ₂	(d) None	
Q95	In how many ways places?	the vowels of the	word "ALLAHABAD" will o	occupy the even	В
	(a) 120	(p) eo	(c) 30	(d) None	
Q96	In how many ways occupy even place		an be arranged in a row sc	that the vowels	В
	(a) 132	(b) 144	(c) 72	(d) 160	
Q97	,		for a photograph in a row a ogether. Find the number o		C
	(a) 64,500	(b) 76,800	(c) 86,400	(d) 92,500	
		PERMUTATION O	F SIMILAR THINGS		
Q98	Number of difference (a)   8	nt arrangements of (b) $ 5 \times  2 \times  2 \times  $	the letters of the word 'CA 2 (c) 5,040	ALCUTTA' is (d) 10,080	C
Q99	1	•	oies of each of two books, s you may arrange it how	•	A
	(a) $\frac{39!}{5! \times (4!)^2 \times (6!)^3}$	(b) $\frac{39!}{5! \times 8! \times (4!)^2 \times (6!)^3}$	(c) $\frac{5! \times 8! \times 4! \times (6!)^3}{39!}$	(d) $\frac{39!}{5! \times 8! \times 4! \times 6!}$	
Q100	How many difference CALCULUS?	ent permutations	are possible from the l	etters of word	В
	(a) 4600	(b) 5040	(c) 5400	(d) 4680	
Q101	· ·	-	e possible from letters of " (c) 45,360	CALCULATOR"? (d) None	A
Q102			he letters of word 'COMME		A
	(a) 5,040	(b) 8!	(c) 6!	(d) None	
Q103	No. of arrangemer (a) 13! ÷ [3!×4!×(2!)²		e with the word 'assassina (c) 13! ÷ [3! × 4! × 2!]		A
Q104	_	_	ne letters of the word "ALL		С
	(a) 128	(b) 16	(c) 32	(d) None	
Q105	The number of per	mutation of the wor	d "ALLAHABAD" is		A
	(a) 9! ÷ (4! x 2!)	(b) 9! ÷ 4!	(c) 9!	(d) None	
Q106	In how many ways (a) 1200	can the letters of t (b) 1250	he word 'ARRANGE' be arr (c) 1260	anged? (d) 1300	С
0403					
Q107	Number of words the letter C once i		using the letter A thrice,	ietter B twice &	D
	(a) 80	(b) 50	(c) 70	(d) 60	







	CIRCULAR PERMUTATION	
Q108	If 50 different jewels can be set to form a necklace then number of ways is (a) $\frac{1}{2}$ .50! (b) $\frac{1}{2}$ .49! (c) 49! (d) None	В
Q109	Number of circular permutations of n different things chosen at a time is (a) $(n-1)!$ (b) $(n+1)!$ (c) $n!$ (d) $(n-2)!$	A
Q110	In how many ways can 4 persons sit at a round table for a group discussion?  (a) 24 (b) 12 (c) 6 (d) 18	С
Q111	Number of ways in which 7 girls form a ring is  (a) 700 (b) 710 (c) 720 (d) None	C
Q112	Number of ways in which 8 different beads be strung on a necklace is  (a) 2,500 (b) 2,520 (c) 2,250 (d) None	В
Q113	5 persons are sitting in a round table in such way that Tallest Person is always on the right-side of the shortest person. The number of such arrangements is  (a) 6 (b) 8 (c) 24 (d) None	
Q114	In how many ways can 8 persons be seated at a round table, such that 2 particular persons sit together?  (a) 840  (b) 1220  (c) 1,440  (d) 1896	С
Q115	In how many ways 4 men & 3 women are arranged at a round table if women always sit together?  (a) 6 x 6!  (b) 6!  (c) 7!  (d) None	В
Q116	In how many ways 4 men & 3 women are arranged at a round table if the women never sit together?	A
Q117	(a) 6 x 6! (b) 6! (c) 7! (d) None  The Chief Ministers of 17 States meet to discuss the hike in oil price at a round table. In how many ways they seat themselves if the Kerala & Bengal chief ministers choose to sit together?  (a) 15! × 2! (b) 17! × 2! (c) 16! × 2! (d) None	
Q118	In how many ways can 4 Americans & 4 English men be seated at a round table so that no 2 Americans may be together?  (a) $4! \times 3!$ (b) 4P_4 (c) $3 \times ^4P_4$ (d) 4C_4	A
Q119	In how many ways can 6 boys & 6 girls be seated around a table so that no 2 boys are adjacent?	В
Q120	(a) $4! \times 5!$ (b) $5! \times 6!$ (c) 6P_6 (d) $5 \times ^6P_6$ Six Persons A, B, C, D, E & F to be seated at a circular table. In how many ways can this be done, if A must always have either B or C on his right & B must always have either C or D on his right?	
	(a) 3 (b) 6 (c) 12 (d) 18	







		MISCELLA	NEOUS QUESTIONS		
Q121			A & AMERICA are arra arrangements is	inged in all possible ways. _·	В
	(a) 1:2	(b) 2:1	(c) 1:1	(d) 1.5:1	
Q122	How many arro	•	tters of the word 'BHA	RAT will not have 'B' & 'H'	В
	(a) 360	(b) 240	(c) 120	(d) 60	
Q123	4 vowels?			med from 6 consonants &	A
	(a) ${}^{6}P_{3} \times {}^{4}P_{2}$	(b) ${}^{6}C_{3} + {}^{4}C_{2}$	(c) ${}^{6}P_{3} \times {}^{4}P_{2}$	(d) <u>  3</u> × <u>  2</u>	
Q124	come together	?	_	ich that the 2 'r's do not	В
	(a) 1000	(b) 900	(c) 800	(d) None	
Q125		•	rs of different digits i		D
	(a) ¹⁰ P ₉		(c) ⁹ P ₉	(d) None	
Q126	How many num (a) 3,024	bers between 3,000 (b) 60	0 & 4,000 can be form (c) 78	ed with 1 2 6? (d) None	D
Q127	1,2,3,4,5,6	bers between 1,00	00 & 10,000 can be	formed with the digits	В
	(a) 720	(b) 360	(c) 120	(d) 60	
Q128		•	can be formed from ' er, which are greater	1,2,3,5,7,8,9 such that no than 3000 are	С
	(a) 120	(b) 480	(c) 600	(d) 840	
Q129	particular gues side. The numb	sts desire to sit on c er of ways in which	one particular side of t the sitting arrangeme	ong rectangular table. 2 the table & 3 on the other ents can be made is	В
	(a) 1732	(b) 1728	(c) 1730	(d) 1278	
			ICE QUESTIONS		
Q130	How many diffe	erent words can be (b) 7!	formed from letters of (c) 6!	of the word 'TRIANGLE? (d) 2! x 6!	A
Q131	How many dif	ferent words can	be formed beginnin	g with 'E' of the word	В
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	
Q132	In Question No	.131, how many of t	hem will begin with 'T'	& end with 'E'?	O
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	
Q133	In Question No	.131, how many of t	hem have 'T' & 'E' in th	e end places?	D
	(a) 8!	(b) 7!	(c) 6!	(d) 2! x 6!	









Q134	In Question No.1	31. how many of the	em have consonants neve	er together?	A
	(a) 8! - 4! x 5!		(c) 2! x 5! x 3!	(d) ⁴ P ₃ x 5!	••
Q135	In Question No.15 together?	31, how many of the	em have arrangements th	nat no two vowels are	В
	(a) 8! - 4! x 5!	(b) ⁶ P ₃ x 5!	(c) 2! x 5! x 3!	(d) ⁴ P ₃ x 5!	
Q136	In Question No. vowels are alway		them have arrangement	s that consonants &	С
	(a) 8! - 4! x 5!	(b) ⁶ P ₃ x 5!	(c) 2! x 5! x 3!	(d) ⁴ P ₃ x 5!	
Q137	In Question No.13 Places?	31, how many of the	m have arrangements th	at vowels occupy odd	D
	(a) 8! - 4! x 5!	(b) ⁶ P ₃ x 5!	(c) 2! x 5! x 3!	(d) ⁴ P ₃ x 5!	
Q138	Number of 2-digi	it numbers which a	re divisible by 6 is		B
	(a) 16	(b) 15	(c) 17	(d) 14	
Q139		2 green flags in or	ssible if we wish to make ne post.	signals by arranging	A
	(a) 210	(b) 6,420	(c) 40,320	(d) 96	
Q140		d the number of tri	ints in the plane with no iangles that have points (c) 48 choices	-	D
Q141		•	eets of different sizes c	0 0	В
	•	ich one of them get		s goes to be younger	
	•			d) None	
Q142	assuming that ed (a) 8! Number of ways "MATHEMATICS".	(b) 5,040 in which arrangem	ts a sweet is  (c) 5,039  nents of 4 letters can be	(d) None made from the word	D
Q142	assuming that ed (a) 8!  Number of ways	ich one of them get (b) 5,040 in which arrangem	ts a sweet is (c) 5,039	(d) None	D
Q142 Q143	assuming that ed (a) 8!  Number of ways "MATHEMATICS". (a) 1,680  Total number of that no two '-' sig	ich one of them get (b) 5,040 in which arrangem (b) 756 ways in which six '+ gns occur together	ts a sweet is  (c) 5,039  Tents of 4 letters can be  (c) 18  ' & four '-' signs can be a	(d) None made from the word (d) 2454	D
	assuming that ed (a) 8!  Number of ways "MATHEMATICS". (a) 1,680  Total number of	(b) 5,040 in which arrangem (b) 756 ways in which six '+	ts a sweet is  (c) 5,039  Tents of 4 letters can be  (c) 18  ' & four '-' signs can be a	(d) None made from the word (d) 2454	
	assuming that ea (a) 8!  Number of ways "MATHEMATICS".  (a) 1,680  Total number of that no two '-' signal (a) 7!/3!	(b) 5,040  in which arrangem  (b) 756  ways in which six '+ gns occur together  (b) 6! x (7!/3!)  ys 21 red balls & 19	ts a sweet is  (c) 5,039  ments of 4 letters can be  (c) 18  ' & four '-' signs can be and is	(d) None made from the word (d) 2454 rranged in a line such (d) None	
Q143	assuming that ed (a) 8!  Number of ways "MATHEMATICS". (a) 1,680  Total number of that no two '-' signal (a) 7!/3!  In how many ways	(b) 5,040  in which arrangem  (b) 756  ways in which six '+ gns occur together  (b) 6! x (7!/3!)  ys 21 red balls & 19	ts a sweet is  (c) 5,039  ments of 4 letters can be  (c) 18  ' & four '-' signs can be and is  (c) 35	(d) None made from the word (d) 2454 rranged in a line such (d) None	C
Q143	assuming that ed (a) 8!  Number of ways "MATHEMATICS". (a) 1,680  Total number of that no two '-' sig (a) 7!/3!  In how many way no two blue balls (a) 1,540	(b) 5,040  in which arrangem  (b) 756  ways in which six '+ gns occur together  (b) 6! x (7!/3!)  ys 21 red balls & 19 are together.  (b) 1,520	ts a sweet is  (c) 5,039  ments of 4 letters can be  (c) 18  ' & four '-' signs can be and is  (c) 35  O blue balls can be arranged.	(d) None made from the word  (d) 2454 rranged in a line such  (d) None nged in a row so that  (d) None	C
Q143 Q144	assuming that ed (a) 8!  Number of ways "MATHEMATICS". (a) 1,680  Total number of that no two '-' sig (a) 7!/3!  In how many way no two blue balls (a) 1,540	(b) 5,040  in which arrangem  (b) 756  ways in which six '+ gns occur together  (b) 6! x (7!/3!)  ys 21 red balls & 19 are together.  (b) 1,520	ts a sweet is  (c) 5,039  ments of 4 letters can be  (c) 18  ' & four '-' signs can be and is  (c) 35  O blue balls can be arrandiction (c) 1,560	(d) None made from the word  (d) 2454 rranged in a line such  (d) None nged in a row so that  (d) None	C
Q143 Q144	assuming that ed (a) 8!  Number of ways "MATHEMATICS". (a) 1,680  Total number of that no two '-' signature (a) 7!/3!  In how many way no two blue balls (a) 1,540  Find the number (a) 72  A computer has	(b) 5,040  in which arrangem  (b) 756  ways in which six '+ gns occur together  (b) 6! x (7!/3!)  ys 21 red balls & 18 are together.  (b) 1,520  of divisors of 21,60  (b) 142  5 terminals & each	ts a sweet is  (c) 5,039  ments of 4 letters can be  (c) 18  ' & four '-' signs can be and is  (c) 35  O blue balls can be arrand  (c) 1,560  OO excluding 1 & the numbers	(d) None made from the word  (d) 2454 rranged in a line such  (d) None nged in a row so that  (d) None per itself  (d) 70 our distinct positions	C









Q147		ss PCA examination r ow many ways can a		o be secured in each of	С		
	(a) 128	(b) 64	(c) 127	(d) 63			
Q148	In how many wo	ays can 9 letters be	posted in 4 letter box	(es?	A		
	(a) 4 ⁹	(b) 4 ⁵	(c) ⁹ P ₄	(d) ⁹ C ₄			
Q149	•	nutations of the let rank of this word wil		HALK" are written in a	С		
	(a) 30	(b) 31	(c) 32	(d) None			
Q150	Number of ways the letters of the word COMPUTER can be rearranged as						
	(a) 40,320	(b) 40,319	(c) 40,318	(d) None			
Q151	different conso	nants & 3 different v	rowels. vowel to lie be	onants & 1 vowel out of 7 tween 2 consonants is	A		
	(a) 3×7×6	(b) 2×3×7×6	(c) 2×3×7	(d) None			
Q152		the word ATTEMPT of ecutive is	are written down at r	eandom, the chance that	С		
	(a) 1/42	(b) 6/7	(c) 1/7	(d) 1			
Q153		•	•	ent kinds of single first avel from one station to	В		
	(a) 2,500	(b) 2,450	(c) 2,400	(d) None			
Q154			marked with 10 differencessful attempt to op	ent letters. In how many ben the lock?	В		
	(a) 1,000	(b) 999	(c) 5040	(d) None			
Q155	,	In how many different ways 3 rings of a lock can not combine when each ring has digits 0, 1, 29 leading to unsuccessful events?					
	(a) 999	(b) 10 ³	(c) 10!	(d) 997			
Q156	In how many dif	ferent ways can 7 pe	ersons stand in a line f	for a group photograph? (d) 24	A		







# **CHAPTER 5B. COMBINATION**

### **INTRODUCTION**

- **Definition:** The number of ways of **SELECTING** all or some of the given things out of given things is called combination.
- The order in which things are arranged is NOT important.
- Number of Permutations of 'r' different objects out of 'n' different objects =  $\frac{nC_p}{(n-r)! \times r!}$

### PROPERTIES OF "C,

- 1)  ${}^{n}C_{p} = {}^{n}C_{n-p}$
- 2)  ${}^{n}C_{x} = {}^{n}C_{y} \Rightarrow Either x = y or x + y = n$

**CQ1:** Find 'r' if  ${}^{18}C_{r} = {}^{18}C_{r+2}$ 

**Ans:** r cannot be equal to r + 2. Therefore  $r + (r + 2) = 18 \Rightarrow 2r + 2 = 18 \Rightarrow 2r = 16 \Rightarrow \mathbf{r} = \mathbf{8}$ .

3)  ${}^{n}C_{p} + {}^{n}C_{p-1} = {}^{n+1}C_{p}$ 

**CQ2:** Find x if  ${}^{12}C_5 + 2{}^{12}C_4 + {}^{12}C_3 = 14C_x$ 

**Ans:**  ${}^{12}C_5 + 2$ .  ${}^{12}C_4 + {}^{12}C_3 \Rightarrow {}^{12}C_5 + {}^{12}C_4 + {}^{12}C_4 + {}^{12}C_3 \Rightarrow {}^{13}C_5 + {}^{13}C_4 = {}^{14}C_5$ .

Using  ${}^{n}C_{r} = {}^{n}C_{n-r} \circ {}^{14}C_{5} = {}^{14}C_{14-5} = {}^{14}C_{9}$ 

Thus LHS =  ${}^{14}C_5 = {}^{14}C_9 \& RHS = {}^{14}C_x \Rightarrow Either x = 5 \text{ or } x = 9.$ 

**4)**  ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{(n-1)} + {}^{n}C_{n} = 2^{n}$ .

**CQ3:**  ${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{4} + {}^{5}C_{5} =$ 

- (a) 30 (b) 31 (c) 32 (d) 25
- 5)  ${}^{n}C_{0} = 1$ .
- **6)**  ${}^{n}C_{n} = 1.$  Here r = n,  $[{}^{n}C_{n} = \frac{n!}{(n-n)! \times n!} = \frac{n!}{0! \times n!} = 1].$
- 7)  ${}^{n}C_{r} = \frac{nPr}{r} \Rightarrow {}^{n}P_{r=r} {}^{n}C_{r}$

**CQ4:** If  ${}^{10}P_{p} = 6,04,800$  and  ${}^{10}C_{p} = 120$ ; find the value of r, [Ans: r = 7]







**8)** 
$${}^{n}C_{r} = \frac{n}{r} \cdot {}^{(n-1)}C_{(r-1)} \Rightarrow {}^{10}C_{3} = \frac{10}{3} \cdot {}^{9}C_{2}$$

CQ5: Find no. of different poker hands (5 cards) in a pack of 52 playing cards.

**Ans:** In cards, order is not important. Thus, out of 52 cards, 5 cards at a time.  ${}^{52}C_5 = 2,598,960$ .

CQ6: A committee is to be formed of 3 persons out of 12. Find the number of ways of forming such a committee. [Ans:  ${}^{12}C_3 = 220 \text{ ways.}$ ]

CQ7: A person has 12 friends of whom 8 are relatives. In how many ways can he invite 7 guests such that 5 of them are relatives? [Ans:  ${}^{8}C_{5} \times {}^{4}C_{2} = 336 \text{ ways}$ ]

CQ8: A building contractor needs 3 helpers & 10 men apply. In how many ways can these [Ans: 10C3 ways] selections take place?

CQ9: A committee of 7 members is to be chosen from 6 CAs, 4 Economists & 5 Cost Accountants. In how many ways can this be done if in committee, there must be at least one member from each group and at least 3 CAs?

**Ans:** The various methods of selecting the persons from the various groups are shown below:

	Committee of 7 members					
	C.A.s [Total 6]	Economists [Total 4]	Cost Accountants [Total 5]	Ways		
Method 1	$3 \Rightarrow {}^{6}C_{3}$ ways = 20	$1 \Rightarrow {}^{4}C_{1}$ ways = 4	3 ⇒ ⁵ C ₃ ways = 10	800		
Method 2	$3 \Rightarrow {}^{6}C_{3}$ ways = 20	$2 \Rightarrow {}^{4}C_{2}$ ways = 6	$2 \Rightarrow {}^{5}C_{2}$ ways = 10	1200		
Method 3	$3 \Rightarrow {}^{6}C_{3}$ ways = 20	$3 \Rightarrow {}^{4}C_{3}$ ways = 4	$1 \Rightarrow {}^{5}C_{1} \text{ ways} = 5$	400		
Method 4	$4 \Rightarrow {}^{6}C_{4}$ ways = 15	$1 \Rightarrow {}^{4}C_{1}$ ways = 4	$2 \Rightarrow {}^{5}C_{2}$ ways = 10	600		
Method 5	$4 \Rightarrow {}^{6}C_{4}$ ways = 15	$2 \Rightarrow {}^{4}C_{2}$ ways = 6	$1 \Rightarrow {}^{5}C_{1} \text{ ways} = 5$	450		
Method 6	$5 \Rightarrow {}^{6}C_{5}$ ways = 6	$1 \Rightarrow {}^{4}C_{1} \text{ ways} = 4$	$1 \Rightarrow {}^{5}C_{1} \text{ ways} = 5$	120		

Therefore, total number of ways = 800 + 1200 + 400 + 600 + 460 + 120 = 3,570

CQ10: A box contains 7 red, 6 white & 4 blue balls. How many selections of 3 balls can be made so that (a) all three are red (b) none is red (c) one is of each colour?

Ans: (a)  ${}^{7}C_{3} = 35$  ways. (b)  ${}^{10}C_{3} = 120$  ways. (c)  ${}^{4}C_{1} = 4$  ways.

Thus, Number of groups of three balls such that one is of each color =  $7 \times 6 \times 4 = 168$  ways.

CQ11: Find no. of ways of selecting 4 letters from word `EXAMINATION'. [Ans: 136 ways]



### **CONCEPT 1: SOME STANDARD RESULTS**

**1.** Total no. of ways in which it is possible to form groups by taking all of n things =  $(2^n - 1)$ .

**Explanation:** We have total 'n' things. Each of 'n' different things may be dealt with in 2 ways

(i) Selected in group; (ii) Not Selected in group

But this answer of  $2^n$  includes the case when all the things are not selected & thus no group will be formed.

But we have to find the ways of forming the group. Thus, we will have to subtract this case from our answer. & Therefore,

Total number of ways of forming a group by taking all of 'n' different things is  $2^n - 1$ .

**CQ12:** An examination paper with 10 questions consists of 6 questions in Algebra & 4 questions in Geometry. At least one question from each section is to be attempted. In how many ways can this be done?

**Ans:** A student must answer at least one question from each section & he may answer all questions from each section.

Algebra: There are 6 questions and he may answer a question or he may not answer it.

**2**^{6.} But this includes the possibility of none of the question from Algebra being attempted.

Thus, we have to subtract 1 from the answer. Thus  $(2^6 - 1)$  ways.

Geometry: There are 4 questions and he may answer a question or he may not answer it.

24. But this includes the possibility of none of the question from Algebra being attempted.

Thus, we have to subtract 1 from the answer. Thus  $(2^4 - 1)$  ways.

Thus, Examination paper can be attempted in  $(2^6-1)$   $(2^4-1)$  number of ways.

**CQ13:** A man has 5 friends. In how many ways can he invite one or more of his friends to dinner?

**Ans:** As he has to select one or more of his 5 friends, he can do so in 25 - 1 = 31 ways.

**Alternate Method:** He can invite his friends one by one, in twos, in threes, etc. and hence the number of ways. =  ${}^5C_1 + {}^5C_2 + {}^5C_3 + {}^5C_4 + {}^5C_5 = 5 + 10 + 10 + 5 + 1 = 31$  ways.





### **ALIKE GROUPS**

- 2. Combinations of 'n' things taken some or all at a time when 'p' things are same of one kind, 'q' things are same of another kind, 'r' things are same of a third kind & remaining 's' things are different =  $[(p+1) (q+1) (p+1) 2^s] -1$ .
- **3.** The combinations of selecting  $r_1$  things from a set having  $n_1$  objects &  $r_2$  things from a set having  $n_2$  objects where combination of  $r_1$  things,  $r_2$  things are independent =  ${}^{n1}C_{r1} \times {}^{n2}C_{r2}$ .
- **4.** Number of Diagonals of a polygon with 'n' sides =  $\frac{n(n-3)}{2}$ .
- **5.** No. of Triangles from 'n' points if 'm' points are collinear =  ${}^{n}C_{8} {}^{m}C_{8}$  [2nd part gets cancelled if no points are collinear].
- **6.** No. of lines from 'n' points if 'm' points are collinear =  ${}^{n}C_{2} {}^{m}C_{2} + 1$ .
- 7. No. of parallelogram formed from 'm' parallel lines intersecting another 'n' parallel lines =  ${}^{m}C_{2} \times {}^{n}C_{2}$ .
- **8.** If there are '( $\alpha + b + c$ )' things which are to be divided in equal groups having 'a' things, 'b' things & 'c' things respectively, [such that  $\alpha = b = c$ ], it can be done in  $\frac{(a+b+c)!}{a!.b!c!(\text{no.of equal groups})!}$

**CQ14:** The number of ways in which 12 things can be divided into 3 equal groups =  $\frac{9!}{3!.3!.4!}$ .

Ans: Each group will have 3 things. Thus, we have 3 equal groups of 4 things each.

Thus no. of equal groups = 34. Thus, answer will be  $\frac{9!}{3!3!3!4!}$ 

**CQ15:** If 7 things are to be divided into 3 groups, of 2, 2, 3 things respectively, find the number of ways in which this can be done.

**Ans:** No. of equal groups = 2 groups [2, 2 ka]. =  $\frac{(a+b+c)!}{a!.b!c!(\text{no.of equal groups})!} = \frac{7!}{2!.2!3!2!} = 105.$ 

### CONCEPT 2: FINDING RANK (POSITION) OF A WORD IN DICTIONARY [Shortcut Trick]

### Steps:

- 1. Write alphabets in alphabetical order in vertical form & give them numbers starting from 0.
- 2. Now find the number given to 1st alphabet in step 1 we want as per the question. Write that number in the answer followed by factorial of remaining alphabets.
- **3.** Eliminate  $1^{st}$  alphabet & re number the vertical alphabets starting from 'O' except the eliminated alphabets & repeat step 2 until you have only last alphabet left.

The value for last alphabets will be 0!.

CQ16: Find the rank of 'KNIFE' in the dictionary.



#### Answer:

Step 1		Step 3	Step 4			
E	0	0	0			
F	1	1	1			
Ŧ	2	2	2			
K	3	NA	NA			
N	*	3	NA			

K Ν Ι F  $\mathbf{E}$ 

Step 1: Done.

Step 2: 1st alphabet is 'K'. So, we find the number given to 'K' in step 1. The number is 3. Remaining alphabets are N, I, F, E = 4. Thus, the required number is 3.4!

**Step 3:** Eliminate 'K' from vertical form & re – number alphabets starting from 'O' except 'K'.

Now we find the number given to 'N' in vertical form. The number is 3.

Remaining alphabets are I, F, E = 3. Thus, the required number is 3.3!.

Step 4: Eliminate 'N' from vertical form & re-number the alphabets starting from 'O' except K & N. Now we find the number given to 'I' in vertical form. The number is 2.

Remaining alphabets are F, E = 2. Thus, the required number is 2.2!.

Step 5: Eliminate 'I' from vertical form & re-number the alphabets starting from 'O' except K, N & I. Now we find the number given to 'F' in vertical form. The number is 1.

Remaining alphabets are E = 1. Thus, the required number is 1.1!

Step 6: We have only one alphabet left. Thus, the value for it will be 0!

**Rank of KNIFE** = Sum of all values = 3.4! + 3.3! + 2.2! + 1.1! + 0! = 3.24 + 3.6 + 2.2 + 1 + 1 = 96th rank.

**CQ17:** If all permutations of word "CHALK" are written in a dictionary rank of this word will ___.

(a) 30

(b) 31

(c) 32

(d) None

Ans:

Ste	ер 1	Step 3	Step 4	Step 5
A	Ф	Ф	Ф	NA
G	4	NA	NA	NA
H	2	4	NA	NA
K	3	2	1	0
L	4	3	2	1

CHALK

C H A L K  

$$1.4! + 1.3! + 0.3! + 1.1! + 0!$$
  
= 24 + 6 + 0 + 1 + 1 =  $32^{\text{nd}}$  rank.







#### (OUT OF 'n' THINGS) COMBINATION OF DISSIMILAR THINGS UNDER RESTRICTION

Cases	Things taken	Formula	Formula	
A particular things is NOT ALLOWED	R	$^{n-1}C_r$		
A particular things is ALWAYS ALLOWED	R	$(^{n-1}C_{r-1})$	$({}^{\mathrm{n}}\mathrm{C}_{\mathrm{r}}-{}^{\mathrm{n-1}}\mathrm{C}_{\mathrm{r}})$	
Selecting 1 or more out of 'n' things	1 or More	2 ⁿ - 1		
ALIKE GROUPS				
'p' of 1st type, 'q' of 2nd, 'r' of 3rd & 's' different	1 or More	$[(p + 1) (q + 1) (r + 1)2^{s}] -1$		

### DISTRIBUTION OF DISSIMILAR THINGS INTO GROUPS OR PERSONS (OUT OF 'N' THINGS)

No. of things	Relationship	Distributed to	Formula	Formula
p + q = n	p ≠ q	Persons/ Groups	$\frac{n!}{p!q!}$	${}^{\rm n}C_{\rm p} \times {}^{\rm q}C_{\rm q}$
p + q = n	p = q	Persons	$rac{n!}{p!q!}$	${}^{n}C_{p} \times {}^{p}C_{p}$
p + q = n	p = q	Groups	$\frac{n!}{2! \times p!  q!}$	
p + q + r = n	p = q = r	Persons	$\frac{n!}{p!q!r!}$	${}^{n}C_{p} \times {}^{q+1}C_{q} \times {}^{p}C_{p}$
p + q + r	p = q = r	Groups	$\frac{n!}{3! \times p!  q!  r!}$	No. of equal groups ka fraction





# **COMBINATION - QUESTION BANK**

SN		CHAPTER	5B. COMBINATION		Ans
Q157	$^{n}P_{r} = 720 \text{ and } ^{n}C_{r}$	= 120 Find r?			С
	(a) 6	(b) 4	(c) 3	(d) 2	
Q158	Solve for 'n' if "C4	$1.0^{\circ} \text{ n+2} \text{C}_{\text{n}} = 5.18$			В
	(a) 5	(b) 7	(c) -8	(d) 7 or 8	
Q159	If ⁵⁰⁰ C ₉₂ = ⁴⁹⁹ C ₄₀₇ +	- ⁿ C _r = 56, then n is _	·		D
	(a) 501	(b) 500	(c) 502	(d) 499	
Q160	If ${}^{1000}C_{98} = {}^{999}C_{97} +$	*C ₉₀₁ then the value	of x will be		А
	(a) 999	(b) 998	(c) 997	(d) None	
Q161	A team of 12 men is to be formed out of n persons. Then number of times 2 men "A" & "B" are together is				
	(α) ⁿ C ₁₂	(b) ⁿ⁻¹ C ₁₁	(c) $^{n-2}C_{10}$	(d) None	
Q162			ch other in a party and		В
	(a) 11	(b) 12	(c) 13	(d) 14	
Q163		ent consonants and taining 6 consonant	4 different vowels hov and 3 vowels?	v many words can be	В
	(a) ${}^{10}C_6$ x ${}^{4}C_3$	(b) ¹⁰ C ₆ x ⁴ C ₃ x 9!	(c) ${}^{10}C_6$ x ${}^{4}C_3$ x 10!	(d) None	
Q164		· .	o be awarded at an eng ow many ways can the p		В
	(a) 1,462	(b) 1,716	(c) 1,876	(d) 1,672	
Q165	and 2 wicket-kee	•	first 11 players out of 1 ways you can do it so ther?	J	А
	(a) 960	(b) 840	(c) 420	(d) 252	
Q166		65, would your answ least 1 wicket-keep	ver be different if the t per?	eam contains at least	А
	(a) 2,472	(b) 960	(c) 840	(d) 420	
Q167	A party of 6 is to be formed from 10 men and 7 women as so as to include 3 men and 3 women. In how many ways the partly can be formed if two particular women refuses to join it?				
	(a) 4,200	(b) 600	(c) 1,200	(d) None	
Q168	In how many way: word 'LOGARITH		nd a vowel be chosen ou	it of the letters of the	А
	(a) 18	(b) 15	(c) 3	(d) None	







Q169	A box contains 7 red, 6 white and 4 blue balls. How many selections of three balls can be made so that (a) all are red (b) none is red (c) one is of each colour?	А
	(a) 35 ways, 120 ways, 168 ways (b) 35 ways, 140 ways, 168 ways	
	(c) 30 ways, 120 ways, 168 ways (d) 35 ways, 120 ways, 148 ways	
Q170	Five bulbs of which three are defective are to be bled in two bulb points in a dark room. Hunter of trials the room shall be lighted	D
	(a) 6 (b) 8 (c) 5 (d) 7	
Q171	A candidate is required to answer 6 out of 12 questions which are divided into two groups containing 6 questions in each group. He is not permitted to attempt not more than four from any group. The number of choices are	В
	(a) 750 (b) 850 (c) 800 (d) None	
	HOMEWORK QUESTIONS	
Q172	If c (n, 8) = c (n, 6), find c (n, 2) (a) 14 (b) 91 (c) 19 (d) 41	В
Q173	If ${}^{n}C_{r-1} = {}^{n}C_{r+1} = 15$ and ${}^{n}C_{r} = 20$ , then the value of ${}^{r}C_{2}$ is	Α
4170	(a) 3 (b) $  3$ (c) $  4$ (d) 12	
Q174	There are 7 men and 3 ladies. Find the number of ways in which a committee of 6 can be formed of them if the committee is to include at least 2 ladies?	С
	(a) 120 (b) 160 (c) 140 (d) 150	
Q175	In how many ways a committee of 5 people can be formed out of 5 males & 6 females such that there are 3 males and 2 females?	A
	(a) 150 (b) 200 (c) 1 (d) 461	
Q176	In Question No.175, how many choices you have to make if there are 2 males? (a) 150 (b) 200 (c) 1 (d) 461	В
Q177	In Question No.175, how many choices you have to make if there is no female? (a) 150 (b) 200 (c) 1 (d) 461	O
Q178	In Question No.175, how many choices you have to make if there is at least one female?	D
	(a) 150 (b) 200 (c) 1 (d) 461	
Q179	In Question No.175, how many choices you have to make if there are not more than 3 males?	D
	(a) 200 (b) 1 (c) 461 (d) 401	
Q180	A person has 8 friends. The number of ways in which he may invite one or more of them to a dinner is	В
	(a) 250 (b) 255 (c) 200 (d) None	
Q181	In how many ways can a consonant and a. vowel be chosen out of the letters of the word 'EQUATION?	В









	(a) 18	(b) 15	(c) 3	(d) None	
Q182	· · · · · · · · · · · · · · · · · · ·	· ·	ons, each having an alt or more questions is _	ernative. The number of	В
	(a) 720	(b) 728	(c) 729	(d) None	
Q183	There are 12 poir (a) 200	nts in a plane of wh (b) 211	ich 5 are collinear. Th (c) 210	e number of triangles is (d) None	С
Q184			achers and 3 students which this can be don	s out of 10 teachers and e is	А
	(a) ${}^{10}C_2 \times {}^{20}C_3$	(b) ⁹ C ₁ x ²⁰ C ₃	(c) ${}^{10}C_2 \times {}^{19}C_3$	(d) None	
Q185	this can be done	is		number of ways in which	В
	(a) ${}^{10}C_2 \times {}^{20}C_3$	(b) ⁹ C ₁ x ²⁰ C ₃	(c) ${}^{10}C_2 \times {}^{19}C_3$	(d) None	
Q186	In Question No.18 this can be done	•	udent is excluded the	number of ways in which	С
	(a) ${}^{10}C_2 \times {}^{20}C_3$	(b) ⁹ C ₁ x ²⁰ C ₃	(c) ${}^{10}C_2 \times {}^{19}C_3$	(d) None	
Q187	2 only on the othe	er. The number of v	ways in which the crev	-	A
		(b) ³ C ₁ x 4!		(d) None	
Q188			ed in 3 groups, consist ys this can be done.	ing of 2, 2, and 3 things	А
	(α) 105	(b) 210	(c) 100	(d) None	
		PRACT	ICE QUESTION		
Q189	Number of straig being on the sam		y joining 16 points on a	plane, no twice of them	А
	(a) 120	(b) 110	(c) 210	(d) None	
Q190	•	•	can be formed from a arallel lines is	set of four parallel lines	В
	(a) 6	(b) 18	(c) 12	(d) 9	
Q191	l . '	ked on the circumfent pairs is	erence of a circle. Nun	nber of chords obtained	С
	(a) 25	(b) 27	(c) 28	(d) None	
Q192	· '	'	3 of which are collined different straight lines	ar except that 6 points s is	С
	(a) 50	(b) 51	(c) 52	(d) None	
Q193					В
	$(\alpha) \frac{n!}{(n-r)!}$	(b) $\frac{n!}{r!(n-r)!}$	(c) $\frac{(u-r)!}{u!r!}$	(d) $\frac{n!(n-r)!}{r!}$	
Q194	The value of $^{n}C_{\circ}$ _	·			C









	(a) n	(b) 0	(c) 1	(d) ∞	
				(4) 33	
Q195	The value of ⁿ C _n i		(a) 0	(-1)	В
	(α) n		(c) 0	(d) ∞	
Q196		C ₄ + + equals _		(-I) NI	A
	(α) 2 ⁿ -1		(c) 2 ⁿ +1	(d) None	
Q197	Which one is true		( ) ng _ ng	( ) ng ng	С
		(b) ${}^{n}C_{r} > {}^{n}C_{n-r}$	(C) $"C_r = "C_{n-r}$	(d) ${}^{n}C_{r} * {}^{n}C_{n-r}$	_
Q198	ⁿ C _r has a meaning	• ,	( ) 2	( ) =	В
		(b) 0 < = r <=n	(c) 0 < r <= n	(d) 0 < = r <n< th=""><th></th></n<>	
Q199	The value of ⁷ C ₁ i			( b -	В
	(a) 1		(c) 6	(d) 8	
Q200	The value of ⁸ C ₃				D
	(a) 48	(b) 65	(c) 24	(d) 56	
Q201	The value of ⁹ C ₉				D
	(a) O	(b) 9	(c) 8	(d) 1	
Q202	The value of ⁸ C ₄	+ ⁵ C ₄ is			А
	(a) 75	(b) 24	(c) 30	(d) 27	
Q203	${}^{5}C_{1} + {}^{5}C_{2} + {}^{5}C_{3} + {}^{5}C_{3}$	$C_4$ + 5C_5 is equal to _	·		В
	(a) 30	(b) 31	(c) 32	(d) 25	
Q204	If ${}^{18}C_r = {}^{18}C_{r+2}$ , the	e value of ${}^{r}C_{5}$ is	_·		С
	(a) 55	(b) 50	(c) 56	(d) None	
Q205	If ${}^{n}C_{10} = {}^{n}C_{14}$ , then	n ²⁵ C _n is			В
	(a) 24	(b) 25	(c) 1	(d) None	
Q206	If ${}^{n}C_{18} = {}^{n}C_{12}$ , ther	n the value of ³² C _n is	·		В
	(a) 30	(b) ( <u>  32</u> /   6)	(c) $[ 32 /( 26  \times  6)]$	(d) 496	
Q207	Find n if $4 \times {}^{n}C_{2} =$	: n+2 <b>C</b> 3			D
			(c) 5,3	(d) 2,7	
Q208	If (n+1)C _{r-1} : n _{c1} : n	-1c _{r-1} = 8:3:1 then find	d the value of n?		В
	(a) 14	(b) 15	(c) 16	(d) 17	
Q209	Find n if $^{n+2}C_n = 4$				С
	(a) 12	(b) 10	(c) 8	(d) 15	
Q210		en the value of n is _			С
	(a) O	(b) -2	 (c) 8	(d) None	
Q211		$C_r = 56$ , then n and r			В
·			(c) (7,4)	(d) None	
	\/\\-j-/	V-/ V-;-/	\-/\\·)·/	(=-, : : =	







Q212	If ${}^{10}P_r = 6.04.80$	00 and ¹⁰ C _r = 120; fir	nd the value of r?		В
	(a) 12	(b) 7	(c) 8	(d) 9	
Q213	Find r if ¹² C ₅ +2	$^{12}C_4 + ^{12}C_3 = 14C_r$			А
	(a) 5,9	(b) 4,9	(c) 5,8	(d) 4,8	
Q214	If ${}^{28}C_{2r}$ : ${}^{24}C_{2r-4} =$	225: 11, find r?			D
	(a) 9	(b) 6	(c) 8	(d) 7	
Q215	If ${}^{n}C_{r-1} = 56$ , ${}^{n}C_{r}$	$_{n}$ = 28 and $^{n}C_{r+1}$ = 8, 1	then r is equal to		В
	(a) 8	(b) 6	(c) 5	(d) None	
Q216	A committee is forming such C		persons out of 12. Fi	nd the number of ways of	Α
	(a) 220	(b) 240	(c) 36	(d) 4	
Q217	-		ommittee of 5 is to b tee includes at least o	e formed. The number of one lady is	С
	(a) 400	(b) 440	(c) 441	(d) None	
Q218		written and there dropped into the b		The number of ways the	В
	(a) 119	(b) 120	(c) 121	(d) None	
Q219	Economist and	6 Cost Accountant ere must be at leas	s. In how many ways	can this be done if in the each group and at least 3	В
	(a) 3,450	(b) 3,570	(c) 3,690	(d) 3,200	
Q220		to serve in a comm		at of 8 ladies and 7 gents. a member. The number of	D
	(α) 1,530	(b) 1,500	(c) 1,520	(d) 1,540	
Q221	committee of 5	can be selected so	o that members of par	y "B" in how many ways a ety "A" are in a majority?	В
	(a) 180	(b) 186	(c) 185	(d) 184	
Q222	•		6 of them are relativatives. In how many wo (c) 120	ves. He wishes to invite 5 ays he can invites?  (d) 810	С
Q223			occupy 9 vacant seat		В
<b>G</b> ZZ0	(a) 3204	dys 4 members can (b) 3024	(c) 4 ⁹	(d) 9 ⁴	ט
Q224	The number of	ways in which a per	• • •	nore of the four electrical	А
	(α) 15	(b) 25	(c) 24	(d) None	
Q225	A building cont	ractor needs three	e helpers and ten men	apply. In how many ways	А
	=			· ·	









	can these selection	ons take place?			
	(a) 120 ways	(b) 30 ways	(c) 150 ways	(d) 240 ways	
Q226	' '	•		• •	Α
	(a) 15 ways	(b) 12 ways	(c) 24 ways	(d) 30 ways	
Q227	Total number of H	land shakes in a gr	oup of 10 persons to	each other are	Α
	(a) 45	(b) 54	(c) 90	(d) 10	
Q228	different batches	s of candidates c		•	С
	(a) 124	(b) 125	(c) 126	(d) None	
Q229	candidates can be	e made if one cand	didate is always inclu	•	А
G230	. , -				В
Q200	(α) ³⁰ C ₃	(b) ³⁰ C ₄	(c) ³¹ C ₃	(d) ³¹ C ₄	Д
Q231	3 are to be elect but not exceeding	ed and you are er g the number to be	ntitled to vote for an elected. In how way	ny number of candidates s it can be done?	A
Q232	Find the number o			word FXAMINATION	В
	(a) 140 ways			(d) 128 ways	_
Q233		•	selection of 4 letter	es can be made from the	D
	(a) 130	(b) 132	(c) 134	(d) 136	
Q234					С
	( ) 10 G F G	4 > 43 🕳			
	$(\alpha)^{12}C_4X^5C_3$	(b) ¹⁷ C ₇	(c) 4950 x <u> 7!</u>	(d) None	
Q235	How many differe	ent numbers can be git being repeated	(c) 4950 x <u> 7!</u> e formed by using an in any number?	(d) None y three out of five digits	А
	A company having 6 departments wishes to simultaneously promote two of its Department's Heads to Asst. Managers. In how many ways these promotions can take place?  (a) 15 ways (b) 12 ways (c) 24 ways (d) 30 ways  Total number of Hand shakes in a group of 10 persons to each other are  (a) 45 (b) 54 (c) 90 (d) 10  6 seats of articled clerks are vacant in a 'Chartered Accountant firm'. How many different batches of candidates can be chosen out of 10 candidates if one candidate is always selected?  (a) 124 (b) 125 (c) 126 (d) None  In your office 4 posts have fallen vacant. In how many ways a selection out of 31 candidates can be made if one candidate is always included?  (a) ³⁰ C ₃ (b) ³⁰ C ₄ (c) ³¹ C ₃ (d) ³¹ C ₄ In Q229 would your answer be different if one candidate is always excluded?  (a) ³⁰ C ₃ (b) ³⁰ C ₄ (c) ³¹ C ₃ (d) ³¹ C ₄ In your college Union Election you have to choose candidates. Out of 5 candidates 3 are to be elected and you are entitled to vote for any number of candidates but not exceeding the number to be elected. In how ways it can be done?  (a) 25 (b) 5 (c) 10 (d) None  Find the number of ways of selecting 4 letters from the word EXAMINATION.  (a) 140 ways (b) 136 ways (c) 152 ways (d) 128 ways  Find the number of ways in which a selection of 4 letters can be made from the word "Mathematics"  (a) 130 (b) 132 (c) 134 (d) 136  The number of different words that can be formed with 12 consonants and 5 vowels by taking 4 consonants and 3 vowels in each word is				
	How many difference 1, 2, 3, 4, 5, no digital (a) 60  How many difference 1, 2, 3, 4, 5, no digital (b) 1, 2, 3, 4, 5, no digital (c) 1, 2, 3, 4, 5, no digi	ent numbers can be git being repeated (b) 50 ent numbers can be git being repeated	(c) 4950 x <u> 7!</u> e formed by using an in any number? (c) 40 e formed by using an	(d) None y three out of five digits (d) 30 y three out of five digits	A C
	How many differe 1, 2, 3, 4, 5, no dig (a) 60  How many differe 1, 2, 3, 4, 5, no dig with a specified of	ent numbers can be git being repeated (b) 50 ent numbers can be git being repeated digit?	(c) 4950 x <u> 7!</u> e formed by using an in any number? (c) 40 e formed by using an in any number? How	(d) None y three out of five digits  (d) 30 y three out of five digits many of these will begin	









	with a specified digit and end with another specified digit?	
	(a) 12 (b) 6 (c) 3 (d) 18	
Q238	How many four digit numbers can be formed out of the digits 1, 2, 3, 5, 7, 8, 9, if no digit is repeated in any number? How many of these will be greater than 3,000?  (a) 1,000 (b) 1,200 (c) 600 (d) 400	С
Q239	In how many ways 3 scholarships can be awarded to 5 students when each student is eligible for any of the scholarships?	С
	(a) 15 (b) $3^5$ (c) $5^3$ (d) 5P_3	
Q240	You have to make choice of 7 questions out of 10 questions set you can do it in (a) $^{10}\text{C}_7$ (b) $^{10}\text{P}_7$ (c) $7! \times ^{10}\text{C}_7$ (d) None	А
Q241	You have to make a choice of 4 balls out of one red one blue and ten while balls. The number of ways this can be done to always the red ball is (a) $^{11}C_3$ (b) $^{10}C_3$ (c) $^{10}C_4$ (d) None	А
Q242	In Question No.241, the number of ways in which this can be done to include the red ball but exclude the blue ball always is  (a) $^{11}C_3$ (b) $^{10}C_3$ (c) $^{10}C_4$ (d) None	В
Q243	In Question No.241, the number of ways in which this can be done to exclude both the red and blues ball is  (a) $^{11}C_3$ (b) $^{10}C_3$ (c) $^{10}C_4$ (d) None	С
Q244		A
Q245	In Question no.244, for how many number of times you can select any ball? (a) $^{7}C_{2}$ (b) $^{8}C_{3}$ (c) $^{7}P_{2}$ (d) $^{8}P_{3}$	В
Q246	The number of diagonals in a decagon is  (a) 30 (b) 35 (c) 45 (d) None	В
Q247	A regular Polygon has 45 diagonals then the no. of sides are  (a) 8 (b) 9 (c) 10 (d) 11	D
Q248	No. of ways in which 15 mangoes can be equally divided among 3 students is (a) $15/16$ (b) $15/16$ (c) $15/16$ (d) None	D
Q249	In a school number of students in each section is 36. If 12 new students are added, then the number of sections are increased by 4, and the number of students in each section becomes 30. The original number of sections at first is  (a) 6 (b) 10 (c) 14 (d) 18	D
Q250	Raj has 3 books on A/c, 3 books on Economics, 5 on Maths. If these books are to be arranged subjectwise. In how many ways can these can be placed on a shelf.  (a) 25,290 (b) 25,920 (c) 4,230 (d) 4,320	В









# CHAPTER 6A. ARITHMETIC PROGRESSION

### INTRODUCTION

• **SEQUENCE:** A set of numbers arranged in a definite order as per a definite rule or law is called a sequence if we can find out the next unknown term.

**Ex:** 1, 2, 3, 4,  $5 \rightarrow$  Sequence of consecutive natural numbers.

Ex: -1, -27, -125.... → Sequence of cube of odd numbers in negative. [Next term will be -343]

• SERIES: All terms of sequence are added/subtracted, it forms a series. [Ex:  $t_1 + t_2 + t_3 + \dots + t_n$ ] Ex:  $1 + 3 + 5 + 7 + 9 \dots$ 

### **ARITHMETIC PROGRESSION (AP)**

- A sequence in which 'difference between two consecutive terms' is "constant (same)".
- This constant difference is denoted by 'd' & is called the common difference of the AP.
- First term of AP is denoted by 'a'.

Ex: (a) 2, 5, 8, 11, 14, 17 is an AP in which d = 3 is the common difference.

**Ex:** (b) 15, 13, 11, 9, 7, 5, 3, 1, -1 is an AP in which -2 is the common difference.

**CQ1.** If the terms 2x, (x+10) and (3x+2) be in AP, the value of x is _____.

### **CONCEPT 1: ARITHMETIC MEAN**

If a, b, c are in AP, then b - a = c - b; then  $b = \frac{a+c}{2}$  which is called Arithmetic Mean.

**CQ2.** Arithmetic mean betⁿ 33 & 77 =  $\frac{33+77}{2}$  = 55.

### CONCEPT 2: Finding nth term (Tn) of an AP

- In AP, we can find out next term of an AP if we know the first term (a) & 'd'.
- Let  $T_1$  be a, then,  $T_2 = T_1 + d = a + d$

$$T_3 = T_2 + d = (\alpha + d) + d = \alpha + 2d$$
 Substituting the value of  $T_2$  from (i) ----- (ii)

$$T_4 = T_3 + d = (\alpha + 2d) + d = \alpha + 3d;$$

$$T_5 = T_3 + d = (\alpha + 2d) + d = \alpha + 4d$$

$$T_6 = \dots = \alpha + 5d;$$

$$T_7 = \dots = \alpha + 6d$$

$$T_n = \alpha + (n-1) d$$

• We can also use this formula when Sn is known  $T_n = S_n - S_{n-1}$ 







### CONCEPT 3: COMMON DIFFERENCE 'd' OF AP

- Diffⁿ betⁿ two consecutive terms is common difference 'd'.
- $d=(T_2-T_1)$  or  $(T_3-T_2)$  or  $(T_4-T_3)$  or  $(T_{n-2}-T_{n-3})$  or  $(T_n-T_{n-1})$  $D = T_n - T_{n-1}$

**CQ3:** Find the nth term of the given AP 4,7,10.....

### CONCEPT 4: GENERAL FORM OF Tn

General Form of  $T_n = An + B$ ; (where A & B are constants which will be given in question)

**PC Note:** If you are given  $T_n$  in An + B format  $\rightarrow D = Co$ -efficient of 'n'.  $[d = A \& \alpha = (A+B)]$ 

**CQ4:** If  $T_n = 5n + 1$ , find the AP. [Ans: AP is 6, 11, 16, 21...,]

### PC NOTE:

• If 2 non-consecutive terms in AP (say  $T_m \& T_n$ ) & their values are given in question & you are asked to find out AP:  $D = \frac{(T_m - T_n)}{T_m}$ 

**CQ9:** If 5th & 12th terms of an AP are 14 & 35 respectively, find AP. [Ans: AP is 2, 5, 8, 11.]

### CONCEPT 5: INSERTION OF 'n' ARITHMETIC MEANS BETWEEN TWO NUMBERS

- Total number of terms in the required AP will be (n+2).
- Take 1st given number as  $T_1$  & 2nd given number as  $T_{n+2}$  & use the above given note.

**CQ10:** Two AMs between -7 &14 is ____.

**Ans:** If we insert 2 AMs between -7 & 14, total number of terms will be  $4. \rightarrow -7$ , AM₁, AM₂, 14.

Take  $T_1 = -7$ ; &  $T_{2+2} = 14$ ; Thus  $T_4 = 14$ .

Now we will use the above note.

[Ans: 3n+1]

 $(4-1) d = 14 - (-7) \rightarrow 3d = 21 \rightarrow d = 7.$ 

Now, AM₁ which is 2nd term of AP can be calculated using Tn formula;

 $T_2 = \alpha + d = -7 + 7 = 0$  & AM₂ which will be 3rd term of AP;  $T_3 = \alpha + 2d = -7 + 2(7) = 7$ .

So, the two arithmetic means between -7 & 14 are O & 7.

CQ11: Insert 4 arithmetic means between 4 & 324. [**Ans:** 68, 132, 196, 260]







### CONCEPT 6: SUM OF FIRST 'N' TERM OF AP

 $\mathbf{S}_{n} = \frac{n}{2} \times (\mathbf{T}_{1} + \mathbf{T}_{n})$  (T_n= Last term & T₁= 1st term & n = No. of terms)  $\rightarrow$  Used when T₁ & T_n are given

 $S_n = \frac{n}{2} \times [T_1 + a + (n-1)d]$   $\rightarrow$  By substituting value of  $T_n = \alpha + (n-1)d$  in above formula &  $T_1 = \alpha$ .

 $S_n = \frac{n}{2} \times [2\alpha + (n-1) d]$   $\rightarrow$  Used when  $T_1$ , d & n are given in the question

**CQ11:** The sum of the series 9, 5, 1.... to 100 terms is _____.

**Ans:** n = 100,  $\alpha = 9$ , d = -4;  $Sn = \frac{n}{2} \times [2\alpha + (n-1)d]$ ;  $\rightarrow Sn = \frac{100}{2} \times [(2(9) + (100 - 1)(-4)] \rightarrow Sn = -18900$ .

**CQ12.** Find Sn of the given AP 4, 8, 12, 16.....

**Ans:** Sn =  $\frac{n}{2}$  × [2 $\alpha$  + (n-1) d] =  $\frac{n}{2}$  × [2.4 + (n-1)4] =  $\frac{n}{2}$  × [8 + 4n - 4] =  $\frac{n}{2}$  × [4n + 4] =  $\frac{n}{2}$  × 2[2n+2] = **2n²** + **2n** 

### CONCEPT 7: GENERAL FORM OF Sn

General Form of  $S_n = An^2 + Bn$ ; (where A & B are constants)

PC Note: If you are given  $S_n$  in  $An^2 + Bn$  format  $\rightarrow d = 2A & (a) = (A+B)$ 

**CQ13.** The sum of n terms of an AP is  $3n^2 + 5n$ . Find the series. [Ans: AP is 8, 14, 20, 26....,]

#### CONCEPT 8: ASSUMPTIONS OF THE TERMS IN AP

If No. of terms given in question are	Middle Term	Common Difference	Examples of Terms
ODD No. of terms	α	D	3 terms: (a-d), a, (a+d); 5 terms: (a-2d), (a-d), a, (a+d), (a+2d)
EVEN No. of terms	(a - d) & (a + d)	2d	2 terms: (α-d) & (α+d); 4 terms: (α-3d), (α-d), (α+d), (α+3d)

CQ14. 3 numbers are in A.P. whose sum is 69 and the product of first two is 483. Numbers are

(a) 25, 23, 21

(b) 21, 23, 25

(c) 19, 22, 25

(d) None

Ans: Since the number of terms given in the question are 3 (ODD), we assume 3 numbers as:

(a-d), a, (a+d); Thus (a-d) + a + (a+d) = 69. 3a = 69.

 $\alpha = 23.$ 

 $(a-d) \times a = 483$ ; (23-d) = 483/23; (23-d) = 21 & d = 2.

Numbers are (23-2), 23, (23+2) = 21, 23, 25

PC NOTE: But we will go by OPTION METHOD in such type of questions TO SAVE TIME.



### **CONCEPT 9: SOME IMPORTANT SERIES**

sum of	FORMULA	EXAMPLE
1. 1 st 'n' <b>NATURAL</b> No.	$\sum n = \frac{n(n+1)}{2}$	$1 + 2 + 3 + \dots 100 = \frac{n(n+1)}{2} = \frac{100(100+1)}{2}$
2. 1st 'n' <b>ODD</b> natural No.	$\sum (2n-1) = n^2$	1 + 3 + 5 + 7 + 9 = 5 ² = 25
3. 1st 'n' <b>EVEN</b> Natural No.	$\sum 2n = n(n+1)$	2 + 4 + 6 + 8 + 10 = n(n+1) = 5(6) = 30
4. <b>SQUARE</b> of 1 st 'n' Natural No.	$\frac{\sum n^2 = \frac{n(n+1)(2n+1)}{6}$	$1^{2}+2^{2}+100^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{100(100+1)(200+1)}{6}$
5. <b>CUBES</b> of 1 st 'n' Natural No.	$\sum n^3 = \left[\frac{n(n+1)}{2}\right]^2$	$1^{3}+2^{3}+3^{3}100^{3} = \left[\frac{n(n+1)}{2}\right]^{2} = \left[\frac{100(100+1)}{2}\right]^{2}$

### PROPERTIES OF AP

Particulars	Examples
1. If $S_n = S_m \rightarrow S_{(m+n)} = O$	If $S_7 = S_{11} \rightarrow S_{18} = O$
2. $T_p = \frac{1}{q} \& T_q = \frac{1}{p}$ ; $\rightarrow T_{pq} = 1 \& S_{pq} = \frac{pq+1}{2}$	$T_3 = \frac{1}{2} \& T_2 = \frac{1}{3}; \rightarrow T_6 = 1 \& S_6 = \frac{6+1}{2} = \frac{7}{2}$
3. If $S_p = q \& S_q = p \rightarrow S_{(p+q)} = -(p+q)$	If $S_7 = 11 \& S_{11} = 7$ , $\rightarrow S_{18} = -(11+7) = -18$
4. If $T_p = q \& T_q = p$ ; then $T_r = (p + q - r)$	5. If $T_p = q \& T_q = p$ ; then $T_{(p+q)} = 0$ .

- 6. If ratio of  $S_n$  of 2 APs =  $\frac{An^2 + Bn}{Cn^2 + Dn} = \frac{An + B}{Cn + D}$ ; Ratio of their  $T_m = \frac{A(m-1) + B}{C(m-1) + D}$ .
- **Q.** Sum of 'n' terms of 2 APs are in the ratio of  $\frac{(5n+2)}{(11n-7)}$ . Ratio of their sixth terms is ____.
- 7. We add/subtract/multiply/divide all terms of AP by any no. resulting series is AP.
- 8. If we form a series from the reciprocal of all the terms of AP, it becomes HP.
- 9. If 3 numbers are given in AP, Put  $1^{st}$  no = 1;  $2^{nd}$  no = 2; &  $3^{rd}$  no. = 3; (If necessary).
- 10. If a, b, c are in AP  $\rightarrow$  Put their value as 1, 2, 3 in options & get the answer.
- 11. If  $a^2$ ,  $b^2$ ,  $c^2$  are in AP  $\rightarrow$  Put value as 1, 5, 7 in options & get answer [1,25,49  $\rightarrow$  AP]







# ARITHMETIC PROGRESSION - QUESTION BANK

SN		6A. ARTHN	NETIC PROGRESSION		Ans
Q1			rence. If the difference between their million		С
	(a) 123	(b) 112233	(c) 111222333	(d) 112333	
Q2	n th term of the seq	ruence 2, 4, 6, 8	is		Α
	(a) 2n	(b) 2n-1	(c) 2n + 1	(d) N	
QЗ	Number of terms i	n the series 1+ 3 +5	+7 ++ 61 is		C
	(a) 30	(b) 28	(c) 31	(d) 29	
Q4	If 1st term of an AF	o is 5 & its 100 th ter	m is -292, then its 51st te		D
	(a) -142	(b) -149	(c) 155	(d) -145	
Q5	In a certain arithm term is twice the _		he 24th term is twice the	e 10 th term, then 72 nd	С
	(a) 30 th term	(b) 40 th term	(c) 34 th term	(d) 38 th term	
Q6	If 10th term of an then k =	A.P. is twice the 4t	h term & 23rd term is 'k'	times the 8th term,	А
	(a) 2.5	(b) 3	(c) 3.5	(d) 4	
Q7	The two arithmetic	c means between -6	6 and 14 is		В
	(a) 2/3, 1/3	(b) 2/3, 22/3	(c) -2/3, -22/3	(d) None	
Q8	The sum of the ser	ies $3\frac{1}{2}+7+10\frac{1}{2}+14+$	to 17 terms is		С
	(a) 530	(b) 535	(c) $535\frac{1}{2}$	(d) None	
Q9	The sum of an A.P. Value of n.	whose first term is	- 4 and the last term is	146 is 7171. Find the	В
	(a) 99	(b) 101	(c) 100	(d) 102	
Q10	The number of the	terms of the series	$3 + 9\frac{1}{3} + 9\frac{1}{3} + 9$ will o	mount to 155 is	D
	(a) 30	(b) 31	(c) 32	(d) None	
Q11	α = 14 & sum of fir opposite in sign. T _s		of first 10 terms are equ	ual is magnitude but	Α
	(a) 70/11	(b) 6	(c) 4/11	(d) None	
Q12			upto n terms is o] (c) $\frac{n}{2}[2\alpha + (3 - n)]$	(d) $\frac{n}{2}[2\alpha (n - 1)]$	В
Q13			, 36, 32, 28 is (c) 232	2	Α
044					Đ
Q14	How many terms a	re there in the AP (	whose 1 st & 5 th are -14 & 2	respectively & sum	В







	of the term is 40				
	(a) 2 x d	(b) 10	(c) 8	(d) 14	
Q15	P th term of an Af	P is $\frac{3p-1}{6}$ . The sum of	the first n terms of the	AP is	В
	(α) n(3n+1)	(b) $\frac{n}{12}$ (3n+1)		(d) None	
Q16	Find the sum of t	First 25 terms of AP	series whose n th term is	s (n/5) + 2	В
	(a) 105	(b) 115	(c) 125	(d) 135	
Q17	The sum of n ter	ms of an AP is 2n² +3	3n. Find the n th term.		Α
	(α) 4n+1	(b) 4n-1	(c) 2n+1	(d) 2n-1	
Q18	Sum of all nature	ıl numbers from 100	to 300 which are divisib	ole by 4 or 5 is	Α
	(a) 10200	(b) 15200	(c) 16200	(d) None	
Q19	The sum of all no	tural numbers from	100 to 300 which are d	ivisible by 5 is	С
	(a) 10200	(b) 30000	(c) 8200	(d) 2200	
Q20	Sum of all natura	l numbers from 100 t	to 300 which are divisib	visible by 4 and 5 is	
	(a) 10200	(b) 30000	(c) 8200	(d) 2200	
Q21	The sum of natur	al numbers upto 200	0 excluding those divisil	ole by 5 is	С
	(a) 20100	(b) 4100	(c) 16000	(d) None	
Q22	Find three numb	nree numbers in AP whose sum is 6 and the product is -24		А	
	(a) -2, 2, 6	(b) -1, 1, 3	(c) 1, 3, 5	(d) 1, 4, 7	
Q23	The four numbers in AP whose sum is 24 and their product is 945 are			А	
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None	
Q24	4 numbers in AP 85 are	with the sum of 2 nd 8	$_{ m a}$ 3 rd being 22 and the pr	roduct of 1st & 4th being	С
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None	
Q25	Divide 12.50 in 5 parts in AP such that the first part and the last part are in the ratio 2:3			ne last part are in the	А
	(a) 2, 2.25, 2.5, 2	.75, 3	(b) -2, -2.25, -2.5, -2	2.75, -3	
	(c) 4, 4.5, 5, 5.5, 6 (d) -4, - 4.5, -5, -5.5, -6			5, -6	
Q26	Find four numbe	rs in AP with the sur	m of 2 nd & 3 rd is 22 & pro	oduct of 1st & 4th is 85.	С
	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None.	
Q27	The sum of the s	eries 1 + 2 + 3 + 4 +.	+ 100 is		А
	$(\alpha) \frac{100(101)}{2}$	(b) $\left[\frac{100(101)}{2}\right]2$	(c) 100 x 101	(d) None	
Q28	The value of 11²+	12 ² ++20 ² is			В
	(a) 3845	(b) 2485	(c) 2870	(d) 3255	
Q29	The value of $\frac{1^3+2}{1+2}$	³ +···+10 ³ is			В
	(α) 45	(b) 55	(c) 385	(d) 285	









Q30	If a, b, c are in A	P then the value of	$\frac{(a^3+4b^3+c^3)}{(a^3+4b^3+c^3)}$		С
	(a) 1		$b(a^2+c^2)$ (c) 3	(d) None	
Q31	If a, b, c are in A	 P then (b+c), (c+α),	, (a+b) are in		Α
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q32	If a, b, c are in th	ne $p^{th}$ , $q^{th}$ and $r^{th}$ te	rms of an AP, value of c	ı(q-r) +b(r-p) +c(p-q) is	А
	(a) O	(b) 1	(c) -1	(d) None	
Q33	If $a^2$ , $b^2$ , $c^2$ are in	AP then (b+c), (c+c	a), (a+b) are in		С
	(a) AP	(b) GP	(c) HP	(d) None	
Q34			talment each less then t Thich the entire amount		В
	(a) 10 months	(b) 15 months	(c) 14 months	(d) None	
Q35	If n th terms of two	o A.P's are in the re	atio (3n+1):(n+4) the rat	io of fourth term is	Α
	(a) 2	(b) 3	(c) 4	(d) None	
Q36		e end of the AP 4,9			С
	(a) 204	(b) -209	(c) 209	(d) 214	
Q37			- (1 - 2/n) + (1 - 3/n) +		Α
	(α) ½( <i>n</i> -1)		(c) ( <i>n</i> -1)	(d) ( <i>n</i> +1)	
Q38		$(x + y)^2$ , $(x^2 + y^2)$ , $(x^2 + y^2)$			В
	(a) (x + y) ² - 2(n-1) (c) both the abov	•	(b) n(x + y) ² - n(n-1)x (d) None	У	
Q39			-2), (1/n) (n-3) is		В
GOS		(b) (1/2) (n-1)		· (d) None	ם
Q40		+2+3++(n-1)] is		, ,	А
	(a) n ³	(b) n ²	(c) n	(d) None	
Q41	Which term of se	ries 7+11+15	= 403.		В
	(a) 50	(b) 100	(c) 101	(d) 51	
Q42	The sum 1+3+5+7+	+99 is equal to	·		D
	(a) 2499	(b) 2401	(c) 9801	(d) None	
Q43	If Sn the sum of f	irst n terms in a se	ries is given by 2n²+3n	the series is in	Α
	(a) AP	(b) GP	(c) HP	(d) None	
Q44			n terms is 5n²+2n is		С
	(a) 3n - 10	(b) 10n - 2	(c) 10n - 3	(d) None	
Q45		$_3$ = n + 2 and so on,		. h -	В
	(a) n	(b) 2n - 1	(c) 2n + 1	(d) 2n	
Q46			200 and 400 which are		







	(a) 7730	(b) 8729	(c) 7729	(d) 8730	
Q47	Sum of all natu	ıral numbers between	500 & 1000 which are di	visible by 13 is	А
	(a) 28400	(b) 28405	(c) 28410	(d) None	
Q48	Number of nur	nbers between 74 and	25556 divisible by 5 is _	·	В
	(a) 5090	(b) 5097	(c) 5095	(d) None	
Q49	Sum $1^2 + 2^2 + 3^2$	² + 4 ² +10 ² is equal	to		А
	(a) 385	(b) 386	(c) 384	(d) None	
Q50	Sum of $1^3 + 2^3 -$	+ 3 ³ + 4 ³ + 10 ³ is equ	al to		В
	(a) 4410	(b) 3025	(c) 3470	(d) None	
Q51	Sum of <i>n</i> term	s of the series 2 + 6 +	10 + is		А
	(a) 2n²		(c) n ² /2	(d) 4n²	
Q52	Unity is added	l to sum of any number	of terms of the AP 3,5,7	7,9, resulting sum is	В
	Unity is added to sum of any number of terms of the AP 3,5,7,9, resulting sum is				
	(a) 'a' perfect	cube	(b)'a' perfect square	•	
	(c) 'a' number		(d) None		
Q53	Find the no. which should be added to the sum of any number of terms of AP so				С
	that resultant is also AP				
	(a) -1	(b) 0	(c) 1	(d) None	
Q54	If a, b, c d are	e in AP then			D
	(a) $a^2 - 3b^2 - 3$	$c^2 - d^2 = 0$	(b) $a^2 + 3b^2 + 3c^2 + d^2$	² = 0	
	(c) $a^2 + 3b^2 + 3$	$4c^2 - d^2 = 0$	(d) None		
Q55	If a, b, c be the sums of p, q, r terms respectively of an AP, the value of $(\frac{a}{p})(q-r)$ +				Α
	$(\frac{b}{q})(r-p) + (\frac{c}{r})(p-q)$ is				
	$\begin{pmatrix} q & r \\ (a) & 0 \end{pmatrix}$		(c) -1	(d) None	
Q56		are in AP then	(0)	(a) None	D
Q00		e = 0 (b) a - 2c + e = 0	(c) b - 2c + d = 0	(d) All	ע
052					~
Q57	1	•	s. In each year after the eding year. The amount	•	С
	the 1st year w		camy your. The amount	or money no saved m	
	(a) Rs. 1000	(b) Rs. 1500	(c) Rs. 1200	(d) none	
Q58	The sum of <i>n</i> t	erms of a+b, 2a, 3a-b	is		D
	(a) n(a-b) +2b	(b) n (α+b)		(d) None	
Q59			stallments such that eacl		D
			. The value of the $1^{ m st}$ inst		
	(a) Rs. 36	(b) Rs. 30	(c) Rs. 60	(d) None	
Q60	2, 5, 8, 11, 14.	17 is an A.P in which	the common difference i	is .	В







	(a) 2	(b) 3	(c) -2	(d) -3	
Q61	Determine th	e common difference	of progression 16, 1		D
	(a) 2	(b) -2	(c) 3	(d) -3	
Q62	If a, b, c are	in A.P., then 2b =	_		В
	(a) a - c	(b) α + c	(c) $\frac{a+c}{2}$	$(d) \frac{a-c}{2}$	
Q63	If the terms 2	2x, (x+10) and (3x+2) b	e in AP, the value o	f x is	С
	(a) 7	(b) 10	(c) 6	(d) None	
Q64	The value of	x such that 8x+4,6x-2,	2x+7 will form an A.1	P. is	С
	(a) 15	(b) 2	(c) $\frac{15}{2}$	(d) None	
Q65	Find the 7 th te	erm of the A.P 8, 5, 2,	-1, -4,		В
	(a) -13	(b) -10	(c) -7	(d) -16	
Q66	20 th term of t	he progression 1, 4, 7	¹ , 10 is		А
	(a) 58	(b) 52	(c) 0	(d) None	
Q67	For A.P 2, 5, 8	8, 11, 14,, 12th tern	n is		С
	(a) 34	(b) 33	(c) 35	(d) 36	
Q68	13th term of	series 93, 90, 87 is	S		А
	(a) 57	(b) -54	(c) 50	(d) 54	
Q69	n th element of	f the sequence 1,3,5,7			В
	(a) n	(b) 2n -1	(c) 2n +1	(d) None	
Q70		e sequence 2, 4, 6, 8			Α
	(a) 2n		(c) 2n + 1	(d) N	
Q71		n A.P is n and n th term			D
		(b) n + m - 2r			
Q72				of the (p+q) th term is	A
	(a) O	(b) 1	(c) -1	(d) None	
Q73		12 th terms of the A.P			D
	(a) -2, 2, 6, 10		(b) -10, -4, 2, 8		
024	(c) 6, 8, 10, 12		(d) 2, 5, 8, 11,	14,	0
Q74	which term o $(a) 10^{th}$	f the A. P 11, 8, 5,2 , (b) 8 th	. IS -10? (c) 12 th	(d) 14 th	В
025				(u) 14	0
Q75	Which term o (α) 21st	f the progression -1, (b) 20 th	-3, -5, is -39? (c) 19 th	(d) None	В
030				(u) None	~
Q76		f the A.P $\frac{3}{\sqrt{7}}, \frac{4}{\sqrt{7}}, \frac{5}{\sqrt{7}}, \dots$ is	•	. 15	C
	(α) 13	(b) 14	(c) 15	(d) 16	









Q77	The last term of t	he series 5,7,9,	to 21 term is		С
	(a) 44	(b) 43		(d) None	
Q78	The last term of t	he A.P 0.6,1.2,1.8 to			В
	(a) 8.7		(c) 7.7	(d) None	
Q79	Determine the fir	st term of an A.P. wi	th common difference	ce 3 & 7th term being 11	Α
	(a) -7			(d) 5	
Q80	If the 10 th term of 8 th term, then the		$e$ $4^{th}$ term, and the $2$	23 rd term is 'k' times the	Α
	(a) 2.5	(b) 3	(c) 3.5	(d) 4	
Q81	The sum of	between the ac	tual values and the	A.M is zero.	В
	(a) sums	(b) differences	(c) product	(d) square root	
Q82	AM between a & c	o is			В
	(a) ac	(b) $\frac{(a+c)}{2}$	(c) $\frac{ac}{2}$	(d) $\frac{(a-c)}{2}$	
Q83	A. M between 2 &	4 is			С
	(a) 2	(b) 4	(c) 3	(d) 6	
Q84	AM between 8 & 2	20 is			С
	(a) 6	(b) 12	(c) 14	(d) 18	
Q85	AM between 5 and	d 13 is			Α
	(a) 9	(b) 10	(c) 8	(d) None	
Q86	AM between 33 aı	nd 77 is			С
	(a) 50	(b) 45	(c) 55	(d) None	
Q87	4 arithmetic mear	ns between -2 and 20	3 are		С
	(a) 3,13,8,18	(b) 18,3,8,13	(c) 3,8,13,18	(d) None	
Q88	If the AM of two r	numbers is 6 and GM	is 6 then find the nu	ımbers.	А
	(a) 6,6	(b) 10,8	(c) 10,6	(d) 9, 2	
Q89	Find the numbers	whose GM is 5 and A	M is 7.5.		В
	(a) 12 and 13	(b) 13.09 and 1.91	(c) 14 and 11	(d) 17 and 19	
Q90	Between the two numbers whose sum is $\frac{13}{6}$ , an even number of A.M is inserted. If the sum of arithmetic mean exceeds their number by unity, then number of arithmetic means inserted are				
	(a) 6	(b) 10	(c) 8	(d) 12	
Q91	Three numbers a,l	b,c are in A.P, Find a	n-p+ c		С
	(a) a	(b) -b	(c) b	(d) c	
Q92	In an A.P. if the 3r		is 30 then the sum o	f first 20 terms is	Α
	(a) 810	(b) 520	(c) 180	(d) 250	









Q93	n	s $a_2$ , its common c	. n	f its first 'n' terms =	С
	$(\alpha)^{\frac{11}{2}} [2\alpha_{2+}(n-1) d]$		(b) $\frac{\pi}{2}$ [ $2\alpha_{1+}(n-1)$ o		
	$(c)^{\frac{n}{2}}[2a_2 + (n-3)]d$	]	(d) $\frac{n}{2} [\alpha_{2+}(n-1) d]$		
Q94	The sum of the se	eries 1+2+4+8+	to 10 term is		В
	(a) 1024	(b) 1023	(c) 1025	(d) None	
Q95	The sum of serie	s 8, 4, 0 to 5	50 terms is		О
	(a) 18900	(b) 9000	(c) -4500	(d) None	
Q96	The sum of all nu	mbers between 2	00 and 300		D
	(a) 11,600	(b) 12,490	(c) 12,500	(d) 24,750	
Q97	The sum 1+2+3+4	+70 is equa	al to		В
	(a) 2484	(b) 2485	(c) 2845	(d) None	
Q98	The sum of serie	s 8, 4, 0 to 50	terms is		С
	(a) 18900	(b) 9000	(c) -4500	(d) None	
Q99	In an A.P. if $S_n = S_n$	3n² - n & its comm	on difference is '6', th	nen the First term is	Α
	(a) 2	(b) 3	(c) 4	(d) 6	
Q100	The sum of $\frac{1}{(x+y)}$	and $\frac{1}{(y,y)}$ is			В
		(b) $\frac{2x}{(x^2-y^2)}$	(c) $\frac{2y}{(x^2+y^2)}$	(d) $-\frac{2x}{(x^2-y^2)}$	
	` , ,	. , ,	$(x^2+y^2)$	$(x^2-y^2)$	
Q101	$\frac{a^2}{a^2 - b^2} + \frac{b^2}{b^2 - a^2} = \underline{\hspace{1cm}}$	·			D
	(a) a - b	(b) a + b	(c) $a^2 - b^2$	(d) 1	
Q102	8 th term of the p	rogression 8, 5, 2	, -1, -4, is		В
	(α) -12	(b) -13	(c) 13	(d) 12	
Q103	Sum of a series i Number of terms		st term being 17 and t	the common difference -2.	С
	(a) 6	(b) 12	(c) 6 or 12	(d) None	
Q104	Number of term becomes zero	s of series need	led for sum of the so	eries 50 + 45 + 40 +	В
	(a) 22	(b) 21	(c) 20	(d) None	
Q105	Sum of certain r	numbers of terms	of an AP series -6, -	3, 0 is 225. Number of	В
	(a) 16	(b) 15	(c) 14	(d) 13	
Q106	The number of te	erms in the A.P. 7,	, 13, 19, 97 is		С
	(a) 97		(c) 16	(d) 15	
Q107	The sum of all na	tural numbers fro	om 100 to 300 which a	re divisible by 4 is	А
	(a) 10200	(b) 30000	(c) 8200	(d) 2200	









Q108	Sum of n terms of 2 APs are in the ratio of $\frac{7n-5}{5n+17}$ . Then term of the two series	В			
	are equal				
	(a) 12 (b) 6 (c) 3 (d) None				
Q109	The sum of the first 100 terms common to the series 17, 21, 25 And 16, 21, 26,	D			
	is				
	(a) 202200 (b) 100101 (c) 101010 (d) 101100				
Q110	If the $p^{th}$ term of an AP is q & the $q^{th}$ term is p the value of the rth terms is	В			
	(a) $p-q-r$ (b) $p + q-r$ (c) $p + q + r$ (d) None				
Q111	The p th term of an AP is $\frac{1}{a}$ and the q th term is $\frac{1}{p}$ . The sum of the pq term is	А			
	T F				
	(a) $\frac{1}{2}$ (pq+1)    (b) $\frac{1}{2}$ (pq-1)    (c) (pq+1)    (d) (pq-1)				
Q112	Sum of p terms of an AP is q and the sum of q terms is p. The sum of $p+q$ terms is	Α			
	(a) -(P+q) (b) (P+q) (c) $(p-q)^2$ (d) $P^2-q^2$				
Q113	If $S_1$ , $S_2$ , $S_3$ be respectively, sum of n, 2n, 3n terms of an AP the value of $S_3 \div (S_2 - S_1)$	С			
	is				
	(a) 1 (b) 2 (c) 3 (d) None				
Q114	If $S_1$ , $S_2$ , $S_3$ be the sums of n terms of three APs the first term of each being unity	В			
	and the respective common differences 1, 2, 3 then $\frac{(S_1+S_3)}{s_2}$ is				
	(a) 1 (b) 2 (c) -1 (d) None				
Q115	Sum of 'n' terms of two A.Ps are in the ratio of $\frac{(5n+2)}{(11n-7)}$ the ratio of their sixth terms	D			
	is				
	(a) 32:59 (b) 1:1 (c) 2:1 (d) 5:11				
Q116	If m, p, q are consecutive terms in an A.P. then p is	D			
4110		D			
	(a) $\frac{mq}{2}$ (b) $\frac{(m-q)}{2}$ (c) $2(m^2 + q^2)$ (d) $\frac{(m+q)}{2}$				
Q117	The five numbers in AP with their sum 25 and sum of their squares 135 are	Α			
	(a) 3, 4, 5, 6, 7 (b) 3, 3.5, 4, 4.5, 5				
	(c) -3, -4, -5, -6, -7 (d) -2, -3.5, -4, -4.5, -5				
Q118	Three numbers are in A.P. whose sum is 69 and the product of first two is 483.	В			
	Numbers are				
	(a) 25, 23, 21 (b) 21,23,25 (c) 19, 22, 25 (d) None				
Q119	Three numbers are in A.P. of whose sum is 15 and whose product is 105, then numbers are	Α			
	(a) 3,5,7 (b) 2, 5, 8 (c) 0, 5, 10 (d) None				
Q120	Three number in AP whose sum is 27 and the sum of their squares is 341 are	С			
	(a) 2, 9, 16 (b) 16, 9, 2 (c) Both (a) and (b) (d) -2, -9, -16				
Q121	Four numbers in AP whose sum is 20 and the sum of their squares is 120 are	В			
	Four numbers in AP whose sum is 20 and the sum of their squares is 120 are				









	(a) 3, 5, 7, 9	(b) 2, 4, 6, 8	(c) 5, 9, 13, 17	(d) None	
Q122	Divide 69 into 3 per parts is 483.	arts which are in A	A.P and are such the	at product of the 1st two	А
	(α) 21,23,25	(b) 23,25,27	(c) 19,21,23	(d) 17,19,21	
Q123	Sum of 3 numbers i (a) 3,4,5	n A.P. is 12 and the (b) 1,4,7	sum of their cube is (c) 2,4,6	: 408. Numbers are (d) None	В
Q124	Five numbers in AF (a) 3, 4, 5, 6, 7 (c) -3, -4, -5, -6, -7		nd product of the fi (b) 3, 3.5, 4, 4.5, (d) -2, -3.5, -4, -4		В
Q125			1275 and the sum of en numbers is (c) 1725	f first 50 odd numbers is (d) 2500	Α
Q126	Sum of three integ (a) 2,5,8	ers in AP is 15 and (b) 8,5,2	their product is 80 (c) 2,8,5	. the integers are  (d) Both (a) and (b)	D
Q127	Sum of all natural r (a) 10200	no. from 100 to 300 (b) 15200	which are exactly d (c) 16200	livisible by 4 or 5 is  (d) None	С
Q128	In an Ashoka Cha sectors, three sma (a) In A.P. (c) In G.P.	•	on are (b) Equal	allest sector, two small	A
Q129		per year. Find the llary in the last yed 200	e total amount whicl		В
Q130	received an increin 10 years	ment of Rs. 15,000		00,000 per year and he um of the salary he taken (d) None	A
Q131	The sum of n terms	s of an AP is 3n² + 5 (b) 27	ōn, which term of AP (c) 29	is 164. (d) 31	В
Q132	Sum of n terms of (a) $(x + y)^2 - 2(n - 4)$ (c) $n(x + y)^2 - n(n + 4)$	I)xy	 (b) n(x + y)² — n (1 (d) None	n - 1) xy	В
		•			
Q133	-		(n - 3)/n is (c) (n+1)/2	(d) None	В







	$(\alpha)^{n}(n+1)$	(b) ( ⁿ )(n+1)(2n+1)	(a) [( ⁿ )(n + 1)] ²	(d) None	
	2	(b) $(\frac{n}{6})(n+1)(2n+1)$		(d) None	
Q135	·	of first n natural nu			В
	(a) $(\frac{n}{2})$ (n+1)	(b) $(\frac{n}{2})$ (n+1) (2n+1)	(c) $\left[ \left( \frac{n}{2} \right) (n+1)^2 \right]$	(d) None	
Q136	The sum of cubes o	f first n natural num	ber is		C
	(a) $(\frac{n}{2})$ (n+1)	(b)( $\frac{n}{6}$ )(n+1) (2n+1)	(c) $[(\frac{n}{2})(n+1)]^2$	(d) None	
Q137	The sum of first 'n'	odd number is	_·		В
	$(\alpha) \frac{n(n+1)}{2}$	(b) n ²	(c) $\frac{n}{2}$	$(d) \frac{n(n-1)}{2}$	
Q138	The sum of n terms	of an AP is 2n² +3n.	Find the nth term?		А
	(α) 4n+1	(b) 4n-1	(c) 2n+1	(d) 2n-1	
Q139	The first three ter	ms of sequence whe	n nth term T _n is n²-2r	n are	Α
	(a) -1, 0, 3	(b) 1, 0, 2	(c) -1, 0, -3	(d) None	
Q140	If Sn the sum of fir	st n terms in a serie	es is given by 2n²+3n	the series is in	Α
	(a) AP	(b) GP	(c) HP	(d) None	
Q141	n th term of the seri	es whose sum to n t	erms is 5n²+2n is	·	С
	(α) 3n - 10	(b) 10n - 2	(c) 10n - 3	(d) None	
Q142	$t_1 = n, t_2 = n + 1, t_3 =$	= n + 2 and so on, the	en t _n =		В
	(a) n	(b) 2n - 1	(c) 2n + 1	(d) 2n	
Q143		•	allments such that ea The value of the 1st in	ich installment is Rs. 10 Istallment is .	D
	(a) Rs. 36		(c) Rs. 60	(d) None	
Q144	If a, b, c, d, e are	in AP then			D
	(a) a - b - d + e = 0	(b) α - 2c+ e	e = 0 (c) $b - 2c + c$	d = 0 (d) All	
Q145	The sum of <i>n</i> terms	of a+b, 2a, 3a-bi	s		D
	(α) n(α-b) +2b	(b) n(a+b)	(c) both the above	(d) None	
Q146	Find the sum to <i>n</i> to	erms of (1-1/n) + (1-2	2/n) + (1-3/n) +		Α
	(a) ½(n−1)	(b) ½(n+1)	(c) (n-1)	(d) (n+1)	
Q147	Value of $n^2 + 2n$ [1+2]	2+3++(n-1)] is	·		Α
	(α) n ³	(b) n ²	(c) n	(d) None	
Q148	Which term of seri	es 7+11+15 = 4	03.		В
	(a) 50	(b) 100	(c) 101	(d) 51	
Q149	Sum 1+3+5+7+ +9	9 is equal to			D
	(α) 2499	(b) 2401	(c) 9801	(d) 2500	
Q150	Sum of all natural n	umbers between 20	00 and 400 which are	e divisible by 7 is	В
	(a) 7730	(b) 8729	(c) <del>77</del> 29	(d) 8730	







Q151	Sum $1^2 + 2^2 + 3^2$	3² + 4² +10² is equ	ual to		А
	(a) 385	(b) 386	(c) 384	(d) None	
Q152	Sum of 1 ³ + 2 ³	+ 3 ³ + 4 ³ + 10 ³ is 6	equal to		В
	(a) 4410	(b) 3025	(c) 3470	(d) None	
Q153	Sum of <i>n</i> term	ns of the series 2 + 6	6 + 10 + is		А
	(a) 2n²	(b) n²	(c) $n^2/2$	(d) 4n²	
Q154	If a, b, c d ar	e in AP then			D
	(a) $a^2 - 3b^2 - 3b^2$	$3c^2 - d^2 = 0$	(b) $a^2 + 3b^2 + 3c^2$	$+ d^2 = 0$	
	(c) $a^2 + 3b^2 + $	$3c^2 - d^2 = 0$	(d) $a^2 - 3b^2 + 3c^2$	$-d^2 = 0$	
Q155	If a, b, c be t	he sums of p, q, r ter	rms respectively of an a	AP, the value of	Α
	$\left(\frac{a}{p}\right)(q-r) + \left(\frac{b}{a}\right)(r$	$(-p) + (\frac{c}{r})(p-q)$ is	_·		
	(a) O	(b) 1	(c) -1	(d) None	
Q156	If 10 th term o	f AP is twice the 4 th t	term & 23 rd term is 'k' t	imes the 8 th term, k =	А
	(a) 2.5	(b) 3	(c) 3.5	(d) 4	
Q157	Value of 11²+1	2 ² ++20 ² =			В
	(a) 3845	(b) 2485	(c) 2870	(d) 3255	
Q158	Value of $\frac{1^{3}+2^{3}}{1+3}$	$\frac{+\cdots+10^3}{+\cdots+10} = \underline{\hspace{1cm}}$			Ω
	(a) 45	(b) 55	(c) 385	(d) 285	
Q159	If a, b, c are	in AP, then value of (	$\frac{(a^3+4b^3+c^3)}{b(a^2+c^2)} = \underline{\hspace{1cm}}$		С
	(a) 1	(b) 2	(c) 3	(d) None	
Q160	If a, b, c are	in AP then (b+c), (c+c	a), (a+b) are in		А
	(α) AP	(b) GP	(c) HP	(d) None	
Q161	If a, b, c are	in p th , q th & r th terms (	of an AP, value of a(q-r)	) +b(r-p) +c(p-q) is	А
	(a) O	(b) 1	(c) -1	(d) None	
Q162	If $a^2$ , $b^2$ , $c^2$ are	e in AP then (b+c), (d	c+a), (a+b) are in	_•	С
	(a) AP	(b) GP	(c) HP	(d) None	
			·	-	







### CHAPTER 6B. GEOMETRIC PROGRESSION

#### INTRODUCTION

- It is a sequence in which 'any term divided by its preceding term' is "same/constant".
- Ratio between two consecutive terms of the series is "constant". Such Ratio is known as Common Ratio & is denoted by 'r'.
- First term of GP is denoted by 'a'.
- $\mathbf{p} = \frac{T_2}{T_1} = \frac{T_3}{T_2} = \frac{T_4}{T_3} \cdots \frac{T_n}{T_{n-1}}$
- Common Ratio of GP 'p' =  $\frac{T_n}{T_{n-1}}$

#### CONCEPT 1: Finding nth TERM OF GP

If a = 5 & r = 2

 $T_1 = \alpha$ ;  $T_2 = \alpha.r$ ;

 $T_3 = T_2$ .  $r = \alpha r \cdot r = \alpha r^2$ ;  $T_4 = T_3$ .  $r = r^2 r = \alpha r^3$ ;

 $T_n = \alpha . r^{n-1}$ 

CQ1: Find the 8th term of series 4, 8, 16 ..... is [Ans: 512]

**CQ2:**  $10^{th}$  term of the G.P.  $\frac{1}{2}$ , 1, 2, 22, ..... is [Ans: 256]

[Ans:  $\frac{1}{x^{28}}$ ] **CQ3:** The last term of the series  $x^2$ , x, 1, .... to 31 terms is

**CQ4:** Which term of the G.P. series 1/4, -1/2, 1....is -128?

**CQ5:** The number of terms in 6,18,54, ..... upto 1458 is ____.

**CQ6:** Which term of series 3,  $\sqrt{3}$ , 1,  $\frac{1}{\sqrt{3}}$ ...is  $\frac{1}{243}$ ?

#### **CONCEPT 2: GEOMETRIC MEAN**

If a, b, c are in GP,  $b/a = c/b = \frac{b^2 = ac}{b}$ , b is called GM between a & c.

**CQ7:** If (k+9), (k-6) & 4 forms three consecutive terms of a G.P, then the value of 'k' is____.





#### PC NOTE

If two non-consecutive terms in GP (say T_m & T_n) & their values are given in question & you are asked to find out GP.  $r^{m-n} = \frac{Im}{T}$ 

**CQ8:** Find GP where  $T_3$  is 36 &  $T_5$  is 324.

**Ans:** 
$$r^{5-3} = 324/36$$
;

$$p^2 = 9$$

$$r^2 = 9$$
 & thus  $r = \pm 3$ .

$$ar^2 = 36$$

$$\alpha r^2 = 36.$$
  $\alpha . 9 = 36.$   $\alpha = 4.$ 

$$\alpha = 4$$
.

GP will be 4,  $\pm 12$ ,  $\pm 36$ ,  $\pm 108$ ....

#### CONCEPT 3: INSERTION OF 'n' GEOMETRIC MEANS BETWEEN TWO NUMBERS

- Total number of terms in the required GP will be (n+1).
- Take the 1st given number as  $T_1 \& 2^{nd}$  given number as  $T_{n+2}$

$$\mathbf{p} = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

CQ9: Insert 3 geometric means between 1/9 & 9.

**Ans:** Insert 3 GMs between 1/9 & 9, total number of terms will be  $5 \rightarrow 1/9$ , GM₁, GM₂, GM₃, 9.

Take  $T_1 = 1/9$ ; &Thus  $T_5 = 9$ .

[Now we will use the above note.]

$$p^{5-1} = 9/1/9$$

& thus 
$$r = 3$$
.

$$GM_1 = 1/9 \times 3 = 1/3$$
,  $GM_2 = 1/3 \times 3 = 1$ ,  $GM_3 = 1 \times 3 = 3$ . GP will be 1/9, 1/3, 1, 3, 9.

**HQ1:** Second terms of a GP is 24 and fifth term is 81. The series is _____.

(a) 16, 36, 24, 54 (b) 24, 36, 53 (c) 16, 24, 36, 54 (d) None

#### CONCEPT 4: SUM OF FIRST 'N' TERM OF GP

$$S_n = \alpha \times \frac{1-r^n}{(1-r)}$$
 when  $r < 1$ 

$$S_n = \alpha \times \frac{r^n - 1}{(r-1)}$$
 when  $r > 1$ 

#### CONCEPT 5: SUM OF INFINITE GP (S...)

- It is denoted by S...







#### CONCEPT 5: ASSUMPTIONS OF THE TERMS IN GP

If No. of terms given in question are	Middle Term	Common Difference	Examples of Terms
ODD No. of terms	А	۴	3 terms: $(a/r)$ , $a$ , $(ar)$ ; 5 terms: $(a/r^2)$ , $(a/r)$ , $a$ , $(ar)$ , $(ar^2)$
EVEN No. of terms	(a/r) & (ar)	r²	2 terms: (a/r) & (ar); 4 terms: (a/ r³), (a/r), (ar), (ar³)

PC NOTE: But we will go by OPTION METHOD in such type of questions TO SAVE TIME.

CQ10: In a GP series, the product of the first three terms 27/8. The middle term is _____.

 $(\alpha)^{\frac{3}{2}}$ 

(c)  $\frac{2}{5}$ 

(d) None

#### **CONCEPT 6: PROPERTIES OF GP**

#### **Particulars**

#### Examples

- 1. If we add/subtract all the terms of GP by any number, resulting series is NOT a GP.
- 2. If we Multiply/divide all the terms of GP by any number, resulting series is a GP.
- 3. Reciprocal of all the terms of a GP will be in GP (New GP).
- 4. All the numbers of GP raised to the power k (any number) will also be in GP.
- 5. If a, b, c OR  $a^2$ ,  $b^2$ ,  $c^2$  are in GP  $\rightarrow$  Put a, b, c value as 1, 2, 4 in options & get the answer.
- 6. Log of all terms of a GP, it will become AP.
- 7. If there are 'n' terms in a GP, mth term from the end will be (m-n+1)th term from the start.

Ex: If there are 7 terms in a GP, 2nd term from the end will be (7-2+1)th term from the start.





#### PROPERTIES OF A.P. & G.P.

- A sequence is both A.P. & G.P., if it is constant sequence, i.e. all the terms are equal (d = 0, r = 1).
- If A.M. & G.M. of 2 no. is known, the two no. are:  $A.M. \pm \sqrt{(A.M.)^2 (G.M.)^2}$
- If A.M. & G.M. of 2 no. is in ratio m: n, then no. are in ratio

$$(m + \sqrt{(m)^2 - (n)^2}) : (m - \sqrt{(m)^2 - (n)^2})$$

If  $T_n = An^3 + Bn^2 + Cn + D$ , then  $S_n = \sum T_n = A\sum n^3 + B\sum n^2 + C\sum n + nD$ 

#### HARMONIC MEAN (H.P.)

A sequence of non-zero number  $a_1$ ,  $a_2$ ,  $a_3$ ,...... are in H.P. if  $\frac{1}{a_1}$ ,  $\frac{1}{a_2}$ ,  $\frac{1}{a_3}$ ,...... are A.P.

**Ex:** The sequence 1, 1/3, 1/5, 1/7,...... are in H.P. since 1, 3, 5, 7,...... are in A.P.

- Standard form of a H.P. is:  $\frac{1}{a}$ ,  $\frac{1}{a+d}$ ,  $\frac{1}{a+2d}$ ,.....
- $n^{th}$  term of a H.P. is  $t_n = \frac{1}{a + (n-1)d}$
- If 3 terms are in H.P.  $b = \frac{2ac}{a+c}$ , b is the H.M. between 'a' & 'c'
- For any two distinct positive numbers, A.M. > G.M. > H.M. &  $(G.M.)^2 = A.M. \times H.M.$
- If a, b, c are in G.P. then a + b, 2b, c + d are in H.P. (Ex: 1, 2, 4 = 3, 4, 6)

#### **Space for PC Class Note:**







### GEOMETRIC PROGRESSION - QUESTION BANK

SN	6B. GEOMETRIC PROGRESSION	Ans
Q163	$6^{th}$ term of series ab, $\alpha^2 b^3$ , $\alpha^3 b^5 = $	Α
	(a) $a^6b^{11}$ (b) $a^{11}b^{30}$ (c) $a^{15}b^{36}$ (d) Cannot say	
Q164	If the fifth term of a G.P. is $3^4$ & second term is $3(2)^3$ then the first term is	А
	(a) 2 ⁴ (b) 8 (c) 32 (d) 3.2 ³	
Q165	If n, p, q are in G.P, then the expression for $p$ in terms of n & q is	В
	(a) $\frac{n}{q}$ (b) $(nq)^{1/2}$ (c) $q^{2n}$ (d) Nq	
Q166	n th root of the product of n observations is	А
	(a) G.M (b) H.M (c) Median (d) A.M	
Q167	If an observation in the data set in zero, then its geometric mean is	С
	(a) Positive (b) Negative (c)Zero (d) Indeterminant	
Q168	The AM of two positive numbers is 40 and their GM is 24. The numbers are	Α
	(a) (72,8) (b) (70,10) (c) (60,20) (d) None	
Q169	AM is never than GM.	В
	(a) more (b) less (c) maximum (d) minimum	
Q170	If A be the AM of two positive unequal quantities x and y and G be their GM, then	В
	(a) A <g (b)="" a="">G (c) A≥G (d) A≤G</g>	
Q171	1st term is 1 & 6th term is 32, find 'r'.	C
	(a) 3 (b) 32/5 (c) 2 (d) 160	
Q172	Four geometric means between 4 and 972 are	С
	(a) 12, 48, 192, 768 (b) 16, 64, 256, 512 (c) 12, 36, 108, 324 (d) None	
Q173	The sum of the series $\frac{1}{\sqrt{3}}$ +1+ $\frac{3}{\sqrt{3}}$ + to 18 terms is	А
	(a) 9841 $\left(1 + \frac{1}{\sqrt{3}}\right)$ (b) 9841 (c) $\frac{9841}{\sqrt{3}}$ (d) None	
Q174	The sum of the series 1+2+4+8+ to n term	А
	(a) 2 ⁿ -1 (b) 2n -1 (c) 1/2 ⁿ -1 (d) None	
Q175	The sum of n terms of a GP is $1\frac{127}{128}$ , its first term is 1 and the common ratio is $\frac{1}{2}$ . The	В
	value of n is	
	(a) 7 (b) 8 (c) 6 (d) None	
Q176		В
	first term is	
0.00	(a) 4 (b) 2 (c) 9 (d) 1	
Q177	The sum of the first 20 terms of a GP is 244 terms the sum of its first 10 terms. The common ratio is	А







	(a) $\pm\sqrt{3}$	(b) ±3	(c) $\sqrt{3}$	(d) None	
Q178	Find the sum to In	finity of the Followin	g series : 1 -1+1-1+1-	1 ∞	В
	(a) 1	(b) 1/2	(c) 0	(d) None	
Q179	Sum upto ∞ of the	series 8 + $4\sqrt{2}$ + 4	is		А
	(a) $8(2 + \sqrt{2})$	(b) $8(2 - \sqrt{2})$	(c) $4(2 + \sqrt{2})$	(d) $4(2 - \sqrt{2})$	
Q180	The sum of the fir	st two terms of a GF	is $\frac{5}{3}$ and the sum to	infmity of the series is	D
	3. The common rat	tio is	J		
	(a) 1/3	(b) 2/3	(c) - 2/3	(d) Both (b) and (c)	
Q181	The infinite GP sei	ries with first term $\frac{1}{4}$	and sum $\frac{1}{3}$ is		D
	$(\alpha) \frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \dots$	(b) $\frac{1}{4}$ , $\frac{1}{16}$ , $\frac{1}{64}$ ,	(c) $\frac{1}{4}$ , $\frac{1}{18}$ , $\frac{1}{16}$	(d) None	
Q182	The sum of 3 numb	ers of a GP is 39 and	their product is 729	O. The numbers are	С
		(b) 9, 3, 27			
Q183	1		21 and the sum of tl	heir squares is 189 the	С
	numbers are		(.) P. II	/ I> N.	
	(a) 3, 6, 12		(c) Both	(d) None	
Q184	is 39. The numbers		in GP is 27 & sum of	their products in pairs	С
	(a) 1, 3, 9		(c) Both (a) and (b)	) (d) None	
Q185	If a, b, c are in Gi	P, then the value of c	$a (b^2 + c^2) - c (a^2 + b^2)$	is	Α
	(a) O	(b) 1	(c) -1	(d) None	
Q186	If a, b, c, d are in	GP, (a+b), (b+c), (c+	d) are in		В
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q187	If α, (b-α), (c-α) αι	re in GP and $\alpha = \frac{b}{3} = \frac{a}{5}$	then $a$ , $b$ , $c$ are in $$	·	Α
	(α) ΑΡ	(b) GP	(c) HP	(d) None	
Q188	If a, b, c are in AF	and x, y, z in GP, th	en the value of $x^{b-c}$ .	y ^{c-α} . z ^{α-b} is	В
	(a) O	(b) 1	(c) -1	(d) None	
Q189	If $a$ , $b$ , $c$ are the $p$	$\mathbf{p}^{th}$ , $\mathbf{q}^{th}$ and $\mathbf{r}^{th}$ terms (	of a GP, the value of	$c^{2} a^{q-r} b^{r-p}.c^{p-q}$ is	В
	(a) O	(b) 1	(c) -1	(d) None	
Q190	If a, b, c are in AF	$^{\circ}$ & a, x, b are in GP $^{\circ}$	& b, y, c are in GP th	en $x^2$ , $b^2$ , $y^2$ are in	Α
	(a) AP	(b) GP	(c) HP	(d) None	
Q191	Three numbers are they will be GP. Th		15. If 8, 6, 4 be adde	ed to them respectively,	С
	(a) 2, 6, 7		(c) 3, 5, 7	(d) None	
Q192		n for which the sum c		es 1+3+3²+ is greater	А









	(a) 9	(b) 10	(c) 8	(d) 7	
Q193	6 th term from the e	end of the geometric	progression 8, 4, 2,	, 1, ½, ¼, 1/1024 is	С
	(a) 1/4	(b) 1/16	(c) 1/32	(d) 1/64	
Q194	The numbers x, 8, y	are in GP and the n	umbers x, y,-8 are ir	n AP. The value of x and	В
	y are	(1) (40 ()	( ) (0/ 0)	( ) ) )	
			(c) (%8)	(d) None	
Q195	The sum of four nui numbers are		id the AM of 1 st and i	the last term is 18. The	A
	(a) 4, 8, 16, 32	(b) 4, 16, 8, 32	(c) 16, 8, 4, 20	(d) None	
Q196	The sum of the ser	ies 1-1+1-1+1-1+ t	o 100 terms is equal	to	С
	(a) 1	(b) -1	(c) 0	(d) 50	
Q197	Find the sum to n t	erms of the series 3	+33+333+		C
	(a) $\frac{1}{27}$ (10 ⁿ⁺¹ - 9n - 10	))	(b) $\frac{1}{27}$ (10 ⁿ⁻¹ - 9n - 10	0)	
	(c) $\frac{1}{27}(10^{n-1} + 9n + 10)$	)	(d) $\frac{1}{27}$ (10 ⁿ⁺¹ + 9n + 10	))	
Q198	The sum upto infini	ty of the series $\frac{2}{3} + \frac{5}{9}$	$+\frac{2}{27}+\frac{5}{81}+$ is	·	Α
	(a) 11/8	(b) 8/11	(c) 3/11	(d) None	
Q199	If $x = \alpha + \frac{a}{\pi} - \frac{a}{\pi^2} + \dots + \alpha$	$y = b - \frac{b}{a} + \frac{b}{a^2} \alpha$	$z = c + \frac{c}{\pi} + \frac{c}{\pi^3} + \alpha t$	hen the value of $\frac{xy}{z} - \frac{ab}{c}$	А
	is	, ,	7 7	Z C	
	(a) O	(b) 1	(c) -1	(d) None	
Q200	Given x, y, z are in	GP and $xp = yq = zr$ ,	then $\frac{1}{p}$ , $\frac{1}{q}$ , $\frac{1}{r}$ are in _		В
	(a) AP		(c) Both AP and GP		
Q201		ositive numbers sucl	n that a, x, b are in A	AP and a, y, b are in GP	С
	and $z = \frac{(2ab)}{(a+b)}$ then	·			
	(a) x, y, z are in GF	$y(p) \times y \Rightarrow z$	(c) Both	(d) None	
Q202	A radioactive samp $-(\frac{1}{2} + \frac{1}{4} + \dots \text{ to } \infty)$ , the		ing sample at infinit	e time is given by b = 1	Α
	(a) O	(b) 1	(c) $1/\sqrt{2}$	(d) ½	
Q203		. $A^{\frac{1}{8}}$ to infinity is		. ,	В
	(a) Zero		(c) 1/2	(d) A	
Q204	The sum upto infini	ty of the series $\frac{4}{7} - \frac{1}{2}$	$\frac{5}{2} + \frac{4}{7^3} - \frac{5}{7^4} + \dots $ is		А
			(c) $\frac{1}{2}$		
Q205			$+\frac{1}{2^5}+\frac{1}{3^6}+\dots$ is		А
	(α) 19/24		(c) 5/24		







Q206	If $1 + \alpha + \alpha^2 + \dots \infty$	$= x;$ $1 + b + b^2 +$	$\infty$ = y and 1 + ab +	a²b²+∞ is given by -	А
	$(\alpha) \frac{xy}{x+y-1}$	(b) $\frac{xy}{x-y+1}$	(c) $\frac{xy}{x+y+1}$	(d)None	
Q207	If S ₁ , S ₂ ,S _n are th	e sum of Infinite GP	s whose first terms	are 1, 2, 3n & whose	А
		$e^{\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n+1}}$ then the			
		(b) $\frac{n(n+2)}{2}$			
Q208	The least vale of 'r	n' satisfying 1 + 2 + 2²	² ++ 2 ⁿ⁻¹ > 300 is	·	В
	(a) 8	(b) 9	(c) 10	(d) 6	
Q209	Find the sum of n t	erms of the series O	0.7+0.77+0.777+ to	n terms.	В
	_	(b) $\frac{7}{81}$ {9n - 1+ 10 ⁻ⁿ }	_	_	
Q210	differences=3 and	_	are in G.P. with con	re in A.P. with common nmon ratio = 2, and sum	D
	(a) 6.4	(b) 11.2	(c) 5.2	(d) 8.4	
Q211	If geometrical pro equal, then value o	<del>-</del>	& 1280, 640, 320	have their p th terms	С
	(a) 10	(b) 75	(c) 5	(d) 40	
Q212	In a GP if the (p+q	) th terms is m and the	e (p-q)th term is n th	nen the pth term is	А
	(α) (mn) ^{1/2}	(b) mn	(c) m + n	(d) m — n	
Q213	The Lt $1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3}$	$\frac{1}{3} + \ldots + \frac{1}{3^{n-1}} = \eta \rightarrow \infty$			В
	$(\alpha)^{\frac{2}{3}}$	(b) $\frac{3}{2}$	(c) $\frac{4}{5}$	(d) None	
Q214	The sum of n terms	s of $(x+y)^2$ , $(x^2+y^2)$ , $(x-y^2)$	y) ²		В
	$(\alpha) (x + y)^2 - 2(n-1)$	·	(b) $n (x + y)^2 - n (n$	— 1) xy	
	(c) Both the above		(d) None	·	
Q215	The sum of n terms	s of $(n-1)/n$ , $(n-2)$	/n, (n — 3)/n is		В
	(a) O		(c) $(n + 1)/2$		
Q216	The sum of n terms	s of the series 1.2 + 2	2.3 + 3.4 + is		А
	$(\alpha) \left(\frac{n}{3}\right) (n+1) (n+2)$	(b) $(\frac{n}{2})$ (n+1) (n+2)	(c) $\left(\frac{n}{3}\right)$ (n+1) (n-2)	(d) None	
Q217	The sum of n terms	s of the series 1.4 + 3	3.7 + 5.10 + is	·	А
	(α) n (4n² + 5n - 1)/	2	(b) n (5n ² + 4n - 1)/	2	
	(c) n (4n² + 5n + 1)/	2	(d) None		
Q218	If a, b, c are in G.1	P. the b ² =			А
	(a) ac	(b) -ac	(c) a+ b	(d) α — c	
Q219	If a, ar, ar², ar³,	be in G.P. Find the	common ratio.		С
	(a) a	(b) ar	(c) r	$(d)^{\frac{1}{r}}$	
				r	







Q220	Suppose v v z	z form a acometric	sequence with comm	on ratio r (0 < r < 1), if x, 2y,	A
GZZO		=	then value of Y is		
	$(a)^{\frac{1}{3}}$	(b) 1	(c) $\frac{1}{4}$	(d) Dependent of x, y,	
	Z		4		
Q221	The common re	atio of the G.P 2,-6,	, 18, -54 is		В
	(a) 3	(b) -3	(c) 4	(d) -4	
Q222	In 5, 15, 45, 13	5, the common ra	tio is		А
	(a) 3	(b) 5	(c) 10	(d) 30	
Q223	The sum of first eight terms of GP is five times the sum of the first four terms. The common ratio is				С
	(a) $\sqrt{2}$	(b) $-\sqrt{2}$	(c) Both	(d) None	
Q224	The number of	terms in 6,18,54,	1458 is		D
	(a) 5	(b) 7	(c) 8	(d) 6	
Q225	Third term of	geometric progre	ession is 4. Then pro	oduct of the first 6 terms	В
	is		_		
	(a) 4 ⁶	(b) 4 ^{7.5}	(c) 4 ⁵	(d) 4 ¹⁵	
Q226	If the $(p + q)^{th}$	term of a G.P. is X o	and the (p - q) th term	is Y, then p th term is	С
	(a) XY	$(b)\frac{(X+Y)}{2}$	(c) $\sqrt{XY}$	$(d) \sqrt{\frac{X^2 + Y^2}{2}}$	
Q227	Which term of	the progression 1,2	2,4, 8 is 64		А
	(a) 7	(b) 5	(c) 6	(d) 9	
Q228	Which term of	series 3, $\sqrt{3}$ , 1, $\frac{1}{\sqrt{3}}$	is $\frac{1}{243}$ ?		А
	(a) 13	(b) 14	(c) 15	(d) 12	
Q229	Which term of	the progression is	1, 2, 4, 8, is 256?		В
	(a) 10	(b) 9	(c) 12	(d) 13	
Q230	The 4 th term o	f the series 0.04,0.2	2,1, is		С
	(a) 0.5	1	(c) 5	(d) None	
Q231	The sixth term	of a G.P with comm	non ratio as 2 and fir	est term being 5 is	Α
	(a) 160	(b) 32	(c) 800	(d) 64	
Q232	The 7 th term of	f the series 6, 12, 24	4, is		А
	(a) 384	(b) 834	(c) 438	(d) None	
Q233	t ₈ of the serie	s 6, 12, 24, is			В
	(a) 786	(b) 768	(c) 867	(d) None	
Q234	t ₁₂ of the serie	es -128, 64,-32, is	•		С
	(a) $-\frac{1}{16}$	(b) 16	(c) $\frac{1}{16}$	(d) None	







Q235	In a GP series, the	product of the firs	t three $\frac{27}{8}$ . The midd	le term is	А
	$(\alpha)\frac{3}{2}$	(b) $\frac{2}{3}$	(c) $\frac{2}{5}$	(d) None	
Q236	In a GP, the 6 th ter	rm is 729 and the co	mmon ratio is 3, the	n the 1st term is	В
	(a) 2	(b) 3	(c) 4	(d) 7	
Q237	In a GP series the	product of first thr	ee term is $\frac{729}{8}$ . The n	niddle term is	В
	$(\alpha)\frac{3}{2}$	(b) $\frac{9}{2}$	(c) $\frac{2}{9}$	(d) None	
Q238	The last term of th	e series 1,2,4 to	10 terms is		Α
	(a) 512	(b) 256	(c) 1024	(d) None	
Q239	The last term of th	e series 1-3,9,-27,up	oto 7 terms is		В
	(a) 297	(b) 729	(c) 927	(d) None	
Q240	The last term of th	e series $x^2$ , $x$ ,1, to			С
	(a) x ²⁸	(b) $\frac{1}{x}$	(c) $\frac{1}{x^{28}}$	(d) None	
Q241	The nth element of	the sequence -1, 2	-4, 8 is		Α
	(a) (-1) ⁿ 2 ⁿ⁻¹	(b) 2 ⁿ⁻¹	(c) 2 ⁿ	(d) None	
Q242			th term is 81. The se		С
	(α) 16, 36, 24, 54	(b) 24, 36, 53	(c) 16, 24, 36, 54	(d) None	
Q243			to 101 terms is equa		Α
	(a) 1	(b) -1	(c) 0	(d) 100	
Q244	Product of 3 num are	bers in GP is 729	and Sum of square	s is 819. the numbers	С
		(b) 27, 3, 9	(c) 3,9,27	(d) None	
Q245	Sum of three numb	ers in GP is 35 and th	eir product is 1000 t	he numbers are	C
	(α) 20 10 5	(b) 5 10 20	(c) Both	(d) None	
Q246			and their product 27		С
	(α) 10 30 90	(b) 90 30 10	(c) Both	(d) None	
Q247	Three numbers in (	GP with their sum $\frac{13}{3}$	and sum of their squ	uares ⁹¹ are	С
	$(\alpha) \frac{1}{3}, 1, 3$	(b) $3,1,\frac{1}{3}$	(c) Both	(d) None	
Q248	Find five numbers 108.	in GP such that the	ir product is 32 and	product of last two is	Α
	$(\alpha) \frac{2}{9}, \frac{2}{3}, 2, 6, 18$	(b) 18,6,2, $\frac{2}{3}$ , $\frac{2}{9}$	(c) Both	(d) None	
Q249	Find three number 624.	es in G.P whose sum	is 52 and Sum of th	eir product in pairs is	Α
	(α) 4, 12, 36	(b) 10, 16, 26	(c) 5, 17, 30	(d) None	
Q250	Numbers a,X,c are	in AP if X=25 & α, Υ, α	c are in GP if Y=7, the	en value of (a, c) are	С
	·	· · · · · · · · · · · · · · · · · · ·	·		_









	(a) 5,7	(b) 25,7	(c) 1,49	(d) 39, 11	
				(u) 00, 11	
Q251		een 2 and 8 is		. h	А
	(a) 4	(b) 10	(c) 6	(d) 8	
Q252	The geometric	c mean between 6 o	ınd 96 is		А
	(a) 24	(b) 4	(c) 2	(d) 16	
Q253	Let S be the s a G.P. then P²I		ct and R be the sum	of reciprocals of n terms of	С
	(a) S ²ⁿ	(b) S ⁻ⁿ	(c) S ⁿ	(d) S ⁻²ⁿ	
Q254	The A.M and G	5.M of two positive r	numbers is 10. The nu	ımbers are	А
	(a) (10,10)		(c) (5,15)	(d) (20,0)	
Q255	A.M. and G.M are	. of 2 observations	s are 5 & 4 respec	tively, then 2 observations	А
	(a) 8,2	(b) 7, 3	(c) 6, 4	(d) 5, 5	
Q256	If x, y, z are in	n GP., then			А
	$(a) x(y^2+z^2) = z$		(b) $y(z^2+x^2) = x$	$z(z^2+y^2)$	
	(c) $z(x^2+y^2) = y^2$	•	(d) None	. , ,	
Q257	, ,		r th terms of an AP v	alue of $\alpha(q-r)+b(r-p)+c(p-q)$	Α
	is	, , ,			
	(a) O	(b) 1	(c) -1	(d) None	
Q258	If a. b. c be th	ne sums of p. a. r te	erms respectively of	an AP, the value of $\left(\frac{a}{p}\right)(q-r)$	А
	$+\left(\frac{c}{q}\right)(r-p)+\left(\frac{c}{r}\right)(p-p)$		,	(p)\\	
	(a) O	(b) 1	(c) -1	(d) None	
Q259	If a, b, c are i	n AP then the value	$e  ext{ of } \frac{(a^2 + 4ac + c^2)}{(ab + be + ca)}  ext{ is}$		В
	(a) 1	(b) 2		(d) None	
Q260	If a, b, c are i	n AP then (b + c), (c	c + a), (a + b) are in_		А
	(α) AP	(b) GP	(c) HP	 (d) None	
Q261	If a, b, c are i	n AP then $\left(\frac{a}{b}\right)$ (b + c	$(c), (\frac{b}{ca})(c+a), (\frac{c}{ab})(a+b)$		А
	(α) AP		(c) HP		
Q262	If a, b, c are i		$e  ext{ of } \frac{(a^3 + 4b^3 + c^3)}{b(a^2 + c^2)}  ext{ is}_{\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$		С
			(c) 3		
Q263	If (b + c) ⁻¹ .(c +		AP the α²,b²,c² are in		А
	(α) AP		(c) HP	 (d) None	•
Q264			c + α),(α + b) are in_		С
GLUT	(a) AP	(b) GP	(c) HP	 (d) None	)
	(4) / (1	(2) 01	(0) 111	(4) 140110	







Q265	If a, b, c are in A	Paxbare in GP and	d b y c are in GP the	en x²,b²,y² are in	Α		
	(a) AP	(b) GP	(c) HP	(d) None			
Q266	If a, b, c are in G	P a²+b²,ab + bc,b²+ c	² are in		В		
	(a) AP	(b) GP	(c) HP	(d) None			
Q267	If a, b, c are in	GP then value of (a	- b + c)(a + b + c) ² -	$-(a + b + c)(a^2 + b^2 + c^2)$	А		
	is						
	(a) O	(b) 1	(c) -1	(d) None			
Q268	If a, b, c are in GF	then value of $a^2b^2c^2$	(a ⁻³ + b ⁻³ + c ⁻³ )- (a ³ + b	$o^3 + c^3$ ) is given by	Α		
	(a) O	(b) 1	(c) -1	(d) None			
Q269	If a, b, c d are in	AP then			А		
	(a) $a^2 - 3b^2 + 3c^2 -$	$d^2 = 0$	(b) $a^2 + 3b^2 + 3c^2 + 3c^2$	$+ d^2 = 0$			
	(c) $a^2 + 3b^2 + 3c^2$	$-d^2 = 0$	(d) None				
Q270	If a, b, c, d, e are	e in AP then			D		
	(a) $a-b-d+e=0$	(b) $\alpha$ -2c + e = 0	(c) $b - 2c + d = 0$	(d) All			
Q271	If a, b, c, d are ir	GP. Then the value	of b(ab - cd)- (c + a)	)(b ² - c ² ) is	А		
	(a) O		(c) -1				
Q272	If a, b, c, d are ir	GP then (a-b)²,(b-c			В		
	(α) AP	(b) GP	(c) HP		_		
Q273				- b)² - (α - d)² is	А		
	(a) O	(b) 1		(d) None			
0234	, ,			$(-c +)^2 - 3(ab + bc + ca)$	А		
GZ/4	is	(o a) are mor tr	ien value of (a · b ·	o i j clas i so i ca j			
	(a) O	(b) 1	(c) -1	(d) None			
Q275	Numbers x, 8, y ar	e in GP and numbers	x, y,-8 are in AP. Va	lue of x and y are	В		
	(a) (-8-8)	(b) (16,4)	(c) (8,8)	(d) None			
Q276	The sum of 3 numb	oers in AP is 15. If 1.4	i and 19 be added to	o them respectively, the	А		
		The numbers are		77			
	(a) 26, 5, -16	(b) 2, 5, 8	(c) 5, 8, 2	(d) Both (a) and (b)			
Q277	The sum of three	numbers in GP is 70	. If the two extreme	es be multiplied each by	В		
	4 and the mean b	y 5, the products ar	e in AP. The number	s are			
	(α) 12, 18, 40	(b) 10, 20, 40	(c) 40, 20, 10	(d) Both (b) and (c)			
Q278	•		•	nnum. The principal and	D		
	_	_		ach installment is double			
	the preceding on (a) 12 and 6048	e, find the value of t					
:-	, ,	(b) 6 and 3036	(c) 4 and 2024	(d) 8 and 4096	_		
Q279		•		each instalment is Rs. 10	D		
	I more than the pro	more than the preceding instalment. The value of the 1st instalment is					









	(a) Rs. 36	(b) Rs. 30	(c) Rs. 60	(d) None	
Q280	10% CL p.α sum of is	`money accumulate	to Rs. 8650 in 5 yr	. Sum invested initially	D
		(b) Rs. 5970	(c) Rs. 5975	(d) None	
Q281		a country was 55 cr he year 2015 is estir		growing at 2% p.a. C.I.	D
	(a) 5705	(b) 6005	(c) 6700	(d) None	
Q282	or, then your total	savings in two week	s will be	succeeding day and so	С
	(a) Rs. 163	(b) Rs. 18	(c) Rs. 163.83	(d) None	
Q283	In the series $2 + 8$ (a) $24$	+ 32 + commor (b) 6	n ratio is (c) 4	(d) 10	С
Q284	The sum of 1 + 2 + 4 (a) 255	4 + 8 + to 8 teri (b) 252	ms is (c) 254	(d) 256	Α
Q285		ies -2,6-18, to 7 to (b) 1094	erms is	(d) None	Α
Q286	Find the sum of pro	ogression 1, $\frac{1}{2}$ , $\frac{1}{4}$ , $\frac{1}{8}$ ,	10 terms		С
	(a) 1.9	(b) 1.989		(d) 1.89	
Q287		03) ² +(1.03) ³ + to n (b) $\frac{103}{3}$ {(1.03) ⁿ - 1}		(d) None	В
Q288	Sum of the series 1	+3+9+27 is 364. (b) 6	The number of term (c) 11	s is (d) None	В
Q289	How many terms of	f the GP 1 4 16 Ar (b) 5	e to be taken to hav	ve their sum 341? (d) None	В
Q290	Sum of all natural is	numbers from 100 t	o 300 which are exc	actly divisible by 4 & 5	Α
	(a) 2200	(b) 2000	(c) 2220	(d) None	
Q291	The GP series who	se $3^{ ext{rd}}$ and $6^{ ext{th}}$ terms	are 1, - $\frac{1}{8}$ respectivel	y is	Α
	(a) 4, -2, 1	(b) 4, 2, 1	(c) 4, -1, $\frac{1}{4}$	(d) None	
Q292				tio 2 is 255 value of n	Α
	(a) 8	(b) 5	(c) 3	(d) None	
Q293	The nth term of the	e series 16,8,4, i	$s \frac{1}{2^{17}}$ . The value of n is	s	С
	(a) 20		(c) 22	(d) None	
Q294	The sum of n terms	of the series 1.03+1	1.03 ² +1.03 ³ + is		Α









	(a) $\left(\frac{103}{3}\right)(1.03^{n}-1)$		(b) $\left(\frac{103}{3}\right)(1.03^{n}+1)$		
	(c) $\left(\frac{103}{3}\right) (1.03^{n+1} - 1)$	1)	(d) None		
Q295	Sum of n terms of t	he series 4+44+444	+ is		В
	$(\alpha)^{\frac{4}{9}\left(\frac{10}{9}(10^n-1)-\frac{1}{9}\right)}$	n	(b) $\frac{10}{9}(10^{n}-1)-n$		
	(c) $\frac{4}{9}(10^n - 1) - n$	,	(d) None		
Q296	-5 + 25 -125 + 625,.	can be written as			А
	$(\alpha) \sum_{k=1}^{\infty} (-5)^k$	(b) $\sum_{k=1}^{\infty} 5^k$	(c) $\sum_{k=1}^{\infty} -5^k$	(d) None	
Q297	The sum of the ser	ies 1, $\frac{1}{3}$ , $\frac{1}{3^2}$ , $\frac{1}{3^3}$ to	∞ is		Α
	$(\alpha)\frac{4}{3}$	(b) $\frac{3}{2}$	4	(d) None	
Q298	The sum of the infi	nite GP 14 - 2 + $\frac{2}{7}$ - $\frac{2}{4}$	-+ is		D
	(a) $4\frac{1}{12}$	(b) 12 ¹ / ₄	(c) 12	(d) None	
Q299	The sum of the infi	nite GP 0.171-0.114+0	0.076 is		В
	(a) 0.1226	(b) 0.1020	(c) 0.1026	(d) None	
Q300	If $S = 1 + (1.04)^{-1} + \frac{1}{(1.04)^{-1}}$	$\frac{1}{(0.04)^2}$ + $(1.04)^{-3}$ + to	infinity, then the val	ue of 'S' is	С
	(a) 25	(b) 26	(c) 2.74	(d) 27.4	
Q301	The sum upto infini	ty of the series 0.4+	·0.8+0.16+ is		Α
	(a) 5	(b) 10	(c) 8	(d) None	
Q302	The sum upto infini		$(2^{-2}) + (2^{-1} + 2^{-4}) + (2^{-2} + 2^{-4})$	· 2 ⁻⁶ ) + is	Α
	$(\alpha)\frac{7}{3}$	(b) $\frac{3}{7}$	(c) $\frac{4}{7}$	(d) None	
Q303				s is 45. Series is	Α
	(α) 5,10,20	(b) $5 + \frac{5}{3} + \frac{5}{9} + \dots$	(c) $5 + \frac{10}{3} + \frac{20}{9} + \cdots$	(d) None	
Q304	If the first term of 50 the series is		second term by 2 an	nd the sum to infinity is	А
		(b) 108 $\frac{5}{2}$	(c) $10\frac{10}{3}\frac{10}{9}$	(d) None	
Q305	1st term is 1 & 6th te				С
	(a) 3	(b) 32/5	(c) 2	(d) 160	
Q306	If r = 3 & last term	is 486. If sum of the	ese terms be 728, th	en first term is	В
	(a) 6	(b) 2	(c) 18	(d) 162	
Q307	If sum of three num		ım of their squares is	s 189, numbers are	С
	(a) 3, 6, 12	(b) 12, 6, 3	(c) Both	(d) None	
Q308				then $x^2$ , $b^2$ , $y^2$ are in	Α
	(a) AP	(b) GP	(c) HP	(d) None	







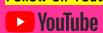
6 th term from t	he end of GP 8, 4, 2	, 1, ½, ¼,1/1024	is	С
(a) 1/4	(b) 1/16	(c) 1/32	(d) 1/64	
Given x, y, z ar	e in GP and xp = yq	=zr, then $\frac{1}{p}$ , $\frac{1}{q}$ , $\frac{1}{r}$ ar	e in	В
Sum upto infini	ty of the series $\frac{4}{7}$	$\frac{5}{7^2} + \frac{4}{7^3} - \frac{5}{7^4} + \dots \text{ is } \underline{\hspace{2cm}}$	·	А
$(\alpha) \frac{23}{48}$	(b) $\frac{25}{48}$	(c) $\frac{1}{2}$	(d) None	
The geometric	mean between 6 &	96 is		А
(a) 24	(b) 4	(c) 2	(d) 16	
		vations are 5 and 4	respectively, then the two	А
(a) 8, 2	(b) 7, 3	(c) 6.4	(d) 5, 5	
The AM & GM o	of two positive numb	pers is 10. The number	ers are	А
(a) (10, 10)	(b) (15, 5)	(c) (5, 15)	(d) (20, 0)	
	(a) $1/4$ Given x, y, z ar  (a) AP  Sum upto infini  (a) $\frac{23}{48}$ The geometric  (a) 24  If the A.M. and observations of (a) 8, 2  The AM & GM of	(a) 1/4 (b) 1/16  Given x, y, z are in GP and xp = yq  (a) AP (b) GP  Sum upto infinity of the series $\frac{4}{7}$ — $\frac{23}{48}$ (b) $\frac{25}{48}$ The geometric mean between 6 & (a) 24 (b) 4  If the A.M. and G.M. of two observobservations are  (a) 8, 2 (b) 7, 3  The AM & GM of two positive numbers	(a) 1/4 (b) 1/16 (c) 1/32  Given x, y, z are in GP and xp = yq = zr, then $\frac{1}{p}$ , $\frac{1}{q}$ , $\frac{1}{r}$ are (a) AP (b) GP (c) Both AP are Sum upto infinity of the series $\frac{4}{7} - \frac{5}{7^2} + \frac{4}{7^3} - \frac{5}{7^4} + \dots$ is  (a) $\frac{23}{48}$ (b) $\frac{25}{48}$ (c) $\frac{1}{2}$ The geometric mean between 6 & 96 is  (a) 24 (b) 4 (c) 2  If the A.M. and G.M. of two observations are 5 and 4 observations are  (a) 8, 2 (b) 7, 3 (c) 6.4  The AM & GM of two positive numbers is 10. The numbers	Given x, y, z are in GP and xp = yq = zr, then $\frac{1}{p}$ , $\frac{1}{q}$ , $\frac{1}{r}$ are in  (a) AP (b) GP (c) Both AP and GP (d) None  Sum upto infinity of the series $\frac{4}{7} - \frac{5}{7^2} + \frac{4}{7^3} - \frac{5}{7^4} + \dots$ is  (a) $\frac{23}{48}$ (b) $\frac{25}{48}$ (c) $\frac{1}{2}$ (d) None  The geometric mean between 6 & 96 is  (a) 24 (b) 4 (c) 2 (d) 16  If the A.M. and G.M. of two observations are 5 and 4 respectively, then the two observations are







## SPECIAL SERIES ON AP & GP


SN	6C. SPECIAL SERIES ON AP & GP	Ans
Q315	Find the sum to infinity of the series $\frac{1}{4.7} + \frac{1}{7.10} + \frac{1}{10.13} + \dots$	A
	(a) $\left(\frac{n}{4}\right)(3n+4)^{-1}$ (b) $\left(\frac{n}{4}\right)(3n-4)^{-1}$ (c) $\left(\frac{n}{2}\right)(3n+4)^{-1}$ (d) None	
0316	The sum of n terms of the series $4 + 6 + 9 + 13$ is	A
GOIO	(a) $(\frac{n}{6})$ (n ² + 3n + 20) (b) $(\frac{n}{6})$ (n + 1) (n + 2)	^
	(a) $\binom{n}{2}$ (n +1) (n+2) (d) None	
0043	(2)	
Q317	The sum of n terms of 1, (1+2), (1+2+3) is  (a) $\left(\frac{n}{4}\right)$ (n + 1) (n + 2)    (b) $\left(\frac{n}{2}\right)$ (n + 1) (n + 2)	A
	(a) $\left(\frac{n}{6}\right)$ (n + 1) (n + 2) (b) $\left(\frac{n}{3}\right)$ (n + 1) (n + 2) (c) n (n + 1) (n + 2) (d) None	
0318		A
QOIO	The sum of n terms of the series $\frac{1}{(4.9)} + \frac{1}{(9.14)} + \frac{1}{(14.19)} + \frac{1}{(19.24)} + \dots$ is	^
	(a) $\left(\frac{n}{4}\right) (5n + 4)^{-1}$ (b) $\left(\frac{n}{3}\right) (5n + 4)$ (c) $\left(\frac{n}{2}\right) (5n - 4)^{-1}$ (d) None	
Q319	The sum of n terms of the series $1^2+(1^2+2^2)+(1^2+2^2+3^2)+$ is	A
	(a) $\left(\frac{n}{12}\right)(n+1)^2(n+2)$ (b) $\left(\frac{n}{12}\right)(n-1)^2(n+2)$	
	(c) $\left(\frac{n}{12}\right)$ (n ² -1) (n+2) (d) None	
Q320	The sum of n terms of the series $1+(1+\frac{1}{3})+(1+\frac{1}{3}+\frac{1}{3^2})+$ is	В
	(a) $\left(\frac{3}{2}\right)$ (1-3 ⁻ⁿ ) (b) $\left(\frac{3}{2}\right)$ [n-(1/2) (1 - 3 ⁻ⁿ )]	
	(c) Both (d) None	
Q321	The sum of n terms of the series $\frac{1^2}{1} + \frac{(1^1+2^2)}{(1+2)} + \frac{(1^2+2^2+3^2)}{(1+2+3)} + \dots$ is	A
	(a) n (n + 2)/3 (b) n (n + 1)/3 (c) n (n + 3)/3 (d) None	
Q322	The sum of n terms of the series $\frac{1^3}{1} + \frac{(1^3 + 2^3)}{2} + \frac{(1^3 + 2^3 + 3^3)}{3} + \dots$ is	A
	(a) $\left(\frac{n}{48}\right)$ (n + 1) (n + 2) (3n + 5) (b) $\left(\frac{n}{3}\right)$ (n + 1) (n + 2) (3n + 5)	
	(c) $\left(\frac{n}{2}\right)$ (n + 1) (n + 2) (5n + 3) (d) None	
Q323	Three numbers whose sum is 15 are in AP. If they are added by 1, 4, 19, they are	C
	in GP. The numbers are	
	(a) 2, 5, 8 (b) 26, 5, -16 (c) Both (d) None	
Q324	3 ' 9 ———	С
	(a) $\frac{1}{3}$ , 1, 3 (b) 3, 1, $\frac{1}{3}$ (c) Both (d) None	
Q325	<u> </u>	В
	(a) 10 (b) 13 (c) 12 (d) None	







Q326	If you save 1 paise today, 2 paise next day, 4 paise succeeding day & so on, then					
	total savings in tw (a) Rs. 163	o weeks = (b) Rs. 18	(c) Rs. 163.83	(d) None		
Q327	The sum of the ser	pies 1, $\frac{1}{3}$ , $\frac{1}{3^2}$ , $\frac{1}{3^3}$ ,, to	o ∞ is		В	
		(b) 3/2		(d) None		
Q328	The sum of the inf	inite GP 14 -2 + $\frac{2}{7}$ - $\frac{2}{49}$			В	
	(a) 9/2	(b) 49/4		(d) None		
Q329	Sum of n terms of	a GP with last term	128 & common ratio	2 is 255 value of n is	A	
	(a) 8	(b) 5	(c) 3	(d) None		
Q330	If a, b, c are in Gi	P, (a²+b²), (ab+bc), (k	o²+c²) are in		В	
	(α) ΑΡ	(b) GP	(c) HP	(d) None		
Q331	The sum upto infin	ity of the series (1+	$(2^{-2}) + (2^{-1}+2^{-4}) + (2^{-2}+2^{-1})$	⁶ ) + is	A	
	(a) 7/3	(b) 3/7	(c) 4/7	(d) None		
Q332	The sum of n term	s of the series 1.03+	-1.03²+1.03³+ is	·	A	
	(a) $(\frac{103}{3})(1.03^{n}-1)$	(b) $(\frac{103}{3})(1.03^{n}+1)$	(c) $(\frac{103}{3})(1.03^{n+1}-1)$	(d) None		
Q333	The sum of n term	s of the series 1.2.3	+ 2.3.4 + 3.4.5 + is		A	
	(a) n (n+1) (n+2) (n-	+3)/4	(b) n (n+1) (n+2) (n-	+3)/3		
	(c) n (n+1) (n+2) (n-	+3)/2	(d) None			
Q334	Evaluate $(a+b)+(a^2)$	?+2b)+ to 4 terms	s if α=3, b=-7		В	
	(a) 190	(b) 50	(c) 110	(d) 170		
Q335	The average of 15 then the 8 th number		average of first 8 is	19 and that last 8 is 17,	C	
	(α) 15	(b) 16	(c) 18	(d) 20		
Q336	$t_1 = n, t_2 = n + 1, t_3$	= n + 2 and so on, the	nen t _n =		В	
	(a) n	(b) 2n — 1	(c) 2n + 1	(d) 2n		
Q337	In the sequence w	whose $t_n = \frac{3n-2}{4}$ ; $n \notin N$	I the first term of the	e sequence is	A	
	$(\alpha)\frac{1}{4}$	(b) $\frac{3}{4}$	(c) ½	(d) 1		
Q338	<del>-</del>	an of first n natura ponding numbers is_		eights are equal to the	В	
	$(\alpha) \frac{(n+1)}{2}$	·	(c) $\frac{[(n+1)(2n+1)]}{6}$	$(d) \frac{n(n+1)}{2}$		
Q339	If $nth\ term\ of\ a\ se$	quence be 2³n (-5)n, t	then the common rati	o of sequence is	A	
	(a) -40	(b) 40	(c) 80	(d) -80		
Q340			natural numbers is		В	
	(a) $\frac{n^2(n+1)^2}{4}$	$(b)\frac{n(n+1)^2}{4}$	(c) $\frac{[n\times(n+1)\times(n+2)]}{8}$	(a) n- + n + 1		









02/4	The mean of the o	augues of the finat	n natural numbon io		C
<b>W</b> 041		·	n natural number is_ (c) $\frac{[(n+1)(2n+1)]}{6}$		C
				(u) — 2	
Q342		s of the series 1+3+	2		A
	(α) n ²	(b) 2n ²	(c) $\frac{n^2}{2}$	(d) None	
Q343	The value of 11²+12	2²+ +20² is	·		В
	(a) 3845	(b) 2485	(c) 2870	(d) 3255	
Q344	If 1 ² + 2 ² ++ 10 ²	= 385, then 2 ² + 4 ² +	- 6 ² ++ 20 ² is	_•	C
	(a) 770	(b) 1150	(c) 1540	(d) 385 × 385	
Q345	Find the sum of n	terms of $\left(1 - \frac{1}{n}\right) + \left(\frac{1}{n}\right)$	$1 - \frac{2}{n} + \left(1 - \frac{3}{n}\right) + \cdots$	·	A
	(a) $\frac{1}{2}$ (n-1)	(b) $\frac{1}{2}$ (n+1)	(c) (n-1)	(d) (n+1)	
Q346	The sum to n term	s of the series 11, 2	23, 59, 167 is	·	A
	(a) $3^{n+1} + 5n - 3$	(b) 3 ⁿ⁺¹ + 5n + 3	(c) $3^n + 5n - 3$	(d) None	
Q347	Find the sum to n	terms of 6+27+128+	629+		A
	(a) $\left\{\frac{5(5^{n}-1)}{4}\right\} + \left\{\frac{n(n+1)}{2}\right\}$	<u>1)</u> }	(b) $\left\{\frac{5(5^{n}-1)}{4}\right\} - \left\{\frac{n(n+1)}{2}\right\}$	+1)	
	(c) $\left\{\frac{5(5^{n}-1)}{4}\right\} - \left\{\frac{n(n+1)}{2}\right\}$	1)	(d) $\left\{\frac{5(5^n+1)}{4}\right\} + \left\{\frac{n(n-1)}{4}\right\}$	+1)	
Q348	1+3-5+7+9-11+13	3n terms			C
	(a) $2n^2 + 3$	(b) 5n² +3	(c) 3n² - 4n	(d) 3n ²	
Q349	The sum of n term	s of $(x + y)^2$ , $(x^2 + y^2)$	$(x - y)^2$ , is		В
	(a) $(x + y)^2 - 2(n-1)x$	У	(b) $n(x + y)^2 - n(n$	- 1)xy	
	(c) Both the above	e	(d) None		
Q350	Find the sum to in	finity of the series	$\frac{1}{4.7} + \frac{1}{7.10} + \frac{1}{10.13} + \dots$		A
	(a) $(\frac{n}{4})(3n+4)^{-1}$		(b) $(\frac{n}{4})(3n-4)^{-1}$		
	(c) $(\frac{n}{2})(3n+4)^{-1}$		(d) None		
Q351	The sum of n term	s of the series 1.324	+4.4 ² +7.5 ² +10.6 ² + is_	·	Α
	$(\alpha) \left(\frac{n}{l2}\right) (n+1) (9n^2$	+49n+44)-8n	(b) $\left(\frac{n}{l^2}\right)(n+1)(9n^2)$	$^{2} + 49n + 44) + 8n$	
	$(c) \left(\frac{n}{6}\right) (2n+1)(9n^2)$	$^2 + 49n + 44) - 8n$	(d) None		
Q352	The sum of n term	s of the series 1.2+	2.3+3.4+ is		A
	$(\alpha) \left(\frac{n}{3}\right) (n+1)(n+2)$	2)	(b) $\left(\frac{n}{2}\right)(n+1)(n+1)$	2)	
	$(c)\left(\frac{n}{3}\right)(n+1)(n-2)$	2)	(d) None		
Q353	The sum of n term	s of the series 1.4+	3.7+5.10+ is		A
	(a) $(\frac{n}{2})(4n^2 + 5n - 1)$	1)	(b) $(\frac{n}{2})(5n^2 + 4n -$	1)	
	(c) $(\frac{n}{2})(4n^2 + 5n + 1)$	1)	(d) None		







Q354	The sum of n terms of	f the series $\frac{1}{(4.7)} + \frac{1}{(1.7)}$	$\frac{1}{(7.10)} + \frac{1}{(10.13)} + \cdots$ is	·	A
	(a) $\left(\frac{1}{3}\right)[(3n+1)^{-1}-(3n+1)^{-1}]$	` , `	, , ,		
	(c) $\left(\frac{1}{3}\right)[(3n+1)^{-1}-(3n+1)^{-1}]$		(d) None		
Q355	The sum of n terms of		$(-2) (\frac{1}{2}) (n-3)$ is		В
		1	(c) $(\frac{1}{2})$ (n+1)		
				(d) None	
Q356	The value of $\frac{1^3+2^3+\cdots+1}{1+2+\cdots+1}$	O			В
	(a) 45 (l	b) 55	(c) 385	(d) 285	
Q357	The value of 13+23+33+	•			C
	$(\alpha) \left[\frac{m(m+1)}{2}\right]^3 \qquad (1)$	b) $\frac{m(m+1)(2m+1)}{6}$	(c) $\left[\frac{m(m+1)}{2}\right]^2$	(d) None	
Q358	The sum of m terms o	f the series is 1+11	+111+ is equal	to	A
	(a) $\frac{1}{81}$ [10 ^{m+1} -9m -10]		(b) $\frac{1}{27}$ [10 ^{m+1} -9m -10]		
	(c) [10 ^{m+1} -9m-10]		(d) None		
Q359	1+11+111+ n te	rms			С
	(a) [10n+1 - 9n - 10]		(b) [10n+1 - 9n - 10]		
	(c) [10n+1 - 9n - 10]		(d) None		
Q360	Sum of first n terms of	of an A.P is 6n2+6n	. Then find 4th term	of series.	C
	(a) 120 (l	b) 72	(c) 48	(d) 24	
Q361	•	•	the $S_p = \underline{\hspace{1cm}}$ .		В
	(a) $P^3$	b) P ²	(c) 2p ³	(d) P ⁴	
Q362	If the numbers x,y,z				В
	(α) A.P (I	b) G.P	(c) H.P	(d) None	
Q363		224	222	. 225	A
	$(\alpha) \frac{233}{99}$ (1	b) $\frac{234}{99}$	(c) $\frac{232}{99}$	(d) $\frac{235}{99}$	
Q364	Sum of n terms of the	e series 1.2 + 2.3 +	3.4 + is		A
	$(\alpha) \left(\frac{n}{3}\right) (n+1) (n+2) \qquad (1)$	b) $(\frac{n}{2})$ (n+1) (n+2)	(c) $\left(\frac{n}{3}\right)$ (n+1) (n-2)	(d) None	
Q365	Sum of n terms of the	e series 1.4+3.7+5.1	O+ is		A
	(a) n $(4n^2 + 5n - 1)/2$		(b) n $(5n^2 + 4n - 1)/2$	2	
	(c) n $(4n^2 + 5n + 1)/2$		(d) None		
Q366	The sum of n terms of	f the series 1+5+12	+22+is		A
	(a) $n^2(n+1)/2$ (J	b) n ² (n +1)	(c) n ² (n+2)/2	(d) None	
Q367	The sum of n terms of	f the series 4 + 14	+ 30 + 52 + 80 +i	s	A
	(a) n $(n+1)^2$ (J	b) n (n-1)²	(c) n (n ² -1)	(d) None	









Q368	The sum of n terms	of the series 1+(1+5	3) + (1+3+5) + is		A
	(a) $(\frac{n}{6})(n+1)(2n+1)$		(b) $(\frac{n}{6})(n + 1) (n +$		
	(c) $\left(\frac{n}{3}\right)(n+1)(2n+1)$		(d) None		
Q369	The sum of n terms	of the series 2.3²+5	5.4 ² +8.5 ² + is		A
	(a) $\left(\frac{n}{12}\right)$ (9n ³ + 62n ² +	123n + 22)	(b) $\left(\frac{n}{12}\right)$ (9n ³ - 62n ²	+ 123n + 22)	
	(c) $\left(\frac{n}{6}\right)$ (9n ³ + 62n ² +	123n + 22)	(d) None		
Q370	The sum of n terms	of 1 ² , 3 ² , 5 ² , 7 ² , is	·		A
	(a) n $(4n^2 - 1)/3$	(b) (n) (4n ² -1)	(c) n $(4n^2 + 1)/3$	(d) None	
Q371	The sum of n terms	of the series 2²+5²-	+8²+ is		A
	(a) n (6 $n^2$ + 3n - 1)		(b) n (6n² — 3n —	1)/2	
	(c) n $(6n^2 + 3n + 1)$		(d) None		
Q372	The sum of n terms	of the series 2.4.6-	+4.6.8+6.8.10+ is	·	A
	(α) 2n (n³+6n²+11n+6	3)	(b) 2n (n³-6n²+11n	-6)	
	(c) n $(n^3+6n^2+11n+6)$		(d) n (n³ - 6n²+11n	- 6)	
Q373	The sum of n terms	of the series $\frac{1}{(3.8)}$ +	$\frac{1}{(8.13)} + \frac{1}{(13.18)} + \dots$ is		A
	$(\alpha) \left(\frac{n}{3}\right) (5n + 3)^{-1}$	(b) (n) (5n + 3) ⁻¹	(c) $\left(\frac{n}{2}\right)$ $(5n + 3)^{-1}$	(d) None	
Q374	The sum of n terms	of the series $\frac{1}{1} + \frac{1}{(1-\frac{1}{2})^2}$	$\frac{1}{(1+2)} + \frac{1}{(1+2+3)} + \dots$ is	·	A
	(a) 2n (n + 1) ⁻¹	(b) n (n + 1) ⁻¹	(c) 2n (n - 1) ⁻¹	(d) None	





### **CHAPTER 7A. SET**

#### INTRODUCTION

• Sets: A set is a well-defined collection of objects. [If we can clearly say whether a given object belongs to it or not].

Ex: The collection of all English Alphabets is a set [Say Set A].

• Element: Each object in a set is called an element of the set.

**Ex:**  $A = \{a, b, c, d, e, \dots, x, y, z\}$ 

A set is denoted by 'capital letters' & their elements are denoted by 'small letters'.

**Example:**  $A = \{\alpha, e, i, o, u\},\$ 

'a' is an element and we write  $\mathbf{a} \in \mathbf{A}$  & read as 'a' belongs to 'A'. But 3 is not an element of B =  $\{2, 4, 6, 8, 10\}$  & we write  $\mathbf{b} \notin \mathbf{B}$  & read as '3' does not belong to 'B'.

#### METHODS OF WRITING A SET

• Roster or Braces Method: All elements of the set are listed and put it within braces { }.

**Ex:**  $A = \{a, b, c, d, e, \dots, x, y, z\}.$ 

• Set Builder Method: In this method, Rules or properties to write down a set is given.

**Ex:**  $A = \{x: x \text{ is a set of all English Alphabets}\}.$ 

CQ1: Represent the following sets in set notations:-

- (i) Set of all alphabets in English language.
- (ii) Set of all odd integers less than 25.
- (iii) Set of all odd integers.
- (iv) Set of positive integers 'x' satisfying' the equation  $x^2 + 5x + 7 = 0$ .

#### Ans:

- (a)  $A = \{x: x \text{ is an alphabet in English}\}; \{x:x \text{ is an odd integer} > 25\}; \{2 4 6 8...\}; \{x: x^2 + 5x + 7 = 0\}$
- (b)  $A = \{x: x \text{ is an alphabet in English}\}; \{x:x \text{ is an odd integer} < 25\}; \{1 3 5 7....\}; \{x: x^2 + 5x + 7 = 0\}$
- (c) A=  $\{x: x \text{ is an alphabet in English}\}$ ;  $\{x:x \text{ is an odd integer } \le 25\}$ ;  $\{1\ 3\ 5\ 7....\}$ ;  $\{x:x^2+5x+7=0\}$
- (d) None
  - > Repetition of elements in a set is MEANINGLESS.
  - > Order of the elements in a set is NOT RELEVANT.







CONCEPT 1	: TYPES OF SETS			
Universal Set	A set containing all the possible elements of a particular situation.  Ex: A = {x: x is the set of All English Alphabets}			
Null Set	Set having NO element is called Null set (Empty set/void set). [{ } or $\emptyset$ ] <b>Ex:</b> A = {x: x is odd no. divisible by 2} = { } or $\emptyset$ ;			
Singleton Set	A set having only one element is called singleton set. <b>Ex:</b> A = {1}			
Equal Set	If every element of A is in B & every element of B is in A, A & B are equal sets.  Ex: If $A = \{2, 4, 6\}$ and $B = \{6, 2, 4\}$ then $A = B$ . [Order of element is NOT relevant]			
Equivalent Set:	If number of elements in Set A & Set B are SAME, they are equivalent sets. <b>Ex:</b> $A = \{a, b, c\} \& B = \{1, 2, 3\}; n(A) = 3 \& n(B) = 3, A \& B$ are equivalent sets.			
Subset	If all the elements of set A are present in Set B, A is a subset of B. [ $A \subseteq B$ ].  Ex: A = {1, 2} & B = {1, 2, 3} then A is subset of B. [B is said to be a superset of A]  PC Note: In subset, there exist an equal set & null set also. Ex: {1,2,3}  Number of Subsets of a set = $2^n$ [where 'n' = Number of elements]			
Proper Subset	<ul> <li>Set A is a proper subset of B if Set A is a subset of Set B but not equal set.     A ⊆ B &amp; A ≠ B.</li> <li>Ex: A = {1, 2, 3}; Proper Subset of A includes {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3} &amp; {}.</li> <li>❖ PC Note: Proper Subset does not include Equal set of the given set.     A Null set does not have a Proper subset.     Number of Subsets of a set = 2ⁿ - 1 [where 'n' = Number of elements]     Ex: Set containing 3 elements has (2³ - 1) = 7 Proper subsets</li> </ul>			
Power Set:	The set of all subsets of a set is called Power set.  Ex: A = {1, 2, 3}; Subset of A include {1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3} & { }.  Power set of A = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3}, { }.			
Disjoint Sets	If Set A & Set B has NO Common element, they are disjoint Sets. [ $\mathbf{A} \cap \mathbf{B} = \emptyset$ ] <b>Ex:</b> A = {a, b, c} & B = {1, 2, 3}; A & B are disjoint sets (no common element.)			





#### **CONCEPT 2: OPERATIONS ON SETS**

10+ A - [1 2 3 6 8 9] 8 B = [2 4 6 8 10]

Let A = {1, 2, 3, 6, 8, 9} & B = {2, 4, 6, 8, 10}						
Union Of Sets (A∪B)	It contains all elements which are <b>EITHER</b> in Set A <b>OR</b> in Set B.					
	<b>Ex:</b> (AUB) = {1, 2, 3, 4, 6, 8, 9, 10}.					
Intersection Of Sets	It contains all the elements which are in Set A <i>AND</i> Set B.					
( <b>A</b> ∩ <b>B</b> )	<b>Ex:</b> (A∩B) = {2, 6 8}.	<b>Ex:</b> (A∩B) = {2, 6 8}.				
Difference Of Sets	Set of elements which are in Set A <b>but not</b> in Set B					
(A-B)	(B - A): Set of elements which are in Set B but not in Set A.					
	<b>Ex:</b> If A = {1, 2, 3, 5, 7} & B = {1, 3, 6, 7, 15},					
	$A - B = \{2, 5\}$ & $B - A = \{6, 15\}$ .					
	<b>CQ2:</b> U = {1, 2, 3, 4, 5};	$A = \{1, 2, 5\};$ $A' = \{3, 4\}.$				
	1 2 3	1 → A — B 2 → A ∩ B 3 → B — A 1 + 2 + 3 → A∪B				
Complimentary Set (A')	Set of elements which are in Universal set <b>but not</b> in Set A are called complementary set of A					
	<b>CQ3:</b> U = {1, 2, 3, 4, 5, 6, 7, 8, 9}; P = {2, 4, 6, 8}; Q = {1, 2, 3, 4, 5}.					
	Ans:					
	(i) (PUQ) = {1, 2, 3, 4, 5, 6, 8};	(ii) (PUQ)' = {7, 9};				
	(iii) (P∩Q) = {2, 4};	(iv) $(P \cap Q)' = \{1, 3, 5, 6, 7, 8, 9\};$				
	(v) P' = {1, 3, 5, 7, 9};	(vi) Q' = {0, 6, 7, 8, 9};				
	(vii) $P - Q = \{6, 8\};$	(viii) $Q - P = \{1, 3, 5\}.$				
	<b>CQ4:</b> If $U = \{x: x \text{ is a positive integer } < 25\}$ , $A = \{2,6,8,14,22\}$ ,					
	B = {4,8,10,14} then					
	(a) $(A \cup B)'=A' \cup B'$ (b) $(A \cap B)'=A' \cup B'$					



(c)  $(A' \cap B)' = \phi$ 

(d) None

#### CONCEPT 3: ALGEBRA OF SETS

AUB = BUA	(AUB)UC = AU(BUC)	$A\cap(B\cup C) = (A\cap B)\cup(A\cap C)$	(A∪B)' = A' ∩ B'	A ∩ A' = Ø
AnB = BnA	$(A\cap B)\cap C = A\cap (B\cap C)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	(A∩B)' = A' ∪ B'	A U A' = U
$A \cap A = A$	A U A = A	$A \cup \emptyset = A$	A ∩ U = A	

**CQ5:** If 
$$A = \{a, b, c, d, e, f\} \&$$

**CQ5:** If 
$$A = \{a, b, c, d, e, f\} \& B = \{a, e, i, o, u\} \& C = \{m, n, o, p, q, r, s, t, u\}$$
 then

(i) 
$$A \cup B =$$
_____.

(a) 
$$\{a, b, c, d, e, f, i, o, u\}$$

(b) 
$$\{a, b, c, s, t, u\}$$

(ii) 
$$A \cup C =$$
_____.

(a) 
$$\{a, b, c, d, e, f, m, n, o, p, q, r, s, t, u\}$$

(iii) 
$$B \cup C =$$
_____.

(a) 
$$\{a, e, i, o, u, m, n, p, q, r, s, t\}$$

(a) 
$$\{b, c, d, f\}$$
 (b)  $\{a, e, i, o\}$ 

(d) None

$$(a) \{a, e\}$$

(d) None

### (vi) B ∩ C = _____.

(a) 
$$\{a, e\}$$
 (b)  $\{i, o\}$ 

(d) None

#### (vii) $A \cup (B - C) =$ _____.

(viii) 
$$A \cup B \cup C =$$
_____.

(ix) 
$$A \cap B \cap C = \underline{\hspace{1cm}}$$
.

$$(\alpha) \phi$$

(d) None





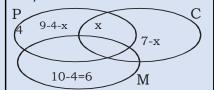
#### CONCEPT 4: APPLICATIONS OF SET THEORY

$\bullet  n(A \cup B) = n(A) + n(B) - n(A \cap B)$	$\bullet  n(B) = n(B\text{-}A) + n(A\capB).$
$\bullet  n(A) = n(A\text{-}B) + n(A\capB).$	$\bullet  n(A \cup B) = n(A - B) + n(B - A) + n(A \cap B).$

- $n(A \cup B \cup C) = n(A) + n(B) + n(C) n(A \cap B) n(B \cap C) n(C \cap A) + n(A \cap B \cap C)$ .
- $n(A \triangle B) = No.$  of elements which belongs to **exactly one** of A or B =  $n(A) + n(B) 2n(A \cap B)$ .
- No. of elements in exactly two of the sets A, B, C =  $n(A \cap B) + n(B \cap C) + n(C \cap A) 3n(A \cap B \cap C)$ .
- No. of elements in exactly one of the sets

A, B, C = 
$$n(A) + n(B) + n(C) - 2n(A \cap B) - 2n(B \cap C) - 2n(C \cap A) + 3n(A \cap B \cap C)$$
.

#### SOLVED EXAMPLES


CQ6: Out of a group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry. 4 teach Mathematics and Physics but none teach both Mathematics and Chemistry. How many teach Chemistry and Physics? How many teach only Physics?

Ans: Let x be the no. of teachers who teach both Physics & Chemistry.

Thus, 9-4-x+6+7-x+4+x=20; 22-x=20; x=2.

Hence, 2 teachers teach both Physics and Chemistry &

3 (9-4-2) teachers teach only Physics.



CQ7: 74% of the Indians like grapes, whereas 68% like bananas. What % of Indians like both grapes & bananas?

Ans: Let P & Q denote the sets of Indians who like grapes and bananas respectively.

Thus, n(P) = 74, n(Q) = 68 & n(PUQ) = 100.

We know that  $n(P \cap Q) = n(P) + n(Q) - n(P \cup Q) = 74 + 68 - 100 = 42$ 

Hence, 42% of the Indians like both grapes and bananas.

CQ8: In a class of 60 students, 40 students like Maths, 36 like Science, and 24 like both the subjects. Find the number of students who like

(ii) Science only. (iii) Maths or Science. (iv) Not Maths & Science. (i) Maths only.

Ans: Let M = students who like Maths & S = students who like Science;

n(M) = 40,  $n(S) = 36 & n(M \cap S) = 24$ .

(i) 
$$n(M) - n(M \cap S) = 40 - 24 = 16$$
. (ii)  $n(S) - n(M \cap S) = 36 - 24 = 12$ .

(iii)  $n(MUS) = n(M) + n(S) - n(M\cap S) = 40 + 36 - 24 = 52$ .(iv)  $n(MUS)^C = 60 - n(MUS) = 60 - 52 = 8$ .







#### **CONCEPT 5: PRODUCT SET**

**ORDERED PAIR:-** Two elements 'a' & 'b', listed in a specific order, form an ordered pair. It is denoted by (a, b).

Here 'a' is called '1st element' or 1st co-ordinate & 'b' is called 2nd element or 2nd co-ordinate.

**Note:**  $(a, b) \neq \{a, b\}.$ 

If  $a \neq b$ , then  $(a, b) \neq \{b, a\}$ . Thus if (a, b) = (c, d), it means that a = c & b = d.

- In set theory, repetition of elements is meaningless & thus if we have set A = {5, 5}, it means we have only one element in the set.
- But for ordered pairs, (5, 5) means 5 belongs in both the sets under consideration.

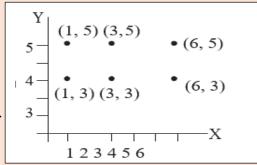
**CARTESIAN PRODUCT OF SETS:-** Set of all ordered pairs (a, b) such that  $a \in A \& b \in B$ , is called Cartesian product of A & B. It is denoted by A × B. Thus,  $A \times B = \{(a, b): a \in A \& b \in B\}$ .

#### Cardinal Number:

- Number of elements in a set is known as its cardinal number.
- Cardinal number of set A is denoted as n(A).

Number of Elements of  $n(A \times B) = n(A) \times n(B)$ .

**CQ9:** If  $P = \{1, 3, 6\} \& Q \{3, 5\}$ . Find  $P \times Q \& Q \times P$ .


Ans:

$$P \times Q = \{(1, 3), (1, 5), (3, 3), (3, 5), (6, 3), (6, 5)\};$$

$$Q \times P = \{(3, 1), (3, 3), (3, 6), (5, 1), (5, 3), (5, 6)\}$$

It is noted that ordered pairs (3, 5) & (5, 3) are not equal.

So,  $P \times Q \neq Q \times P$ ; but  $n(P \times Q) = n(Q \times P)$ .



**CQ10:** If  $A \times B = \{(3, 2), (3, 4), (5, 2), (5, 4)\}$ , find A and B.

[Ans:  $A = \{3, 5\} \& B = \{2, 4\}$ ]

**CQ11:**  $A = \{1, 2, 3\}, B = \{4, 5\}.$  Find  $A \times B \& n(A \times B).$ 

[Ans: 6]

CQ12: If the set P has 3 elements, Q has 4, & R has 2, then the set P x Q x R contains _____.

(a) 9 elements

(b) 20 elements

(c) 24 elements

(d) None.

**CQ13:** If A = (1,2,3,5,7) and B = (1,3,6,10,15) then cardinal number of A - B is _____.

(a) 3

(b) -4

(c) 6

(d) None of these





## SETS - QUESTION BANK

SN	CHAPTER 7A. SETS	Ans		
Q1	If $A = \{a, b, c\}$ , then $n(p(A))$ is	В		
	(a) 3 (b) 8 (c) 6 (d) 1			
Q2	The set $\{2^x$ : x is any positive rational number $\}$ is	A		
	(a) Infinite set (b) Null set (c) Finite set (d) None			
QЗ	$\{\frac{n(n+1)}{2}$ : n is a positive integer} is	В		
	(a) A finite set (b) An infinite set (c) Is an empty set (d) None			
Q4	State whether the following sets are finite, infinite or empty	A		
	(i) $X = \{1, 2, 3, 500\}$ (ii) $Y = \{y: y = \alpha^2; \alpha \text{ is an integer}\}$			
	(iii) A = {x: x is α positive integer multiple of 2}			
	(iv) B = $\{x: x \text{ is an integer which is a perfect root of } 26 < x < 3.5\}$			
	(a) Finite, Infinite, Infinite, Empty (b)Infinite, Infinite, Finite, Empty			
	(c) Infinite, Finite, Infinite, Empty (d) None			
Q5	If E = {1, 2, 3, 4, 5, 6, 7, 8, 9}, the subset of E satisfying 5 + x >10 is	В		
	(a) {5,6,7,8,9} (b) {6,7,8,9} (c) {7,8,9} (d) None			
Q6	If A = {1 29}; B = {2 4 6 8}; C = {1 3 5 7 9}; D = {3 4 5}; E = {3 5}			
	(i) What is the set S if it is also given that $S \subset D$ and $S \not\subset A$	A		
	(a) {3 5} (b) {2 4} (c) {7 9} (d) None			
	(ii) What is set S if it is also given that $S \subset B$ and $S \not\subset C$			
03	(a) {35} (b) {24} (c) {56789} (d) {579}			
Q7	Following set notations represent: $A \subset B$ ; $x \notin A$ ; $A \supset B$ ; $\{O\}$ ; $A \not\subset B$ (a) A is a proper subset of B; x is not an element of A; A contains B; singleton with			
	an only element zero; A is not contained in B.			
	(b) A is a proper subset of B; x is an element of A; A contains B; singleton with an only element zero; A is contained in B.			
	(c) A is a proper subset of B; x is not element of A; A does not contains B; contains			
	elements other than zero; A is not contained in B.  (d) None			
Q8	If $P = \{1,2,3,4\}$ ; $Q = \{2,4,6\}$ then $P \cup Q =$	C		
	(a) {1,2,3,6} (b) {1,4,6} (c) {1,2,3,4,6} (d) None			
Q9	$A = \{2, 3, 5, 7\} \& B = \{4, 6, 8, 10\} $ then $A \cap B$ can be written as	A		
	(a) {} (b) $\{\phi\}$ (c) $(A \cup B)'$ (d) None			
Q10	If A $\triangle$ B = (A-B) $\cup$ (B-A) and A = {1,2,3,4}, B = {3,5,7} then A $\triangle$ B is			
	(a) {1,2,4,5,7} (b) {3} (c) {1,2,3,4,5,7} (d) None			

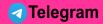






Q11	Identify the ele (5,3); (6,1); (6,2		= {1, 2, 3} and PxQ = {(4	+,1); (4,2); (4,3); (5,1); (5,2);	В
		(b) {4 ,5 ,6}	(c) {5, 6, <del>7</del> }	(d) None	
Q12	If A = {2,3}; B	= {4, 5}; C= {5, 6} the	en		
	(i) A x (B∪ C)				A
	(a) {(2,4);(2,5	;(2,6);(3,4);(3,5);	(3,6)}	(b) {(2,5); (3,5)}	
	(c) {(2,4); (2,5	);(3,4);(3,5);(4,5);	(4,6); (5,5); (5,6)}	(d) None	
	(ii)The set A x	(B $\cap$ C) is			B
	(a) {(2, 4); (2, 5	); (2, 6) ;(3, 4); (3, 5);	(3, 6)}	(b) {(2,5); (3, 5)}	
	(c) {(2,4); (2,5)	;(3,4); (3,5);(4,5); (	4 ,6); (5, 5); (5, 6)}	(d) None	
	(iii) The set (A	x B) $\cup$ (B x C) is	·		C
	(a) {(2,4); (2, 5	); (2,6); (3,4); (3,5)	;(3, 6)}	(b) {(2, 5); (3, S)}	
	(c) {(2, 4); (2, 5	); (3, 4); (3, 5) ;(4,5);	(4, 6); (5, 5); (5, 6)}	(d) None	
Q13	S = {0, 1, 2, 3, 4	4, 5, 6, 7, 8, 9}, P = {C	o, 2, 4, 6, 8}, and Q = {1	1, 2, 3, 4, 5}, then Q' is	A
	(a) {0, 6, 7, 8, 9		(b) {1, 2, 4, 5, 6}		
	(c) {1, 3, 5, 7, 9		(d) {0, 2, 4, 6, 8}		
Q14			= {1 4 7 9} then		A
	$(\alpha) \ A \cap B \neq \emptyset, \ B \cap C \neq \emptyset, \ A \cap B \cap C = \emptyset$ $(b) \ A \cap B = \emptyset B \cap C = \emptyset \ A \cap B \cap C = \emptyset$				
	(c) A∩B ≠φA∩C		(d) None		
Q15	N is the set of natural numbers and I is the set of positive integers, then				A
	(a) N = I	(b) N⊂ I	(c) N⊃ I	(d) None	
Q16		,		f real numbers then	В
	(a) R ⊂ E		(c) E ⊇ R	(d) None	
Q17	E is a set of positive even no. & O is a set of positive odd no., then E $\cup$ O is				В
	(a) Set of whol		(b) N		
	(c) A set of rat		(d) None		
Q18		20 children, 8 drink t nking coffee but not		d 13 like tea. The number	D
	(a) 6	(b) 7	(c) 1	(d) None	
Q19				elements, the number of	A
	(a) 12	(b) 74	(c) 10	(d) None	
Q20	•		wicket but not movie not cricket are	and 26 like cricket. The	D
	(a) 12	(b) 24	(c) 2	(d) None	
Q21	Sample of income group of 1,172 families was surveyed and noticed for income groups <rs.6000 -="" -,="" and<="" rs.10999="" rs.11000="" rs.15999="" rs.16000="" rs.6000="" td="" to=""><td></td></rs.6000>				










	above, no TV set is available to 70, 50, 20, 50 families, one set is available to 152, 308, 114, 46 families, and two or more sets are available to 10, 174, 84, 94 families.  A = {x x is a family owning two or more sets}  B = {x x is a family with one set}  C = {x x is a family with income less than Rs.6000/-}  D = {x x is a family with income Rs.6000/- to Rs.10999/-}  E = {x x is a family with income Rs.11000/- to Rs.15999/-}			
	(i) Find the number of families in each of the following sets (i) $C \cap B$ (ii) $A \cup E$ (a) 152, 580 (b) 152 20 (c) 152 50 (d) None	A		
	(ii) Find the number of families in each of the following sets (1) $(A \cup B') \cap E$ & (2) $(C \cup D \cup E) \cap (A \cup B)'$ (a) 20, 50 (b) 152, 20 (c) 152, 50 (d) None	A		
	<ul> <li>(iii) Express the following sets in set notation</li> <li>(1) {x x is a family with one set and income of less than Rs.11000/-)</li> <li>(2) {x x is a family with no set and income over Rs.16000/-)</li> <li>(a) (C ∪D) ∩B</li> <li>(b) (A ∪B)' ∩ (C'∪D'∪E')</li> <li>(c) both</li> <li>(d) None</li> </ul>			
	(iv) Express the following sets in set notation  (i) {x x is a family with two or more sets or income of Rs. 11000/-1 o Rs. 15999/-}  (ii) {x x is a family with no set}  (a) (A U E) (b) (A U B)' (c) Both (d) None	С		
Q22	Out of 60 students 25 failed in paper (1), 24 in paper (2), 32 paper in (3), 9 in paper (1) alone, 6 in paper(2) alone, 5 in papers (2) and (3), and 3 in papers (1) and (2).			
	(i)Find how may failed in all the three papers. (a) 10 (b) 60 (c) 50 (d) None			
	(ii)How many passed in all the three papers? (a) 10 (b) 60 (c) 50 (d) None	A		
Q23	At a certain conference of 100 people there are 29 Indian women and 23 Indian men. Out of these Indian people 4 are doctors and 24 are either men or doctors. There are no foreign doctors. The number of women doctors attending the conference is  (a) 2 (b) 4 (c) 1 (d) None	O		
Q24	On a survey of 100 boys it was found that 50 used white shirt 40 red and 30 blue.	В		
	20 were habituated in using both white and red shirts 15 both red and blue shirts and 10 blue and white shirts. Find the number of boys using all the colours.			
Q25	(a) 20 (b) 25 (c) 30 (d) None  Out of total 150 students 45 passed in Accounts, 50 in Maths, 30 in Costing, 30 in both Accounts and Maths, 32 in both Maths and Costing, 35 in both Accounts and	В		









	_	tudents passed in all ny one of the subjects		s. Find the number who p	passed
	(a) 63	(b) 53	(c) 73	(d) None	
Q26		nere rule of majority		dy are in a meeting to hat a, b, c, d owns 50%	•
	(i) List the wi	inning conditions.			A
		c); {a, d}; {a, b, c}; {d}; {c, d}; {b}; {c}; {d		(b) {b, c, d}; {α} (d) None	
	(ii) List the b	locking conditions.			В
	(a) {a b} {a c	} {a d} {a b c} {a b d}	{a b c d}	(b) {b c d}, {α}	
	(c) {b c} {b d	} {c d} {b} {c} {d} ф		(d) None	
		osing conditions.			C
		}	{a b c d}	(b) {b c d}, {a} (d) None	
Q27	Out of 1000 s	tudents 658 failed in		in the aggregate and in 190 in group-II and 126 i	
	(i) Find out h	ow many failed in all	the three		A
	(a) 106	(b) 224	(c) 20	o6 (d) 464	
	(ii)How many	failed in the aggrego	ate but not in arou	n-II?	В
	(a) 106	(b) 224	(c) 20	•	
	(iii) How man	y failed in group-I bu	ut not in the aggre	egate.	С
	(a) 106	(b) 224	(c) 20	o6 (d) 464	
	(iv) How man	y failed in group-II b	ut not in group-I?		D
	(a) 106	(b) 224	(c) 20	o6 (d) 464	
	,	failed in the aggreg	ate or group-II bu	· · · · · · · · · · · · · · · · · · ·	C
	(a) 206	(b) 464	(c) 62	28 (d) 164	
		y failed in the aggree	-	· · · · · · · · · · · · · · · · · · ·	D
	(a) 206	(b) 464	(c) 62	28 (d) 164	
Q28	If A = {2, 5, 6   (α) 2	, 8}, then n (A) is (b) 4	 (c) 5	(d) 1	В
Q29		d) list the element o			D
	$(a) \{\phi\}, \{a\}, \{b\}$	b), {c}, {d}, {a b}, {a c b d} {a c d) {b c d}	·	d), {c d}	









	(d) All the above el	ements are in P(A)			
Q30	The set of cubes of	the natural number	o is		В
	(α) A finite set	(b) An infinite set	(c) A null set	(d) None	
Q31	The set of squares	of positive integers	is		C
	(a) A finite set	(b) Null set	(c) Infinite set	(d) None	
Q32	Equal sets are	·			A
	(a) Equivalent	(b) Null	(c) Disjoint	(d) None	
Q33	If cardinal number	of two finite sets is	same, then the sets	s are	A
	(a) Equivalent	(b) Equal	(c) Null	(d) Singleton	
Q34	The range set of a	constant function is	α		В
	(a) Disjoint set	(b) Singleton set	(c) Void set	(d) Infinite set	
Q35	Let $A = \{a, b\}$ . Set $n(P(A))$ is	of subsets of A is c	alled power set of A	A denoted by P(A). Now	В
		(b) 4	(c) 3	(d) None	
Q36		sets of the set {2, 3,			В
	(a) 3	(b) 8	(c) 6	(d) None	
Q37	A∪A is equal to	·			Α
	(a) A		(c) φ	(d) None	
Q38	A ∪A' is equal to _				В
	(a) A		(c) ф	(d) None	
Q39	$A \cup E$ is equal to _	·			В
	(a) A	(b) E	(c) ф	(d) None	
Q40	A∩A is equal to	·			A
	(α) φ	(b) A	(c) E	(d) None	
Q41	A ∩φ is equal to	·			C
	(a) A	(b) E	(c) φ	(d) None	
Q42	A∩A' is equal to	·			В
	(α) E	(b) φ	(c) A	(d) None	
Q43	If A = {1,2,3,4} and	$B = \{2,4\}$ then $A \cap B$	can be written as _	·	C
	(α) φ	(b) {1,3}	(c) {2,4}	(d) {0}	
Q44	If A = {1, 2, 3, 4}, B	= {5, 6, 7} then card	linal number of the s	set A x B is	C
	(a) 7	(b) 1	(c) 12	(d) None	
Q45	If A = {1, 2, 3}, B = {	(4, 5), then A x B is _	·		A
	(α) {(1,4), (1,5), (2,4)	), (2,5), (3, 4), (3, 5)}			
	(b) {(1,2), (2,3), (3, 4	4), (4, 5), (5,1), (5,2)}			









	(c) {(4,1), (4,2), (5, 1), (5, 2), (3,1), (3,2)}	
	(d) {(1,2), (2,3), (3,4), (4,5)}	
Q46	S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, P = {0, 2, 4, 6, 8}, and Q = {1, 2, 3, 4, 5}, then P' is  (a) {0, 6, 7, 8, 9} (b) {1, 2, 4, 5, 6} (c) {1, 3, 5, 7, 9} (d) {0, 2, 4, 6, 8}	С
Q47	$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, P = \{0, 2, 4, 6, 8\}, and Q = \{1, 2, 3, 4, 5\}, then P' \cap Q' is$	D
	(a) {7,6} (b) {2,4} (c) {5,9} (d) {7,9}	
Q48	$S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, P = \{0, 2, 4, 6, 8\}, and Q = \{1, 2, 3, 4, 5\}, then P' \cup Q'$ is	A
	(a) {0, 1, 3, 5, 6, 7, 8, 9} (b) {1, 2, 4, 5, 6, 7, 8, 9}	
	(c) {0, 1, 2, 3, 5, 7, 9} (d) {0, 2, 4, 6, 8}	
Q49	If A = {3, 4, 5, 6}; B = {3, 7, 9, 5} &C = {6, 8, 10, 12, 7} & U = {3, 4,11, 12, 13} then	
	(i) A' is (a) {7 8 12 13} (b) {4 6 8 1013} (c) {3 4 5 7 9 11 13} (d) None	A
	(ii) The set B' is (a) {7 8 12 13} (b) {4 6 8 1013} (c) {3 4 5 9 11 13} (d) None	В
	(iii) The set C' is (a) {7 8 12 13} (b) {4 6 8 1013} (c) {3 4 5 9 11 13} (d) None	C
	(iv) The set (A')' is (a) {3 4 5 6} (b) {3 7 9 5} (c) {8 10 11 12 13} (d) None	A
	(v) The set (B')' is (a) {3 4 5 6} (b) {3 7 9 5} (c) {8 10 11 12 13} (d) None	В
	(vi) The set (A ∪ B)' is (a) {3 4 5 6} (b) {3 7 9 5} (c) {8 10 11 12 13} (d) None	С
	(vii) The set (A ∩ B)' is         (a) {8 10 11 12 13}       (b) {4 6 7 13}       (c) {3 4 5 7 8 13}       (d) None	В
	(viii) The set A' ∪ C' is (a) {8 10 11 12 13} (b) {4 6 713} (c) {3 4 5 7 813} (d) None	С
Q50	A has 70 elements, B has 32 elements and A $\cap$ B has 22 elements then A $\cup$ B is (a) 60 (b) 124 (c) 80 (d) None	С
Q51	If n(P) = 3 and n(Q) = 4, then n(PxQ) is  (a) 3 (b) 4 (c) 12 (d) 1	C
Q52	When $5x < 24 \& x$ belongs to set of natural numbers then the solution set is (a) $\{1, 2, 3, 4, 5\}$ (b) $\{1, 2, 3, 4\}$ (c) $\{1, 2, 3\}$ (d) $\{0, 1, 2, 3, 4\}$	В
Q53	If $V= \{x: x+2=0\}$ $R= \{x: x^2+2x=0\}$ and $S= \{x: x^2+x-2=0\}$ then $V$ , $R$ , $S$ are equal for which value of $x$ ?	С









	(a) O	(b) -1	(c) -2	(d) None		
Q54	For 3x + 1 ≤ 16 & x	belongs to set of no	atural number, the s	solution set is	В	
		•		(d) {1, 2, 3, 4, 5, 6}		
Q55	If A = {1,2,3,5,7}, c	and B = $\{x^2: X \in A\}$			A	
	(a) n(b) = n(A)	(b) $n(B) > n(A)$	(c) $n(A) \neq n(B)$	(d) n(A) < n(B)		
Q56	If A = {1, 2} and B	= {2,3} then A x B is	equal to		A	
	(a) {(1,2), (1,3), (2,2	2), (2,3)}	(b) {(2,1), (2,2), (3,	,1), (3,2)}		
	(c) {(1,1), (1,2), (2,2	c) {(1,1), (1,2), (2,2), (2,1)} (d) {(3,1), (2,1), (3,3), (2,3)}				
Q57		survey shows that 68% of women like apples, 74% of women like orange. What bercentage like both?				
	(a) 12%	(b) 6%	(c) 21%	(d) 42%		
Q58	•	nat 74% of the Indi like both grapes ar	· . · · · · ·	ereas 68% like bananas.	С	
	(a) 32%	(b) 26%	(c) 42%	(d) 50%		
Q59			e maths, 18 like scie Tho likes no subject.	ence and 12 like both the	A	
	(a) 4	(b)5	(c) 8	(d) None		
Q60	Total complaints 1		s follows - $n(M) = 110$	Food(F) and Services(S). D; n(F) = 55; n(S) = 67; n(M		
	(i) Determine the	complaints about al	l the three.		A	
	(a) 6	(b) 43	(c) 35	(d) None		
	(ii) Determine the	complaints about t	wo or more than two	0.	В	
	(a) 6	(b) 53	(c) 35	(d) None		
Q61						
	(i) Find how many	could not get any of	fthese		A	
	(α) 88	(b) 244	(c) 122	(d) None		
	(ii) Find how many	of them did only on	e of these		A	
	(α) 88	(b) 244	(c) 122	(d) None		
Q62	The number of sub	sets of the sets (6,	8,11} is		C	
	(a) 9	(b) 6	(c) 8	(d) None		
Q63	If A = {1, 3, 5}, B =	(0, 2) then A $\cup$ B is	·		A	
	(a) {0, 1, 2, 3, 5)	(b) 0	(c) {1,3,5,7,9,13}	(d) None		
Q64	If $A = \{3,5,7\} B = \{0,1,2,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4$	0,2,4,6} then A $\cup$ B i	s		В	









	(α) φ	(b) {0,2,3,4,5,6, 7}	(c) {O}	(d) None	
Q65	If A = {1, 3, 5, 7, 9	}, D = {2, 4, 6, 8, 10} t	hen A $\cup$ B is _		В
	(a) {O}		(b) {1,2,3,4,5,	6,7,8,9,10}	
	(c) φ		(d) None		
Q66	If P = {1, 2, 3, 5, 7	} & Q = {1, 3, 6, 10, 15	}		
	(i) The cardinal n	umber of P $\cap$ Q is $__$	·		В
	(a) 3	(b) 2	(c) 0	(d) None	
	(ii) The cardinal r	number of P $\cup$ Q is $_$	•		В
	(a) 10	(b) 9	(c) 8	(d) None	
Q67	If P = {3, 4, 5, 6} t	hen cardinal number	of P is		C
	(a) 3	(b) 5	(c) 4	(d) 6	
Q68	The null set is rep	resented by			С
	(α) {Φ}	(b) {0}	(c) Φ	(d) None	
Q69	If A = {1, 2, 3}, the	en P (A) is			В
	(a) 3		1, 2, 3}, {1, 2}, {	[1, 3], {2, 3}, {1}, {2}, {3}, Φ}	
	(c) {1,2,3}			[1, 3], {2, 3}, {1}, {2}, {3}}	
Q70		osets of a set contair			A
	(α) 2 ⁿ	(b) 2 ⁻ⁿ		 (d) None	
Q71	A set containing 4	elements have			В
		(b) 16 subsets		s (d) 13 subsets	
Q72	What is the relati	onship between the f	ollowing sets?		A
			_	etter in the world flow}	
				eter in the word follow}	
	(a) $B = C = D$ and	all these are subsets	of the set A		
	(b) $B = C \neq D$	(c) B + C + D	)	(d) None	
Q73	If P = {1,2,3,4}: Q	= {2,4,6} then PUQ			C
	(a) {1,2,3,6}	(b) {1,4,6}	(c) {1,2,3,4,6}	(d) None	
Q74	If P is a set of na	tural number then P	P' is		A
	(а) ф	(b) Sample Space.	(c) O	(d) (P u P')'	
Q75	(A∪B)' is equal to	)			C
	(α) (A∩B)'	(b) A∪B'	(c) A'∩ B'	(d) None	
Q76	(A∩B)' is equal to	 O .			A
	(α) (A'∪B')	 (b) A∪B'	(c) A'∩ B'	(d) None	
Q77		} B = {a e   o u} and C			
	(i) A U B is				Λ
	(I) A U D IS	<b>-•</b>			A









	(a) {a b c d e f i o (c) {d e f p q r}	u}	(b) {a b c s t u} (d) None		
	(ii) A U C is		(a) IVELIE		A
	(a) {a b c d e f m n (c) {d e f p q r}	ıopqrstu}	(b) {a b c s t u} (d) None		
	(iii) B U C is	_•			Α
	(a) {a e I o u m n p	qrst}	(b) {a e i r s t}		
	(c) {i o u p q r}		(d) None		
	(iv) A - B is (a) {b c d f}	.· (b) {a e i o}	(c) {m n p q}	(d) None	A
	(v) A ∩ B is		(c) {o u}	(d) None	A
	(vi) B ∩ C is		(0) (0 u)	(a) None	С
	(a) {a e}		(c) {o u}	(d) None	
	(vii) A ∪ (B - C) is _			Z IN NI.	A
		(b) {a b c d e f o}	(c) {a b c a e + u}	(a) None	
		 umnpqrst}			A
	(c) {d e f n p q}		(d) None		
	(ix) A ∩ B ∩ C is _		(.) ( )	(DAL)	A
	(α) φ		(c) {m n}		
Q78	(a) 9 elements	elements, Q four and (b) 20 elements	(c) 24 elements		C
Q79	If the set P has 6, (a) 13	Q has 5 and R has 2 (b) 9	elements then the s	set P×Q×R contains (d) None	C
Q80	If A x B = {(3, 2), (3)	3, 4), (5, 2), (5, 4)}, th	en find A and B. (b) A = {3, 4} and B	2 _ (2 5)	A
	(c) A = {3, 2} and B		(d) A = {5, 4} and B		
Q81	If A = (1,2,3,5,7) an	nd B= (1,3,6,10,15) the	en cardinal number (	of A - B is (d) None	A
Q82	If V = {O 1 29} X	( = {0 2 4 6 8} Y = {3	5 7) and Z = {3 7} th	nen	
	<b>(i)</b> Y ∪ Z, (V ∪ Y) ∩	$X$ , (X $\cup$ Z) $\cup$ V are res	spectively		Α
		8} {0 1 29}	'	8} {0 1 29}	
	(c) {2 4 6} {0 1 2	.9} {0 2 4 6 8}	(d) None		
	(ii) $(X \cup Y) \cap Z$ and	(Ф∪V)∩Ф are res	pectively		В





	(α) {0 2 4 6 8} Φ (b) {3 7} Φ	(c) {3 5 7} Φ	(d) None		
Q83	$\{1-(-1)^x\}$ for all integral x is the set is	S		С	
	(a) {0} (b) {2}	(c) {0,2}	(d) None		
Q84	The set $\{x 0< x<5\}$ represents the set $\{\alpha\}$ $\{0,1,2,3,4,5\}$ $\{0,1,2,3,4\}$	t when x may take in (c) {1,2,3,4,5}	tegral values only (d) None	В	
Q85	If the universal set is $X = \{x: x \in N \mid x \in S \mid x \in $	≤x≤12} and A {1 9 10}	B ={3 4 6 11 12} and		
	(i) The set A ∪(B ∩ C) is (a) {3 4 6 12} (b) {16 9 10}	(c) {2 5 6 11}	(d) None	В	
	(ii) The set (A∪B) ∩ (A∪C) is (α) {3 4 6 12} (b) {16 9 10}	(c) {2 5 6 11}	(d) None	В	
Q86	Universal set $E = \{x   x \text{ is a positive then } $	integer < 25}, A = {2	,6,8,14,22}, B = {4,8,10,14}	В	
	(a) (A U B)'=A' U B' (b) (A $\cap$ B)'=A' U	B' (c) (A' ∩ B)'= Φ	(d) None		
Q87	Represent the following sets in set n set of all odd integers less than 25 : x satisfying the equation x² + 5x + 7  (a) A = {x:x is an alphabet in English} {x:x²+5x+7=0}  (b) A = {x:x is an alphabet in English} {x:x²+5x+7=0}  (c) A = {x:x is an alphabet in English} {x:x²+5x+7=0}  (d) None	set of all odd integer = 0 -   = {x:x is an odd inte }   = {x:x is an odd int	rs set of positive integers eger > 25} = {2 4 6 8}   = eger < 25} = {1 3 5 7}   =	В	
Q88	Re-write the following sets in a set set of integers between - 15 and 15.  (a) A = {x:x is a constant} B = {x:x}			С	
	fraction}  (b) A = $\{x:x \text{ is a vowel}\}$ B = $\{x:x \text{ is a natural number}\}$ C= $\{x:-15 \ge x \ge 15 \land x \text{ is a whole number}\}$				
	<pre>(c) A = {x:x is a vowel} B = {x:x is a number} (d) None</pre>	a natural number) C	= {x:-15 <x<15,x is="" td="" whole<="" α=""><td></td></x<15,x>		
Q89	Comment on the correctness or oth	erwise of the followi	ng statements	A	
	(i) $\{a \ b \ c\} = \{c \ b \ a\}$ (ii)	$\{a c a d c d\} \supset \{a c$	d}		
	(iii) {b} ∉ {{b}}} (iv	) {b}⊂ {{b}}and Φ⊂{{k	o}}		
	(a) Only (iv) is incorrect (b)	(i)(ii) are incorrect			







Q90		c} B = {a b} c are correct	= {a b d} D	= {c d} m E =	(d) state which	ch of the following	A
			(iii) C⊃F	(iv) D = E	(v) DCB	$(vi) D = \Delta$	
						(xii) {α}∈ A	
	(vii) β ⊈ C (xiii) {α}⊂ A		(IX) E+B	(X) a c X	(XI) CCX	(All) (a)c A	
		) (ix) (×) (xiii) o	only are corr	rect			
	_	iv) (x) (xii) (xii	•				
		v) (ix) (xiii) (xii v) (ix) (xiii) only	•				
	(d) None		, are correc	,,,			
	, ,	D (0.1) G	+ D (+) F		1	1 b + c l	
Q91				= {x x is a hum pwing stateme	•	years old} $F = \{x   x\}$	В
	(i) A⊂ B			(iv) C = E		(vi) F = 1	
	(vii) E = C =		(III) OC D	(IV) O - L	(V) A - 1	(01) 1 - 1	
		and (v) only ar	o truo				
		•					
		i) and (iv) only i) and (ui) only					
	(d) None	i) and (vi) only	are true				
	, ,						
Q92				ng statements			A
	(i) {1} ⊂ A	(ii) {1} ∈ A	(iii) Φ ∈ A	(iv) 0 ∈ A	(v) 1 ⊂ A	$(vi) \{O\} \subset A$	
	(vii) Φ ⊂ A						
	(a) (i) (iv) aı	nd (vii) only ar	e true				
	(b) (i), (iv) a	ınd (vi) only ar	e true				
	(c) (ii), (iii)	and (vi) only a	re true				
	(d) None						
Q93		e and tea 32%				. Of the total 28% cocoa. Only 6% did	
	(i) Find the	number havin	g all the thr	ee.			A
	(a) 360	(b) 28	_	(c) 160	(d) I	None	
	(ii) Find the	number havi	na tea and c	ocoa but not			В
	(a) 360	(b) 28	•	(c) 160		Vone	
					(u) i	NOTIC	
		e number hav			<i>(</i>   ) .		С
	(a) 360	(b) 20	30	(c) 160	(d) I	Vone	
Q94		gregate and i		00 0		gate and in group- -II and 126 in both	
	(i) Find out	how many fai	ed in all the	three			A
	(a) 106	(b) 2		(c) 206	(d) 4	464	
	1	, , , =-		. ,	· · /		1









	(ii) How many failed in the aggregate but not in group-II?					В	
	(a) 106	(b) 224	(c) 206	3	(d) 464		
	(iii) How many	y failed in group-I bu	t not in the	aggregat	e.	С	
	(a) 106	(b) 224	(c) 206	3	(d) 464		
	(iv) How many failed in group-II but not in group-I?					D	
	(a) 106						
	(v) How many failed in the aggregate or group-II but not in group-I?						
	(a) 206	(b) 464	(c) 628	3	(d) 164		
	(vi) How many	, failed in the aggreg	gate but not	in group	-I and group-II?	D	
	(a) 206	(b) 464	(c) 628	3	(d) 164		
Q95	Asked if you v	Asked if you will cast your vote for a party the following feed back is obtained					
			Yes	No	Don't know		
		Adult Male	10	20	5		
	Ac	dult Female	20	15	5		
	Youth	over 18 years	10	5	10		
	If A = set of	Adult Males, C =Com	mon set of W	Jomen aı	nd Youth Y= set of positive	'	
	If A = set of Adult Males, C =Common set of Women and Youth Y= set of positive opinion, N = set of negative opinion then						
	(i) n(A') is	·				A	
	(i) n(A') is (a) 25	<del>-</del>	(c) 20		(d) None	A	
	(a) 25	 (b) 40 (A ∩ C) is				A B	
	(a) 25	 (b) 40			(d) None (d) None		
	<ul><li>(α) 25</li><li>(ii) The set n</li><li>(α) 25</li><li>(iii) The set n</li></ul>	 (b) 40 (A ∩ C) is (b) 40 (Y ∪ N)' is	(c) 20 (c) 20		(d) None		
	(a) 25 (ii) The set n (a) 25	 (b) 40 (A ∩ C) is (b) 40	(c) 20			В	
	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n	(b) 40 (A ∩ C) is (b) 40 (Y ∪ N)' is (b) 40 (A ∩ (Y ∩ N)' is	(c) 20 (c) 20 (c) 20		(d) None (d) None	В	
	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25	 (b) 40 (A ∩ C) is (b) 40 (Y ∪ N)' is (b) 40	(c) 20 (c) 20 (c) 20		(d) None	В	
Q96	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n (a) 25	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  (b) 40  000 customers reveal	(c) 20 (c) 20 (c) 20 	ring in re	(d) None (d) None	B C C	
Q96	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n (a) 25 A survey of 10	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  000 customers revealinades:	(c) 20 (c) 20 (c) 20 	ring in re	(d) None  (d) None  (d) None	B C C	
Q96	(a) 25  (ii) The set n (a) 25  (iii) The set n (a) 25  (iv) The set n (a) 25  A survey of 10 of different g	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  000 customers revealinades:	(c) 20 (c) 20 (c) 20 	ring in re	(d) None  (d) None  (d) None  spect of their buying habits	B C C	
Q96	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n (a) 25 A survey of 10 of different g A grade only	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  000 customers revealinades:	(c) 20 (c) 20 (c) 20 	ring in re	(d) None  (d) None  (d) None spect of their buying habits	B C C	
Q96	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n (a) 25 A survey of 10 of different g A grade only A and C grades	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  000 customers revealinades:	(c) 20 (c) 20 (c) 20 	ing in re	(d) None  (d) None  (d) None spect of their buying habits  180  80	B C C	
Q96	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n (a) 25 A survey of 10 of different g A grade only A and C grades	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  000 customers revealinates:	(c) 20 (c) 20 (c) 20 	ing in re	(d) None  (d) None  (d) None spect of their buying habits  180  80  480	B C C	
Q96	(a) 25 (ii) The set n (a) 25 (iii) The set n (a) 25 (iv) The set n (a) 25 A survey of 10 of different g A grade only A and C grade C grades A grade but	(b) 40  (A ∩ C) is (b) 40  (Y ∪ N)' is (b) 40  (A ∩ (Y ∩ N)' is (b) 40  000 customers revealinates:  des  not B grade	(c) 20 (c) 20 (c) 20 	ing in re	(d) None  (d) None  (d) None spect of their buying habits  180 80 480 230	B C C	









	(i) How many buy B grade	?				В
	(a) 280 (b) 18		(c) 50	(d) none		
	(ii) How many buy C grade	e if any on	ly if they do not b	uy B grade?		В
	(a) 280 (b) 40	0	(c) 50	(d) none		
	(iii) How many buy C and	_	-			C
	(a) 280 (b) 40	0	(c) 50	(d) none		
Q97	A marketing research team interviews 100 people about their drinking habits tea coffee or milk or A B C respectively. Following data is obtained but the Manager is not sure whether these are consistent.					A
	Category No.					
		ABC			3	
		AB			7	
		ВС			13	
		AC			18	
		А		4	42	
		В			17	
	C 27					
	(a) Inconsistent since 42+ (c) Cannot determine due			(b) Consistent (d) None		
Q98	In a market survey you ha regarding its correctness		ed the following do	ata which you lik	e to examine	A
	% did not use the B	rand	Percento	age answering "\	Yes"	
	April	59	May & .	June	33	
	Μαγ	62	April &	June	31	
	June	62	April, Ma	y, June	22	
	April & May	35				
	(a) Inconsistent since 59+62+62-35-33-31+22+100 (b) Consistent (c) Cannot determine due to data insufficiency (d) None					
Q99	In his report an Inspector of an assembly line showed in respect of 100 units the following which you are require to examine.					A
	Defect		N	No. of pieces		
	Strength (S)			35		
	Flexibility (F)			40		
	Radius (R)			18		









	S and F		7		
	S and R				
			11		
	F and R	12			
	SFR		3		
	Is the report consistent and be accepted?				
	(a) No. of pieces with radius defect alone was -2 which was impossible. The report is inconsistent.				
	(b) Report may be accepted				
	(c) Cannot be determined due to dat	a insufficiency			
	(d) None				
Q100	$A = \{2,3\}, B = \{4,5\}, C = \{5,6\} \text{ then } Ax(B)$			В	
	(a) {(5,2), (5,3)} (b) {(2,5), (3,5)}	(c) {(2,4), (5,3)}	(d) {(3,5), (2,6)}		
Q101	Number of subsets of the set {1,2,3,4}			С	
	(a) 13 (b) 12	(c) 16	(d) 15		
Q102	Number of subsets of the set $A = \{1,2,\dots,n\}$	,3,4,5,6,7,8} is		C	
	(a) 36 (b) 128	(c) 256	(d) None		
Q103	If A = {1, 3, 5, 7,}, B = {2, 4, 6, 8,			В	
	•	(b) Set of all posit	ive integers		
	(c) ф	(d) None of these			
Q104	If $A = \{1, 2, 3, 4, 5\} \& B = \{6, 7, 8\}$ then			A	
	(a) 15 (b) 5		(d) 8		
Q105	$\{x \mid 0 < x < 6, x \text{ take integral values}\}$			В	
	(a) {0, 1, 2, 3, 4, 5} (b) {1,2,3,4,5}				
Q106	If $U = \{1, 2,9\}$ be the universal set $A$	$A = \{1, 2, 3, 4\} \& B = \{3, 4\}$	2 ,4, 6, 8}		
	(i) Then the set A U B is			A	
	(a) {1, 2, 3, 4, 6, 8} (b) {2, 4}	(c) {5, 6, 7, 8,9}	(d) {1 ,3,5,6 ,7 ,9}		
	(ii) Set $A \cap B$ is			В	
	(a) {1,2,3,4,6,8} (b) {2,4}	(c) {5,6,7,8,9}	(d) {1,3,5,6, 7,9}		
	(iii) The set A' is			C	
	(a) {1,2 ,3 ,4 ,6 ,8} (b) {2 ,4}	(c) {5,6,7,8,9}	(d) {1 ,3 ,5 ,6 ,7, 9}		
	(iv) The set $(A \cup B)'$ is			C	
	(a) {1, 2, 3, 4, 6, 8} (b) {2, 4}	(c) {5, 7, 9}	(d) {6, 8, 9}		
	(v) The set $(A \cap B)'$ is			D	
	(a) {1, 2, 3, 4, 6, 8} (b) {2, 4}	(c) {5, 6, 7, 8, 9}	(d) {1,3,5,6,7,8,9}		
Q107	Let $P = (1, 2, x)$ ; $Q = (\alpha, x, y)$ ; $R = (x, y, y)$	z) then			









	(i) P x Q is	A
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) (1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xy)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x). (2y); (xx), (xy)}	
	(ii) The set P x R is	В
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) {(1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xz)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x), (2y); (xx), (xy)}	
	(iii)The set Q x R is	C
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) {(1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xy)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x), (2y); (xx), (xy)}	
	(iv) The set (P x Q) ∩ (P x R) is	D
	(a) {(1a), (1x), (1y); (2a), (2x), (2y); (xa), (xx), (xy)}	
	(b) {(1x), (1y), (1z); (2x), (2y), (2z); (xx), (xy), (xy)}	
	(c) {(ax), (ay), (az); (xx), (xy), (xz); (yx), (yy), (yz)}	
	(d) {(1x), (1y); (2x), (2y); (xx), (xy)}	
	(v) The set (R x Q) ∩ (R x P) is	C
	(a) {(ax), (ay), (az), (xx), (xy), (xz), (yx), (yy), (yz)}	
	(b) {(1x), (1y), (2x), (2y)}	
	(c) {(xx), (yx), (zx)}	
	(d) {(1a), (1x), (1y), (2a), (2x), (2y), (xa), (xy), (x1), (x2), (y1), (y2), (yx), (z1), (z2), (zx)}	
	(vi) The set (P x Q) ∪ (R x P) is	D
	(a) {(ax), (ay), (az), (xx), (xy), (xz), (yx), (yy), (yz)}	
	(b) {(1x), (1y), (2x), (2y), (xx), (yx), (zx)	
	(c) {(x), (yx), (zx)}	
	(d){(1a), (1x), (1y), (2a), (2x), (2y), (xa), (xx), (xy), (x1), (x2), (y1), (y2), (yx), (z1), (z2), (zx)}	
Q108	Out of 2000 staff, 48% preferred coffee, 54% tea and 64% cocoa. Of the total 28% used coffee and tea; 32% tea and cocoa; 30% coffee and cocoa. Only 6% did none of these.	
	(i) Find the number having all the three.	A
	(a) 360 (b) 280 (c) 160 (d) None	
	(ii) Find the number having tea and cocoa but not coffee.	В









	(a) 360	(b) 280	(c) 160	(d) N	IOHE	
	(iii)Find the numb	oer having only	coffee.			(
	(a) 360	(b) 280	(c) 160	(d) N	lone	
109		ile 4000 read bo			the newspaper X, ersons not reading	
	(a) 2000	(b) 3000	(c) 4000	(d) N	lone	
110	Consider the foll	owing data				
	Worker	Skilled	Unskilled	Skilled	Unskilled	
	Term	direct	Direct	indirect	indirect	
	Short	6	8	10	20	
	Medium	7	10	16	9	
	Long	3	2	8	0	
	(i) If S, M, L, T, I denote short medium long terms skilled and Indirect workers respectively find the number of workers in set M.					
					Indirect workers	
						,
	respectively find	the number of (b) 8	workers in set M. (c) 10			
	respectively find	the number of (b) 8	workers in set M. (c) 10		3	
	respectively find (a) 42 (ii) Find the number	the number of (b) 8 per of workers (b) 8	workers in set M. (c) 10 in set L $\cap$ I. (c) 10	(d) 4	3	1
	respectively find (a) 42 (ii) Find the numb (a) 42	the number of (b) 8 per of workers (b) 8	workers in set M. (c) 10 in set L $\cap$ I. (c) 10	(d) 4	3	1
	respectively find (a) 42 (ii) Find the numb (a) 42 (iii) Find the num (a) 42	the number of (b) 8 per of workers (b) 8 pher of workers (b) 8	workers in set M. (c) 10 in set L $\cap$ I. (c) 10 in set S $\cap$ T $\cap$ I.	(d) 4 (d) 4 (d) 4	3	
	respectively find (a) 42 (ii) Find the numb (a) 42 (iii) Find the num (a) 42	the number of (b) 8 per of workers (b) 8 pher of workers (b) 8	workers in set M. (c) 10 in set L $\cap$ I. (c) 10 in set S $\cap$ T $\cap$ I. (c) 10	(d) 4 (d) 4 (d) 4	3	1
	respectively find (a) 42 (ii) Find the numb (a) 42 (iii) Find the num (a) 42 (iv) Find the num (a) 42	the number of (b) 8 per of workers (b) 8 aber of workers (b) 8 ber of workers (b) 8	workers in set M.  (c) 10  in set L $\cap$ I.  (c) 10  in set S $\cap$ T $\cap$ I.  (c) 10  in set (M U L) $\cap$ (7)	(d) 4 (d) 4 (d) 4 (d) 4 (d) 4	3	1
	respectively find (a) 42 (ii) Find the numb (a) 42 (iii) Find the num (a) 42 (iv) Find the num (a) 42	the number of (b) 8 per of workers (b) 8 aber of workers (b) 8 ber of workers (b) 8	workers in set M.  (c) 10  in set L $\cap$ I.  (c) 10  in set S $\cap$ T $\cap$ I.  (c) 10  in set (M U L) $\cap$ (7) (0) 10	(d) 4 (d) 4 (d) 4 (d) 4 (d) 4	3 3 3	1 1 1
	respectively find (a) 42  (ii) Find the number (a) 42  (iii) Find the number (a) 42  (iv) Find the number (a) 42  (v) Find the number (a) 42	the number of (b) 8 per of workers (b) 8 aber of workers (b) 8 ber of workers (b) 8 per of workers (b) 8 per of workers i (b) 44	workers in set M.  (c) 10  in set L $\cap$ I.  (c) 10  in set S $\cap$ T $\cap$ I.  (c) 10  in set (M U L) $\cap$ (7)  (c) 10	(d) 4 (d) 4 (d) 4 (d) 4 (d) 4	3 3 3 3	









## **CHAPTER 7B. RELATIONS**

#### INTRODUCTION

- Any subset of the product set  $A \times B$  is called a relation from A to B. It is denoted by R.
- $R \subseteq A \times B$ .

Domain & Range of a relation: If R is a relation from A to B;

- > Set of all first elements of the ordered pair that belongs to R is called the domain of R.
- > Set of all second elements of the ordered pair that belongs to R is called the range of R.

So, Dom (R) = 
$$\{a: (a, b) \in R\}$$
 & Range (R) =  $\{b: (a, b) \in R\}$ .

**CQ1:** Let Set  $A = \{1, 2, 3\} \& Set B = \{2, 4, 6\}.$ 

Then  $A \times B = \{(1, 2), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 2), (3, 4), (3, 6)\}$ 

We know that every subset of the product set  $\mathbf{A} \times \mathbf{B}$  is called a relation from A to B.

Now we consider the relation which is the subset of  $\mathbf{A} \times \mathbf{B}$ . Let  $R = \{(1, 2), (1, 4), (3, 2), (3, 4)\}$ .

Domain of R = 1st Elements = {1, 3} & Range of R = 2nd Element = {2, 4}

TYPES OF RE	ELATION
Identity Relation	If both the elements of ordered pairs are same, it is an identity relation. The relation $I = \{(\alpha, \alpha): \alpha \in A\}$ is called the identity relation on A. <b>Ex:</b> Let $A = \{1, 2, 3\}$ then $I = \{(1, 1), (2, 2), (3, 3)\}$
Reflexive Relation	<ul> <li>R is reflexive relation if (a, a) ∈ R &amp; a = a.</li> <li>PC Note: R is reflexive if it contains ALL POSSIBLE ORDERED PAIRS of the type (x, x).</li> <li>Ex: Let A = {1, 2, 3}; A×A = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}.</li> <li>Now let us consider a relation R which is a subset of A×A.</li> <li>(i) If R = {(1,1), (1,2), (2,2), (2,3), (3,1), (3,3)}; It is a reflexive relation because all the possible ordered pair of the form (x, x) are present in the given relation.</li> <li>(ii) If R = {(1,1), (1,3), (2,3), (3,1), (3,3)} is NOT a reflexive relation because (2,2) is missing in R</li> </ul>
Symmetric Relation	R is symmetric relation if $(a, b) \in R$ ; then $(b, a)$ should also $\in R$ .  PC NOTE: For each ordered pair $(a, b)$ , the reverse pair $(b, a)$ should also be present in R.





	<b>Ex:</b> $R = \{(1,1), (1,3), (1,2), (2,1), (3,1)\}$ ; In a symmetric relation becoz all reverse pair are present
	Reverse pair of (1,1) is (1,1) itself & repetition is meaningless. Thus, it is given only once.
	Reverse pair of $(1,3)$ is $(3,1)$ which is present & Reverse pair of $(1,2)$ is $(2,1)$ which is also present.
Transitive Relation	R is transitive relation if $(a, b) \in R \& (b, c) \in R$ , then $(a, c)$ should $\in R$ .
	<b>Ex:</b> $\alpha$ b, b $\alpha$ $\alpha$ c.
Equivalence relation	A relation which is reflexive, symmetric & transitive is called an equivalence relation.
	Ex: "is equal to" is an equivalence relation.
Inverse Relation	R is a relation from A to B, then relation $R^{-1}$ from B to A
	$=\{(b, \alpha): (\alpha, b) \in R\}.$
	Dom of $(R^{-1})$ = Range of $(R)$ & Range of $(R^{-1})$ = Dom of $(R)$ .
	<b>Ex:</b> Let $A = \{1, 2, 3\}$ & $R = \{(1, 2), (2, 2), (3, 1), (3, 2)\}$ . R being a subset of $A \times A$ , is a relation on $A$ .
	Dom of (R) = $\{1, 2, 3\}$ & Range of (R) = $\{2, 1\}$ . Now, R ⁻¹ = $\{(2, 1), (2, 2), (1, 3), (2, 3)\}$ .
	Dom $(R^{-1}) = \{2, 1\} = Range (R) \& Range (R^{-1}) = \{1, 2, 3\} = Dom (R).$
Universal Relation	A relation R from A to B is said to be universal relation if $R = A \times B$
	<b>Ex:</b> Let $A = \{1, 2\}$ then, $R = A \times A = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ is universal relation on $A$
Void Relation	A relation R from A to B is said to be void relation if $R = \emptyset$
	<b>Ex:</b> Let A = {7, 11} and B = {3, 5}. Let R = [( $\alpha$ , b): $\alpha$ ∈ A, b ∈ B, $\alpha$ – b is odd}, then R = $\emptyset$

#### "IS EQUAL TO" Relation

- (a) Reflexive:  $\alpha = \alpha$ .
- (b) Symmetric:  $a = b \Rightarrow b = a$ .
- (c) Transitive: a = b,  $b = c \Rightarrow a = c$ .

#### "IS PARALLEL TO" Relation

- (a) Reflexive: a la.
- (b) Symmetric: a  $\|b \Rightarrow b\|$ a.
- (c) Transitive:  $a \| b, b \| c \Rightarrow a \| c$









## **RELATIONS - QUESTION BANK**

SN	CHAPTER 7B. RELATION	Ans
Q111	"Is equal to" over the set of all rational numbers is	D
	(a) Transitive (b) Symmetric (c) Reflexive (d) Equivalence	
Q112	"Is smaller than" over the set of eggs in a box is	A
	(a) Transitive (T) (b) Symmetric (S) (c) Reflexive (R) (d) Equivalence(E)	
Q113	"Is greater than" over the set of all natural number if known as	A
	(a) Transitive (b) Symmetric (c) Reflexive (d) Equivalence	
Q114	Relation "is parallel to" on the set of all straight lines in a plane is Relation.	A
	(a) an Equivalence (b) an Equal (c) Reflexive (d) Transitive	
Q115	"Is perpendicular to" over the set of straight lines in a given plane is	A
	(a) Symmetric (b) Reflexive (c) Transitive (d) Equivalence	
Q116	"Is the reciprocal of" over the set of non zero real numbers is	A
	(a) Symmetric (b) Reflexive (c) T ransitive (d) None	
Q117	"Is the square of" over n set of reai numbers is	D
	(a) Reflexive (b) Symmetric (c) Transitive (d) None	
Q118	<del></del>	D
	(a) Reflexive (b) Symmetric (c) Transitive (d) Equivalence	
Q119		D
	(a) Reflexive (b) Symmetric (c) Transitive (d) Equivalence	
Q120	$\{(x, y) \mid x + y = 2x \text{ where } x \text{ and } y \text{ are positive integers} \}$ is	D
	(a) Reflexive (b) Symmetric (c) Transitive (d) Both (a) and (b)	
Q121	If A = {1, 2, 3} then R = {(1,1), (2,2), (3,3), (1,2)} is	A
	(a) reflexive & transitive but not symmetric	
	(b) reflexive & symmetric but not transitive	
	(c) symmetric and transitive but not reflexive (d) identity relation	
Q122		В
	(a) an Into (b) an Identity (c) Symmetric (d) Transitive	
Q123		C
	(a) domain (R inverse) = range (R inverse) (b) domain (R) = range (R)	
	(c) domain (R inverse) = range (R) (d) domain (R) = range (R inverse)	
Q124		В
	(a) Reflexive but not Transitive (b) Transitive but not Reflexive (c) Reflexive and Transitive (d) Neither Reflexive nor Transitive	
	(a) Netther Reflexive nor Transitive	







## **CHAPTER 7C. FUNCTIONS**

#### INTRODUCTION

- Function means any relation from X to Y in which two different ordered pairs should not have same first element.
- If any ordered pair of a relation have same first element, then such relation is not a function.
- If each element 'x' of A is related with a unique element f(x) of B, it is called a function or mapping from A to B and it is written as  $\mathbf{f}: \mathbf{A} \rightarrow \mathbf{B}$ .
- The element f(x) is called the image of x, while 'x' is called the pre-image of f(x).
- Let  $f: A \rightarrow B$ , 'A' is called the domain; while 'B' is called the range.

**Ex:** A =  $\{1, 2, 3\}$  & B =  $\{a, b\}$ . Let us consider a function  $\{(1, a), (2, b)\}$ .

In this case, no ordered pair have same first element, so it is a function.

Ex: Let N be the set of all natural numbers.

Then, rule f(x) = 2x for all  $x \in N$  is a function from N to N, since twice a natural number is unique.

Now, f(1) = 2; f(2) = 4; f(3) = 6 and so on.

Here domain of function =  $\{1, 2, 3, 4, \dots \}$  & range of function =  $\{2, 4, 6, \dots \}$ 

**Ex:** Let  $A = \{1, 2, 3, 4\} \& B = \{1, 2, 3\}.$ 

 $\mathbf{A} \times \mathbf{B} = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)\}$ 

 $R = Subset \{(1, 2), (1, 3), (2, 3)\}$  is a relation on  $A \times B$ . (i)

This relation contains all ordered pair in  $A \times B$  for which A < B. So, it is "less than" relation.

This relation is not a function because it includes two different ordered pairs (1,2), (1,3) have same 1st element.

Subset  $\{(1, 1), (2, 2), (3, 3)\}$  defines the function y = x as different ordered pairs of this (ii) subset have different 1st element.

**CQ1.** If 
$$f(x) = 2x^2 - 5x + 4$$
 then  $2f(x) = f(2x)$  for

[Ans: C]

$$(\alpha) x = 1$$

(b) 
$$x = -1$$

(c) 
$$x = \pm 1$$

(d) None

**CQ2.** If  $f(x) = x^2 - 5$ , evaluate f(3), f(-4), f(5) and f(1).

[Ans: C]

**CQ3.** Which of these is a function from  $A \rightarrow B$   $A = \{x, y, z\}$   $B = \{a, b, c, d\}$ 

[Ans: C]

(a) 
$$\{(x,a) (x,b) (y,c)\}$$

(b) 
$$\{(x,a)(x,b)(y,c)(z,d)\}$$
 (c)  $\{(x,a)(y,b)(z,d)\}$  (d)  $\{(a,x)(b,z)(c,y)\}$ 





#### TYPES OF FUNCTIONS

#### One - One function (Injective function)

- If every element in Set A have different images in Set B, such function is one-one function.
- If  $f(a) = f(b) \Rightarrow a = b$ .

**Ex:** Let A =  $\{1, 2, 3\}$  and B =  $\{2, 4, 6\}$ . Thus the function is f:  $A \rightarrow B$ : f(x) = 2x.

Then f(1) = 2; f(2) = 4; f(3) = 6. Since every element in A have different images in B, it is oneone function.

#### Many-one function

- If two or more elements in A have same image (corresponding value) in B, such function is many-one function.
- **Ex**:  $f(x) = x^2$ ;  $x \in R$ .

 $f(1) = (1)^2 = 1 & f(-1) = f(-1)^2 = 1.$ 

So, two elements of Set A have the same image in Set B. Hence it is a many — one function.

#### Onto function (Surjective function)

• f:  $A \rightarrow B$  is called onto function if for all  $b \in B$ , there is at least one  $a \in A$  with f(a) = b.

PC Note: If every element in B has at least one pre-image in A, it is onto function.

#### Range = Co-domain.

**Ex:**  $A = \{1, 2, 3\} \& B = \{\alpha, b\}$ . Let  $f = \{(1, \alpha), (2, \alpha), (3, \alpha)\}$ .

In this case, no ordered pair have same first element, so it is a function.

In the given function, 'a' have 3 pre images but 'b' does not have any pre image.

Hence it is not onto function. It is into function.

#### Into function

If at least one element in B has no pre-image in A, then the function is into function.

**Ex:** A = 
$$\{1, 2, 3\}$$
 & B =  $\{\alpha, b\}$ . Let f =  $\{(1, \alpha), (2, \alpha), (3, \alpha)\}$ .

In this case, no ordered pair have same first element, so it is a function.

In the given function, 'a' have 3 pre images but 'b' does not have any pre image. Hence it is not onto function. It is into function.

**Ex:** A = 
$$\{1, 2, 3\}$$
 & B =  $\{\alpha, b, c, d\}$ . Let f =  $\{(1, \alpha), (2, b), (3, c)\}$ .

In this case, no ordered pair have same first element, so it is a function.

Here the element 'd' in B does not have a pre images in A. Thus it is into function.

**Ex:** A = 
$$\{2, 3, 5, 7\}$$
 & B =  $\{0, 1, 3, 5, 7\}$ . Let us consider f: A  $\rightarrow$  B;  $f(x) = x - 2$ .

Then 
$$f(2) = 0$$
;  $f(3) = 1$ ;  $f(5) = 3 & f(7) = 5$ .

Here there exists an element 7 in B, having no pre-mage in A. Thus it is into function.







#### **Bijective Function**

• One-One onto function is called Bijective function. [One to One]

#### **Constant Function**

[Ex: f(x) = 5]

- All the elements in 'A' have the same image in 'B', then it is a constant function.
- Range of a constant is a singleton set.

**Ex:** Let  $f(x) = \{(1, 3), (2, 3), (3, 3), (4, 3)\}.$ 

It is a constant function since all the elements in A have the same image in B.

#### Identity function

- If every element is A has the same image (i.e A).
- F(x) = x  $[\forall x \in X, f(x) \in X].$
- It is a one-to-one onto function with domain A and range A.

PC Note: If every element in A is mapped to itself, it is an identity function.

**Ex:** Let  $x = \{1, 2, 3, 4\}$  then f(1) = 1; f(2) = 2; f(3) = 3; f(4) = 4 is an identity function.

#### **Equal Function** 8

■ Two functions f(x) & g(x) are said to be equal if (i) they have same domain; (ii) f(x) = g(x).

**Ex:** Let  $f(x) = x^2$ ,  $\forall x \in R \& g(y) = y^2$ ,  $\forall y \in R$ . Then two function f & g are equal.

#### **Inverse Function**

[Don't even dare to see the definition]

- If f(x) = y; then  $f^{-1}(y) = x$ .
- $\blacksquare$  Only one one onto functions are invertible (can have inverse function).

#### STEPS TO FIND INVERSE FUNCTION

- 1. Substitute f(x) = y.
- 2. Find the value of x in terms of y.
- 3. Replace 'x' with  $f^{-1}(x)$  & 'y' with x.
- 4. The resultant will be the answer.

**Ex:** f(x) = 2x. Find  $f^{-1}(x)$ .

**Ans:** Step 1: Let f(x) = y. Thus y = 2x; Step 2: x = y/2; Step 3:  $f^{-1}(x) = x/2$ .

#### **Composite Function** 10

[Function of a function]

#### PC TIPS TO FIND COMPOSITE FUNCTION

- f[g(x)]: Replace 'x' with g(x) in f(x).
- g[f(x)]: Replace 'x' with f(x) in g(x).

**Ex:** Let  $f(x) = 2x \& g(x) = 3x^2$ . Find f[g(x)] & g[f(x)].

- (i) f[g(x)] = Replace 'x' with g(x) in f(x);
- $f[g(x)] = 2(3x^2) = 6x^2$ .
- (ii) g[f(x)] = Replace 'x' with f(x) in g(x);
- $g[f(x)] = 3(2x)^2 = 12x^2$ .







## **FUNCTIONS — QUESTION BANK**

SN		CHAPTER 7C. FU	NCTIONS		Ans	
Q125	A = {1,2,3,4,} & B = {1,4	4,9,16} & if f is α m	apping from A → B	such that $f(x) = x^2$ ,	A	
	then	) o (0) (4 ( o				
	(a) domain (f) = $\{1,2,3,4,\}$	•				
	(b) range (f)={1,2,3,4,} & domain (f) = {1,4,9,} (c) domain (f) ={1,2,9,16,} & range (f) = {1,2,3,}					
	(d) range (f)={1,2,9,16,} & domain (f) = 1,2,3,}					
Q126						
Q 120	Domain of {(1,7), (2,6)} is (a) (1,6)	(b) (7,6)	(c) (1,2)	(d) (6,7)	С	
0403			(0) (1,2)	(4) (0,7)		
Q127	Range of {(3,0),(2,0),(1,0	),(0,0)} is (b) (0)	(c) {0,0,0,0}	(d) None	В	
	(a) (0,0)		(0) {0,0,0,0}	(d) None		
Q128	The range of {(1,6),(2,7)}		(.) (4. 0)	(1) (0, 0)	A	
	(a) (6, 7)	(b) (1, 7)	(c) (1, 2)	(d) (6, 2)		
Q129	Domain & range of {(x,y)			7 h 5 i	В	
	(a) (Real, Natural No.)					
Q130	Let the domain of $x$ be the set {0,1}. Which of the following functions is equals to 1.					
	(a) $f(x) = x^2$ , $g(x) = x$ (b) $f(x) = x$ , $g(x) = 1 - x$					
	(c) $f(x) = x^2 + x + 2$ , $g(x) = (x)$	+1) ²	(d) None			
Q131	Range of function $f(x) =$	$\frac{1}{1-x}$ is			В	
	(a) Set of rational numb	ers	(b) Set of real nur	mbers (except 0)		
	(c) Set of natural numbe	rs	(d) Set of integer	s.		
Q132	Range of function $f(x) =$	$\log_{10}(1+x)$ for domain (	of real values of x w	when $0 \le x \le 9$ is	C	
	(a) {O}	(b) {0,1,2}	(c) {O,1}	(d) None		
Q133	For function $h(x) = 10^{1+x}$ c	lomain of real values	of x where $0 \le h(x)$ :	≤ 9, range is	A	
	(a) $10 \le h(x) \le 10^{10}$	(b) $0 \le h(x) \le 10$	(c) $0 < h(x) < 10$	(d) None		
	Finding Value of Function					
Q134	If $f(x) = \frac{x+1}{x^2-3x-4}$ , find $f(0)$ ,	f(1), f(-1).			С	
	(α) 1, 3, O		(c) $-\frac{1}{4}$ , $-\frac{1}{3}$ , $\frac{0}{0}$	(d) 0, 1, 0		
Q135	If $f(x) = x^3 - x^2 + x + 1$ the	en the value of [f(1) +	f(-1)] will be		С	
	(a) 5	(b) 2	(c) 0	(d) -2		
Q136	If $f(x) = x^2 + 3x$ then $f(2)$	- f(4) is equal to			В	
	(α) -15	(b) -18	(c) 18	(d) 12		
Q137					В	







	(a) 1	(b) 0	(c) -1	(d) None		
Q138		$x) = x^2 - 5$ ; $f(5)$ is			D	
Q 100	(a) 0	(b) 5	(c) 10	(d) 20		
Q139		n + 1) is equal to			В	
	(a) f(h)	(b) f(-h)	(c) f(-h+1)	(d) None		
Q140	If $f: R \to R$ , $f(x) = x^2 + \frac{1}{2}$	+ 8, then f(-3) is			В	
	(a) 1	(b) 17	(c) -1	(d) -17		
Q141	If $f(x) =  x  +  x - 2 $ , then redefine the function. Hence find $f(3,5)$ , $f(-2)$ , $f(1.5)$ .					
	(a) 5, 6, 2			(d) 0, 2, 5		
Q142	If $f(x) = x^3 + \frac{1}{x^3}$ then v	alue of $f(x) - f(1/x)$ is ea	qual to		A	
	(a) O		(c) $x^3 + \frac{1}{x^3}$	(d) None		
Q143	If $f(x) = \frac{5}{x}$ , then $f(0)$ is		x		D	
	$(\alpha) + \infty$		(c) 5	(d) Undefined		
Q144	If $f(x) = \frac{1-x}{1+x}$ then $f(f(x)) = \frac{1-x}{1+x}$	/x)} =			A	
	(a) $1/x$	(b) x	(c) -1/x	(d) None		
Q145	If $f(x+1) = 2x + 7$ then		(5)	(3,7.13.13	A	
	(a) 5	(b) 4	(c) 3	(d) 0		
Q146	If $f(x) = x^2 - 1$ and $g(x)$	$=\frac{x+1}{2}$ then $\frac{f(3)}{f(3)+g(3)}$ is			В	
	(a) 5/4		(c) 3/5	(d) 5/3		
Q147	If $f(x) = \frac{q \times (x-p)}{p} + \frac{p \times (x-p)}{p}$	$\frac{q)}{r}$ then $f(p) + f(q)$ is equ			A	
	(q-p)   (p-q) $(a) f(p+q)$		(c) f(p - q)	(d) None		
Q148		<u></u>	· · · · · · · · · · · · · · · · · · ·	(a) None	_	
Q 140	(a) $f(pqr)$	hat f(p)+ f(q) + f(r) is _ (b) f(p)f(q) f(r)		(d) None	A	
Q149	ny_a		(-) (()    1)	(-,/	С	
	(a) $h(1/y)$		(c) h(y)	(d) None		
	(d) 11(17 y)	COMPOSITE F		(d) None		
0450	T( ((v) - v + 0 - a(v) - (v)		UNCTION			
Q150		2 then gof(x) is	$(c) x^2 (x + 3)$	$(d) x^2 + (x + 3)$	A	
Q151	(a) $(x + 3)^2$ (b) $x^2 + 3$ (c) $x^2 (x + 3)$ (d) $x^2 + (x + 3)$ Find fog(x) for the functions $f(x) = x^8$ , $g(x) = 2x^2 + 1$					
G 101	(a) $x^{8}(2x^{2} + 1)$		(c) $2x^2 + 1$	(d) (2x² + 1) ⁸	D	
Q152		nctions $f(x) = x^2$ , $g(x) = x^2$		(-) (-)	D	
J U.E	$(a) x^2(x + 1)$	(b) $x^2$	(c) x+1	(d) $(x + 1)^2$		
Q153	If $f(x) = x+3$ , $g(x) = x^2$ ,			,	A	
<b></b>	-1 1(A) A 3, 9(A) A 3	••••••				







Q154		then fog(x) is	( ) ( , o)?	<i>(</i>   )	A	
	(a) x ² +3	(b) x ² +x+3	(c) $(x+3)^2$	(d) None		
Q155	_	= x then fog(x) is (b) $(x)^2 + (x^2 + 3)$	(a) (v + 9)2	(d) $(x)^2(x^2+3)$	A	
0450			(C) (X + S)-	(u) (x)-( x-+ 3)		
<b>Q156</b>		x then gof(x) is (b) $(x)^2 + (x^2 + 3)$	(c) $(x + 3)^2$	(d) $(x)^2 + (x^2 + 3)$	A	
Q157	Find gof(x) for the functions f (x) = $\sqrt{x}$ , g (x) = $2x^2 + 1$					
<b></b> ,			(c) $(2x^2+1)\sqrt{x}$	(d) $\sqrt{x}$	В	
Q158	$f(x) = 2x+2, g(x) = x^2,$				С	
	(a) 100		(c) 34	(d) 36		
Q159	If $f(x) =  x+1  & g(x) =$	= $3x^2 - 5$ , find the value of	of gof =		A	
	(α) 3x ² +6x-2	(b) 2x ² -6x + 3	(c)   3x -5	(d) $x - 5$		
Q160	If $f(x) = x + 3$ , $g(x) = x^2$ then $f(x).g(x)$ is					
	(a) $(x+3)^2$	(b) x ² +3	(c) $x^3+3x^2$	(d) None		
Q161	If $f(x) = \frac{1}{1-x}$ and $g(x) = \frac{x-1}{x}$ , then $gof(x)$ is					
	(α) x	(b) 1/x	(c) -x	(d) None		
Q162	If $f(x) = \frac{1}{1-x}$ and $g(x)$	$=\frac{x}{x-1}$ , then fog(x) is	_•		A	
	(a) x	(b) 1/x	(c) -x	(d) None		
Q163	If $f(x) = x + 2$ , $g(x) =$	7×, then g o f (x) =			В	
	(a) 7 ^x .x + 2.7 ^x	(b) 7 ^{x + 2}	(c) (7 ^x ) + 2	(d) None		
Q164	If $f(x) = \log(\frac{1+x}{1-x})$ the	en f $(\frac{2x}{1+x^2}) = $			В	
	(a) f(x)	(b) 2 f(x)	(c) 3 f(x)	(d) -f(x)		
Q165	If $f(x) = x + 2$ , $g(x) =$	$7^{x}$ , then g o f (x) =			В	
	(a) 7 ^x .x + 2.7 ^x	(b) 7 ^{X + 2}	(c) (7 ^x ) + 2	(d) None		
Q166	If $f(x) = \alpha x^2 + b$ , find	$\frac{1}{h} \frac{f(x+h)-f(x)}{h} = \underline{\qquad}.$			В	
	(a) 2x+h		(c) α(2x-h)	(d) 2x-h		
Q167	If $f(x) = 2x^2 - 5x + 2$ then the value of $\frac{f(4+h)-f(4)}{h} = $					
	(α) 11-2h	· · · · · · · · · · · · · · · · · · ·	(c) 2h-11	(d) None		
Q168	$f(x) = \frac{x}{x-1}$ , then $\frac{f(x/y)}{f(y/x)}$	- =			С	
	$(\alpha) \frac{X}{v}$	(b) ^y / _x	(c) - $\frac{X}{v}$	(d) - $\frac{y}{x}$		
	(4),,	(D) X	(U) V	(u) x	1	







	(α) Log ₁₀ x	(b) 10 ^x	(c) Log ₁₀ (1/x)	(d) None		
Q170	If $f(x) = \frac{1}{1-x^9}$ , then $f^{-1}(x)$ is	·			В	
	(α) 1-x	(b) $(x-1)/x$	(c) x/x-1	(d) None		
Q171	Find $f^{-1}(x)$ when $f(x)=x^2$ is	S			В	
	(α) 1/x ²	(b) $\sqrt{x}$	(c) 1/x	(d) None		
Q172	If $f(x) = 100x$ ; then $f^{-1}(x)$	=,			A	
	$(\alpha) \frac{X}{100}$	(b) $\frac{1}{100 \text{ X}}$	(c) $\frac{1}{100}$	(d) None		
2173	A function is invertible	if and only if f is _			С	
	(a) one -one		(b) one-one, into	)		
	(c) one-one, onto		(d) many -one, ir	nto		
		MISCELLANEOU	S QUESTIONS			
Q174	If $A = \{1,2,3\}$ and $B = \{4,6,7\}$ then the relation = $\{(2,4),(3,6)\}$ is					
	(a) Function from A to E	3	(b) Function from	m B to A		
	(c) Both (a) & (b)		(d) Not a Function	on		
Q1 <b>7</b> 5	$\{(x,y) \text{ such that } y = x^2\} \text{ is}$	S			В	
	(a) Not a function		(b) A function			
	(c) Inverse mapping		(d) None			
Q176	If $f(x) = x^2$ , $x > 0$ , then the function is					
	(α) Not one to one		(b) One to one			
	(c) Into		(d) None			
Q177	N is the set of all natural numbers and E is the set of all even numbers. If $f: N \to A$ defined by $f(x) = 2x$ , for all $x \in N$ is: A					
	(a) One - one and onto		(b) One - one int	o		
	(c) Many one onto		(d) Can't say			
Q178	{(x, y) such that x <y} is<="" td=""><td>a</td><td></td><td></td><td>A</td></y}>	a			A	
	(a) Not a function		(b) A function			
	(c) One-one mapping		(d) None			
Q179	{(x, y); x= 4} is α				A	
	(a) Not a function		(b) Function			
	(c) One-one mapping		(d) None			
Q180	$\{(x, y) \text{ such that } (x+y = 5)\}$	)) is function.			С	
	(a) Not a function		) Composite			
	(c) One-one mapping	(d	) None			
Q181	Function $f(x) = 2^x$ is				A	
	(a) One one mapping	(b) One many	(c) Many one	(d) None		







Q182	If $f(x) =  x  \forall x \in \mathbb{R}$ , then the	e function is			С
	(a) Not one to one	(b) One to one	(c) Into	(d) Not into	
Q183	Let A = {2,3,5,7} and B = [ - 2; f is	0,1,3,5,7}. If f is a r	napping from A to B	such that $f(x) = x$	A
		(b) an onto	(c) constant	(d) identical	
Q184	If A = {0,1,3,5,6} & B = {2,4	4,8,9); then function	is		
	(a) onto function	(b) into function	(c) Many one onto	(d) None	
Q185	F: $R \rightarrow R$ is defined by $f(x)$	= 2* then f is			В
	(a) One - one & onto	(b) One - one & int	o(c) Many to one	(d) None	
Q186	If $A = \{x, y, z\}, B = \{p, q, r, q\}$	s) which of the rela	tion on A, B are fund	ction.	D
	(a) {(x,p), (y,r), (z,s)}		(b) {(x,s), (y,s), (z,s)	)}	
	(c) $\{(n,p), (x,q), (y,r), (z,s)\}$		(d) Both (a) and (b)	)	
		EVEN & ODD FU	NCTION		
Q187	If $g(x) = 3 - x^2$ then $g(x)$ is	function.			C
	(a) Odd	(b) Periodic	(c) Even	(d) None	
Q188	A function f(x) is an even	function if			В
	$(\alpha) - f(x) = f(x)$	(b) $f(-x) = f(x)$	(c) $f(-x) = -f(x)$	(d) None	
Q189	If $f(x) = \frac{5^x + 1}{5^x - 1}$ then $f(x)$ is	·			В
	(a) Even	(b) Odd	(c) Composite	(d) None	







## CHAPTER 8A. DIFFERENTIAL CALCULUS

#### INTRODUCTION

**Ex:** Let us consider a function  $y = f(x) = 3x^2 + 5x + 2$ .

The value of f(x) i.e 'y' will depend on value of 'x'.

[Note: x can take any value]

Thus, we can say that 'y' is a dependent variable & 'x' is an independent variable.

If 
$$x = 1$$
,  $y = 3(1)^2 + 5(1) + 2 = 10$ ;

If 
$$x = 2$$
,  $y = 3(2)^2 + 5(2) + 2 = 24$ .

Thus, we can say that if we change the value of x from 1 to 2, value of y changes from 10 to 24.

Now let's jump on to the definition of derivative.

#### **MEANING OF DERIVATIVE [DIFFERENTIATION]**

- It is a process of finding "change in dependent variable" w.r.t "change in independent variable".
- It measures the rate at which the changes are taking place.
- Change in 'x' is denoted by  $\Delta x$  & Change in 'y' is denoted by  $\Delta y$ . [Called as 'delta' x]
- It involves a very small change in dependent variable (i.e y) w.r.t a very small change in independent variable (i.e x). Thus, it studies "Instantaneous rate of change of a function".

Differentiation is the process of finding "change in value of y" w.r.t "change in value of x".

- Thange in 'x' is so small that it tends to Zero.  $[\Delta x \rightarrow 0]$  & thus we say that it studies "instantaneous rate of change of a function".
- Fig. 12 It is defined as the limiting value of the ratio of change (increment) in the function corresponding to a small change (increment) in independent variable as the later tends to
- The derivative of f(x) is also known as differential coefficient of f(x) with respect to x.
- This is denoted as  $\frac{dy}{dx}$  or f'(x)

[Derivative of 'y' w.r.t 'x']

PC NOTE: To differentiate a function, we have to differentiate it w.r.t independent variable only.

**Note:** (i) 
$$\frac{d}{dx}f(x) \neq \frac{d}{dx} \times f(x)$$
.

(ii) 
$$\frac{dy}{dx} \neq dy \div dx$$
.

(iii)  $\frac{dy}{dx}$  represents **slope of tangent** to the curve y = f(x) & is known as "gradient" of the curve.





#### SOME STANDARD RESULTS BASED ON FIRST PRINCIPLE

Function f(x)	Derivative	When to apply the formula
(i) x ⁿ	n.x ⁽ⁿ⁻¹⁾	When we have a constant number in power. [n → denotes a constant number (+ve/–ve)].
(ii) e ^x	e ^x	When we have 'e' in base. [Value of 'e' = 2.71828 is irrelevant]
(iii) α ^x	a×.log a	When we have a number in base.  [a → denotes a constant number (a > 0 & a ≠ 1)]
(iv) Log x	(1/x)	When we have 'log'.
(v) Constant (C)	ZERO	Derivative of a "constant" is "Zero". [Note: <b>eⁿ &amp; a</b> ^a are constants].
(vi) C. f(x)	C. f'(x)	Take 'C' outside; differentiate $f(x)$ & then multiply $f'(x)$ by C.

Formula  Function  Derivatives of Function $ \frac{d}{dx} \times^{n} = n. \times^{(n-1)} $ $ x^{5} \qquad \frac{dy}{dx} = 5. \times^{(5-1)} = 5. \times^{4} $ $ \sqrt{x}, \qquad Y = x^{1/2}, \frac{dy}{dx} = (1/2).  x^{(\frac{1}{2}-1)} = (1/2)x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} $ $ \times \sqrt{x} \qquad Y = x^{3/2}, \frac{dy}{dx} = \frac{3}{2} \cdot x^{(\frac{3}{2}-1)} = \frac{3}{2} \cdot x^{\frac{1}{2}} = \frac{3}{2\sqrt{x}} $ $ \frac{1}{x} \qquad Y = x^{(-1)}, \frac{dy}{dx} = (-1).  x^{(-1-1)} = (-1)x^{-2} = -\frac{1}{x^{2}} $ $ \frac{1}{\sqrt{x}} \qquad Y = x^{-1/2}, \frac{dy}{dx} = (-1/2).  x^{(-\frac{1}{2}-1)} = (-1/2)x^{-\frac{3}{2}} = -\frac{1}{2} $
$ \sqrt{X}, \qquad Y = X^{1/2}, \frac{dy}{dx} = (1/2).  x^{(\frac{1}{2} - 1)} = (1/2)x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} $ $ X\sqrt{X} \qquad Y = X^{3/2}, \frac{dy}{dx} = \frac{3}{2} \cdot x^{(\frac{3}{2} - 1)} = \frac{3}{2} \cdot x^{\frac{1}{2}} = \frac{3}{2\sqrt{x}} $ $ \frac{1}{x} \qquad Y = X^{(-1)}, \frac{dy}{dx} = (-1).  x^{(-1 - 1)} = (-1)x^{-2} = -\frac{1}{x^2} $ $ \frac{1}{\sqrt{x}} \qquad Y = X^{-1/2}, \frac{dy}{dx} = (-1/2).  x^{(-\frac{1}{2} - 1)} = (-1/2)x^{-\frac{3}{2}} = -\frac{1}{2} $
$ \sqrt{X}, \qquad Y = X^{1/2}, \frac{dy}{dx} = (1/2).  x^{(\frac{1}{2} - 1)} = (1/2)x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}} $ $ X\sqrt{X} \qquad Y = X^{3/2}, \frac{dy}{dx} = \frac{3}{2} \cdot x^{(\frac{3}{2} - 1)} = \frac{3}{2} \cdot x^{\frac{1}{2}} = \frac{3}{2\sqrt{x}} $ $ \frac{1}{x} \qquad Y = X^{(-1)}, \frac{dy}{dx} = (-1).  x^{(-1 - 1)} = (-1)x^{-2} = -\frac{1}{x^2} $ $ \frac{1}{\sqrt{x}} \qquad Y = X^{-1/2}, \frac{dy}{dx} = (-1/2).  x^{(-\frac{1}{2} - 1)} = (-1/2)x^{-\frac{3}{2}} = -\frac{1}{2} $
$\frac{1}{x} \qquad Y = x^{(-1)}, \frac{dy}{dx} = (-1). \ x^{(-1-1)} = (-1)x^{-2} = -\frac{1}{x^2}$ $\frac{1}{\sqrt{x}} \qquad Y = x^{-1/2}, \frac{dy}{dx} = (-1/2). \ x^{(-\frac{1}{2}-1)} = (-1/2)x^{-\frac{3}{2}} = -\frac{1}{x^2}$
$\frac{1}{\sqrt{x}} \qquad Y = x^{-1/2}; \frac{dy}{dx} = (-1/2). \ x^{(-\frac{1}{2}-1)} = (-1/2)x^{-\frac{3}{2}} = -\frac{1}{2}$
7/0 7 7 7 10
$Y = x^{1}; \frac{dy}{dx} = 1.x^{(1-1)} = 1.x^{0} = 1.1 = 1$

Class work:





$d_{(-1)}$	e ^x	$\frac{dy}{dx} = e^{x}$
$\frac{d}{dx}(e^{x}) = e^{x}$		dx
	e²	$\frac{dy}{dx}$ = Zero since $e^2$ is a constant.
$\frac{d}{dx}(\alpha^{x}) = \alpha^{x}.\log \alpha$	α×	$\frac{dy}{dx} = \alpha^{x}. \log \alpha$
ux	2×	$\frac{dy}{dx} = 2^{x}. \log 2$
$\frac{d}{dx}\log x = \frac{1}{x}$	Log x	$\frac{dy}{dx} = \frac{1}{x}$
ux x	2 ^x	$\frac{dy}{dx} = 2^{x}. \log 2$
$\frac{d}{dx}$ C. f(x) = <b>C.</b> f'(x)	12x ⁵	$\frac{dy}{dx}$ = 12. $\frac{d}{dx}$ (x ⁵ ) = 12. 5x ⁴ = 60. x ⁴
ux	ax³	$a. \frac{d}{dx}(x^3) = a. 3x^2 = 3ax^2.$
	(-3)x ⁻²	$(-3). \frac{d}{dx}(x^{-2}) = (-3). (-2). x^{(-2-1)} = 6x^{-3}.$
	$\frac{x^5}{2}$	$(1/2). \frac{d}{dx}(x^5) = (1/2).5x^4 = \frac{5}{2}x^4$

#### BASIC LAWS FOR DIFFERENTIATION

SUM/DIFFERENCE RULE:  $\frac{d}{dx}[f(x) \pm g(x)] = \frac{d}{dx}[f(x)] \pm \frac{d}{dx}[g(x)]$ 

**Ex:** 
$$\frac{d}{dx} \left[ \alpha x^2 + bx + c \right] = \frac{d}{dx} (\alpha x^2) + \frac{d}{dx} (bx) + \frac{d}{dx} (c) = \alpha \cdot \frac{d}{dx} (x^2) + b \cdot \frac{d}{dx} (x) + \frac{d}{dx} (c) = \alpha \cdot 2x + b \cdot 1 + c = 2\alpha x + bx + c$$

**Ex:** 
$$\frac{d}{dx}[3x^2 + 5x - 2] = \frac{d}{dx}(3x^2) + \frac{d}{dx}(5x) - \frac{d}{dx}(2) = 3. \frac{d}{dx}(x^2) + 5. \frac{d}{dx}(x) - \frac{d}{dx}(2) = 3.2x + 5.1 - 0 = 6x + 5.$$

$$\textbf{Ex:} \ \frac{d}{dx} \left[ \alpha^x + x^\alpha + \alpha^\alpha \right] = \frac{d}{dx} (\alpha^x) + \frac{d}{dx} (x^\alpha) + \frac{d}{dx} (\alpha^\alpha) = \alpha^x. \ \log \alpha + \alpha. x^{(\alpha-1)} + 0.$$

Let 
$$f(x) = U \& g(x) = V$$
; PRODUCT RULE:  $\frac{d}{dx}[\mathbf{U} \times \mathbf{V}] = \mathbf{U} \cdot \frac{d}{dx}[\mathbf{V}] + \mathbf{V} \cdot \frac{d}{dx}[\mathbf{U}]$ 

**Ex:** 
$$\frac{d}{dx}(2^x.x^5) = 2^x. \frac{d}{dx}(x^5) + x^5. \frac{d}{dx}(2^x) = 2^x.(5x^4) + x^5.(2^x.\log 2) = 2^x.x^4[5 + x.\log 2]$$

**Ex:** 
$$\frac{d}{dx}(2^{x}.logx) = 2^{x}.\frac{d}{dx}(log x) + log x.\frac{d}{dx}(2^{x}) = 2^{x}.(\frac{1}{x}) + log x (2^{x}.log 2) = 2^{x}.[(\frac{1}{x}) + log x . log 2]$$

**Ex:** 
$$\frac{d}{dx}(x^2 \cdot \log x) = x^2 \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(x^2) = x^2 \cdot (\frac{1}{x}) + \log x \cdot (2x) = x + 2x \cdot \log x = x \cdot (1 + 2 \cdot \log x)$$





# QUOTIENT RULE: $\frac{d}{dx} \left[ \frac{U}{V} \right] = \frac{V \cdot \frac{d}{dx} \left[ U \right] - U \cdot \frac{d}{dx} \left[ V \right]}{V^2}$

$$\textbf{Ex:} \ \frac{d}{dx} \frac{e^x}{\log x} = \frac{\log x \cdot \frac{d}{dx}(e^x) - e^x \cdot \frac{d}{dx}(\log x)}{(\log x)^2} = \frac{\log x \cdot (e^x) - e^x \cdot \frac{1}{x}}{(\log x)^2} = \frac{e^x \, [\log x - \frac{1}{x}]}{(\log x)^2}$$

$$\textbf{Ex:} \ \frac{\mathrm{d}}{\mathrm{dx}} (\frac{x^2}{e^x}) = \frac{\mathrm{e}^{x} \cdot \frac{\mathrm{d}}{\mathrm{dx}} (x^2) - x^2 \cdot \frac{\mathrm{d}}{\mathrm{dx}} (\mathrm{e}^{x})}{(\mathrm{e}^{x})^2} = \frac{\mathrm{e}^{x} \cdot 2x - x^2 \cdot (\mathrm{e}^{x})}{(\mathrm{e}^{x})^2} = \frac{x \cdot \mathrm{e}^{x} [2 - x]}{(\mathrm{e}^{x})^2} = \frac{x[2 - x]}{\mathrm{e}^{x}}$$

**Ex:** 
$$\frac{d}{dx} \frac{3-5x}{3+5x} = \frac{(3+5x)\frac{d}{dx}(3-5x) - (3-5x)\frac{d}{dx}(3+5x)}{(3+5x)^2} = \frac{(3+5x)(-5) - (3-5x)(5)}{(3+5x)^2}$$

$$=\frac{[-15-25x]-[15-25x]}{(3+5x)^2}=\frac{[-15-25x]-15+25x]}{(3+5x)^2}=\frac{-30}{(3+5x)^2}$$

#### "DERIVATIVE OF ONE FUNCTION" WITH RESPECT TO "ANOTHER FUNCTION".

Let f(x) be one function & g(x) be another function, then **Derivative of f(x) w.r.t**  $g(x) = \frac{\frac{d}{dx}f(x)}{\frac{d}{dx}g(x)}$ 

Ex: Differentiate 'log x' w.r.t (x2)

**Ans:** 
$$\frac{f'(x)}{g'(x)} = \frac{\frac{d}{dx} \log x}{\frac{d}{dx} x^2} = \frac{\frac{1}{x}}{2x} = \frac{1}{2x^2}.$$

Ex: Differentiate (x2) w.r.t ex.

Ans: 
$$\frac{f'(x)}{g'(x)} = \frac{\frac{d}{dx}x^2}{\frac{d}{dx}e^x} = \frac{2x}{e^x}$$
.

**Ex:** Differentiate  $(a^x)$  w.r.t log x.

Ans: 
$$\frac{f'(x)}{g'(x)} = \frac{\frac{d}{dx}a^X}{\frac{d}{dx}\log x} = \frac{a^X \cdot \log a}{\frac{1}{x}} = x$$
.  $a^X \cdot \log a$ 

#### **CHAIN RULE**

We have studied the following formulae earlier:

f(x)	Derivative	
(x) ⁿ	n.x ⁽ⁿ⁻¹⁾	
e ^x	e ^x	
α ^x	α×.log α	
Log x	1 x	
$\sqrt{x}$	$\frac{1}{2\sqrt{x}}$ .	
x	1	







PC NOTE: ⇒ If there is anything other than 'x' in the above formulae; Take it as 'y' & use the same rule (replace x with 'y' in the formula & multiply it with additional dy/dx.

So, the above formulae will look like this:

f(x)	Derivative
(y) ⁿ	$n.y^{(n-1)}.\frac{dy}{dx}$
e ^y	$e^{y} \cdot \frac{dy}{dx}$
α ^y	$\alpha^{y}$ .log $\alpha$ . $\frac{dy}{dx}$
Log y	$\frac{1}{y}$ . $\frac{dy}{dx}$
$\sqrt{\mathrm{y}}$	$\frac{1}{2\sqrt{y}} \cdot \frac{dy}{dx}$
У	$1. \frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dy}}{\mathrm{dx}}$

SOLVED EXAMPLES	HOMEWORK QUESTIONS
<b>CQ1:</b> Find $\frac{d}{dx} (3x^3 - 5x^2 + 8)^3$ .	1) $\frac{d}{dx}$ [(logx) ² ]
<b>Ans:</b> Referring formula 1, we see that $y = (3x^3 - 5x^2 + 8)$ ; $\frac{dy}{dx} = 9x^2 - 10x$ .	<b>2)</b> $\frac{d}{dx}$ [(6x ⁵ - 7x ³ + 9) ^{-1/3} ]
Thus $\frac{d}{dx} (3x^3 - 5x^2 + 8)^3 = 3(3x^3 - 5x^2 + 8)^2 (9x^2 - 10x)$ .	
<b>CQ2:</b> $\frac{d}{dx}[e^{ax^2+bx+c}]$	<b>3)</b> $\frac{d}{dx}[e^{(2\log x)}]$
<b>Ans:</b> Referring formula 2, we see that $y = (ax^2 + bx + c)$ ; $\frac{dy}{dx} = (2ax+b)$	<b>4)</b> $\frac{d}{dx} e^{(x-y)}$
Thus $\frac{d}{dx} e^{ax^2 + bx + c} = e^{ax^2 + bx + c}$ . (2ax+b)	<b>5)</b> $\frac{d}{dx} [e^{(xy)}]$
CQ3: $\frac{d}{dx}[a^{\log x}]$	$\mathbf{6)} \ \frac{d}{dx} \mathbf{a}^{\mathbf{x}^2}$
<b>Ans:</b> Referring formula 3, we see that $y = (\log x)$ ; $\frac{dy}{dx} = \frac{1}{x}$	<b>7)</b> $\frac{d}{dx} 5^{(3x+2)}$
Thus $\frac{d}{dx}[a^{\log x}] = [a^{\log x}]$ . $\log \alpha \cdot \frac{1}{x}$	
<b>CQ4:</b> $\frac{d}{dx} [\log (1+x^2)]$	<b>8)</b> $\frac{d}{dx} [\log (5x)]$
<b>Ans:</b> Referring formula 4, we see that $y = (1 + x^2)$ ; $\frac{dy}{dx} = 2x$ .	<b>9)</b> $\frac{d}{dx} [\log (x.e^x)]$
Thus $\frac{d}{dx} [\log (1+x^2)] = \frac{1}{1+x^2}$ . $2x = \frac{2x}{1+x^2}$	







**CQ5:** Find 
$$\frac{d}{dx}\sqrt{x+\sqrt{x}}$$
.

**Ans:** Referring formula 5. We see that 
$$y = x + \sqrt{x}$$
; &  $\frac{dy}{dx} = 1 + \frac{1}{2\sqrt{x}}$ 

Thus 
$$\frac{d(\sqrt{x+\sqrt{x}})}{dx} = \frac{1}{2\sqrt{y}}$$
.  $\frac{dy}{dx} = \frac{1}{2\sqrt{x+\sqrt{x}}}$ .  $\left[1 + \frac{1}{2\sqrt{x}}\right]$ 

**10)** 
$$\frac{d}{dx} [\sqrt{(1+x^2)}]$$

11) 
$$\frac{d}{dx}\sqrt{(\log x)}$$

#### IMPLICIT FUNCTIONS

- A function in the form f(x, y) = 0.
- In Implicit function, y cannot be directly defined as a function of x.

**Ex:** 
$$5x^2y^2 + x^2y + xy^2 + x + y = 0$$

PC Note: In Implicit function, x & y are related in such a way that neither 'x' nor 'y' cannot be expressed in terms of each other.

#### STEPS TO DIFFERENTIATE IMPLICIT FUNCTION

- 1. Differentiate both sides w.r.t 'x'. [If RHS = 0, Its derivative will also be 0]
- 2. All the terms having  $\frac{dy}{dx}$  shall be brought to one side & all other terms (not having  $\frac{dy}{dx}$ ) shall be taken to another side.
- **3.** Take  $\frac{dy}{dx}$  common from all the terms having  $\frac{dy}{dx}$  & remainder shall be sent to another side (division)

**CQ6:** If 
$$x^3 - 2x^2y^2 + 5x + y + 5 = 0$$
, find  $\frac{dy}{dx}$ .

Ans: Differentiating both sides w.r.t x, we get

$$\Rightarrow 3x^2 - 2 \times \frac{d}{dx} \left[ x^2 \times y^2 \right] + 5 + \frac{dy}{dx} + 0 = 0; \qquad \Rightarrow 3x^2 - 2 \left[ x^2 \cdot \frac{d}{dx} (y^2) + y^2 \cdot \frac{d}{dx} (x^2) \right] + 5 + \frac{dy}{dx} = 0$$

$$\Rightarrow 3x^{2} - 2\left[x^{2} \cdot 2y\frac{dy}{dx} + y^{2} \cdot 2x\right] + 5 + \frac{dy}{dx} = 0 \\ \Rightarrow 3x^{2} - 4x^{2} \cdot y \cdot \frac{dy}{dx} - 4xy^{2} + 5 + \frac{dy}{dx} = 0$$

Taking all the terms containing  $\frac{dy}{dx}$  to one side & other terms on another side,

$$\Rightarrow 3x^2 - 4xy^2 + 5 = 4x^2y \cdot \frac{dy}{dx} - \frac{dy}{dx} \implies \frac{dy}{dx} (4x^2y - 1) = 3x^2 - 4xy^2 + 5: \qquad \qquad \frac{dy}{dx} = \frac{3x^2 - 4xy^2 + 5}{(4x^2y - 1)}$$

#### PARAMETRIC FUNCTIONS

In parametric function, both 'x' & 'y' are expressed in terms of a third variable (generally t).

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$







**PC Note:** While calculating  $\frac{dy}{dx}$ , replace 't' with 'x' & use the normal rule & then again replace 'x' with 't'.

$$\frac{dy}{dx} = \frac{\text{"Derivative of y" after applying the above note}}{\text{"Derivative of x" after applying the above note}}$$

**Ex:** Given 
$$x = 2t + 5$$
;  $y = t^2 - 2$ , find  $\frac{dy}{dx}$ .

**Ans:** 
$$x' = 2$$
;  $y' = 2t$ ;  $\frac{dy}{dx} = \frac{\text{Derivative of y}}{\text{Derivative of x}} = \frac{2t}{2} = t$ .

**Ex:** If 
$$u = (x^3 + 1)^5$$
 and  $y = (x^3 + 7)$  then  $\frac{du}{dy} =$ 

**Ans:** 
$$u' = 5(x^3 + 1)^4$$
.  $3x^2$ ;  $y' = 3x^2$ ;

$$\frac{du}{dy} = \frac{\text{Derivative of u}}{\text{Derivative of y}} = \frac{5(x^3 + 1)^4 \cdot 3x^2}{3x^2} = 5(x^3 + 1)^4.$$

**Ex:** Given 
$$x = at^2$$
;  $y = 2at$ ; find  $\frac{dy}{dx}$ .

**Ans:** 
$$x' = 2\alpha t$$
;  $y' = 2\alpha$ ;  $\frac{dy}{dx} = \frac{\text{Derivative of } y}{\text{Derivative of } x} = \frac{2a}{2at} = \frac{1}{t}$ .

**Ex:** If 
$$x = 3t^2 - 1$$
,  $y = t^3$ , then  $\frac{dy}{dx} =$ 

Ans: 
$$\frac{dy}{dt} = 3t^2$$
;  $\frac{dx}{dt} = 6t$ ;  $\frac{dt}{dx} = \frac{1}{6t}$   
 $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ ;  $= 3t^{2 \times \frac{1}{6t}} = \frac{t}{2}$ 

**HW.** 
$$x = \alpha t^3$$
;  $y = \frac{a}{t^3}$ ; find  $\frac{dy}{dx}$ .

[Ans: 
$$\frac{-1}{t^6}$$
]

**HW.** If 
$$x = \frac{1-t^2}{1+t^2}$$
;  $y = \frac{2t}{1+t^2}$  then  $\frac{dy}{dx}$  @ t = 1 is

[Ans: 
$$\frac{dy}{dx} = \frac{t^2 - 1}{2t} = 0$$
]

#### LOGARITHMIC DIFFERENTIATION

The process of finding derivative by taking logarithm of both sides & then applying antilog is called logarithmic differentiation.

#### When to use Logarithmic Differentiation:

- 1. The given function involves function in its power. [Ex:  $x^x$  since neither  $x^n$  nor  $a^x$  formula is applicable in this case].
- 2. The given function is the product of number of functions. [Ex:  $x^y + y^x$ ]
- 3. If using basic formulae will consume more time. [Depends on judgment of the student].

**CQ7:** Differentiate x^x w.r.t 'x'.

Taking log of both sides, we get Log y = log  $x^x$ Ans: Let  $y = x^x$ ;

 $\Rightarrow$  Log y = x.logx [using log  $m^n = n.logm$ ]

Differentiating w.r.t x we get  $\frac{1}{v} \times \frac{dy}{dx} = x \times \frac{1}{x} + \log x \times 1$ 





$$\Rightarrow \frac{dy}{dx} = y [1 + \log x] \&$$

$$\frac{dy}{dx} = x^x \left[ 1 + \log x \right].$$

#### SOME ADVANCED QUESTIONS

**CQ8:** Differentiate x^{xx}w.r.t 'x'.

**Ans:** Let  $y = x^{x^x}$ ; Taking log of both sides, we get Log  $y = \log x^{x^x}$ 

 $\text{Log y} = x^x \cdot \log x$  [Using  $\log m^n = n \cdot \log m$ ]

Differentiating w.r.t x we get  $\frac{1}{y} \times \frac{dy}{dx} = x^x \times \frac{1}{x} + \log x \left[ x^x \left( 1 + \log x \right) \right];$ 

 $\Rightarrow \frac{dy}{dx} = y \left[ x^x \left\{ \frac{1}{x} + \log x \cdot (1 + \log x) \right\} \right] \& \text{ thus } \frac{dy}{dx} = x^{x^x} \times x^x \left[ \frac{1}{x} + \log x \cdot (1 + \log x) \right]$ 

**CQ9:** If  $x^m$ .  $y^n = (x + y)^{m+n}$ , find  $\frac{dy}{dx}$ 

**Ans:** Taking log of Both Sides,  $\log (x^m.y^n) = \log (x+y)^{m+n}$ 

 $\Rightarrow \log x^m + \log y^n = \log (x + y)^{m+n}$  [Using log mn = log m + log n]

 $\Rightarrow$  m.  $\log x + n$ .  $\log y = (m + n)$ .  $\log (x + y)$  [using  $\log m^n = n \cdot \log m$ ]

Differentiating both sides w.r.t 'x' we get

 $\Rightarrow$  m.  $\frac{1}{r}$  + n.  $\frac{1}{r}$   $\frac{dy}{dr}$  =  $(m + n) \times \frac{1}{(r+y)} \left[ 1 + \frac{dy}{dr} \right]$ ;

 $\Rightarrow \frac{m}{x} + \frac{n}{y} \cdot \frac{dx}{dy} = \frac{m+n}{x+y} + \frac{m+n}{x+y} \cdot \frac{dy}{dx}$ 

 $\Rightarrow \frac{n}{y} \cdot \frac{dx}{dy} - \left(\frac{m+n}{x+y}\right) \times \frac{dy}{dx} = \frac{(m+n)}{x+y} - \frac{m}{x};$ 

 $\Rightarrow \frac{dy}{dx} \left[ \frac{n}{y} - \frac{m+n}{x+y} \right] = \frac{(m+n)}{x+y} - \frac{m}{x}$ 

 $\Rightarrow \frac{dy}{dx} \left[ \frac{n(x+y) - (m+n)y}{(x+y)(y)} \right] = \frac{(m+n)x - m(x+y)}{x(x+y)};$ 

 $\Rightarrow \frac{dy}{dx} = \frac{\frac{mx + nx - mx - my}{x}}{\frac{nx + ny - my - ny}{y}} = \frac{\frac{nx - my}{x}}{\frac{nx - my}{y}}$ 

& thus,  $\frac{dy}{dx} = \frac{y}{x}$ .

**CQ10:** If  $y = \sqrt{\frac{1-x}{1+x}}$  show that  $(1-x^2)\frac{dy}{dx} + y = 0$ 

**Ans:** Taking log of both sides we get,  $\log y = \frac{1}{2} [\log (1-x) - \log (1+x)]$ 

Differentiating both sides w.r.t 'x', we have,

 $\frac{1}{y}\frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}\left[\log(1-x) - \log(1+x)\right] = \frac{1}{2}\left(\frac{-1}{1-x} - \frac{1}{1+x}\right) = -\frac{1}{1-x^2}$ 

By cross — multiplication  $(1 - x^2) \frac{dy}{dx} = -y$ ;  $(1 - x^2) \frac{dy}{dx} + y = 0$ .



**CQ11:** If 
$$x^y = e^{x-y}$$
 prove that  $\frac{dy}{dx} = \frac{logx}{(1+logx)^2}$ 

**Ans:** Taking log of both sides, we have y. 
$$\log x = (x - y) \log e$$
 [Log e = 1]

$$\Rightarrow$$
 y. log x = x - y;

$$\Rightarrow$$
 y. log x + y = x;

$$\Rightarrow$$
 y. log x + y = x;  $\Rightarrow$  y (log x + 1) = x  $\Rightarrow$  y =  $\frac{x}{(\log x + 1)}$ 

$$\Rightarrow$$
 Differentiating w.r.t x we get  $\frac{dy}{dx} = \frac{(\log x + 1)[1] - (x[1/x])}{(\log x + 1)^2}$ ;

$$\Rightarrow \frac{dy}{dx} = \frac{(\log x + 1 - 1)}{(\log x + 1)^2} = \frac{\log x}{(1 + \log x)^2}$$

**CQ12:** 
$$\frac{d}{dx}[\log (x + \sqrt{x^2 + a^2})]$$

**Ans:** Let 
$$y = (x + \sqrt{x^2 + a^2})$$

Thus 
$$\frac{dy}{dx} = \left[1 + \frac{1}{2\sqrt{x^2 + a^2}}, \frac{d}{dx}(x^2 + a^2)\right] = \left[1 + \frac{1}{2\sqrt{x^2 + a^2}}, 2x\right] = \left[1 + \frac{x}{\sqrt{x^2 + a^2}}\right] = \frac{\sqrt{x^2 + a^2} + x}{\sqrt{x^2 + a^2}} = \frac{y}{\sqrt{x^2 + a^2}}$$

Thus 
$$\frac{dy}{dx} = \frac{y}{\sqrt{x^2 + a^2}}$$

Now, 
$$\frac{d}{dx} [\log y] = \frac{1}{y} \times \frac{dy}{dx}$$
;  $= \frac{1}{y} \times \frac{y}{\sqrt{x^2 + a^2}} = \frac{1}{\sqrt{x^2 + a^2}}$ 

#### HIGHER ORDER DERIVATIVE

- $\frac{dy}{dx}$  is known as first order derivative of 'y' w.r.t 'x'.
- If we differentiate  $\frac{dy}{dx}$  again w.r.t 'x', we will get 2nd order derivative of 'y' w.r.t. 'x', written

**CQ13:** If y = 
$$ae^{mx} + be^{-mx}$$
 prove that  $\frac{d^2y}{dx^2} = m^2y$ .

Ans: 
$$\frac{dy}{dx} = \frac{d}{dx}(ae^{mx} + be^{-mx}) = ame^{mx} - bme^{-mx}$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{dx} \left( ame^{mx} - bme^{-mx} \right)$$

$$=am^2e^{mx}+bm^2e^{-mx}=m^2(ae^{mx}+be^{-mx})=m^2y.$$

#### **CQ14:** Find third order derivative of log $[(3x + 4)^{1/2}]$

**Ans:** 
$$y' = \frac{1}{2} \cdot \frac{1}{(3x+4)}$$
.  $3 = \frac{3}{2(3x+4)}$ 

$$\mathbf{y}^{**} = \frac{3}{2} \cdot \frac{d}{dx} \left[ \frac{1}{(3x+4)} \right] = \frac{3}{2} \cdot (-1) \frac{3}{(3x+4)^2} = -\frac{3}{2} \cdot \frac{3}{(3x+4)^2} = -\frac{9}{2} \cdot \frac{1}{(3x+4)^2}$$

$$\mathbf{y}^{***} = -\frac{9}{2} \cdot \frac{d}{dx} \left[ \frac{1}{(3x+4)^2} \right] = -\frac{9}{2} \cdot (-2) \cdot \left[ \frac{3}{(3x+4)^3} \right] = \frac{27}{(3x+4)^3}$$







**CQ15:** Find the second differential coefficient of  $y_0 = x^2 \log x$ 

**Ans:** 
$$\frac{dy}{dx} = x^2 \cdot \frac{1}{x} + \log x$$
.  $2x = x + 2x$ .  $\log x$ 

$$\frac{d^2y}{dx^2} = \frac{d}{dx}[x + 2x. \log x]$$

= 1 + 2. 
$$\frac{d}{dx}[x. \log x]$$
  $\Rightarrow$  1 + 2[x. $\frac{1}{x}$  + log x. 1]  $\Rightarrow$  1 + 2[1 + log x]  $\Rightarrow$  1 + 2 + 2 logx

$$\Rightarrow 1 + 2[1 + \log x]$$

$$\Rightarrow$$
 1 + 2 + 2 logx

$$= 3 + 2 \log x = 3 + \log x^2$$

**CQ16:** If  $f(x) = x^3 - 2x$ ;  $2^{nd}$  order derivative of f(x) is _____.

**Ans:** 
$$\frac{dy}{dx} = 3x^2 - 2$$
;  $\frac{d^2y}{dx^2} = 6x$ .

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = 6x.$$

**CQ17:** If  $x = at^2$  and y = 2at then  $\frac{d^2y}{dx^2} =$ 

**Ans:** Here  $x = at^2$  and y = 2at. Differentiating, we get:

$$\Rightarrow \frac{dx}{dt} = 2\alpha t$$

$$\& \frac{dy}{dt} = 2\alpha$$

$$\Rightarrow \frac{dx}{dt} = 2\alpha t \qquad \qquad \& \frac{dy}{dt} = 2\alpha; \qquad \qquad \Rightarrow \frac{dx}{dy} = \frac{dy/dt}{dx/dt} = \frac{2a}{2at} = \frac{1}{t} \dots (1)$$

$$\Rightarrow \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left(\frac{1}{t}\right) = \frac{1}{t^2}\frac{dt}{dx} = -\frac{1}{t^2} \times \frac{1}{2at} \qquad \left[From\ (1), \frac{dx}{dt} = 2at : \frac{dt}{dx} = \frac{1}{2at}\right]$$

$$\left[From\ (1), \frac{dx}{dt} = 2at : \frac{dt}{dx} = \frac{1}{2at}\right]$$

$$\frac{d^2y}{dx^2} = \frac{1}{2at^3}$$

#### APPLICATIONS OF DIFFERENTIAL CALCULUS

**Gradient** (slope) of the curve is given by  $\frac{dy}{dy}$ .

**CQ18:** Find the gradient of the curve  $y = 3x^2 - 5x + 4$  at the point (1, 2).

**Ans:**  $\frac{dy}{dx} = 6x - 5 = 6(1) - 5 = 1$ . Thus, gradient of the curve at (1, 2) is 1.

❖ To find out Minima & Maxima of the function.

Steps to find out Minima & Maxima of the function:

- 1. Find f '(x).
- 2. Put f'(x) = 0 & obtain the values of 'x' from the equation formed.
- 3. Find f "(x).
- 4. Put the values of 'x' obtained in step 2 in f''(x).
  - If result > 0, then that value of 'x' is Minima.
  - If result < 0, then that value of 'x' is Maxima.
  - If Result = 0, it means 2nd order derivative test failed.

We will use 1st order derivative test. If it also fails, then such point is neither minima nor maxima.



Such point is called "Point of Inflexion".

**PC Note:** By Putting Minima in f(x), we will get the **minimum value** of the function.

By Putting Maxima in f(x), we will get the **maximum value** of the function.

**Q19.** Find the minimum & maximum value of  $f(x) = x^3 + 2x^2 - 4x + 6$ .

**Ans:** Step 1: 
$$f'(x) = 3x^2 + 4x - 4$$
.

Step 2: 
$$3x^2 + 4x - 4 = 0$$

$$\Rightarrow$$
 x = -2,  $\frac{2}{3}$ 

Step 3: 
$$f''(x) = 6x + 4$$
.

Step 4: Putting 
$$x = -2$$
 in  $f''(x) \Rightarrow 6(-2) + 4 = -12 + 4 = -8$  which is less than 0.

Thus x = -2 is Minima.

Putting  $x = \frac{2}{3}$  in  $f''(x) \Rightarrow 6(\frac{2}{3}) + 4 = 4 + 4 = 8$  which is greater than O. Thus  $x = \frac{2}{3}$  is Maxima

- $\Rightarrow$  Minimum value of function =  $(-2)^3 + 2(-2)^2 4(-2) + 6 = -8 + 8 + 8 + 6 = 14$ .
- $\Rightarrow$  Maximum value of function =  $(\frac{2}{3})^3 + 2(\frac{2}{3})^2 4(\frac{2}{3}) + 6 = \frac{8}{27} + \frac{8}{9} \frac{8}{3} + 6 = \frac{122}{27}$ .
- ❖ Total Cost Function C(x): Total cost consists of two parts (i) Variable Cost (ii) Fixed Cost.

Variable cost depends upon the number of units produced (i.e value of x) whereas fixed cost is independent of the level of output x.

- ightharpoonup Total Cost C(x) = VC + FC = V(x) + F(x)
- > Average cost =  $\frac{\text{Total Cost}}{\text{No of units}} = \frac{\text{C(x)}}{\text{V}}$
- ❖ Total Revenue Function R(x): It is the amount received by selling 'x' units @ Rs. 'p' per unit.
  - > Total Revenue  $R(x) = p \times x$ .
  - > Average Revenue =  $\frac{\text{Total Revenue}}{\text{No of units}} = \frac{R(x)}{x}$
- ❖ Profit Function P(x): Revenue Function Cost Function = R(x) C(x).
- ❖ Break Even Point (BEP): It is the point at which revenue = cost.

[@ BEP: 
$$R(x) = C(x)$$
].

❖ Marginal Cost (MC): Cost of producing an additional unit.

$$MC = \frac{d}{dx}[C(x)].$$

❖ Marginal Revenue (MR): Revenue from selling an additional unit.

$$MR = \frac{d}{dx}[R(x)].$$

* Marginal Profit (MP): Profit from selling an additional unit.

$$MP = \frac{d}{dx}[P(x)]$$



 $\diamond$  Marginal Propensity to Consume (MPC): The consumption function C = F(Y) expresses the relationship between the total consumption and total Income (Y), then the marginal propensity to consume is defined as the rate of Change consumption per unit change in Income i.e.  $\frac{dC}{dY}$ .

By consumption we mean expenditure incurred in on Consumption.

❖ Marginal Propensity to save (MPS): Saving (S) is the difference between income (I) & consumption (c) given by  $\frac{ds}{dy}$ .

CQ20: Total cost of producing 20 items of a commodity is Rs. 205, while total cost of producing 10 items is Rs. 135. Assuming that the cost function is a linear function, find the cost function and marginal cost function.

**Ans:** Let cost function be C(x) = ax + b [x being no. of items and a, b being constants] - (i)

Given, C(x) = 205 for x = 20 and C(x) = 135 for x = 10.

Putting these values in (i), 205 = 20a+b - (ii) & 135 = 10a+b - (iii)

(ii) - (iii) gives, 70 = 10a or, a = 7

From (iii),  $b = 135 - 10\alpha = 135 - 70 = 65$ 

Required cost function is given by C(x) = 7x + 65. Marginal cost function =  $\frac{d}{dx}C(x) = 7$ .

CQ21: A company decided to set up a small production plant for manufacturing electronic clocks. The total cost for initial set up (fixed cost) is Rs. 9 lacs. The additional cost for producing each clock is Rs. 300. Each clock is sold at Rs. 750. During the first month, 1,500 clocks are produced and sold.

- What profit or loss company incurs during the first month, when all the 1,500 clocks are sold?
- (ii) Determine the break-even point.

**Ans:** Cost function C(x) for 'x' clocks = 9,00,000 (FC) + 300x (VC).

Revenue function R(x) from 'x' clocks =  $p \times x = 750 \times x = 750x$ .

(i) Profit function P(x) = R(x) - C(x) = 750x - [9,00,000 + 300x] = 450x - 9,00,000.

Thus, when all 1500 clocks are sold =  $450 \times 1500 - 9,00,000 = - Rs. 2,25,000 = Loss of Rs. 2,25,000$ (ii) At BEP, C(x) = R(x);

 $\Rightarrow$  9,00,000 + 300x = 750x;  $\Rightarrow$  450x = 9,00,000

 $\Rightarrow$  x = 2,000 units.

Hence, 2000 clocks have to be sold to achieve the break-even point.

CQ22: A computer software company wishes to start the production of floppy disks. It was observed that the company had to spend Rs. 2 lakhs for the technical informations. The cost of setting up the machine is Rs. 88,000 and the cost of producing each unit is Rs. 30, while each floppy could be sold at Rs. 45. Find:

(i) Total cost function for producing x floppies; & (ii) Break- Even point.

**Ans:** (i) Total Cost function C(x) = FC + VC = 2,88,000 + 30x. Revenue function  $R(x) = p \times x = 45x$ .

(ii) At BEP, C(x) = R(x);

 $\Rightarrow$  2,88,000 + 30x = 45x;

⇒ 15x = 2,88,000

 $\Rightarrow$  x = 19,200 units.

Hence, 19,200 units have to be sold to achieve the break-even point.







**CQ23:** The total cost function of a firm is  $C(x) = \frac{x^3}{3} - 5x^2 + 28x + 10$ , where C is the total cost and x is output. A tax at Rs. 2 per unit of output is imposed and the producer adds it to his cost. If the market demand function is given by p = 2530 - 5x, where p is price p.u of output, find (i) Profit maximizing output & (ii) Price for maximum profit.

#### Ans:

After imposition of tax of Rs. 2 per unit, the total new cost is  $C(x) = \frac{x^3}{3} - 5x^2 + 28x + 10 + 2x$ ; Revenue Function  $R(x) = p \times x = (2530 - 5x) \times x = 2530x - 5x^2$ ;

(i) 
$$P(x) = R(x) - C(x) = [2530x - 5x^2] - [\frac{x^3}{2} - 5x^2 + 28x + 10 + 2x] = -\frac{x^3}{2} + 2500x - 10.$$

We know that P(x) = profit per unit & P'(x) is change in profit for additional unit.

We want profit maximizing output [i.e output at which profit is maximum] & P'(x) = 0.

$$P'(x) = \frac{-3x^2}{3} + 2500 = -x^2 + 2500.$$

Putting P'(x) = 0, we get 'x' = ± 50. Since output cannot be negative, we consider x = 50. P''(x) = -2x.

Putting the value of 'x' = 50 in P''(x), we get -2.50 = -100 which is less than '0'.

Thus x = 50 is maxima. Thus, the profit is maximum at x = 50.

(ii) Putting x = 50 in demand function, the corresponding price is  $p = 2530 - 5 \times 50 = Rs$ . 2280. Price for maximum profit = Rs. 2280.

**CQ24:** The cost function of a company is given by:  $C(x) = 100x - 8x^2 + \frac{x^3}{3}$ 

Find the level of output at which: (i) Marginal cost is minimum& (ii) Average cost is minimum.

**Ans:** Average Cost A(x) = 
$$\frac{C(x)}{x}$$
 =  $[100x - 8x^2 + \frac{x^3}{3}]/x$  =  $100 - 8x + \frac{x^2}{3}$ .  
A''(x) =  $-8 + \frac{2x}{3}$ ; & A'''(x) =  $\frac{2}{3}$ ;

$$A'(x) = -8 + \frac{2x}{3}$$

& A"(x) = 
$$\frac{2}{3}$$

Marginal Cost M(x) = 
$$C'(x) = \frac{d}{dx}[100x - 8x^2 + \frac{x^3}{3}] = 100 - 16x + x^2$$

$$M'(x) = -16 + 2x;$$

& 
$$M^{"}(x) = 2$$
.

(i) Marginal Cost M(x) is Minimum or Maximum when M'(x) = 0.  $-16 + 2x = 0 \Rightarrow x = 8$ .

Putting x = 2 in M''(x), we get '2' which is greater than 0, thus x = 2 is Minima.

Thus, Marginal cost is minimum at x = 8.

(ii) Average Cost A(x) is Minimum or Maximum when A'(x) = 0.  $-8 + \frac{2x}{3} = 0 \Rightarrow x = 12$ .

Putting x = 12 in A''(x), we get  $\frac{2}{3}$  which is greater than 0, thus x = 12 is Minima.

Thus, Average cost is minimum at x = 12.

Minimum Average Cost =  $100 - 8(12) + \frac{(12)^2}{3} = 100 - 96 + 144/3 = 52$ .

## Space for PC Class Note:



# DIFFERENTIAL CALCULUS - QUESTION BANK

SN		8A. DIFFERENCIAL	_ CALCULAS		Ans
Q1	D _{XY} represents	·			A
	(a) dy/dx	(b) dx/dy	(c) f(x)	(d) f(y)	
Q2	If y = $5x^2$ then $\frac{dy}{dx}$ is	S			A
	(a) 10x		(c) 2x	(d) None	
Q3	If $y = x^3$ then $\frac{dy}{dx}$ is				С
	$(\alpha) \frac{x^4}{4}$		(c) $3x^2$	(d) $-3x^2$	
Q4	The derivative of	$\frac{x^3}{2}$ (x > 0) is			В
	(a) $2 \frac{x^2}{3}$	(b) $3\frac{x^2}{2}$	(c) 5 ^{2x/5}	(d) 5 ^{5x/2}	
Q5	Find $\frac{dy}{dx}$ , when y = 1	Ox ⁸			A
	(α) 80x ⁷	(b) 10x ⁷	(c) 80x ⁸	(d) None	
Q6	If $f(x) = x^k$ and $f'(x)$	) =10 the value of k	is		A
	(a) 10	(b) -10	(c) 1/10	(d) None	
Q7	If y = $-3x^{-7/3}$ then $\frac{d}{d}$	<u>y</u> is			A
		(b) -7x ^{-10/3}	(c) $-\frac{7}{3}$ x ⁻¹⁰¹³	(d) None	
Q8	If 1st order derive	tive of $f(x) = 3x^2 + 2$	and $f(0) = 0$ then $f(2)$	2) is	A
	(a) 12	(b) 21	(c) 10	(d) 1	
Q9	If $y = 2x + x^2$ then	dy is			A
	(a) 2(x+1)	ux	(c) x+1	(d) x-1	
Q10	If $y = 4x^3 - 7x^4$ then	o			A
		(b) $2x(14x^2 + 6x)$	(c) 2x(14x ² -6x)	(d) None	
Q11	If $f(x) = x^3 + 5x^2 - 8$	the value of 1st der	ivative of f(x) when	x =2 is	A
	(a) 32	(b) 33	(c) 23	(d) 34	
Q12	Differentiate 3x2	+ 5x - 2 with respec	t to x.		В
	(a) 6	(b) 6x + 5	(c) $3x^2 + 5$	(d) 5	







	1				
Q13	$\frac{d}{dx}(x-1)(x-2)$ is eq	qual to			A
	(a) 2x-3	(b) 3x-2	(c) 1	(d) None	
Q14	If $y = x(x-1)(x-2)$ th	en $\frac{\mathrm{d} y}{\mathrm{d} x}$ is			A
	(a) $3x^2-6x+2$	(b) - $6x^2 + 2$	(c) $3x^2 + 2$	(d) 3x ³ + 5	
Q15	The derivative of ^x	$\frac{x^2-1}{x}$ is			A
	(a) $1 + \frac{1}{x^2}$	(b) $1 - \frac{1}{x^2}$	(c) $\frac{1}{x^2}$	(d) None	
Q16	The differential co	efficients of $\frac{x^2-1}{x}$ is	·		В
	(a) $1 + \frac{1}{x^2}$	(b) $1 - \frac{1}{x^2}$	(c) $\frac{1}{x^2}$	(d) None	
Q17	If $y = \left[\frac{(1-x)}{x}\right]^2$ then $\frac{d}{dx}$	l <u>y</u> is			В
	L	(b) $2(-x^{-3} + x^{-2})$	(c) 2(x ⁻³ -x ⁻² )	(d) None	
Q18	$y = 9x^4 - 7x^3 + 8x^2 - \frac{8}{x}$	$+\frac{10}{x^3}$ then $\frac{dy}{dx}$ is			A
	(a) $36x^3-21x^2+16x+8x^{-2}-30x^{-4}$ (b) $36x^3-21x^2+16x-8x^{-2}+30x^{-4}$				
	(c) 36x ³ +21x ² +16x+8	5X ⁻² +3OX ⁻⁴	(d) None		
Q19	If $y = (3x^2 + 1)(x^3 +$	- 2x) then $\frac{\mathrm{d}y}{\mathrm{d}x}$ is	_•		A
	(α) 15x ⁴ +21x ² +2	(b) 15x ³ +21x ² +2	(c) 15x ³ +21x+2	(d) None	
Q20	Differentiate y w.r	.t. x when y = (x² - 2)	() (x ² +1)		C
	$(\alpha) 4x^3 + 6x^2 - 2x + 2$	(b) 4x ³ -6x + 2	(c) $4x^3 - 6x^2 + 2x - 2$	2 (d) None	
Q21	If $f(x) = x^2 - 6x + 8 \text{ th}$	nen f²(5)-f²(8) is equa	l to		В
	(a) f' (2)	(b) 3f' (2)	(c) 2 f' (2)	(d) None	
Q22	If $x^2 - y^2 + 3x - 5y = 0$ the	nen 3) $\frac{dy}{dx}$ is			A
	(a) $(2x + 3)(2Y+5)^{-1}$	(b) $(2x + 3) (2y-5)^{-1}$	(c) (2x-3) (2y-5) ⁻¹	(d) None	
Q23	If $x^2 + y^2 - 2x = 0$ th	en $\frac{dy}{dx}$ is			A
	$(a) \frac{(1-x)}{y}$	(b) $\frac{(1+x)}{y}$	(c) $\frac{(x-1)}{y}$	(d) None	
Q24	$If y = ax^3 + bx^2 + cx$	$x + d$ then $\frac{dy}{dx}$ is equal	to		A
	$(\alpha) 3ax^2 + 2bx + c$	(b) $\frac{ax^2}{4} + \frac{bx^3}{3} + \frac{\alpha^2}{2} + dx$	к (c) О	(d) None	
	1				







Q25	If $y = (x - x^{-1})^2$	then ^{dy} / _{dx} is			A
		(b) $2x + 2x^{-3}$	(c) 2x + 2x ³	(d) 2x - 2x ³	
Q26	If $y = (x^{1/3} - x^{-1/3})t$	hen $\frac{\mathrm{d} y}{\mathrm{d} x}$ is			A
	$(\alpha) 1-x^{-2} + x^{-2/3} - \gamma$	ux	(b) $1 + x^{-2} + x^{-2/3}$	- x ^{-4/3}	
	(c) $1 + x^{-2} + x^{-2/3}$	+ x ^{-4/3}	(d) None		
Q27	$y = 2x^{3/2}(x^{1/2} + 2(x^2))$	^{1/2} -1) then dy/dx is	·		A
	(a) $4x+5x(x-6)^{1/2}$	X ^{1/2}	(b) 4x+5x(x-3) ^{1/}	² X ^{1/2}	
	(c) 4x+5x(x-2) ^{1/2}	X ^{1/2}	(d) None		
Q28	Find $\frac{dy}{dx}$ of $\left(\frac{x^2}{a^2} + \frac{x^2}{a^2}\right)$	$\frac{y^2}{12} = 1$			Α
	test (a	(b) $-b^2y/\alpha^2x$	(c) $-b^2/\alpha^2$	(d) None	
Q29	The gradient of	the curve y = 2x³-3	$10^{2} - 12x + 8$ at $x = 0$	is	A
	(a) -12	(b) 12	(c) O	(d) 1	
Q30	The gradient of	the curve y = 2x³ - 5	5x² - 3x at x = 0 is	·	В
	(a) 3	(b) -3	(c) 1/3	(d) -1	
Q31	If $x^3-2x^2y^2 + 5x +$	- y- 5 = 0 then $\frac{dy}{dx}$ at >	c =1 y =1 is equals to	)	A
	(a) 4/3	ux	(c) ³ / ₄	(d) None	
Q32	$If \frac{x^2}{} - \frac{y^2}{} = 1 : \frac{dy}{}$	can be expressed as	3 .		D
	a u ux			$(d)^{\frac{x}{2}}$	
	a	$(b) \frac{x}{\sqrt{x^2 - a^2}}$	$\sqrt{\frac{x^2}{a^2}-1}$	(d) $\frac{x}{y}$	
Q33	If $y = 1 + x + \frac{x^2}{2!}$	$+\frac{x^3}{3!}+\ldots+\frac{x^n}{n}+\cdots \infty$ the	en $\frac{dy}{dx} - y$ is		C
	(a) 1	(b) -1	(c) 0	(d) None	
Q34	The derivative	of e° is .			A
	(a) O	(b) 1	(c) e	(d) ∞	
Q35	If $f(x) = e^{ax^2 + bx + ax^2}$	then f'(x) is	_·		В
	(a) $e^{ax^2+bx+c}$		(b) $e^{ax^2+bx+c}$ (20	x + b)	
	(c) 2ax + b		(d) α+b		
Q36	If $y = e^x + e^x$ th	en $\frac{dy}{dx}$ - $\sqrt{y^2 - 4}$ is eq	ual to		C
	2. 7 0 011	$\frac{1}{dx}$ $\frac{dx}{dx}$	·		







	(a) 1	(b) -1	(c) 0	(d) None	<u> </u>	
Q37	If $y = e^{\sqrt{2x}} \frac{dy}{dx}$ is cal	culated as			A	
	/ax	(b) $e^{\sqrt{2x}}$	(c) $\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$	(d) None		
Q38	$\frac{d}{dx}e^{2logx}$ is equal to	)			В	
	(a) 2	(b) 2x	(c) x ²	(d) 0	İ	
Q39	If $x^yy^x = M$ , M is con	instant then $\frac{dy}{dx}$ is equi-	al to		В	
	$(\alpha)\frac{-y}{x}$	(b) $\frac{-y(y+x\log y)}{x(y\log x+x)}$		(d) None		
Q40	If $f(x) = 5x^{\alpha} + 10\alpha^{x}$	+ $3a^{\alpha}$ then $\frac{dy}{dx}$ equals	to		B	
	(α) 5αx ^{α-1} + 10xα ^{x-1} +	- 3α.α ^{α-1}	(b) 5ax ^{a-1} +10a ^x loga		Ī	
	(c) 5xαlogx+10xα ^{x-1}		(d) None		ĺ	
Q41	The derivative of y	$y = \sqrt{x + 1}$ is			С	
		(b) $-1/\sqrt{x+1}$		(d) None	l	
Q42	If $y = \frac{1}{\sqrt{x}}$ then $\frac{dy}{dx}$ is	equal to			С	
	$(\alpha) \frac{1}{2x\sqrt{x}}$	(b) $\frac{-1}{x\sqrt{x}}$	$(c) - \frac{1}{2x\sqrt{x}}$	(d) 2x		
Q43	If $y = x^{-1/2}$ then $\frac{dy}{dx}$	is			A	
	(a) $(-1/2)x^{-3/2}$		(c) $(1/2)x^{3/2}$	(d) None	l	
Q44	The derivation of t	the function $\sqrt{x + \sqrt{x}}$	= ; is		С	
	$(\alpha) \frac{1}{2\sqrt{x+\sqrt{x}}}$	(b) $1 + \frac{1}{2\sqrt{x}}$	(c) $\frac{1}{2\sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2\sqrt{x}}\right)$	(d) None		
Q45	Differentiate $\sqrt{1}$ +	$\frac{1}{x^2}$ w.r.t.x, we get _	·		В	
	$(\alpha) \frac{2x}{\sqrt{1-x^2}}$	(b) $\frac{x}{\sqrt{1+x^2}}$	$(c) \frac{x^2}{\sqrt{1+x^2}}$	(d) None		
Q46	Let $f(x) = \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)$	$\int_{0}^{2} f'(2)$ will be			A	
	(α) ³ / ₄	(b) ½	(c) 0	(d) None	l	
Q47	Find the first deriv	vative of y = log _e x			A	
	$(\alpha)\frac{1}{x}$	(b) e.log x	(c) $\frac{1}{x}$ e	(d) None	1	
Q48	If y = log 5x then $\frac{d_x}{d}$	<u>y</u> is			A	
	$\frac{1}{dx}$ is					







	(a) x ^{-1A}	(p) x	(c) 5x ⁻¹	(d) 5x	
Q49	Differentiate a* +	x ^α + α ^α with respect	to x.		A
	(a) a ^x loga + ax ³⁻¹	(b) $a^x \log a + ax^a$	(c) α ^x	(d) $a^{x} + ax^{a-1}$	
Q50	$\frac{d}{dx}\sqrt{logx}$				A
	cese .	(b) $2x.\sqrt{logx}$	(c) $\frac{1}{\sqrt{logx}}$	(d) $\frac{1}{x}$	
Q51	$If y = x^{10} + 5log3x$	$+6e^{2x}+10$ then $\frac{dy}{dx}$ is	s		В
		(b) $10x^9 + \frac{5}{x} + 12e^{2x}$	_	(d) None	
Q52	$\frac{d}{dx}\Big(log\big(\sqrt{x-1}+\sqrt{x}$	+1))			A
	$(\alpha) \frac{1}{2\sqrt{x^2-1}}$	(b) $\frac{1}{2\sqrt{x^2+1}}$	(c) $\frac{1}{\sqrt{x-1}+\sqrt{x+1}}$	(d) None	
Q53	Differentiate 2×x5	with respect to x.			A
	(a) $x^5 2^x \log_e 2 + 5.2^x$	<b>X</b> ⁴	(b) x ⁵ 2 ^x logx + 2 ^x log	дх	
	(c) 2 ^x logx + x ⁵		(d) $x^4 \log_e x + 2^x$		
Q54	Differentiate 2×.log	gx with respect to x			С
	(α) 2×logx + 22	(b) $\frac{2}{x}$ logx + xlogx x	(c) $\frac{2^x}{x}$ + $2^x \log 2 \log x$	(d) $\log 2x + \frac{1}{x}$	
Q55	$\frac{d}{dx}$ (x log x) is equal	to			A
	(a) (1+ log x)		(c) log x	(d) $\frac{x}{\log x}$	
Q56	The derivative of	x² log x is			В
	(α) 1+2log x	(b) $x (1 + 2 \log x)$	(c) 2 log x	(d) None	
Q57	Differentiate e ^x lo	gx with respect to x			С
	$(\alpha)\frac{e^x}{x}$	(b) $\frac{e^x}{x} log x$	(c) $\frac{e^x}{x}(1 + x \log x)$	(d) e ^{log x}	
Q58	If $xy = 1$ then $y^2 + \frac{a}{a}$	$\frac{dy}{dx}$ is equal to			В
	(a) 1	(b) 0	(c) -1	(d) 2	
Q59	Given e ^{xy} - 4xy = 0	$\frac{dy}{dx}$ can be proved to	o be		A
			(c) x/y	(d) None	
Q60	If $x^3 - x\gamma^2 + y^2 + 2 = 0$ t	hen $\frac{dy}{dx}$ is			A







	$(v^2-2v^2)$	$(v^2-2v^2)$	$(v^2-2x^2)$	$(v^2-2v^2)$	
	(a) $\frac{(y^2-3x^2)}{2y(3-x)}$	(b) $\frac{(y^2-3x^2)}{2y(x-3)}$	(c) $\frac{(y^2-3x^2)}{2y(3+x)}$	(d) $\frac{(y^2-3x^2)}{(3-x)}$	
Q61	If $f(xy) = x^3 + y^3 - 3$	Baxy = $0 \frac{dy}{dx}$ can be for	ound out as		В
	$(\alpha) \frac{ay - x^2}{y^2 + ax}$	(b) $\frac{ay-x^2}{y^2-ax}$	(c) $\frac{ay+x^2}{y^2+ax}$	(d) None	
Q62	Find $\frac{dy}{dx}$ for $x^2y^2 + 3$	3xy + y = 0			В
	$(\alpha) \frac{(2xy+y)}{(x+2x)}$	(b) $-\frac{(2xy^2+3y)}{(2x^2y+3x+1)}$	$(c) \frac{x^2y^2-2y}{2xy}$	(d) $-\frac{(2x^2y-3y)}{(x^2y+3x)}$	
Q63	If $x(1 + y)^{1/2} + y(1 +$	$(x)^{1/2} = 0$ then $\frac{dy}{dx}$ is _	·		A
	$(\alpha)$ - $(1 + x^2)^{-1}$	(b) $(1 + x^2)^{-1}$	(c) $-(1 + x^2)^{-2}$	(d) $(1 + x^2)^{-2}$	
Q64	If ax²+ 2hxy+by²+2	$gx+2fy+c=O\frac{dy}{dx}$ is _	·		A
	$(\alpha) - \frac{(ax+hy+g)}{(hx+by+f)}$	(b) $\frac{(ax+hy+g)}{(hx+by+f)}$	(c) $\frac{(ax-hy+g)}{(hx-by+f)}$	(d) $\frac{h(ax-y+g)}{(x-by+f)}$	
Q65	If $x^2 + 3xy + y^2 - 4$	= 0 then $\frac{dy}{dx}$ is			A
	$(\alpha) - \frac{(2x+3y)}{(3x+2y)}$	(b) $\frac{(2x+3y)}{(3x+2y)}$	(c) $-\frac{(3x+3y)}{(2x+3y)}$	(d) $\frac{(3x+3y)}{(2x+3y)}$	
Q66	If $x^2e^y + 4\log x = 0$	then $\frac{dy}{dx}$ is			С
	$(\alpha) \frac{e^y 2x^2 + 4 + 8x}{x^3 e^y}$	(b) $\frac{e^{y}2x^2-4}{x^3e^y}$	$(c) \frac{-e^y 2x^2 - 4}{x^3 e^y}$	(d) None	
Q67	$F(x) = log_e\left(\frac{x-1}{x+1}\right) c$	and $f'(x) = 1$ then th	ne value of x =	_•	A
	(a) 1	(b) 0	(c) $\pm\sqrt{3}$	(d) $\pm\sqrt{2}$	
Q68	Let $p = x^3 \log x$ , so	what is the value c	of $\frac{d^2p}{dx^2}$ ?		A
	(α) 5x + 6x log x	(b) $5x^2 + \log x^2$	(c) $5x^2 + 6x \log x$	(d) None	
Q69	Differentiate $\frac{x^2}{e^x}$ w	ith respect to x.			В
	(a) $e^x + \frac{2}{x}$	(b) $\frac{x(2-x)}{e^x}$	(c) e ^x logx	(d) $e^{2x}$	
Q70	The derivative of	$\frac{3-5x}{3+5x}$ is			С
	(a) 30(3+ 5x) ⁻²	(b) 1 / (3+5x) ²	(c) $-\frac{30}{(3+5x)^2}$	(d) None	
Q71	If $f(x) = \frac{x^2 + 1}{x^2 - 1}$ then	f'(x) is			A
		(b) $4x(x^2-1)^2$	(c) $\frac{x}{(x^2-1)^2}$	(d) 4 × +1	
	I				







Q72	2				Δ	
Q,2	If $y = \frac{x^2 - 1}{x^2 + 1} then \frac{dy}{dx}$	is				
	(a) $4x(x^2+1)^{-2}$	(b) $4x(x^2+1)^2$	(c) $4x(x^2-1)^{-2}$	(d) None		
Q73	Find value of $\frac{dy}{dx}$ if	y = x ^x			D	
	(a) x ^x (1 + logx)	(b) 1+log x	(c) y. log x	(d) None		
Q74	If $y = f(x) = \frac{ax+b}{ax-a}$	then $f'(y)$ is	_•		A	
	(a) -x	(b) 2x	(c) x	(d) None		
Q75	If $y = \frac{x^{1/2} + 2}{x^{1/2}}$ then $\frac{a}{a}$	<del>ly</del> is			A	
	$(\alpha) - x^{-3/2}$	(b) 3x	(c) x	(d) None		
Q76	If $y = \frac{x^{1/2}(5-2x)^{2/2}}{(4-3x)^{3/4}(7-4x)}$	$\frac{1}{10^{4/5}}$ then the value	of $\frac{dy/dx}{y}$ is		A	
	(a) $\frac{1}{2x} - \frac{4}{3(5-2x)} + \frac{4}{4(4-2x)}$	$\frac{9}{4-3x)} + \frac{16}{5(7-4x)}$	(b) $\frac{1}{2x} - \frac{3}{4(5-2x)} +$	$\frac{4}{9(4+3x)} + \frac{16}{(7+4x)}$		
	(c) $\frac{1}{x} - \frac{3}{4(5-2x)} + \frac{3}{9(4-x)}$	$\frac{4}{-3x} + \frac{16}{5(7-4x)}$	(d) None			
Q77	If $y = \frac{(x+a)(x+b)(x+c)(x+d)}{(x-a)(x-b)(x-c)(x-d)}$ ffien value al $\frac{dy/dx}{y}$ is					
	(a) $(x + a)^{-1} + (x + b)^{-1}$	$(x + c)^{-1} + (x + c)^{-1} + (x + c)^{-1}$	d) ⁻¹ - $(x - \alpha)^{-1}$ - $(x - b)$	) ⁻¹ - (x - c) ⁻¹ - (x - d) ⁻¹		
	(b) $(x + a)^{-1} - (x + b)^{-1}$	$(x + c)^{-1} + (x + c)^{-1} - (x + c)^{-1}$	d) ⁻¹ - (x - α) ⁻¹ - (x - b)	$(x - c)^{-1} + (x - c)^{-1} - (x - d)^{-1}$		
	(c) (x - a) ⁻¹ + (x - b	$(x - c)^{-1} + (x - c)^{-1} + (x - c)^{-1}$	$(x + a)^{-1} - (x + a)^{-1} - (x + b)^{-1}$	$)^{-1}$ - $(x + c)^{-1}$ - $(x + d)^{-1}$		
	(d) None					
Q78	If $y = \frac{(x+1)(2x-1)}{(x-3)}$ tho	en $\frac{dy}{dx}$ is			A	
		(b) $\frac{2(x^2+6x-1)}{(x-3)^2}$	(c) $\frac{2(x^2+6x+1)}{(x-3)^2}$	(d) None		
Q79	If $y = \frac{5x^4 - 6x^2 - 7x + 8}{5x - 6}$	then $\frac{dy}{dx}$ is			A	
	(a) $(75x^4 - 120x^3 -$	$30x^2 + 72x + 2)(5x -$	6)-2			
	(b) $\frac{(75x^4 - 120x^3 + 30x^2)}{5x - 6}$	-72x+2)				
	(c) $\frac{(75x^4 - 120x^3 - 30x^2 - 61)}{(5x - 61)}$	+72x-2)				
	(d) None					
Q80	Differentiate $\frac{e^x}{loax}$	with respect to $x$ .			В	
	$(\alpha) \frac{e^x (x \log -1)}{x (\log x)}$		(c) e ^x logx	(d) None		







Q81	If $y = \frac{e^x + 1}{e^x - 1}$ then $\frac{dy}{dx}$	is equal to .			A
	c i ux	(b) $2e^x(e^x-1)^2$	(c) $2(e^x - 1)^2$	(d) None	
Q82	Given $x = 2t + 5$ ; $y = 2t + 5$	$=t^2-2\frac{dy}{dx}$ is calculat	ed as		A
	(a) t	(b) -1/t		(d) None	
Q83	If $x = 3t^2 - 1$ , $y = t^3 t$	then $\frac{dy}{dx}$ is equal to	·		A
	(a) $\frac{3t^2}{6t}$ (b) $3t^2 - 1$	(c) 3t + 1	(d) None		
Q84	Given $x = \alpha t^2$ ; $y = 2$	at $\frac{dy}{dx}$ is			С
	(a) t	(b) -1/t	(c) 1/t	(d) None	
Q85	If $x = at^2$ ; $y = 2at$ ; $\frac{1}{6}$	$\frac{dy}{dx}_{t=2}$ is equal to			A
	(α) 1/2	(b) -2	(c) -1/2	(d) None	
Q86	If $x = \frac{1-t^2}{1+t^2}$ ; $y = \frac{2t}{1+t^2}$	then $\frac{dy}{dx}$ at $t = 1$ is	·		C
	(a) ½	(b) 1	(c) 0	(d) None	
Q87	If $u = (x^3 + 1)^5$ and	$4y = (x^3 + 5x + 7)$ the	en $\frac{du}{dy}$ is		D
	$(\alpha) \frac{15x^2(x^3+1)^4}{3x^2+5}$	(b) $\frac{10(x^2+1)^4}{3x^2+5}$	(c) $5x(x^2+1)^4$	(d) None	
Q88	If $y = x^{2x}$ then $\frac{dy}{dx}$ is_	·			A
	(a) $2x^{2x}(1 + \log x)$	(b) 2(1 + logx)	(c) $x^{2x}(1 + \log x)$	(d) None	
Q89	If $y = (3x^2 - 7)^{1/2}$ t	ux			A
	$(a) \ 3x(3x^2-7)^{-1/2}$	(b) $6x(3x^2-7)^{-1/2}$	(c) $3x(3x^2+7)^{-1/2}$	(d) None	
Q90	If $y = (6x^5 - 7x^3 +$	9) ^{-1/3} then $\frac{dy}{dx}$ is	·		A
	$\left(\alpha\right)\left(-\frac{1}{3}\right)(6x^5-7x^3)$	$+9)^{-4/3}(30x^4 - 21x^2)$	(b) $\left(\frac{1}{3}\right) (6x^5 - 7x^3 + 9)$	$9)^{-4/3}(30x^4 - 21x^2)$	
	(c) $\left(-\frac{1}{3}\right) (6x^5 - 7x^3)$	$+9)^{4/3}(30x^{4\prime}-21x^2)$	(d) None		
Q91	If $y = 5x^x$ , then $\frac{dy}{dx}$ is	s equal to			С
	(α) 5x×(1 - logx)	(b) 5x ^{x-1}	(c) 5x ^x (1 + logx)	(d) None	
Q92	Let y = $\sqrt{2x} + 3^{2x}$ th	en $\frac{dy}{dx}$ is equal to			A







	T		
	(a) $\frac{1}{\sqrt{2x}} + 2.3^{2x} \log e^3$ (b) $\frac{1}{\sqrt{2x}}$	(c) 2. $3^{2x} \log e^3$ (d) None	
Q93	Let $f(y) = x^{x^3}$ then $f'(y)$ is		В
	(a) $x^3[x^2 + 3x.\log x]$	(b) $x^{x^3}[x^2 + 3x^2.\log x]$	
	(c) $x^{x^3}[x^2 - 3x.\log x]$	(d) None	
Q94	If $x^y = e^{x-y}$ then $\frac{dy}{dx}$ is		В
	(a) $\frac{\log x}{(1-\log x)^2}$ (b) $\frac{\log x}{(1+\log x)^2}$	(c) $\frac{\log x}{(1-\log x)}$ (d) $\frac{\log x}{(1+\log x)}$	
Q95	If $y = (1+x)^{2x}$ then the value of $\frac{1}{y} \times \frac{dy}{dx}$	is	A
	(a) $2[x(x+1)^{-1} + \log(x+1)]$	(b) $x(x+1)^{-1} + \log(x+1)$	
	(c) $2[x(x+1)^{-1}-\log(x+1)]$	(d) None	
Q96	If $y = x^{\alpha} + \alpha^{x} + x^{x} + \alpha^{\alpha}$ then the value of	$\frac{1}{v} \times \frac{dy}{dx} \times \text{is}$	A
	(a) $x^{-2}(1 - \log x)$ (b) $x^{2}(1 - \log x)$		
Q97	If $y = x^{x^x}$ then the value of $\frac{dy}{dx}$ is		A
	ux	(b) $x^{x^x}$ [ $x^{x-1}$ + logx.(1 + logx)]	
	(c) $x^{x^x} [x^{x-1} + \log x. x^x (1 - \log x)]$	(d) $x^{x^x} [x^{x-1} - \log x. x^x (1 - \log x)]$	
Q98	If $y = \sqrt{x}^{\sqrt{x}}$ then $\frac{dy}{dx}$ is equal to		В
	(a) $\frac{y^2}{2-y\log x}$ (b) $\frac{y^2}{x(2-y\log x)}$	(c) $y \log x$ (d) $\frac{y(\log x + 2)}{4\sqrt{x}}$	
Q99	If $y = x^{logx}$ then $\frac{dy}{dx}$ is		A
	(a) $x^2 - y^2 + 3x - 5y = 0$	(b) $(2x+3)(2y+5)^{-1}$	
	(c) $2 \times^{\log x - 1} . \log x$	(d) None	
Q100	If $y = x^{x^x \dots x}$ then $\frac{dy}{dx}$ is		A
	(a) $\frac{y^2}{[x(1-y\log x)]}$ (b) $\frac{y}{[(1-y\log x)]}$	(c) $\frac{y}{[x(1+y\log x)]}$ (d) $\frac{y^2}{[(1+y\log x)]}$	
Q101	The derivative of log x.e ^x is		A
	(a) $\frac{e^x}{x} + e^x(\log x)$ (b) $e^x(\frac{1}{x} - \log x)$	(c) $e^x(1 + \log x)$ (d) None	
Q102	If $y = (3x^3 - 5x^2 + 8)^3$ then $\frac{dy}{dx}$ is	·	A
	(a) $3(3x^3 - 5x^2 + 8)^2(9x^2 - 10x)$	(b) $3(3x^3 - 5x^2 + 8)^2(9x^2 + 10x)$	
	(c) $3(3x^3-5x^2+8)^2(10x^2-9x)$	(d) None	







Q103					C
4,00		$(x + \sqrt{x^2 + a^2})$ with res	spect to $x$ .		
	$(a) \frac{1}{\sqrt{x}}$	(b) $\frac{1}{\sqrt{x^2 - a^2}}$	(c) $\frac{1}{\sqrt{x^2+a^2}}$	(d) $\frac{x}{\sqrt{x^2-a}}$	
Q104	Differentiate log(	$\sqrt{x-a} + \sqrt{x-b}$ ) with	respect to x.		В
	$(\alpha)\frac{1}{2(x-a)(x-b)}$	(b) $\frac{1}{2\sqrt{x-a}\sqrt{x-b}}$	(c) $\frac{1}{2(\sqrt{x-ab)}}$	(d) $\frac{1}{\sqrt{x-a}+\sqrt{x-b}}$	
Q105	$If y = log [(x-1)^{1/2}]$	$(x+1)^{1/2}$ ] then $\frac{dy}{dx}$	½ is		A
	(a) $\left(\frac{1}{2}\right)(x^2-1)^{-1/2}$	(b) $\left(-\frac{1}{2}\right)(x^2-)^{-1/2}$	(c) $\left(\frac{1}{2}\right)(x^2-1)^{1/2}$	(d) None	
Q106	If $y = log \left[ e^x \frac{(x-2)}{(x+3)} \right]^3$	then $\frac{dy}{dx}$ is			A
	(a) $1 + \left(\frac{3}{4}\right)(x-2)^{-1}$	$-\left(\frac{3}{4}\right)(x+3)^{-1}$	(b) $1 - \left(\frac{3}{4}\right)(x-2)^{-1}$	$x + \left(\frac{3}{4}\right)(x+3)^{-1}$	
	(c) $1 + \left(\frac{3}{4}\right)(x-2)^{-1}$	$+\left(\frac{3}{4}\right)(x+3)^{-1}$	(d) None		
Q107	If $f(x) = x^3 - 2x$ then	2nd order derivativ	e of f(x) is		В
	(a) 6	(b) 6x	(c) $3x^2 - 2$	(d) 3x	
Q108	If f(x) = x4then 3rd	order derivative of	f(x) when x = 3 is		A
	(a) 72	(b) 108	(c) 27	(d) 81	
Q109	If $x = at^2$ and $y = 2$	at then $\frac{d^2y}{dx^2}$ is			В
	$(\alpha) \frac{1}{2at^3}$	(b) $-\frac{1}{2at^3}$	(c) 2at ³	(d) None	
Q110	If $x = \frac{1-t}{1-t}$ and $t = \frac{2}{t}$	$\frac{dt}{dt}$ then $\frac{d^2y}{dx^2}$ is			A
	(a) O	(b) 1	(c) -1	(d) None	
Q111	$y = e^t$ and $x = log t$	, then $\frac{dy}{dx} = $			В
	$(\alpha)\frac{1}{t}$	(b) <i>t</i> . <i>e</i> ^t	$(c) - \frac{1}{t^2}$	(d) None	
Q112	Find the second di	fferential coefficien	at of $y = x^2 \log x$		В
		(b) 3 + 2 log x		(d) 2x log x	
Q113	If $y = \alpha e^{mx} + be^{-mx} t$	hen $\frac{d^2y}{dx^2}$ is			A
	(a) m²y	(b) my	(c) -m ² y	(d) -my	
Q114	If $y = x^m e^{nx}$ then $\frac{d^2y}{dx^2}$	½ is			D
	(a) m(m + 1)x ^{m-2} e ^{nx} +	• m-1 . nv . 2 m	(b) m(1 - m)x ^{m-2} + 2r	A	







	(c) m(1 - m) $x^{m-2}$ + 21	mnx ^{m-1} e ^{nx} + e ^{nx}	(d) m(m - 1) $x^{m-2}e^{nx} + 2mnx^{m-1}e^{nx} + n^2x^me^{nx}$		
Q115	Find the fourth de	rivative of log[(3x +	4)1/2]		A
	(a) -243(3x + 4) ⁻⁴	(b) 243(3x + 4) ⁻⁴	(c) $-243(4x + 3)^{-4}$	(d) None	
Q116	If $y = \sqrt{x^2 + m^2}$ the	en <i>y</i> y1 (Where y1 =	$\frac{dy}{dx}$ ) is equal to	_•	В
	$(\alpha) -x$	(b) <i>x</i>	(c) 1/x	(d) None	
Q117	If $y = (x + \sqrt{x^2 + m})$	$(\overline{x^2})^n$ then $\frac{dy}{dx}$ equals to	0		В
		$\frac{dx}{(b) \frac{ny}{\sqrt{x^2 + m^2}}}$		(d) None	
Q118		va int	VX THE	.,	A
<b>G</b> 110		$v^n = 0$ then $\frac{dy}{dx}$ is			"
	$(a) \frac{y}{x}$	(b) $-\frac{y}{x}$	(c) $-x/y$	(d) None	
Q119	If $y = \sqrt{\frac{x}{m}} + \sqrt{\frac{m}{x}}$ the	en $2xy\frac{dy}{dx} - \frac{x}{m} + \frac{m}{x}$ is e	qual to		A
	(a) O	(b) 1	(c) -1	(d) None	
Q120	$If y = (x + \sqrt{x^2 - 1})$	m, then the value o	$f(x^2-1)(\frac{dy}{dx})^2-m^2y^2$		C
	(a) -1	(b) 1	(c) 0	(d) None	
Q121	If $y = ae^{2x} + bxe^{2x}$	where a & b are co	onstants, value of exp	pression $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y$ is	A
	(a) O	(b) 1	(c) -1	(d) None	
Q122	If $y = (x+1)^{1/2} - ($	$(x-1)^{1/2}$ value of ex	expression $(x^2 - 1) \frac{d^2y}{dx^2}$	$+ s \frac{dy}{dx} - \frac{y}{4}$ is given by	A
			(c) -1		
Q123	If $y = log(x + (1 +$	$(x^2)^{1/2}$ the value of the	the expression $(x^2 +$	1) $\frac{d^2y}{d^2y} + x\frac{dy}{dx}$ is	A
	(a) O	(b) 1	(c) -1		
Q124				(4) 140110	С
<b></b>		$\frac{dy}{dx}$ at (-2, 2) is	·		
	(a) 2	(b) 2	(c) 1	(d) 3	
Q125	If $f(x) = 2x^3 - 9x^2 +$	12x + 5, then 1st orc		equal to zero implies	В
	(a) $x = 1$ and $x = 2$		(b) $x = 2$ and $x = -$	1	
	(c) $x = 1$ and $x = 1$		(d) $x = 2$ and $x = 2$		
Q126	If $y = 2x^2 + 3x + 10$	then $\frac{dy}{dx}$ at (0,0) is			С
	1	ux			1







Q127	The slope of the	tangent to the curve	$X = \frac{(t-1)}{(t+1)}, Y = \frac{(t+1)}{(t-1)} \alpha^{t}$	t the point $t = 2$ is	C
	(a) 9	(b) $\frac{1}{9}$	(c) -9	(d) $-\frac{1}{9}$	
Q128	Find slope of ta	ngent of curve $Y = \frac{x-1}{x+2}$	at $x = 2$ .		A
	(α) 3/16	(b) 5/17	(c) 9/11	(d) None	
Q129	The curve 4y = 1 So the values of		n the point p at (2,	3) and $\frac{dy}{dx}$ = 4 this point 'p'.	С
	(a) $u = 2, v = 2$	(b) u = -4, v = -4	(c) u = 4, v = 4	(d) None	
Q130	The gradient of	the curve y=-2x³ + 3x	+ 5 at x = 2 is		D
	(a) -20	(b) 27	(c) -16	(d) -21	
Q131	The gradient of	curve $y = x^3 - x^2$ at (0,	, O)		В
	(a) 1	(b) 0	(c) -1	(d) None	
Q132	The gradient of p and q are		x + 3qy at the poin	t (3, 2) is $\frac{-2}{3}$ . The values of	С
	$(\alpha)\left(\frac{1}{2},\frac{1}{2}\right)$	(b) (2, 2)	(c) $\left(-\frac{1}{2}, -\frac{1}{6}\right)$	(d) (0,0)	
Q133		tangent to the curve a are equal is	$y = \sqrt{4x^2}$ at the po	int where the ordinate	A
	(a) -1	(b) 1	(c) 0	(d) None	
Q134	The slope of tan	gent at the point (2 -2)	) to curve x² + xy + y	² - 4 = 0 is given by	В
	(a) O	(b) 1	(c) -1	(d) None	
Q135	•	tangent to the curve	•	nt where the line y = 2 cuts	В
	(a) 2	(b) 3	(c) -3	(d) None	
Q136	The curve y= -e	× is			D
	(a) Concave upv	vard for $x > 0$ .	(b) Concave dow	inward for $x > 0$ .	
	(c) Everywhere	concave upward.	(d) Everywhere (	concave downward.	
Q137	A function f(x) is	s maximum at x = c if _	·		В
	(a) (2nd order d	lerivative of f(x) when	X = C) > O		
	(b) (2nd order d	lerivative of f(x) when	X = C) < O		
	(c) (2nd order d	erivative of f(x) when	x =C) = O		









	(d) (2nd order de	erivative of f(x) whe	en x ≥ f(c))			
Q138	A function f(x) is	minimum at $x = b$ if	·		A	
	(a) (2nd order de	erivative of f(x) whe	en x = b) > 0			
	(b) (2nd order de	erivative of f(x) whe	en x = b) < 0			
	(c) (2nd order de	erivative of f(x) whe	en x = b) = 0			
	(d) (2nd order de	(d) (2nd order derivative of $f(x)$ when $x \ge f(b)$ )				
Q139	Find the maximu	m and minimum valu	e of $y = x^3 - 2x^2 - 4$	⟨ −1	A	
	(a) $ax \frac{13}{27}$ , $min -$		(b) Max $\frac{1}{2}$ , min			
	(c) Max 9, min -		(d) Max 9, <i>min</i>			
0440	(O) Flax 3, min	27	(4) 1 14 7, 11111	2		
Q140		m and minimum valu	e of $y = 2x^3 - 15x^2 +$	36x + 12	A	
	(a) Max 40, Min3	9	(b) Max 39, Mir	138		
	(c) Max 41, Min 4	0	(d) None			
Q141	In question above, at which values of x maximum and minimum occur respectively?			A		
	(a) 2, 3	(b) 3, 2	(c) -2, -3	(d) -3, -2		
Q142	Find the maximu	m and minimum valu	e of y = $\frac{x^3}{3 + x^2 - 3x}$		A	
	(α) -5	(b) 5	(c) 5	(d) -5		
Q143	In question abov	e, at which values c	of x maximum and n	ninimum occur respectively?	A	
	(α) -3, 1	(b) -3, -1	(c) 3, 1	. , (d) 3, -1		
Q144	The point of infle	exion of the curve y	=x ⁴ is at .		D	
	$(\alpha) x = 0$	(b) x = 3	(c) $x = 12$	(d) No where		
Q145	At which values of $5x^4 + 5x^3 - 1?$	of x maximum and m	inimum occur resp	ectively in respect of y = x ⁵ -	С	
	(a) 1 3	(b) 0 3	(c) Both	(d) None		
Q146	At $x = 3$ , $y = (x-2)$	n ⁶ (x-3) ⁵ is			C	
	(a) A maxima		(c) A point of i	nflexion (d) None		
Q147	$y = x^3 - 3x^2 + 3x +$	7 has .			D	
	(a) A maxima		(c) Both	(d) None		
Q148					В	
	$y = x^2 - 6x + 13 ha$ (a) A maxima		(c) Both	(d) None		
	(a) A maxima	(ω) Α ιιιιιιιιια	(C) DOIN	(u) None		

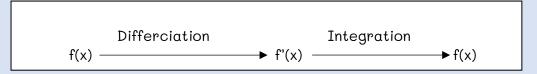






Q149	In question above	e, the extreme value	e of y is		A	
	(a) 4	(b) 3	(c) -4	(d) -3		
Q150	$U = 5t^4 + 4t^3 + 2t^2$	+ t +4 at t=-1 find du	ı/dt		A	
	(a) -11	(b) 11	(c) -16	(d) 16		
Q151	$If e^{xy} - 4^{xy} = 4 th$	If $e^{xy} - 4^{xy} = 4$ then $\frac{dx}{dy}$ :  (a) $\frac{y}{x}$ (b) $\frac{-y}{x}$ (c) $\frac{x}{y}$ (d) $\frac{-x}{y}$				
	$(\alpha)\frac{y}{x}$	(b) $\frac{-y}{x}$	(c) $\frac{x}{y}$	(d) $\frac{-x}{y}$		
Q152	If $x^p$ . $y^q = (x+y)^{p+q}$ then $\frac{dx}{dy}$ :					
	$(\alpha)\frac{y}{x}$	(b) $\frac{-y}{x}$	(c) $\frac{p}{q}$	(d) $\frac{-p}{q}$		
Q153	If = $1 + \frac{x}{1^1} + \frac{x^2}{2!} + \frac{x}{3}$	$\frac{3}{!} + \cdots \dots + \frac{x^n}{n!} + \cdots \dots \infty$	, then $\frac{dx}{dy}y = $		В	
	(a) 1	(b) 0	(c) -1	(d) None		
Q154	$\int_0^2  1 - x  dx = \underline{\qquad}$	·			D	
	$\int_0^2  1 - x  dx = \underline{\qquad}$ (a) 23	(b) 21	(c) 0	(d) 1		








# CHAPTER 8B. INTEGRAL CALCULUS

#### INTRODUCTION

Integration is the reverse (inverse) process of differentiation & is denoted by the symbol f.



#### **BASIC FORMULAE**

DIFFERENTIATION	INTEGRATION	Examples
1. $\frac{d}{dx} \left[ \frac{x^{n+1}}{n+1} \right] = x^n$ ; (n $\neq$ -1)	$\int x^{n}.dx = \frac{x^{n+1}}{n+1} + C_{3}(n \neq -1)$	$\int \mathbf{x}^3 = \frac{\mathbf{x}^{3+1}}{3+1} + \mathbf{C} = \frac{\mathbf{x}^4}{4} + \mathbf{C}$
$2. \frac{d}{dx}(x) = 1$	$\int 1.  \mathrm{d} x = x + C$	$\int \sqrt{\mathbf{x}} = \frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1} + C = \frac{2(x^{\frac{3}{2}})}{3} + C$
$3. \frac{d}{dx}[Log x] = \frac{1}{x}$	$\int \frac{1}{x} . dx = \text{Log } x + C$	$\int \frac{1}{\sqrt{x}} = \frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1} + C = \frac{2(x^{\frac{1}{2}})}{1} = 2\sqrt{x}$
$4. \frac{d}{dx} e^x = e^x$	$\int e^{x}.dx = e^{x} + C$	$\int \mathbf{x}\sqrt{\mathbf{x}} = \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + C = \frac{2(x^{\frac{5}{2}})}{5} + C$
$5. \frac{d}{dx} a^x = a^x. \text{ Log } \alpha$	$\int a^x . dx = \frac{a^x}{\log a} + C$	$\int 3^{\mathbf{x}} = \frac{3^{\mathbf{x}}}{\log 3} + \mathbf{C}$

## CONSTANT OF INTEGRATION (C)

• In integration of every function, we add "+c" (constant of integration) since  $\frac{d}{dx}$  (Constant) = 0.

Let us understand this concept.

$$\frac{d}{dx}(x^2) = 2x \& \frac{d}{dx}(x^2 + 5) = 2x.$$
 Because derivative of a constant is always 'Zero. 
$$\int 2x \cdot dx = x^2 \cdot \& \int (2x + 5) \cdot dx = x^2.$$

There may be cases when the constant was there in f(x) but it doesn't appear in f'(x) because of its derivative being 'Zero. So we always have to add a constant in integration. Such constant is "Constant of Integration".







### **ELEMENT OF INTEGRATION**

- 'dx' is called element of integration. It indicates the variable w.r.t which f(x) is to be integrated.
- In differentiation we use to write  $\frac{d}{dx}$ , & in Integration we write 'dx'.

In  $\int x^5 dx$ ; dx indicates that  $x^5$  is to be integrated w.r.t 'x'

# CHAIN RULE [Here we have to DIVIDE by $\frac{dy}{dx}$ ]

Basic Rules	Chain Rule	Example
$\int x^n.dx = \frac{x^{n+1}}{n+1} + C;$	$\int y^{n}.dx = \frac{y^{n+1}}{(n+1)} \div \frac{dy}{dx}$	$\int (4x+5)^6 dx = \frac{(4x+5)^{6+1}}{(6+1).4} = \frac{(4x+5)^7}{28} + C$
$\int \frac{1}{x} . dx = \text{Log } x + C$	$\int \frac{1}{y} \cdot dx = \text{Log } y \div \frac{dy}{dx}$	$\int \frac{1}{(2x+5)} \cdot dx = \frac{\log(2x+5)}{2} + C$
$\int e^{x}.dx = e^{x} + C$	$\int e^{y}.dx = e^{y} \div \frac{dy}{dx}$	$\int e^{-3x} = \frac{e^{-3x}}{-3} = -\frac{1}{3 \cdot e^{3x}} + C$
$\int a^{x}.dx = \frac{a^{x}}{\log a} + C$	$\int a^{y}.dx = \frac{a^{y}}{\log a} \div \frac{dy}{dx}$	$\int 5^{(3x+5)} = \frac{5^{(3x+5)}}{(\log 5).3} + C$

### **RULES FOR INTEGRATION**

Rules	Examples
1. $\int C. f(x) = C. \int f(x)$	$\int [7x^5] . dx = 7. \int x^5 . dx = 7. \frac{x^{5+1}}{5+1} = 7. \frac{x^6}{6} = \frac{7}{6}.x^6 + C$
2. $\int [f(x) \pm g(x)] = \int f(x) \pm \int g(x)$	$\int [5x^4 + 3x^3 - 2].dx = 5. \int x^4.dx + 3. \int x^2.dx - 2 \int 1.dx$ $= 5. \frac{x^5}{5} + 3. \frac{x^3}{3} - 2x = x^5 + x^3 - 2x + C$

#### SOME SOLVED EXAMPLES

1) 
$$\int (x + \frac{1}{x})^2 . dx = \int x^2 . dx + 2 \int dx + \int \frac{1}{x^2} . dx$$

i. = 
$$\frac{x^3}{3}$$
 + 2x +  $\frac{x^{-2+1}}{-2+1}$ 

$$= \frac{x^3}{3} + 2x - \frac{1}{x} + c$$

2) 
$$\int \sqrt{x} (x^3 + 2x - 3) dx = \int x^{7/2} dx + 2 \int x^{3/2} dx - 2 \int x^{1/2} dx$$

i. 
$$=\frac{x^{7/2+1}}{7/2+1} + \frac{2x^{3/2+1}}{3/2+1} - \frac{3x^{1/2+1}}{1/2+1} = \frac{2x^{9/2}}{9} + \frac{4x^{5/2}}{5} - 2x^{3/2} + C$$

$$= \frac{2x^{9/2}}{2} + \frac{4x^{5/2}}{5} - 2x^{3/2} + C$$

**3)** 
$$\int (e^{2x} + e^{-4x}) . dx = \int e^{2x} . dx + \int e^{-4x} . dx$$
  $= \frac{e^{2x}}{2} + \frac{e^{-4x}}{-4} = \frac{e^{2x}}{2} - \frac{1}{4e^{4x}} + c$ 

$$=\frac{e^{2x}}{2}+\frac{e^{-4x}}{-4}=\frac{e^{2x}}{2}-\frac{1}{4e^{4x}}+C$$







**4)** 
$$\int \frac{x^2}{x+1} dx = \int \frac{x^2 - 1 + 1}{x+1} dx$$
  $= \int \frac{(x^2 - 1)}{x+1} dx + \int \frac{dx}{x+1}$   $= \frac{x^2}{2} - x + \log(x + 1) + c$ 

#### METHOD OF SUBSTITUTION

- Sometimes, integration of a given function becomes simple by substitution of a new variable (say t) in place of the given variable 'x'.
- Element of integration (dx) is also changed to 'dt' after proper adjustments.

PC Note: Generally (not always), term (variable) on complex side is taken as 't'.

#### SOME SOLVED EXAMPLES

**CQ1:** 
$$\int \frac{x^3}{(x^2+1)^3} \, dx$$
.

**Ans:** 
$$t = (x^2 + 1)$$
 ----(i)

Now we have to replace 'dx' with 'dt'. SO we find relation between 'dx' & 'dt'.

Differentiating B.S w.r.t 'x', we get  $\frac{dt}{dx} = 2x$ ;

If we observe the question carefully, we have 'x.dx' in the numerator. So we will find its value in terms of dt.

We get 
$$x.dx = \frac{dt}{2}$$
 -----(ii);

$$\Rightarrow$$
 we have  $x^2 = (t - 1)$  from (i)-----(iii)

Thus 
$$\int \frac{x^2 \cdot x \cdot dx}{(x^2 + 1)^3}$$

$$\Rightarrow \int \frac{(t-1).dt}{2t^3}$$
 ---Substituting value of  $x^2$  & x.dx from (ii) & (iii)

$$\Rightarrow \frac{1}{2} \left[ \int \frac{(t)}{t^3} . dt - \frac{1}{t^3} . dt \right]$$

$$\Rightarrow \frac{1}{2} \left[ \int \frac{(1)}{t^2} . dt - \int \frac{1}{t^3} . dt \right]$$

$$\Rightarrow \frac{1}{2} \left[ \frac{t^{-2+1}}{-2+1} - \frac{t^{-3+1}}{-3+1} \right]$$

$$\Rightarrow \frac{1}{2} \left[ \frac{\mathsf{t}^{-1}}{-1} - \frac{\mathsf{t}^{-2}}{-2} \right]$$

$$\Rightarrow \frac{1}{2} \left[ -\frac{1}{t} + \frac{1}{2t^2} \right]$$

$$\Rightarrow \frac{1}{4t^2} - \frac{1}{2t} + C$$

$$\Rightarrow \frac{1}{4t^2} - \frac{1}{2t} + C \Rightarrow \frac{1}{4(x^2 + 1)^2} - \frac{1}{2(x^2 + 1)} + C$$

**CQ2:** 
$$\int \frac{x-1}{\sqrt{(x+4)}} dx$$

**Ans:** 
$$t = \sqrt{(x+4)}$$
 & thus  $t^2 = x + 4$  -----(i)

Now we have to replace 'dx' with 'dt'. SO we find relation between 'dx' & 'dt'.

Differentiating B.S w.r.t 'x', we get  $2t \cdot \frac{dt}{dx} = 1$ ;

If we observe the question carefully, we have 'dx' in the numerator. So we will find its value in terms of dt.

We get 
$$dx = 2t.dt$$
.

we have 
$$x = (t^2 - 4)$$
 from (i)

$$\Rightarrow \int \frac{(t^2 - 4) - 1).2tdt}{t}$$

$$\Rightarrow 2 \int (t^2 - 5)$$







$$\Rightarrow 2 \left[ \int t^2 . dt - \int 5 . dt \right]$$

$$\Rightarrow \int \frac{1}{t} \cdot dt - \int 5 \cdot dt$$

$$\Rightarrow 2\left[\frac{t^3}{3} - 5t\right] + C$$

$$\Rightarrow \frac{2.t^3}{3}$$
 - 10t + C

$$\Rightarrow \frac{2.(x+4)^{3/2}}{3} - 10\sqrt{(x+4)} + C$$

**CQ3:** 
$$\int \frac{dx}{x(x^3+1)} = \int \frac{x^2 dx}{x^3(x^3+1)}$$

**Ans:** Let 
$$t = x^3$$
;  $\frac{dt}{dx} = 3x^2$   $\Rightarrow \frac{dt}{3} = x^2 . dx$   $= \int \frac{dt}{3.t(t+1)}$ 

$$\Rightarrow \frac{dt}{3} = x^2. dx$$

$$= \int \frac{dt}{3.t(t+1)}$$

$$=\frac{1}{3}\int(\frac{1}{t}-\frac{1}{t+1}).dt$$

$$= \frac{1}{3} [\log t - \log (t - 1)] = \frac{1}{3} \log (\frac{x^3}{x^3 - 1}) + C$$

$$=\frac{1}{3}\log(\frac{x^3}{x^3-1})+C$$

## **INTEGRATION BY PARTS**

Let 
$$f(x) = u \& g(x) = v$$
,

Let 
$$f(x) = u \& g(x) = v$$
,  $\int (u, v) = u \int v - \int \{\frac{du}{dx} \cdot \int v\}$ 

## How to find 'u' & 'v':

## Sequence shall be LAE:

L	A	£
Logarithmic function	Algebraic functions [Involving x]	Exponential function [Involving x]

[Note: Sequence of the functions given in the question is NOT RELEVANT] Different Cases:

Question Consists of	u	v
1. Logarithmic function & Algebraic function	Logarithmic function	Algebraic function
2. Logarithmic function & Exponential function	Logarithmic function	Exponential function
3. Algebraic function & Exponential function	Algebraic function	Exponential function

#### **SOME SOLVED EXAMPLES**

## (i) $\int xe^x dx$

**Ans:**  $x \to Algebraic Function & e^x \to Exponential Function; Thus <math>u = x^* \& v = e^x$ .

$$= x \int e^x dx - \int \left\{ \frac{d}{dx}(x) \int e^x dx \right\} dx$$

$$= xe^x - \int 1.e^x. dx = xe^x - e^x + c$$

# (ii) $\int x \log x \, dx$

**Ans:**  $x \to Algebraic Function & Log <math>x \to Logarithmic Function$ ; Thus u = 'log x' & v = 'x'.





$$= \log x \int x \, dx - \int \left\{ \frac{d}{dx} \left( \log x \right) \int x \, dx \right\} \, dx$$

$$= \log x \cdot \frac{x^2}{2} - \int \left[ \frac{1}{x} \cdot \frac{x^2}{2} \right] dx$$

$$=\frac{x^2}{2}\log x - \frac{1}{2} \cdot \frac{x^2}{2} + c$$

$$= \frac{x^2}{2} \log x - \frac{1}{2} \int x \, dx$$

$$=\frac{x^2}{2}\log x - \frac{x^2}{4} + c$$

## (iii) $\int x^2 e^x dx$ ;

**Ans:**  $x^2 \rightarrow \text{Algebraic Function & } e^x \rightarrow \text{Exponential Function}$ ; Thus  $u = {}^{c}x^2{}^{c}$  &  $v = {}^{c}e^{x^{c}}$ .

$$= x^2 \int e^x dx - \int \left[ \left( \frac{d}{dx} x^2 \right) \cdot \int e^x \cdot dx \right]$$

$$= x^2 e^x - \int (2x \cdot e^x)$$

$$= x^2 e^x - 2 \int (x e^x) dx$$

We will have to integrate  $\int (xe^x)$  again. Thus  $u = x^2 \& v = e^x$ .

= 
$$x^2e^x - 2[x.\int e^x.dx - \left[\int \left[\frac{dx}{dx}\right]\int e^x dx\right]$$

$$= x^2 e^x - 2[xe^x - \int 1.e^x.dx]$$

$$= x^2 e^x - 2[xe^x - e^x]$$

$$= x^2 e^x - 2xe^x + 2e^x$$

$$= e^x[x^2 - 2x + 2] + C$$

## (iv) $\int x^2 e^{ax} dx$

**Ans:**  $x^2 \rightarrow \text{Algebraic Function & } e^{ax} \rightarrow \text{Exponential Function; Thus } u = `x^2` & v = `e^{ax}'.$ 

$$= x^2 \int e^{ax} dx - \int \left\{ \frac{d}{dx} (x^2) \int e^{ax} dx \right\} dx$$

$$= x^2 \cdot \frac{e^{ax}}{a} - \int 2x \cdot \frac{e^{ax}}{a} dx$$

$$= \frac{x^2}{a}e^{ax} - \frac{2}{a}\int x \cdot e^{ax} dx$$

We will have to integrate  $\int (xe^{ax})$  again. Thus  $u = x \cdot x \cdot x \cdot v = e^{ax} \cdot x \cdot x$ 

$$= \frac{x^2}{a} e^{ax} - \frac{2}{a} \{x \cdot \int e^{ax} \cdot dx - \int \left[ \frac{d}{dx}(x) \int e^{ax} dx \right] = \frac{x^2}{a} e^{ax} - \frac{2}{a} \left[ x \cdot \frac{e^{ax}}{a} - \int 1 \cdot \frac{e^{ax}}{a} dx \right]$$

$$= \frac{x^2}{a}e^{ax} - \frac{2}{a}\left[x \cdot \frac{e^{ax}}{a} - \frac{e^{ax}}{a^2}\right]$$

$$= \frac{x^2}{a}e^{ax} - \frac{2x^{e^{ax}}}{a^2} + \frac{2e^{ax}}{a^3} + C$$

## IMPORTANT STANDARD FORMULAE

**1.** 
$$\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$$

**2.** 
$$\int e^{x} [f(x) + f'(x)].dx = e^{x}.f(x) + c$$

**3.** 
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$$

**4.** 
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + C$$

**5.** 
$$\int \frac{dx}{\sqrt{x^2 + a^2}} = \log |x + \sqrt{x^2 + a^2}| + c$$

**6.** 
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + \cos (x + \sqrt{x^2 - a^2})$$

**7.** 
$$\int \sqrt{x^2 + a^2} . dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$$
**8.**  $\int \sqrt{x^2 - a^2} . dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ 

**8.** 
$$\int \sqrt{x^2 - a^2} \cdot dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$$



## Example

(a) 
$$\int \frac{e^x}{e^{2x} - 4} dx = \int \frac{dz}{z^2 - 2^2} \text{ where } z = e^x dz = e^x dx$$
$$= \frac{1}{4} \log \left( \frac{e^x - 2}{e^x + 2} \right) + c$$

(b) 
$$\int \frac{1}{x + \sqrt{x^2 - 1}} dx = \int \frac{x - \sqrt{x^2 - 1}}{(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1})} dx = \int (x - \sqrt{x^2 - 1}) dx$$
$$= \frac{x^2}{2} - \frac{x}{2} \sqrt{x^2 - 1} + \frac{1}{2} \log (x + \sqrt{x^2 - 1}) + c$$

(c) 
$$\int e^x (x^3 + 3x^2) dx = \int e^x \{f(x) + f'(x)\} dx$$
, where  $f(x) = x^2$  [by (e) above] =  $e^x x^3 + c$ 

## INTEGRATION BY PARTIAL FRACTION

- If f(x) & g(x) are polynomials in x, then  $\frac{f(x)}{g(x)}$  is called a rational function.
- [**Ex**:  $\frac{8x+1}{5x^3+7}$  i.e  $\frac{\text{Degree 1}}{\text{Degree 3}}$ .] • If degree of f(x) < degree of g(x), it is a proper rational function.
- If degree of f(x) > degree of g(x), it is an improper rational function. [Ex:  $\frac{5x^3 + 7}{8x + 1}$  i.e  $\frac{Degree 3}{Degree 3}$ .]

An improper rational function can be written as a sum of a polynomial & a proper rational function by dividing f(x) by g(x).

If we break any fraction into parts, then the fractions into which the original fraction is broken [Ex:  $\frac{4}{x-3}$  &  $\frac{-3}{x-2}$  are the partial fractions of  $\frac{x+1}{x^2-5x+6}$ ] up are called partial fractions.

# STEPS TO BREAK $\frac{f(X)}{g(X)}$ INTO PARTIAL FRACTION

- If  $\frac{f(X)}{g(X)}$  is not a proper function, then reduce it to a sum of a polynomial & a proper function by dividing the numerator by the denominator as stated above.
- * Resolve the denominator into simple factors (linear/quadratic) as far as possible.

The factors of the denominator g(x) may consist of the following forms:

## Case 1: When denominator has all distict linear factors [say (ax + b), (cx + d)]:

• For every distinct linear factor, there exists a single partial fraction of the form,  $\frac{A}{ax+b}$ ,  $\frac{B}{cx+d}$ where A & B are constants to be determined.

**Ex.** 
$$\int \frac{(3x+2)dx}{(x-2)(x-3)}$$

Ans: [Degree of numerator must be < degree of denominator; denominator contains nonrepeated linear factor]



Let 
$$\frac{(3x+2)}{(x-2)(x-3)} = \frac{A}{(x-2)} + \frac{B}{(x-3)} = \frac{A(x-3) + B(x-2)}{(x-2)(x-3)}$$

$$\Rightarrow$$
 3x + 2 = A (x - 3) + B (x - 2) -----(i)

⇒ We have to find the values of A & B; Thus we will put such value of 'x' which will make coefficient of either 'A' or 'B' = 0 & we can get the value of other term.

If we put x = 2 in (i); it will make 'B' = 0 & thus we can get 'A'.

$$\Rightarrow$$
 3.2 + 2 = A (2-3) + B (2-2)  $\Rightarrow$  A = -8.

If we put x = 3 in (i); it will make 'A' = 0 & thus we can get 'B'.

$$\Rightarrow$$
 3.3 + 2 = A (3-3) + B (3-2)  $\Rightarrow$  **B** = 11.

$$\int \frac{(3x+2)dx}{(x-2)(x-3)} = \int \frac{-8}{(x-2)} \cdot dx + \int \frac{11}{(x-3)} \cdot dx$$

$$\Rightarrow$$
 - 8.  $\log(x-2) + 11.\log(x-3) + c$ 

## Case 2: When denominator has repeated linear factors, (say ax + b, occurs n times):

• To every repetition n times, there corresponds sum of n partial fractions of form,  $\frac{A_1}{2N+h}$  +  $\frac{A_2}{(ax+b)^2}+...+\frac{A_n}{(ax+b)^n}$  where  $A_1$ ,  $A_2$  ......  $A_n$  are constants to be determined.

Ex: 
$$\int \frac{(3x+2)}{(x-2)^2 (x-3)} dx$$

**Ans:** Let 
$$\frac{(3x+2)dx}{(x-2)^2(x-3)} = \frac{A}{(x-2)} + \frac{B}{(x-2)^2} + \frac{C}{(x-3)} =$$

$$3x + 2 = A(x - 2)(x - 3) + B(x - 3) + C(x - 2)^{2}$$

Comparing coefficients of  $x^2$ , x and the constant terms of both sides, we find

$$A + C = 0$$
 -----(ii);  $-5A + B - 4C = 3$  -----(iii);  $-6A - 3B + 4C = 2$  -----(iii)

By (ii) + (iii) 
$$\Rightarrow$$
 A - 2B = 5 -----(iv)

By (i) 
$$-$$
 (iv)  $\Rightarrow$  2B + C = -5 -----(v)

From (iv) 
$$\Rightarrow$$
 A = 5 + 2B;

From (v) 
$$\Rightarrow$$
 C = -5 - 2B

From (ii) 
$$\Rightarrow$$
 -5 (5 + 2B) + B - 4 (-5 - 2B) = 3

$$\Rightarrow$$
 -25 -10B + B + 20 + 8B = 3

$$\Rightarrow$$
  $-$  B  $-$  5 = 3

$$\Rightarrow$$
 **A** = 5 - 16 = **- 11** from (iv)

Therefore  $\int \frac{(3x+2)dx}{(x-2)^2(x-3)}$  can be written as:

$$= \int \frac{-11}{(x-2)} \cdot dx + \frac{-8}{(x-2)^2} \cdot dx + \int \frac{11}{(x-3)} \cdot dx$$

$$= -11 \int \frac{dx}{(x-2)} - 8 \frac{dx}{(x-2)^2} + 11 \int \frac{dx}{(x-3)}$$

= -11.log (x-2) + 
$$\frac{8}{(x-2)}$$
 + 11.log (x - 3)

$$= 11 \log \frac{(x-3)}{(x-2)} + \frac{8}{(x-2)} + C$$

## Case 3: When denominator has a quadratic factors, [say ( $ax^2 + bx + c$ )]:

• To every quadratic factor, there corresponds a partial fraction of the form,  $\frac{Ax+B}{ax^2+bx+c}$  where A & B are constants to be determined.

**Ex:** 
$$\int \frac{(3x^2-2x+5)}{(x-1)^2(x^2+5)} dx$$







**Ans:** Let 
$$\frac{(3x^2-2x+5)}{(x-1)^2(x^2+5)} = \frac{A}{x-1} + \frac{Bx+C}{(X^2+5)}$$

Thus 
$$3x^2 - 2x + 5 = A(x^2 + 5) + (Bx + C)(x - 1)$$

Equating the coefficients of  $x^2$ , x and the constant terms from both sides we get,

$$A + B = 3 -----(i);$$

$$C - B = -2$$
 -----(ii)

$$A + B = 3 - (i);$$
  $C - B = -2 - (ii);$   $5A - C = 5 - (iii)$ 

From (i) + (ii): 
$$A + C = 1$$
 ----- (i

From (i) + (ii): 
$$A + C = 1$$
 -----(iv); From (iii) + (iv)  $6A = 6$  -----(v)

$$\Rightarrow A = 1$$

$$\Rightarrow$$
 B = 3 -1 = 2 &

$$\Rightarrow$$
 C = 0

Thus 
$$\int \frac{(3x^2-2x+5)}{(x-1)^2(x^2+5)} dx$$

$$=\int \frac{1}{x-1} dx + \frac{2x+0}{x^2+5} dx$$

$$= \log(x - 1) + \log(x^2 + 5)$$

$$= \log (x - 1)(x^2 + 5) + c$$

#### SUMMARY TABLE FOR PARTIAL FRACTION

Rational Form	$\frac{px+q}{(x-a)(x-b)}$	$\frac{px + q}{(x - a)^2}$	$\frac{px^2 + qx + r}{(x-a)(x^2 + bx + c)}$
Partial Form	$\frac{A}{(x-a)} + \frac{B}{(x-b)}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2}$	$\frac{A}{(x-a)} + \frac{Bx+c}{x^2 + bx+c}$

#### **SOME SOLVED EXAMPLES:**

**CQ4:**  $\int e^{\sqrt{x}} dx$ 

**Ans:** Let  $t = \sqrt{x}$ ; Differentiating both sides w.r.t  $\frac{dt}{dx} = \frac{1}{2\sqrt{x}} = \frac{1}{2t}$ ; dx = 2t.dt

$$\Rightarrow \int e^{\sqrt{x}}.dx$$

$$\Rightarrow \int e^t . 2t. dt.$$

$$\Rightarrow 2 \int (e^t.t).dt;$$

 $\Rightarrow$  2 \( \( (e^t.t).dt \); Apply u.v rule, u = 't' & v = 'e^t' \)

$$\Rightarrow 2[t.\int e^t - \int \frac{dt}{dt}.e^t]$$

$$\Rightarrow$$
 2[t. $e^t - e^t$ ] = 2[ $\sqrt{x}$ . $e^{\sqrt{x}} - e^{\sqrt{x}}$ ] + c.

CQ5: Find equation of the curve where slope at (x,y) is 9x and which passes through the origin.

**Ans:** We are given that slope is 9x & slope means  $\frac{dy}{dx}$ .

We know that integration of the derivative of a function is that function itself.

Thus 
$$\int \frac{dy}{dx} = Y \Rightarrow \frac{9x^2}{2} + C$$

Since it passes through the origin, C = 0; Thus the required equation is  $9x^2 = 2y$ .

## **DEFINITE INTEGRATION**

- Let a function be f(x).
- As 'x' changes from 'a' to 'b', value of the integral changes from f(a) to f(b). This is as  $\int_a^b f(x) = f(b) - f(a)$  'b' is called the upper limit & 'a' the lower limit of integration.
- No need to add "constant of integration" in definite integration.

## **How To Solve Definite Integration:**

• We shall first find out the integration & then find f(a) & f(b). Answer = f(b) - f(a).

**CQ6:** 
$$\int_{0}^{2} x^{5}.dx$$

**Ans:** Firstly, we will integrate the function.  $\int x^5 dx = \frac{x^6}{6}$ .

Now we will put the upper limit & lower limit respectively.

$$f(2) = \frac{x^6}{6} = \frac{2^6}{6} = \frac{64}{6} = \frac{32}{3}$$
 &  $f(0) = \frac{0^6}{6} = 0$ .

& f(0) = 
$$\frac{0^6}{6}$$
 = 0.

$$f(2) - f(0) = \frac{32}{3} - 0 = \frac{32}{3}$$
.

**CQ7:** 
$$\int_{1}^{2} (x^2 - 5x + 2).dx$$

Ans: Firstly, we will integrate the function.  $\int (x^2 - 5x + 2) dx = \frac{x^3}{3} - \frac{5x^2}{3} + 2x$ 

Now we will put the upper limit & lower limit respectively.

$$f(2) = \frac{(2)^3}{3} - \frac{5(2)^2}{2} + 2(2) = \frac{8}{3} - 10 + 4 = -\frac{10}{3}$$
 &  $f(1) = \frac{(1)^3}{3} - \frac{5(1)^2}{2} + 2(1) = \frac{1}{3} - \frac{5}{2} + 2 = -\frac{1}{6}$ 

& f(1) = 
$$\frac{(1)^3}{3}$$
 -  $\frac{5(1)^2}{2}$  + 2(1) =  $\frac{1}{3}$  -  $\frac{5}{2}$  + 2 =  $-\frac{1}{6}$ 

$$f(2) - f(1) = -\frac{10}{3} - \left[ -\frac{1}{6} \right] = -\frac{19}{6}$$

## IMPORTANT PROPERTIES OF DEFINITE INTEGRAL

1. 
$$\int_a^b f(x) dx = \int_a^b f(t) dt$$

2. 
$$\int_a^b f(x) dx = - \int_b^a f(x) dx$$

3. 
$$\int_a^b f(x). dx = \int_a^c f(x). dx + \int_c^b f(x). dx [\alpha < c < b].$$

4. 
$$\int_0^a f(x) dx = \int_0^a f(a - x) dx$$

5. 
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(a) dx$$

if 
$$f(-x) = f(x)$$

= 0 if 
$$f(-x) = -f(x)$$

6. When 
$$f(x) = f(\alpha + x)$$

6. When 
$$f(x) = f(\alpha + x)$$
  $\Rightarrow \int_0^{na} f(x) dx = n$ .  $\int_0^a f(x) dx$ .



**CQ8:** 
$$\int_0^2 \frac{x^2 dx}{x^2 + (2-x)^2}$$

**Ans:** Let 
$$I = \int_0^2 \frac{x^2 dx}{x^2 + (2-x)^2}$$

& by Property IV; 
$$I = \int_0^2 \frac{(2-x)^2 dx}{(2-x)^2 + x^2}$$

I + I = 2I = 
$$\int_0^2 \frac{x^2 dx}{x^2 + (2-x)^2}$$
 +  $\int_0^2 \frac{(2-x)^2 dx}{(2-x)^2 + x^2}$ 

$$2I = \int_0^2 \frac{x^2 + (2 - x)^2}{x^2 + (2 - x)^2} dx$$

$$2I = \int_0^2 dx = [x]_0^2 = 2 - 0 = 2$$

$$2I = 2 \& \text{ thus } I = 1.$$

**CQ9:** Evaluate 
$$\int_{-2}^{2} \frac{x^4 dx}{a^{10} - x^{10}} (\alpha > 2)$$

**Ans:** 
$$\frac{x^4 dx}{a^{10} - x^{10}} = \frac{x^4 dx}{(a^5)^2 - (x^5)^2}$$
 -----(i)

Let 
$$t = x^5$$
; Differentiating both sides w.r.t 't', we get  $\frac{dt}{dx} = 5x^4$   $\Rightarrow x^4 \cdot dx = \frac{dt}{5}$ 

= 
$$\frac{1}{5}\int \frac{dt}{(a^5)^2 - t^2}$$
 [Substituting the value of  $x^4$ . dx =  $\frac{dt}{5}$  in (i)]

$$= \frac{1}{5} \cdot \frac{1}{2a^5} \log \frac{a^5 + x^5}{a^5 - x^5} \qquad \text{[Using the formula } \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + \text{c]}$$

Therefore, 
$$\int_{-2}^{2} \frac{x^4 dx}{a^{10} - x^{10}}$$
 = 2  $\int_{0}^{2} \frac{x^4 dx}{a^{10} - x^{10}}$  [Using Property V]

$$= 2 \times \frac{1}{10a^5} \log \left[ \frac{a^5 + x^5}{a^5 - x^5} \right]_0^2 \qquad \qquad = \frac{1}{5a^5} \log \frac{a^5 + 32}{a^5 - 32}$$







# INDEFIITE INTEGRAL - QUESTION BANK

SN		8B. INDEFINITE	INTEGRALS CALCULU	IS	Ans
Q155	Integrate $(x + a)^n$				A
	$(\alpha) \frac{(x+a)^{n+1}}{n+1}$	(b) $\frac{(x+a)^n}{n}$	$(c) \frac{(x+a)^{n-1}}{n-l}$	(d) None	
Q156	Evaluate $\int 5 x^2 dx$ a	nd the answer will b	e		A
	$(a) \frac{5}{3}x^3 + k$	(b) $\frac{5x^3}{3}$	(c) $\frac{5}{x^{-3}}$	(d) None	
Q157	Integration of 3 - 2	2x - x4 will become _	·		С
	$(\alpha) - x^2 - \frac{x^5}{5}$	(b) $3x - x^2 - \frac{x^5}{5}$	(c) $3x - x^2 - \frac{x^5}{5} + k$	(d) None	
Q158	Evaluate result of	$\int (x^2 - 1)^2 dx$ is			A
	$(\alpha) \frac{x^5}{5} - \frac{2}{3}x^3 + x + k$	(b) $\frac{x^5}{5} - \frac{2}{3}x^3 + k$	(c) 2x	(d) None	
Q159	Find $\int \sqrt{x} dx$				A
	$(\alpha) \frac{2x^{\frac{3}{2}}}{3} + c$	(b) $\frac{2x}{3} + c$	(c) $-\frac{2x^{\frac{1}{2}}}{5} + c$	(d) $\frac{2}{x^2} + c$	
Q160	Find $\int \frac{1}{\sqrt{x}} dx$ .				С
	•••	(b) $\frac{\sqrt{x}}{2} + c$	(c) $2\sqrt{x} + c$	(d) $\frac{\sqrt{x}+c}{2}$	
Q161	Integrate, $x^{-1/2}$				A
	(a) $2x^{1/2}$	(b) $\frac{1}{2}x^{1/2}$	(c) $-\frac{3}{2}x^{-3/2}$	(d) None	
Q162	Find $\int x\sqrt{x} dx$ .				A
		(b) $\frac{3}{5}x^{\frac{3}{2}} + c$	(c) $\frac{2}{3}x^{\frac{1}{2}} + c$	(d) $x^2 + c$	
Q163	Evaluate $\int (x+\frac{1}{x})^2 dx$	!x			С
	$(a) \frac{x^3}{2} + 2x + c$		(c) $\frac{x^3}{3} + 2x -$	$\frac{1}{x} + c$ (d) $\frac{x^2}{3} - \frac{2}{x} + c$	
Q164	Evaluate $\int \sqrt{x} (x3 +$	-2x-3) dx.			В
	$(\alpha) \frac{x^{\frac{7}{2}}}{5} + \frac{3x^2}{7} - 8x + c$	(b) $\frac{2x^{\frac{9}{2}}}{9} + \frac{4x^{\frac{5}{2}}}{5} - 2x^{\frac{3}{2}} +$	$c(c) \frac{3x^{\frac{7}{2}}}{7} + \frac{x^{\frac{3}{2}}}{5} - 2x^{\frac{3}{2}} + c$	$c(d) \frac{2x^{\frac{5}{2}}}{7} - \frac{x^{\frac{3}{2}}}{9} - 2x^{\frac{5}{2}} + c$	
Q165	$\int (7x^2 - 3x + 8 - x^{-1})$	$\frac{1}{x^{2}} + x^{-1} + x^{-2} dx$			A
		$2x^{1/2} + \log x - x - 1$	(b) $\frac{3}{7}x^3 - \frac{2}{3}x^2 + 8x - \frac{2}{3}x^2 + \frac{2}{$	$\frac{1}{2}x^{1/2} + \log x + x^{-1}$	







	(c) $\frac{7}{3}x^3 + \frac{3}{2}x^2 + 8x$	$-2x^{1/2} + \log x + x - 1$	(d) None		
Q166	Integrate $\frac{(ax^3+bx^2)}{x}$	+ <i>cx</i> + <i>d</i> )			A
	$(\alpha) \frac{1}{3}ax^3 + \frac{1}{2}bx^2 + \alpha$	cx + dlog x	(b) $3ax^3 + 2bx^2 +$	cx + dlog x	
	(c) $2ax + b - dx^{-2}$		(d) None		
Q167	Integrate $\frac{(4x^6+3x^5-1)^2}{4x^6+3x^6-1}$	$+2x^4+x^3+x^2+1$			A
	(a) $x^4 + x^3 + x^2 + x^3$	$x + \log x - \frac{1}{2x^2}$	(b) $x^4 + x^3 + x^2 +$	$x + log x + (1/2)x^{-2}$	
	(c) $x^4 + x^3 + x^2 + x$	$x + \log x + 2x^{-2}$	(d) None		
Q168	Integrate 4x³ + 3x	x² - 2x + 5			A
	(a) $X^4 + X^3 - X^2 + 5X$	(b) $x^4 - x^3 + x^2 - 5x$	(c) $X^4 + X^3 + X^2 - 5$	(d) None	
Q169	The integral of px	$^{3} + qx^{2} + rk + \frac{w}{x}$ is	·		D
	$(a) px^2 + qx + r + k$	:	(b) $\frac{px^3}{3} + \frac{qx^2}{2} + rx$		
	$(c) 3px + 2q - \frac{w}{x^2}$		(d), $\frac{px^4}{4} + \frac{qx^3}{3} + wld$	ggx + rkx	
Q170	Integrate $(x^4 + 1)$	$/x^2$			A
	$(\alpha)\frac{x^3}{3} - \frac{1}{x}$	(b) $\frac{1}{x} - \frac{x^3}{3}$	(c) $\frac{x^3}{3} + \frac{1}{x}$	(d) None	
Q171	Integrate (4x + 5)	6			A
	$(\alpha) \frac{1}{128} (4x + 5)^7$	(b) $\frac{1}{7}(4x + 5)^7$	(c) $\frac{7}{(4x+5)^{-7}}$	(d) None	
Q172	$\int \frac{1}{\sqrt{1+x}}$ is equal to _	·			С
	(a) $\frac{2}{(1+x)^{1/2}}$	(b) $(1+x)^{1/2}$	(c) $2(1+x)^{1/2}$	(d) None	
Q173	$\int e^{ax} dx$				В
	$(a) e^x$	(b) $\frac{e^{ax}}{a}$	(c) logx	(d) $\frac{1}{e^{-ax}}$	
Q174	$\int e^{3x+5}  dx \text{ is equal}$	to			A
	$(a) \frac{e^{3x+5}}{3} + c$		(c) $\frac{-e^{3x+5}}{3} + c$	(d) None	
Q175	The value of $\int (6x^5)^{-1}$	$6 + 3e^{2x} + 5$ ) dx is equ	ual to		A
	(a) $x^6 + \frac{3}{2}e^{2x} + 5x$		(b) $30x^4 + 6e^{2x}$		
	(c) $x^6 + \frac{3}{2}e^{2x}$		(d) None		







Q176	₩ 1.6 -2x 1		A
4.70	Find Je wax.	*	•••
	(a) $-(1/3)e^{-3x} + c$ (b) $e^{-3x} + c$ (c) $(1/3)e^{-3x} + c$	$x + c$ (d) $(1/3)e^x + c$	
Q177	Evaluate $\int \frac{e^{3x} + e^{-3x}}{e^x} dx$ .		В
	(a) $\frac{e^{3x}}{3} - \frac{1}{2x} + c$ (b) $\frac{e^{2x}}{2} - \frac{1}{4e^{4x}} + c$ (c) $\frac{e^{3x}}{2} - \frac{1}{4e^{4x}} + c$	$\frac{e^{3x}}{2} + \frac{1}{3e^{2x}} + c$ (d) $-\frac{e^{2x}}{2} - \frac{1}{3e^{2x}} + c$	
Q178	Find $\int 3^x dx$ .		С
	(a) $\log_e 3 + c$ (b) $\frac{e^x}{3} \log 3 + c$ (c) $\frac{3^x}{\log_e 3} + c$	(d) $3^x + c$	
Q179	Integrate $\sqrt{x} - \frac{x}{2} + \frac{2}{\sqrt{x}}$		A
	(a) $\frac{2}{3}x\sqrt{x} - \frac{1}{4}x^2 + 4\sqrt{x} + c$ (b) $\frac{3}{2}\sqrt{x} - \frac{1}{4}$	$x^2 + \sqrt{x} + c$	
	(c) $\frac{2}{3}\sqrt{x} - \frac{1}{2}x^2 - \frac{1}{2}\sqrt{x} + c$ (d) None		
Q180	Integrate $\frac{3}{x} + 4x^2 - 3x + 8$		В
	(a) $3logx - \frac{4}{3}x^3 + \frac{3}{2}x^2 - 8x + c$ (b) $3logx + \frac{3}{2}x^2 - 8x + c$	$\frac{4}{3}x^3 - \frac{3}{2}x^2 + 8x + c$	
	(c) $3logx + \frac{4}{3}x^3 + \frac{3}{2}x^2 + 8x + c$ (d) None		
Q181	Integrate $\left(ax + \frac{b}{x^3} + \frac{c}{x^7}\right)x^2$		A
	(a) $\frac{1}{4}ax^4 + b\log x - \frac{1}{4}cx^{-4} + k$ (b) $4ax^4 + k$	$b \log x - 4cx^{-4} + k$	
	(c) $\frac{1}{4}ax^4 + b\log x + \frac{1}{4}cx^{-4} + k$ (d) None		
Q182	Integrate $[2^x + \frac{1}{2}e^{-x} + \frac{4}{x} - x^{-1/3}]$		A
	(a) $\frac{2^x}{\log 2} - \frac{1}{2}e^{-x} + 4Iogx - \frac{3}{2}x^{2/3} + k$ (b) $\frac{2^x}{\log 2} + \frac{1}{2}$	$e^{-x} + 4Iogx + \frac{3}{2}x^{2/3} + k$	
	(c) $\frac{2^x}{\log 2} - 2e^{-x} + 4 \log x - \frac{2}{3}x^{2/3} + k$ (d) None		
Q183	$\int \left(x^4 + \frac{3}{x}\right) dx \text{ is equal to } \underline{\hspace{1cm}}.$		A
	(a) $\frac{x^5}{5} + 3\log x $ (b) $\frac{1}{5}x^5 + 3\log x  + k$ (c) $\frac{1}{5}x^5 + k$	(d) None	
Q184	Evaluate the integral $\int \frac{(1-x)^3}{x} dx$		D
	(a) $log x  - 3x + \frac{3}{2}x^2 + k$ (b) $logx-2$	$+3x^2+k$	
	(c) $\log x + 3x^2 + k$ (d) $\log  x  - 1$	$-\frac{x^3}{3} - 3x + \frac{3x^2}{2} + k$	
L	ı		







Q185	Integrate $\frac{x^2}{(x^3+2)^{1/4}}$		A
	(a) $(4/9) (x^3 + 2)^{\frac{3}{4}} + k$	(b) $(9/4) (x^3 + 2)^{3/4} + k$	
	(c) $(3/4) (x^3 + 2)^{3/4} + k$	(d) None	
Q186	Evaluate $\int \frac{x^2}{x+1} dx$ .		С
	(a) $\frac{3x^2}{4} + x - log(x+1) + c$	(b) $\frac{x^2}{2} - x + log(2x - 1) + c$	
	(c) $\frac{x^2}{2} - x + log(x+1) + c$	(d) None	
Q187	Evaluate $\int \frac{x^3 + 5x^2 - 3}{(x+2)} dx.$		D
	(a) $\frac{x^3}{3} + \frac{2x^2}{5} + 4x + 6\log(x+3) + c$	(b) $\frac{x^3}{5} + \frac{7x^2}{2} - 5x - 9log(x - 8) + c$	
	(c) $\frac{x^3}{2} - \frac{7x^2}{9} - 6x - 9log(x - 4) + c$	(d) $\frac{x^3}{3} + \frac{3x^2}{2} - 6x + 9log(x+2) + c$	
Q188	$\int \frac{8x^2}{(x^3+2)^3} dx \text{ is equal to } \underline{\hspace{1cm}}.$		В
	(a) $(-4/3)(x^3+2)^2$ (b) $\frac{-4}{3(x^3+2)^2}+k$	(c) $\frac{4}{3}(x^3+2)^2+k$ (d) None	
Q189	Evaluate $\int x(x^2+4)^5 dx$		В
	(a) $(x^2 + 4)^6 + k$ (b) $\frac{1}{12}(x^2 + 4)^6 + k$	(c) $\frac{(x^2+4)^6}{k}$ (d) None	
Q190	Evaluate $\int \frac{x^3}{(x^2+1)^3} dx$ .		A
	(a) $\frac{1}{4} \cdot \frac{1}{(x^2+1)^2} - \frac{1}{2} \cdot \frac{1}{x^2+1} + c$	(b) $\frac{3}{4} \cdot \frac{1}{(x^3+1)^2} - \frac{3}{2} \cdot \frac{1}{x^2-1} + c$	
	(c) $\frac{5}{4} \cdot \frac{1}{(x^2-1)^2} - \frac{3}{2} \cdot \frac{1}{x^2+1} + c$	(d) $\frac{7}{4} \cdot \frac{1}{(x^2+1)^2} + \frac{1}{2} \cdot \frac{1}{x^2+1} + c$	
Q191	Evaluate $\int \frac{dx}{x(x^3+1)}$		D
	(a) $log(x/x + 1) + c$ (b) (1/3) $log \frac{x^3}{x^3 + 1} + c$	(c) (1/3) $\log \frac{x}{x^3+1} + c$ (d) $\frac{1}{3} \log \frac{x^3}{x^3-1} + c$	
Q192	Integrate $(x^2 + 2)^{-3}x^3$		A
	(a) $-\frac{2x^2+3}{2(x^2+2)^2}$ (b) $\frac{1}{2}\frac{(2x^2+3)}{(x^2+1)^2}$	(c) $-\frac{1}{4} \frac{(2x^2+1)}{x^2+1}$ (d) $\frac{1}{4} \frac{(2x^2+1)}{x^2+1}$	
Q193	Integrate $x(x^2 + 3)^{-2}$		A
	(a) $-\frac{1}{2(x^2+3)}$ (b) $\frac{1}{2(x^2+3)}$	(c) $\frac{2}{x^2+3}$ (d) None	
Q194	Evaluate $\int \frac{(2-x)e^x}{(1-x)^2} dx$ and the value is	·	A







	$(\alpha) \frac{e^x}{1-x} + k$	(b) $e^x + k$	(c) $1 - x + k$	(d) None	
Q195	Evaluate $\int \left(\frac{e^x - e^{-x}}{e^x + e^{-x}}\right)$	$dx$ and the value is _	·		В
	$(a) \log_e  e^x + e^{-x} $		(b) $log_e e^x + e^{-x}  +$	k	
	(c) $log_e e^x - e^{-x}  +$	k	(d) None		
Q196	Integrate $(x^3 + 2)^2$	$3x^2$			A
	$(a) \frac{1}{3} (x^3 + 2)^3 + c$	(b) $3(x^3+2)^3+c$	(c) $3x^2(x^3+2)^3+c$	(d) $9x^2(x^3+2)^3+c$	
Q197	Integrate $(x^3 + 2)^{1/2}$	$^{/2}x^{2}$			A
	$(\alpha)^{\frac{2}{9}}(x^3+2)^{3/2}+c$	(b) $\frac{2}{3}(x^3+2)^{3/2}+c$	(c) $\left(\frac{9}{2}\right)(x^3+2)^{3/2}$ +	- <i>c</i> (d) None	
Q198	The integral of $\frac{x^3}{x^2+1}$	is equal to			D
	(a) $\frac{1+2x^2}{4(x^2+1)^2} + c$	(b) $\frac{1-2x^2}{4(x^2+1)^2} + c$	(c) $\frac{-(1+2x^2)}{4(x^2+1)} + c$	(d) None	
Q199	Integrate $\frac{3x}{(x^2+1)^n}$				A
	(a) $\frac{3}{2} \frac{(x^2+l)^{1-n}}{1-n}$	(b) $\frac{3}{2} \frac{(x^2+l)^{n-1}}{1-n}$	(c) $\frac{2}{3} \frac{(x^2+l)^{1-n}}{1-n}$	(d) None	
Q200	$\int \frac{dx}{e^x+1}$ is equal to	·			A
	(a) $-\log (1 + e^{-x}) +$	$K$ (b) $(e^x + 1)^{-2} + K$	$(c) \frac{1}{1+e^x} + K$	(d) None	
Q201	$\int_0^5 \frac{x^2}{x^2 + (5 - x)^2} dx \text{ is equ}$	ual to			В
	(a) 5	(b) 5/2	(c) 1	(d) None	
Q202	If $f(x) = \sqrt{1 + x^2}$ th	en $\int f(x) dx$ is	·		В
	$(\alpha)^{\frac{2}{3}}(1+x^2)^{\frac{3}{2}}+k2/3$	$3(1+x^2)^{\frac{3}{2}} + k$	(b) $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}log$	$\left(x+\sqrt{x^2+1}\right)$	
	(c) $\frac{2}{3}x(1+x^2)^{\frac{3}{2}}+k$		(d) None		
Q203	Value of $\int \frac{dx}{16-9x^2}$				A
	$(\alpha) \frac{1}{24} log \left  \frac{4+3x}{4-3x} \right  + c$		(b) $\frac{16}{9} log \left  \frac{4+x}{4-x} \right  + c$		
	(c) $\frac{1}{4}log\left \frac{3x}{4}\right  + c$		(d) $log \left  \frac{4+3x}{4-3x} \right  + c$		
Q204	The integral of $\int \frac{a}{x^2}$	$\frac{dx}{-a^2}$ will be			A
	(a) $\frac{1}{2a}log\frac{(x-a)}{(x+a)}$	(b) $\frac{1}{2a} log \frac{(x+a)}{(x-a)}$	(c) $\frac{1}{2a} log \frac{x}{(x+a)}$	(d) None	







$\int \sqrt{x^2 + a^2}  dx \text{ is equal to } \underline{\hspace{1cm}}.$		A
(a) $\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log x^2+\sqrt{x^2+a^2} $	(b) $\frac{x}{2}\sqrt{x^2-a^2} + \frac{a^2}{2}\log x^2-\sqrt{x^2-a^2} $	
(c) $\frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\log x^2+\sqrt{x^2+a^2} $	(d) None	
Evaluate $\int \frac{(3x+2)dx}{(x-2)(x-3)}.$		A
(a) $-log(x-2) + 11log(x-3) + c$	(b) $log(x-2)(x-3) + c$	
(c) $log(3x + 2) + c$	(d) $-log(x-2) + log(x-3) + c$	
Evaluate $\int \frac{(3x+2)dx}{(x-2)^2(x-3)}$		A
(a) $11\log\frac{(x-3)}{(x-2)} + \frac{8}{(x-2)} + c$	(b) $log(x-2) + log(x-3) + c$	
(c) $\log \frac{(x-3)}{(x-2)} + \log(3x+2) + c$	$(d) \log(3x+2) + c$	
Evaluate $\int \frac{(3x^2-2x-5)}{(x-1)(x^2+5)} dx$ .		В
(a) $\log(3x^2 - 2x - 5) + c$	(b) $log(x^2 + 5)(x - 1) + c$	
(c) $\log(3x - 5) + c$	(d) $\log(x - 1)^2 + c$	
$\int \frac{xe^x}{(x+1)^2} dx$ is equal to		A
(a) $\frac{e^x}{x+1} + k$ (b) $\frac{e^x}{x} + k$	(c) $e^x + k$ (d) None	
Integrate $\frac{1}{x^2-a^2}$ is		С
(a) $log \left  \frac{x-a}{x+a} \right  + k$	(b) $log(x-a) - log(x+a)$	
(c) $\frac{1}{2a} log \left  \frac{x-a}{x+a} \right  + k$	$(d)\tfrac{1}{2}\log\left \tfrac{x+a}{x-a}\right +k$	
Evaluate $\int \frac{e^x}{e^{2x}-4} dx$		С
$(\alpha) \frac{3}{4} log \left( \frac{e^x + 2}{e^x - 2} \right) + c$	(b) $-\frac{5}{4}log\left(\frac{e^x-2}{e^x+2}\right)+c$	
(c) $\frac{1}{4} log \left( \frac{e^x - 2}{e^x + 2} \right) + c$	$(d) \frac{7}{4} log \left( \frac{e^x + 2}{e^x - 2} \right) + c$	
Evaluate $\int \frac{x+5}{(x+1)(x+2)^2} dx$		A
(a) $4 \log(x+1) - 4\log(x+2) + \frac{3}{x+2} + k4$	(b) $4log(x+2) - \frac{3}{x+2} + k$	
(c) $4 log (x + 1) - 4 log (x + 2)$	(d) None	
Evaluate $\int \frac{x^2-1}{x^4+x^2+1} dx$		В
	$(a) \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} log   x^2 + \sqrt{x^2 + a^2}  $ $(c) \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} log   x^2 + \sqrt{x^2 + a^2}  $ $Evaluate \int \frac{(3x+2)dx}{(x-2)(x-3)}.$ $(a) -log(x-2) + 11log(x-3) + c$ $(c) log(3x+2) + c$ $Evaluate \int \frac{(3x+2)dx}{(x-2)^2(x-3)}$ $(a) 11log \frac{(x-3)}{(x-2)} + \frac{8}{(x-2)} + c$ $(c) log \frac{(x-3)}{(x-2)} + log(3x+2) + c$ $Evaluate \int \frac{(3x^2-2x-5)}{(x-1)(x^2+5)} dx.$ $(a) log(3x^2-2x-5) + c$ $(b) log(3x-5) + c$ $\int \frac{xe^x}{(x+1)^2} dx \text{ is equal to } \underline{\hspace{0.5cm}}.$ $(a) \frac{e^x}{x+1} + k \qquad (b) \frac{e^x}{x} + k$ $Integrate \frac{1}{x^2-a^2} \text{ is } \underline{\hspace{0.5cm}}.$ $(a) log \left  \frac{x-a}{x+a} \right  + k$ $(c) \frac{1}{2a} log \left  \frac{x-a}{x+a} \right  + k$ $Evaluate \int \frac{e^x}{e^{2x}-4} dx$ $(a) \frac{3}{4} log \left( \frac{e^x+2}{e^x-2} \right) + c$ $(c) \frac{1}{4} log \left( \frac{e^x-2}{e^x+2} \right) + c$ $Evaluate \int \frac{x+5}{(x+1)(x+2)^2} dx$ $(a) 4 log(x+1) - 4 log(x+2) + \frac{3}{x+2} + k4$ $(c) 4 log(x+1) - 4 log(x+2)$	$(a) \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} log   x^2 + \sqrt{x^2 + a^2}   \qquad (b) \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} log   x^2 - \sqrt{x^2 - a^2}  $ $(c) \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} log   x^2 + \sqrt{x^2 + a^2}   \qquad (d) \text{ None}$ $Evaluate \int \frac{(3x+2)dx}{(x-2)(x-3)},$ $(a) -log(x-2) + 11log(x-3) + c \qquad (b) log(x-2)(x-3) + c$ $(c) log(3x+2) + c \qquad (d) -log(x-2) + log(x-3) + c$ $Evaluate \int \frac{(3x+2)dx}{(x-2)^2(x-3)},$ $(a) 11log(\frac{x-3}{(x-2)} + \frac{8}{(x-2)} + c \qquad (b) log(x-2) + log(x-3) + c$ $(c) \log(\frac{x-3}{(x-2)} + log(3x+2) + c \qquad (d) log(3x+2) + c$ $Evaluate \int \frac{(3x^2-2x-5)}{(x-2)^2} dx,$ $(a) \log(3x^2-2x-5) + c \qquad (b) \log(x^2+5)(x-1) + c$ $(c) \log(3x-5) + c \qquad (d) \log(x^2+5) + c$ $(c) \log(3x-5) + c \qquad (d) \log(x^2+5) + c$ $(a) \frac{e^x}{x+1} + k \qquad (b) \frac{e^x}{x} + k \qquad (c) e^x + k \qquad (d) \text{ None}$ $Integrate \frac{1}{x^2-a^2} \text{ is } \underline{\qquad \qquad }$ $(a) log(\frac{x-a}{x+a}) + k \qquad (b) log(x-a) - log(x+a)$ $(c) \frac{1}{2} log(\frac{x-a}{x+a}) + k \qquad (d) \frac{1}{2} log(\frac{x+a}{x-a}) + k$ $Evaluate \int \frac{e^x}{e^xx-4} dx$ $(a) \frac{3}{4} log(\frac{e^x+2}{e^xx-4}) + c \qquad (b) -\frac{5}{4} log(\frac{e^x-2}{e^xx-2}) + c$ $Evaluate \int \frac{x+5}{(x+1)(x+2)^2} dx$ $(a) 4 log(x+1) - 4 log(x+2) + \frac{3}{x+2} + k4 \qquad (b) 4 log(x+2) - \frac{3}{x+2} + k$ $(c) 4 log(x+1) - 4 log(x+2) \qquad (d) \text{ None}$





	(a) $\frac{1}{4} log \left  \frac{x^2 - x + 1}{x^2 + x + 1} \right $ (b) $\frac{1}{2}$	$\log\left \frac{x^2-x+1}{x^2+x+1}\right $	(c) $\frac{1}{3} log \left  \frac{x^2 - x + 1}{x^2 + x + 1} \right $	(d) $\frac{1}{3} log \left  \frac{x^2 + x + 1}{x^2 - x + 1} \right $	
Q214	Integrate $\frac{1}{r-r^3}$				A
	(a) $\frac{1}{2}log[x^2/(1-x^2)]$		(b) $\frac{1}{2}log[x^2/(1-x)^2]$		
	(c) $\frac{1}{2}log[x^2/(1+x)^2]$		(d) $\frac{1}{2}log[x^2/(1+x^2)]$		
Q215	The value of $\int \frac{dx}{x(x^2-1)}$ is eq	aual to	<u>-</u>		В
	<i>(W 1)</i>				
	(a) $\frac{1}{2} log \left(1 + \frac{1}{x^2}\right)$ (b) $\frac{1}{2}$	$\log\left(1-\frac{1}{x^2}\right)+k$	(c) $log\left(1-\frac{1}{x^2}\right)$	(d) None	
Q216	Evaluate the integral of	$\int x.e^x dx$			D
	(a) $e^x(x^2+1)+c$ (b) $e^x(x^2+1)+c$	$x^{x}(x+1)+c$	(c) $e^x(2x+1) + c$	(d) $e^x(x-1) + c$	
Q217	The value of $\int (5x.e^x + 10)$	dx is equal to	·		В
	(a) $5xe^x - 5e^x + 10x + c$		(b) $5xe^x + 5e^x + 10x$	x + c	
	(c) $xe^x - 5e^x + 10x + c$		(d) None		
Q218	Integrate logx				A
	(a) $x(\log x - 1)$ (b) $x$	(log x +1)	(c) log x -1	(d) logx + 1	
Q219	$\int \frac{\log(\log x)}{x} dx dx$ is	··			С
	(a) log(logx - 1) + k		(b) logx - 1 + k		
	(c) [log(log x - 1)]log x + k		(d) None		
Q220	$\int_{1}^{e} \frac{e^{x}(\times log_{e}x+1)}{x} dx = \underline{\qquad}$				В
	(a) $e^e - 1$ (b) $e^e$		(c) $e - 1$	(d) none	
Q221	$\int (log x)^2 x  dx \text{ is equal to } $	·			A
	(a) $\frac{x^2}{2}[(logx)^2 - logx + \frac{1}{2}]$		(b) $(\log x)^2 - Iogx + \frac{1}{2}$	+k	
	(c) $\frac{x^2}{2}[(logx)^2 + 1/2] + k$		(d) None		
Q222	Integrate x³logx				В
	(a) $x^4/16 + k$		(b) $x^4/16(4logx - 1)$	)+k	
	(c) $4logx - 1 + k$		(d) None	•	
Q223	Evaluate $\int x^3 e^x dx$				A
	(a) $(x^3 - 3x^2 + 6x - 6)e^x + 6x + $	- <i>c</i>	(b) $(x^3 + 3x^2)$	$(x^2+6x-6)e^x+c$	
	(c) $(x^3 - 3x^2 - 6x - 6)e^x + 6x - 6$		(d) $(x^3 + 3x^2 + 6x +$	$(6)e^x + c$	
					1







	T		
Q224	Evaluate $\int x \log x  dx$ .		C
	(a) $x \log x + c$ (b) $x \log x - \frac{x}{3} + c$	(c) $\frac{x^2}{2} log x - \frac{x^2}{4} + c$ (d) $\frac{1}{x log x} + c$	
Q225	Evaluate $\int x^2 e^{ax} dx$ .		A
	$(\alpha) \frac{x^2 e^{ax}}{a} - \frac{2xe^{ax}}{a^2} + \frac{2}{a^3} e^{ax} + c$	(b) $2xe^{ax} + c$	
	(c) $\frac{x^2}{a} - \frac{2}{a^2}e^{ax} + xe^x - \frac{x}{a} + c$	(d) $e^{ax} + c$	
Q226	$\int (log x)^2 dx$ and the results is		D
	$(a) x(log x)^2 - 2x log x + 2x$	(b) $x(log x)^2 - 2x$	
	(c) $2x \log x - 2x$	$(d) x(log x)^2 - 2x log x + 2x + k$	
Q227	$\int Iogx^2 dx$ is equal to		В
	(a) $x(log x - 1) + k$	(b) $2x(log x - 1) + k$	
	(c) 2(log x - 1) + k	(d) None	
Q228	Integrate $\frac{l}{xlogxlog(logx)}$		A
	(a) $log[log(logx)]$ (b) $log(log x)$	(c) $logx$ (d) $1/x$	
Q229	Integrate $\frac{1}{x(\log x)^2}$		A
	(a) $\frac{-1}{logx}$ (b) $\frac{1}{logx}$	(c) <i>Iogx</i> (d) None	
Q230	Integrate $x^2e^x$		A
	(a) $e^x(x^2 - 2x + 2)$ (b) $e^x(x^2 + 2x + 2)$	(c) $e^x(x+2)^2$ (d) None	
Q231	Integrate $x^2e^{3x}$		A
	$(\alpha) \frac{1}{3} (x^2 e^{3x}) - \frac{2}{9} (x e^{3x}) + \frac{2}{27} e^{3x}$	(b) $\frac{1}{3}(x^2e^{3x}) + \frac{2}{9}(xe^{3x}) + \frac{2}{27}e^{3x}$	
	$c) \frac{1}{3}(x^2e^{3x}) - \frac{1}{9}(xe^{3x}) + \frac{2}{27}e^{3x}$	(d) None	
Q232	Integrate x ⁿ log x		D
	(a) $\frac{x^{n+1}}{n+1} \left[ log x - \frac{1}{n+1} \right]$	(b) $\frac{x^{n-1}}{n-1} \left[ log x - \frac{1}{n-1} \right]$	
	(c) $\frac{x^{n+1}}{n+1} \left[ log x + \frac{1}{n+1} \right]$	(d) None	
0000	n11[ n11]	(d) Notice	Α.
Q233	Integrate $\frac{xe^x}{(x+1)^2}$		A
	(a) $\frac{e^x}{x+1}$ (b) $\frac{e^x}{(x+1)^2}$	(c) $\frac{xe^x}{x+1}$ (d) None	
Q234	Integrate xlog x		A
<u> </u>			







	$(a) \frac{1}{4}x^2 \log(x^2/e)$	(b) $\frac{1}{2}x^2 log(x^2/e)$	(c) $\frac{1}{4}x^2 \log(x/e)$	(d) None	
Q235	Integrate $\frac{e^{x}(1+x)}{(x+2)^2}$				A
	` ,	$(b) \frac{-e^x}{2+x}$	(c) $\frac{e^x}{2(2+x)}$	(d) None	
Q236	Evaluate $\int e^x (x^3 +$	$3x^2)dx$			С
	$(a) e^x + 3x + c$	(b) $e^{3x} + 3x + c$	(c) $e^x \cdot x^3 + c$	(d) $e^{3x} + 3x + x^3 + c$	
Q237	$\int \frac{\log x}{x} dx$ is equal to	o			В
	$(\alpha) \frac{1}{2} log x + k$	$(b) \frac{1}{2} (log x)^2 + k$	$(c)\frac{1}{2}x^2+k$	(d) None	
Q238	Integrate $e^{x} \frac{(1+x \log x)}{x}$	<i>g x</i> )			A
	(a) $e^x log x$	(b) $-e^x \log x$	(c) $e^x x^{-1}$	(d) None	
Q239	$\int \frac{\log(\log x)}{x} dx$ is equ	al to			С
	(a) $log(logx) - 1 +$	k	(b) log(log x)+k		
	(c) $\log x[\log(\log x)]$	-1] + k	(d) None		
Q240	The value of the in	tegral $\int \frac{1}{x \log x} dx$ is	·		С
	$(\alpha) \frac{1}{(X \log x)^2} + c$	(b) $\log (x \log x) + c$	(c) $\log(\log x) + c$	(d) None	
Q241	Evaluate $\int \frac{\log x}{(1+\log x)^2}$	$\frac{1}{2} dx$			С
	(a) $x \log (x+1) + c$	(b) $log(x + 1) + c$	$(c) \frac{x}{(\log x + 1)} + c$	(d) $log x + c$	
Q242	Evaluate $\int e^x \left(\frac{1}{x} - \frac{1}{x}\right)$	$\left(\frac{1}{2}\right)dx$			A
	$(a) \frac{e^x}{x} + c$	, ,	$(c) \frac{e^x}{x-x^2} + c$	(d) $e^x + c$	
Q243	Evaluate $\int e^x \frac{x}{(x+1)^2}$	dx			С
	$(\alpha) \frac{e^x}{(x+1)^2} + c$		(c) $\frac{e^x}{x+1} + c$	(d) $\frac{e^x}{(x+1)^{\frac{1}{2}}} + c$	
Q244	$\int (x-1)\frac{e^x}{x^2}  dx \text{ is equ}$	ual to			A
	$(\alpha)\frac{e^x}{x}+k$		(c) $\frac{-e^x}{x} + k$	(d) None	
Q245	$\int \frac{e^x(x\log+1)}{x} dx$ is equ	ual to			A
	(a) $e^x log x + k$		(c) $log x + k$	(d) None	







Q246	_ , , , 1				В
	Evaluate $\int \frac{1}{x\{6(\log x)^2+1\}}$	$\frac{1}{1-7\log x+2}dx$			
	(a) $log \left  \frac{2 log x-1}{3 log x-2} \right  + c$		(b) $log \left  \frac{2 log x+1}{3 log x+2} \right  + c$		
	$t(c) \log \left  \frac{3 \log x + 1}{2 \log x + 2} \right  + c$		(d) $log \left  \frac{3 log x+1}{2 log x+2} \right  + c$		
Q247	$\int \frac{(x^2+1)}{\sqrt{x^2+2}}$ is equal to _	·			D
	(a) $2\sqrt{x^2+2}+k$	(b) $\sqrt{x^2 + 2} + k$	(c) $(x^2 + 2)^{3/2} + k$	(d) None	
Q248	$\int (e^x + e^{-x})^2 (e^x - e^{-x})^2 (e$	dx) $dx$ is			A
	$(a) \frac{1}{3} (e^x + e^{-x})^3 + k$		(b) $\frac{1}{2}(e^x - e^{-x})^2 + k$		
	(c) $e^x + k$		(d) None		
Q249	$\int \frac{1/2}{0} \frac{1}{\sqrt{3-2x}} dx \text{ is equal}$	ıl to			С
	(a) 1	(b) $1 - \frac{\sqrt{3}}{2}$	(c) $\sqrt{3} - \sqrt{2}$	(d) $2-\sqrt{3}$	
Q250	$\int_0^1 x e^{x^2} dx$ :				D
	(a) 1	(b) e- 1	(c) $\frac{e}{2} - 1$	(d) $\frac{1}{2}$ (e—1)	
Q251	The equation of the 4x-3 at any point (x	· ·	es through the point	(1, 3) and has the slope	В
	(a) $y = 2x^3 - 3x + 4$	(b) $y = 2x^2 - 3x + 4$	(c) $x = 2y^2 - 3y + 4$	(d) None	
Q252	The equation of the (1 0) and f(x)=2x-1 is		y = f(x) if the curve p	passes through the point	A
	(a) $y = x^2 - x$	(b) $x = y^2 - y$	(c) $y = x^2$	(d) None	







# **DEFINITE INTEGRAL — QUESTION BANK**

SN		8C. DE	FINITE INTEGRA	AL CALCULUS	Ans	
Q253	$\int_0^a [f(x) + f(-x)] dx$	is equal to	·		В	
	(a) $\int_0^a 2 f(x) dx$ (b)	$\int_{-a}^{a} f(x) dx$	(c) 0	(d) $\int_{-a}^{a} -f(-x)dx$		
Q254	Evaluate $\int_{2}^{4} (3x - 2)^{4}$	$)^2 dx$ and the vo	alue is		A	
	(a) 104 (b)	100 (c) 1	10	(d) None		
Q255	Evaluate $\int_0^1 (2x^2 - x^2)^2 dx$	$(x^3)dx$ and the v	value is		В	
	(a) 4/3 (b)	5/12	(c) -4/3	(d) None		
Q256	$\int_0^2 3  x^2 dx$ is				С	
	(a) 7	(b) -8	(c) 8	(d) None		
Q257	Evaluate $\int_1^4 (2x + 5)^4$	dx and the val	ue is		С	
	(a) 3	(b) 10	(c) 30	(d) None		
Q258	The value of $\int_0^1 (2x)^2 dx$	+ 5)dx ls			В	
	(a) 54	(b) 6	(c) 19	(d) None		
Q259	$\int_0^4 \sqrt{3x+4}  dx  \operatorname{ls equ}$	ıal to			В	
	(a) 9/112	(b) 125/9	(c) 11/s	9 (d) None		
Q260	$\int_0^1 10  x^5 dx \text{ is equal}$	to			С	
	(a) $\frac{5}{3}x^6$ (b)	<u>3</u>	(c) $\frac{5}{3}$	(d) None		
Q261	Evaluate $\int_0^1 (2x^2 - x^2)^2$	$(x^3)dx$ and the v	value is		В	
	$(\alpha)^{\frac{4}{3}} + k$		(c) -4/	(d) None		
Q262	Find the Value of J	$\int_{0}^{3} x \sqrt{8 - x^2} dx$			С	
	(a) -1	3 (b) 1	(c) 0	(d) None		
Q263	Evaluate $\int_3^3  x^2 + 2x $	z-3 dx			C	
	(a) 1	(b) −6	(c) 4	(d) 2		
Q264	Evaluate $\int_{1}^{4} ( x-1 $	+  x - 2  +  x -	3 ) <i>dx</i>		C	
	(α) 17/2	(b) 15/2	(c) 19/	2 (d) 7		
Q265	Evaluate $\int_{0}^{5} \frac{\sqrt[4]{x+4}}{x}$	=dx			В	
	Evaluate $\int_0^5 \frac{\sqrt[4]{x+4}}{\sqrt[4]{x+4} + \sqrt[4]{9-x}} dx$					







	$(\alpha)^{\frac{7}{2}}$ (b)	$(5)\frac{5}{2}$	(c) $\frac{3}{2}$	(d) 2	
Q266	Evaluate $\int_{-3}^{3} (x^3 + x) dx$				A
		o) 3	(c) -3	(d) 1	
Q267	Evaluate $\int_2^4 (3x-2)^2 dx$	and the value is			A
	(a) 104 (b) 100	(c) 10	(d) None		
Q268	Evaluate $\int_0^1 x e^x dx$ and t	he value is			D
	_	) 10	(c) 10/9	(d) None	
Q269	Evaluate $\int_{1}^{4} (2x+5)dx$ a	nd the value is			С
			(c) 30	(d) None	
Q270	$\int_{1}^{2} \frac{2x}{1+x^{2}} dx$ is equal to				A
	$(\alpha) \frac{\log_e 5}{2} \qquad (b) \log_e 5$		_e 2/5 (d) No	ne	
Q271	$\int_0^2 \frac{x+2}{x+1} dx \text{ is } \underline{\qquad}.$				В
	$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx = 0$ (k)	$(2) 2 + log_a 3$	(c) <i>log_a</i> 3	(d) None	
Q272				,	С
	Evaluate $\int_{1}^{e^{2}} dx/x(1+ o )$			(d) None	
0279			(6) $\frac{1}{3}$	(d) None	A
Q273	$\int_0^{\infty} \sqrt{x} dx = 0$				
	$(\alpha) - \frac{48}{5}$ (b) 48/5	(c) 48	(d) No	ne	
Q274	The value of $\int_2^3 f(5-x)dx$	$dx - \int_2^3 f(x) dx \text{ is } \underline{\hspace{1cm}}$	·		В
		o) O	(c) -1	(d) None	
Q275	$\int_{1}^{2} x \log x dx \text{ is equal to } \underline{\ }$	·			O
	(a) 2 log2 (b	o) -3/4	(c) $2 \log 2 - 3/4$	(d) None	
Q276	Evaluate $\int_1^2 \frac{(x^2-1)}{x^2e^{x+1/x}} dx$ and	d value is			A
	(a) $e^2 \lfloor \sqrt{e-1} \rfloor$ (b) $e^2 \lfloor \sqrt{e} \rfloor$		(d) None		
Q277	The value of $\int_0^1 \frac{\sqrt{x}}{\sqrt{x} + \sqrt{1-x}} dx$	χ is			A
	,,	) 1	(c) 2	(d) 0	
Q278	Evaluate $\int_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7-x}} dx$				A
		, 5	(a) ³	(4) 2	
	$(a) \frac{7}{2} $ (b)	)) <del>-</del> 2	(c) $\frac{3}{2}$	(d) 2	







Q279	The value of $\int_2^3 \frac{\pi}{3}$	$\frac{c+3}{c+1}dx$			A
	(a) $1 + 2log \frac{4}{3}$	(b) 1—2 <i>Iog</i> (4/3)	(c) $1 + log \frac{3}{4}$	(d) None	
Q280	$\int_{2}^{e} I \circ g \times dx$ is eq	ual to			В
	2	(b) - (2 log2 - 2)	(c) 2 log2 — 1	(d) 0	
Q281	The value of $\int_0^1 z$	$x(1-x)^n dx$ is equal to	·		O
	(a) 0	(b) 1	$(c) \frac{1}{(n+1)(n+2)}$	(d) $(n+1)(n+2)$	
Q282	Evaluate $\int_{-3}^{3} (x^3)$	+ x)dx			A
	(a) 0	(b) 3	(c) -3	(d) 1	
Q283	Evaluate the va	lue of $\int_0^3 (3x^2 + 5x + 2) dx$			O
	(a) 55	(b) 57	(c) 55.5	(d) 56	
Q284	∫xe ^x dx with upp	per limit 1 and lower limit	0 is		С
	(a) -1	(b) 0	(c) 1	(d) ∞	
Q285	$\int_3^4 \frac{1}{25 - x^2} dx$				В
	(a) (3/4)log(1/5)	(b) (1/5)log(3/4)	(c) (1/5)log(4/3)	(d) (3/4)log5	
Q286	Integrate $\int_3^{11} (2$	$(x + 3)^{1/2} dx$			С
	(a) 33	(b) 100/3	(c) 98/3	(d) None	
Q287	If $\int_0^1 (3x^2 + 2x +$	k)dx = 0, find k.			С
	(a) 0	(b) −1	(c) -2	(d) 1	
Q288	If $\int_a^b x^3 dx = 0$ are	and if $\int_a^b x^2 dx = \frac{2}{3}$ , find a and	l b,		С
	(a) 0 and 1	(b) 1 and −1	(c) –1 and 1	(d) 0 and -1	
Q289	Evaluate $\int_{1}^{2} \frac{\log x}{x^{2}} dx$	lx			В
	(a) $\log(e^2/2)$	(b) (1/2) log(e/2)	(c) log ₂ e	(d) log 2 ^e	
Q290	Evaluate $\int_0^4 \frac{1}{x+\sqrt{x}}$	dx			С
	11. 411	b) log3 (c) 2 log3	(d) 2 loge		
	I				



