## INDEX - ERRORLESS MATHEMATICS

| SN | NAME OF THE CHAPTER |  | PAGE NO. | No. of MCQs |
| :---: | :---: | :---: | :---: | :---: |
| Chapter 1 | 1 A \& $1 B$ | Ratio and Proportion | 1-16 | 136 MCQs |
|  | 1C | Indices | 17-25 | 91 MCQs |
|  | 1D | Logapithms | 26-35 | 120 MCQs |
| Chapter 2 |  | Equations | 36-57 | 251 MCQs |
| Chapter 3 |  | Inequalities | 58-75 | 59 MCQs |
| Chapter 4 |  | Time Value of Money | 76-98 | 150 MCQs |
| Chapter 5 | 5A | Pepmutation | 99-121 | 156 MCQs |
|  | 5B | Combination | 122-134 | 114 MCQs |
| Chapter 6 | 6 A | Arithmetic Progression | 135-149 | 162 MCQs |
|  | 6B | Geometric Progression | 150-164 | 152 MCQs |
|  | 6 C | Special Series | 165-169 | 60 MCQs |
| Chapter 7 | 7 A | Sets | 170-191 | 110 MCQs |
|  | 7 B | Relations | 192-194 | 14 MCQs |
|  | 7 C | Functions | 195-202 | 65 MCQs |
| Chapter 8 | 8 A | Differential Calculus | 203-229 | 154 MCQs |
|  | 8B | Integral Calculus | 230-252 | 136 MCQs |

## Note from CA Pranav Chandak:

* Hello My Dear students, this book is more than sufficient to get good marks in Mathematics. All you need to do is solve this book atleast twice before the exams.
* Exam Day Chart Book is also available on my website www.ppanavchandak.com to help you in securing good marks in CA Foundation Mathematics.
* In case of any queries, feel free to contact me on 8888111134.
* Students are requested to Subscribe My YouTube Channel for Free Revision Videos. BEST BOOK FOR CA FOUNDATION

| STUDY PLANNER |  |  | REMSE किया ? ? |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SN | NAME OF THE CHAPTER |  | Fill the Date of Completion |  |  |
|  |  |  | Self Study (After Class) | 1 st <br> Revision | $2^{\text {nd }}$ <br> Revision |
| Chapter 1 | $1 \mathrm{~A} \& 1 \mathrm{~B}$ | Ratio and Proportion |  |  |  |
|  | 1 C | Indices |  |  |  |
|  | 1D | Logapithms |  |  |  |
| Chapter 2 |  | Equations |  |  |  |
| Chapter 3 |  | Inequalities |  |  |  |
| Chapter 4 |  | Time Value of Money |  |  |  |
| Chapter 5 | 5A | Pepmutation |  |  |  |
|  | 5B | Combination |  |  |  |
| Chapter 6 | 6 A | Arithmetic Progression |  |  |  |
|  | 6 B | Geometric Progression |  |  |  |
|  | 6 C | Special Series |  |  |  |
| Chapter 7 | 7 A | Sets |  |  |  |
|  | $7 B$ | Relations |  |  |  |
|  | 7 C | Functions |  |  |  |
| Chapter 8 | 8A | Differential Calculus |  |  |  |
|  | 8B | Integral Calculus |  |  |  |

Scan QR Code to connect with CA Pranav Chandak Sir:

| Youtube | Instgram | Telegram |
| :---: | :---: | :---: |
|  |  |  |

## CHAPTER 1A. RATIO

## INTRODUCTION

* A Ratio is a comparison of two or more quantities of the same kind (units) by division.
* If $a \& b$ are two quantities of same kind (same units), then $a / b$ is called ratio of $a$ to $b$.
* It is written as $a: b$
- PC Note: Quantities to be compared must be in same units or capable of being converted in same units.
CQ1: Ratio $\mathrm{b} / \mathrm{w} 150 \mathrm{gm} \& 2 \mathrm{~kg}=$ Ratio $\mathrm{b} / \mathrm{w} 150 \mathrm{gm} \& 2000 \mathrm{gm}=\frac{150}{2000}=\frac{3}{40}=\mathbf{3 : 4 0}$.
CQ2: Ratio b/w $25 \mathrm{mins} \& 45 \mathrm{sec}$. $=$ Ratio $b / \mathrm{w}(25 \times 60) \mathrm{sec} \& 45 \mathrm{sec} .=\frac{1500}{45}=\frac{100}{3}=100: 3$.


## CONGEPT 1: ANTECEDENT \& CONSEQUENT

* 'a' \& 'b' are called terms of the ratio.
* ' $a$ ' is called first term or antecedent \& 'b' is called second term or consequent.

CQ3. Find the ratio $\mathrm{b} / \mathrm{w} 3 \mathrm{~kg} \& 5 \mathrm{~kg}$.
Solution: ' 3 ' is the antecedent \& ' 5 ' is the consequent. Thus, Ratio $=\frac{\text { Antecedent }}{\text { Consequent }}=\frac{3}{5}$.
CQ4. Ratio of two quantities is $3: 4$. If antecedent is 15 , consequent is $\qquad$ - [Ans: 20]
(a) 16
(b) 60
(c) 22
(d) 20

## POINTS TO BE NOTED:

* The order of the terms in a ratio is important.
[ $E x: 3: 4$ is not same as 4:3].
* Ratio must be expressed in lowest form (simplest form). [Ex: 12:16 $=\frac{12}{16}=\frac{3 \times 4}{4 \times 4}=\frac{3}{4}=3: 4$ ]
* If both terms of a ratio are multiplied or divided by any same number (non-zero), ratio remains same.

CQ5: $3: 4$ is a patio. Now if we multiply both $3 \& 4$ by any non-zero number (say Ex. by 4), we will get a new ratio 12:16, which is same as $3: 4$.

* If original quantity increases or decreases in the ratio a:b, then New Quantity= Original Quantity $\times \frac{b}{a} \quad\left[\frac{b}{a}\right.$ is called Factor Multiplying Ratio] CQ6. Mr. PC weighs 56.7 kg . If he reduces his weight in the ratio $7: 6$, find his new weight.
Solution: Original weight of $M r$. $\mathrm{PC}=56.7 \mathrm{~kg}$; He reduces his weight in the ratio $7: 6$.
His new weight $=(56.7 \times 6) / 7=48.6 \mathrm{~kg}$.

Whatsapp: 8888111134

* Inverse Ratio of $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{a}$ and vice- versa.
* Product of the ratio $=1$.

CQ7. Ratio of two quantities is $5: 7$. If Consequent of its Inverse Ratio is 5 , Antecedent is:
(a) 5
(b) $\sqrt{5}$
(c) 7
(d) None

## CONCEPT 3: DUPLICATE RATIO

## [Multiplication of the Ratio with itself]

* A patio multiplied by itself is called its duplicate ratio.
- Duplicate ratio of $a: b=\frac{a}{b} \times \frac{a}{b}=a^{2}: b^{2}$

Ex: (i) Duplicate ratio of $2: 3=4: 9$;

## CONCEPT 4: SUB-DUPLICATE RATIO [Ulta of Duplicate Ratio]

* Sub-duplicate ratio of $\mathrm{a}: \mathrm{b}=\sqrt{a}: \sqrt{b}$
* Sub-duplicate ratio of $\boldsymbol{a}^{2}: \boldsymbol{b}^{2}=\boldsymbol{a}: \boldsymbol{b}$

Ex: (i) Sub-duplicate patio of $9: 25=\sqrt{9}: \sqrt{25}=\mathbf{3}: \mathbf{5}$

## CONCEPT 5: TRIPLICATE RATIO

[Ratio of Cubes of Terms]

- Triplicate ratio of $\boldsymbol{a}: \mathbf{b}=\boldsymbol{a}^{3}: \boldsymbol{b}^{3}$

Ex: (i) Triplicate ratio of $2: 3=\mathbf{8 : 2 7}$

CONGEPT 6: SUB-TRIPLICATE RATIO
[Ulta of Triplicate Ratio]

* Sub-triplicate ratio of $\mathbf{a}: \mathrm{b}=\sqrt[3]{a}: \sqrt[3]{b}$
* Sub-triplicate ratio of $\boldsymbol{a}^{3}: \boldsymbol{b}^{\mathbf{3}}=\boldsymbol{a}: \mathbf{b}$

Ex: (i) Sub-triplicate ratio of $8: 125=\sqrt[3]{8}: \sqrt[3]{125}=\mathbf{2 : 5}$.

## CONGEPT 7: COMPOUND RATIO

[Multiplication of Two Ratios]
Compound ratio of two patios $\mathrm{a}: \mathrm{b} \& \mathrm{c}: \mathrm{d}=\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}=\mathrm{ac}: \mathrm{bd}$.
Ex: (i) Compound ratio of $3: 4 \& 5: 7=\mathbf{1 5 :} 28$.
Ex: (ii) Compound patio of $2: 3,5: 7 \& 4: 9=40: 189$.

## CONTINUED RATIO

* Continued Ratio is the relation between three or more quantities of the same kind.
* The continued ratio of three similar quantities $a, b, c$ is written $a s a: b: c$.

CQ8. $A: B=2: 3 ; B: C=4: 5 ; \& C D=6: 7$, then $A: B: C: D$ is $\qquad$ .
(a) 16: 22: 30: 35
(b) $16: 24: 15: 35$
(c) 16: 24:30: 35
(d) 18: 24: 30: 35

CQ9. If $A: B=2: 3, B: C=4: 5, C: D=6: 7$ the $A: D$ is $\qquad$ .
(a) $35: 16$
(b) $16: 35$
(c) $2: 7$
(d) None of these.

## Space for PC Class Note:

## 1B. PROPORTION

## INTRODUCTION

* Equality of two ratios is called a proportion.
* Four quantities $a, b, c$, $d$ are said to be in proportion if $a: b=c: d(a: b: c: d)$.
* The quantities $a, b, c$, d are called terms of the proportion;
* $1^{\text {st }} \& 4^{\text {th }}$ terms are called Extremes; $2^{\text {nd }} \& 3^{\text {rd }}$ terms are called Means (middle terms).
* Ppoduct of Extremes $=$ Product of Means

If If $\frac{\mathbf{a}}{\mathbf{b}}=\frac{\mathrm{c}}{\mathrm{d}}$ then $\mathrm{ad}=\mathrm{bc}$. [Cross Product Rule]
Ex: If $\frac{3}{5}=\frac{6}{10}$ then LHS $=3 \times 10=30 \& R H S=6 \times 5=30$
PC NOTE: In a ratio $a: b$, both quantities must be in same unit but in proportion $a: b=c: d$, all 4 quantities need not be of the same type. First two quantities should be in same unit \& last two quantities should be in same unit.

Ex: Rs. 6: Rs. $8=12$ toffees: 16 toffees are in a proportion since $1^{\text {st }}$ two quantities are in same unit \& last two are in same unit.

## CONCEPT 1: CONTINUOUS PROPORTION [Same apply for more than 3 quantities]

* Three quantities $a, b, c$ (same units) are in continuous proportion if $a: b=b: c$.
${ }^{\prime} a$ ' $\rightarrow 1^{\text {st }}$ proportional; ' $b$ ' $\rightarrow$ Mean proportional bet ${ }^{\text {n }} a \& c ;{ }^{\circ} c$ ' $\rightarrow 3^{\text {rd }}$ ppoportional.
- If $\frac{a}{b}=\frac{b}{c}$, then $\mathrm{b}^{2}=\mathrm{ac} ; \mathrm{OR} \mathrm{b}=\sqrt{\mathrm{ac}}$.

CQ1. Find the value of $x$ if $\frac{10}{3}: x:: \frac{5}{2}: \frac{5}{4}$. [Ans: $\frac{5}{3}$ ]

CQ2. Find the fourth proportional to $\frac{2}{3}, \frac{3}{7}, 4$. [Ans: $\frac{18}{7}$ ]

CQ3. Find the third proportion to $2.4 \mathrm{~kg}, 9.6 \mathrm{~kg}$.
[Ans: 38.4 Kgs ]

CQ4. Find the mean proportion bet ${ }^{n} 1.25 \& 1.8$.
[Ans: 1.5]

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

CONCEPT 2: PROPERTIES OF PROPORTION $\rightarrow$ If $\mathrm{a}: \mathrm{b}=$ osd then

| 1 | Inveptendo | $b: a=d: c$ | $\text { Ex: If } \frac{3}{5}=\frac{6}{10} \text { then } \frac{5}{3}=\frac{10}{6}$ |
| :---: | :---: | :---: | :---: |
| 2 | Altepnendo | $a: c=b: d$ | $\text { Ex: If } \frac{3}{6}=\frac{5}{10} \text { then } \frac{3}{6}=\frac{5}{10}$ |
| 3 | Componendo | $\frac{a+b}{b}=\frac{c+d}{d}$ | Ex: If $\frac{3}{5}=\frac{6}{10}$ then $\frac{3+5}{5}=\frac{6+10}{10}$ [Check $\frac{8}{5}=\frac{16}{10} ; 8 \times 10=5 \times 16$ ] |
| 4 | Dividendo | $\frac{a-b}{b}=\frac{c-d}{d}$ | Ex: If $\frac{5}{3}=\frac{10}{6}$ then $\frac{5-3}{5}=\frac{10-6}{10}\left[\operatorname{Check} \frac{2}{5}=\frac{4}{10} ; 2 \times 10=5 \times 4\right]$ |
| 5 | Componendo \& Dividendo | $\frac{a+b}{a-b}=\frac{c+d}{c-d}$ | Ex: If $\frac{5}{3}=\frac{10}{6}$ then $\frac{5+3}{5-3}=\frac{10+6}{10-6}\left[\operatorname{Check} \frac{8}{2}=\frac{16}{4} ; 8 \times 4=2 \times 16\right]$ |
| 6 | Addendo <br> If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=\ldots .$, each of patios (Addendo) $=(\mathrm{a}+\mathrm{c}+\mathrm{e}+\ldots \ldots .):.(\mathrm{b}+\mathrm{d}+\mathrm{f}+\ldots$. <br> Ex: If $\frac{3}{5}=\frac{6}{10}=\frac{12}{20}=\frac{24}{40}=\ldots \ldots$, then it comes out as $\frac{3+6+12+24 \ldots \ldots \ldots}{5+10+20+40 \ldots \ldots \ldots}$ |  |  |
| 7 | Subtrahendo | $\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}$ | Ex: If $\frac{3}{5}=\frac{6}{10}=\frac{12}{20}=\frac{24}{40}$ then, $\frac{3}{5}-\frac{12}{20}=\frac{6}{10}-\frac{24}{40} \rightarrow 0$ |

## (Only Addendo and Subtrahendo are equal to the Original Ratio)

CQ5. If $a: b=c: d=2.5 ะ 1.5$, what are the values of (i) $a d=b c \&$ (ii) $a+c: b+d$ ?
Ans: (i) $\frac{a}{b}=\frac{c}{d}=\frac{5}{3}$; so, $a d=b c$, thus $a d$ : $b c=a d$ : $a d$ [Substituting $a d=b c$ ], Thus $a d$ : $b c=1: 1$.
(ii) $\frac{a}{b}=\frac{c}{d}=\frac{2.5}{1.5}$; Using the above given principle, we can say that $\frac{a+c}{b+d}=\frac{5}{3}$.

## CONCEPT 3: INVERSE PROPORTION

- If ' $a$ ' \& 'b' are related to each other such that an increase in 'b' results in propoptionate decrease in ' $a$ ', then ' $a$ ' \& b are said to be inversely related or in inverse proportion.
- This is expressed as $a \propto \frac{1}{b}$. [a is inversely proportional to b]
- When $a \propto \frac{1}{b}$, we can write $a=\frac{k}{b}$, where $k$ is the constant of probability.

PC Note: Inverse Proportion of $\mathbf{a}: \mathbf{b}$ is $\mathbf{b}: \mathbf{a}$.
[Ex: $5 / 4$ is in inverse proportion of 4/5].

Whatsapp: 8888111134

## POINTS TO BE NOTED

- If $a \propto b$ and $b \propto c$, then $a \propto c . \quad$ - If $a \propto b$, then $a x \propto b x$.
- If $\mathrm{a} \propto \mathrm{bc}$, then $\mathrm{b} \propto \frac{a}{c}$ and $\mathrm{c} \propto \frac{a}{b}$.

CQ6. $x$ varies inversely as $y^{2}$. Given that $y=2$ for $x=1$. Value of $x$ for $y=6$ will be $\qquad$ .
(a) 3
(b) 9
(c) $1 / 9$
(d) $-1 / 9$

## Space fop PC Class Note:

## RATIO \& PROPORTION - QUESTION BANK

| SN | CHAPTER 1A. RATIO |  | Ans |
| :---: | :---: | :---: | :---: |
| Q1 | Ratio exists only between quantities of $\qquad$ kind. <br> (a) same <br> (b) bigger <br> (c) smallep | (d) None | A |
| Q2 | A ratio is a $\qquad$ <br> (a) unit <br> (b) term <br> (c) number | (d) function | C |
| Q3 | The order of the terms in a ratio is important. <br> (a) True <br> (b) False <br> (c) Partly True | (d) None | A |
| Q4 | A ratio is expressed in $\qquad$ form. <br> (a) simplest <br> (b) complicated <br> (c) moderate | (d) functional | A |
| Q5 | Ratio has no unit. <br> (a) True <br> (b) Partly True <br> (c) False | (d) None | A |
| Q6 | If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$ then $\qquad$ <br> (a) $a b=c d$ <br> (b) $a c=b d$ <br> (c) $a d=b c$ | (d) $a b=a d$ | C |
| Q7 | $4^{2.5}: 2^{3}$ is same as $\qquad$ <br> (a) $4: 1$ <br> (b) $2: 1$ <br> (c) $16: 1$ | (d) $80: 1$ | A |
| Q8 | The ratio $3 / 2: 1 / 3: 1 / 8$ is same as $\qquad$ <br> (a) 36: 3: 8 <br> (b) $3: 8: 36$ <br> (c) $36: 8: 3$ | (d) $3: 36: 8$ | C |
| Q9 | If $A: B=2: 3, B: C=4: 5, C: D=6: 7$. the $A: D$ is $\qquad$ <br> (a) $35: 16$ <br> (b) $16: 35$ <br> (c) $2: 7$ | (d) None | B |
| Q10 | If $A: B=2: 3: B: C=4: 5$ and $C: D=6: 7$, then $A: B: C: D$ is $\qquad$ <br> (a) 16:22:30:35 <br> (b) $16: 24: 15: 35$ <br> (c) $16: 24: 30: 35$ | (d) $18: 24: 30: 35$ | C |
| Q11 | The inverse patio of $11: 15$ is $\qquad$ <br> (a) $15: 11$ <br> (b) $\sqrt{ } 11: \sqrt{ } 15$ <br> (c) $125: 225$ | (d) None | A |
| Q12 | In the ratio $11 / 3: 13 / 4$, antecedent is $\qquad$ <br> (a) $13 / 4$ <br> (b) $11 / 3$ <br> (c) Both (a) \& (b) | (d) None | B |
| Q13 | The Duplicate Ratio of $3: 4$ is $\qquad$ <br> (a) $\sqrt{ } 3: 2$ <br> (b) $4: 3$ <br> (c) $9: 16$ | (d) None | C |
| Q14 | The Sub Duplicate Ratio of 25: 36 is $\qquad$ <br> (a) 6:5 <br> (b) $36: 25$ <br> (c) $50: 72$ | (d) $5: 6$ | D |
| Q15 | If $p: q$ is the Sub Duplicate Ratio of $p-x^{2}: q-x^{2}$ then $x^{2}$ is $\qquad$ <br> (a) $\frac{p}{p+q}$ <br> (b) $\frac{q}{p+q}$ <br> (c) $\frac{p q}{p q}$ | (d) $\frac{p q}{p+q}$ | D |
| Q16 | If $2 s: 3 t$ is the Duplicate Ratio of $2 s-p: 3 t-p$ then $\qquad$ <br> (a) $p^{2}=6 s t$ <br> (b) $p=6 s t$ <br> (c) $2 p=3 s t$ | (d) None | A |
| Q17 | The Triplicate Ratio of $3: 2$ is |  | A |


|  | $\begin{array}{llll}\text { (a) } 27: 8 & \text { (b) } 6: 9 & \text { (c) } 3: 2 & \text { (d) } 8: 27\end{array}$ |  |
| :---: | :---: | :---: |
| Q18 | The Triplicate Ratio of $4: 5$ is $\qquad$ <br> (a) 125:64 <br> (b) $16: 25$ <br> (c) $64: 125$ <br> (d) $120: 46$ | C |
| Q19 | The Sub Triplicate Ratio of $8: 27$ is $\qquad$ <br> (a) $27: 8$ <br> (b) $24: 81$ <br> (c) $2: 3$ <br> (d) None | C |
| Q20 | If $(4 x+3):(9 x+10)$ is the Triplicate Ratio of $3: 4$, then the value of $x$ is $\qquad$ <br> (a) 9 <br> (b) 7 <br> (c) 6 <br> (d) 5 | C |
| Q21 | Ratio compounded of Duplicate Ratio of $\sqrt{ } 5: \sqrt{ } 6$ \& Triplicate Ratio of $3: 5$ is $\qquad$ <br> (a) $4: 75$ <br> (b) $2: 15$ <br> (c) $9: 50$ <br> (d) $3: 10$ | C |
| Q22 | The ratio compounded of Duplicate Ratio of 4: 5, Triplicate of 1:3, Sub Duplicate Ratio of 81: 256 and Sub Triplicate Ratio of 125: 512 <br> (a) $4: 512$ <br> (b) $3: 32$ <br> (c) $1: 12$ <br> (d) 1:120 | D |
| Q23 | If $5 x^{2}-13 x y+6 y^{2}=0$, then $x: y$ is $\qquad$ <br> (a) (2:1) only <br> (b) $(3: 5)$ or $(2: 1)$ <br> (c) $(5: 3)$ op $(1: 2)$ <br> (d) $(3: 5)$ | B |
| Q24 | If $2 A=3 B$ and $4 B=5 C$, then $A: C$ is $\qquad$ <br> (a) $4: 3$ <br> (b) $15: 8$ <br> (c) $8: 15$ <br> (d) $3: 4$ | B |
| Q25 | $P, Q$, and $R$ are three cities. Ratio of average temperature between $P \& Q$ is $11: 12$ and that between $P$ and $R$ is $9: 8$. Ratio between average temperature of $Q$ and $R$ is $\qquad$ <br> (a) $22: 27$ <br> (b) $27: 22$ <br> (c) $32: 33$ <br> (d) None | B |
| Q26 | A man divides his property so that his son's share to his wife's share and wife's share to his daughter's share are both in the ratio 3:1. If the daughter gets Rs.10,000 less than son, then total worth of his property is $\qquad$ <br> (a) Rs. 16,250 <br> (b) Rs. 8,250 <br> (c) Rs. 15,250 <br> (d) Rs.21,250 | A |
| Q27 | If $40 \%$ of a number is equal to $2 / 3^{\text {rd }}$ of another number, what is the ratio of first number to second number? <br> (a) $2: 5$ <br> (b) $3: 7$ <br> (c) $5: 3$ <br> (d) $7: 3$ | C |
| Q28 | Two numbers are respectively $30 \% \& 40 \%$ more than a third number. Ratio of the two numbers is $\qquad$ <br> (a) $3: 4$ <br> (b) $14: 14$ <br> (c) $13: 14$ <br> (d) $4: 3$ | C |
| Q29 | A recipe for 4 servings requires salt and pepper to be added in the ratio of $2: 3$. If the recipe is adjusted from 4 to 8 servings, what is the ratio of the salt and pepper that must now be added? <br> (a) $4: 3$ <br> (b) $2: 6$ <br> (c) $2: 3$ <br> (d) $3: 2$ | C |
| Q30 | The ages of two persons are in the ratio 5:7. 18 years ago their ages were in the ratio of 8:13 their present ages (in years) are $\qquad$ <br> (a) 50,70 <br> (b) 70,50 <br> (c) 40,56 <br> (d) None | A |
| Q31 | A bag contains Rs. 187 in the form of 1 rupee, 50 paise and 10 paise coins in the ratio $3: 4: 5$. Find the number of each type of coins. <br> (a) 102,136,170 <br> (b) $136,102,170$ <br> (c) 170,102,136 <br> (d) None | A |
| Q32 | Two numbers are in the ratio 2: 3 . If 4 be subtracted from each, they are in the ratio $3: 5$. | A |


|  | The numbers are $\qquad$ <br> (a) $(16,24)$ <br> (b) $(4,6)$ <br> (c) $(2,3)$ <br> (d) None |  |
| :---: | :---: | :---: |
| Q33 | What quantity must be added to the terms of the ratio $p+q: p-q$ to make it equal to ( $p+$ $q)^{2}:(p-q)^{2}$ ? <br> (a) $(q+p) / 2 p$ <br> (b) $(q-p) / 2 p$ <br> (c) $\left(q^{2}-p^{2}\right) / 2 p$ <br> (d) None | C |
| Q34 | The ratio between the speeds of two trains is $7: 8$. If $2^{\text {nd }}$ train runs 400 kms in 5 hours, speed of $1^{\text {stt }}$ train is $\qquad$ <br> (a) $10 \mathrm{~km} / \mathrm{hr}$ <br> (b) $50 \mathrm{~km} / \mathrm{hr}$ <br> (c) $71 \mathrm{~km} / \mathrm{hr}$ <br> (d) $70 \mathrm{~km} / \mathrm{hr}$ | D |
| Q35 | The angles of a triangle are in ratio 2:7:11. The angles are $\qquad$ <br> (a) $\left(20^{\circ}, 70^{\circ}, 90^{\circ}\right)$ <br> (b) $\left(30^{\circ}, 70^{\circ}, 80^{\circ}\right)$ <br> (c) $\left(18^{\circ}, 63^{\circ}, 99^{\circ}\right)$ <br> (d) None | C |
| Q36 | If $A, B$ and $C$ started a business by investing Rs.1,26,000, Rs. 84,000 and Rs.2,10,000. If at the end of the year profit is Rs. 2,42,000 then the share of each is $\qquad$ <br> (a) Rs.72,600, Rs.48,400, Rs.1,21,000 <br> (b) Rs. 48,400 , Rs.1,21,000, Rs. 72,600 <br> (c) Rs.72,000, Rs.49,000, Rs.1,21,000 <br> (d) Rs.48,000, Rs.1,21,400, Rs.72,600 | A |
| Q37 | The ratio of the number of boys to number of girls in a school of 1,200 Students is $7: 5$. If 20 boys are newly admitted $h$ the school, find how many new girls may be admitted so that the above ratio may change to 4: 3 . <br> (a) 40 <br> (b) 140 <br> (c) 60 <br> (d) 58 . | A |
| Q38 | Ratio of the number of boys to the number of girls in a school of 720 students is $3: 5$. If 18 new girls are admitted in the school, find how many new boys shall be admitted so that the ratio of the number of boys to the number of girls may change to 2:3. <br> (a) 40 <br> (b) 48 <br> (c) 42 <br> (d) 58. | C |
| Q39 | If a packet containing 12 glasses is dropped, patio of broken glasses to unbroken glasses cannot be $\qquad$ <br> (a) $3: 1$ <br> (b) $6: 1$ <br> (c) $4: 2$ <br> (d) $5: 7$ | B |
| Q40 | The ages of $A$ and $B$ are in the ratio 3:1. Fifteen years hence, the ratio will be $2: 1$. Their present ages are $\qquad$ <br> (a) 30 years, 10 years <br> (b) 45 years, 15 years <br> (c) 21 years, 7 years <br> (d) 60 years, 20 years | B |
| Q41 | The population of a bacteria culture doubles in number every 12 minutes. The rata of the number of bacteria at the end of 1 hour to the number of bacteria at the beginning of that hour is $\qquad$ <br> (a) $64: 1$ <br> (b) $60: 1$ <br> (c) $32: 1$ <br> (d) $16: 1$ | C |
| Q42 | Rs. 1,360 have been divided among $A, B, C$ such that $A$ gets (2/3) of what $B$ gets and $B$ gets $(1 / 4)$ of what C gets. Then B's share is $\qquad$ <br> (a) Rs. 120 <br> (b) Rs. 160 <br> (c) Rs. 240 <br> (d) Rs. 320 | C |
| Q43 | A sum of Rs. 53 is to be divided among $A, B, C$ such that $A$ gets Rs. 7 more than what $B$ gets and B gets Rs. 8 more than what C gets. The ratio of three shares is $\qquad$ <br> (a) $18: 25: 10$ <br> (b) $18: 10: 25$ <br> (c) $25: 18: 10$ <br> (d) None | C |
| Q44 | A \& B together have Rs. 1,210. If $\frac{4}{15}$ of A's amount is equal to $\frac{2}{5}$ of B's amount, how much does $B$ have? | B |


|  | (a) Rs. 460 | (b) Rs. 484 | (c) Rs. 550 | (d) Rs. 664 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q45 | Rs. 1,300 is is $\qquad$ <br> (a) Rs. 140 | mongst $\mathrm{p}, \mathrm{q}$ <br> (b) Rs. 160 | that $\frac{p \text { share }}{q \text { share }}=\frac{q}{r}$ <br> (c) Rs. 240 | $\frac{r \text { share }}{\text { ssare }}=\frac{2}{3}$. Then <br> (d) Rs. 320 | B |
| Q46 | Salaries of them respe <br> (a) $3: 3: 10$ | e in the ra at will be n <br> (b) $10: 11: 20$ | fincrements of f their salapies <br> (c) $23: 33: 60$ | $10 \%$ \& 20\% ar <br> (d) None | C |
| Q47 | The ratio of the gipls ar scholarship? <br> (a) 56 | ep of boys ship holder <br> (b) 70 | a school is $3: 2$ ercentage of <br> (c) 78 | of the boys dents does not <br> (d) 80 | C |
| Q48 | The profits whose term <br> (a) $280: 2$ | are to be dis 40 and the <br> (b) $16: 56$ | in a suitable $r$ of which is $2 / 7$ <br> (c) $80: 7$ | itable Ratio is <br> (d) $40: 14$ | B |
| Q49 | If $(a+b):(b$ <br> (a) 6 | $\text { a) }=6: 7: 8$ <br> (b) 7 | $+c)=14$, then <br> (c) 8 | ue of $c=$ $\qquad$ <br> (d) 14 | A |
| Q50 | If $a: b=3: 4$ <br> (a) $18: 25$ | of $(2 a+3 b)$ <br> (b) $8: 25$ | $)=$ $\qquad$ <br> (c) $17: 24$ | (d) None | A |
| Q51 | If $\frac{a}{3}=\frac{b}{4}=\frac{c}{7}$, <br> (a) 7 | $\underline{c}=$ $\qquad$ <br> (b) 2 | (c) $1 / 3$ | (d) $1 / 5$ | B |
| Q52 | If $x: y=2: 3$ <br> (a) $19: 3$ | y): $(3 x-y)=$ <br> (b) $16: 3$ | (c) $7: 2$ | (d) $7: 3$ | B |
| Q53 | If $P: Q=2: 3$ <br> (a) $71: 82$ | 5, then 5P <br> (b) $27: 28$ | $10 P X+4 Q Y=$ <br> (c) $17: 28$ | (d) None | C |
| Q54 | If $\frac{5 x-3 y}{5 y-3 x}=\frac{3}{4}$ <br> (a) $2: 9$ | (b) $7: 2$ | (c) $7: 9$ | (d) $27: 29$ | D |
| Q55 | $\text { If } \frac{a}{2}=\frac{b}{5}=\frac{c}{6}$ <br> (a) 13 | $\frac{c}{c}=$ $\qquad$ <br> (b) $\frac{13}{9}$ | (c) $\frac{13}{3}$ | (d) None | A |
| Q56 | If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=$ <br> (a) $k$ | $\frac{a+q c+r e}{+q d+r f}=$ <br> (b) $(p+q$ | (c) $\frac{1}{k}$ | (d) None | A |
| Q57 | If the value <br> (a) 3 | $\frac{x+b}{x b}$, when $x=$ <br> (b) 4 | (c) 1 | (d) 2 | D |
| Q58 | Two whole n <br> (a) $5: 7$ | hose sum is <br> (b) $3: 5$ | be in the ratio <br> (c) $3: 4$ | (d) $4: 5$ | C |
| Q59 | Ratio of two <br> (a) $(200,305)$ | is $7: 10$ and <br> (b) $(185,290)$ | rence is 105. T <br> (c) $(245,350)$ | bers are $\qquad$ <br> (d) $(350,240)$ | C |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q60 | Ratio of numbers is $1: 2: 3$ \& sum of their squares is 504 , then the numbers are $\qquad$ <br> (a) $6,12,18$ <br> (b) $3,6,9$ <br> (c) $4,8,12$ <br> (d) $5,10,15$ | A |
| :---: | :---: | :---: |
| Q61 | Three numbers which are in the patio of $3: 4: 5$ such that sum of their cubes is 1728 . <br> (a) $6,8,10$ <br> (b) $10,8,6$ <br> (c) $12,8,20$ <br> (d) None | A |
| Q62 | A person has assets worth Rs. 1,48,200. He wishes to divide it amongst his wife, son \& daughter in ratio 3:2:1 pespectively. From these assets, shape of his son will be $\qquad$ <br> (a) Rs. 74,100 <br> (b) Rs. 37,050 <br> (c) Rs. 49,400 <br> (d) Rs. 24,700 | C |
| Q63 | Daily earnings of two persons are in the ratio $4: 5$ and their daily expenses ape in the ratio 7:9. If each saves Rs. 50 per day, their daily incomes are $\qquad$ <br> (a) $(40,50)$ <br> (b) $(50,40)$ <br> (c) $(400,500)$ <br> (d) None | C |
| Q64 | A person on a tour has Rs. 9600 for his expense. But the tour was extended for another 16 days, so he has to cut down his daily expenses by Rs. 20 . The opiginal duration of the tour had been? <br> (a) 48 days <br> (b) 64 days <br> (c) 80 days <br> (d) 96 days | C |
| Q65 | A earns Rs. 150 in 12 hours; B ear ns Rs. 160 in 8 hours. Ratio of their earning is $\qquad$ <br> (a) $5: 8$ <br> (b) $15: 16$ <br> (c) $45: 32$ <br> (d) None | A |
| Q66 | Arun earns Rs. 80 in 7 hours $\&$ Varun eapns Rs. 90 in 12 hours. Ratio of their eapnings is $\qquad$ <br> (a) 32.21 <br> (b) $23: 12$ <br> (c) $8: 9$ <br> (d) None | A |
| Q67 | A bag contains 23 number of coins in the form of 1 rupee, 2 rupee and 5 rupee coins. The total sum of the coins is Rs. 43 . The ratio between 1 rupee and 2 rupees coins is $3: 2$. Then the number of 1 rupee coins <br> (a) 12 <br> (b) 8 <br> (c) 10 <br> (d) 16 | A |
| Q68 | Find in what patio will the total wages of the workers of a factory be increased op decreased if there be a reduction in the number of workers in the patio of $15: 11$ and an increment in theip wages in the patio of $22: 25$. <br> (a) Decrease in the ratio 6:5. <br> (b) Increase in the patio 6:5 <br> (c) Decrease in the ratio $3: 5$ <br> (d) Increase in the patio 3:5 | A |
| Q69 | Ratio in which the total wages of the workers of a factory get increased (or decreased), if there be a reduction of workers in the ratio $7: 5 \&$ an increase in their wages in the patio $2: 3$ is $\qquad$ <br> (a) $14: 15$ <br> (b) $15: 14$ <br> (c) $4: 1$ <br> (d) 1:4 | A |
| Q70 | $15\left(2 p^{2}-q^{2}\right)=7 p q$ where $p$, $q$ are positive then $p: q$ <br> (a) $5: 6$ <br> (b) $5: 7$ <br> (c) $3: 5$ <br> (d) 3.7 | A |
| Q71 | If $p^{x}=q, q^{y}=p, p^{z}=p^{6}$ then the value of $x . y . z$ is <br> (a) 0 <br> (b) 1 <br> (c) 3 <br> (d) 6 | D |
| Q72 | First, second \& third month salaries of a person are in the patio 2:4:5. The difference between the product of the salaries of first 2 months \& last 2 months is $4,80,00,000$. Find the salary of the second month <br> (a) Rs. 4,000 <br> (b) Rs. 6,000 <br> (c) Rs. 12,000 <br> (d) Rs. 8,000 | D |
| Q73 | The number which when subtracted from each of the terms of the ratio 19:31 reducing it to $1: 4$ is $\qquad$ . | A |


|  | (a) 15 (b) 5 | (c) 1 | (d) None |  |
| :---: | :---: | :---: | :---: | :---: |
| Q74 | If $2 x+3: 5 x-38$ is the duplicate patio <br> (a) 12 <br> (b) 14 | $\sqrt{5}: \sqrt{6}$ <br> (c) 16 | is $\qquad$ <br> (d) 18 | C |
| Q75 | The ratio compounded of $(a+b):(a-b)$ and <br> (a) $(a+b): 1$ <br> (b) $(a-b): 1$ | ${ }^{2}-b^{2}:$ <br> (c) $1: 1$ | (d) None | C |
| Q76 | The ratio of two numbers is $7: 10$ and the <br> (a) $(200,305)$ <br> (b) $(185,290)$ | differe <br> (c) $(2$ | numbers are <br> (d) 350,245 | C |
| Q77 | In a school, $10 \%$ of the boys are same boys to gipls? <br> (a) $3: 2$ <br> (b) $5: 2$ | mber <br> (c) $2: 1$ | irls. What is t <br> (d) $4: 3$ | B |
| Q78 | The sides of a triangle are in the patio the longest side is $\qquad$ <br> (a) 52 cm <br> (b) 48 cm | : $\frac{1}{4}$ and <br> (c) 32 | is 104 cm . Th <br> (d) 26 cm | B |
| Q79 | The ratio of the prices of two types of the first has increased by $10 \%$ and that becomes 11:20. Find the original prices <br> (a) 848 \& 1219 <br> (b) $748 \& 1319$ | was 1 <br> the se he two <br> (c) 94 | later when t , the ratio of <br> (d) None | A |
| Q80 | Rs. 4,850 have been divided among $A, B$, 15, Rs. 10 \& Rs. 25 pespectively, pemaind <br> (a) Rs.1,595 <br> (b) Rs.1,610 | such t are in (c) Rs | es be diminis Then B's shape <br> (d) Rs.1,600 | B |
| Q81 | A man spends Rs. 660 on tables and chai price of each chair being Rs. 20. If he patio of chairs to tables purchased? <br> (a) $4: 3$ <br> (b) $3: 4$ | s , the s the <br> (c) $2: 5$ | table being of tables, <br> (d) $2: 3$ | B |
| Q82 | If $\frac{x}{2 y}=\frac{3}{2}$, then the value of $\frac{2 x+y}{x-2 y}$ is $\qquad$ <br> (a) 5 <br> (b) 7 | (c) 2 | (d) 7.1 | B |
| Q83 | If $\frac{\sqrt{x+5}+\sqrt{x-16}}{\sqrt{x+5}-\sqrt{x-16}}=\frac{7}{3}$ then $x$ equals to <br> (a) 10 <br> (b) 20 | (c) 30 | (d) 40 | B |
| Q84 | If $\frac{a^{3}+3 a}{3 a^{2}+1}=\frac{91}{37}$ then ' $\alpha$ ' equals to $\qquad$ <br> (a) 8 <br> (b) 7 | (c) 6 | (d) None | B |


| SN | CHAPTER 1B. PROPORTION | Ans |
| :---: | :---: | :---: |
| Q85 | The mean proportional between $12 x^{2}$ and $27 y^{2}$ is $\qquad$ <br> (a) $18 x y$ <br> (b) $81 x y$ <br> (c) $8 x y$ <br> (d) None | A |
| Q86 | If $4, x$ and 9 are in proportional then ${ }^{6} x^{\prime}=$ $\qquad$ <br> (a) 36 <br> (b) 6.5 <br> (c) 6 <br> (d) 24 | C |
| Q87 | The fourth proportional to $4,6,8$ is $\qquad$ <br> (a) 12 <br> (b) 32 <br> (c) 48 <br> (d) None | A |
| Q88 | The third ppoportional to 12,18 is $\qquad$ <br> (a) 24 <br> (b) 27 <br> (c) 36 <br> (d) None | B |
| Q89 | If 50 is the third proportional to 8 and $X$, then the value of $X$ is $\qquad$ <br> (a) 20 <br> (b) 2 <br> (c) 10 <br> (d) 1 | A |
| Q90 | Mean proportion between 24 and 54 is $\qquad$ <br> (a) 33 <br> (b) 34 <br> (c) 35 <br> (d) 36 | D |
| Q91 | If ' $b$ ' is the mean proportional between $a \& c$, then $\qquad$ _. <br> (a) $b \times b=a c$ <br> (b) $b=(a+c) / 2$ <br> (c) $b=a+c$ <br> (d) $b=(a-c) / 2$ | A |
| Q92 | If $a: b=4: 1$ then $a+b / a=$ <br> (a) 1 <br> (b) $5 / 4$ <br> (c) $4 / 5$ <br> (d) None | B |
| Q93 | If $a: b=c: d=2.5: 1.5$, what are the values of $a d:$ be and $a+c: b+d$ ? <br> (a) 1:2 and 5: 3 <br> (b) 1:3 and 4:3 <br> (c) 1:1 and 5: 3 <br> (d) 2: 1 and 3: 5 | C |
| Q94 | What must be added to each number $10,18,22,38$ to make them proportional? <br> (a) 5 <br> (b) 2 <br> (c) 3 <br> (d) 9 | B |
| Q95 | The numbers $2.4,3.2,1.5,2$ are in proportion $\&$ their product of means is 4.8 , find the product of extremes. <br> (a) 4.8 <br> (b) 2.4 <br> (c) 8.4 <br> (d) None | A |
| Q96 | The third proportional to $\left(x^{2}-y^{2}\right)$ and $(x-y)$ is $\qquad$ <br> (a) $(x+y)$ <br> (b) $(x-y)$ <br> (c) $\frac{x+y}{x-y}$ <br> (d) $\frac{x-y}{x+y}$ | D |
| Q97 | The fourth proportional to $2 a, a^{3}, c$ is $\qquad$ <br> (a) ac/2 <br> (b) ac <br> (c) $2 / a c$ <br> (d) $a^{2} c / 2$ | D |
| Q98 | The fourth proportional to $(a+b),(a+b)^{2},(a-b)$ is $\qquad$ <br> (a) $(a+b)$ <br> (b) $\left(a^{2}-b^{2}\right)$ <br> (c) $(a-b)$ <br> (d) $(a+b)^{2}$ | B |
| Q99 | The numbers $14,16,35,42$ are not in proportion. The fourth term for which they will be in proportion is $\qquad$ <br> (a) 45 <br> (b) 40 <br> (c) 32 <br> (d) None | B |
| Q100 | What least number must be added to each one $6,14,18,38$ to make them in | B |


|  | proportion? <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) 4 |  |
| :---: | :---: | :---: |
| Q101 | Ratio of $3^{\text {rd }}$ ppoportional to 12 and $30 \&$ Mean ppoportional between 9 and 25 is $\qquad$ <br> (a) $2: 1$ <br> (b) $5: 1$ <br> (c) $7: 15$ <br> (d) $9: 14$ | B |
| Q102 | Ratio of $3^{\text {rd }}$ proportional to $4 \& 6$ and mean proportional between $9 \& 25$ is $\qquad$ <br> (a) $5: 3$ <br> (b) $3: 5$ <br> (c) $8: 5$ <br> (d) $5: 8$ | B |
| Q103 | If $b$ is mean proportion between $a$ and $c$, then the mean proportion $b^{n}\left(a^{2}+b^{2}\right) \&$ $\left(b^{2}+c^{2}\right)$ is $\qquad$ <br> (a) $b(a+c)$ <br> (b) $a(b+c)$ <br> (c) $c(a+b)$ <br> (d) abc | A |
| Q104 | The number which has the same ratio to 26 that 6 has to 13 is $\qquad$ <br> (a) 11 <br> (b) 10 <br> (c) 21 <br> (d) 12 | D |
| Q105 | If four numbers $1 / 2,1 / 3,1 / 5,1 / \mathrm{x}$ are proportional then x is $\qquad$ <br> (a) $6 / 5$ <br> (b) $5 / 6$ <br> (c) $15 / 2$ <br> (d) None | C |
| Q106 | Find two numbers such that their AM is 18 and third proportional to them is 144. <br> (a) 9, 36 <br> (b) 29,56 <br> (c) 18,72 <br> (d) None | D |
| Q107 | A Dealer mixes Tea costing Rs. 6.92 per kg with Tea costing Rs. 7.77 per kg and sells the mixture at Rs. 8.80 per kg and earns a profit $17.5 \%$ on his Sale Price. In what proportion does he mix them? <br> (a) $3: 2$ <br> (b) $4: 1$ <br> (c) $3: 4$ <br> (d) $5: 3$ | A |
| Q108 | 60 kg of alloy $A$ is mixed with 100 kg of alloy $B$. If alloy $A$ has lead $\&$ tin in ratio $3: 2$ \& alloy $B$ has tin \& copper in the ratio 1:4, then amount of tin in new alloy is $\qquad$ <br> (a) 36 kg <br> (b) 44 kg <br> (c) 53 kg <br> (d) 80 kg | B |
| Q109 | 70 kgs of Alloy I is mixed with 20 kg of Alloy II. If alloy I has Copper and Zinc in the ratio $3: 4$ and alloy II has Zinc \& tin in the ratio $2: 3$ then the amount of Zinc in the new alloy is $\qquad$ <br> (a) 48 kg <br> (b) 52 kg <br> (c) 42 kg <br> (d) None | A |
| Q110 | 15 litres of mixture contains $20 \%$ alcohol and the rest water. If 3 litres of water be mixed with it, \% of alcohol in the new mixture would be $\qquad$ <br> (a) 15\% <br> (b) $16 \frac{2}{3} \%$ <br> (c) $17 \%$ <br> (d) $18 \frac{1}{2} \%$ | B |
| Q111 | Three containers have their volumes in the ratio $3: 4: 5$. They are full of mixtures of milk \& water. The mixtures contain milk and water in the ratio of (4:1), (3:1) and $(5: 2)$ respectively. The contents of all these three containers are poured into a fourth container. The ratio of milk \& water in the fourth container is $\qquad$ <br> (a) $4: 1$ <br> (b) 151:48 <br> (c) $157: 53$ <br> (d) $5: 2$ | C |
| Q112 | What is the value of $\frac{P+Q}{P-Q}$ if $\frac{P}{Q}=7$ <br> (a) $4 / 3$ <br> (b) $2 / 3$ <br> (c) $2 / 6$ <br> (d) $7 / 8$ | A |


| Q113 | If $a: b=4: 1$ then $\sqrt{\frac{a}{b}}+\sqrt{\frac{b}{a}}$ is $\qquad$ <br> (a) 1 <br> (b) $5 / 2$ <br> (c) $4 / 5$ <br> (d) None | B |
| :---: | :---: | :---: |
| Q114 | An alloy is to contain copper and zinc in the ratio 9:4. The zinc required to be melted with 24 kg of copper is $\qquad$ <br> (a) 10.67 kg <br> (b) 10.33 kg <br> (c) $9 \frac{2}{3} \mathrm{~kg}$ <br> (d) 9 kg | A |
| Q115 | If 1 cup of milk is added to a 3 cup mixture that is $2 / 5$ flour $\& 3 / 5$ milk, what $\%$ of the 4 cup mixture is milk? <br> (a) $80 \%$ <br> (b) $75 \%$ <br> (c) $70 \%$ <br> (d) $65 \%$ | C |
| Q116 | Gold is 19 times as heavy as Water and Copper is 9 times as heavy as Water. In what ratio should these be mixed to get an alloy 15 times as heavy as water? <br> (a) 1:1 <br> (b) $2: 3$ <br> (c) $1: 2$ <br> (d) $3: 2$ | D |
| Q117 | 20 litres of a mixture contains milk \& water in the ratio $5: 3$. If 4 litres of this mixture be replaced by 4 litres of milk, ratio of milk to water in new mixture will be $\qquad$ <br> (a) $2: 1$ <br> (b) $7: 3$ <br> (c) $8: 3$ <br> (d) $4: 3$ | B |
| Q118 | If one type of pice of cost Rs. 13.84 is mixed with another type of pice of cost Rs. 15.54. the mixture is sold at Rs. 17.6 with a profit of $14.6 \%$ on selling price then in which proportion the two types of pice mixed? <br> (a) $3: 7$ <br> (b) $5: 7$ <br> (c) $7: 9$ <br> (d) None | A |
| Q119 | What must be added to each of the numbers $6,15,20$ and 43 to make them proportional? <br> (a) 5 <br> (b) 4 <br> (c) 3 <br> (d) 2 | C |
| Q120 | A fraction bears the same ratio to $\frac{1}{27}$ as $\frac{3}{7}$ does to $\frac{5}{9}$. The fraction is $\qquad$ <br> (a) $\frac{7}{45}$ <br> (b) $\frac{1}{35}$ <br> (c) $\frac{45}{7}$ <br> (d) $\frac{5}{21}$ | B |
| Q121 | If $a: b=c: d$ then $\qquad$ <br> (a) $a b=c d$ <br> (b) $a c=b d$ <br> (c) $a d=b c$ <br> (d) $a b=a d$ | C |
| Q122 | If $\frac{1}{x}: \frac{1}{6}=\frac{25}{6}: \frac{1}{x}$ then $x=$ $\qquad$ <br> (a) $5: 6$ <br> (b) $6: 5$ <br> (c) $5: 1$ <br> (d) $1: 5$ | B |
| Q123 | Find the value of $x$ if $10 / 3: x: 5 / 2: 5 / 4$. <br> (a) $5 / 3$ <br> (b) $3 / 5$ <br> (c) $2 / 5$ <br> (d) $1 / 5$ | A |
| Q124 | If $a: b=3: 4$, the value of $(2 a+3 b):(3 a+4 b)$ is $\qquad$ <br> (a) $18: 25$ <br> (b) $8: 25$ <br> (c) $17: 24$ <br> (d) None | A |
| Q125 | If $a: b=1: 2$, then $a+b: a-b=$ $\qquad$ <br> (a) -3 <br> (b) $1 / 2$ <br> (c) 2 <br> (d) $-1 / 3$ | A |
| Q126 | If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f}=k$ then $\frac{p a+q c+r e}{p b+q d+r f}=$ | A |



## 1C. INDICES

## INTRODUCTION

- Continued Product: When two or more numbers are multiplied, it is called continued Product. Each number is called a 'factor'.
Ex: $a \times b \times c \times d$. [Here $a, b, c, d$ are factors]
- If the factor gets repeated in a continued product, it is called a 'power'

Ex: $2 \times 2 \times 2=2^{3}$.

- 'Factor' which multiplies is called the "base" \& number of times it is multiplied is called the "powep" or the "index".
[Thus 'base' is ' 2 ' \& 'power' is ' 3 '].


## LAWS OF INDICES

| 1. $\boldsymbol{a}^{m} \times \mathbf{a}^{n}=a^{m+n}$ | $E x: 3^{2} \times 3^{1}=3^{2+1}=3^{3}$ |
| :---: | :---: |
| 2. $a^{m} \div a^{n}=a^{m-n}$ | Ex: $3^{2} / 3^{1}=3^{2-1}=3^{1}$ |
| 3. $\left(a^{m}\right)^{n}=a^{m n}$ | Ex: $\left(3^{2}\right)^{2}=3^{2 \times 2}=3^{4}$ |
| 4. $(a b)^{m}=a^{m} . b^{m}$ | $E x:(3.2)^{2}=3^{2} .2^{2}$ |
| 5. $(a / b)^{m}=a^{m} / b^{m}$ | Ex: $(4 / 2)^{2}=4^{2} / 2^{2}$ |
| 6. $a^{-m}=\frac{1}{a^{m}} \& \frac{1}{a^{-m}}=a^{m}$ | $E x: x^{-1 / 4}=1 / x^{1 / 4}$ |
| 7. $x^{a}=x^{b}$, then $a=b$ | Ex: $3^{x}=9 ; 3^{x}=3^{2} ; x=2$ |
| 8. $x^{a}=y^{a}$, then $x=y$ | Ex: $a^{3}=27 ; a^{3}=3{ }^{3} ; a=3$ |
| 9. $a^{0}=1$ | Ex: $5^{\circ}=1$ |

Whatsapp: 8888111134

## SOME IMPORTANT RESULTS

1) $a^{1 / n}=\sqrt[n]{a}$
2) $a^{m / n}=\left(a^{m}\right)^{1 / n}=\sqrt[n]{a^{m}}$
3) $\sqrt{a \sqrt{a \sqrt{a \sqrt{a \ldots \infty}}}}=\alpha$
4) $\sqrt{a \sqrt{a \sqrt{a \sqrt{a \ldots n \text { times }}}}}=a \frac{\left(2^{n}-1\right)}{2^{n}}$

CQ1. Find the value of $p$ from $(\sqrt{4})^{-6} \times(\sqrt{2})^{-4}=2^{p}$
(a) 16
(b) 8
(c) -8
(d) 4

CQ2. If $5^{(x+3)}=(25)^{(3 x-4)}$, then the value of $x$ is $\qquad$ .
(a) $\frac{5}{11}$
(b) $\frac{11}{5}$
(c) $\frac{11}{3}$
(d) $\frac{13}{5}$

CQ3. $\left(\frac{x^{a}}{x^{b}}\right)^{\left(a^{2}+a b+b^{2}\right)} \times\left(\frac{x^{b}}{x^{c}}\right)^{\left(b^{2}+b c+c^{2}\right)} \times\left(\frac{x^{c}}{x^{a}}\right)^{\left(c^{2}+c a+a^{2}\right)}$
(a) 1
(b) 0
(c) -1
(d) None of these

CQ4. The value of $\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a}$
(a) 1
(b) 0
(c) 2
(d) None of these

BASIC FORMULAE

| $(a+b)^{2}=a^{2}+2 a b+b^{2}$ | $a^{3}-b^{3}=(a-b)\left(a^{2}-a b+b^{2}\right)$ |
| :--- | :--- |
| $(a-b)^{2}=a^{2}-2 a b+b^{2}$ | $(a+b)^{3}=a^{3}+3 a b(a+b)+b^{3}$ |
| $a^{2}-b^{2}=(a+b)(a-b)$ | $(a-b)^{3}=a^{3}-3 a b(a-b)-b^{3}$ |
| $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ | $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$ |

## USEFUL RESULTS

1) If $(a+b+c)=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$
2) If $a^{1 / 3}+b^{1 / 3}+c^{1 / 3}=0$, then $(a+b+c)^{3}=27 a b c$
3) If $a^{x}=k$, then $a=k^{1 / x}$
4) If $a^{x}=b^{y}$, then $a=b^{y / x}$
5) If $a^{x}=b^{x}$, then $x=y(a \neq 1)$
6) If $a^{x}=b^{x}$, then $a=b(x \neq 0, a, b>0)$
7) If $a^{x} b^{y}=a^{m} b^{n}$, then $x=m \& y=n(a \neq b)$
8) If $x=a^{1 / 3}-a^{1 / 3}$, then $\left(x^{3}+3 x\right)=\left(a-a^{-1}\right)$
9) If $x=a^{1 / 3}+a^{1 / 3}$, then $\left(x^{3}+3 x\right)=\left(a+a^{-1}\right)$

## Space for PC Class Note:

## INDICES - QUESTION BANK

| SN | CHAPTER 1C. INDICES |  |  | Ans |
| :---: | :---: | :---: | :---: | :---: |
| Q137 | $4 x^{-1 / 4}$ is expressed as $\qquad$ <br> (a) $-4 x^{1 / 4}$ <br> (b) $x^{-1}$ | (c) $4 / x^{1 / 4}$ | (d) None | C |
| Q138 | The value of $2 \times(32)^{1 / 5}$ is $\qquad$ <br> (a) 2 <br> (b) 10 | $\text { (c) } 4$ | (d) None | C |
| Q139 | The value of $2 \times(256)^{-1 / 8}$ is $\qquad$ <br> (a) 1 <br> (b) 2 | (c) $1 / 2$ | (d) None | A |
| Q140 | $2^{1 / 2} \times 4^{3 / 4}=$ $\qquad$ <br> (a) A fraction <br> (b) An Integer | $\text { (c) } 1$ | (d) None | B |
| Q141 | Simplify $\left(8 a^{\frac{3}{2}} \div 27 x^{\frac{1}{2}}\right)^{\frac{2}{3}}$ <br> (a) $\frac{4 a}{9 x}$ <br> (b) $\frac{4 a}{9 x^{1 / 3}}$ | (c) $4 a$ | (d) $1 / 3$ | B |
| Q142 | The Value of $\frac{1}{2} \times(216)^{1 / 3}$ is $\qquad$ <br> (a) 2 <br> (b) 3 | (c) $2 \%$ | (d) None | B |
| Q143 | $(64 / 512)^{1 / 3}=$ $\qquad$ <br> (a) $1 / 2$ <br> (b) $1 / 4$ | (c)1/6 | (d) None | A |
| Q144 | If $2^{x}=\sqrt[3]{32}$ then $x=$ $\qquad$ <br> (a) 5 <br> (b) 3 | $\text { (c) } \frac{3}{5}$ | $\text { (d) } \frac{5}{3}$ | D |
| Q145 | The value of $\frac{1}{(216)^{-\frac{2}{3}}}+\frac{1}{(256)^{-\frac{3}{4}}}+\frac{1}{(32)^{-\frac{1}{5}}}$ <br> (a) 102 <br> (b) 105 | (c) 107 | (d) 109 | A |
| Q146 | The value of $\sqrt[3]{x^{12}} \times \sqrt[3]{x^{6}}$ is $\qquad$ <br> (a) $x^{7}$ <br> (b) $x^{6}$ | (c) 1 | (d) None | B |
| Q147 | The value of $\left[(10)^{150} \div(10)^{146}\right]$ is $\qquad$ <br> (a) 1000 <br> (b) 10000 | (c) 100000 | (d) $10^{6}$ | B |
| Q148 | The expression $\left(\frac{1}{216}\right)^{-\frac{2}{3}} \div\left(\frac{1}{27}\right)^{-4 / 3}$ in the <br> (a) $\frac{3}{4}$ <br> (b) $\frac{2}{3}$ | mplified fo $\text { (c) } \frac{4}{9}$ | (d) $\frac{1}{8}$ | C |
| Q149 | The value of $5^{1 / 4} \times(125)^{0.25}$ is $\qquad$ <br> (a) $\sqrt{5}$ <br> (b) 5 | (c) $\sqrt[3]{5}$ |  | B |
| Q150 | $\left(P^{3} Q^{4} Z^{6} / P^{4} R^{100}\right)^{0}=$ $\qquad$ <br> (a) 0 <br> (b) $2 / 3$ | $\text { (c) } 1$ | (d) None | C |
| Q151 | Which one is true? |  |  | A |


|  | (a) $x^{2 / 3}=\sqrt[3]{x^{2}}$ | (b) $x^{2 / 3}=\sqrt{x^{3}}$ | (c) $\mathrm{x}^{2 / 3}>\sqrt[x]{x}$ | (d) $x^{2 / 3}<\sqrt[x]{x^{2}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q152 | If $10^{x} / 10^{y}=100$ <br> (a) $y+2$ | $\text { n } x=$ $\qquad$ <br> (b) $y-2$ | (c) 2-y | (d) $2 y$ | A |
| Q153 | $\sqrt{a^{3 / 4} b^{2 / 3} c^{4}} \div \sqrt[3]{ }$ <br> (a) $a^{-13 / 8} b^{4 / 3}$ | (b) $a^{-1 / 8} b^{1 / 3}$ | (c) $a^{-8} b^{3}$ | (d) 1 | A |
| Q154 | Find the valu <br> (a) $2 / 3$ | $\left.{ }^{7+2 a}\right) /\left(3^{3 a+11}\right)$ fo <br> (b) $3 / 2$ | (c) 1 | (d) $-2 / 3$ | B |
| Q155 | The value of (a) $\frac{2}{9}$ | when $x=2$, <br> (b) 18 | (c) $2 \sqrt{3}$ | (d) None | B |
| Q156 | If $16 \times 8^{n+2}=$ <br> (a) $n+8$ | $\mathrm{n} m=$ $\qquad$ <br> (b) $2 n+10$ | (c) $3 n+2$ | (d) $3 n+10$ | D |
| Q157 | If $3^{x}-3^{x-1}=1$ <br> (a) 5 | the value of (b) 4 | (c) 6 | (d) None | A |
| Q158 | If $\frac{9^{n} \times 3^{5} \times 27^{3}}{3 \times(81)^{4}}=$ <br> (a) 0 | $n$ equals to <br> (b) 2 | (c) 3 | $\text { (d) } 4$ | C |
| Q159 | The value of <br> (a) $9 / 4$ | $-1 / 3 \times(32 / 243)$ <br> (b) $4 / 9$ | (c) $2 / 3$ | (d) None | A |
| Q160 | $\begin{aligned} & x^{a-b} \times x^{b-c} \times x^{-0} \\ & \text { (a) } x \end{aligned}$ | $\text { (b) } 1$ | (c) 0 | (d) None | B |
| Q161 | If the index <br> (a) 0 | power functio <br> (b) 1 | po, then th <br> (c) -1 | that function is <br> (d) $\infty$ | B |
| Q162 | If $49 \times 49 \times 40$ <br> (a) 4 | $=7^{n}$, then $n$ e <br> (b) 7 | (c) 8 | (d) 16 | C |
| Q163 | If $x^{-3} y^{-4} \times 8^{-1}$ <br> (a) $2 x y$ | mplifies to <br> (b) $\frac{x y}{2}$ | (c) $2 \frac{x}{y}$ | (d) None | D |
| Q164 | If $5^{(x+3)}=25$ <br> (a) $\frac{5}{11}$ | then the value <br> (b) $\frac{11}{5}$ | (c) $\frac{11}{3}$ | (d) $\frac{13}{5}$ | B |
| Q165 | If $\frac{(243)^{\frac{n}{5}} \times 3^{2 n+1}}{9^{n} \times 3^{n-1}}$ <br> (a) 1 | $\mathrm{en} \times$ equals to <br> (b) 3 | $\text { (c) } 9$ | (d) $3^{n}$ | C |
| Q166 | If $\frac{3}{4}=\frac{6}{x}=\frac{9}{y}$, th <br> (a) 4 | $y=$ $\qquad$ <br> (b) 8 | (c) 12 | (d) 20 | D |
| Q167 | If $4\left(2^{n}\right)=256$ | $\ldots$. |  |  | C |


|  | (a) 4 (b) 5 | (c) 6 | (d) None |  |
| :---: | :---: | :---: | :---: | :---: |
| Q168 | If $2^{x}-2^{x-1}=4$, then the value of $x^{x}=$ <br> (a) 26 <br> (b) 27 | (c) 28 | (d) 29 | B |
| Q169 | Solve for x if $\sqrt{x}^{\sqrt{x}}=256$ <br> (a) 2 <br> (b) 16 | $\text { (c) } 4$ | (d) $\sqrt{2}$ | B |
| Q170 | $3^{3 x-4} .2^{x+5}=3^{5} \cdot 2^{8}$. Find the value of $x$. <br> (a) 1 <br> (b) 3 | (c) $1 / 3$ | (d) 0 | B |
| Q171 | Solve for ' $z$ ' if $z^{-1}=3^{-1}-4^{-1}$ <br> (a) $5^{-1}$ <br> (b) 1 | (c) $1 / 12$ | (d) 12 | D |
| Q172 | On simplification $\frac{2^{x+3} \times 3^{2 x-y} \times 5^{x+y+3} \times 6^{y+1}}{6^{x+1} \times 10^{y+3} \times 15^{x}}$ <br> (a) -1 <br> (b) 0 | (c) 1 | (d) 10 | C |
| Q173 | What minimum integer value of $x$, exp <br> (a) 3 <br> (b) 4 | ssion ( $3^{\times} / 24$ <br> (c) 5 | be greater than 1 ? <br> (d) 6 | D |
| Q174 | Solve for " $x$ " if $\frac{25^{x+2}}{\sqrt{5}}=\left(\frac{1}{5}\right)^{x-7.5}$ <br> (a) $4 / 3$ <br> (b) $-4 / 3$ | (c) $3 / 4$ | (d) $-3 / 4$ | A |
| Q175 | Solve for 'b' if $12^{2 b+4}=3^{3 b} \times 4^{b+8}$ <br> (a) -1 <br> (b) 2 | (c) 4 | (d) -2 | C |
| Q176 | Solve for x if $x^{a^{3}} \cdot x^{b^{3}} \cdot x^{3 a b(a+b)}=\left(2^{5}\right)^{25}$ <br> (a) 2 <br> (b) 3 | nd $a+b=5$. <br> (c) 1 | $\text { (d) } 0$ | A |
| Q177 | If $\frac{9^{y} \cdot 3^{2}\left(3^{-y}\right)^{-1}-27^{y}}{3^{3 x} \cdot 2^{3}}=\frac{1}{27}$ then $x-y=$ $\qquad$ <br> (a) -1 <br> (b) 1 | (c) 0 | (d) None | B |
| Q178 | $\frac{2^{\mathrm{m}+1} \cdot 3^{2 \mathrm{~m}-\mathrm{n}} \cdot 5^{\mathrm{m}+\mathrm{n}} \cdot 6^{\mathrm{n}}}{6^{\mathrm{m}} \cdot 10^{\mathrm{n}+2} \cdot 15^{\mathrm{m}}}=$ $\qquad$ <br> (a) $\frac{1}{45}$ <br> (b) $\frac{1}{50}$ | $\text { (c) } \frac{1}{9}$ | (d) None | B |
| Q179 | $\left(\left(x^{m}\right)^{1-\frac{1}{m}}\right)^{\frac{1}{m-1}}=$ $\qquad$ <br> (a) $x$ <br> (b) 1 | (c) 0 | (d) None | A |
| Q180 | If $3^{a}=729$ and $2^{b}=1024$, then find th <br> (a) 1 <br> (b) 0 | value of $\frac{4 a+6 b}{6 b-3 a}$ <br> (c) 2 | (d) 3 | C |
| Q181 | Simplification of $\frac{2^{n+3}-10 \times 2^{n+1}}{2^{n+1} \times 6}$ gives <br> (a) -1 <br> (b) 1 | (c) 0 | (d) None | A |
| Q182 | The expression $\frac{3^{2 n+1}+3^{2 n-1}}{3^{2 n+3}-3^{2 n+2}}$ simplifies <br> (a) $\frac{5}{27}$ <br> (b) 1 | (c) $8^{3 / 7}$ | (d) None | A |


| Q183 | If $a^{x}=b ; b^{y}=c ; c^{z}=a$ then $x y z$ is $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) None | A |
| :---: | :---: | :---: |
| Q184 | The value of $\frac{\left(6^{4}\right)^{2}\left(8^{5}\right)^{2}\left(2^{2}\right)^{3}\left(3^{2}\right)^{2}}{\left(6^{2}\right)^{3}\left(8^{3}\right)^{4}\left(3^{3}\right)^{2}}$ is $\qquad$ <br> (a) $1 / 4$ <br> (b) 4 <br> (c) 2 <br> (d) None | B |
| Q185 | If $9^{2 x}=\frac{27}{3^{x+2}}$, then the value of $x$ is $\qquad$ <br> (a) $\frac{1}{2}$ <br> (b) $\frac{1}{5}$ <br> (c) 0 <br> (d) None | B |
| Q186 | If $x, y, z$ are all positive, find the value of $x y z$ if $z^{x}=x, z^{y}=y, y^{y}=x$ <br> (a) 4 <br> (b) $8 \sqrt{2}$ <br> (c) 1 <br> (d) 2 | B |
| Q187 | If $a^{m} \cdot a^{n}=a^{m n}$, then $m(n-2)+n(m-2)$ is $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d) None | C |
| Q188 | $\left[1-\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-\frac{1}{2}}=$ $\qquad$ <br> (a) $x$ <br> (b) $1 / x$ <br> (c) 1 <br> (d) None | A |
| Q189 | If $\frac{x}{b+c-a}=\frac{y}{c+a-b}=\frac{z}{a+b-c}$ then $(b-c) x+(c-a) y+(a-b) z$ is $\qquad$ . <br> (a) 1 <br> (b) 0 <br> (c) 5 <br> (d) None | B |
| Q190 | If $x+y=a$ and $x y=b$ then the value of $1 / x^{3}+1 / y^{3}$ is $\qquad$ <br> (a) $\left(a^{3}-3 a b\right) / b^{3}$ <br> (b) $\left(a^{3}-3 a\right) / b^{3}$ <br> (c) $\left(a^{3}-3\right) / b$ <br> (d) $\left(a^{3}-3\right) / b^{2}$ | A |
| Q191 | If $x^{1 / p}=y^{1 / q}=z^{1 / p}$ and $x y z=1$, then the value of $p+q+p$ is $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) $1 / 2$ <br> (d) None | B |
| Q192 | If $a^{p}=b^{q}=c^{p}$ and $b^{2}=a c$ the value of $q(p+p) / p p$ given by <br> (a) 1 <br> (b) -1 <br> (c) 2 <br> (d) None | C |
| Q193 | If $2^{\mathrm{x}}=3^{\mathrm{y}}=6^{-\mathrm{z}}, \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) 2 <br> (d) None | B |
| Q194 | If $(5.678)^{x}=(0.5678)^{y}=10^{z}$ then <br> (a) $\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=1$ <br> (b) $\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=0$ <br> (c) $\frac{1}{x}-\frac{1}{y}+\frac{1}{z}=-1$ <br> (d) None | B |
| Q195 | If $2^{a}=3^{b}=(12)^{\mathrm{c}}$ then $\frac{1}{c}-\frac{1}{b}-\frac{2}{a}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) 2 <br> (d) None | B |
| Q196 | If $2^{a}=4^{b}=8^{c}$ and $a b c=288$ then the value of $\frac{1}{2 a}+\frac{1}{4 b}+\frac{1}{8 c}$ is given by <br> (a) $\frac{1}{8}$ <br> (b) $-\frac{1}{8}$ <br> (c) $\frac{11}{96}$ <br> (d) $-\frac{11}{96}$ | C |
| Q197 | If $a^{p}=b^{q}=c^{p}=d^{s}$ and $a b=c d$ then the value of $\frac{1}{p}+\frac{1}{q}-\frac{1}{r}-\frac{1}{s}=$ $\qquad$ <br> (a) $\frac{1}{a}$ <br> (b) $\frac{1}{b}$ <br> (c) 0 <br> (d) 1 | C |
| Q198 | If $3^{a}=5^{b}=(75)^{c}$; then $a b-c(2 a+b)=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) 3 <br> (d) 5 | B |


| Q199 | Using $(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$ tick the coprect of these when $x=p^{1 / 3}-p^{-1 / 3}$ <br> (a) $x^{3}+3 x=p+1 / p$ <br> (b) $x^{3}+3 x=p-1 / p$ <br> (c) $x^{3}+3 x=p+1$ <br> (d) None | B |
| :---: | :---: | :---: |
| Q200 | If $x=3^{1 / 3}+3^{-1 / 3}$, then $3 x^{3}-9 x$ is $\qquad$ <br> (a) 15 <br> (b) 10 <br> (c) 12 <br> (d) None | B |
| Q201 | If $x=5^{1 / 3}+5^{-1 / 3}$ then the value of $5 x^{3}+15 x$ is $\qquad$ <br> (a) 25 <br> (b) 24 <br> (c) 27 <br> (d) 28 | B |
| Q202 | On simplification $\left[\frac{\frac{a}{a-b}}{\frac{a}{x a+b}} \div \frac{\frac{x-a}{b-a}}{x^{b+a}}\right]^{a+b}=$ $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d) None | D |
| Q203 | If $\mathrm{a}^{\mathrm{b}}=\mathrm{b}^{\mathrm{a}}$ then the value of $\left(\frac{a}{b}\right)^{\frac{a}{b}}-a^{\frac{a}{b}-1}=$ $\qquad$ . [Hint: Put $a=4 \& b=2]$ <br> (a) $a$ <br> (b) b <br> (c) 0 <br> (d) None | C |
| Q204 | If $x=\sqrt{2-\sqrt{2-\sqrt{2}} \ldots \propto} ; x=$ $\qquad$ <br> (a) -2 <br> (b) 1 <br> (c) 2 <br> (d) 0 | B |
| Q205 | If $p+q+p=0, x^{p^{2} q^{-1} r^{-1}} x^{p^{-1} q^{2} r^{-1}} x^{p^{-1} q^{-1} r^{2}}=$ $\qquad$ . [Hint: $\left.a+b+c=0 ; a^{3}+b^{3}+c^{3}=3 a b c\right]$ <br> (a) $x$ <br> (b) $x^{2}$ <br> (c) $x^{3}$ <br> (d) $x^{4}$ | C |
| Q206 | $\frac{1}{1+x^{(b-a)}+x^{(c-a)}}+\frac{1}{1+x^{(a-b)}+x^{(c-b)}}+\frac{1}{1+x^{(b-c)}+x^{(a-c)}}=$ $\qquad$ <br> (a) $x^{(a-b-c)}$ <br> (b) 1 <br> (c) 0 <br> (d) None | B |
| Q207 | $\left(x^{\frac{b+c}{c-a}}\right)^{\frac{1}{a-b}} \times\left(x^{\frac{c+a}{a-b}}\right)^{\frac{1}{b-c}} \times\left(x^{\frac{a+b}{b-c}}\right)^{\frac{1}{c-a}}=$ $\qquad$ <br> (a) 1 <br> (b) 3 <br> (c) -1 <br> (d) 0 | A |
| Q208 | Product of $x^{2^{n-1}}+y^{2^{n-1}}$ and $x^{2^{n-1}}-y^{2^{n-1}}=\quad\left[\right.$ Hint: Use $\left.(a-b)(a+b)=a^{2}-b^{2}\right]$ <br> (a) $x^{2^{n}}-y^{2^{n}}$ <br> (b) $x^{2}-y^{2}$ <br> (c) $x^{a}-y^{b}$ <br> (d) None | A |
| Q209 | If $a^{m}=b^{h} \times a^{n}=b^{k} \times a^{p}$, find the relationship of 'a' among $h, k, m, n$ and $p$ only. <br> [Hint: Put $a=4, b=2, m=5, n=2, k=4, h=6, p=3$ ] <br> (a) $m=\sqrt[4]{h n p k}$ <br> (b) $h(m-p)=k(m-n)$ <br> (c) $m=\frac{h n}{k p}$ <br> (d) $m(h-k)=p(n-p)$ | B |
| Q210 | $\left(\frac{x^{b}}{x^{c}}\right)^{b+c-a} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a-b} \times\left(\frac{x^{a}}{x^{b}}\right)^{a+b-c}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) -1 <br> (d) None | A |
| Q211 | $\left(\frac{x^{a}}{x^{-b}}\right)^{\left(a^{2}-a b+b^{2}\right)} \times\left(\frac{x^{b}}{x^{-c}}\right)^{\left(b^{2}-b c+c^{2}\right)} \times\left(\frac{x^{c}}{x^{-a}}\right)^{\left(c^{2}-c a+a^{2}\right)}$ equals to $\qquad$ <br> (a) 1 <br> (b) $x^{-2\left(a^{2}+b^{2}+c^{2}\right)}$ <br> (c) $x^{2\left(a^{3}+b^{3}+c^{3}\right)}$ <br> (d) $x^{-2\left(a^{3}+b^{3}+c^{3}\right)}$ | C |
| Q212 | If $x^{b} y=2 x-3 y^{2}$, then find $(1 / 2)^{b} \times \frac{1}{\sqrt{3}}$ <br> [Hint: Put $x=2 \& y=1]$ <br> (a) 1 <br> (b) 2 <br> (c) 0 <br> (d) -1 | C |


| Q213 | $\sqrt[(a+b)]{\frac{x^{a^{2}}}{x^{b^{2}}}} \times \sqrt[(b+c)]{\frac{x^{b^{2}}}{x^{c^{2}}}} \times \sqrt[(c+a)]{\frac{x^{c^{2}}}{x^{a^{2}}}}=$ $\qquad$ <br> (a) 1 <br> (b) O <br> (c) -1 <br> (d) None | A |
| :---: | :---: | :---: |
| Q214 | $\cdot\left(\frac{x^{b}}{x^{c}}\right)^{1 / b c} \times\left(\frac{x^{c}}{x^{a}}\right)^{1 / c a} \times\left(\frac{x^{a}}{x^{b}}\right)^{1 / a b}$ equals to $\qquad$ <br> (a) -1 <br> (b) 0 <br> (c) 1 <br> (d) None | C |
| Q215 | The value of $\frac{\left(x^{a+b}\right)^{2} \cdot\left(x^{b+c}\right)^{2} \cdot\left(x^{c+a}\right)^{2}}{\left(x^{a} x^{b} x^{c}\right)^{4}}$ is $\qquad$ <br> (a) -1 <br> (b) 1 <br> (c) 0 <br> (d) $x$ | B |
| Q216 | If $x=5+2 \sqrt{ } 6$, then $\frac{(x-1)}{\sqrt{x}}$ is equal to $\qquad$ <br> (a) $\sqrt{ } 2$ <br> (b) $2 \sqrt{ } 2$ <br> (c) $\sqrt{ } 3$ <br> (d) $2 \sqrt{ } 3$ | B |
| Q217 | $\left\{(x+y)^{2 / 3}(x-y)^{3 / 2} / \sqrt{x+y} \times \sqrt{(x-y)^{3}}\right\}^{6}$ equals $\qquad$ <br> (a) 1 <br> (b) $(x+y)^{2}$ <br> (c) $(x-y)$ <br> (d) $(x+y)$ | D |
| Q218 | If $a=x y^{m-1} ; b=x y^{n-1} ; c=x y^{p-1}$, then $a^{n-p} \times b^{p-m} \times c^{m-n}=$ $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d) None | A |
| Q219 | $1 /\left(1+a^{m-n}+a^{m-p}\right)+1 /\left(1+a^{n-m}+a^{n-p}\right)+1 /\left(1+a^{p-m}+a^{p-n}\right)$ is equal to <br> (a) 0 <br> (b) a <br> (c) 1 <br> (d) $1 / \mathrm{a}$ | C |
| Q220 | The value of $\left(\frac{x^{a}}{x^{b}}\right)^{a+b} \times\left(\frac{\frac{x}{}_{b}^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) 2 <br> (d) None | A |
| Q221 | $\left(\frac{x^{\mathrm{a}}}{\mathrm{x}^{\mathrm{b}}}\right)^{\left(\mathrm{a}^{2}+a b+b^{2}\right) \times\left(\frac{\mathrm{xb}}{\mathrm{x}^{\mathrm{c}}}\right)}\left(\mathrm{b}^{2}+\mathrm{bc}+\mathrm{c}^{2}\right) \times\left(\frac{\mathrm{x}^{\mathrm{c}}}{\mathrm{x}^{\mathrm{a}}}\right)^{\left(\mathrm{c}^{2}+c a+a^{2}\right)}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) -1 <br> (d) None | A |
| Q222 | If $a=x^{q+p} \cdot y^{b}, b=x^{p+b} \cdot y^{q}, c=x^{p+q} \cdot y^{p}$, then $a^{q-p} \times b^{p-q} \times c^{b-q}=$ $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) 2 | B |
| Q223 | If $x y^{p-1}=a, z y^{q-1}=b$, and $x y^{p-1}=c$ then $a^{q-p} b^{p-p} c^{p-q}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) $p+q+p-1$ <br> (d) None | A |
| Q224 | $\left[\frac{x^{a b}}{x^{a^{2}+b^{2}}}\right]^{a+b} \times\left[\frac{x^{b c}}{x^{b^{2}+c^{2}}}\right]^{b+c} \times\left[\frac{x^{c a}}{x^{c^{2}+a^{2}}}\right]^{c+a}=$ $\qquad$ <br> (a) $x^{-2 a^{3}}$ <br> (b) $x^{2 a^{3}}$ <br> (c) $x^{-2\left(a^{3}+b^{3}+c^{3}\right)}$ <br> (d) $x^{2\left(a^{3}+b^{3}+c^{3}\right)}$ | C |
| Q225 | If $a b c=1,\left(\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}\right)=$ $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) $\frac{1}{a b}$ <br> (d) ab | B |
| Q226 | If $a b c=2$ then the value of $\frac{1}{1+a+2 b^{-1}}+\frac{1}{1+\frac{b}{2}+c^{-1}}+\frac{1}{1+a^{-1}+c}=$ $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) $\frac{1}{2}$ <br> (d) $\frac{3}{4}$ | A |
| Q227 | If $x y^{p-1}=a, x y^{q-1}=b$, and $x y^{p-1}=c$; then $a^{q-p} b^{p-p} c^{p-q}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) $p+q+p-1$ <br> (d) None | A |

## 1D. LOGARITHMS

## TRANSFORMATION FORMULA

$$
\begin{array}{ll}
* \text { If } a^{x}=b & \text { [Exponential Form] } \\
\text { then } \log _{a} b=x & \text { [Logarithmic Fopm] }
\end{array}
$$

PC Note: These are not two different formulae. They are just transformation of each other \& should be used to change one form into other form. Following are some examples for better understanding.

| CQ | Exponential Form | Logarithmic Fopm | Read as |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $2^{4}=16$ | $\log _{2} 16=4$ | Log of 16 to the base $2=4$ |
| $\mathbf{2}$ | $10^{3}=1000$ | $\log _{10} 1000=3$ | Log of 1000 to the base $10=3$ |
| $\mathbf{3}$ | $3^{-4}=\frac{1}{81}$ | $\log _{3} \frac{1}{81}=-4$ | $\log$ of $\frac{1}{81}$ to the base $3=-4$ |
| $\mathbf{4}$ | $100^{1 / 2}=10$ | $\log _{100} 10=1 / 2$ | $\log$ of 10 to the base 100 is $1 / 2$ |

## Mentos Zindagi:

- Log apne side me positive logo ko hi rakhte hai [a \& b should be +ve].
- Log ' $x$ ' ko apne se dur rakhte hai [Therefore ' $x$ ' should be on other side of Log]
- If NO BASE is given in the question, it is always taken as 10 [In this chapter]
* Some Conditions w.p.t. $a, b \& x$
( $a$ \& $b>0 ; a \neq 1$
- Base of $\log >1$ [If Base $=1$, then Value of $b$ will always be 1 ( $1^{x}$ ).]

Number $(b)>0[\log \mathrm{O} \rightarrow$ Does not Exist.]

## FUNDAMENTAL LAWS OF LOGARITHMS

1. $\log 10=1 \quad$ [Because since base is not given, it is taken as 10 ]
2. $\log 1=0 \quad\left[\log\right.$ of 1 to any Base $=0 ;\left(\right.$ Since $\left.\left.a^{0}=1, \log _{a} 1=0\right)\right]$
3. $\log M+\log N=\log (M \times N)$
$[P C$ Note: $\log M+\log N \neq \log (M+N)]$
CQ5: $\log 6+\log 5=\log 30$
CQ6: $\log X+\log X^{2}=\log X \cdot X^{2}=\log X^{3}$
4. $\log M-\log N=\log (M / N)$
[PC Note: $\log (M-N) \neq \log M-\log N]$

|  | CQ7: $\log 32 / 4=\log 32-\log 4$ |
| :---: | :---: |
| 5. | $\log \left(M^{N}\right)=$ N. Log $M \quad\left[P C\right.$ Note: $\left.(\log M)^{N} \neq N . \log M\right]$ |
|  | CQ8: $\log 25=\log 5^{2}=2 . \log 5$ |
| 6. | $\log _{N}{ }^{\text {b }} M^{a}=\left(\alpha \times \frac{1}{b}\right) \times \log _{N} M$ |
|  | i. Jo Number ka Log nikalna hai uska power "jaisa ka waise" bahap aayega. <br> ii. Base ka power "reciprocal" me bahar aayega. |
| 7. | $\log _{M} M=1 \quad\left[\right.$ Log of any number to same base $=1\left(\right.$ Since $\left.\left.a^{1}=a, \log _{a} a=1\right)\right]$ |
| 8. | $\log 1=0 \quad\left[\log\right.$ of 1 to any Base $=0 ;\left(\right.$ Since $\left.\left.a^{0}=1, \log _{a} 1=0\right)\right]$ |
| 9. | $\log _{N} M=\frac{\log M}{\log N} \quad$ [Base Changing Rule.] |
|  | $\text { CQ9: } \log _{4} 8=\frac{\log _{2} 8}{\log _{2} 4}=\frac{3 \log _{2} 2}{2 \log _{2} 2}=\frac{3}{2}$ |
| 10. | $\log _{c} A=\log _{B} A \times \log _{c} B$ |
|  | $\begin{aligned} & \operatorname{LHS} \rightarrow \log _{C} A=\frac{\log A}{\log C} \\ & R H S \rightarrow \log _{B} A \times \log _{C} B=\frac{\log A}{\log B} \times \frac{\log B}{\log C}=\frac{\log A}{\log C} \end{aligned}$ |
| 11. | $\log _{N} M=\frac{1}{\log _{M} N}$ |
|  | $\text { CQ10: } \log _{5} 10=\frac{1}{\log _{10} 5}=\frac{1}{\log _{10} \frac{10}{2}}=\frac{1}{\log _{10} 10-\log _{10} 2}=\frac{1}{1-0.3010}=\frac{1}{0.6990}=1.43$ |
| 12. | $a^{\log _{a} x}=\mathrm{x} \quad a^{\log _{a} x}=x^{\log _{a} a}=x^{1}=\mathrm{x} \quad$ [Inverse logarithm Property] |
| 13. | Log $10=1 \quad$ [Because if Nothing is given, base is taken as 10.] |

## POINTS TO BE NOTED

- If NO BASE is given in the question, it is always taken as 10 in numerical calculations.
- The Domain of Logarithmic function is $(0, \infty)$ i.e $0<x<\infty$.


## LOGARITHMS - QUESTION BANK

| SN | CHAPTER 1D. LOGARITHMS |  |  | Ans |
| :---: | :---: | :---: | :---: | :---: |
| Q228 | Log 0.0001 to the base $0.1=$ $\qquad$ <br> (a) -4 <br> (b) 4 | $\text { (c) } 1 / 4$ | (d) None | B |
| Q229 | $\log _{\sqrt{2}} 64=$ $\qquad$ <br> (a) 12 <br> (b) 6 | (c) 1 | (d) None | A |
| Q230 | $\log (1 / 81)$ to the base $9=$ $\qquad$ <br> (a) 2 <br> (b) $1 / 2$ | $\text { (c) }-2$ | (d) None | C |
| Q231 | $\log (1 / 81)$ to the base $3=$ $\qquad$ <br> (a) 4 <br> (b) $1 / 4$ | $\text { (c) }-4$ | (d) None | C |
| Q232 | $\log _{3 \sqrt{2}} 324=$ $\qquad$ <br> (a) 2 <br> (b) 3 | $\text { (c) } 4$ | (d) 1 | C |
| Q233 | Value of $\left(\log _{8} 128\right) \times \log _{6} \frac{1}{216}$ is $\qquad$ <br> (a) -7 <br> (b) 7 | (c) $1 / 7$ | (d) $-2 / 7$ | A |
| Q234 | Value of $\left(\log _{1 / 81} 729\right) \times \log _{2} 256=$ $\qquad$ <br> (a) 12 <br> (b) -12 | (c) $1 / 12$ | (d) $-1 / 12$ | B |
| Q235 | Find the base if Logarithm of 32 is 10 <br> (a) $5 / 3$ <br> (b) $20 / 9$ | (c) $\sqrt{8}$ | (d) 4 | C |
| Q236 | If $2 \log x=4 \log 3$, then $x=$ <br> (a) 3 <br> (b) 9 | (c) 81 |  | B |
| Q237 | $\frac{3+\log _{10} 343}{2+\frac{1}{2} \log \left(\frac{49}{4}\right)+\frac{1}{3} \log \left(\frac{1}{125}\right)}=$ $\qquad$ <br> (a) 3 <br> (b) $3 / 2$ | $\text { (c) } 2$ | (d) 1 | A |
| Q238 | Value of $\log _{8} 25=$ $\qquad$ <br> (a) 1 <br> (b) 2 | $2=0.3010 \mathrm{ar}$ <br> (c) 1.5482 | = 0.6989] <br> (d) None | C |
| Q239 | $\log \left(\log x^{2}\right)-\log (\log x)=$ $\qquad$ <br> (a) 2 <br> (b) $\log 2$ | (c) $\log x$ | (d) $\log \sqrt{x}$ | B |
| Q240 | $\log \left(\sqrt[3]{a^{2}} \times \sqrt[2]{b^{3}}\right)=$ $\qquad$ <br> (a) $\frac{3}{2} \log a+\frac{2}{3} \log b$ <br> (c) $\frac{2}{3} \log a+\frac{3}{2} \log b$ | (b) $6 \log a b$ <br> (d) None |  | C |
| Q241 | Value of $\log _{3} 2 \log _{4} 3 \log _{5} 4$ $\log _{15} 14 \log ^{2}$ <br> (a) $1 / 3$ <br> (b) $1 / 2$ | 5 is $\qquad$ <br> (c) $1 / 5$ |  | D |
| Q242 | $\log _{3} 5 \times \log _{5} 4 \times \log _{2} 3=$ $\qquad$ <br> (a) 2 <br> (b) 5 | $\text { (c) }-2$ | (d) None | A |


| Q243 | Value of $16 \log \frac{64}{60}+12 \log \frac{50}{48}+7 \log \frac{81}{80}+\log 2$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) 2 <br> (d) -1 | B |
| :---: | :---: | :---: |
| Q244 | $7 \log \left(\frac{16}{15}\right)+5 \log \left(\frac{25}{24}\right)+3 \log \left(\frac{81}{80}\right)=$ $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) $\log 2$ <br> (d) $\log 3$ | C |
| Q245 | $\log _{3} \sqrt[4]{729 \sqrt[3]{9^{-1} \cdot 27^{\frac{4}{3}}}}=$ <br> (a) $-5 / 3$ <br> (b) $5 / 3$ <br> (c) $3 / 5$ <br> (d) $-3 / 5$ | B |
| Q246 | If $x^{2 a-3} y^{2 a}=x^{6-a} y^{5 a}$ then the value of $a . \log (x / y)$ is $\qquad$ <br> (a) $3 \log x$ <br> (b) $\log x$ <br> (c) $6 \log x$ <br> (d) $5 \log x$ | A |
| Q247 | $\log \left[1-\left\{1-\left(1-x^{2}\right)^{-1}\right\}^{-1}\right]^{-1 / 2}$ can be written as $\qquad$ <br> (a) $\log x^{2}$ <br> (b) $\log x$ <br> (c) $\log 1 / x$ <br> (d) None | B |
| Q248 | $\log (a-9)+\log a=1$, the value of ' $a$ ' is $\qquad$ <br> (a) 0 <br> (b) 10 <br> (c) -1 <br> (d) None | B |
| Q249 | If $\frac{1}{\log _{x} 10}+2=\frac{2}{\log _{5} 10}$, then the value of $x$ is $\qquad$ <br> (a) 5 <br> (b) 0.25 <br> (c) 0.5 <br> (d) 25 | B |
| Q250 | Find the value of $x$ if $\log \left(x+\frac{1}{x}\right)+\log 2=\log 5$ <br> (a) 0 <br> (b) 3 or $\frac{1}{3}$ <br> (c) $\frac{1}{2}$ or 2 <br> (d) 1 | C |
| Q251 | If $3+\log _{10} x=2 \log _{10} y$; then value of $x$ in terms of $y$ will be $\qquad$ <br> (a) $(2 / 3) y$ <br> (b) $Y^{2} / 10$ <br> (c) $10 y$ <br> (d) $Y^{2} / 1000$ | D |
| Q252 | If $\log _{10} y=1+2 \log _{10} x-\log _{10} Z$; then value of $\frac{y z}{x^{2}}$ is $\qquad$ <br> (a) 10 <br> (b) $\frac{1}{10}$ <br> (c) 100 <br> (d) $\frac{1}{100}$ | A |
| Q253 | If $\frac{\log x}{2}=\frac{\log y}{3}=\frac{\log z}{5}$, then $y z$ in terms of x is $\qquad$ <br> (a) $x$ <br> (b) $x^{2}$ <br> (c) $x^{3}$ <br> (d) $x^{4}$ | D |
| Q254 | If $\frac{\log _{8} 17}{\log _{9} 23}-\frac{\log _{2 \sqrt{2}} 17}{\log _{3} 23}=$ $\qquad$ <br> (a) 1 <br> (b) $\frac{1}{2}$ <br> (c) $\frac{1}{4}$ <br> (d) 0 | D |
| Q255 | If $\log _{e} M+\log _{e} N=\log _{e}(M+N)$, then find $M$ as a function of $N$. <br> (a) $1 / \mathrm{N}$ <br> (b) $\mathrm{N}^{2}$ <br> (c) $N^{2} \times(N-1)$ <br> (d) $\mathrm{N} /(\mathrm{N}-1)$ | D |
| Q256 | On solving Log $t+\log (t-3)=1$ we get the value of $t$ as (base 10) <br> (a) 5 <br> (b) 2 <br> (c) 3 <br> (d) 0 | A |
| Q257 | On solving the equation $\log _{3}\left[\log _{2}\left(\log _{3} t\right)\right\rfloor=1$ we get value of $t$ as $\qquad$ <br> (a) 8 <br> (b) 18 <br> (c) 81 <br> (d) 6,561 | D |
| Q258 | On solving $\log _{1 / 2}\left[\log _{t}\left(\log _{4} 32\right)\right]=2$ we get the value of $t$ as | C |



|  | (a) $\log 2$ (b) 1 (c) 0 (d) None |  |
| :---: | :---: | :---: |
| Q275 | If $x=\log _{2 a} a ; y=\log _{3 a} 2 a ; z=\log _{4 a} 3 a ; x y z+1=$ <br> [Q109 Pg 3.20 of $\mathbf{S C}]$ <br> (a) $2 x y$ <br> (b) $2 y z$ <br> (c) $2 z x$ <br> (d) None | B |
| Q276 | If $\log _{a} b=\log _{b} c=\log _{b} a$, then $\qquad$ <br> (a) $a>b>c$ <br> (b) $a<b<c$ <br> (c) $a=b=c$ <br> (d) $a<b<c$ | C |
| Q277 | If $\log _{a}(a b)=x$, then $\log _{b}(a b)$ is $\qquad$ <br> (a) $\frac{1}{x}$ <br> (b) $\frac{x}{x+1}$ <br> (c) $\frac{x}{x-1}$ <br> (d) $\frac{x}{1-x}$ | C |
| Q278 | Value of $\frac{\log a}{\log a} \frac{\left(\log _{b} a\right)}{\left(\log _{a} b\right)}$ is $\qquad$ <br> (a) -1 <br> (b) 1 <br> (c) $\log _{a} b$ <br> (d) $\log _{a}(a b)$ | A |
| Q279 | If $a=b^{2}=c^{3}=d^{4}$ then the value of $\log _{a}(a b c d)$ <br> (a) $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ <br> (b) $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}$ <br> (c) $1+2+3+4$ <br> (d) None | A |
| Q280 | Find value of $L M+M N+N L-L M N$, if $L=1+\log _{a} b c ; M=1 \log _{b} c a ; N=1+\log _{a} a b$. <br> [Q114 Pg 3.20 of SC] <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) 3 | A |
| Q281 | If $a^{2}+b^{2}=7 a b$, then the value of $\log \left(\frac{a+b}{3}\right)-\frac{\log a}{2}-\frac{\log b}{2}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) 7 | A |
| Q282 | If $x^{2}+y^{2}=11 x y$, then $2 \log (x-y)=$ $\qquad$ <br> (a) $\log 3+\log x+\log y$ <br> (b) $3 \log 3+\log x+\log y$ <br> (c) $2 . \log 3+\log x+\log y$ <br> (d) None | C |
| Q283 | If $a^{3}+b^{3}=0$; then $\log (a+b)-\frac{1}{2}(\log a+\log b+\log 3)=$ $\qquad$ <br> $\left[\right.$ Hint: $\left.(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)\right]$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q284 | If $\frac{\log x}{l+m-2 n}=\frac{\log y}{m+n-2 l}=\frac{\log z}{n+l-2 m}$, then $x^{2} y^{2} z^{2}=$ $\qquad$ <br> (a) 2 <br> (b) -1 <br> (c) 4 <br> (d) 1 | D |
| Q285 | If $\log _{a} b c=x, \log _{b} c a=y, \log _{c} a b=z, \frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=$ $\qquad$ <br> (a) 0 <br> (b) 3 <br> (c) $x+y+z$ <br> (d) 1 | D |
| Q286 | If $\frac{\log x}{q-r}=\frac{\log y}{r-p}=\frac{\log }{p-q^{\prime}} \mathrm{X}^{q+\mathrm{p}} \mathrm{y}^{p+\mathrm{p}} \mathrm{z}^{\mathrm{p}+\mathrm{q}}=$ $\qquad$ <br> (a) $x^{p} y^{q} z^{x}$ <br> (b) 1 <br> (c) 0 <br> (d) $x y z$ | A |
| Q287 | If $\log _{2}\left(3^{2 x-2}+7\right)=2+\log _{2}\left(3^{x-1}+1\right)$ then $x=$ $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) 2 <br> (d) 1 or 2 | D |
| Q288 | Value of $\log _{5}\left(1+\frac{1}{5}\right)+\log _{5}\left(1+\frac{1}{6}\right)+\log _{5}\left(1+\frac{1}{7}\right)+\log _{5}\left(1+\frac{1}{624}\right)$ is $\qquad$ <br> (a) 5 <br> (b) 4 <br> (c) 3 <br> (d) 2 | C |


| Q289 | $\log \left\{\log _{a b} a+\frac{1}{\log _{b} a b}\right\}=$ $\qquad$ <br> (a) $\log a b$ <br> (b) 1 | $\text { (c) } 0$ | (d) None | C |
| :---: | :---: | :---: | :---: | :---: |
| Q290 | $\log (1 \times 2 \times 3)=$ $\qquad$ <br> (a) $\log 2$ <br> (b) $\log 3$ | $\text { (c) } 1$ | (d) $\log 1+\log 2+\log 3$ | D |
| Q291 | $\log (3+7)=$ $\qquad$ <br> (a) 1 <br> (b) 3 |  | $\text { (d) } \infty$ | A |
| Q292 | $\log \left(1^{2}+2^{2}+3^{2}\right)=$ $\qquad$ <br> (a) $\log 2-\log 7$ <br> (b) $\log 2+\log 7$ | (c) 1 | (d) None | B |
| Q293 | $\log (3-2)=$ $\qquad$ <br> (a) 4 <br> (b) 3 | $\text { (c) } 0$ | $\text { (d) } \infty$ | C |
| Q294 | $\log _{2} 8=$ $\qquad$ <br> (a) 2 <br> (b) 8 | $\text { (c) } 3$ | (d) None | C |
| Q295 | $\log _{2 \sqrt{3}} 1728=$ $\qquad$ <br> (a) $2 \sqrt{3}$ <br> (b) 2 | $\text { (c) } 6$ | (d) None | C |
| Q296 | If $\log _{a} \sqrt{2}=1 / 6$, find the value of ' $a$ ' <br> (a) 8 <br> (b) 4 | (c) 3 | (d) 1 | A |
| Q297 | Logapithm of 21952 to the base of $2 \sqrt{7}$ <br> (a) Equal <br> (b) Not equal | 19683 to the <br> (c) Different | of $3 \sqrt{3}$ ape. <br> (d) None | A |
| Q298 | Given $\log 2=0.03010$ and $\log 3=0.477$ <br> (a) 0.9030 <br> (b) 0.9542 | the value of <br> (c) 0.7781 | is $\qquad$ <br> (d) None | C |
| Q299 | $\frac{1}{2} \log _{10} 25-2 \log _{10} 3+\log _{10} 18=$ $\qquad$ <br> (a) 0 <br> (b) 1 | (c) $\log _{10} 3$ | (d) None | B |
| Q300 | $\log \frac{75}{16}-2 \log \frac{5}{9}+\log \frac{32}{243}$ peduces to <br> (a) $2 \log 2$ <br> (b) $5 \log 2$ | (c) $\log 2$ | (d) $4 \log 2$ | C |
| Q301 | $\log _{b}(a) \cdot \log _{c}(b) \log _{a}(c)=$ $\qquad$ <br> (a) 0 <br> (b) 1 | (c) -1 | (d) None | B |
| Q302 | $\log _{10}\left(x^{2}-6 x+10\right)=0$; then $x=$ $\qquad$ <br> (a) 2 <br> (b) 3 | (c) 4 | (d) None | B |
| Q303 | $\log _{5} 3 . \log _{7} 5 . \log _{9} 7 . \log _{11} 9 . \log _{21} 11=$ <br> (a) $\log _{21} 3$ <br> (b) $\log _{3} 21$ | (c) 1 | (d) None | A |
| Q304 | Value of $\log (1+2+3+\ldots \ldots . .+n)=$ $\qquad$ <br> (a) $\log 1+\log 2+\ldots \ldots .+\log n$ <br> (c) 0 | (b) $\log n+\operatorname{Lo}$ <br> (d) 1 | $-\log 2$ | B |
| Q305 | The equivalent form of the equation L | ( $x-2$ ) $+\log (x$ | 0 is | C |


|  | $\begin{array}{lll}\text { (a) } x^{2}+x-5=0 & \text { (b) } x^{2}-x-5=0 & \text { (c) } x^{2}+x-7=0\end{array}$ | (d) None |  |
| :---: | :---: | :---: | :---: |
| Q306 | $\frac{1}{\log _{a b}(a b c)}+\frac{1}{\log _{b c}(a b c)}+\frac{1}{\log _{c a}(a b c)}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) 2 | (d) -1 | C |
| Q307 | Value of $\log \frac{a^{2}}{b c}+\log \frac{b^{2}}{c a}+\log \frac{c^{2}}{a b}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 | (d) None | A |
| Q308 | If $\frac{\log a}{y-z}=\frac{\log b}{z-x}=\frac{\log c}{x-y}$; value of abc is $\qquad$ <br> (a) O <br> (b) 1 <br> (c) -1 | (d) None | B |
| Q309 | If $\frac{1}{2} \log a=\frac{1}{3} \log b=\frac{1}{5} \log c$; value of $a^{4}-b c$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 | (d) None | A |
| Q310 | If $\frac{1}{\log _{a} t}+\frac{1}{\log _{b} t}+\frac{1}{\log _{c} t}=\frac{1}{\log _{z} t}$ then the value of $z$ is $\qquad$ <br> (a) abc <br> (b) $a+b+c$ <br> (c) $a(b+c)$ | (d) $(a+b) c$ | A |
| Q311 | Value of $\frac{1}{\log _{x y}(x y z)}+\frac{1}{\log _{y z}(x y z)}+\frac{1}{\log _{z x}(x y z)}$ is $\qquad$ <br> (a) $\log x y z$ <br> (b) 1 <br> (c) 2 | (d) None | C |
| Q312 | If $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}, \frac{1}{\log _{b+c} a}+\frac{1}{\log _{c-b} a}$ is $\qquad$ <br> (a) 2 <br> (b) 1 <br> (c) $\log a b c$ | (d) 0 | A |
| Q313 | $\log 6+\log 5$ is expressed as $\qquad$ <br> (a) $\log 11$ <br> (b) $\log 30$ <br> (c) $\log 5 / 6$ | (d) None | B |
| Q314 | $\log 32 / 4$ is equal to $\qquad$ <br> (a) $\log 32 / \log 4$ <br> (b) $\log 32-\log 4$ <br> (c) 8 | (d) None | B |
| Q315 | Given $\log 2=0.3010$ and $\log 3=0.4771$ then the value of $\log$ <br> (a) 1.3081 <br> (b) 1.1038 <br> (c) 1.3801 | $24$ $\qquad$ <br> (d) 1.8301 | C |
| Q316 | If $\log _{2} x+\log _{4} x+\log _{16} x=\frac{21}{4}$, then $x$ equals to $\qquad$ <br> (a) 8 <br> (b) 4 <br> (c) 2 | $\text { (d) } 16$ | A |
| Q317 | The simplified value of $\log _{2} . \log _{2} \log _{2} 16$ is $\qquad$ <br> (a) 0 <br> (b) 2 <br> (c) 1 | (d) None | C |
| Q318 | Find the value of $\left[\log _{y}{ }^{x} \cdot \log _{z} y \cdot \log _{x} z\right]^{3}=$ $\qquad$ <br> (a) 0 <br> (b) -1 <br> (c) 1 |  | C |
| Q319 | If $\frac{1}{\log _{\mathrm{a}}}+\frac{1}{\log _{\mathrm{b}} \mathrm{t}}+\frac{1}{\log _{\mathrm{c}} \mathrm{t}}=\frac{1}{\log _{\mathrm{z}} \mathrm{t}}$ then the value of z is $\qquad$ <br> (a) abc <br> (b) $a+b+c$ <br> (c) $a(b+c)$ | $\text { (d) }(a+b) c$ | A |
| Q320 | If $\log x=a+b ; \log y=a-b$ then $\log \frac{10 x}{y^{2}}=$ $\qquad$ <br> (a) $1-a+3 b$ <br> (b) $a-1+3 b$ <br> (c) $a+3 b+1$ | (d) $1-b+3 a$ | A |


| Q321 | $x=1+\log _{p} q p, y=1+\log _{q} p p, z=1+\log _{p} p q$ then find $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=$ $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) 2 <br> (d) -1 | B |
| :---: | :---: | :---: |
| Q322 | If $x=\log _{a} b c y=\log _{b} c a z=\log _{c} a b$ then value of $x y z-x-y-z$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) 2 | D |
| Q323 | If $x=\log _{2 a} a, y=\log _{3 a} 2 a, z=\log _{4 a} 3 a$ then $x y z+1=$ $\qquad$ <br> (a) $2 x y$ <br> (b) $2 y z$ <br> (c) $2 z x$ <br> (d) None | B |
| Q324 | If $\frac{1}{\log _{a} x}+\frac{1}{\log _{c} x}=\frac{2}{\log _{b} x}$, then $a, b, c$ are in $\qquad$ <br> (a) G.P <br> (b) A.P <br> (c) H.P <br> (d) None | A |
| Q325 | $3 . \log x+3 . \log x^{3}+3 . \log x^{5}+\ldots . . .+3 . \log x^{2 n-1}=$ $\qquad$ <br> (a) $3 n^{2} \log x$ <br> (b) $n(n+1) \log a$ <br> (c) $3 n(n+1) \log a$ <br> (d) None | A |
| Q326 | If $\mathrm{x}=1983$ ! ; then value of $\frac{1}{\log _{2} x}+\frac{1}{\log _{3} x}+\frac{1}{\log _{4} x}+\ldots+\frac{1}{\log _{1983} x}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) 2 <br> (d) 3 | B |
| Q327 | Find the number of digits in $2^{64}$. [Given that $\log 2=0.3010$ ] <br> (a) 19 <br> (b) 20 <br> (c) 21 <br> (d) 16. | B |
| Q328 | If $\log _{4}\left(x^{2}+x\right)-\log _{4}(x+1)=2$, then the value of $x$ is $\qquad$ <br> (a) 2 <br> (b) 4 <br> (c) 8 <br> (d) 16 | D |
| Q329 | $\log _{10} 10+\log _{10} 100+\log _{10} 1000+\log _{10} 10000+\log _{10} 100000$ is $\qquad$ <br> (a) 15 <br> (b) $\log _{10} 11111$ <br> (c) $\log _{10} 1111$ <br> (d) $14 \log _{10} 100$ | A |
| Q330 | $\frac{1}{\log _{a / b}(x)}+\frac{1}{\log _{b / c}(x)}+\frac{1}{\log _{c / a}(x)}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) 3 <br> (d) -1 | A |
| Q331 | $\log _{b}\left(a^{1 / 2}\right) \log _{c}\left(b^{3}\right) \log _{a}\left(c^{3 / 2}\right)=$ $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) $4 / 9$ <br> (d) $9 / 4$ | D |
| Q332 | If $\log \frac{m}{n}+\log \frac{n}{m}=\log (m+n)$, then $\qquad$ <br> (a) $m+n=1$ <br> (b) $\frac{m}{n}$ <br> (c) $m-n=1$ <br> (d) $\mathrm{m}^{2} \cdot \mathrm{n}^{2}=1$ | A |
| Q333 | If $\log _{10} 2986=3.4751$, then $\log _{10} 0.02986=$ $\qquad$ <br> (a) 1.5249 <br> (b) $\overline{2} .4751$ <br> (c) 1.2986 <br> (d) -1.5249 | $\begin{gathered} B \& \\ D \end{gathered}$ |
| Q334 | $2 \log (a+b)+\log (a-b)-\log \left(a^{2}-b^{2}\right)=\log x$, then $x=$ $\qquad$ <br> (a) $(a+b)$ <br> (b) $a-b$ <br> (c) $a^{2}-b^{2}$ <br> (d) None | A |
| Q335 | If $a^{2}+b^{2}=0$, and $a+b \neq 0$ then the value of $\log (a+b)$ is $\qquad$ <br> (a) $\log a+\log b+\log 2$ <br> (b) $\frac{1}{2}(\log a+\log b+\log 2)$ <br> (c) $\log a+\log b$ <br> (d) None | B |
| Q336 | If $\log _{x+2}\left(x^{3}-3 x^{2}-6 x+8\right)=3$, then $x=$ $\qquad$ <br> (a) 2 <br> (b) -2 <br> (c) $1 / 2$ <br> (d) None | B |


| Q337 | If $\log \frac{x+y}{5}=\frac{1}{2}(\log x+\log y)$, then $\frac{x}{y}+\frac{y}{x}=$ $\qquad$ <br> (a) 20 <br> (b) 23 <br> (c) 22 <br> (d) 21 | B |
| :---: | :---: | :---: |
| Q338 | If $\log \frac{a+b}{3}=\frac{1}{2}(\log a+\log b)$ then the value $\frac{a}{b}+\frac{b}{a}$ is $\qquad$ <br> (a) 2 <br> (b) 5 <br> (c) 7 <br> (d) 3 | C |
| Q339 | If $\log \frac{x+y}{7}=\frac{1}{2}(\log \mathrm{x}+\log \mathrm{y})$, then $\qquad$ <br> (a) $\frac{x}{y}+\frac{y}{x}=48$ <br> (b) $\frac{x}{y}+\frac{y}{x}=49$ <br> (c) $\frac{x}{y}+\frac{y}{x}=47$ <br> (d) None | C |
| Q340 | If $\log (2 a-3 b)=\log a-\log b$, then $a=$ $\qquad$ <br> (a) $3 b^{2} /(2 b-1)$ <br> (b) $3 b /(2 b-1)$ <br> (c) $b^{2} /(2 b+1)$ <br> (d) $3 b^{2}(2 b+1)$ | A |
| Q341 | If $\frac{\log 3}{x-y}=\frac{\log 5}{y-z}=\frac{\log 7}{z-x}$, then $3^{(x+y)} \cdot 5^{(y+z)} \cdot 7^{(z+x)}=$ $\qquad$ <br> (a) 2 <br> (b) 10 <br> (c) 1 <br> (d) 0 | C |
| Q342 | If $\log _{30} 3=a$, $\log _{30} 5=b$, then $\log _{30} 8=$ $\qquad$ [Hint: Find $(a+b)$ ] <br> (a) $3(1-a-b)$ <br> (b) $(a-b+1)$ <br> (c) $(a+b)$ <br> (d) $1(a-b+1)$ | A |
| Q343 | If $x=\log _{a} b c, y=\log _{b} c a, z=\log _{c} a b$, then $\qquad$ <br> (a) $x y z=x+y+z+2$ <br> (b) $x y z=x+y+z+1$ <br> (c) $x+y+z=1$ <br> (d) $x y z=1$ | A |
| Q344 | If $a=\log _{24} 12, b=\log _{36} 24$, and $c=\log _{48} 36$, then $1+a b c=$ $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) 2 bc <br> (d) abc | C |
| Q345 | If $x=\log _{2 a} a, y=\log _{3 a} 2 a, z=\log _{4} 3 a$ then value of $y z(2-x)$ is $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 2 <br> (d) -2 | A |
| Q346 | (bc) $\log ^{\frac{\mathrm{b}}{\mathrm{c}}} \cdot(\mathrm{ca})^{\log ^{\frac{\mathrm{c}}{\mathrm{a}}}} \cdot(\mathrm{ab})^{\log ^{\frac{a}{b}}}=$ $\qquad$ . <br> [Hint: Equate it as $\times$ \& then take log] <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | B |
| Q347 | $\mathrm{X}^{18}=\mathrm{y}^{21}=\mathrm{z}^{28}$, then $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in $\qquad$ <br> (a) $A P$ <br> (b) GP <br> (c) HP <br> (d) None | A |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CHAPTER 2. EQUATION

## INTRODUCTION

* Meaning of Equation: Equation is defined to be a mathematical statement of equality. (Two algebraic expressions are connected by sign of equality ( $=$ ), they form an equation).
* Conditional Equation: If the equality is true for some variables, it is conditional equation.
* Identity: If the given equality is true for all variables, it is called an identity.
[When LHS = RHS for all the values of variables]
Ex: $\frac{x+2}{3}+\frac{x+3}{2}=3$ is true only for $x=1$. So it is a conditional equation.
Identity: $\frac{x+2}{3}+\frac{x+3}{2}=\frac{5 x+13}{6}$ is an identity since it satisfy all the values of 'variable $x$.
Variable: It is a quantity whose value varies (changes). Generally denoted by $x, y, z$.
Constant: It is a quantity whose value does not change. Generally denoted by $a, b, c$.
Solution/Root: Value of variable which satisfies equation. [LHS=RHS when substituted].


## SOME IMPORTANT POINTS TO BE KEPT IN MIND WHILE SOLVING THE QUESTIONS:

* Addition/subtraction of same quantity to both sides of an equation does not change equ ${ }^{n}$.
* Multiplication/Division of same non- zero number to both sides of an equation does not change the equation.

TRANSPOSITION RULE: Any term of equation taken to the other side by changing its sign.
Transposition is done to take unknown quantities to one side \& known quantities to other side

* A term may be transferred from one side to another side by changing its sign.
[+ve to -ve op -ve to +ve]
* A Multiplier may be removed from one side by making it divisor on other side of equation.
* A Divisor may be removed from one side by making it multiplier on other side of equation.


## CONCEPT 1: LINEAR EQUATION IN ONE VARIABLE

[Highest Degree =1]

- An equation in which highest power of the variable is 1 is called a Linear (simple) equation.
- A simple equation has only one root.
- It is in the form $a x+b=0$; (Where $a, b$ are numbers)

Whatsapp: 8888111134

## CONCEPT 2: SIMULTANEOUS LINEAR EQUATION IN TWO VARIABLES [Highest Degree = 1]

- General form $\rightarrow \boldsymbol{a x}+\boldsymbol{b y}+\mathbf{c}=\mathbf{0} ;[\mathrm{a}, \mathrm{b} \neq 0 \& a, b, c \rightarrow$ Constant $]$.

Methods of solving simultaneous linear equation in two variables:
Substitution Method: Any one variable is written in terms of another variable in any one equation \& then obtained value is substituted in other equation.
CQ8: Solve: $6 x+5 y-16=0$ and $3 x-y-1=0$ we get values of $x, y$ as
Solution: $6 x+5 y-16=0$-------(i) and $3 x-y-1=0$
Now from (2), we get $y=3 x-1$
Substitute the value of $y$ in (i), $6 x+5(3 x-1)-16=0$.
$6 x+15 x-5-16=0 ; \quad 21 x-21=0 ; \quad 21 x=21 ; \quad x=1$
Now Put $x=1$ in (iii); we get $y=3(1)-1=3-1=2$. Thus $(x, y)=(1,2)$

## PC Note:

- Sign of vapiable with same co-efficient is opposite $\rightarrow$ Add the equations.
- Sign of vapiable with same co-efficient is same $\rightarrow$ Subtract the equations.


## TEST OF CONSISTENGY FOR A SYSTEM OF EQUATIONS [ $a_{1} x+b_{1} y+c_{1}=0 \& a_{2} x+b_{2} y+c_{2}=0$ ]

* Consistent System $\rightarrow$ System having at least one Solution.
* Inconsistent System $\rightarrow$ System having NO Solution.

| No. of Solutions | Condition | System of Equations | Lines intersect at |
| :--- | :---: | :--- | :--- |
| Unique Solution | $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}}$ | Consistent | One Point |
| No solution | $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$ | Inconsistent | Parallel |
| Infinite solutions | $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ | Consistent | Coincident |

SIMULTANEOUS LINEAR EQUATION WITH THREE VARIABLES $\rightarrow$ Solve by Option Method.

## CONCEPT 3: QUADRATIC EQUATION

[Highest degree $=2$ ]

* General form $a x^{2}+b x+c=0$; where $a \neq 0 \& a, b, c \rightarrow$ Constant.
* A quadratic equation has got two poots.
* Pure QE: If $b=0 ; \rightarrow$ Affected QE: When $b \neq 0$
[Not for Exam]


## CONSTRUCTION OF A QUADRATIC EQUATION

1. We have $a x^{2}+b x+c=0$
2. Dividing it by ' $a$ ', we will get $x^{2}+\frac{b}{a} x+\frac{c}{a}=0$
3. Take '-' common from $b, x^{2}-\left(-\frac{b}{a}\right) x+\frac{c}{a}=0$
4. $x^{2}-($ sum of poots $) x+$ Ppoduct of poots $=0$

## ROOTS OF A QUADRATIC EQUATION

(1) $\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ (2) $\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

Adding (1) \& (2), we get $\left(-\frac{b}{a}\right)$ \& Multiplying (1) \& (2), we get $\frac{\boldsymbol{c}}{\boldsymbol{a}} \quad \boldsymbol{b}^{2}-\mathbf{4 a c} \rightarrow$ Discriminant

* PC Note: Sum of poots $=\left(-\frac{b}{a}\right)$ \& Product of poots $=\frac{c}{a}$


## NATURE OF THE ROOTS

| Value of $\boldsymbol{b}^{\mathbf{2}} \mathbf{- 4 a \boldsymbol { c }}$ | Nature of Roots | Example | Roots |
| :--- | :--- | :--- | :--- |
| Zero | Real, Equal \& rational | $x^{2}-6 x+9=0$ | 3,3 |
| Perfect Square | Real, unequal \& rational | $x^{2}-6 x-16=0$ | $8,-2$ |
| Not a Perfect <br> Square | Real, unequal \& irrational | $x^{2}-6 x+7=0$ | $(3+\sqrt{2}),(3-\sqrt{2})$ |
| Negative | Imaginary (Complex No.) | $x^{2}-6 x+7=0$ | No Solution |

## POINTS TO BE NOTED

* Ippational poots occur in conjugate pairs. One poot is ( $\alpha+\sqrt{b}$ ), other poot will be $(a-\sqrt{b})$.
* Roots are equal in magnitude (value) but opposite in sign, Sum of roots $=0 \&$ so $\frac{b}{a}=0 \& \mathbf{b}=\mathbf{0}$.
* If one root is reciprocal to other root, then their product is $1 \&$ thus $\frac{c}{a}=1$ i.e. $\mathbf{c}=\boldsymbol{\alpha}$.

CQ10: Examine the nature of the poots of $x^{2}-8 x^{2}+16=0$
CQ11: Examine the nature of the roots of $3 x^{2}-8 x+4=0$
CQ12: Examine the nature of the roots of $5 x^{2}-4 x+2=0$
CQ13: Examine the nature of the roots of $2 x^{2}-6 x-3=0$
[Real \& Equal]
[Real, rational \& unequal]
[Imaginary]
[Real, iprational \& unequal]

## SOME USEFUL RESULTS REQUIRED TO SOLVE QUESTIONS OF ROOTS OF QUADRATIC EQn

$\left.$| $(a+b)^{2}=a^{2}+b^{2}+2 a b \rightarrow a^{2}+b^{2}=(a+b)^{2}-2 a b$ | $\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}$ | $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{a^{2}+b^{2}}{(a b)^{2}}$ |
| :--- | :--- | :--- |$\frac{1}{b}-\frac{1}{a}=\frac{a-b}{a b} \right\rvert\,$| $a-b=\sqrt{(a+b)^{2}-4 a b}$ |  |
| :--- | :--- |
| $a^{2}-b^{2}=(a+b)(a-b)$ | $a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$ |
| $a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$ |  |

## ROOTS OF EQUATION

- If $p+\sqrt{q}$ is the root, then $p-\sqrt{q}$ is also a root.
- If $p+i q$ is a root, then $p-i q$ is also a poot. (Where $\mathrm{i}^{2}=-1$ )
- Sum of the poots $=\alpha+\beta=-b / a$, Product of the poots $=\alpha \beta=c / a$.
- An equation with poots $\alpha \& \beta$ is given by $(x-\alpha)(x-\beta)=0, x^{2}-(\alpha+\beta) x+\alpha \beta=0$
- If one root is reciprocal of the other poots $(\alpha, 1 / \alpha)$ their product is also 1. Also $\alpha=c$
- If roots are equal in magnitude but opposite in sign $(\alpha,-\alpha)$ then $b$ will be 0
- If $a+b+c=0$, then one of the poots $=1$, and the other poot $=c / a \quad\left[E x . x^{2}+5 x-6\right]$
- If $a-b+c$, then one poot is -1 and other is $-c / a$
$\left[E x . x^{2}+6 x+5=0\right]$
- If $\alpha \& \beta$ are the roots of $a x^{2}+b x+c=0$, then $1 / \alpha, 1 / \beta$ will be poots of $c x^{2}+b x+a=0$


## RELATIONSHIP BETWEEN SIGN OF A, B, C AND THE ROOTS

| sign of $\mathbf{a}, \mathbf{b}, \mathbf{c}$ | $a \&$ c same and <br> $b$ <br> opposite | $a, b, c$ same sign | $a \&$ copposite sign |
| :---: | :---: | :---: | :---: |
| Sign of Roots | Both are Positive | Both are Negative | Opposite Sign |

## USEFUL FACTORS TO GET SUM \& PRODUCT OF ROOTS I.E. $(\alpha+\beta)$ \& $\alpha \beta$

1) $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-\alpha \beta$
2) $\alpha^{4}+\beta^{4}=\left(\alpha^{2}+\beta^{2}\right)^{2}-2 \alpha^{2} \beta^{2}$
3) $\alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)$
4) $\alpha^{3}-\beta^{3}=(\alpha-\beta)\left(\alpha^{2}+\alpha \beta+\beta^{2}\right)$
5) $(\alpha-\beta)=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}$
6) $\alpha^{2}-\beta^{2}=(\alpha+\beta)(\alpha-\beta)$
7) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{(\alpha+\beta)}{\alpha \beta}$
8) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{(\alpha \beta)^{2}}$
9) $\frac{1}{\beta}-\frac{1}{\alpha}=\frac{(\alpha-\beta)}{\alpha \beta}$

## CUBIC EQUATION

- Fopmat of Cubic equation $\rightarrow a x^{3}+b x^{2}+c x+d$ [Where $a, b, c, d$ are number \& $a \neq 0$ ]

PC Note: Solve by Option Method to save time \& efforts in Exams.

## RELATION BETWEEN ROOTS AND CO-EFFICIENT

1) $\alpha+\beta+\gamma=\frac{-b}{a}$
2) $\alpha \beta+\beta \gamma+\alpha \gamma=\frac{c}{a}$
3) $\alpha \beta \gamma=\frac{-d}{a}$
4) $\alpha^{2}+\beta^{2}+\gamma^{2}=\frac{b^{2}-2 a c}{a^{2}}$
5) $\alpha^{3}+\beta^{3}+\gamma^{3}=\frac{3 a b c-b^{3}-3 a^{2} d}{a^{3}}$

RELATIONSHIP BETWEEN SICN OF $a, b, c, d$ AND OF THE ROOTS

| Sign of $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ | $a, b, c, d$ are Positive | $a, c$ same \& $b, d$ <br> opposite sign | $a, c$ same \& $b, d=0$ |
| :---: | :---: | :---: | :---: |
| Sign of Roots | All roots are <br> Negative | All roots are Positive | No real roots <br> except 0 |

## EQUATIONS - QUESTION BANK



| Q17 | If $6=2 x+4 y$, what is the value of $x+2 y$ is $\qquad$ <br> (a) 2 <br> (b) 3 <br> (c) 6 <br> (d) 8 | B |
| :---: | :---: | :---: |
| Q18 | Solve for $y$ in the equation $\frac{y+11}{6}-\frac{y+1}{9}=\frac{y+7}{4}$ and the value of $y$ is $\qquad$ <br> (a) -1 <br> (b) 7 <br> (c) 1 <br> (d) $-\frac{1}{7}$ | D |
| Q19 | The solution of the equation $(p+2)(p-3)+(p+3)(p-4)=p(2 p-5)$ is $\qquad$ <br> (a) 6 <br> (b) 7 <br> (c) 5 <br> (d) None | A |
| Q20 | The satisfying values of x for the equation $\frac{1}{x+p+q}=\frac{1}{x}+\frac{1}{p}+\frac{1}{q}$ are $\qquad$ <br> (a) $(p, q)$ <br> (b) $(-p,-q)$ <br> (c) $(p,-q)$ <br> (d) $(-p, q)$ | B |
| Q21 | If $\frac{a}{2}+\frac{b}{2}=3$, what is the value of $2 a+2 b$ ? <br> (a) 6 <br> (b) 8 <br> (c) 12 <br> (d) 16 | C |
| Q22 | If $a+b=5$ and $\frac{c}{2}=3$, what is the value of $2 a+2 b+2 c$ ? <br> (a) 14 <br> (b) 16 <br> (c) 22 <br> (d) 20 | C |
| Q23 | If $a-b=p$ and $a+b=k$, then $a^{2}-b^{2}$ <br> (a) pk <br> (b) $p^{2}-k^{2}$ <br> (c) $p+k$ <br> (d) $\frac{p^{2}}{k^{2}}$ | A |
| Q24 | If $b(x+2 y)=60$ and $b y=15$, what is the value of $b x$ ? <br> (a) 20 <br> (b) 25 <br> (c) 30 <br> (d) 45 | C |
| Q25 | If $x y+z=y$, what is $x$ in terms of $y$ and $z$ ? <br> (a) $\frac{y+z}{y}$ <br> (b) $\frac{y-z}{y}$ <br> (c) $1-z$ <br> (d) $\frac{z-y}{y}$ | B |
| Q26 | If $\frac{1}{p+q}=p$ and $p \neq-q$, what is $p$ in terms of $p$ and $q$ ? <br> (a) $\frac{r q-1}{q}$ <br> (b) $\frac{1+r q}{q}$ <br> (c) $\frac{r}{1+r q}$ <br> (d) $\frac{1-r q}{r}$ | D |
| Q27 | If $\frac{x y}{x+y}=1$ and $x \neq y$, what is $x$ in terms of $y$ ? <br> (a) $\frac{y+1}{y-1}$ <br> (b) $\frac{y+1}{y}$ <br> (c) $\frac{y}{y-1}$ <br> (d) $\frac{y}{y+1}$ | C |
| Q28 | The solution of the set of equations $3 x+4 y=7 \& 4 x-y=3$ is $\qquad$ <br> (a) $(1,-1)$ <br> (b) $(1,1)$ <br> (c) $(2,1)$ <br> (d) $(1,-2)$ | B |
| Q29 | Solve for $x$ and $y: x-3 y=20, y-2 x=0$. The values of $x$ and $y$ are given as $\qquad$ <br> (a) $x=4 y=12$ <br> (b) $x=12 y=4$ <br> (c) $x=5 y=4$ <br> (d) None | D |
| Q30 | The simultaneous equations $7 x-3 y=31$ and $9 x-5 y=41$ have solutions given by <br> (a) (-4-1) <br> (b) (-14) <br> (c) (4-1) <br> (d) (37) | C |
| Q31 | $\frac{x}{p}+\frac{y}{q}=2 ; x+y=(p+q)$ are satisfied by the values given by the paip $\qquad$ <br> (a) $(x=p y=q)$ <br> (b) $(x=q y=p)$ <br> (c) $(x=1 y=1)$ <br> (d) None | A |
| Q32 | The values of $x$ and $y$ satisfying the equations $\frac{x}{2}+\frac{y}{3}=2 ; x+2 y=8$ are $\qquad$ <br> (a) $(3,2)$ <br> (b) $(-2,-3)$ <br> (c) $(2,3)$ <br> (d) None | C |
| Q33 | Which of the following sets $(x, y)$ will satisfy the equation $23^{x y}=23^{1 \times x} \& 144^{x}=12^{y}$ <br> (a) $(1,1)$ <br> (b) $(0,1)$ <br> (c) $(1,2)$ <br> (d) $(2,1)$ | C |


| Q34 | If $\frac{1}{x}+\frac{1}{y}=\frac{1}{4}$ and $\frac{1}{x}-\frac{1}{y}=\frac{3}{4}$, then x is $\qquad$ <br> (a) $\frac{1}{4}$ <br> (b) $\frac{1}{2}$ <br> (c) 1 <br> (d) 2 | D |
| :---: | :---: | :---: |
| Q35 | $\frac{3}{x+y}+\frac{2}{x-y}=3 ; \frac{2}{x+y}+\frac{3}{x-y}=3 \frac{2}{3}$. Find the values of $x \& y$ which satisfy the equations <br> (a) $(1,2)$ <br> (b) $(-1,-2)$ <br> (c) $\left(1, \frac{1}{2}\right)$ <br> (d) $(2,1)$ | D |
| Q36 | When the system is inconsistent, there is $\qquad$ solution. <br> (a) No <br> (b) Finite <br> (c) Infinite <br> (d) Identical | A |
| Q37 | $2^{x} \cdot 4^{y}=32 \& 3^{x} \div 9^{y}=3$. Find the solution set. <br> (a) $x=3, y=1$ <br> (b) $x=y=2$ <br> (c) $x=y=1$ <br> (d) $x=y=3$ | A |
| Q38 | Solve for x and $\mathrm{y}: \frac{4}{x}-\frac{5}{y}=\frac{x+y}{x y}+\frac{3}{10}$ and $3 x y=10(y-x)$. The value of x and y is $\qquad$ <br> (a) $(5,2)$ <br> (b) $(-2,-5)$ <br> (c) $(2,-5)$ <br> (d) $(2,5)$ | D |
| Q39 | The pair satisfying the equations $x+5 y=36, \frac{x+y}{x-y}=\frac{5}{3}$ is given by <br> (a) $(16,4)$ <br> (b) $(4,16)$ <br> (c) $(4,8)$ <br> (d) None | A |
| Q40 | Solve for $x, y$ and $z: 2 x-y+z=3 ; x+3 y-2 z=11 ; 3 x-2 y+4 z=1$. <br> (a) $x=-5, y=4, z=-2$ <br> (b) $x=3, y=2, z=-1$ <br> (c) $x=3, y=-3, z=6$ <br> (d) $x=-8, y=-5, z=-1$ | B |
| Q41 | Solve for $x, y$ and $z: \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=5 ; \frac{2}{x}-\frac{3}{y}-\frac{4}{z}=-11, \frac{3}{x}+\frac{2}{y}-\frac{1}{z}=-6$ <br> (a) $x=\frac{1}{2}, y=-\frac{1}{3}, z=\frac{1}{6}$ <br> (b) $x=\frac{1}{2}, y=-\frac{3}{5}, z=\frac{2}{5}$ <br> (c) $x=\frac{4}{5}, y=-\frac{2}{5}, z=\frac{1}{6}$ <br> (d) $x=-\frac{1}{2}, y=\frac{1}{3}, z=-\frac{1}{6}$ | A |
| Q42 | Solve for $x, y$ and $z: \frac{x y}{x+y}=70, \frac{x z}{x+z}=84, \frac{y z}{y+z}=140$ <br> (a) $x=105, y=210, z=420$ <br> (b) $x=60, y=80, z=140$ <br> (c) $x=100, y=200, z=300$ <br> (d) $x=120, y=150, z=450$ | A |
| Q43 | Solving $9 x+3 y-4 z=3 x+y-z=0$ and $2 x-5 y-4 z=-20$ following roots as obtained <br> (a) 2, 3, 4 <br> (b) $1,3,4$ <br> (c) $1,2,3$ <br> (d) None | C |
| Q44 | $\frac{x}{4}=\frac{y}{3}=\frac{z}{2} 7 x+8 y+5 z=62$. Solve <br> (a) $(4,3,2)$ <br> (b) $(2,3,4)$ <br> (c) $(3,4,2)$ <br> (d) $(4,2,3)$ | A |
| Q45 | $\frac{x y}{x+y}=20, \frac{y z}{y+z}=40, \frac{z x}{z+x}=24$. Solve <br> (a) $(120,60,30)$ <br> (b) $(60,30,120)$ <br> (c) $(30,120,60)$ <br> (d) $(30,60,120)$ | D |
| Q46 | $2 x+3 y+4 z=0, x+27 y-5 z=0,10 x+16 y-6 z=0 \text { Solve. }$ <br> (a) $(0, O, O)$ <br> (b) $(1,-1,1)$ <br> (c) $(3,2,-1)$ <br> (d) $(1,0,2)$ | A |
| Q47 | $\frac{x y}{y-x}=110, \frac{y z}{z-y}=132, \frac{z x}{z+x}=\frac{60}{11}$. Solve <br> (a) $(12,11,10)$ <br> (b) $(10,11,12)$ <br> (c) $(11,10,12)$ <br> (d) $(12,10,11)$ | B |
| Q48 | Find values of $x, y$ and $z-3 x-4 y+70 z-0,2 x+3 y-10 z=0, x+2 y+3 z=13$ <br> (a) $(1,3,7)$ <br> (b) $(1,7,3)$ <br> (c) $(2,4,3)$ <br> (d) $(-10,10,1)$ | D |
| Q49 | If $\alpha \& \beta$ are the roots of $x^{2}=x+1$ then value of $\frac{\alpha^{2}}{\beta}-\frac{\beta^{2}}{\alpha}$ is | D |


|  | $\begin{array}{llll}\text { (a) } 2 \sqrt{5} & \text { (b) } \sqrt{5} & \text { (c) } 3 \sqrt{5} & \text { (d) }-2 \sqrt{5}\end{array}$ |  |
| :---: | :---: | :---: |
| Q50 | If one roots of $5 x^{2}+13 x+p=0$ be recippocal of the other then the value of $p$ is <br> (a) -5 <br> (b) 5 <br> (c) $1 / 5$ <br> (d) $-1 / 5$ | B |
| Q51 | If one root of equation $x^{2}+7 x+p=0$ be reciprocal of the other then value of $p$ is $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 7 <br> (d) -7 | A |
| Q52 | If one root of the equation is $2-\sqrt{3}$, form the equation. <br> (a) $x^{2}-2 x+2=0$ <br> (b) $x^{2}-3 x+1=0$ <br> (c) $x^{2}-5 x+5=0$ <br> (d) $x^{2}-4 x+1=0$ | D |
| Q53 | Root of the equation $x^{2}-8 x+m=0$ exceeds the other by 4 then the value $m$ is $\qquad$ <br> (a) $m=10$ <br> (b) $m=11$ <br> (c) $m=9$ <br> (d) $m=12$ | D |
| Q54 | If the poots of the equation $2 x^{2}+8 x-m^{3}=0$ are equal then value of $m$ is $\qquad$ <br> (a) -3 <br> (b) -1 <br> (c) 1 <br> (d) -2 | D |
| Q55 | Equation $\left(\frac{1-m}{2}\right) x^{2}-\left(\frac{1+m}{2}\right) \mathrm{x}+\mathrm{m}=\mathrm{o}$ has got two values of x to satisfy equation given as $\qquad$ <br> (a) $\left(1, \frac{2 m}{1-m}\right)$ <br> (b) $\left(1, \frac{m}{1-m}\right)$ <br> (c) $\left(1, \frac{21}{1-m}\right)$ <br> (d) $\left(1, \frac{1}{1-m}\right)$ | A |
| Q56 | The values of $4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\cdots \infty}}}}$ <br> (a) $1 \pm \sqrt{2}$ <br> (b) $2 \pm \sqrt{5}$ <br> (c) $2 \pm \sqrt{3}$ <br> (d) None | B |
| Q57 | The condition that one of the roots of $a x^{2}+b x+c=0$ is twice the other is $\qquad$ <br> (a) $b^{2}=4 c a$ <br> (b) $2 b^{2}=9(c+a)$ <br> (c) $2 b^{2}=9 c a$ <br> (d) $2 b^{2}=9(c-a)$ | A |
| Q58 | The roots of the equation $x^{2}+k x+12$ will differ by unity only if <br> (a) $k= \pm \sqrt{12}$ <br> (b) $k= \pm \sqrt{48}$ <br> (c) $k= \pm \sqrt{47}$ <br> (d) $k= \pm 7$ | D |
| Q59 | If the roots of $a x^{2}+b x+c=0$ are in the ratio $\frac{p}{q}$ then the value of $\frac{b^{2}}{(c a)}$ is $\qquad$ <br> (a) $\frac{(p+q)^{2}}{(p q)}$ <br> (b) $\frac{(p+q)}{(p q)}$ <br> (c) $\frac{(p-q)^{2}}{(p q)}$ <br> (d) $\frac{(p-q)}{(p q)}$ | B |
| Q60 | If $\frac{x-a^{2}-b^{2}}{c^{2}}+\frac{c^{2}}{x-a^{2}-b^{2}}=2$ the value of $\qquad$ <br> (a) $a^{2}+b^{2}+c^{2}$ <br> (b) $-a^{2}-b^{2}-c^{2}$ <br> (c) $\frac{1}{a^{2}+b^{2}+c^{2}}$ <br> (d) 1 | C |
| Q61 | Solving equation $x^{2}-(a+b) x+a b=0$ we find value(s) of $x$ is $\qquad$ <br> (a) $a, b$ <br> (b) $a$ <br> (c) $b$ <br> (d) None | A |
| Q62 | $\alpha \& \beta$ are roots of equation $x^{2}-5 x+6=0$ the eq ${ }^{n}$ with roots $(\alpha \beta+\alpha+\beta) \&(\alpha \beta-\alpha-\beta)$ is $\qquad$ <br> (a) $x^{2}-12 x+11=0$ <br> (b) $2 x^{2}-6 x+12=0$ <br> (c) $x^{2}-12 x+12=0$ <br> (d) None | A |
| Q63 | If $\alpha \& \beta$ are the roots of equation $x^{2}-5 x+6=0$, then equation with roots $\left(\alpha^{2}+\beta\right) \&\left(\alpha+\beta^{2}\right)$ is $\qquad$ <br> (a) $x^{2}-9 x+99=0$ <br> (b) $x^{2}-18 x-90=0$ <br> (c) $x^{2}-18 x+77=0$ <br> (d) None | A |
| Q64 | Solving equation $z^{10}-33 z^{5}+32=0$ the following values of $z$ are obtained <br> (a) 1,2 <br> (b) 2, 3 <br> (c) 2,4 <br> (d) 1, 2, 3 | A |
| Q65 | Solve $4^{x}-3.2^{x+2}+2^{5}=0$ <br> (a) $x=3$ or $x=2$ <br> (b) $x=4$ or $x=5$ <br> (c) $x=5$ or $x=2$ <br> (d) $x=3$ or $x=4$ | A |

Q66 Solving $4^{x} \cdot 2^{y}=128$ and $3^{3 x+2 y}=9^{x y}$ we get the following poots
C
(a) $\frac{7}{4}, \frac{7}{2}$
(b) 2,3
(c) Both (a) and (b)
(d) 13

Q67 $4^{x}-3.2^{x+2}+2^{5}=0 ; ~ x=$ $\qquad$ .
(a) 4,8
(b) $-2,-3$
(c) 2,6
(d) 2,3

Q68 If $\frac{x}{b}+\frac{b}{x}=\frac{a}{b}+\frac{b}{a}$ the roots of the equation are $\qquad$ —.
(a) $a, \frac{b^{2}}{a}$
(b) $a^{2}, \frac{b}{a^{2}}$
(c) $a, b^{2}$
(d) None

Q69 If the roots of the equation $p(q-p) x^{2}+q(p-p) x+r(p-q)=0$ are equal, then $\frac{2}{q}=$
(a) $\frac{1}{r}+\frac{1}{p}$
(b) $\frac{1}{r p}$
(c) RP
(d) $\frac{1}{r}-\frac{1}{p}$

Q70 Solving equation $\left(x-\frac{1}{x}\right)^{2}-6\left(x+\frac{1}{x}\right)+12=0$ we get roots as follows (one of them)
(a) 0
(b) 1
(c) -1
(d) None

Q71 If $\frac{x-a}{b}+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}$ then the values of $x$ are $\qquad$ -.
(a) $\mathrm{O},(\mathrm{a}+\mathrm{b}),(\mathrm{a}-\mathrm{b})$
(b) $\mathrm{O},(\mathrm{a}+\mathrm{b}), \frac{a^{2}+b^{2}}{a+b}$
(c) $O,(a-b), \frac{a^{2}+b^{2}}{a+b}$
(d) None

Q72 The roots of the equation $x^{2}+(2 p-1) x+p^{2}=0$ are real if $\qquad$ .

D
(a) $P \geq 1$
(b) $P \leq 4$
(c) $P \geq 1 / 4$
(d) $P \leq 1 / 4$

Q73 The condition that one of the poots of $a x^{2}+b x+c=0$ is thrice the other is $\qquad$ _.
(a) $3 b^{2}=16 c a$
(b) $b^{2}=9 c a$
(c) $3 b^{2}=-16 c a$
(d) $b^{2}=-9 c a$

Q74 If $p \neq q$ and $p^{2}=5 p-3$ and $q^{2}=5 q-3$; the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is $\qquad$ -
(a) $x^{2}-19 x+3=0$
(b) $3 x^{2}-19 x-3=0$
(c) $3 x^{2}-19 x+3=0$
(d) $3 x^{2}+19 x+3=0$

Q75 If $L+M+N=0$ and $L$ td $N$ are pational, the poots of the equation $(M+N+L) x^{2}+(N+L-M) X+(L+M-N)=0$
(a) Real \& ippational
(b) Real \& pational
(c) Imaginary \& equal
(d) Real \& equal.

Q76 Solving equation $x^{2}-24 x+135=0$ we find value(s) of $x$ is $\qquad$ .

B
(a) 9, 6
(b) 9,15
(c) 15,6
(d) None

Q77 Solving equation $z+\sqrt{z}=\frac{6}{25}$ the value of $z$ works out to $\qquad$ -.
(a) $1 / 5$
(b) $2 / 5$
(c) $1 / 25$
(d) $2 / 25$

Q78 Solution of the quadratic equation $(a+b-2 c) x^{2}+(2 a-b-c) x+(c+a-2 b)=0$ is $\qquad$ . B
(a) $x=1$
(b) $x=-1$
(c) $x=2$
(d) $x=-2$

Q79
Solving $\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}-\frac{5}{2}=0 \& x+y-5=0$, we get the roots as under $\qquad$ -
(a) 1, 4
(b) 1,2
(c) 1, 3
(d) 1, 5

Q80 Solving $x^{2}+x y-21=0$ and $x y-2 y^{2}+20=0$ we get the roots as under $\qquad$ ـ.
(a) $\pm 1, \pm 2$
(b) $\pm 2, \pm 3$
(c) $\pm 3, \pm 4$
(d) None

Q81 When $\sqrt{2 z+1}+\sqrt{3 z+4}=7$ the value of $z$ is given by $\qquad$ .
(a) 1
(b) 2
(c) 3
(d) 4

| Q82 | Solving $x^{2}+x y+y^{2}=37$ and $3 x y+2 y^{2}=68$ we get the following roots <br> (a) $\pm 3, \pm 4$ <br> (b) $\pm 4, \pm 5$ <br> (c) $\pm 2, \pm 3$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q83 | Solving $x+2 y+2 z=0,3 x-4 y+z=0$ and $x^{2}+3 y^{2}+z^{2}=11$ following roots are obtained <br> (a) $2,1,-2 \&-2,-1,2$ <br> (b) $2,1,2 \&-2,-1,-2$ <br> (c) Only 2, 1, -2 <br> (d) Only -2, -1, 2 | A |
| Q84 | Solving equation $6\left[\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}\right]=13$ following roots are obtained <br> (a) $\frac{4}{13}, \frac{9}{13}$ <br> (b) $\frac{-4}{13}, \frac{-9}{13}$ <br> (c) $\frac{4}{13}, \frac{5}{13}$ <br> (d) $\frac{6}{13}, \frac{7}{13}$ | A |
| Q85 | Solving $\frac{x+\sqrt{12 p-x}}{x-\sqrt{12 p-x}}=\frac{\sqrt{p}+1}{\sqrt{p}-1}$, following roots are obtained <br> (a) $3 p$ <br> (b) Both $3 p$ and $-4 p$ <br> (c) Only $-4 p$ <br> (d) $-3 p 4 p$ | B |
| Q86 | Solving $\sqrt{y^{2}+4 y-21}+\sqrt{y^{2}-y-6}=\sqrt{6 y^{2}+5 y-39}$ following roots are obtained <br> (a) $2,3, \frac{5}{3}$ <br> (b) $2,3,-\frac{5}{3}$ <br> (c) $-2,-3, \frac{5}{3}$ <br> (d) $-2,-3,-\frac{5}{3}$ | B |
| Q87 | Solving equation $\left(x-\frac{1}{x}\right)^{2}-10\left(x-\frac{1}{x}\right)+24=0$ we get poots as follows <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | D |
| Q88 | Solving $x^{3}-6 x^{2}+11 x-6=0$ we get the following roots as $\qquad$ <br> (a) $-1,-2,3$ <br> (b) $1,2,-3$ <br> (c) $1,2,3$ <br> (d) $-1,-2,-3$ | C |
| Q89 | Solving $x^{3}+9 x^{2}-x-9=0$ we get the following roots as $\qquad$ <br> (a) $\pm 1,-9$ <br> (b) $\pm 1, \pm 9$ <br> (c) $\pm 1,9$ <br> (d) None | A |
| Q90 | Solve $x^{3}-7 x+6=0$ <br> (a) $x=-4,-2,-3$ <br> (b) $x=1,2,-3$ <br> (c) $x=5,6,-1$ <br> (d) $x=7,2,-5$ | B |
| Q91 | Solve for real $x: x^{3}+x+2=0$ <br> (a) $x=-4$ <br> (b) $x=4$ <br> (c) $x=-1$ <br> (d) $x=-3$ | C |
| Q92 | The solution of the equation $x^{3}-5 x^{2}+6 x=0$ is $\qquad$ <br> (a) 2, 3 <br> (b) $0,-2,-3$ <br> (c) $0,2,3$ <br> (d) None | C |
| Q93 | The equation $y^{3}-7 y+6=0$ is satisfied by $\qquad$ <br> (a) $1,2,-3$ <br> (b) $1,2,3$ <br> (c) $-1,-2,3$ <br> (d) 1, -2, 3 | A |
| Q94 | The equation $x^{3}-x^{2}-12 x=0$ is satisfied by $\qquad$ <br> (a) $1,4,-3$ <br> (b) $0,4,-3$ <br> (c) $0,-4,3$ <br> (d) None | B |
| Q95 | Solve $x^{3}-6 x^{2}+5 x+12=0$ <br> (a) $1,3,4$ <br> (b) $-1,3,4$ <br> (c) $1,6,2$ <br> (d) $1,-6,-2$ | B |
| Q96 | Solve $x^{3}-5 x^{2}-2 x+24=0$ given that two of its poots being in the patio of $3: 4$. <br> (a) $-2,4,3$ <br> (b) $-1,4,3$ <br> (c) $2,4,3$ <br> (d) $-2,-4,-3$ | A |
| Q97 | The cubic equation $x^{3}+2 x^{2}-x-2=0$ has 3 roots namely $\qquad$ <br> (a) $(1,-1,2)$ <br> (b) $(-1,1,-2)$ <br> (c) $(-1,2,-2)$ <br> (d) $(1,2,2)$ | B |
| Q98 | $(x-1),\left(x^{2}+3 x+2\right)$ are the factors of the left - hand side of the equation, then <br> (a) $x^{3}+2 x^{2}-x-2=0$ <br> (b) $x^{3}+x^{2}-20 x=0$ <br> (c) $x^{3}-3 x^{2}-4 x+12=0$ <br> (d) $x^{3}-6 x^{2}+11 x-6=0$ | A |


| Q99 | The equation $3 x^{3}+5 x^{2}=3 x+5$ has got 3 poots and hence the factors of LHS of $3 x^{3}+5 x^{2}-3 x$ - $5=0$ are $\qquad$ <br> (a) $(x-1),(x-2),(x-5 / 3)$ <br> (b) $(x-1),(x+1)(3 x-5)$ <br> (c) $(x+1),(x-1)(3 x+5)$ <br> (d) $(x-1),(x+1),(x-2)$ | C |
| :---: | :---: | :---: |
| Q100 | The roots of $x^{3}=x^{2}-x-1$ are $\qquad$ <br> (a) $(-1,-1,1)$ <br> (b) $(1,1,-1)$ <br> (c) $(-1,-1,-1)$ <br> (d) $(1,1,1)$ | A |
| Q101 | The satisfying value of $x^{3}+x^{2}-20 x=0$ are $\qquad$ <br> (a) $(1,4,-5)$ <br> (b) $(2,4,-5)$ <br> (c) $(0,-4,5)$ <br> (d) $(0,4,-5)$ | D |
| Q102 | The roots of the cubic equation $x^{3}+7 x^{2}-21 x-27=0$ are $\qquad$ <br> (a) $(-3,-9,-1)$ <br> (b) $(3,-9-1)$ <br> (c) $(3,9,1)$ <br> (d) $(-3,9,1)$ | B |
| Q103 | Solve $x^{3}+3 x^{2}-x-3=0$ give that the roots are in apithmetical progression <br> (a) $-1,1,3$ <br> (b) $1,2,3$ <br> (c) $-3,-1,1$ <br> (d) $-3,-2,-1$ | C |
| Q104 | Solve $x^{3}-7 x^{2}+14 x-8=0$ given that the roots are in geometrical progression. <br> (a) $1 / 2,12$ <br> (b) $1,2,4$ <br> (c) $1 / 2,-2,2$ <br> (d) $-1,2,-4$ | B |
| Q105 | The rational poot of the equation $2 x^{3}-x^{2}-4 x+2=0$ is $\qquad$ <br> (a) $1 / 2$ <br> (b) $-1 / 2$ <br> (c) 2 <br> (d) -2 | A |
| Q106 | If the sum of a number and the original number increased by 5 is greater than 11 , which could be a possible value of the number? <br> (a) -5 <br> (b) -1 <br> (c) 1 <br> (d) 4 | D |
| Q107 | The sum of two numbers is 52 and their difference is 2 . The numbers are $\qquad$ <br> (a) 17 and 15 <br> (b) 12 and 10 <br> (c) 27 and 25 <br> (d) None | C |
| Q108 | The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age. <br> (a) 60 years <br> (b) 52 years <br> (c) 51 years <br> (d) 50 yeaps | D |
| Q109 | The age of a man is three times the sum of the ages of his two sons and 5 years hence his age will be double the sum of their ages. Find the present age of the man? <br> (a) 65 years <br> (b) 25 years <br> (c) 35 years <br> (d) 45 years | D |
| Q110 | Average age of a group of eight is same as it was 3 years ago, when a young member is substituted for an old member, incoming member is younger to outgoing nests by $\qquad$ <br> (a) 11 years <br> (b) 24 years <br> (c) 28 years <br> (d) 16 years | B |
| Q111 | A school has 20 teachers, one of them retires at the age of 60 years and a new teacher replaces him, this change reduces the average age of the staff by 2 years, the age of new teacher is $\qquad$ <br> (a) 28 years <br> (b) 25 years <br> (c) 20 years <br> (d) 18 years | C |
| Q112 | If thrice of A's age 6 years ago be subtracted from twice his present age the result would be equal to his present age. Find A's present age. <br> (a) 6 years <br> (b) 9 years <br> (c) 12 years <br> (d) 10 years | B |
| Q113 | $Y$ is older than $X$ by 7 yeaps. 15 years back, the patio of their ages was $3: 4$. Their present ages are $\qquad$ <br> (a) $(X=36 Y=43)$ <br> (b) $(X=50 Y=43)$ <br> (c) $(X=43 Y=50)$ <br> (d) $(X=40 Y=47)$ | A |


| Q114 | If the sum of a number and the original number increased by 5 is greater than 11, which could be a possible value of the number? <br> (a) -5 <br> (b) -1 <br> (c) 1 <br> (d) 4 | D |
| :---: | :---: | :---: |
| Q115 | If the difference of the squares of two numbers is 45 , the square of the smaller number is 4 times the larger number, then the numbers are $\qquad$ <br> (a) 9, 6 or $9,-6$ <br> (b) 5,6, op 5,4 <br> (c) 9,5 op $9,-5$ <br> (d) 6,7 op $-7,6$ | A |
| Q116 | A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reversed, find the number. <br> (a) 54 <br> (b) 53 <br> (c) 45 <br> (d) 55 | C |
| Q117 | The sum of the digits of a 2 digit number is 10 . If 18 be subtracted from it the digits in the resulting number will be equal. The number is $\qquad$ <br> (a) 37 <br> (b) 73 <br> (c) 64 <br> (d) None | B |
| Q118 | Sum of numerator and denominator of a fraction is 8 . If 3 is added to both the numerator and denominator then the fraction becomes $3 / 4$. Then the fraction is $\qquad$ <br> (a) $1 / 5$ <br> (b) $2 / 5$ <br> (c) $3 / 5$ <br> (d) $4 / 5$ | C |
| Q119 | The denominator of a fraction exceeds the numerator by 5 and if 3 be added to both the fraction becomes $\frac{3}{4}$. Find the fraction. <br> (a) $\frac{15}{17}$ <br> (b) $\frac{13}{17}$ <br> (c) $\frac{12}{17}$ <br> (d) $\frac{11}{17}$ | C |
| Q120 | Difference between a number and its positive square poot is 12 ; find the numbers. <br> (a) 36 <br> (b) 25 <br> (c) 16 <br> (d) 9 | C |
| Q121 | The patio between a two digit number and the sum of digits of that number is $4: 1$. If the digit in the unit place is 3 more than the digit in the tenth place, what is that number? <br> (a) 24 <br> (b) 63 <br> (c) 36 <br> (d) Data insufficient | C |
| Q122 | The sum of two iprational numbers multiplied by the lapger one is 70 and their difference is multiplied by the smaller one is 12 ; the two numbers are $\qquad$ <br> (a) $3 \sqrt{2}, 2 \sqrt{3}$ <br> (b) $5 \sqrt{2}, 3 \sqrt{5}$ <br> (c) $2 \sqrt{2}, 5 \sqrt{2}$ <br> (d) None | C |
| Q123 | The sum of two numbers is 45 and the meal proportional between them is 18 . The numbers ape $\qquad$ <br> (a) $(15,30)$ <br> (b) $(32,13)$ <br> (c) $(36,9)$ <br> (d) $(25,20)$ | C |
| Q124 | There are two consecutive numbers such that the difference of their reciprocals is $1 / 240$. The numbers ape $\qquad$ <br> (a) $(15,16)$ <br> (b) $(17,18)$ <br> (c) $(13,14)$ <br> (d) $(12,13)$ | A |
| Q125 | The difference of two positive integers is 3 and the sum of their squares is 89 . The integers ape $\qquad$ <br> (a) $(7,4)$ <br> (b) $(5,8)$ <br> (c) $(3,6)$ <br> (d) $(2,5)$ | B |
| Q126 | A number consists of three digits of which the middle one is zero and the sum of the other digits is 9 . The number formed by interchanging the first and third digit is more than the original number by 297 . Find the number. <br> (a) 801 <br> (b) 603 <br> (c) 702 <br> (d) 306 | D |
| Q127 | A number consists of two digits. The digit in the ten's Place is twice the digit in the unit's place. If 18 be subtracted from the number the digits are reversed. Find the number. | D |


|  | $\begin{array}{llll}\text { (a) } 96 & \text { (b) } 62 & \text { (c) } 38 & \text { (d) } 42\end{array}$ |  |
| :---: | :---: | :---: |
| Q128 | The sum of the digits in a three digit number is 12 . If the digits are reversed the number is increased by 495 but reversing only of the tens and unit digits increases the number by 36 . The number is $\qquad$ <br> (a) 327 <br> (b) 372 <br> (c) 237 <br> (d) 273 | C |
| Q129 | Two numbers are such that thrice the smaller number exceeds twice the greater one by 18 and $1 / 3$ of the smaller and $1 / 5$ of the greater number are together 21. Numbers are $\qquad$ <br> (a) $(45,36)$ <br> (b) $(50,38)$ <br> (c) $(54,45)$ <br> (d) $(55,41)$ | B |
| Q130 | On two numbers $1 / 5^{\text {th }}$ of the greater is equal to $1 / 3^{\text {rd }}$ of the smaller and their sum is 16 . The numbers are $\qquad$ <br> (a) $(6,10)$ <br> (b) $(9,7)$ <br> (c) $(12,4)$ <br> (d) $(11,5)$ | A |
| Q131 | A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reversed. The number is $\qquad$ . <br> (a) 63 <br> (b) 35 <br> (c) 36 <br> (d) 60 | C |
| Q132 | Find the fraction which is equal to $1 / 2$ when both its numerator and denominator are increased by 2. It is equal to $3 / 4$ when both are increased by 12 . <br> (a) $3 / 8$ <br> (b) $5 / 8$ <br> (c) $3 / 8$ <br> (d) $2 / 3$ | A |
| Q133 | If a number of which the half is greater than $1 / 5^{\text {th }}$ of number by 15 then number is $\qquad$ <br> (a) 50 <br> (b) 40 <br> (c) 80 <br> (d) None | C |
| Q134 | The fourth part of a number exceeds the sixth part by 4 . The number is $\qquad$ <br> (a) 84 <br> (b) 44 <br> (c) 48 <br> (d) None | C |
| Q135 | Rs. 14 is divided between $A$ and $B$ such that half of the share of $A$ is equal to two thirds of the share of 8 , the share of $A$ is $\qquad$ <br> (a) Rs. 6 <br> (b) Rs. 10 <br> (c) Rs. 9 <br> (d) Rs. 8 | D |
| Q136 | The number of kilograms of corn needed to feed 5,000 chickens is 30 less than twice the number of kilograms needed to feed 2,800 chickens. How many kilograms of corn are needed to feed 2800 chickens? <br> (a) 70 <br> (b) 110 <br> (c) 140 <br> (d) 190 | C |
| Q137 | Divide 50 into two parts such that the sum of their reciprocals is $1 / 12$. The numbers are $\qquad$ <br> (a) $(24,26)$ <br> (b) $(28,22)$ <br> (c) $(27,23)$ <br> (d) $(20,30)$ | D |
| Q138 | A piece of string is 40 cms long. It is cut into three pieces. The longest piece is 3 times as long as the middle-sized and the shortest pieces are 23 cms shorter than the longest piece. The length of the shortest piece (in cm ) is $\qquad$ <br> (a) 27 cm <br> (b) 5 cm <br> (c) 4 cm <br> (d) 9 cm | C |
| Q139 | A piece of iron rod costs Rs.60. If the rod was 2 metre shorter and each metre costs Rs.1.00 more, the cost would remain unchanged. What is the length of the rod? <br> (a) 12 m <br> (b) 22 m <br> (c) 20 m <br> (d) 32 m | A |
| Q140 | A train travels first 300 kms at an average rate of 30 Km per tar and further travels the same distance at an average rate of 60 Km per hour then the average speed over the whole distance is $\qquad$ . | B |


|  | (a) 35 km per hour (b) 40 Km per hour (c) 42 Km per hour (d) 45 Km per hour |  |
| :---: | :---: | :---: |
| Q141 | On a certain map, $3 / 8$ of an inch represents 120 miles. How many miles does $13 / 4$ inches represent? <br> (a) 300 <br> (b) 360 <br> (c) 400 <br> (d) 560 | D |
| Q142 | If four pens cost Rs.1.96, what is the greatest number of pens that can be purchased for Rs. 29.407 <br> (a) 11 <br> (b) 14 <br> (c) 15 <br> (d) 16 | C |
| Q143 | A freight train and a passenger train start towards each other at the same time from two towns that are 500 miles apart. After 3 hours the trains are still 80 miles apart. If the average rate of speed of the passenger train is 20 miles per hour faster than the average rate of speed of the freight trains, what is the average rate of speed, in miles per hour, of the freight train? <br> (a) 40 <br> (b) 45 <br> (c) 50 <br> (d) 60 | D |
| Q144 | A motor boat traveling at 18 miles per hour traveled the length of a lake in one quarter of an hour less time than it took when traveling at 12 miles per hour. What was the length in miles of the lake? <br> (a) 6 <br> (b) 9 <br> (c) 12 <br> (d) 15 | B |
| Q145 | If a car is traveling at a constant rate of 45 miles per hour, how many miles does it travel from 10:40 a.m. to 1:00 p.m. of the same day? <br> (a) 165 <br> (b) 150 <br> (c) 120 <br> (d) 105 | D |
| Q146 | The total cost curve of the number of copies photograph is linear. The total cost of 5 and 18 copies of photographs are Rs. 80 and Rs. 106 respectively. Then the cost for 10 copies of the photograph is $\qquad$ <br> (a) Rs. 140 <br> (b) Rs. 90 <br> (c) Rs. 150 <br> (d) Rs. 130 | B |
| Q147 | A factory produces 300 units and 900 units at a total cost of Rs.6800/- and Rs.10400/respectively. The linear equation of the total cost line is $\qquad$ <br> (a) $y=6 x+1,000$ <br> (b) $y=5 x+5,000$ <br> (c) $y=6 x+5,000$ <br> (d) None | C |
| Q148 | If in Question No. 147, the selling price is Rs. 8 per unit the break even point will arise at the level of $\qquad$ <br> (a) 1,500 units <br> (b) 2,000 units <br> (c) 2,500 units <br> (d) 3,000 units | C |
| Q149 | If instead in terms of Question No. 147 if a profit of 2000/- is to be earned sale and production levels have to be elevated to <br> (a) 3,000 units <br> (b) 3,500 units <br> (c) 4,000 units <br> (d) 3,700 units | B |
| Q150 | If instead in terms of Question No. 147, if a loss of 3,000/- Is budgeted the factory may maintain production level at <br> (a) 1,000 units <br> (b) 1,500 units <br> (c) 1,800 units <br> (d) 2,000 units | A |
| Q151 | A factory produces 200 bulbs for a total cost of Rs.800/- and 400 bulbs for Rs.1200/-. The equation of the total cost line is $\qquad$ <br> (a) $2 x-y+100=0$ <br> (b) $2 x-y+400=0$ <br> (c) $1 x-y+400=0$ <br> (d) None | B |
| Q152 | If in terms of Question No. 151, the factory intends to produce 1000 butts the total cost would be $\qquad$ <br> (a) Rs.2,400 <br> (b) Rs.2,200 <br> (c) Rs.2,300 <br> (d) Rs.2,100 | A |


| Q153 | A manufacturer produces $60 ~ T . V . ~ s e t s ~ a t ~ a ~ c o s t ~ o f ~ R s .2,20,000 ~ a n d ~$ <br> Rs.2,87,500. Assuming the cost one to be linear, find the equation of the line and then use <br> it to estimate the cost of 95 sets. <br> (a) Rs.3,52,500 (b) Rs.1,32,500 |
| :--- | :--- |
| (c) Rs.2,42,500 (d) Rs.3,62,500 |  |

Q154 If an investment of Rs. 1,000 and 100 yield an income of Rs. 90 and Rs. 20 respectively. For earning Rs.50, investment required be $\qquad$ -.
(a) Less than Rs. 500
(b) Rs. Over 500
(c) Rs. 485
(d) Rs. 486

Q155 The equation in terms of Question No. 154 is $\qquad$ .
(a) $7 x-9 y+1100=0$
(b) $7 x-90 y+1000=0$
(c) $7 x-90 y+1100=0$
(d) $7 x-90 y-1100=0$

Q156 If an investment of Rs.60,000 and Rs.70,000 respectively yields an income of Rs.5,750 Rs.6,500 an investment of Rs.90,000 would yield income of $\qquad$ -.
(a) Rs. 7,500
(b) Rs.8,000
(c) Rs. 7,750
(d) Rs.7,800

Q157 In terms of Question No. 156 an Investment Rs.50,000 would yield income of $\qquad$ .
(a) Exactly Rs.5,000
(b) Little over Rs.5,000
(c) Little less than Rs.5,000
(d) At least Rs.6,000

Q158 The equation in terms of Question No. 157 is $\qquad$ _.
(a) $3 x+40 y+25,000=0$
(b) $3 x-40 y+50,000=0$
(c) $3 x-40 y+25,000=0$
(d) $3 x-40 y-50,000=0$

Q159 One machine can seal 360 packages per hour \& an older machine can seal 140 packages per hour. How many minutes will the two machines working together take to seal a total of 700 packages?
(a) 48
(b) 72
(c) 84
(d) 90

Q160 If x people working together at the same rate can complete a job in $H$ hours, what part of the same job can one person working along complete in $k$ hours?
(a) $\frac{k}{x H}$
(b) $\frac{H}{x k}$
(c) $\frac{k}{x+H}$
(d) $\frac{k H}{x}$

Q161
The demand and supply equations for a certain commodity are $4 q+7 p=17$ and $p=\frac{q}{3}+\frac{7}{4}$ respectively where $p$ is the market price and $q$ is the quantity then the equilibrium price \& quantity are
(a) $2, \frac{3}{4}$
(b) $3, \frac{1}{2}$
(c) $5, \frac{3}{5}$
(d) None

Q162
For a certain commodity, the demand equation giving demand 'd' in kg . for a price ' $p$ ' in rupees per kg . is $d=100(10-p)$. The supply equation giving the supply 's' in kg . for a price ' p ' in rupees per kg is $s=75(p-3)$. The market price is such at which demand equals supply. Find the market price and quantity that will be bought and sold.
(a) $7,500,600$
(b) $6,300,300$
(c) $7,300,300$
(d) 7,600, 300

Q163
The wages of 8 men and 6 boys amount to Rs.33. if 4 men earn Rs. 4.50 more than 5 boys determine the wages of each man and boy.
(a) (Rs.1.50, Rs.3)
(b) (Rs.3, Rs.1.50)
(c) (Rs.2.50, Rs.2)
(d) (Rs.2, Rs.2.50)

One student is asked to divide a half of a number by 6 and other half by 4 and then to add the two quantities. Instead of doing so the student divides the given number by 5 . If the answer is 4 short of the correct answer then the actual answer is $\qquad$ -.


| Q182 | The equation $\frac{3\left(3 x^{2}+15 \backslash\right)}{6}+2 x^{2}+9=\frac{2 x^{2}+96}{7}+6$ has got the solution as $\qquad$ <br> (a) $(1,1)$ <br> (b) $(1 / 2,-1)$ <br> (c) $(1,-1)$ <br> (d) $(2,-1)$ | C |
| :---: | :---: | :---: |
| Q183 | Number of roots of equation $[(x+2) \times(x-5)] /[(x-3) \times(x+6)]=(x-2) /(x+4)$ is $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) No root | A |
| Q184 | If $2^{2 x+3}-3^{2} \cdot 2^{x}+1=0$ then values of $x$ are $\qquad$ <br> (a) $(0,1)$ <br> (b) $(1,2)$ <br> (c) $(0,3)$ <br> (d) $(0,-3)$ | D |
| Q185 | Solve $\left(x-\frac{1}{x}\right)^{2}+2\left(x+\frac{1}{x}\right)=7 \frac{1}{4}$. <br> (a) $x=\frac{-9 \pm \sqrt{65}}{4}$ op $x=2 \frac{1}{2}$ <br> (b) $x=\frac{-9 \pm \sqrt{55}}{4}$ op $x=3 \frac{1}{2}$ <br> (c) $x=\frac{-9 \pm \sqrt{45}}{4}$ or $x=4 \frac{1}{2}$ <br> (d) $x=\frac{-9 \pm \sqrt{35}}{4}$ or $x=2 \frac{1}{2}$ | A |
| Q186 | Solve $2^{x-2}+2^{3-x}=3$ <br> (a) $x=5$ op $x=4$ <br> (b) $x=3$ or $x=5$ <br> (c) $x=2$ op $x=3$ <br> (d) $x=1$ op $x=2$ | C |
| Q187 | The solution of the equation $x-\sqrt{25-x 2}=1$ is $\qquad$ <br> (a) $x=-3$ <br> (b) $x= \pm 5$ <br> (c) $x=1$ <br> (d) $x=4$ | D |
| Q188 | Determine the value of $x$ for the equation $x^{2}-8 x+16=0$ <br> (a) $4,-4$ <br> (b) $-4,-4$ <br> (c) 2,6 <br> (d) 6,2 | A |
| Q189 | Solving equation $\frac{6 x+2}{4}+\frac{2 x^{2}-1}{2 x^{2}+2}=\frac{10 x-1}{4 x}$ we get roots as . $\qquad$ <br> (a) $\pm 1$ <br> (b) +1 <br> (c) -1 <br> (d) 0 | B |
| Q190 | Solve for $x, 4^{x}-3.2^{x+2}+2^{5}=0$ <br> (a) 4,8 <br> (b) $-2,-3$ <br> (c) 2,6 <br> (d) 2, 3 . | D |
| Q191 | Solving $9^{x}=3^{y}$ and5 $5^{x+y+1}=25^{x y}$ we get the following roots as $\qquad$ <br> (a) $(1,2),\left(\frac{-1}{4}, \frac{-1}{2}\right)$ <br> (b) $0,1,3$ <br> (c) 0,3 <br> (d) 1, 3 | A |
| Q192 | Solving $z^{2}-6 z+9=4 \sqrt{z^{2}-6 z+6}$ following roots are obtained <br> (a) $3+2 \sqrt{ } 3,3-2 \sqrt{ } 3$ <br> (b) 51 <br> (c) All the above <br> (d) None | C |
| Q193 | Solving equation $2\left(x-\frac{1}{x}\right)^{2}-5\left(x+\frac{1}{x}+2\right)+18=0$ we get poots as under $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) $-2 \pm \sqrt{ } 3$ | D |
| Q194 | Solving $x^{2}+y^{2}-25=0$ and $x-y-1=0$ we get the roots as under $\qquad$ <br> (a) $\pm 3, \pm 4$ <br> (b) $\pm 2, \pm 3$ <br> (c) $0,3,4$ <br> (d) $0,-3,-4$ | A |
| Q195 | $\frac{1}{\mathrm{x}^{2}}+\frac{1}{\mathrm{y}^{2}}-13=0$ and $\frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}-5=0$ we get the roots as under $\qquad$ <br> (a) $\frac{1}{8}, \frac{1}{5}$ <br> (b) $\frac{1}{2}, \frac{1}{3}$ <br> (c) $\frac{1}{13}{ }^{\prime} \frac{1}{5}$ <br> (d) $\frac{1}{4}, \frac{1}{5}$ | B |
| Q196 | Examine the nature of the roots of $x^{2}-8 x^{2}+16=0$ <br> (a) Roots are real and equal <br> (b) Roots are real, rational and unequal <br> (c) Roots are imaginary and unequal <br> (d) Roots are real, irrational and unequal | A |
| Q197 | Examine the nature of the roots of $3 x^{2}-8 x+4=0$ <br> (a) Roots are real and unequal <br> (b) Roots are imaginary and unequal <br> (c) Roots are real, rational and unequal <br> (d) Roots are real, irpational and unequal | C |


| Q198 | Examine the nature of the poots of $5 x^{2}-4 x+2=0$ <br> (a) Roots are imaginary and unequal <br> (b) Roots are real and unequal <br> (c) Roots are real, rational and unequal <br> (d) Roots are real, irrational and unequal | A |
| :---: | :---: | :---: |
| Q199 | Examine the nature of the roots of $2 x^{2}-6 x-3=0$ <br> (a) Roots are real and unequal <br> (b) Roots are imaginary and unequal <br> (c) Roots are real, rational and unequal <br> (d) Roots are real, irrational and unequal | D |
| Q200 | The equation $a x^{2}+b x+c=0$ does not have any solution if $\qquad$ <br> (a) $b^{2}-4 a c=0$ <br> (b) $b^{2}-4 a c<0$ <br> (c) $b^{2}-4 a c>0$ <br> (d) $b^{2}+4 a c=0$ | B |
| Q201 | The equation $a x^{2}+b x+c=0$ does not have any solution if $\qquad$ <br> (a) $b^{2}-4 a c=0$ <br> (b) $b^{2}-4 a c<0$ <br> (c) $b^{2}-4 a c>0$ <br> (d) $b^{2}+4 a c=0$ | B |
| Q202 | In the equation $a x^{2}+b x+c=0$, the poots are determined from $\qquad$ <br> (a) $b^{2}<4 a c$ <br> (b) $b^{2}-4 a c$ <br> (c) $b^{2}>4 a c$ <br> (d) $b^{2}=4 a c$ | B |
| Q203 | The roots of $a x^{2}+b x+c=0$, are real and unequal if $\qquad$ <br> (a) $b^{2}<4 a c$ <br> (b) $b^{2}-4 a c$ <br> (c) $b^{2}>4 a c$ <br> (d) $b^{2}=4 a c$ | C |
| Q204 | If $b^{2}-4 a c=0$ the roots are $\qquad$ <br> (a) Real \& Unequal <br> (b) Real \& Equal <br> (c) Irpational \& Unequal <br> (d) Rational \& Unequal | B |
| Q205 | If $\alpha \& \beta$ be the poots of $x^{2}+7 x+12=0$, find equation whose roots are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$ <br> (a) $x^{2}-40 x+49-0$ <br> (b) $x^{2}-35 x+39=0$ <br> (c) $x^{2}-50 x+49=0$ <br> (d) $x^{2}-40 x-49=0$ | B |
| Q206 | If $\alpha, \beta$ be the poots of $2 x^{2}-4 x-1=0$, find the value of $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$. <br> (a) -42 <br> (b) -22 <br> (c) -32 <br> (d) -52 | C |
| Q207 | If $\alpha \beta$ are roots of equation $x^{2}-5 x+6=0$ the equation with roots $\left(\alpha^{2}+\beta\right)$ and ( $\left.\alpha+\beta^{2}\right]$ is $\qquad$ <br> (a) $x^{2}-9 x+99=0$ <br> (b) $x^{2}-18 x+90=0$ <br> (c) $x^{2}-18 x+77=0$ <br> (d) None | A |
| Q208 | If $\alpha \beta$ be the roots of the equation $2 x^{2}-4 x-3=0$ the value of $\alpha^{2}+\beta^{2}$ is $\qquad$ <br> (a) 5 <br> (b) 7 <br> (c) 3 <br> (d) -4 | A |
| Q209 | If $p$ and $q$ are the roots of $x^{2}+x+1=0$ then the values of $p^{3}+q^{3}$ becomes $\qquad$ <br> (a) 2 <br> (b) -2 <br> (c) 4 <br> (d) -4 | D |
| Q210 | The roots of the equation $(q-p) \times x^{2}+(p-p) \times x+(p-q)=0$ are $\qquad$ <br> (a) $(p-p) /(q-p), 1$ <br> (b) $(p-q) /(q-p), 1$ <br> (c) $(q-p) /(p-q), 1$ <br> (d) $(p-p) /(p-q), 1$ | D |
| Q211 | Roots of equation $a x^{2}-b x+c=0$ are two consecutive integers then $b^{2}-4 a c$ is $\qquad$ <br> (a) 3 <br> (b) -2 <br> (c) -1 <br> (d) 1 | A |
| Q212 | If $\alpha, \beta$ be the roots of $\alpha$ quadratic equation if $\alpha+\beta=-2, \alpha \beta=-3$ Find quadratic equation <br> (a) $x^{2}+2 x-7=0$ <br> (b) $x^{2}+2 x-3=0$ <br> (c) $x^{2}-2 x-3=0$ <br> (d) $x^{2}-2 x+7=0$ | B |
| Q213 | If $\alpha, \beta$ are the roots of the quadratic equation $2 x^{2}-4 x=1$, then the value of $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$ | C |


|  | (a) -11 | (b) 22 | (c) -22 | (d) 11 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q214 | The sum of the digits of a two digit number is 10 . If 18 be subtracted from it the digits in the resulting number will be equal. The number is $\qquad$ <br> (a) 37 <br> (b) 73 <br> (c) 75 <br> (d) None |  |  |  | B |
| Q215 | The product of two numbers is 3200 and the quotient when the lapger number is divided by the smallep is 2 . The numbers are $\qquad$ <br> (a) $(16,20)$ <br> (b) $(60,20)$ <br> (c) $(60,30)$ <br> (d) $(80,40)$ |  |  |  | D |
| Q216 | Divide 25 into two parts so that sum of their reciprocals is $\frac{1}{6}$. <br> (a) 12 and 13 <br> (b) 9 and 16 <br> (c) 11 and 14 |  |  | (d) 10 and 15 | D |
| Q217 | Divide 56 into two parts such that three times the first part exceeds one-third of the second by 48 . The parts are $\qquad$ <br> (a) $(20,36)$ <br> (b) $(25,31)$ <br> (c) $(24,32)$ <br> (d) None |  |  |  | A |
| Q218 | The hypotenuse of a right-angled triangle is 20 cm . The difference between its other two sides is 4 cm . The sides are $\qquad$ <br> (a) $(11 \mathrm{~cm}, 15 \mathrm{~cm})$ <br> (b) $(12 \mathrm{~cm}, 16 \mathrm{~cm})$ <br> (c) $(20 \mathrm{~cm}, 24 \mathrm{~cm})$ <br> (d) None |  |  |  | B |
| Q219 | Two squares have sides $p \mathrm{~cm}$ and $(p+5) \mathrm{cms}$. The sum of their squares is $625 \mathrm{sq} . \mathrm{cm}$. The sides of the squares are $\qquad$ <br> (a) $(10 \mathrm{~cm}, 30 \mathrm{~cm})$ <br> (b) $(12 \mathrm{~cm}, 25 \mathrm{~cm})$ <br> (c) $(15 \mathrm{~cm}, 20 \mathrm{~cm})$ <br> (d) None |  |  |  | C |
| Q220 | Particular company produces some articles on a day. The cost of production per article is Rs. 2 more than thrice the number of articles and the total cost of production is Rs. 800 on a day then the number of apticles is $\qquad$ <br> (a) 16 <br> (b) 14 <br> (c) 18 <br> (d) 15 |  |  |  | A |
| Q221 | The satisfying value of $x^{3}+x^{2}-20 x=0$ are $\qquad$ <br> (a) $(1,4,-5)$ <br> (b) $(2,4,-5)$ <br> (c) $(0,-4,5)$ <br> (d) $(0,4,-5)$ |  |  |  | B |
| Q222 | If $4 x^{3}+8 x^{2}-x-2=0$ then value of $(2 x+3)$ is given by $\qquad$ <br> (a) $4,-1,2$ <br> (b) $-4,2,1$ <br> (c) $2,-4,-1$ |  |  |  | A |
| Q223 | $a x^{3}=c$ is $a$ $\qquad$ <br> (a) quadpatic eqn <br> (b) cubic equation <br> (c) linear equation <br> (d) None |  |  |  | B |
| Q224 | Roots of the cubic equation $x^{3}-7 x+6=0$ are $\qquad$ <br> (a) 1, 2, 3 <br> (b) $1,-2,3$ <br> (c) $1,2,-3$ <br> (d) $1,-2,-3$ |  |  |  | C |
| Q225 | 8 is the solution of the equation <br> (a) $\frac{x+4}{4}+\frac{x-5}{3}=11$ <br> (b) $\frac{x+4}{2}+\frac{x+10}{9}=8$ <br> (c) $\frac{x+24}{5}=4+\frac{x}{4}$ <br> (d) $\frac{x-15}{10}+\frac{x+5}{5}=4$ |  |  |  | B |
| Q226 | Solution for the pair of equations $\frac{1}{16 x}+\frac{1}{15 y}=\frac{9}{20}, \frac{1}{20 x}-\frac{1}{27 y}=\frac{4}{45}$ is given by $\qquad$ <br> (a) $\left(\frac{1}{4}, \frac{1}{3}\right)$ <br> (b) $\left(\frac{1}{3}, \frac{1}{4}\right)$ <br> (c) $(3,4)$ <br> (d) $(4,3)$ |  |  |  | A |
| Q227 | If $5 x+y=19$ and $x-3 y=7$, then $x+y$ <br> (a) -4 <br> (b) -1 <br> (c) 3 |  |  |  | C |
| Q228 | Two variables $x$ and $y$ are related by $7 x+7 y+13=0$ and $x=7$, then $y$ is $\qquad$ <br> (a) 8.80 <br> (b) 8.86 <br> (c) -8.80 <br> (d) -8.86 |  |  |  | D |


| Q229 | $\frac{4 x}{3}-1=\frac{14}{15} x+\frac{19}{5}$. Find $x=$ $\qquad$ <br> (a) 12 <br> (b) 15 <br> (c) 20 <br> (d) 8 | A |
| :---: | :---: | :---: |
| Q230 | $1.5 x+3.6 y=2.1 ; 2.5(x+1)=6 y$ <br> (a) $(0.2,0.5)$ <br> (b) $(0.5,0.2)$ <br> (c) $(2,5)$ <br> (d) $(-2,-5)$ | A |
| Q231 | Solving equation $3 x^{2}-14 x+8=0$ we get roots as $\qquad$ <br> (a) $\pm 4$ <br> (b) $\pm 2$ <br> (c) $4,2 / 3$ <br> (d) None | C |
| Q232 | If $\alpha \beta$ are the roots of equation $x^{2}-5 x+6=0$ equation with roots $(\alpha+\beta)$ and $(\alpha-\beta)$ is $\qquad$ <br> (a) $x^{2}-6 x+5=0$ <br> (b) $2 x^{2}-6 x+5=0$ <br> (c) $2 x^{2}-5 x+6=0$ <br> (d) $x^{2}-5 x+6=0$ | A |
| Q233 | If $\alpha$ and $\beta$ are the roots of the equation $a x^{2}+b x+c=0$, then $(\alpha+\beta)^{2}$ is $\qquad$ <br> (a) $-b^{2} / a^{2}$ <br> (b) $c^{2} / a^{2}$ <br> (c) $b^{2} / a^{2}$ <br> (d) bc / a | C |
| Q234 | A quadratic polynomial $f(x)=a x^{2}+b x+c$ for all $x \in R$ can be factorized into pational factors over $R$ if \& only if $\qquad$ <br> (a) $b^{2}-4 a c>0$ <br> (b) $b^{2}-4 a c=0$ <br> (c) $b^{2}-4 a c<0$ <br> (d) $b^{2}-4 a c>0$, perfect square or $b^{2}-4 a c=0$ | D |
| Q235 | Solving $(b-c) x^{2}+(c-a) x+(a-b)=0$, poots obtained ape $\qquad$ <br> (a) $\frac{a-b}{b-c}, 1$ <br> (b) $(a-b)(a-c), 1$ <br> (c) $\frac{b-c}{a-b}, 1$ <br> (d) None | A |
| Q236 | Solving equation $3 x^{2}-14 x+16=0$ we get roots as $\qquad$ <br> (a) $\pm 1$ <br> (b) $\left(2, \frac{8}{3}\right)$ <br> (c) 0 <br> (d) None | B |
| Q237 | Value of $\sqrt{6 \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \ldots \infty}=$ $\qquad$ <br> (a) 3 <br> (b) 6 <br> (c) $\sqrt{42}$ <br> (d) $3 \sqrt{2}$ | B |
| Q238 | 12 years after a man will be 4 times as he was 12 years ago, his present age is $\qquad$ <br> (a) 25 years <br> (b) 20 years <br> (c) 28 years <br> (d) 30 years | B |
| Q239 | 10 years ago, age of the father was 4 times age of his son. 10 years hence, age of the father will be twice that of his son. Present ages of the father and the son are $\qquad$ <br> (a) $(50,20)$ <br> (b) $(60,20)$ <br> (c) $(55,25)$ <br> (d) None | A |
| Q240 | Ten years ago a father was 12 times as old as his son and 10 years hence he will be twice as old as his son. Then their present ages are $\qquad$ <br> (a) $12 \mathrm{yps}, 24 \mathrm{yps}$ <br> (b) $12 \mathrm{yrs}, 34 \mathrm{yps}$ <br> (c) $24 \mathrm{yrs}, 42 \mathrm{yps}$ <br> (d) $12 \mathrm{yps}, 42 \mathrm{yps}$ | B |
| Q241 | Sum of 2 natural numbers is $8 \&$ sum of their reciprocal is $8 / 15$. Numbers are $\qquad$ <br> (a) 3 and 5 <br> (b) 6 and 2 <br> (c) 7 and 1 <br> (d) 4 and 4 | A |
| Q242 | The sum of two numbers is 38 and their difference is 2 . Find them. <br> (a) 20,18 <br> (b) 10,12 <br> (c) 17,15 <br> (d) None | A |
| Q243 | Two numbers are in the ratio $2: 3$ and the difference of their squares is 320 . The numbers are $\qquad$ <br> (a) 12,18 <br> (b) 16,24 <br> (c) 14,21 <br> (d) None | B |
| Q244 | The sum of the two numbers is 8 and the sum of their squares is 34 . Taking one number as $x$ form an equation in $x$ and hence find the numbers. The numbers are $\qquad$ <br> (a) $(7,10)$ <br> (b) $(4,4)$ <br> (c) $(3,5)$ <br> (d) $(2,6)$ | C |

## Q245

Five times of a positive whole number is 3 less than twice the square of the number. The number is $\qquad$ _.
(a) 3
(b) 4
(c) -3
(d) 2

Q246 If numerator of a fraction is increased by $2 \&$ denominator by 1 it becomes 1. Again, if numerator is deceased by $4 \&$ denominator by 2 it becomes $1 / 2$. Fraction $=$ $\qquad$
(a) $3 / 8$
(b) $5 / 8$
(c) $7 / 8$
(d) $1 / 8$

Q247 A number consist of two digits. The digits in the ten's place is 3 times the digit in the unit's place. If 54 is subtracted from the number the digits are reversed. The number is $\qquad$
(a) 39
(b) 92
(c) 93
(d) 94

Q248
Denominator of a fraction exceeds numerator by 2 . If 5 be added to the numerator the fraction increases by unity. The fraction is $\qquad$ —.
(a) $5 / 7$
(b) $1 / 3$
(c) $7 / 9$
(d) $3 / 5$

Q249 A freight train left a station at 12 noon, going north at a rate of 50 miles per hour. At 1:00 pm, a passenger train left the same station, going south at a rate of 60 miles per hour. At what time were the trains 380 miles apart?
(a) $3: 00 \mathrm{pm}$
(b) $4: 00 \mathrm{pm}$
(c) $4: 30 \mathrm{pm}$
(d) $5: 00 \mathrm{pm}$

Q250 Julie can type a manuscript in 4 hours. Pat takes 6 hours to type the same manuscript. If Julie and Pat begin working together at 12 noon, at what time will they complete the typing of the manuscript?
(a) $2: 24 \mathrm{pm}$
(b) $2: 30 \mathrm{pm}$
(c) $2: 40 \mathrm{pm}$
(d) $3: 00 \mathrm{pm}$

Q251
A firm produces 50 units of a product for Rs. 320 and 80 units for Rs.380. considering cost curve to be a straight-line the cost of producing 110 units to be estimated as $\qquad$ -.
(a) Rs. 400
(b) Rs. 420
(c) Rs. 440
(d) None

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CHAPTER 3. INEQUALITIES

## INTRODUCTION

- Inequalities are statements where two quantities are unequal but a relationship exists between them.
- A quantity may be greater than, less than, $\geqslant, \leqslant$ to the other quantity. Ex: $x<10, y>2, x+y \geqslant 25, x-y \leqslant 12$ etc.


## LINEAR INEQUALITIES IN ONE VARIABLE AND THE SOLUTION SPACE

- Linear Inequality: Any linear function that involves an inequality sign is linear inequality.
- Solution Space: Values of the variables that satisfy an inequality are called the solution space


## POINTS TO REMEMBER

$\checkmark$ If both sides are multiplied/divided by any negative number, inequality sign CHANGES.
Ex: $-6 x<-18$; If we divide both sides by $-6, X>3$. The inequality sign will change.
Ex: If $a>b \& c<0$, then $a c<b c \& a / c<b / c$.
$\checkmark$ If both sides are multiplied/divided by positive number, inequality sign 'NO CHANGE'
Ex: $5 \mathrm{X}<20$; If we divide both sides by $5, x<4$. The inequality sign won't change.
Ex: If $a>b \& c>0$, then $a c>b c \& a / c>b / c$.
$\checkmark$ NO CHANGE if any number is added or subtracted to both sides of inequality.
Ex: If $a>b$, then $a+c>b+c \& a-c>b-c$.
$\checkmark$ If $a>b \& c>d$, then $a+c>b+d$
$\checkmark$ If $a<b \& c<d$, then $a+c<b+d$.

## SOME FREQUENTLY USED GRAPHICAL REPRESENTATIONS



## LINEAR INEQUALITIES IN TWO VARIABLES

Let us now consider a linear inequality in two variables given by $3 x+y<6$
Inequality mentioned above is true for certain pairs of numbers $(x, y)$ that satisfy $3 x+y<6$.

## Steps to solve linear inequalities in two variables:

1. Replace the inequality by an equality \& then you will get $3 x+y=6$.
2. Now substitute two convenient values for $x \& y$ so that we get two points.

Let $x=0$ so that $y=6$. Let $y=0$, so that $x=2$. You will get two points $(0,6) \&(2,0)$.
3. Plot these points on co-ordinate plane \& join them to get a line of the linear equation.


## PC NOTE

$>$ If Plotted line is intersecting (touching) x \& y axis, then for

- 'Less than' inequality $\rightarrow$ Solution = Part Below the line.
- 'Greater than' inequality $\rightarrow$ Solution = Part Above the line.

Since in our example, we had $3 x+y<6$, i.e 'Less than' inequality, the solution will be the part below the line as shown in the figure on the left side.
$>$ If Plotted line is NOT intersecting (touching) both $x$ \& $y$ axis, then we take any point on either side of the line.

- If that point satisfies the inequality, the part in which the point lies will be our solution.
- If that point does not satisfies the inequality, the part on the other side of the point will be our solution.

CQ1: $x \leq 6, y \leq 7, x+y \leq 12, x \geq 0, y \geq 0$. Find the solution space.
Ans:


By superimposing the above three graphs, we determine the common region in the xy plane where all the five inequalities are simultaneously satisfied.


## OPTIMAL SOLUTION

$\checkmark$ The objective function attains a maximum or a minimum value at one of the copner points of the feasible solution known as extreme points of the solution set.
$\checkmark$ Once these extreme points (the points of intersection of lines bounding the region) are known, a compact matrix representation of these points is possible. We shall denote the matrix of the extreme points by $E$.
$\checkmark$ The coefficients of the objective function may also be represented by a column vector. We shall represent this column vector by C.
$\checkmark$ The elements in the product matrix EC shows different values, which the objective function attains at the various extreme points.
$\checkmark$ The largest \& the smallest elements in matrix EC are respectively the maximum and the minimum values of the objective function.
$\checkmark$ The row in matrix EC in which this happens is noted and the element in that pow indicates the appropriate pairing and is known as the optimal solution.
In the above example;

$$
E=\left[\begin{array}{cc}
X & Y \\
0 & 0 \\
0 & 7 \\
5 & 7 \\
6 & 0 \\
6 & 6
\end{array}\right], C=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \mathrm{y} \quad \mathrm{EC}=\left[\begin{array}{ll}
0 & 0 \\
0 & 7 \\
5 & 7 \\
6 & 0 \\
6 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \times 1+0 \times 2 \\
0 \times 1+7 \times 2 \\
5 \times 1+7 \times 2 \\
6 \times 1+0 \times 2 \\
6 \times 1+6 \times 2
\end{array}\right]=\left[\begin{array}{c}
0 \\
14 \\
19 \\
6 \\
18
\end{array}\right]
$$

The given objective function viz. $Z=x+2 y$ is maximum at the points $(5,7)$ present in the third pow of the matrix $E$.

Thus, optimal solution is $x=5, y=7$, \& the maximum value of the objective function is 19 .

## Steps to be followed under graphical solution to a linear programming problem.

- Determine the region that satisfies the set of given inequalities.
- Ensure that the region is bounded*.
- If the region is not bounded, either there are additional hidden conditions which can be used to bound the region or there is no solution to the problem.
- Construct the matrix $E$ of the extreme points, \& the column vector $C$ of the objective function.
- Find the matrix product EC.
- For maximization, determine the row in EC where the largest element appears; while for minimization, determine the row in EC where the smallest element appears.

The objective function is optimized corpesponding to the same pow elements of the extreme point matrix $E$.

PC Note: If the slope of the objective function be same as that of one side of feasible region, there are multiple solutions to the problem. However, the optimized value of the objective function remains the same.
CQ2: A manufacturer produces two products $A$ and $B$, and has his machines in operation for 24 hours a day. Production of $A$ requires 2 hours of processing in machine M1 \& 6 hours in machine M2. Production of $B$ requires 6 hours of processing in machine M1 \& 2 hours in machine M2. The manufacturer eapns a profit of Rs. 5 on each unit of $A$ and Rs. 2 on each unit of B. How many units of each product should be produced in a day in order to achieve maximum profit?
Solution: Let $x_{1}$ be the number of units of type A product to be produced, and $x_{2}$ is that of type B product to be produced.

Formulation of L.P.P: Maximize $Z=5 x_{1}+2 x_{2}$ subject to the constraints,
$2 x_{1}+6 x_{2}<24 ; \quad 6 x_{1}+2 x_{2}<24 ; \quad x_{1} \geq 0, x_{2} \geq 0$
For the line $2 x_{1}+6 x_{2}=24$; Let $x_{1}=0$, so that $x_{2}=4$; Let $x_{2}=0$, so that $x_{1}=12$.
For the line $6 x_{1}+2 x_{2}=24$; Let $x_{1}=0$, so that $x_{2}=12$; Let $x_{2}=0$, so that $x_{1}=4$.


The shaded portion in the diagram is the feasible region and the matrix of the extreme points $E_{1}, E_{2}, E_{3}$ and $E_{4}$ is

$$
E=\begin{gathered}
X_{1} \\
Y_{2} \\
{\left[\begin{array}{ll}
0 & 0 \\
0 & 4 \\
3 & 3 \\
4 & 0
\end{array}\right] \begin{array}{l}
E_{1} \\
E_{2} \\
E_{3} \\
E_{4}
\end{array}}
\end{gathered}
$$

The column vector for the objective function is $C=\left[\begin{array}{l}5 \\ 2\end{array}\right] \begin{aligned} & x_{1} \\ & x_{2}\end{aligned}$
The column vector the values of the objective function is given by

$$
\mathrm{EC}=\left[\begin{array}{ll}
0 & 0 \\
0 & 4 \\
3 & 3 \\
4 & 0
\end{array}\right]\left[\begin{array}{l}
5 \\
2
\end{array}\right]=\left[\begin{array}{l}
0 \times 5+0 \times 2 \\
0 \times 5+4 \times 2 \\
3 \times 5+3 \times 2 \\
4 \times 5+0 \times 2
\end{array}\right]=\left[\begin{array}{c}
0 \\
8 \\
21 \\
20
\end{array}\right] \begin{aligned}
& \mathrm{E}_{1} \\
& \mathrm{E}_{2} \\
& \mathrm{E}_{3} \\
& \mathrm{E}_{4}
\end{aligned}
$$

Since 21 is the largest element in matrix EC, therefore the maximum value is reached at the extreme point $E_{3}$ whose coordinates are $(3,3)$.

Thus, to achieve maximum profit the manufacturer should produce 3 units each of both the products $A$ and $B$.
CQ3: Graph $5 x_{1}+4 x_{2} \geq 9, x_{1}+x_{2} \geq 3, x_{1} \geq 0, x_{2} \geq 0$; \& mark the common region.
Solution: We draw the straight lines $5 x_{1}+4 x_{2}=9$ and $x_{1}+x_{2}=3$.

Table for $5 x_{1}+4 x_{2}=9$

| $\mathrm{X}_{1}$ | 0 | $9 / 5$ |
| :--- | :--- | :--- |
| $\mathrm{X}_{2}$ | $9 / 4$ | 0 |

Table for $x_{1}+x_{2}=3$

| $\mathrm{X}_{1}$ | 0 | 3 |
| :--- | :--- | :--- |
| $\mathrm{X}_{2}$ | 3 | 0 |

Now, if we take the point $(4,4)$, we find $5 x_{1}+4 x_{2} \geq 9$; i.e., $5.4+4.4 \geq 9$; or, $36 \geq 9$ (True) $x_{1}+x_{2} \geq 3$; i.e., $4+4 \geq 3 ; 8 \geq 3$ (True);

Hence $(4,4)$ is in the region which satisfies the inequalities.


## HOW TO FORM INEQUATION FROM WORD PROBLEMS

CQ4: A fertilizer company produces two types of fertilizers called Grade I \& Grade II. Each of these types is processed through two critical chemical plant units. Plant A has maximum 120 hrs \& Plant B has maximum of 180 hps available in a week. Manufactuping one bag of grade I fertilizer requires 6 hours in Plant A and 4 hours in plant B. Manufacturing one bag of Grade II fertilizer requires 3 hrs in Plant A and 10 houps in Plant B.
Answer: Firstly, we need to identify the key factor (factor having pestrictions op conditions). Here we have limited Machine Houps \& thus Machine houps becomes our Key Factor.

Always aprange 'Key Factor' in columns \& other given data in rows.

| Particulaps | Machine A | Machine B |
| :---: | :---: | :---: |
| Chemical Grade I | 6 hrs | 4 hrs |
| Chemical Grade II | 3 hrs | 10 hrs |
| Maximum Available Time | $\mathbf{1 2 0}$ Hours | $\mathbf{1 8 0}$ Hours |

Now let's assume that we will produce $x$ units of Chemical Grade I \& y units of Chemical Grade II.

$$
\text { Thus, } 6 x+3 y \leqslant 120 \& 4 x+10 y \leqslant 180 .
$$

CQ5: Two machines produce two grades of plywood, Grade A \& Grade B. In one hour of operation, machine 1 produces 2 units of Grade A \& 1 unit of Grade B, while machine II produces 3 units of grade A \& 4 units of grade B. Machines are required to meet a production schedule of at least 14 units of grade A \& 12 units of grade B.
Answer: Let Machine I operate for $x$ hours \& Machine II operate for y hours.

| Particulars | Grade A | Grade B |
| :---: | :---: | :---: |
| Machine I | 2 units | 1 unit |
| Machine II | 3 units | 4 units |
| Minimum Quantity required | 14 units | 12 units |

Thus, $2 x+3 y \geq 14, x+4 y \geq 12, x \geq 0, y \geq 0$

## INEQUALITIES - QUESTION BANK



| Q17 | What is the largest integer value of $p$ that satisfies the inequality $4+3 p<p+1$ ? <br> (a) -2 <br> (b) -1 <br> (c) 0 <br> (d) 1 | A |
| :---: | :---: | :---: |
| Q18 | A dealer has only Rs. 5760 to invest in fans ( $x$ ) \& sewing machines ( $y$ ). Cost per unit of fans and sewing machine is Rs. 360 \& Rs. 240 respectively. This can be shown by <br> (a) $360 x+240 y \geq 5760$ <br> (b) $360 x+240 y \leq 5760$ <br> (c) $360 x+240 y=5760$ <br> (d) None of these | D |
| Q19 | An employer recruits experienced ( $x$ ) \& fresh workmen ( $y$ ), But he cannot employ more than 9 people. <br> (a) $x+y \neq 9$ <br> (b) $x+y \leq 9$ <br> (c) $x+y \geq 9$ <br> (d) None | B |
| Q20 | Experienced person ( $x$ ) does 5 units of work while a fresh one ( $y$ ) does 3 units of work daily but the employer has to maintain an output of at least 30 units of work per day. This situation can be expressed as $\qquad$ <br> (a) $5 x+3 y \leq 30$ <br> (b) $5 x+3 y>30$ <br> (c) $5 x+3 y \geq 30$ <br> (d) None | C |
| Q21 | Rules demand that employer should employ not more than 5 experienced hands to 1 fresh one. Express as $\qquad$ <br> (a) $y \geq x / 5$ <br> (b) $5 y \geq x$ <br> (c) Both (a) and (b) <br> (d) $5 y \leq x$ | C |
| Q22 | Union forbids him to employ less than 2 experienced persons to each fresh person. This can be expressed as $\qquad$ <br> (a) $x \leq y / 2$ <br> (b) $y \leq x / 2$ <br> (c) $x \geq 2 y$ <br> (d) Both (b) \& (c) | D |
| Q23 | A scooter company manufactures scooters of two models A \& B. Model A requires 15 manhours for assembly, 5 man-hours for painting $\& 1$ man- hour for testing. Model $B$ requires 6 man-hours for assembly, 4 -man hours for painting \& 2 man hours for testing. There are 300 man-hours available in the assembly shop, 120 man-hours in painting shop and 50 man-hours available in testing division. <br> (a) $15 x+6 y \leq 300, x+2 y \leq 50,5 x+4 y \leq 120$ <br> (b) $15 x+6 y \leq 300, x+2 y \geq 50,5 x+4 y \geq 120$ <br> (c) $15 x+6 y \geq 300, x+2 y \leq 50,5 x+4 y \geq 120$ <br> (d) $15 x+6 y \leq 300, x+2 y \leq 50,5 x+4 y \leq 120$ | A |
| Q24 | A company produces two types of leather belts, say $A$ and $B$. Belt $A$ is of superior quality and belt $B$ is of lower quality. Each belt of type $A$ requires twice as much as time required by a belt of type B. If all belts were of type $B$, the company could produce1000 belt per day. But the supply of leather is sufficient only for 800 belts per day. Belt A requires fancy buckles and only 400 fancy buckles are available per day. For belt of type $B$ only 700 buckles are available per day. Assuming that the company produces $x$ unit of belt $A$ and $y$ units of belt $B$ : <br> (a) $x+2 y \geq 1000, x+y \geq 800, x \geq 400 ; y \leq 700$ <br> (b) $x+2 y \leq 1000, x+y \leq 800, x \leq 400 ; y \leq 700$ <br> (c) $x+2 y \geq 1000, x+y \leq 800, x \geq 400 ; y \geq 700$ <br> (d) $x+2 y \leq 1000, x+y \geq 800, x \leq 400 ; y \geq 700$ | B |
| Q25 | A firm makes two types of products: Type $A$ and Type $B$. The profit on product $A$ is Rs. 20 each and that on product $B$ is Rs. 30 each. Both types are processed on three machines MI, M2 and M3. The time required in hours by each product and total time available in hours per week on each machine is as follows: | C |


| Machine | A | B | Total Time available |
| :---: | :---: | :---: | :---: |
| M1 | 3 | 3 | 36 |
| M2 | 5 | 2 | 50 |
| M3 | 2 | 6 | 60 |

Constraints can be formulated taking $x_{1}=$ No. of units $A \& x_{2}=$ No. of unit of $B$ as $\qquad$ .
(a) $x_{1}+x_{2} \leq 12 ; 5 x_{1}+2 x_{2} \leq 50 ; 2 x_{1}+6 x_{2} \leq 60$;
(b) $3 x_{1}+3 x_{2} \geq 36 ; 5 x_{1}+2 x_{2} \leq 50 ; 2 x_{1}+6 x_{2} \geq 60$;
(c) $3 x_{1}+3 x_{2} \leq 36 ; 5 x_{1}+2 x_{2} \leq 50 ; 2 x_{1}+6 x_{2} \leq 60$;
(d) None of these

Q26 Vitamins $A$ and $B$ are found in food $F_{1}$ and $F_{2}$. One unit of $F_{1}$ contains 20 units of vitamin $A$ \& 30 units of vitamin $B$. One unit of food $F_{2}$ contains 60 units of vitamin $A \& 40$ units of vitamin $B$. Cost per unit of $F_{1} \& F_{2}$ are Rs. $3 \& R s .4$ pespectively. The minimum daily pequirement of vitamin $A \& B$ is $80 \& 100$ units respectively.
Problem is to determine mixture of $F_{1} \& F_{2}$, which meets the requirement at minimum cost.
(a) $20 x_{1}+60 x_{2} \leq 80,30 x_{1}+40 x_{2} \leq 100, x_{1} \leq 0 ; x_{2} \leq 0$
(b) $20 x_{1}+60 x_{2} \geq 80,30 x_{1}+40 x_{2} \leq 100, x_{1} \geq 0 ; x_{2} \leq 0$
(c) $20 x_{1}+60 x_{2} \geq 80,30 x_{1}+40 x_{2} \geq 100, x_{1} \geq 0$; $x_{2} \geq 0$
(d) $20 x_{1}+60 x_{2} \leq 80,30 x_{1}+40 x_{2} \geq 100, x_{1} \leq 0 ; x_{2} \geq 0$

Q27 A firm produces two types of gadgets $A$ \&B, which are first processed in the foundary, and then sent to another machine for finishing. The number of man-hours for the firm available per week are as follows:

| Particulars | Foundry | Machine-shop |
| :---: | :---: | :---: |
| A | 10 | 5 |
| B | 6 | 4 |
| Capacity per week (man hours) | $\mathbf{1 0 0}$ | $\mathbf{6 0 0}$ |

Let the firm manufactupe $x$ units of $A$ and $y$ units of 8 . The constraints ape:
(a) $10 x+6 y \leq 1000,5 x+4 y \geq 600, x \geq 0 ; y \leq 0$
(b) $10 x+6 y \leq 1000,5 x+4 y \leq 600, x \geq 0 ; y \geq 0$
(c) $10 x+6 y \geq 1000,5 x+4 y \leq 600, x \leq 0 ; y \geq 0$
(d) $10 x+6 y \geq 1000,5 x+4 y \geq 600, x \leq 0 ; y \leq 0$

Q28 A firm plans purchase hens ( x ) for its canteen. There cannot be more than 20 hens.
A
(a) $x \leqslant 20$
(b) $x=20$
(c) $x>20$
(d) None

Q29 In a class of boys $(x) \&$ girls ( $y$ ), maximum seating capacity is 360 . This can be shown by $\qquad$ .
(a) $x+y \leq 360$
(b) $x+y \geq 360$
(c) $x+y \neq 360$
(d) None

Q30 Mr. A plans to invest upto Rs. 30,000 in two stocks $X$ and $Y$. Stock $X(x)$ is priced at Rs. 175 \& Stock $Y(y)$ at Rs. 95 per share. This can be shown by $\qquad$ .
(a) $175 x+95 y \leq 30,000$
(b) $175 x+95 y \geq 30,000$
(c) $175 x+95 y=30,000$
(d) None

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION



|  | Manufacturing one bag of Grade II fertilizer requires 3 hrs in Plant A \& 10 hours in Plant B. <br> (a) $6 x+3 y \leqslant 120,4 x+10 y=180$ <br> (b) $6 x+3 y=120,4 x+10 y>180$ <br> (c) $6 x+3 y \leqslant 120,4 x+10 y \leqslant 180$ <br> (d) $6 x+3 y<120,4 x+10 y<180$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Q40 | A man makes two types of furniture: chairs and tables. Profits are Rs. 20 per chair and Rs. 30 per table. Both the products are processed on two machines M1 \& M2. Time required for each product in hours and total time available in hours per week on each machine are as follows: |  |  |  |
|  | Machine | Chair | Table | Availabl |
|  | $M_{1}$ | 3 | 3 | 36 |
|  | $M_{1}$ | 5 | 2 | 50 |

Constraints can be formulated by taking $x=$ no. of chairs, $y=$ no. of tables produced as:
(a) $x+y \leqslant 12,5 x+2 y \geqslant 50, x \leqslant 0 ; y \geqslant 0$
(b) $x+y \geqslant 12,5 x+2 y \leqslant 50, x \geqslant 0 ; y \leqslant 0$
(c) $x+y \leqslant 12,5 x+2 y \leqslant 50, x \geqslant 0 ; y \geqslant 0$
(d) $x+y \geqslant 12,5 x+2 y \geqslant 50, x \leqslant 0 ; y \leqslant 0$

Q41 Suppose a man needs a minimum of 50 units of carbohydrate, 40 units of proteins per month for good health. He is taking food at two places, viz., $A$ and $B$, food at $A$ contains 4 and 5 units of carbohydrates and proteins respectively.
Express this in the form of linear inequalities assuming the man is in good health. Let $x_{1}$ and $x_{2}$ represent carbohydrates and proteins respectively. Then mathematical inequalities are:
(a) $4 x_{1}+x_{2} \geq 50,5 x_{1}+3 x_{2} \leq 40, x_{1} \geq 0 ; x_{2} \leq 0$
(b) $4 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 50,5 \mathrm{x}_{1}+3 \mathrm{x}_{2} \geq 40, \mathrm{x}_{1} \leq 0 ; \mathrm{x}_{2} \geq 0$
(c) $4 x_{1}+x_{2} \geq 50,5 x_{1}+3 x_{2} \geq 40, x_{1} \geq 0 ; x_{2} \geq 0$
(d) $4 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 50,5 \mathrm{x}_{1}+3 \mathrm{x}_{2} \leq 40, \mathrm{x}_{1} \leq 0 ; \mathrm{x}_{2} \leq 0$

Q42 L1: $5 x+3 y=30 ; \quad$ L2: $x+y=9 ; \quad$ L3: $y=x / 3 ; \quad$ L4: $y=x / 2$. Common region (shaded part) refers to $\qquad$ .
[ICAI SM Q1(viii)]

(a) $5 x+3 y \leq 30 ; x+y \leq 9 ; y \leq 1 / 5 x ; y \leq x / 2$
(b) $5 x+3 y \geq 30 ; x+y \leq 9 ; y \geq x / 3 ; y \leq x / 2 ; x \geq 0, y \geq 0$
(c) $5 x+3 y \geq 30 ; x+y \geq 9 ; y \geq x / 3 ; y \geq x / 2 ; x \geq 0, y \geq 0$
(d) $5 x+3 y>30 ; x+y<9 ; y \geq 9 ; y \leq x / 2 ; x \geq 0, y \geq 0$

| Q43 | Common region (Shaded part) expressed by the set of inequalities is [ICAI SM Q3] $\text { L1: } 2 x+y=9 ; \quad \text { L2: } x+y=7 ; \quad \text { L3: } y=x+2 y=10 ; \quad \text { L4: } x+3 y=12$  <br> (a) $2 x+y \leq 9 ; x+y \geq 7 ; x+2 y \geq 10 ; 2 x+3 y \geq 12$ <br> (b) $2 x+y \geq 9 ; x+y \leq 7 ; x+2 y \geq 10 ; x+3 y \geq 12$ <br> (c) $2 x+y \geq 9 ; x+y \geq 7 ; y+2 y \geq 10 ; x+3 y \geq 12$; <br> (d) None of these | C |
| :---: | :---: | :---: |
| Q44 | Region indicated by shading in the graph is expressed by inequalities. [ICAI SM Q5] <br> (a) $x_{1}+x_{2} \leq 2 ; 2 x_{1}+2 x_{2} \geq 8 ; x_{1} \geq 0, x_{2} \geq 0$ <br> (b) $x_{1}+x_{2} \leq 2 ; 2 x_{1}+x_{2} \leq 4$ <br> (c) $x_{1}+x_{2} \geq 2 ; 2 x_{1}+2 x_{2} \geq 8$ <br> (d) $x_{1}+x_{2} \leq 2 ; 2 x_{1}+2 x_{2}>8$ | A |
| Q45 | Two machines (I and II) produce two grades of plywood, Grade A and Grade B. In one hour of operation, machine I produces 2 units of Grade A and one unit of Grade B, while machine II, in one hour of operation produces 3 units of grade A and four units of grade B. The machines are required to meet a production schedule of atleast 14 units of grade $A$ and 12 units of grade B. <br> (a) $2 x+3 y \geqslant 14, x+4 y \geqslant 12, x>0, y \geqslant 0$ <br> (b) $2 x+3 y \leqslant 14, x+4 y=12, x>0, y>0$ <br> (c) $2 x+3 y \geqslant 14, x+4 y \geqslant 12, x \geqslant 0, y \geqslant 0$ <br> (d) $2 x+3 y=14, x+4 y=12, x \geqslant 0, y \geqslant 0$ | C |


| Q46 | Common region indicated on the graph is expressed by the set of five inequalities. <br> (a) L1: $x_{1} \geq$ O; L2: $x_{2} \geq$ O; L3: $x_{1}+x_{2} \leq 1$; L4: $x_{1}-x_{2} \geq 1$; L5: $-x_{1}+2 x_{2} \leq 0$ <br> (b) L1: $x_{1} \geq 0$; L2: $x_{2} \geq 0$; L3: $x_{1}+x_{2} \geq 1$; L4: $x_{1}-x_{2} \geq 1$; L5: $-x_{1}+2 x_{2} \leq 0$ <br> (c) L1: $x_{1} \leq$ O; L2: $x_{2} \leq 0$; L3: $x_{1}+x_{2} \geq 1$; L4: $x_{1}-x_{2} \geq 1$; L5: $-x_{1}+2 x_{2} \leq 0$ <br> (d) None of these | B |
| :---: | :---: | :---: |
| Q47 | Graph to express the inequality $x+y \leqslant 9$ is <br> [ICAI SM Q1(v)] <br> (a) <br> (c) <br> (b) <br> (d) none of these  | A |
| Q48 | The inequalities $X_{1}+2 x_{2} \leqslant 5, x_{1}+x_{2} \geqslant 1, x_{1} \geqslant 0, x_{2} \geqslant 0$ represents the region | A |


|  | (a) <br> (c) |   | (b) <br> (d) |   |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q49 | Com <br> (a) <br> (c) | mon region satisfied by the inequalit | (b) <br> (d) | , $\llcorner 2: x+y \geq 4,\llcorner 3: 3 x+3 y \geqslant 6$, and $\llcorner 4: x+y \leq 6$, <br> None | A |
| Q50 |  |  |  | The region is express as - <br> (a) $x_{1}-x_{2} \geqslant 1$ <br> (b) $x_{1}+x_{2} \leqslant 1$ <br> (c) $x_{1}+x_{2} \geqslant 1$ <br> (d) None of these | C |

Q51 The inequality $-x+2 y \leqslant 0$ is indicated on the graph as:
[ICAI SM Q6(iii)]
(a)

(b)

(c)
(d) none of these


Q53 Which of the following graph represents the inequality $x+y \leqslant 6$ is $\qquad$ .




then the common region under these conditions is
(a) ECDE
(b) EOABCE
(c) Line segment CD
(d) Line segment $B C$

Q55
Graph to express the inequality $5 x+3 y \geqslant 30$ is $\qquad$ —.
(a)

(b)

(c)
(d) none of these


Q56 The graph to express the inequality $y \leqslant \frac{x}{2}$ is indicated by $\qquad$ .
(a)

(b)

(c)

(d)


Q57 The region is expressed as $\qquad$ _.

(a) $x_{1}-x_{2} \geq 1$
(b) $x_{1}+x_{2} \leq 1$
(c) $x_{1}+x_{2} \geq 1$
(d) None

Q58 The inequality $-x_{1}+2 x_{2} \leq 0$ is indicated on the graph as $\qquad$
(a)

(b)

(c)
(d) none of these


Q59 The set of inequalities $L_{1}: x+y \leqslant 12 ; L_{2}: 5 x+2 y \leqslant 50 ; L_{3}: x+3 y \leqslant 30 ; x \geqslant 0 \& y \geqslant 0$ is
(a)

(b)

(c)


## CHAPTER 4. TIME VALUE OF MONEY

## Meaning of Some Important Terms

- Interest: Interest is the price paid by a borpower for use of a lender's money.
- Principal: Principal is the initial amount lent/borpowed.
- Rate of Interest: The rate at which the interest is charged for a defined period of time for use of principal (generally on yearly basis) is known as rate of interest. It is usually expressed as percentages.
- Time: It is no. of years for which the principle is boprowed or loaned.
- Accumulated amount (Balance): It is the final value of an investment. [Ppincipal + Interest].


## CONCEPT 1: SIMPLE INTEREST

- Simple interest is the interest computed on the principal for the entire period of boprowing.
- Interest is calculated on the original principal and not on interest previously earned.

NO Interest is paid on Interest Eapned.
Simple Interest (SI) $=$ Principal $(P) \times$ Rate of Interest $(R) \times$ Time in years $(T)$.
Accumulated Amount $(A)=P+S I=P+P R T=P(1+R T)$.
PC NOTE: Sometimes, we are given two different accumulated amounts for two time period \& we have to find out interest, principal \& Rate of Interest. Let two accumulated amounts be $A_{1}$ \& $A_{2}$ \& time period be $T_{1}$ \& $T_{2}$
Interest per year $=\frac{A_{2}-A_{1}}{T_{2}-T_{1}} ; \quad \quad$ Rate of Interest $=\frac{A_{1}-A_{2}}{A_{1} T_{2}-A_{2} T_{1}} \times 100$

## How to find Time op Rate to multiply a sum at S.I.

| Particular | Sum is 1.5 times | Sum is Doubled | Sum is Trebled | Sum is 4 times |
| :---: | :---: | :---: | :---: | :---: |
| Time Req. (Yps) | $\mathrm{T}=\frac{0.5}{R} \mathrm{yps}$ | $\mathrm{T}=\frac{1}{R} \mathrm{yps}$ | $\mathrm{T}=\frac{2}{R} \mathrm{yps}$ | $\mathrm{T}=\frac{3}{R} \mathrm{yps}$ |
| Rate Req. | $\mathrm{R}=\frac{0.5}{T}$ | $\mathrm{R}=\frac{1}{T}$ | $\mathrm{R}=\frac{2}{T}$ | $\mathrm{R}=\frac{3}{T}$ |

CQ1: A sum of money amount to Rs. 6,200 in 2 years and Rs. 7,400 in 3 yeaps. The principal \& pate of interest are:
(a) Rs. 3,800, 31.57\%
(b) Rs. $3,000,20 \%$
(c) Rs. $3,500,15 \%$
(d) None

CQ2: Calculate the simple interest on Rs. 50,000 at $12 \%$ simple interest for 5 years?

CQ3: Sania Mirza deposited Rs. 50,000 in a bank for 20 years with interest rate of $5.5 \%$ p.a. How much interest would she earn? Find the final value of her investment.

CQ4: Find pate of interest if amount owed after 6 months is Rs. 1050 \& boprowed amount is Rs. 1000.

CQ5: Katrina gave Rs. 70,000 as loan to Salman Khan @ $6.5 \%$ p.a. SI. She received Rs. 85,925 after the end of term. Find out the period for which loan was given by Katrina to Salman Khan.

CQ6: Sharmaji deposited a particular amount in a bank for 7.5 yeaps @ 6\% p.a. SI. He received Rs. 1,01,500 at the end of the term. Compute initial deposit of Sharmaji.

CQ7: Rs. 46,875 was lent out at SI \& at the end of 1 year \& 8 months, total amount was Rs. 50,000. Find R.

CQ8: What amount will produce Rs. 28,600 as an interest in 3 years and 3 months at $2.5 \%$ p.a. simple interest?

CQ9: In what time will Rs. 85,000 amount to Rs. $1,57,675$ at $4.5 \%$ p.a.?
CQ10: A sum doubles itself in 10 years. Find interest pate.
(a) $10 \%$
(b) $12 \%$
(c) $15 \%$
(d) $20 \%$

## CONCEPT 2: COMPOUND INTEREST

- If the interest of a period is added to the principal \& interest for next period is calculated on revised principal [Original Principal + Interest], it is called compound interest.
- In CI, principal does not remain same, i.e Principal goes on changing every year.

Interest is charged on Interest Eapned.
Amount $(A)=P(1+R)^{\top} \quad$ Interest $(I)=A-P$


CQ11: PC deposited Rs. 1 crope in a nationalized bank for 3 years. If the rate of interest is $7 \%$ p.a. Calculate the interest after 3 years if interest is compounded annually. Also calculate the amount at the end of third year.

## Conversion Period

The fixed period at the end of which the interest is calculated \& added to the principal is called conversion period.

Ex: When the interest is calculated \& added to the principal every 6 months, conversion period is six months. In this case number of conversion periods per year (denoted by K) would be two.

| Conversion period \& frequency | Number of Conversion <br> Period in a Year (K) | Formula to be used |
| :---: | :---: | :---: |
| 12 Months (Annually) | 1 | $\mathbf{A}=\mathrm{P}(1+\mathrm{R})^{\top}$ |
| 6 Months (Semi annually) | 2 | $\mathbf{A}=\mathrm{P}\left(1+\frac{R}{2}\right)^{2 T}$ |
| 3 Months (Quapterly) | 3 | $\mathbf{A}=\mathrm{P}\left(1+\frac{R}{4}\right)^{4 T}$ |
| 1 Month (Monthly) | 12 | $\mathbf{A}=\mathrm{P}\left(1+\frac{R}{12}\right)^{12 T}$ |
| 1 Day (Daily) | 365 | $\mathbf{A}=\mathrm{P}\left(1+\frac{R}{365}\right)^{365 T}$ |

Formula to be used: Amount ( $\mathbf{A}$ ) $=P\left(1+\frac{R}{K}\right)^{k T}$ where ' $K$ ' is no. of conversion per year.

## PC Note:

> If rate of interest is same, CI increases with increase in frequency of compounding.
> If nothing is mentioned in the problem, the interest is taken as 1 yr .
$>$ SI \& CI. Are equal for the first conversion period on same sum and same rate
$>$ Amount for $\mathrm{CI}\left(\mathrm{P}, \mathrm{A}_{1}, A_{2}, \ldots \ldots ..\right)$ form a GP, where $p=(1+i)$. Also true for intervals.
$>C I$ for each period also forms a GP, where $r=(1+i)\left[\mathrm{CI}_{2 n d}-\mathrm{CI}_{1 s t}=S I\right.$ on $\left.\mathrm{CI}_{1 \text { st }}\right)$
> CI formula can be used in case of uniform periodical increase at fixed rate like population growth. In case of uniform decrease like depreciation (W.D.V basis) $\boldsymbol{i}$ is replaced by $-\mathbf{i}$.

Years required for a Sum to Double at CI with annual compounding

| Thumb Rule | $R=10 \%$ | $R=11 \%$ | $R=12 \%$ | $R=13 \%$ | $R=14 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{T}=\mathbf{0 . 3 5 + \frac { \mathbf { 0 . 6 9 } } { \boldsymbol { R } }}$ | 7.25 YPs. | 6.62 Yrs | 6.1 Yrs | 5.65 YPs | 5.27 YPs |

CQ12: Rs. 10,000 is invested at annual pate of interest of $10 \%$. What is the amount after 2 years if compounded?
(a) Annually
(b) Semi-annually
(c) Quarterly
(d) Monthly

Whatsapp: 8888111134

## Points to Remember

- Different Interest Rate for different year $\left(R_{1}, R_{2}, R_{3}\right) \rightarrow \mathbf{A}_{n}=\mathbf{P}\left(1+\mathbf{R}_{1}\right)\left(1+\mathbf{R}_{2}\right)\left(1+\mathbf{R}_{3}\right) \ldots \ldots\left(1+\mathbf{R}_{n}\right)$. [Use Calculator as: $\mathbf{A}_{\mathrm{n}}=\left(\mathbf{1}+\mathbf{R}_{1} \%+\mathbf{R}_{2} \%+\mathbf{R}_{3} \%+\ldots .+\mathbf{R}_{\mathrm{n}} \%\right) \times \mathbf{P}$

- CI for $1^{\text {st }}$ year $=$ SI for $1^{\text {st }}$ year. But then $2^{\text {nd }}$ year onwards, CI \& SI will be different.

For Annual Compounding only

- CI for 2 years - SI for 2 years $=\mathbf{P R}^{2}$
- CI for 3 years - SI for 3 years $=\mathbf{P R}^{2}(\mathbf{R}+3)$
- $R=\frac{2\left(\mathrm{CI}_{2}-S I_{2}\right)}{S I_{2}}$


## CONCEPT 3: NOMINAL RATE \& EFFECTIVE RATE OF INTEREST

1. Nominal Rate: Annual Compound Interest Rate is called N.R. [Compounded annually]

- It is the stated interest rate. It is the simplest type of interest rate.
- This rate works according to the simple interest \& does not take into account the compounding periods.

CQ13: If a bank pays $5 \%$ compounded annually on a savings account, then $5 \%$ is the nominal interest pate
2. Effective Rate of Interest (E): If the amount is compounded more than once a year, the actual pate of interest (we got) is called effective rate of interest. If we compound the interest more than once a year, effective interest rate for the year will be more than actual interest rate per annum.
It is the actual equivalent annual pate of interest at which an investment grows in value when interest is credited more often than once a year.
$\mathbf{E}=\left(\mathbf{1}+\frac{R}{K}\right)^{K}-1[E=$ Effective interest rate; $R=$ Interest pate per annum; $K=$ No. of conversion period] PC Note: Effective rate of Interest is relevant when the amount is compounded more than one a year. Effective Interest Rate has nothing to do with Principal. It is related to interest rate \& frequency of compounding.

CQ14: Rs. 5,000 is invested in Term Deposit Scheme that fetches interest 6\% per annum compounded quarterly. What will be the interest after one year? What is effective rate of interest?

$$
\text { [Interest }=\text { Rs, 306.82; } \quad E=6.13 \% \text { ]. }
$$

CQ15: Which is better investment? (i) $3 \%$ p.a compounded monthly or (ii) $3.2 \%$ p.a SI. $\left[(1+0.0025)^{12}=1.0304\right]$

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

Solution: $K=12$ times; $E=\left(1+\frac{R}{K}\right)^{n}-1 ; E=\left(1+\frac{3}{12}\right)^{12-1 ;}=1.0304-1=0.0304$. Thus, $\mathbf{E}=\mathbf{3 . 0 4 \%}$ Answer: Effective rate of interest $<3.2 \%$ \& thus SI @ $3.2 \%$ per year is the better investment.

## JUST FOR KNOWLEDGE

Real Rate of Return: It is so named because it states the 'real rate' that lender or investor receives after taking the effect of inflation. [Interest rate that exceeds the inflation rate]

$$
\text { Real Rate of Return }=\text { Nominal Rate of Return - Inflation. }
$$

## How Banks attpact customers?

While charging interest, they advertise the nominal rate, which is lower and does not reflect how much interest the consumer would owe on the balance after a full year of compounding. While paying interest on saving deposit accounts, they generally advertise the effective rate because it looks higher than the nominal rate.

PC NOTE: More the compounding period in a year, more expensive the loan becomes. So choose a loan in which the interest is compounded annually.

## CONCEPT 4: ANNUITY

- Annuity can be defined as a sequence of periodic payments (or receipts) regularly over a specified period of time.
- When we pay (or receive) a fixed amount of money periodically over a specified time period we create an annuity.

Ex: Payment of life insurance premium, EMI of a loan, receipt of pension.

## Features of Annuity:

$>$ Amount paid (or received) must be constant over the period of annuity \&
$>$ Time interval between two consecutive payments (or receipts) must be the same.

## Types of Annuity Based on Mode of Payment.

$\rightarrow$ Annuity regular: Payment is made @ end of each period [Preferred when nothing is said in question]
$>$ Annuity Due/ Annuity Immediate: Payment is made @ beginning of each period.
Perpetuity: Annuity where the receipt (or payment) takes place forever. Since the payment is forever we cannot compute a future value of perpetuity. However we can compute the present value of the perpetuity. $\quad \mathrm{P}=\frac{\boldsymbol{A}}{\boldsymbol{i}}$

## SOME TERMS RELATED TO ANNUITY

| TERMS | MEANING OF TERMS |
| :---: | :--- |
| Periodic Payment | Size of each Payment of Annuity. |
| Annual Rent | Sum of all payments made in one year of an annuity |
| Payment Period | Time between two successive payments of an annuity. |
| Terms | Total time from first payment period to the last period |
| Amount | Total worth of all the payments at conclusion of an annity. |
| Present Value | Sum of the present values of all the payments of an annuity. |
| Sinking Fund | Money accumulated at CI by regular \& equal payments for <br> replacement of a wasting asset or liquidation of a loan |

## CONCEPT 5: FUTURE VALUE OF ANNUITY

- Future value is the cash value of an investment (done today) in the future.
- It is tomorpow's value of today's money compounded at the given rate of interest.

CQ16: Suppose you invest Rs. 1,000 in FD @ 7\% p.a. At the end of $1^{\text {st }}$ year, you will have Rs. 1,070. Rs. 1,070 is the future value of Rs. 1,000 invested for one year at 7\%.
We can say that Rs. 1000 today is worth Rs. 1070 in one year's time if the interest rate is $7 \%$.
Thus Rs. $1,144.90$ is the future value of Rs. 1,000 invested for two years at $7 \%$.
EXPLANATORY TABLE OF Rs. 1 invested for 4 years @ 6\%

| End of year | Amount Deposit (Rs.) | Future value at the end of $\mathbf{4}^{\text {th }}$ year (Rs) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | - | - |  |  |
| 1 | Rs. 1 | $1(1+0.06)^{3}=1.191$ |  |  |
| 2 | Rs. 1 | $1(1+0.06)^{2}=1.124$ |  |  |
| 3 | Rs. 1 | $1(1+0.06)^{1}=1.060$ |  |  |
| 4 | Rs. 1 | $1(1+0.06)^{0}=1$ |  |  |
|  |  |  |  |  |
| Future Value | 4.375 |  |  |  |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## A. FUTURE VALUE OF ANNUITY REGULAR [If nothing is given, we considep it "pegulap"]

 $\mathbf{F V}=\mathbf{P}\left[\frac{(\mathbf{1}+\mathbf{R})^{\mathbf{n}}-\mathbf{1}}{\mathbf{R}}\right]$ where, $\mathbf{P}=$ Amount deposited, $\mathrm{R}=$ Rate of Interest, $\mathrm{N}=$ No. of years (conversion). CQ17: Find FV of an annuity of Rs. 500 made annually for 7 years @ $14 \%$. [(1.14)7 $=2.5023]$
## B. FUTURE VALUE OF ANNUITY DUE

[FV of annuity pegular $\times(1+R)$.]
CQ18. Find FV of an annuity of Rs. 500 made annually for 7 years at interest rate of $14 \%$ compounded annually. Given that (1.14)7 $=2.5023$.
[Ans: Rs. 5365.35]
CQ19: Z invests Rs. 10,000 every year starting from today for next 10 yps. Interest pate is $8 \%$ p.a compounded annually. Find FV of annuity. $[(1+0.08) 10=2.15892500]$ [Ans: Rs. 1,56,454.875]

## CONCEPT 6: PRESENT VALUE OF ANNUITY

- Present value is today's value of tomorrow's money discounted at the interest pate.
- PV of an annuity = Sum of PV of all the periodic payments discounted @ given rate.

PC Note: FV \& PV are related to each other in fact they are the reciprocal of each other.
CQ20: You invested Rs. 1000 at $7 \%$ \& get Rs. 1,070 at the end of the year. If Rs. 1,070 is FV of today's Rs. 1000; then Rs. 1,000 is the PV of tomorpow's Rs. 1,070. If we invest Rs. 1,000 for two years at 7\% p.a, we will get Rs. 1,144.90 after 2 years. It means Rs. 1,144.90 is the FV of today's Rs. 1,000 at $7 \%$ \& Rs. 1,000 is PV of Rs. 1,144.90.
CQ21: PV of Rs. 1 to be received after 2 yps compounded annually at $10 \%$ interest pate is?
[Ans: 0.83]
CQ22: Find PV of Rs. 10,000 to be required after 5 years if interest rate $=9 \%$. [(1.09)5=1.5386]
[Ans: 6499.42]

## A. PRESENT VALUE OF ANNUITY REGULAR

PV of an annuity $(A)=$ Sum of PV of all the periodic payments discounted @ given rate.

$$
\mathrm{PV}=\frac{\mathrm{A}}{(1+R)^{1}}+\frac{\mathrm{A}}{(1+R)^{2}}+\frac{\mathrm{A}}{(1+R)^{3}}+\frac{\mathrm{A}}{(1+R)^{4}}+\ldots \cdots \frac{\mathrm{A}}{(1+R)^{N}}
$$

$P V=A\left[\frac{(1+R)^{n}-\mathbf{1}}{R(1+R)^{n}}\right]$ where, $A=$ Installment Amount, $R=$ Rate of Interest, $n=$ No. of years (conversion).
CQ23: $S$ borpows Rs. 5,00,000 to buy a house. If he pays equal installments for 20 years and $10 \%$ interest on outstanding balance what will be the equal annual installment? [Ans: 58,730]

CQ24: Rs. 5,000 is paid every year for ten years to pay off a loan. What is the loan amount if interest pate be $14 \%$ per annum compounded annually?
[Ans: 26,080]
©

## B. PRESENT VALUE OF ANNUITY DUE

> Compute PV of annuity as if it were a annuity regular for one period short.
> Add initial cash payment/receipt to the step 1 value.
CQ25: Your mom decides to gift you Rs. 10,000 every year starting from today for the next 5 years. You deposit this amount in a bank as and when you receive and get $10 \%$ p.a compounded annually. Find PV of this annuity?
Soln: It is an annuity immediate. For calculating value of the annuity immediate following steps will be followed:

Step 1: Present value of the annuity as if it were a regular annuity for one year less i.e. for four years. $=$ Rs. $10,000 \times P(4,0.10) ;=$ Rs. $10,000 \times 3.16987 ;=$ Rs. 31,698.70.
Step 2: Add initial cash deposit to the step 1 value: Rs. $(31,698.70+10,000)=$ Rs. 41,698.70.

## CONCEPT 7: SINKING FUND

It is the fund credited for a specified purpose by way of sequence of periodic payments.
Size of Sinking Fund Deposit $(A)=\mathbf{P} \times\left[\frac{(1+R)^{N}-1}{\mathbf{R}}\right]$
Where, $A=$ Total amount to be saved (FV) $\quad P=$ Periodic Payment
CQ26: How much amount is required to be invested every year so as to accumulate Rs. $3,00,000$ at the end of 10 years if interest is compounded annually at $10 \%$ ?

Answep: $A=3,00,000 ; N=10 ; R=0.1$. we know that $\mathbf{A}=\mathbf{P} \times\left[\frac{(1+R)^{N}-1}{R}\right]$;
Thus, $3,00,000=P \times\left[\frac{\left(\mathbf{1 + 0 . 1 ) ^ { 1 0 } - 1}\right.}{\mathbf{0 . 1}}\right] ; 3,00,000=P \times 15.9374246$; Therefore $P=$ Rs. 18,823.6.

## SOME OTHER IMPORTANT APPLICATIONS

1. LEASING: Leasing is a financial aprangement under which owner of the asset (lessor) allows the user of the asset (lessee) to use asset for a defined period of time for a consideration (lease rental) payable over a given period of time. It is like taking an asset on rent.
> If Cost of asset $>$ PV of lease pental $\rightarrow$ Lease
> If Cost of asset < PV of lease pental $\rightarrow$ Buy
CQ27: ABC Ltd. wants to lease out an asset costing Rs. 10 lacs for 5 years. It has fixed a rental of Rs. 3.1 lacs p.a payable annually starting from the end of first year. Suppose rate of interest is $12 \%$ p.a compounded annually on which money can be invested by the company. Is this agreement favourable to the company?
Answer: Here we have to compute PV of the annuity of Rs. 3,10,000 for 5 years @ $12 \%$ p.a.

PV Factor for 5 years @ $12 \%=3.604776$. Thus, PV of Lease annuity $=3,10,000 \times 3.604776=$ Rs. 11,17,480.

Since PV of Lease annuity > initial cost of the asset, Leasing is favoupable to the lessor.
CQ28: A company is considering proposal of purchasing a machine either by making full payment of Rs. 4,000 or by leasing it for 4 years at lease rent of Rs. 1,250. Which option is preferable if rate is $14 \%$ p.a.? [Lease]
2. CAPITAL EXPENDITURE (INVESTMENT DECISION): Purchasing an asset (Cash outflows) today in anticipation of Future economic benefits (cash inflow).
> If PV of cash inflow >PV of cash outflow $\rightarrow$ Invest
$>$ If PV of cash inflow < PV of cash outflow $\rightarrow$ Do NOT invest.
CQ29: A machine with useful life of 7 years costs Rs. 10,000 while another machine with useful life of 5 years costs Rs. 8,000. The first machine saves labour expenses of Rs. 1,900 annually \& second one saves labour expenses of Rs. 2,200 annually. Determine preferred course of action. Assume cost of borrowing as $10 \%$ p.a.
Answer: (i) PV of annual cost savings for $1^{\text {st }}$ machine $=$ Rs. 1,900 $\times 4.86842=$ Rs. 9,250.
Cost of $1^{\text {st }}$ machine $=$ Rs. $10,000 \&$ it saves Rs. 9,250 . Thus, it costs Rs. 750 more than labour cost it saves.
(ii) PV of annual cost savings of $2^{\text {nd }}$ machine $=$ Rs. $2,200 \times 3.79079=$ Rs. 8,339.74.

Cost of $2^{\text {nd }}$ machine $=$ Rs. 8,000 \& it saves Rs. 8339.74. Thus, effective savings in labour cost $=$ Rs. 339.74. Hence, the second machine is preferable.
3. VALUATION OF BOND: $A$ bond is a debt security in which issuer owe holder a debt and is obliged to repay the principal and interest. They are generally issued for a fixed term.

## Value of Bond = PV of Interest Paid + PV of Maturity Amount.

CQ30: An investor intends purchasing a 3 year Rs. 1,000 par value bond having nominal interest rate of $10 \%$. At what price the bond may be purchased now if it matures at par and the investor requires a return of $14 \%$ ?

Answer: Interest on bond for every year $=$ Rs. 100. Maturity Amount $=$ Rs. 1,000.
PV of Bond $=\frac{100}{(1.14)^{1}}+\frac{100}{(1.14)^{2}}+\frac{100}{(1.14)^{3}}+\frac{1000}{(1.14)^{3}}=87.719+76.947+67.497+674.972=907.125$.
Thus, the bond should be purchased @ Rs. 907.125 or less than it.

$$
\begin{equation*}
x+2-2+ \tag{ㅇ}
\end{equation*}
$$

## CONCEPT 8: PERPETUITY

Perpetuity is an annuity in which the periodic payments or receipts begin on a fixed date \& continue indefinitely or perpetually.
Ex: Fixed coupon payments on permanently invested (irpedeemable) sums of money.

## A. PV of "Multi period perpetuity":

$\mathbf{P V A}_{\infty}=\frac{\mathbf{P}}{\mathbf{R}}$ where, $\mathrm{P}=$ Payment/Receipt each period; $\mathrm{R}=$ Rate of Interest per each period
CQ31: If I want to retire \& receive Rs. 30,000 every month \& I want my family to receive the same monthly payment after my death. I can earn an interest of $8 \%$ p.a. How much will I need to set aside to achieve my perpetuity goal? How much should I invest to get the amount from today itself?
[Ans: Rs. 45,00,000]
B. PV of "Growing Peppetuity": Perpetuity which grows at constant pate.

PVA $=\frac{\mathbf{P}}{\mathbf{R}-\mathbf{g}} \quad$ where, $\mathrm{g}=$ Growth rate
CQ32: I want to receive Rs. 10,000 forever. Interest pate is $8 \%$ \& the rate at which perpetuity grows is $3 \%$. Advise me the amount to be invested. [Ans: Rs.2,00,000
Answer: $P V A=\frac{\mathbf{P}}{\mathbf{R - g}}=\frac{\mathbf{1 0 , 0 0 0}}{(8-3) \%}=\frac{\mathbf{1 0 , 0 0 0}}{\mathbf{5 \%}}=$ Rs. $2,00,000$.

## CONCEPT 9: NET PRESENT VALUE (NPV)

NPV = PV of Cash Inflow - PV of Cash Outflow.
RULES TO MAKE DECISION: If NPV $>0 \rightarrow$ Accept; If NPV $<0 \rightarrow$ Reject
CQ33: Compute NPV for a project with a net investment of Rs. 1,00,000 \& net cash inflows for year 1, 2, 3 is Rs. 55,000 , Rs. 80,000 \& Rs. 15,000 resp. Cost of capital is $10 \%$ ? [PVIF @ $10 \%$ for 3 years: $0.909,0.826 \& 0.751]$
Solution: Since NPV of the project is positive, the company should accept the project.

| Year | Net Cash Flows | PVIF @ 10\% | Discounted Cash Flows |
| :--- | :--- | :--- | :--- |
| 0 | $(1,00,000)$ | 1.000 | $(1,00,000)$ |
| 1 | 55,000 | 0.909 | 49,995 |
| 2 | 80,000 | 0.826 | 66,080 |
| 3 | 15,000 | 0.751 | 11,265 |
| Net Present Value |  |  | $\mathbf{2 7 , 3 4 0}$ |

## COMPOUND ANNUAL GROWTH RATE (CAGR)

- Compounded Annual Growth Rate (CAGR) is a mean annual growth pate of an investment over a specific period of time (generally longer than one year).
- The CAGR calculate is a useful tool when determining an annual growth pate on an investment whose value has fluctuated widely from one period to the next.
- CAGR is often used to describe the growth over a period of time of some element of the business like revenue, units delivered, registered users, etc.
$\operatorname{CAGR}\left(\mathbf{t}_{o}, \mathbf{t}_{\mathrm{n}}\right)=\left[\frac{\mathrm{V}\left(t_{n}\right) \frac{1}{t_{n}-t_{o}}}{\mathrm{~V}\left(t_{o}\right)}\right]-1 \quad$ where, $t_{o}=$ Starting period \& $t_{n}=$ Ending period
CQ34: Revenues of a company for 4 years, Calculate Compound annual Growth Rate.

| Year | 2013 | 2014 | $\mathbf{2 0 1 5}$ | 2016 |
| :---: | :---: | :---: | :---: | :---: |
| Revenues | 100 | 120 | 160 | 210 |

Answer: $t_{n}-t_{0}=2016-2013=3$.
CAGR $_{(0,3)}$ of Revenues $=\left[\frac{210^{\frac{1}{3}}}{100}\right]-1=1.2774-1=0.2774=\mathbf{2 7 . 7 4 \%}$

## Space fop PC Class Note:

## TIME VALUE OF MONEY - QUESTION BANK

| SN | CHAPTER 4. TIME VALUE OF MONEY | Ans |
| :---: | :---: | :---: |
| EXERCISE 4.1 - SIMPLE INTEREST |  |  |
| Q1 | The amount charged for a defined length of time for use of the principal, generally on a yearly basis is known as $\qquad$ <br> (a) Balance <br> (b) Rate of interest <br> (c) Principal <br> (d) Interest | D |
| Q2 | The principal remains constant for the whole loan period in $\qquad$ interest <br> (a) Simple <br> (b) Compound <br> (c) Effective <br> (d) Annuity | A |
| Q3 | In the formula $A=P+I, A$ is known as $\qquad$ <br> (a) Simple interest <br> (b) Compound interest <br> (c) Balance <br> (d) Principal | C |
| Q4 | Interest computed on the principal for entire period of borpowing is called $\qquad$ <br> (a) Simple Interest <br> (b) Compound Interest <br> (c) Balance <br> (d) All | A |
| Q5 | Simple Interest on Rs. 3,500 for 3 years at $12 \%$ p.a. is $\qquad$ <br> (a) Rs.1,200 <br> (b) Rs.1,260 <br> (c) Rs.2,260 <br> (d) None | B |
| Q6 | $P=5000 R=15 T=4 \frac{1}{2}$ using $I=P R T / 100$. $I$ will be $\qquad$ <br> (a) Rs. 3,375 <br> (b) Rs. 3,300 <br> (c) Rs. 3,735 <br> (d) None | A |
| Q7 | Find simple interest on Rs.1,025 at 7.5\% p.a. for 4.5 years. <br> (a) Rs. 405.59 <br> (b) Rs. 375.45 <br> (c) Rs. 345.94 <br> (d) Rs.354.94 | C |
| Q8 | In what time will Rs. 85,000 amount to Rs. $1,57,675$ at $4.5 \%$ p.a? <br> (a) 20 years <br> (b) 15 years <br> (c) 22 years <br> (d) 19 yeaps | D |
| Q9 | $P=$ Rs. 12,$000 ; A=$ Rs. 16,$500 ; T=2.5$ years. Interest pate will be $\qquad$ <br> (a) $15 \%$ <br> (b) $12 \%$ <br> (c) $10 \%$ <br> (d) None | A |
| Q10 | A person borpowed Rs. 4,000 \& after 6 months, amount paid was Rs. 4,050. Find the pate of interest? <br> (a) $5 \%$ <br> (b) $25 \%$ <br> (c) $2.5 \%$ <br> (d) $20 \%$ | C |
| Q11 | A Sum of Rs. 46,875 was lent out at simple interest and at the end of 1 yr and 8 months, the total amount was Rs. 50,000 . Find the rate of interest? <br> (a) $4 \%$ <br> (b) $5 \%$ <br> (c) $4.5 \%$ <br> (d) $6 \%$ | A |
| Q12 | A sum doubles itself in 10 years. Find interest pate? <br> (a) $10 \%$ <br> (b) $12 \%$ <br> (c) $15 \%$ <br> (d) $20 \%$ | A |
| Q13 | Capital required to earn a monthly interest of Rs. 800 p.m. at $5 \%$ at SI is $\qquad$ . <br> (a) Rs.1,87,000 <br> (b) Rs.40,000 <br> (c) Rs.1,28,000 <br> (d) Rs.1,92,000 | D |
| Q14 | A sum of money amounts to Rs. 795 in 4 years and Rs. 850 in 5 years. Sum is $\qquad$ <br> (a) Rs. 520 <br> (b) Rs. 630 <br> (c) Rs. 575 <br> (d) Rs. 685 | C |
| Q15 | A sum of money amount to Rs.6,200 in 2 years and Rs.7,400 in 3 years. The principal | A |


|  | and pate of interest ape $\qquad$ <br> (a) Rs.3,800, $31.57 \%$ <br> (b) Rs.3,000, 20\% <br> (c) Rs.3,500, 15\% <br> (d) None |  |
| :---: | :---: | :---: |
| Q16 | Mr. Kapil deposited some amount in a bank for 7.5 years at $6 \%$ SI. Mr. Kapil received Rs. $1,01,500$ at the end of the term. Compute initial deposit of Kapil. <br> (a) Rs. 1,00,000 <br> (b) Rs.70,000 <br> (c) Rs.75,000 <br> (d) Rs.86,500 | B |
| Q17 | Rahul invested Rs. 70,000 in a bank at the rate of $6.5 \%$ p.a. simple interest rate. He received Rs. 85,925 after the end of the term. Find out the period for which sum was invested by Rahul. <br> (a) 2.5 years <br> (b) 3.5 years <br> (c) 4 years <br> (d) 3 years | B |
| Q18 | Simple interest on Rs. 1,500 for 6 years at $5 \%$ p.a. is $\qquad$ <br> (a) Rs. 400 <br> (b) Rs. 300 <br> (c) Rs. 450 <br> (d) Rs. 500 | C |
| Q19 | What will be the final value of investment for the principal value of Rs. 80,000 for 4 yeaps @ 10\% p.a. pate of interest? <br> (a) Rs. 83,200 <br> (b) Rs. 1,12,000 <br> (c) Rs.82,300 <br> (d) None | B |
| Q20 | $A=$ Rs. 5,$200 ; R=5 \%$ p.a; $T=6$ years. Principal will be $\qquad$ <br> (a) Rs.2,000 <br> (b) Rs.4,000 <br> (c) Rs.3,000 <br> (d) None | B |
| Q21 | Sachin deposited Rs.1,00,000 in his bank for 2 years at simple interest of $6 \%$. How much interest would he earn? How much would be the final value of deposit? <br> (a) Rs.6,000, Rs.1,06,000 <br> (b) Rs.15,000, Rs.1,15,000 <br> (c) Rs.11,600, Rs.1,11,600 <br> (d) Rs.12,000, Rs.1,12,000 | D |
| Q22 | $P=$ Rs. $10,0001=$ Rs. $2,500 R=12.5 \%$ Simple Interest. The number of years $T$ will _ . <br> (a) $1 \frac{1}{2}$ years <br> (b) 2 years <br> (c) 3 years <br> (d) None | B |
| Q23 | The sum required to earn a monthly interest of Rs. 1,200 at $18 \%$ p.a. SI is $\qquad$ <br> (a) Rs. 50,000 <br> (b) Rs. 60,000 <br> (c) Rs. 80,000 <br> (d) None | C |
| Q24 | Rs. 3,52,000 will produce Rs. 28,600 interest in - yeaps at $2.5 \%$ p.a. simple interest. <br> (a) 2 years 2 months <br> (b) 3 yeaps 3 months <br> (c) 4 years 4 months <br> (d) 5 years 5 months | B |
| Q25 | Sum of money doubles itself in 10 years. No. of years it would trebles itself is $\qquad$ <br> (a) 25 years <br> (b) 15 years <br> (c) 20 years <br> (d) None | C |
| Q26 | A sum of money that will give Rs. 1, as interest per day at $10 \%$ p.a. SI is $\qquad$ <br> (a) Rs. 3,800 <br> (b) Rs. 3,000 <br> (c) Rs. 3,650 <br> (d) Rs. 3,500 | C |
| Q27 | Rs. 80,000 is invested to eapn a monthly interest of Rs. 1,200 @ - p.a. SI. <br> (a) $12 \%$ <br> (b) $14 \%$ <br> (c) $16 \%$ <br> (d) $18 \%$ | D |
| Q28 | What sum of money produce Rs. 28,600 interest of 3 yps \& 3 mths at $2.5 \%$ p.a. SI? <br> (a) Rs. 3,52,000 <br> (b) Rs. 3,65,000 <br> (c) Rs. $3,25,000$ <br> (d) Rs.3,56,000 | A |
| Q29 | Interest on a certain sum of money 2.5 yeaps at 3.25 \% p.a. is 390 . The sum is <br> (a) Rs. 4,800 <br> (b) Rs. 2,100 <br> (c) Rs. 4,700 <br> (d) Rs. 4,900 | A |


| Q30 | If Rs. 1,600 amounts to Rs. 2,100 is 5 years at a certain rate of simple interest. If the rate of interest is increased by $1 \%$ it would amount to how much? <br> (a) Rs. 2,080 <br> (b) Rs. 2,050 <br> (c) Rs. 2,250 <br> (d) Rs. 2,180 | D |
| :---: | :---: | :---: |
| Q31 | A sum was put at simple interest, at a certain rate for 3 years. Had it been put at $1 \%$ higher pate it would have fetched Rs. 63 more. The sum is $\qquad$ <br> (a) Rs. 2,400 <br> (b) Rs. 2,200 <br> (c) Rs. 2,100 <br> (d) Rs. 2,480 | C |
| Q32 | Two equal amounts of money are deposited in two different banks each at $12 \%$ p.a. for 8 years and 3.5 years respectively. If the difference between their Interests is Rs. 540, find each sum. <br> (a) Rs. 1,200 <br> (b) Rs. 1,000 <br> (c) Rs. 1,400 <br> (d) Rs. 1,350 | B |
| Q33 | A certain principal amounts to Rs. 2,800 in 2 years \& to Rs. 3,220 in 5 years. The pate of interest p.a. SI is _. $\qquad$ <br> (a) $6.33 \%$ <br> (b) $5.55 \%$ <br> (c) $2.25 \%$ <br> (d) $6.6 \%$ | B |
| Q34 | Sum of money doubles itself in 25 years. No. of years it would trebles itself is $\qquad$ <br> (a) 50 years. <br> (b) 37.5 years. <br> (c) 75 years. <br> (d) None | A |
| Q35 | Number of years a sum takes to become 4 times @ $12 \%$ SI is $\qquad$ <br> (a) 24 years. <br> (b) 26 years. <br> (c) 25 years. <br> (d) None | C |
| Q36 | If the interest on Rs. 2,400 be more than the interest on Rs. 2,000 by Rs. 64 in 4 years, rate of interest is $\qquad$ <br> (a) $5 \%$ <br> (b) $4 \%$ <br> (c) 3.5 <br> (d) $6 \%$ | B |
|  | EXERCISE 4.2 - COMPUND INTEREST |  |
| Q37 | Compute the compound interest on Rs. 4,000 for $1 \frac{1}{2}$ years at $10 \%$ p.a. compounded half-yearly. <br> (a) Rs. 360.50 <br> (b) Rs. 600 <br> (c) Rs. 630.50 <br> (d) Rs. 625 | C |
| Q38 | Determine CI on Rs. 1,000 at 6\% compounded semi-annually for 6 yps. Given that $(1+3 \%)^{12}=1.42576$. <br> (a) Rs. 425.76 <br> (b) Rs. 445.26 <br> (c) Rs. 520.40 <br> (d) Rs. 260.20 | A |
| Q39 | On what sum will the compound Interest at $5 \%$ p.a. for 2 yps compounded annually be Rs. 1,640? <br> (a) Rs. 16,000 <br> (b) Rs. 17,000 <br> (c) Rs. 18,000 <br> (d) Rs. 19,000 | A |
| Q40 | On what sum will the compound Interest at $7 \%$ p.a. for 3 yps compounded annually be Rs. 4725.90 ? <br> (a) Rs. 22,000 <br> (b) Rs. 26,000 <br> (c) Rs. 24,000 <br> (d) Rs. 21,000 | D |
| Q41 | The C.I. on Rs. 4,000 for 6 months at $12 \%$ p.a. payable quarterly is $\qquad$ <br> (a) Rs. 243.60 <br> (b) Rs. 240 <br> (c) Rs. 243 <br> (d) None | A |
| Q42 | Rs. 4,000 is invested @ $10 \%$ p.a. The amount after two years if compounding is done monthly, is $\qquad$ . <br> (a) Rs. 4,881.16 <br> (b) Rs. $4,818.16$ <br> (c) Rs. $4,888.16$ <br> (d) None | A |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q43 | If $A=$ Rs. $1000, n=2$ years, $R=6 \%$ p.a. compound interest payable half-yeaply, then principal $(P)$ is $\qquad$ <br> (a) Rs. 890 <br> (b) Rs. 880 <br> (c) Rs. 800 <br> (d) None | A |
| :---: | :---: | :---: |
| Q44 | Find the rate, if Rs. 2,00,000 amount to Rs. 2,31,525 in $1 \frac{1}{2}$ year interest being compounded half-yearly. <br> (a) $15 \%$ <br> (b) $11 \%$ <br> (c) $8 \%$ <br> (d) $10 \%$ | D |
| Q45 | A sum of money yields CI of Rs. 200 \& Rs. 220 at the end of $1^{\text {st }} \& 2^{\text {nd }}$ year respectively. The rate \% is $\qquad$ <br> (a) 20 <br> (b) 15 <br> (c) 10 <br> (d) 5 | C |
| Q46 | CI on half-yearly pates on Rs. 10,000 , the rate for $1^{\text {st }} \& 2^{\text {nd }}$ years being $6 \% \&$ for $3^{\text {rd }}$ year $9 \%$ p.a. <br> (a) Rs. 2,290 <br> (b) Rs. 2,287 <br> (c) Rs. 2,285 <br> (d) Rs. 2,283 | A |
| Q47 | A sum of money put at CI amount to Rs. 2,205 in 2 yeaps and to Rs. 2,315.25 in 3 years. Find interest \% p.a. <br> (a) $10 \%$ <br> (b) $5 \%$ <br> (c) $8 \%$ <br> (d) $6 \%$ | B |
| Q48 | Find the least no. of complete years in which the sum of money put @ $20 \%$ CI will be more than double. <br> (a) 1 year <br> (b) 2 years <br> (c) 3 years <br> (d) 4 years | D |
| Q49 | In how many years will a sum of money double at $5 \%$ p.a. compound interest? <br> (a) 15 years 3 months <br> (b) 14 years 2 months <br> (c) 14 yeaps 3 months <br> (d) 15 years 2 months | B |
| Q50 | If $A=$ Rs. $10,000 n=18$ yps $R=4 \%$ p.a C.I, $P$ will be $\qquad$ <br> (a) Rs.4,000 <br> (b) Rs. 4,900 <br> (c) Rs. 4,500 <br> (d) None | D |
| Q51 | The difference between the simple interest and compound interest on a certain sum of money invested for 2 years $5 \%$ p.a. is Rs. 30 . Then the sum is $\qquad$ <br> (a) 10,000 <br> (b) 12,000 <br> (c) 13,000 <br> (d) None | B |
| Q52 | If the sum of money when compounded annually becomes Rs. 1,140 in 2 yeaps and Rs. 1,710 in 3 years, the Rate of Interest is $\qquad$ <br> (a) $30 \%$ <br> (b) $40 \%$ <br> (c) $50 \%$ <br> (d) $60 \%$ | C |
| Q53 | For a 10-year deposit, what interest rate payable annually is equivalent to $5 \%$ interest payable quarterly? <br> (a) $5.1 \%$ <br> (b) $4.9 \%$ <br> (c) $6.0 \%$ <br> (d) None | A |
| Q54 | What annual rate of interest compounded annually doubles an investment in 7 years? <br> [Given that $2^{1 / 7}=1.104090$ ] <br> (a) $10.41 \%$ <br> (b) $11.50 \%$ <br> (c) $9.65 \%$ <br> (d) $10.26 \%$ | A |
| Q55 | Rs.16,000 invested at $10 \%$ p.a. compounded semiannually amounts to Rs.18,522. Find the time period of investment. <br> (a) 1 year <br> (b) $1 \frac{1}{2}$ yeaps <br> (c) 2 years <br> (d) $1^{3 / 4}$ yeaps | B |


| Q56 | In what time will compound interest on Rs. 320 at $12.5 \%$ p.a. compounded annually be Rs. 85? <br> (a) 4.5 Years <br> (b) 2.5 Years <br> (c) 2 Yeaps <br> (d) 5 Yeaps | C |
| :---: | :---: | :---: |
| Q57 | In what time will a sum of Rs. 800 at $5 \%$ p.a. compound interest amount to Rs. 882? <br> (a) 1 years <br> (b) 5 years <br> (c) 4 years <br> (d) 2 years | D |
| Q58 | Saina deposited Rs.1,00,000 in a nationalized bank for three years. If the rate of interest is $7 \%$ p.a. Calculate the interest that bank has to pay Saina after 3 yps if interest is compounded annually. Also calculate amount at the end of third year. <br> (a) Rs.1,23,000 <br> (b) Rs.1,22,504.30 <br> (c) Rs.1,20,550.20 <br> (d) Rs.1,35,256 | B |
| Q59 | In what time will Rs. 8,000 amounts to Rs. 8820 at $5 \%$ p.a. interest compounded half-yearly? <br> (a) 3 yeaps <br> (b) 2 years 5 months <br> (c) 2.5 yeaps <br> (d) 2 Years | D |
| Q60 | At what rate CI does a sum of money becomes four fold in 2 yeaps? <br> (a) $150 \%$ <br> (b) $100 \%$ <br> (c) $200 \%$ <br> (d) $400 \%$ | B |
| Q61 | What interest pate compounded annually which doubles an investment in 2 years? <br> (a) $46.04125 \%$ <br> (b) $14.142135 \%$ <br> (c) $41.42135 \%$ <br> (d) None | C |
| Q62 | The time by which a sum of money would treble itself at $8 \%$ p.a CI is $\qquad$ <br> (a) 14.28 years <br> (b) 14 yeaps <br> (c) 12 yeaps <br> (d) 15 years | A |
| Q63 | In how many years a sum of money treble at $5 \%$ p.a. CI payable on half-yearly? <br> (a) 18 years 7 months <br> (b) 19 years 6 months <br> (c) 20 years 8 months <br> (d) 22 years 3 months | D |
| Q64 | In how many yeaps a sum will double at $10 \%$ p.a. compound interest? <br> (a) 8 years 3 months <br> (b) 7 years 3 months <br> (c) 7 years 6 months <br> (d) 8 years 2 months | B |
| Q65 | Difference b/w SI \& CI on a sum in 2 years at $15 \%$ p.a. is Rs. 144. The sum is $\qquad$ <br> (a) Rs. 6,000 <br> (b) Rs. 6,200 <br> (c) Rs. 6,300 <br> (d) Rs. 6,400 | D |
| Q66 | CI on a certain sum for 2 years is Rs. $41 \& S I$ is Rs. 40 . Find interest pate. <br> (a) $4 \%$ <br> (b) $5 \%$ <br> (c) $6 \%$ <br> (d) $8 \%$ | B |
| Q67 | CI on a certain sum for 2 years is Rs. $41.60 \& S I$ is Rs. 40 . Find the sum. <br> (a) Rs. 500 <br> (b) Rs. 400 <br> (c) Rs. 250 <br> (d) Rs. 300 | C |
| Q68 | Difference between the S.I. \& the C.I. on Rs. 2,400 for 2 yeaps at $5 \%$ p.a is $\qquad$ <br> (a) Rs. 5 <br> (b) Rs. 10 <br> (c) Rs. 16 <br> (d) None | D |
| Q69 | Difference b/w CI \& SI on a sum for 2 years at $6 \%$ p.a. is Rs. 13.50 . Find the sum? <br> (a) Rs.3,750 <br> (b) Rs. 2,750 <br> (c) Rs. 4,750 <br> (d) None | A |
| Q70 | Difference b/w CI \& SI on a sum for 2 yeaps at $4 \%$ p.a. is Rs. 1. The sum is $\qquad$ <br> (a) Rs. 625 <br> (b) Rs. 630 <br> (c) Rs. 640 <br> (d) Rs. 635 | A |


| Q71 | Difference b/w SI \& CI on certain sum for 3 yeaps at $5 \%$ pa is Rs. 76.25. Find sum. <br> (a) Rs. 5,000 <br> (b) Rs. 8,000 <br> (c) Rs. 9,000 <br> (d) Rs. 10,000 | D |
| :---: | :---: | :---: |
| Q72 | Difference b/w SI and CI on Rs. 1,200 for 4 years at $10 \%$ p.a. is $\qquad$ <br> (a) Rs. 77 <br> (b) Rs. 480 <br> (c) Rs. 80 <br> (d) Rs. 557 | A |
| Q73 | CI on a certain sum for 2 yeaps at $10 \%$ p.a. is Rs. 420 . Find SI at the same pate \& for the same time. <br> (a) Rs. 400 <br> (b) Rs. 350 <br> (c) Rs. 380 <br> (d) Rs. 375 | A |
| Q74 | Difference b/w CI \& SI at $5 \%$ pa for 4 years on 20,000 is $\qquad$ <br> (a) Rs. 250 <br> (b) Rs. 277 <br> (c) Rs. 300 <br> (d) Rs. 310. | D |
| Q75 | At what rate will a sum double itself in 7 yeaps if interest is compounded annually. <br> (a) $7.0 \%$ <br> (b) $8.0 \%$ <br> (c) $10.38 \%$ <br> (d) $9 \%$ | C |
| Q76 | The principal goes on changing every year in $\qquad$ <br> (a) simple interest <br> (b) compound interest <br> (C) effective interest <br> (d) All of the above | B |
| Q77 | $P=$ Rs. 1,000; $R=5 \%$ p.a; $n=4$. Amount and $C l$ are $\qquad$ <br> (a) Rs.1,215, Rs. 215 <br> (b) Rs.1,125, Rs. 125 <br> (c) Rs.2,115, Rs. 115 <br> (d) None | A |
| Q78 | Rs. 10,000 is invested at annual pate of interest of $10 \%$. The amount after two years at annual compounding is $\qquad$ <br> (a) Rs. 21,100 <br> (b) Rs. 12,100 <br> (c) Rs. 12,110 <br> (d) None | B |
| Q79 | Rs. 100 will become after 20 years at $5 \%$ p.a. Calculated CI annually is $\qquad$ <br> (a) Rs. 263.32 <br> (b) Rs. 270.50 <br> (c) Rs. 265.32 <br> (d) None | C |
| Q80 | Rs. 7,500 is invested at $5 \%$ CI for 2 years. The interest for the second year is $\qquad$ <br> (a) Rs. 375 <br> (b) Rs. 350 <br> (c) Rs. 450 <br> (d) Rs.393.75 | D |
| Q81 | The C.I on Rs.16,000 for $1 \frac{1}{2}$ yeaps at $10 \%$ p.a. payable half-yeaply is $\qquad$ <br> (a) Rs.2,222 <br> (b) Rs.2,522 <br> (c) Rs.2,500 <br> (d) None | B |
| Q82 | Rs.2,000 is invested at annual rate of interest of $10 \%$ p.a. The amount after two years if compounding is done half yeaply, is $\qquad$ <br> (a) Rs. 2431 <br> (b) Rs. 243.10 <br> (c) Rs. 2341 <br> (d) None | A |
| Q83 | C.I on Rs. 40,000 at $10 \%$ p.a. for 1 years when interest is payable quarterly is $\qquad$ <br> (a) Rs.4,000 <br> (b) Rs.4,100 <br> (c) Rs.4,152.51 <br> (d) None | C |
| Q84 | Rs. 3,000 is invested at annual rate of interest of $10 \%$ p.a. The amount after two years if compounding is done quarterly, is $\qquad$ <br> (a) Rs.3,556.20 <br> (b) Rs.3,565 <br> (c) Rs.3,655.20 <br> (d) None | C |
| Q85 | C.I on Rs.1,000 for 10 years at $4 \%$ p.a. the interest being paid quarterly is $\qquad$ <br> (a) Rs. 786 <br> (b) Rs. 586 <br> (c) Rs. 489 <br> (d) Rs. 186 | C |


| Q86 | Rs. 2,000 is invested at $10 \%$ p.a. What is the amount after 2 yps if compounding is done (a) Annually (b) Semi-Annually (c) Quarterly (d) Monthly. <br> (a) 2,430; 2,531; 2,638; 2,700 <br> (b) 2,$420 ; 2,431 ; 2,437 ; 2,441$ <br> (c) 2,$130 ; 2,483 ; 2,643 ; 2,550$ <br> (d) 2,420; 2,431; 2,468; 2,712 | B |
| :---: | :---: | :---: |
| Q87 | A sum of money at CI amounts to thrice itself in 3 years. In how many years will it be 9 times itself? <br> (a) 18 <br> (b) 12 <br> (c) 9 <br> (d) 6 | D |
| Q88 | A sum of money triples itself in 20 years. The number of years it would double itself. (C.I) $\qquad$ <br> (a) 13.2 years <br> (b) 15.2 years <br> (c) 10 years <br> (d) 12.6 years | D |
| Q89 | The population of a town increases every year by $2 \%$ of the Population at the beginning of that year. The number of years by which the total increase of population be $40 \%$ is $\qquad$ <br> (a) 7 yeaps <br> (b) 10 years <br> (c) 17 years (approx) <br> (d) None | C |
| Q90 | The annual birth and death rates per 1,000 are 39.4 and 19.4 respectively. The number of years in which the population will be doubled assuming there is no immigration or emigration is $\qquad$ <br> (a) 35 yps <br> (b) 33 yps <br> (c) 25 yps <br> (d) None | A |
| EFFECTIVE RATE OF INTEREST |  |  |
| Q91 | Effective pate of interest corpesponding to a nominal pate $3 \%$ p.a. payable half yeaply in $\qquad$ <br> (a) $3.2 \%$ p.a. <br> (b) $3.25 \%$ p.a <br> (c) $3.0225 \%$ p.a <br> (d) None | C |
| Q92 | Effective rate of interest for $3 \%$ p.a. compounded monthly is $\qquad$ <br> [Given that $\left.(1+0.0025)^{12}=1.0304\right]$ <br> (a) $3 \%$ <br> (b) $3.02 \%$ <br> (c) $3.04 \%$ <br> (d) $3.01 \%$ | C |
| Q93 | Effective rate of interest copresponding to a nominal rate of $7 \%$ p.a. compounded quarterly is $\qquad$ <br> (a) $7 \%$ <br> (b) $7.5 \%$ <br> (c) $7.19 \%$ <br> (d) None | C |
| Q94 | Find the effective rate of interest if $I=R s .1,800, P=18,000, t=1$ year <br> (a) $10 \%$ <br> (b) $9 \%$ <br> (c) $18 \%$ <br> (d) None | A |
| Q95 | Find the compound interest and effective rate of interest if an amount of Rs. 20,000 is deposited in a bank for 1 year at the rate of $8 \%$ p.a. compounded semiannually. <br> (a) Rs. 1426, 7.56\% <br> (b) Rs. 1632, $8.16 \%$ <br> (c) Rs. 1326, $7.35 \%$ <br> (d) Rs. 1744, $8.55 \%$ | B |
| Q96 | Ram is confused whether to invest at 9\% p.a. compounded monthly op $9.25 \%$ p.a. SI. $\left[(1+0.0075)^{12}=1.09380690\right.$. He decided to find effective pate of interest. <br> (a) $9 \%$ <br> (b) $9.25 \%$ <br> (c) $9.38 \%$ <br> (d) None | C |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q97 | In how many yeaps will a sum of Rs. 800 amounts to Rs. 926.10 at $10 \%$ interest compounded half yeaply? <br> (a) 3 years <br> (b) 2 years <br> (c) $3 / 2$ years <br> (d) 4 years | C |
| :---: | :---: | :---: |
| Q98 | Find the sum which invested at $4 \%$ p.a. compounded twice a year becomes Rs. 78,030 @ end of $1^{\text {st }} y$ year. <br> (a) Rs. 73,000 <br> (b) Rs. 75,000 <br> (c) Rs. 74,225 <br> (d) Rs. 76,000 | B |
|  | EXERCISE 4.3: PRESENT VALUE \& FUTURE VALUE OF ANNUITY |  |
| Q99 | Present value of Rs. 1 to be received after 2 yps compounded annually at $10 \%$ is -. <br> (a) Rs. 0.9090 <br> (b) Rs. 0.8264 <br> (c) Rs. 0.7513 <br> (d) Rs. 0.6830 | B |
| Q100 | Present value of annuity of Rs. 5,000 p.a. for 12 yps at $4 \%$ p.a. C.I. annually is $\qquad$ <br> (a) Rs. 46,000 <br> (b) Rs. 46,925 <br> (c) Rs. 15,000 <br> (d) None | B |
| Q101 | The present value of an annuity of Rs. 3,000 for 15 years at $4.5 \%$ p.a CI. is $\qquad$ <br> (a) Rs. 23,809.41 <br> (b) Rs. 32,219.41 <br> (c) Rs. 32,912.41 <br> (d) None | B |
| Q102 | The present value of an annuity of Rs. 80 p.a for 20 years at $5 \%$ p.a is $\qquad$ <br> (a) Rs. 997 (appx) <br> (b) Rs. 900 <br> (c) Rs. 1,000 <br> (d) None | A |
| Q103 | A person invested money in bank paying 6\% Compounded semi annually. If the person expects to receive Rs. 8000 in 6 years, what is present value of investment? <br> (a) Rs. 5,000 <br> (b) Rs. 4,611.03 <br> (c) Rs. 5,611.03 <br> (d) None | C |
| Q104 | Find PV of ordinary annuity of 8 Quarterly payments of Rs. 500 , interest $=8 \%$ p.a. compound quarterly. <br> (a) Rs. 4,292.50 <br> (b) Rs. $4,725.00$ <br> (c) Rs. $3,662.50$ <br> (d) Rs.3,266.50 | C |
| Q105 | Company boprows Rs. 10,000 on condition to pepay it with CI at 5\% p.a. by annual installments of Rs.1,000 each. Number of years by which debt will be clear is $\qquad$ <br> (a) 14.2 years <br> (b) 10 years <br> (c) 12 years <br> (d) None | A |
| Q106 | A loan of Rs. 10,000 is to be paid back in 30 equal installments. The amount of each installation to cover the principal and at $4 \%$ p.a. CI is $\qquad$ <br> (a) Rs. 587.87 <br> (b) Rs. 587 <br> (c) Rs. 578.87 <br> (d) None | C |
| Q107 | Raja aged 40 wished his wife Rani to have Rs. 40 Lacs at his death. If his expectation of life is another 30 years \& he starts making equal annual investments commencing now at $3 \%$ compound interest p.a. how much should he invest annually? <br> (a) Rs. 82,077 <br> (b) Rs. 83,450 <br> (c) Rs. 84,419 <br> (d) Rs. 84,080 | D |
| Q108 | How much amount is required to be invested every year so as to accumulate Rs. $3,00,000$ at the end of 10 years if interest is compounded annually at $10 \%$ ? <br> (a) Rs. 18,222 <br> (b) Rs. 18,823 <br> (c) Rs. 18,725 <br> (d) Rs. 18,955 | B |


| Q109 | PLtd has to make payment of Rs. 20 Lacs in 60 days. The company has decided to invest in CDs of a leading Nationalized Bank at $8 \%$ p.a. What money is required to be invested now? <br> (a) Rs. 15,20,912 <br> (b) Rs. $20,26,300$ <br> (c) Rs. 19,74,040 <br> (d) Rs. 20,63,000 | C |
| :---: | :---: | :---: |
| Q110 | The present value of Rs. 10,000 due in 2 years at $5 \%$ p.a. compound interest when the interest is paid on yearly basis is $\qquad$ <br> (a) Rs.9,070 <br> (b) Rs.9,059 <br> (c) Rs.9,061 <br> (d) Rs.9,060 | A |
| Q111 | Find the present value of Rs. 10,000 to be required after 5 years if the interest rate be $9 \%$. Given that $(1.09)^{5}=1.5386$. <br> (a) Rs.6,499.42 <br> (b) Rs.7,459.33 <br> (c) Rs.6,544.50 <br> (d) Rs.6,994.62 | A |
| Q112 | $\mathrm{A}=$ Rs.1,200 $\mathrm{N}=12 \mathrm{yrs} \mathrm{I}=0.08 \mathrm{~V}=$ $\qquad$ . using the formula $v=A / I\left\{1-(1+i)^{-n}\right\}$ <br> (a) Rs.3,039 <br> (b) Rs.3,990 <br> (c) Rs.9,930 <br> (d) None | D |
| Q113 | The present value of an annuity of Rs.3,000 for 15 years at $4.5 \%$ p.a Cl is $\qquad$ <br> (a) Rs. 23,809.41 <br> (b) Rs. 32,809.41 <br> (c) Rs. 32,908.41 <br> (d) None | B |
| Q114 | Suppose your mom decides to gift you Rs. 10,000 every year starting form today for next 5 years. You deposit this amount in a bank as and when you receive and get $10 \%$ p.a. interest pate compounded annually. What is present value of this annuity? <br> (a) Rs. $40,702.70$ <br> (b) Rs.42,533.21 <br> (c) Rs. $41,698.70$ <br> (d) Rs.43,883.33 | C |
| Q115 | The amount received on an annuity of Rs. 150 for 12 yeaps at $3.5 \%$ p.a CI is $\qquad$ <br> (a) Rs. 2,190.28 <br> (b) Rs. 1,290.28 <br> (c) Rs. $2,180.28$ <br> (d) None | A |
| Q116 | Amount of an annuity after 25 years at 5 \% C.I. is Rs. 50,000 , the annuity will be <br> (a) Rs. 1,406.90 <br> (b) Rs. 1,046.90 <br> (c) Rs. 1,146.90 <br> (d) None | B |
| Q117 | Given annuity of Rs. 100 amounts to Rs. $3,137.12$ at $4.5 \%$ p.a. C.I. No. of years $=$ $\qquad$ <br> (a) 25 years (appp) <br> (b) 20 years (appr) <br> (c) 22 years <br> (d) None | B |
| Q118 | You invest Rs. 3,000 in a 2-year investment that pays you 12\% pa. Calculate FV. <br> (a) Rs. 3,763.20 <br> (b) Rs. $3,360.00$ <br> (c) Rs. $3,565.60$ <br> (d) Rs. 3,663.55 | A |
| Q119 | $Z$ invests Rs. 10,000 every year starting from today for next 10 years. Suppose interest pate is $8 \%$ p.a. compounded annually. Calculate FV. $\left[(1+.08)^{10}=2.15892500\right]$ <br> (a) Rs. 1,50,580 <br> (b) Rs. 1,56,454 <br> (c) Rs. $1,58,652$ <br> (d) Rs. 1,56,902 | B |
| Q120 | A person invests Rs. 500 at the end of each year with a bank which pays interest at $10 \%$ p.a. annually. The amount standing to his credit one year after he has made his yearly investment for the $12^{\text {th }}$ time is $\qquad$ <br> (a) Rs. 11,761.35 <br> (b) Rs. 10,000 <br> (c) Rs. 12,000 <br> (d) None | A |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q121 | Present value of Rs. 10,000 due in 2 years at 5\% p.a. compound interest is $\qquad$ <br> (a) Rs. 9,070 <br> (b) Rs. 9,059 <br> (c) Rs. 9,061 <br> (d) Rs. 9,060 | A |
| :---: | :---: | :---: |
| Q122 | Find PV of Rs. 500 due after 10 years ( $R=10 \%$ ) is compounded half yeaply $\qquad$ <br> (a) Rs. 188.40 <br> (b) Rs. 193.94 <br> (c) Rs. 138.94 <br> (d) Rs. 50.00 |  |
| Q123 | Alibaba boprows Rs. 6 Laths Housing Loan at $6 \%$ repayable in 20 annual Installments commencing at the end of the first year. How much annual payment is necessary? <br> (a) Rs. 52,420 <br> (b) Rs. 52,419 <br> (c) Rs. 52,310 <br> (d) Rs. 52,320 | C |
| Q124 | Johnson left Rs. 1,00,000 with the direction that it should be divided in such a way that his minor sons Tom Dick and Hapry aged 9, 12 and 15 years should each received equally after attaining the age 25 years. The rate of interest being 3.5\% how much each son will receive after getting 25 yeaps old? <br> (a) Rs. 50,000 <br> (b) Rs. 51,994 <br> (c) Rs. 52,000 <br> (d) None | D |
| Q125 | Find the amount received on annuity if payment of Rs. 7,000 is made annually for 7 years at 6\% p.a. <br> (a) Rs. 48,756 <br> (b) Rs. 50,857 <br> (c) Rs. 50,363 <br> (d) Rs. 58,756 | D |
| Q126 | Rs. 200 is invested at the end of each month in an account paying interest $6 \%$ p.a compounded monthly. FV of this annuity after $10^{\text {th }}$ payment? $\left[(1.005)^{10}=1.0511\right]$ <br> (a) Rs. 210.22 <br> (b) Rs. 2,050 <br> (c) Rs. 2,025 <br> (d) Rs. 2,044 | D |
| EXERCISE 4.4: SINKING FUND |  |  |
| Q127 | A sinking fund is created for reducing debentures worth Rs. 5 Lacs at the end of 25 years. Now much provision needs to be made out of profits each year if sinking fund investments can eapn interest at 4\% p.a? <br> (a) Rs. 12,006 <br> (b) Rs. 12,040 <br> (c) Rs. 12,039 <br> (d) Rs. 12,035 | A |
| Q128 | A machine costs Rs. $5,20,000$ with an estimated life of 25 years. A sinking fund is created to replace it by a new model at $25 \%$ higher cost after 25 years with a scrap value realization of 25,000 . What amount should set aside every year if the sinking fund investments accumulate at $3.5 \%$ compound interest p.a? <br> (a) Rs. 16,500 <br> (b) Rs. 16,000 <br> (c) Rs. 16,050 <br> (d) Rs. 16,005 | C |
| Q129 | A person bought a house paying Rs. 20,000 cash \&Rs. 4000 at the end of each year for 25 yps @ $5 \%$ p.a C.I. The cash price is $\qquad$ <br> (a) Rs. 75,000 <br> (b) Rs. 76,000 <br> (c) Rs. 76,392 <br> (d) None | C |
| Q130 | A machine depreciates at $10 \%$ of its value at the beginning of a year. The cost and scrap value realized at the time of sale being Rs. 23,240 and Rs. 9,000 respectively for how many yeaps the machine was put to use? <br> (a) 7 years <br> (b) 8 years <br> (c) 9 years <br> (d) 10 years | C |
| Q131 | A machine is depreciated the rate of $20 \%$ on reducing balance. Original cost of the machine was Rs. 1,00,000 and its ultimate scrap value was Rs. 30,000. The effective life of the machine is $\qquad$ | B |


|  | $\begin{array}{llll}\text { (a) } 4.5 \text { years } & \text { (b) } 5.4 \text { years } & \text { (c) } 5 \text { years }\end{array}$ |  |
| :---: | :---: | :---: |
| Q132 | A machine the useful life of which is estimated to be 10 years cost Rs. 10,000. Rate of depreciation is $10 \%$ p.a. The scrap value at the end of its life is $\qquad$ <br> (a) Rs. 3,483 <br> (b) Rs. 4,383 <br> (c) Rs. 3,400 <br> (d) None | A |
| Q133 | Appu receiving a pension of Rs. 14,400 per year paid in half yearly installment for the rest of his life. His life expectation is 13 yps . Interest@ $4 \%$ p.a is payable half yearly. What is equivalent lump sum pension? <br> (a) Rs. 1,45,000 <br> (b) Rs. 1,44,900 <br> (c) Rs. 1,44,800 <br> (d) Rs. 1,44,700 | C |
| Q134 | A man purchased a house valued at Rs. 3 lacs. He paid Rs. 2 lace on purchase \&agreed to pay the balance with interest at $12 \%$ p.a. compounded half yearly in 20 equal half yearly installments. If $1^{\text {sti}}$ installment is paid after 6 months from purchase then the amount at each installment is $\qquad$ <br> (a) Rs. 8,719.66 <br> (b) Rs. 8,769.21 <br> (c) Rs. $7,893.13$ <br> (d) None | A |
| Q135 | A machine can be purchased for Rs. 50,000. Machine will contribute Rs. 12,000 p.a. for next 5 years. Assume borpowing cost is $10 \%$ p.a. compounded annually. Decide whether machine should be purchased or not? <br> (a)Yes, Rs. 55,378.65 <br> (b)No, Rs. 48,800.00 <br> (c) No, Rs. $45,489.48$ <br> (d)Yes, Rs. 52,366.71 | C |
| Q136 | Money market instrument with face value of Rs. 100 \& discount yield of $6 \%$ will mature in 45 days. Compute current price of instrument \& effective annual return. <br> (a) Rs. 99.05, 6.00\% <br> (b) Rs. 99.00, $5.29 \%$ <br> (c) Rs. 99.26, 6.21\% <br> (d) Rs. 99.75, 6.08\% | C |
| Q137 | An investor intends purchasing a 3-year Rs. 1,000 par value bond having nominal interest rate of $10 \%$. At what price the bond may be purchased now if it matures at par and the investor requires a rate of return of $14 \%$ ? <br> (a) Rs. 1,026.29 <br> (b) Rs. 995.22 <br> (c) Rs. 826.36 <br> (d) Rs. 907.125 | C |
| Q138 | A person desires to create a fund to be invested at $10 \%$ CI p.a. to provide for a prize of Rs. 300 every year. Using $V-A / I$ find $V$ and $V$ will be $\qquad$ <br> (a) Rs. 2,000 <br> (b) Rs. 2,500 <br> (c) Rs. 3,000 <br> (d) None | C |
|  | PRACTICE QUESTION BANK |  |
| Q139 | A sum of money kept in a bank amounts to Rs.1,000 in 4 years and Rs.1,400 in 12 years. The sum and interest carried every year are $\qquad$ <br> (a) 600,133 $\frac{1}{3}$ <br> (b) 800,50 <br> (c) 750,150 <br> (d) 850,75 | B |
| Q140 | A sum of money amounts to Rs. 7,803 for one year at the rate of $4 \%$ compounded semiannually, sum invested is $\qquad$ <br> (a) 7,000 <br> (b) 7,500 <br> (c) 7,750 <br> (d) 8,000 | B |
| Q141 | Mr. Paul boprows Rs. 25,000 on condition to repaid it with C.I. at $7 \%$ p.a. in annual installments of Rs. 3,000 each. The number of years for debt to paid off is $\qquad$ | D |


|  | $\begin{array}{llll}\text { (a) } 10 \text { years } & \text { (b) } 12 \text { years } & \text { (c) } 11 \text { years } & \text { (d) } 13 \text { years }\end{array}$ |  |
| :---: | :---: | :---: |
| Q142 | A 6-year bond of Rs. 1,000 has an annual pate of interest of $14 \%$. Interest is paid half-yearly. If required rate of peturn is $16 \%$, what is the value of the bond? <br> (a) Rs. 925 <br> (b) Rs. 952 <br> (c) Rs. 950 <br> (d) Rs. 945 | D |
| Q143 | A sum of money will be doubled itself in 8 years at S.I. In how many years the sum will be tripled itself? <br> (a) 20 years <br> (b) 12 years <br> (c) 16 years <br> (d) None | C |
| Q144 | A sum of 44,000 is divided into 3 papts such that the copresponding interest earned after 2 years, 3 years and 6 years may be equal at the rate of simple interest are $6 \%$ p.a., $8 \%$ p.a., \& $6 \%$ p.a. respectively. Then the smallest part of sum will be $\qquad$ <br> (a) Rs. 4,000 <br> (b) Rs. 8,000 <br> (c) Rs. 10,000 <br> (d) Rs. 12,000 | B |
| Q145 | A certain sum of money was invested at S.I for 3 years. If it has invested at rate $7 \%$ higher, then the interest have been $882 /$ - more, then the sum is $\qquad$ <br> (a) Rs. 12,600 <br> (b) Rs. 6,800 <br> (c) Rs. 4,200 <br> (d) Rs. 2,800 | C |
| Q146 | A machine worth Rs. $4,90,740$ is depreciated at $15 \%$ of its opening value each year. When its value would reduce by $90 \%$ ? <br> (a) 14 years 6 months <br> (b) 14 yeaps 2 months <br> (c) 14 years 5 months <br> (d) None | B |
| Q147 | A machine for which the useful life is estimated to be 5 years cost Rs. 5,000. Rate of depreciation is $10 \%$ p.a. The scpap value at the end of its life is $\qquad$ <br> (a) Rs.2,952.45 <br> (b) Rs.2,500.00 <br> (c) Rs.3,000.00 <br> (d) Rs.2,559.50 | A |
| Q148 | A machine worth Rs. $4,90,740$ is depreciated at $15 \%$ of its opening value each year. When its value would reduce to Rs. $2,00,000$ ? <br> (a) 4 years 6 months <br> (b) 5 yeaps 7 months (approx.) <br> (c) 4 years 5 months <br> (d) None | B |
| Q149 | ABC Ltd wants to lease out an asset costing Rs.3,60,000 for a 5 year period. It has fixed rental of Rs.1,05,000 p.a. payable annually starting from the end of first year. Suppose pate of interest is $14 \%$ p.a. compounded annually on which money can be invested by the company. Is this agreement favourable to the company? <br> (a) Favourable, Rs.3,20,022.22 <br> (b) Unfavourable, Rs $.2,89,725.22$ <br> (c) Unfavourable, Rs.2,99,376.78 <br> (d) Favourable, Rs.3,60,473,40 | D |
| Q150 | A machine with useful life of 7 years cost Rs. 10,000 while another machine with useful life of 5 yps costs Rs.8,000. The $1^{\text {st }}$ machine saves labour expenses of Rs. 1,900 annually and the second one saves labourexpenses of Rs. 2,200 annually. Determine the preferred course of action. Assume cost of borpowing as $10 \%$ compounded p.a. [Decision, PV of cost savings] <br> (a) No, Rs. 750.36 <br> (b) Yes, Rs. $8,339.74$ <br> (c) No, Rs.9,250.22 <br> (d) Yes, Rs.5,366.63 | B |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CHAPTER 5A. PERMUTATION

## INTRODUCTION OF PERMUTATION \& COMBINATION

## PERMUTATION:

- Permutation means aprangement of the things (objects) under consideration.
- In permutation, order of the things is important.
- In Permutation $(a, b) \& b, a)$ are two different aprangements.


## COMBINATION:

- Combination means selection of the things under consideration.
- In combination, order of the things is not important.
- In combination $(a, b) \& b, a)$ are same selection.


## FUNDAMENTAL PRINCIPLES OF COUNTING

## A. Multiplication Rule [AND]

[When two tasks ape dependent on each other]
If certain thing may done in ' $m$ ' different ways \& after finishing it, a second thing can be done in ' $n$ ' different ways, total no. of ways of doing both things one after the another $=(m \times n)$ ways.

PC Note: Used when the statements are connected by "AND".
CQ1: If one can go to school by 5 different buses and then come back by 4 different buses then total number of ways of going to and coming back from school
[Ans: $5 \times 4=20$.]
CQ2: There are 4 routes for going from Dumdum to Sealdah \& 5 routes for going from Sealdah to Chandni. In how many different ways can you go from Dumdum to Chandni Via Sealdah?
(a) 9
(b) 1
(c) 20
(d) None
B. Addition Rule [OR]
[When two tasks ape independent]
It there are two alternative jobs which can be done in ' $m$ ' ways $\&$ in ' $n$ ' ways pespectively then either of two jobs can be done in $(m+n)$ ways.

PC Note: Used when the statements are connected by "OR"
CQ3: If one wants to go school by bus where there are 5 buses or by auto where there are 4 autos, then total number of ways of going school
[Ans: $5+4=9$.
CQ4: A certain Job requires drawing or printing. There ape 3 painter \& 4 printing machines. The number of ways the job can be completed is:
(a) 12
(b) 1
(c) 10
(d) 2

## THE FACTORIAL

- Continuous Product of all integers from 1 to ' $n$ ' BOTH Inclusive.
- The factorial ' $n$ ' is denoted as $n$ ! or $n$.
- $n!=1 \cdot 2 \cdot 3 \cdot 4 \cdot 5.6 \ldots \ldots(n-2)(n-1) n$.
- $0!=1$.

PC Note: While solving the question, all the factorials in the question shall be reduced upto the lowest factorial given in the question.

| $0!$ | $1!$ | $2!$ | $3!$ | $4!$ | $5!$ | $6!$ | $7!$ | $8!$ | $9!$ | $10!$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $2 \times 1$ | $3 \times 2!$ | $4 \times 3!$ | $5 \times 4!$ | $6 \times 5!$ | $7 \times 6!$ | $8 \times 7!$ | $9 \times 8!$ | $10 \times 9!$ |
| 1 | 1 | 2 | 6 | 24 | 120 | 720 | 5040 | 40320 | 362880 | 3828800 |

CQ5: Find 4! \& 6!
Ans: (i) 4 ! $=1 \times 2 \times 3 \times 4=24$;
(ii) $6!=1 \times 2 \times 3 \times 4 \times 5 \times 6=720$

CQ6: Find (i) $\frac{9!}{6!}=\frac{9.8 .7 .6!}{6!}=9 \cdot 8 \cdot 7=504$;
(ii) $\frac{n!}{(n-1)!}=\frac{n(n-1)!}{(n-1)!}=n$;
(iii) $\frac{11!}{7!}=11 \cdot 10 \cdot 9 \cdot 8=7920$.

CQ7: Find $n$ if $(n+1)!=30(n-1)$ !
[Answep: $\mathrm{n}=5$ ]
CQ8: Find $x$ if $\frac{1}{9!}+\frac{1}{10!}=\frac{\mathrm{x}}{11!}$
Ans: Reducing all factorials to the lowest factorial in the question, we have $\frac{1}{9!}+\frac{1}{10.9!}=\frac{\mathrm{x}}{11.10 .99^{3}}$ ?
Cancelling $\frac{1}{9!}$ from both sides, we have $1+\frac{1}{10}=\frac{\mathrm{x}}{11.10^{\circ}} ; \quad \frac{11}{10}=\frac{\mathrm{x}}{11.10^{\prime}}$;
Cancelling 10 from both sides, we have $11=\frac{x}{11}$;

$$
x=11.11=121
$$

## PERMUTATIONS

- Definition: The number of ways of appanging all or some of the given things out of given things is called permutations.
- The order in which person (objects) are arpanged is important.
- No. of Permutations of ' $r$ ' different object out of ' $n$ ' different object $={ }^{n} P_{r}=\frac{n!}{(n-r)!}[0 \leqslant r \leqslant n]$

CQ9: Calculate ${ }^{5} P_{3}{ }^{10}{ }^{10}{ }_{2} ;{ }^{11} P_{5}$.
Solution: ${ }^{5} P_{3}$ means out of 5 people (objects), we have to select any 3 people (objects).

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

$$
\begin{aligned}
& { }^{5} P_{3}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=\frac{5 \cdot 4 \cdot 3.2!}{2!}=5 \times 4 \times 3=60 ; \quad{ }^{10} P_{2}=\frac{10!}{(10-2)!}=\frac{10!}{8!}=\frac{10.9 .8!}{8!}=10 \times 9=90, \\
& { }^{11} P_{5}=\frac{11!}{(11-5)!}=\frac{11 \cdot 10.9 .8 .7 .6!}{6!}=11 \times 10 \times 9 \times 8 \times 7=55440 .
\end{aligned}
$$

CQ10: If ${ }^{n P 4}=5040$, then the value of ' $n$ ' is $\qquad$ .
(a) 8
(b) 9
(c) 10
(d) 6

CQ11: If ${ }^{n} P_{3}:{ }^{n} P_{2}=3: 1$, then $n$ is equal to $\qquad$ .
(a) 7
(b) 4
(c) 5
(d) None of these

CQ12: If ${ }^{x+y} P_{2}=90$ and ${ }^{x-y} P_{2}=30$ then $\qquad$ .
(a) $x=4 y$
(b) $x=2$
(c) $x=y$
(d) $4 x=y$

CQ13: If ${ }^{56} p_{p+6 .}{ }^{51} P_{r+3}=30800: 1$, find ' $r$ '.
(a) 31
(b) 41
(c) 51
(d) 21

CQ14: How many 3 letter words can be formed using the letters of the words (a) SQUARE \& (b) HEXAGON?

Ans: Since the word 'SQUARE' consists of 6 different letters, the number of permutations of choosing 3 letters out of six equals ${ }^{6} P_{3}=6 \times 5 \times 4=120$.
Since 'HEXAGON' contains 7 different letters, number of permutations is ${ }^{7} P_{3}=7 \times 6 \times 5=210$.
CQ15: There are 5 guests in a party \& only 3 chairs are there. In how many ways can the guests be seated?

Ans: There are 3 chairs \& 5 guests. It is obvious that 2 guest will not occupy same chair.
$1^{\text {st }}$ Chair $\rightarrow$ can be occupied by any 1 of the 5 guests $=5$ ways $\&$
$2^{\text {nd }}$ Chair $\rightarrow$ can be occupied by any 1 of the remaining 4 guests $=4$ ways \&
$3^{\text {rd }}$ chair $\rightarrow$ can be occupied by any 1 of the remaining 3 guests $=3$ ways.
Total number of ways $=5 \times 4 \times 3=60$ ways.

| Chair 1 | Chair 2 | Chair 3 |
| :---: | :---: | :---: |
| 5 Guests (ways) | 4 Guests (ways) | 3 Guests (ways) |

CQ16: In how many different ways can 3 students be associated with 4 CAs, assuming that each chartered accountant can take at most one student?

Ans: $1^{\text {st }}$ student can be associated with any of the 4 CAs $=4$ ways;
$2^{\text {nd }}$ student can be associated with any of the remaining 3 CAs $=3$ ways;
$3^{\text {rd }}$ student can be associated with any of the remaining 2 CAs $=2$ ways; [Ans $=4 \times 3 \times 2=24$ ]
Alternate Method: Number of permutations of choosing 3 persons out of 4 .
Hence, answer is ${ }^{4} P_{3}=4 \times 3 \times 2=24$.

CQ17: When Dr. Ram arrives in his dispensary, he finds 12 patients waiting to see him. If he can see only one patient at a time, find the number of ways, he can schedule his patients (a) if they all want their turn, and (b) if 3 leave in disgust before Dr. Ram gets apound to seeing them.
Ans: (a) There are 12 patients and all 12 wait to the see doctor. Therefore number of ways $=12$ ! Ways.
(b) There are $12-3=9$ patients. They can be seen ${ }^{12} P_{9}=79,833,600$ ways.

CQ18: How many 4 digit numbers can be formed from 1, 2, 3, 4, 5. [Repetition not allowed]
Ans: $5 \times 4 \times 3 \times 2=120$ ways.

| Ten thousand place | Thousand place | Tens Place | Unit Place |
| :---: | :---: | :---: | :---: |
| Can be filled in 5 <br> ways | Can be filled in 4 <br> ways | Can be filled in 3 <br> ways | Can be filled in 2 ways |

CQ19: How many 4 digits numbers can be formed by using 1, 2, 3,4,5,6,7,8,9, no digit being repeated in any number?
Ans: We have 9 digits \& we have to find the number of permutations of these taken 4 at a time, which is ${ }^{9} \mathrm{P}_{4}=3024$ ways.

## CONCEPT 1: PERMUTATION OF ' $n$ ' THINGS TAKEN ALL AT A TIME

Number of permutations of $n$ different things taken all $n$ things at a time $=n$ !
Here $\mathrm{p}=\mathrm{n}$, Thus, $\mathrm{nP}_{\mathrm{n}}=\frac{\mathrm{n}!}{(n-n)!}=\frac{\mathrm{n}!}{0!}=n!$.
CQ20: In how many different ways can five persons stand in a line for a group photograph?
Ans: Here we know that the order is important. Hence, this is the case of number of permutations of five things taken all at a time. Thus $5!=120$ ways.

TABULAR SUMMARY OF DIGITS

| Available | Taken at a time | All Possible Appangements | No. of ways | Fopmula |
| :---: | :---: | :---: | :---: | :---: |
| $1,2,3$ | 3 digits | $123,132,213,231,312,321$. | 6 ways | ${ }^{3} p_{3}$ |
| $1,2,3$ | 2 digits | $25,27,52,72,75$ | 6 ways | ${ }^{3} p_{2}$ |
| $1,2,3$ | 1 digit | $2,5,7$ | 3 ways | ${ }^{3} p_{1}$ |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CONCEPT 2: PERMUTATION OF DIFFERENT THINGS WITH RESTRICTIONS

- No. of permutations of $n$ distinct objects taken ' $r$ ' at a time when a particular object is not included in any aprangement $={ }^{(n-1)} P_{p}$

Explanation: If there are ' $n$ ' person \& we have to select ' $r$ ' out of them. But one person is not taken. Thus, we have only ( $n-1$ ) person (objects) to select ' $r$ ' person (objects).

- No. of permutations of $n$ distinct objects taken $r$ at a time when a particular object is always included in any arpangement $={ }^{(n-1)} P_{(n-1)}$.
[Person to be included is fix]
Explanation: If there are ' $n$ ' person \& we have to select ' $r$ ' out of them. But one person is always taken. Thus, we have to arpange only ( $p-1$ ) persons \& we have only ( $n-1$ ) person (objects) left since 1 person is already taken.
CQ21: How many 4 digits numbers can be formed by using $1,2,3,4,5,6,7,8,9$ such a that the numbers will (i) begin with a specified digit
(ii) begin with a specified digit and end with a specified digit?

Ans: (i) No. begin with a specified digit, then to aprange 8 digits out of 3 . Thus ${ }^{8} \mathbf{P}_{\mathbf{3}}=\mathbf{3 3 6}$.
(ii) Numbers begin with a specified digit \& end with another specified digit. Then we have to find the number of permutations of 7 things taken 2 at a time, which is ${ }^{7} \mathbf{P}_{2}=42$ ways.

- No. of permutations of ' $n$ ' distinct objects taken ' $r$ ' at a time when a particular object is always to be included in any aprangement $=p \cdot{ }^{(n-1)} P_{(p-1)}$. [Person to be included is not fix].
Explanation: If there are ' $n$ ' person \& we have to select ' $r$ ' out of them. But one person is always to be included which is not fix. So, we can fix any of the ' $r$ ' person. Thus, fixing a person can be done in ' $r$ ' ways. Now we are left with only ( $r-1$ ) persons \& we have only ( $n-1$ ) person (objects) left since 1 person is already taken. Thus, we have to aprange ( $r-1$ ) persons out of ( $n-1$ ) persons.
- No. of Permutations when 2 things ape always together out of ' $n$ ' things $=(n-1)$ ! $\times 2$ !

Explanation: Suppose we have to arpange $n$ things out of $n$ things, A1 \& A2 should always come together. Thus, we have total ( $n-2$ ) thing out of which we have to arpange ( $n-2$ ) things. This can be done in ( $n-2$ )! ways. The 2 thing can be apranged in 2! ways. [A1 \& A2 or A2 \& A1]

- TWO THINGS ARE NEVER TOGETHER = TOTAL NUMBER OF WAYS - "ALWAYS TOGETHER" WAYS
$=n!-(n-1)!\times 2!\Rightarrow(n-1)!(n-2)$
Explanation: We will subtract the number of ways when things are always together from total number of ways. This will give us the number of ways when 2 things are never together.

CQ22: In how many ways 10 examination papers can be arpanged so that best \& worst paper never come together?
Ans: (i) Total number of permutations of 10 papers without any restriction is ${ }^{10} p_{10}=10$.
(ii) Let us regard the worst and the best papers together as one paper.

Now we have (10-1) papers which can be arpanged in ${ }^{9} P_{9}$ ways $=9$ ! Ways.

Now these 2 papers (i.e best and worst papers) can be apranged internally in 2! Ways.
The number of ways the two papers are always together is (9! $\times 2!$ )
(iii) No. of ways that the best and worst paper never come together $=$ Total number of permutations without restrictions - number of ways two papers are always together
$=10!-(9!\times 2!)=9![10-2]=9!\times 8$.
CQ23: There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how many ways can these be placed on a shelf if the books on same subject are to be together?
Ans: Consider the books on each subject as one unit. Now there are 3 units. They can be apranged in 3 ! Ways.
6 Economics books can be apranged among themselves internally in 6! ways.
3 Mathematics books can be apranged internally in 3 ! ways.
2 books on Accountancy can be appanged internally in 2 ! ways.
Total number of appangements $=3!\times 6!\times 3!\times 2!=\mathbf{5 1 , 8 4 0}$.

CQ24: How many different aprangements can be made by using all the letters of word MONDAY? Ans: MONDAY has different letters. So, 6 different letters apranged in ${ }^{6} P_{6}=6!=720$ ways.

CQ25: In Q24, how many of these aprangement being with A?
Ans: Suppose all words begin with A. Remaining 5 places filled with remaining 5 letters ${ }^{5} \mathbf{P}_{5}$
CQ26: In Q24, how many of this appangement begin with A \& end with D?
Ans: Suppose all words begin with A \& end with D. Remaining 4 Places can be filled in ${ }^{4} \mathrm{P}_{4}=4$ ! Ways $=24$ Ways.

CQ27: In Q24, how many arpangements are there in which vowels A \& O occur together?
Ans: The vowels are $A \& O$. Let us take them as one letter, then remaining 5 letters can be apranged in ${ }^{5} \mathbf{P}_{5}=\mathbf{5 !}=\mathbf{1 2 0}$ ways. These two vowels can be apranged amongst themselves internally in $2!=2$ ways. So total numbers of ways $=2 * 120=\mathbf{2 4 0}$ ways.

CQ28: In Q24, how many words can be formed such that consonants occur together?
[Ans: 144 ways.]

CQ29: In Q24, how many words can be there such that the vowels $A$, O occupy even places?
[Ans: 144 ways]

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CONGEPT 3: PERMUTATION OF ' $r$ ' out of ' $n$ ' things WHEN REPETITION IS ALLOWED

If repetition is allowed, Number of ways or apranging ' $r$ ' things out of ' $n$ ' things $=n$.
CQ30: How many telephones connections may be allotted with 8 digits from the no. 0 to 9 ?
(a) $10^{8}$
(b) 10 !
(c) ${ }^{10} \mathrm{C}_{8}$
(d) ${ }^{10} \mathrm{P}_{8}$

## CONGEPT 4: PERMUTATION OF SIMILAR THINGS TAKEN ALL AT A TIME

The number of ways in which ' $n$ ' things can be arpanged taking all at a time, when ' $p$ ' things are similar of one type, ' $q$ ' things are similar of $2^{\text {nd }}$ type, ' $r$ ' things are similar of $3^{\text {rd }}$ type \& remaining things are different $=\frac{n!}{p!\times \mathbf{q}!\times \mathbf{r}!}$.
CQ31: In how many ways can 17 billiard balls be arranged, if 7 of them are black, 6 red \& 4 white?
[Ans: $\frac{17!}{7!\times 6!\times 4!}$ ]
CQ32: How many permutations can be made out of the letters of the word?
(i) MATHEMATIC
(ii) COMMERCE;
(iii) EXAMINATION?

Ans: (i) The word MATHEMATICS Contains 11 words in which, A appears 2 times: T appeaps 2 times: $M$ appears 2 times and the remaining letters $H, E, C$, and $S$ appear only once. Therefore required number of permutations $=11!/ 2!2!2$ !
(ii) Here $M$ appears 2 times. E appears two times and $O$ appears 2 times out of 8 words of COMMERCE.

Therefore required number of permutations= $8!/ 2!2!2!=5040$.
(iii) The word EXAMINATION has 11 words, out which A appears 2 times, I appear 2 times, $N$ appears 2 times.
Therefore required number of permutations=11! $/ 2!* 2!* 2!=4989600$.
CQ33: The number of aprangements that can be made with the word 'assassination' is
(a) $13!\div\left[3!\times 4!\times(2!)^{2}\right]$
(b) $13!\div[3!\times 4!\times 2!]$
(c) 13 !
(d) None

CQ34: (i) How many different words can be formed with the letters of the word BHARAT?
(ii) How many of these begin with B and End T?
(iii) In how many of these $B$ and $H$ are never together?

Ans: (i) 6! /2! $=\mathbf{3 6 0}$.
(ii) $4!/ 2!=12$.
(iii) $\mathbf{3 6 0} \mathbf{- 1 2 0 = 2 4 0}$.

## CONCEPT 5: CIRCULAR PERMUTATIONS

- Arrangement of things along a circle is known as circular permutations.
- abcd, dabc, cdab, bcda are different in a line but they are same in circular permutation as there is no beginning nor ending in the circle.
- Number of circular permutation of ' $n$ ' different things taken ' $r$ ' at a time $=\frac{\mathbf{n P r}}{\boldsymbol{r}}$
A. Clockwise \& anti-clockwise ape different appangements: No. of cipculap permutations of $n$ different things chosen at a time is ( $n-1$ )!

Explanation: In line permutation, no. of ways or apranging $n$ things $=n!$. Then why do we have ( $n-1$ )! in circular permutation. The reason is simple:

Let us assume that we have 6 people and 6 chairs.
The number of ways in which $1^{\text {st }}$ person can sit = 1 way only because for the $1^{\text {st }}$ person, all the aprangements will be same irpespective of the chair he sit at.
$2^{\text {nd }}$ person can sit in 5 ways. Because for him, the aprangements won't be same for all chairs because 1 chair is already occupied. $3^{\text {rd }}$ person can sit in 4 ways;
$4^{\text {th }}$ person can sit in 3 ways; $5^{\text {th }}$ person in 2 ways $\& 6^{\text {th }}$ persons in 1 way.
Thus answer $=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5!$ which is equal to (6-1)!
[PC Note: Mostly used in case of "Sitting aprangement of Pepson" examples]
CQ35: How many ways can 4 persons sit at a pound table?
[Ans: 3! ways]
B. Clockwise \& anti-clockwise ape same appangements: No. of circulap permutations of $n$ different things chosen at a time is $\frac{(\mathrm{n}-1) \text { ! }}{2}$.
[PC Note: Mostly used in case of "Necklace \& gaplands" examples]

## SUM OF ALL Nos FORMED OUT OF ' $n$ ' DIGITS

$(n-1)!\times$ Sum of digits $\times(1111 \ldots . . n$ times $)$
CQ36: Compute the sum of 4 digits numbers which can be formed with the four digits $1,3,5,7$, if each digit is used only once in each aprangement.
Ans: $(n-1)!\times$ Sum of digits $\times(1111 \ldots . . n$ times $)=(4-1)!\times(1+3+5+7) \times 1111=6.16 .1111=106656$.
PC Note: If the digits include 'ZERO', Answer = (i) - (ii)
(i) Solve as per above given formula including ' 0 '; (ii) Solve by ignoping ' 0 '

CQ37: Find the sum of all numbers greater than 10,000 formed by using the digits $0,2,4,6,8$.
Ans: (i) $53,33,280$ - (ii) 1,33,320. Thus, the required Sum 51,99,960.

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## SOME EXAMPLES

CQ38: How many 4 digits numbers can be formed out of the digits $1,2,3,5,7,8,9$, if no digit is repeated in any number? How many of these will be greater than 3000 ?
Ans: 7 different digits and 4 digit number is to be formed using any 4 of these digits.
This is same as the permutations of 7 different things taken 4 at a time.
Hence, the number of foup-digit numbers that can be formed $={ }^{7} P_{4}=7 \times 6 \times 5 \times 4 \times=840$ ways. Next, there is the restriction that the four-digit numbers so formed must be greater than 3,000 . Thus, it will be so if the first digit-that in the thousand's position, is one of the five digits $3,5,7,8,9$. Hence, the first digit can be chosen in 5 different ways; when this is done, the rest of the 3 digits are to be chosen from the rest of the 6 digits without any restriction and this can be done in ${ }^{6} P_{3}$ ways. [Ans: $5 \times{ }^{6} P_{3}=5 \times 6 \times 5 \times 4=5 \times 120=600$.]

CQ39: Find the total number of numbers greater than 2000 that can be formed with the digits $1,2,3,4,5$ no digit being repeated in any number.
Ans: 5 Digit Numbers: All the 5 digits numbers that can be formed with the given 5 digits ape greater than 2000. This can be done in ${ }^{5} P_{5}$ ways $=120$ ways.
4 Digit Number: Greater than 2000. Thus, Thousand place can have 2, 3, 4, 5 only.

| Thousand Place | Hundred Place | Ten's Place | Unit place |
| :---: | :---: | :---: | :---: |
| 4 ways [cannot have 1] | 4 ways [can have 1 also] | 3 ways | 2 ways |

This can be done in $4 \times 4 \times 3 \times 2=96$ ways. Total Number of ways $=\mathbf{1 2 0}+\mathbf{9 6}=\mathbf{2 1 6}$ ways.
CQ40: There are 6 students of whom 2 are Indians, 2 Americans, and the remaining 2 are Russians. They have to stand in a row for a photograph so that the two Indians are together, the two Americans are together and so also the two Russians. Find the number of ways in which they can do so.
[Ans: 48]

CQ41: A family of 4 brothers and 3 sisters is to be apranged for a photograph in one row. In how many ways can they be seated if (i) all the sisters sit together, (ii) no two sisters sit together?
Ans: (i) $5!\times 3!$ ways $=720$ ways.
(ii) ${ }^{5} P_{3} \times 4!=60 \times 24=1440$ ways.

CQ42: 6 boys \& 5 girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done.
Ans: 6! $\times 5$ !.

PERMUTATION OF DISSIMILAR THINGS (ALL DIFFERENT) UNDER RESTRICTION

| Cases | Fopmula | If $n=8, p=3$ |
| :---: | :---: | :---: |
| A particular thing is NOT INCLUDED | ${ }^{n-1} P_{r}$ | ${ }^{7} P_{3}$ |
| A particular thing is ALWAYS INCLUDED | $p\left({ }^{n-1} P_{r-1}\right)$ | $3\left(7 P_{2}\right)$ |
| 'm' particular thing ALWAYS TOGETHER | $(n-m+1)!m!$ |  |
| 2 particular ALWAYS TOGETHER | $(n-1)!2!$ | $7!\times 2!$ |
| 3 particular ALWAYS TOGETHER | $(n-2)!3!$ | $6!\times 3!$ |
| 4 particular ALWAYS TOGETHER | $(n-3)!4$ ! | $5!\times 4!$ |
| ${ }^{\text {' }} \mathrm{m}$ ' particular thing NEVER TOGETHER | $n!-[(n-m+1)!m!]$ |  |
| 2 particular NEVER TOGETHER | $(n-2) \times(n-1)!$ | $6 \times 7!$ |
| 3 particular NEVER TOGETHER | $(n-3) \times(n+2) \times(n-1)!$ | $5 \times 10 \times 6!$ |
| NO TWO are together out of ' $p$ ' things \& no pestriction on remaining ' $q$ ' things | $q!\times{ }^{(q+1)} p_{p}$ |  |
| Forming numbers including ZERO | ${ }^{n} P_{p}-{ }^{n-1} P_{p-1}$ | ${ }^{8} p_{3}-{ }^{7} p_{2}$ |
| SUM of ALL no. formed out of ' $n$ ' digits | $(n-1)!\times($ Sum of all digits $) \times(111111 . . n$ times $)$ |  |

## PERMUTATION OF SIMILAR THINGS (2 ALIKE GROUPS) UNDER RESTRICTION

| Cases | Fopmula | $\mathbf{n = 8 , p = 2 , \mathbf { q } = \mathbf { 3 }}$ |
| :---: | :---: | :---: |
| ${ }^{\prime} m^{\prime}$ particular ALWAYS TOGETHER | $[n-m+1)!m!] /(p!\times q!)$ |  |
| $\mathbf{2}$ particular ALWAYS TOGETHER | $[n-1)!2!] /(p!\times q!)$ | $(7!\times 2!) /((2!\times 3!)$ |
| $\mathbf{3}$ particular ALWAYS TOGETHER | $[n-2)!3!] /(p!\times q!)$ | $(6!\times 3!) /((2!\times 3!)$ |
| $\mathbf{4}$ particular ALWAYS TOGETHER | $[n-3)!4!] /(p!\times q!)$ | $(5!\times 4!) /((2!\times 3!)$ |
| ${ }^{\prime} m$ ' particular NEVER TOGETHER |  |  |
| $\mathbf{2}$ particular NEVER TOGETHER | $[(n-2)(n-1)!] /(p!\times q!)$ | $(6 \times 7!) /((2!\times 3!)$ |
| $\mathbf{2}$ particular NEVER TOGETHER | $[(n-3)(n+2)(n-1)!] /(p!\times q!)$ | $(5 \times 10 \times 6!) /((2!\times 3!)$ |

## PERMUTATION OF DISSIMILAR THINGS IN A CIRCLE UNDER RESTRICTION

| Cases | Formula | If $\boldsymbol{n}=8$ |
| :---: | :---: | :---: |
| 'm' particular ALWAYS TOGETHER | $[(n-1)-m+1)!m!$ |  |
| 2 particular ALWAYS TOGETHER | $[(n-1)-1)!2!$ | $6!\times 2!$ |
| 3 particular ALWAYS TOGETHER | $[(n-1)-2)!3!$ | $5!\times 3!$ |
| 4 particular ALWAYS TOGETHER | $[(n-1)-3)!4!$ | $4!\times 4!$ |
| 'm' particular NEVER TOGETHER |  |  |
| 2 particular NEVER TOGETHER | $[(n-1)-2] \times[(n-1)-1]!$ | $5 \times 6!$ |
| 2 particular NEVER TOGETHER | $(n-4)(n+1)(n-3)!$ | $4 \times 9 \times 5!$ |
| NO TWO ape together out of ' $p$ ' things $\&$ no restriction on pemaining ' $q$ ' things | $(q-1)!\times{ }^{q} p_{p}$ |  |

Space for PC Class Note:

## PERMUTATION - QUESTION BANK

| SN | CHAPTER | A. PERMUTATION |  | Ans |
| :---: | :---: | :---: | :---: | :---: |
| FACTORTAL \& FUNDAMENTAL RULE OF COUNTING \& nPr FORMULA |  |  |  |  |
| Q1 | Find $n$ if $\mathrm{nP}_{3}=60$ <br> (a) 4 <br> (b) 5 | $\text { (c) } 6$ | (d) 7 | B |
| Q2 | Find the value of $n$ if $(n+1)!=42(n-1)$ ! <br> (a) 6 <br> (b) -7 | $\text { (c) } 7$ | $\text { (d) }-6$ | A |
| Q3 | ${ }^{6} \mathrm{P}_{\mathrm{p}}=360$ then find p ? <br> (a) 4 <br> (b) 5 | (c) 6 | (d) None | A |
| Q4 | If $n P_{4}=(20)^{n} P_{2}$ then the value of $n$ is <br> (a) 5 <br> (b) 6 | $\text { (c) } 7$ | (d) 8 | C |
| Q5 | If ${ }^{7} P_{n} \div{ }^{7} P_{n-3}=60$ the value of $n$ is $\qquad$ <br> (a) 8 <br> (b) 4 | (c) 5 | (d) 2 | C |
| Q6 | If ${ }^{5} P_{p}=60$, then the value of ' $p$ ' is <br> (a) 3 <br> (b) 2 | $\text { (c) } 4$ | (d) None | A |
| Q7 | If ${ }^{11} P_{p}={ }^{12} P_{p-1}$, then the value of ' $p$ ' is <br> (a) 6 <br> (b) 7 | $\text { (c) } 9$ | (d) 8 | C |
| Q8 | There are 10 trains plying between a person can go from Calcutta to De <br> (a) 99 <br> (b) 90 | cutta \& Delhi. The numb \& peturn by a differen (c) 80 | f ways in which in is $\qquad$ (d) None | B |
| Q9 | $\frac{0!\times 5!}{2!}=$ $\qquad$ <br> (a) 60 <br> (b) 0 | (c) 120 | (d) None | A |
| Q10 | In ${ }^{n} \mathrm{P}_{\mathrm{r}}, \mathrm{n}$ is always $\qquad$ <br> (a) An integer <br> (b) A fraction | (c) A positive integer | (d) None | C |
| Q11 | In ${ }^{n} P_{r}$, the restriction is $\qquad$ <br> (a) $n>p$ <br> (b) $n \geq p$ | (c) $n \leq p$ | (d) None | B |
| Q12 | ${ }^{n} P_{p} \div{ }^{n-1} P_{p-1} \text { is }$ $\qquad$ <br> (a) $n$ <br> (b) $n$ ! | (c) $(n-1)$ ! | $\text { (d) }{ }^{n} C_{n}$ | A |
| Q13 | In ${ }^{n} P_{r}=n \cdot(n-1) \cdot(n-2)$ $\qquad$ ( $n-p-1$ ), <br> (a) $n$ <br> (b) $p-1$ | mber of factor is $\qquad$ <br> (c) $n-r$ |  | D |
| Q14 | ${ }^{(n-1)} P_{p}+p \cdot{ }^{(n-1)} P_{(n-1)}=$ $\qquad$ <br> (a) ${ }^{n} C_{r}$ <br> (b) $\underline{n} /(\|r\| n-r)$ | $\text { (c) } n P_{r}$ | (d) None | C |
| Q15 | $0!=$ $\qquad$ <br> (a) 0 <br> (b) 1 | $\text { (c) } \infty$ | $\text { (d) }-1$ | B |



|  | of ways. <br> (a) 6 <br> (b) 12 <br> (c) 36 <br> (d) 30 |  |
| :---: | :---: | :---: |
| Q32 | If six times the number permutations of $n$ things taken 3 at a time are equal to seven times the number of permutations of ( $n-1$ ) things chosen 3 at a time, find ' n '. <br> (a) 18 <br> (b) 9 <br> (c) 36 <br> (d) 21 | D |
| Q33 | In a group of boys, the number of aprangements of 4 boys is 12 times the number of arpangements of 2 boys. The number of boys in the group is $\qquad$ <br> (a) 10 <br> (b) 8 <br> (c) 6 <br> (d) None | C |
| Q34 | A dealer provides you Maruti Car \& Van in 2 body patterns \& 5 different colours. How many choices ape open to you? <br> (a) 2 <br> (b) 7 <br> (c) 20 <br> (d) 10 | C |
|  | BASIC QUESTIONS WITH SIMPLE RESTRICTIONS |  |
| Q35 | How many different words can be formed from letters of the word 'TRIANGLE? <br> (a) 8! <br> (b) 7 ! <br> (c) 6 ! <br> (d) $2!\times 6!$ | A |
| Q36 | Number of words that can be formed by using all the letters of the word 'DELHI'. <br> (a) 120 <br> (b) 24 <br> (c) 125 <br> (d) 130 | A |
| Q37 | How many aprangements of the word 'PUBLIC' will begin with $B$ ? <br> (a) 6 ! <br> (b) 5 ! <br> (c) ${ }^{6} \mathrm{P}_{5}$ <br> (d) 5 | B |
| Q38 | How many 7 letter words can be formed using letters of the words "SPECIAL"? <br> (a) 5,040 <br> (b) 6 <br> (c) 840 <br> (d) 450 | A |
| Q39 | How many aprangements can be made by using all the letters of word "Monday"? <br> (a) 120 <br> (b) 720 <br> (c) 41 <br> (d) 51 | B |
| Q40 | Find how many five letter words can be formed out of the word "LOGARITHMS". <br> (a) ${ }^{10} P_{5}$ <br> (b) ${ }^{10} \mathrm{C}_{5}$ <br> (c) ${ }^{9} \mathrm{C}_{4}$ <br> (d) None | A |
| Q41 | Three persons enter a railway carpiage, where there are 5 vacant seats. The number of ways they can seat themselves is $\qquad$ <br> (a) 60 <br> (b) 50 <br> (c) 70 <br> (d) 40 | A |
| Q42 | Mr. X \& Mr. Y enter into a railway compartment having six vacant seats. The number of ways in which they can occupy the seats is $\qquad$ <br> (a) 25 <br> (b) 31 <br> (c) 32 <br> (d) 30 | D |
| Q43 | The number of aprangements of 10 different things taken 4 at a time in which one particular thing always occurs is $\qquad$ <br> (a) 2,015 <br> (b) 2,016 <br> (c) 2,014 <br> (d) None | B |
| Q44 | The number of permutations of 10 different things taken 4 at a time in which one particular thing never occurs is $\qquad$ <br> (a) 3,020 <br> (b) 3,025 <br> (c) 3,024 <br> (d) None | C |


| Q45 | The number of aprangements in which the letters of the word MONDAY be appanged so that the words thus formed begin with $M \&$ do not end with $N$ is $\qquad$ <br> (a) 720 <br> (b) 96 <br> (c) 120 <br> (d) None | B |
| :---: | :---: | :---: |
| Q46 | In how many ways it is possible to write the word 'ZENITH' in a dictionary? <br> (a) ${ }^{6} P_{6}$ <br> (b) ${ }^{6} \mathrm{C}_{6}$ <br> (c) ${ }^{6} \mathrm{P}$ 。 <br> (d) None | A |
| Q47 | How many telephones connections may be allotted with 8 digits from the numbers $0,1,2, \ldots .9$ ? <br> (a) $10^{8}$ <br> (b) 10 ! <br> (c) ${ }^{10} \mathrm{C}_{8}$ <br> (d) ${ }^{10} \mathrm{P}_{8}$ | A |
| Q48 | Eleven students are participating in a race. In how many ways the first 5 prizes can be won? <br> (a) 44,550 <br> (b) 55,440 <br> (c) 120 <br> (d) 90 | B |
| Q49 | Total number of sitting aprangements of 7 persons in a row if 2 persons occupy the end seats is $\qquad$ <br> (a) 5 ! <br> (b) 6 ! <br> (c) $2!\times 5$ ! <br> (d) None | C |
| Q50 | Total number of sitting aprangements of 7 persons in a row if one person occupies the middle seat is $\qquad$ <br> (a) 5 ! <br> (b) 6 ! <br> (c) $2!\times 5$ ! <br> (d) None | B |
| Q51 | The number of different ways in which 5 girls may be apranged in a row is $\qquad$ <br> (a) 102 <br> (b) 120 <br> (c) 100 <br> (d) 210 | B |
| Q52 | 3 persons go into a railway carpiage having 8 seats. In how many ways they may occupy the seats? <br> (a) ${ }^{8} P_{3}$ <br> (b) ${ }^{8} \mathrm{C}_{3}$ <br> (c) ${ }^{8} \mathrm{C}_{5}$ <br> (d) None | A |
|  | QUESTIONS BASED ON DIGITS |  |
| Q53 | Number of 4-digit numbers greater than 5,000 that can be formed out of the digits $3,4,5,6 \& 7$ (no. digit is repeated). <br> (a) 72 <br> (b) 27 <br> (c) 70 <br> (d) None | A |
| Q54 | How many numbers between $1000 \& 10000$ can be formed with $1,2, \ldots 9$ ? <br> (a) 3024 <br> (b) 60 <br> (c) 78 <br> (d) None | D |
| Q55 | How many numbers higher than a million can be formed with the digits $0,4,4,5,5,5,3$ ? <br> (a) 420 <br> (b) 360 <br> (c) 7 ! <br> (d) None | D |
| Q56 | How many three-digit numbers are there, with distinct digits, with each digits odd? <br> (a) 120 <br> (b) 60 <br> (c) 30 <br> (d) 15 | B |
| Q57 | The number of numbers lying between $100 \& 1,000$ can be formed with the digits $1,2,3,4,5,6,7$ is $\qquad$ <br> (a) 210 <br> (b) 200 <br> (c) 110 <br> (d) None | A |


| Q58 | How many six digits numbers can be formed with the permutation of digits 9,5,3,1,7,0? <br> (a) 600 <br> (b) 720 <br> (c) 120 <br> (d) None | A |
| :---: | :---: | :---: |
| Q59 | In terms of Question No.58, how many numbers will have O's in ten's palace? <br> (a) 600 <br> (b) 720 <br> (c) 120 <br> (d) None | C |
| Q60 | How many 3 digit numbers are there if repetition of digits is not allowed? <br> (a) 648 <br> (b) $9^{3}$ <br> (c) $3^{9}$ <br> (d) ${ }^{9} \mathrm{C}_{3}$ | A |
| Q61 | The number of four digit numbers that can be formed using the digits $1,7,6 \& 9$ without repetition is $\qquad$ <br> (a) 24 <br> (b) 46 <br> (c) 64 <br> (d) 90 | A |
| Q62 | No. of 4 digit numbers that can be formed out of the figures $0,1,2,3,4$ (no digit is repeated) is $\qquad$ <br> (a) 120 <br> (b) 20 <br> (c) 96 <br> (d) None | C |
| Q63 | The number of numbers lying between $10 \& 1,000$ can be formed with the digits $2,3,4,0,8,9$ is $\qquad$ <br> (a) 124 <br> (b) 120 <br> (c) 125 <br> (d) None | D |
| Q64 | How many six digit numbers can be formed out of $4,5,6,7,8,9$ (no digits being pepeated)? <br> (a) $6!-5$ ! <br> (b) 6 ! <br> (c) $6!+5$ ! <br> (d) None | B |
| Q65 | The total number of numbers less than 1,000 \& divisible by 5 formed with $0,1,2$, 9 such that each digit does not occur more than once in each number is $\qquad$ <br> (a) 150 <br> (b) 152 <br> (c) 154 <br> (d) None | C |
| Q66 | How many four digits number can be formed by using 1, $2 \ldots 7$ ? <br> (Without repetition of digits) <br> (a) ${ }^{7} P_{4}$ <br> (b) ${ }^{7} \mathrm{P}_{3}$ <br> (c) ${ }^{7} \mathrm{C}_{4}$ <br> (d) None | A |
| Q67 | How many four digits numbers can be formed by using $1,2, \ldots .7$ ? <br> (Which are greater than 3,400 ) <br> (a) 500 <br> (b) 550 <br> (c) 560 <br> (d) None | C |
| Q68 | The number of even numbers greater than 300 that can be formed with the digits $1,2,3,4,5$ without repetition is $\qquad$ <br> (a) 110 <br> (b) 112 <br> (c) 111 <br> (d) None | C |
| Q69 | How many 4 digit numbers greater than 7,000 can be formed out of the digits 3 , $5,7,8,9$ ? <br> (a) 24 <br> (b) 48 <br> (c) 72 <br> (d) 50 | C |
| ALWAYS TOGETHER \& NEVER TOGETHER |  |  |
| Q70 | In how many number of ways can ' $n$ ' books be apranged on a shelf so that two particular books are not together? | A |

[^0]|  | $\begin{array}{llll}\text { (a) }(n-2)(n-1)! & \text { (b) }(n-1) n! & \text { (c) }(n-2) n! & \end{array}$ |  |
| :---: | :---: | :---: |
| Q71 | 10 examination papers are arpanged in such a way that the best \& worst papers never come together. The number of aprangements is $\qquad$ <br> (a) 9.8 ! <br> (b) 10 ! <br> (c) 8.9 ! <br> (d) None | C |
| Q72 | In how many ways 5 Sanskpit, 3 English \& 3 Hindi books be appanged keeping the books of the same language together? <br> (a) $5!\times 3!\times 3!\times 3!$ <br> (b) $5!\times 3!\times 3!$ <br> (c) ${ }^{5} P_{3}$ <br> (d) None | A |
| Q73 | In how many ways can the word 'STRANGE' be appanged so that the vowels never come together? <br> (a) 7 ! $-6!\times 2$ ! <br> (b) $7!-6!$ <br> (c) ${ }^{7} \mathrm{P}_{6}$ <br> (d) None | A |
| Q74 | In how many ways can the word 'strange' be apranged so that the vowels are never separated? <br> (a) $6!\times 2$ ! <br> (b) 7 ! <br> (c) $7!\div 2$ ! <br> (d) None | A |
| Q75 | There are 5 speakers $A, B, C, D \& E$. the number of ways in which $A$ will speak always immediate\& before $B$ is $\qquad$ <br> (a) 24 <br> (b) 120 <br> (c) 15 <br> (d) None | A |
| Q76 | Number of ways of apranging 5 different books on history, 2 different books on English \& 4 different books on physics on a shelf so that books on same subject ape not separated. <br> (a) 5,760 <br> (b) 34,560 <br> (c) 120 <br> (d) 11 ! | B |
| Q77 | How many aprangements can be made out of the word DRAUGHT, the vowels never being separated? <br> (a) 720 <br> (b) 360 <br> (c) 840 <br> (d) 670 | A |
| Q78 | In how many ways can the letters of the word PENCIL be apranged so that $N$ is always next to E $\qquad$ <br> (a) 60 <br> (b) 40 <br> (c) 720 <br> (d) 120 | D |
| Q79 | The total number of sitting aprangements of 7 persons in a row if 3 persons sit together in any order is $\qquad$ <br> (a) 5 ! <br> (b) 6 ! <br> (c) $2!\times 5$ ! <br> (d) None | B |
| Q80 | The number of aprangements of the letters in the work FAILURE, so that vowels are always coming together is $\qquad$ <br> (a) 576 <br> (b) 676 <br> (c) 570 <br> (d) None | A |
| Q81 | The number of ways the letters of the word "TRIANGLE" to be arpanged so that the word 'ANGLE" will be always present is $\qquad$ <br> (a) 20 <br> (b) 60 <br> (c) 24 <br> (d) 32 | C |
| Q82 | If 5 books of English, 4 books of Tamil \& 3 books of Hindi are to be apranged in a single row so that books of same language come together. <br> (a) 1,80,630 <br> (b) $1,60,830$ <br> (c) $1,03,680$ <br> (d) 1,30,680 | C |


| Q83 | In how many ways the letters of the word 'FAILURE' can be apranged with the condition that the four vowels are always together? <br> (a) $(4!)^{2}$ <br> (b) 4 ! <br> (c) 7 ! <br> (d) None | A |
| :---: | :---: | :---: |
| Q84 | In how many ways the word 'ARRANGE' be apranged such that 2 ' p 's come together? <br> (a) 400 <br> (b) 440 <br> (c) 360 <br> (d) None | C |
| Q85 | In how many ways the word 'ARRANGE' be arpanged such that the 2 ' $r$ 's \& 2 'a's come together? <br> (a) 120 <br> (b) 130 <br> (c) 140 <br> (d) None | A |
| Q86 | A family of 4 brothers \& three sisters is to be apranged for a photograph in one row. In how many ways can they be seated if all the sisters sit together? <br> (a) 720 <br> (b) 640 <br> (c) 840 <br> (d) 600 | A |
| Q87 | A family of 4 brothers \& three sisters is to be apranged for a photograph in one row. In how many ways can they be seated if no two sisters sit together? <br> (a) 840 <br> (b) 1,440 <br> (c) 2,210 <br> (d) 1,020 | B |
| Q88 | There are 6 students of whom 2 are Indians, 2 Germans $\&$ the remaining 2 are British. They have to stand in a pow for a photograph so that the two Indians are together, the two Germans are together \& so also the two British. The number of ways such an aprangement can be made is $\qquad$ <br> (a) 48 <br> (b) 8 <br> (c) 16 <br> (d) 24 | A |
|  | FIXED PLACES (EVEN/ODD) + NO TWO GIRLS/BOYS SIT TOGETHER |  |
| Q89 | 5 Boys \& 4 girls are to be seated in row. If girls occupy even places, then no. of such aprangements ape $\qquad$ <br> (a) 288 <br> (b) 2808 <br> (c) 2008 <br> (d) 2880 | D |
| Q90 | The number of ways in which the letters of the word MOBILE be apranged so that consonants always occupy the odd places is $\qquad$ <br> (a) 36 <br> (b) 63 <br> (c) 30 <br> (d) None | A |
| Q91 | In how many ways the words 'failure' can be apranged so that consonants occupy only the odd positions? <br> (a) 4 ! <br> (b) $(4!)^{2}$ <br> (c) $7!\div 3!$ <br> (d) None | B |
| Q92 | In how many ways can be letters of the word 'VIOLENT' be appanged so that the vowels occupy even places only? <br> (a) 1,440 <br> (b) 240 <br> (c) 480 <br> (d) 144 | D |
| Q93 | The number of ways the letters of the word 'SIGNAL' can be apranged such that the vowels occupy only odd position is $\qquad$ <br> (a) 1,440 <br> (b) 240 <br> (c) 480 <br> (d) 144 | D |
| Q94 | In how many ways can the word 'STRANGE' be arpanged so that the vowels occupy only the odd places? | C |


|  | $\begin{array}{llll}\text { (a) }{ }^{5} \mathrm{P}_{5} & \text { (b) }{ }^{5} \mathrm{P}_{5} \times{ }^{4} \mathrm{P}_{4} & \text { (c) }{ }^{5} \mathrm{P}_{5} \times{ }^{4} \mathrm{P}_{2} & \end{array}$ |  |
| :---: | :---: | :---: |
| Q95 | In how many ways the vowels of the word "ALLAHABAD" will occupy the even places? <br> (a) 120 <br> (b) 60 <br> (c) 30 <br> (d) None | B |
| Q96 | In how many ways the word 'Article' can be apranged in a row so that the vowels occupy even places? <br> (a) 132 <br> (b) 144 <br> (c) 72 <br> (d) 160 | B |
| Q97 | Six boys \& five girls are to be seated for a photograph in a row such that no two girls sit together \& no two boys sit together. Find the number of ways in which this can be done. <br> (a) 64,500 <br> (b) 76,800 <br> (c) 86,400 <br> (d) 92,500 | C |
|  | PERMUTATION OF SIMILAR THINGS |  |
| Q98 | Number of different appangements of the letters of the word 'CALCUTTA' is $\qquad$ <br> (a) $\mid 8$ <br> (b) $\|5 \times\|2 \times\|2 \times\| 2$ <br> (c) 5,040 <br> (d) 10,080 | C |
| Q99 | If you have 5 copies of one book, 4 copies of each of two books, 6 copies each of three books \& single copy of 8 books you may appange it how many number of ways? <br> (a) $\frac{39!}{5!\times(4!)^{2} \times(6!)^{3}}$ <br> (b) $\frac{39!}{5!\times 8!\times(4!)^{2} \times(6!)^{3}}$ <br> (c) $\frac{39!}{5!\times 8!\times 4!\times(6!)^{3}}$ <br> (d) $\frac{39!}{5!\times 8!\times 4!\times 6!}$ | A |
| Q100 | How many different permutations are possible from the letters of word CALCULUS? <br> (a) 4600 <br> (b) 5040 <br> (c) 5400 <br> (d) 4680 | B |
| Q101 | How many different aprangements are possible from letters of "CALCULATOR"? <br> (a) $4,53,600$ <br> (b) 50,400 <br> (c) 45,360 <br> (d) None | A |
| Q102 | No. of permutation can be made out the letters of word 'COMMERCE" is $\qquad$ <br> (a) 5,040 <br> (b) 8 ! <br> (c) 6 ! <br> (d) None | A |
| Q103 | No. of aprangements that can be made with the word 'assassination' is $\qquad$ <br> (a) $13!\div\left[3!\times 4!\times(2!)^{2}\right]$ <br> (b) 13 ! <br> (c) $13!\div[3!\times 4!\times 2!]$ <br> (d) None | A |
| Q104 | The number of subsets formed from the letters of the word "ALLAHABAD". <br> (a) 128 <br> (b) 16 <br> (c) 32 <br> (d) None | C |
| Q105 | The number of permutation of the word "ALLAHABAD" is $\qquad$ <br> (a) $9!\div(4!\times 2!)$ <br> (b) $9!\div 4$ ! <br> (c) 9 ! <br> (d) None | A |
| Q106 | In how many ways can the letters of the word 'ARRANGE' be apranged? <br> (a) 1200 <br> (b) 1250 <br> (c) 1260 <br> (d) 1300 | C |
| Q107 | Number of words that can be formed using the letter $A$ thrice, letter $B$ twice \& the letter C once is $\qquad$ <br> (a) 80 <br> (b) 50 <br> (c) 70 <br> (d) 60 | D |

## CIRCULAR PERMUTATION

| CIRCULAR PERMUTATION |  |  |
| :---: | :---: | :---: |
| Q108 | If 50 different jewels can be set to form a necklace then number of ways is $\qquad$ <br> (a) $\frac{1}{2} .50$ ! <br> (b) $\frac{1}{2} \cdot 49$ ! <br> (c) $49!$ <br> (d) None | B |
| Q109 | Number of circular permutations of $n$ different things chosen at a time is $\qquad$ <br> (a) $(n-1)$ ! <br> (b) $(n+1)$ ! <br> (c) $n$ ! <br> (d) $(n-2)$ ! | A |
| Q110 | In how many ways can 4 persons sit at a round table for a group discussion? <br> (a) 24 <br> (b) 12 <br> (c) 6 <br> (d) 18 | C |
| Q111 | Number of ways in which 7 girls form a ring is $\qquad$ <br> (a) 700 <br> (b) 710 <br> (c) 720 <br> (d) None | C |
| Q112 | Number of ways in which 8 different beads be strung on a necklace is $\qquad$ <br> (a) 2,500 <br> (b) 2,520 <br> (c) 2,250 <br> (d) None | B |
| Q113 | 5 persons are sitting in a round table in such way that Tallest Person is always on the right-side of the shortest person. The number of such aprangements is $\qquad$ <br> (a) 6 <br> (b) 8 <br> (c) 24 <br> (d) None | A |
| Q114 | In how many ways can 8 persons be seated at a pound table, such that 2 particular persons sit together? <br> (a) 840 <br> (b) 1220 <br> (c) 1,440 <br> (d) 1896 | C |
| Q115 | In how many ways 4 men \& 3 women ape apranged at a round table if women always sit together? <br> (a) $6 \times 6$ ! <br> (b) 6 ! <br> (c) 7 ! <br> (d) None | B |
| Q116 | In how many ways 4 men \& 3 women are arpanged at a pound table if the women never sit together? <br> (a) $6 \times 6$ ! <br> (b) 6 ! <br> (c) 7 ! <br> (d) None | A |
| Q117 | The Chief Ministers of 17 States meet to discuss the hike in oil price at a round table. In how many ways they seat themselves if the Kerala \& Bengal chief ministers choose to sit together? <br> (a) $15!\times 2$ ! <br> (b) $17!\times 2$ ! <br> (c) $16!\times 2$ ! <br> (d) None | A |
| Q118 | In how many ways can 4 Americans \& 4 English men be seated at a pound table so that no 2 Americans may be together? <br> (a) $4!\times 3$ ! <br> (b) ${ }^{4} \mathrm{P}_{4}$ <br> (c) $3 \times{ }^{4} \mathrm{P}_{4}$ <br> (d) ${ }^{4} \mathrm{C}_{4}$ | A |
| Q119 | In how many ways can 6 boys $\& 6$ girls be seated apound a table so that no 2 boys are adjacent? <br> (a) 4 ! $\times 5$ ! <br> (b) $5!\times 6!$ <br> (c) ${ }^{6} \mathrm{P}_{6}$ <br> (d) $5 \times{ }^{6} \mathrm{P}_{6}$ | B |
| Q120 | Six Persons $A, B, C, D, E \& F$ to be seated at a circular table. In how many ways can this be done, if $A$ must always have either $B$ or $C$ on his right \& $B$ must always have either C or D on his right? <br> (a) 3 <br> (b) 6 <br> (c) 12 <br> (d) 18 | D |

## MISCELLANEOUS QUESTIONS

| MISCELLANEOUS QUESTIONS |  |  |
| :---: | :---: | :---: |
| Q121 | The letters of the words CALCUTTA \& AMERICA ape arpanged in all possible ways. The ratio of the number of these appangements is $\qquad$ <br> (a) $1: 2$ <br> (b) $2: 1$ <br> (c) $1: 1$ <br> (d) 1.5 .1 | B |
| Q122 | How many aprangements of the letters of the word 'BHARAT will not have ' $B$ ' \& ' $H$ ' together" $\qquad$ <br> (a) 360 <br> (b) 240 <br> (c) 120 <br> (d) 60 | B |
| Q123 | How many words of 3 consonants \& 2 vowels can be formed from 6 consonants \& 4 vowels? <br> (a) ${ }^{6} P_{3} \times{ }^{4} P_{2}$ <br> (b) ${ }^{6} \mathrm{C}_{3}+{ }^{4} \mathrm{C}_{2}$ <br> (c) ${ }^{6} P_{3} \times{ }^{4} P_{2}$ <br> (d) $\mid 3 \times 12$ | A |
| Q124 | In how many ways the word 'ARRANGE' be apranged such that the 2 ' $r$ 's do not come together? <br> (a) 1000 <br> (b) 900 <br> (c) 800 <br> (d) None | B |
| Q125 | The total number of 9 digit numbers of different digits is $\qquad$ <br> (a) ${ }^{10} p_{9}$ <br> (b) ${ }^{10} P_{9}$ <br> (c) ${ }^{9} \mathrm{P}_{9}$ <br> (d) None | D |
| Q126 | How many numbers between $3,000 \& 4,000$ can be formed with $12 \ldots . . .6$ ? <br> (a) 3,024 <br> (b) 60 <br> (c) 78 <br> (d) None | D |
| Q127 | How may numbers between $1,000 \& 10,000$ can be formed with the digits 1,2,3,4,5,6 <br> (a) 720 <br> (b) 360 <br> (c) 120 <br> (d) 60 | B |
| Q128 | Number of 4-digit numbers that can be formed from $1,2,3,5,7,8,9$ such that no digit being repeated in any number, which are greater than 3000 are $\qquad$ <br> (a) 120 <br> (b) 480 <br> (c) 600 <br> (d) 840 | C |
| Q129 | Eight guests have to be seated 4 on each side of a long rectangular table. 2 particular guests desire to sit on one particular side of the table \& 3 on the other side. The number of ways in which the sitting aprangements can be made is $\qquad$ <br> (a) 1732 <br> (b) 1728 <br> (c) 1730 <br> (d) 1278 | B |
|  | ADVANCE QUESTIONS |  |
| Q130 | How many different words can be formed from letters of the word 'TRIANGLE? <br> (a) 8 ! <br> (b) 7 ! <br> (c) 6 ! <br> (d) $2!\times 6$ ! | A |
| Q131 | How many different words can be formed beginning with ' $E$ ' of the word 'TRIANGLE? <br> (a) 8 ! <br> (b) 7 ! <br> (c) 6 ! <br> (d) $2!\times 6$ ! | B |
| Q132 | In Question No.131, how many of them will begin with 'T' \& end with ' $E$ '? <br> (a) 8 ! <br> (b) 7 ! <br> (c) 6 ! <br> (d) $2!\times 6$ ! | C |
| Q133 | In Question No.131, how many of them have ' $T$ ' \& ' $E$ ' in the end places? <br> (a) 8 ! <br> (b) 7 ! <br> (c) 6 ! <br> (d) $2!\times 6$ ! | D |


| Q134 | In Question No.131, how many of them have consonants never together? <br> (a) 8 ! -4 ! $\times 5$ ! <br> (b) ${ }^{6} P_{3} \times 5$ ! <br> (c) $2!\times 5!\times 3!$ <br> (d) ${ }^{4} P_{3} \times 5$ ! | A |
| :---: | :---: | :---: |
| Q135 | In Question No.131, how many of them have aprangements that no two vowels are together? <br> (a) $8!-4!\times 5$ ! <br> (b) ${ }^{6} P_{3} \times 5!$ <br> (c) $2!\times 5!\times 3!$ <br> (d) ${ }^{4} \mathrm{P}_{3} \times 5$ ! | B |
| Q136 | In Question No.131, how many of them have aprangements that consonants \& vowels ape always together? <br> (a) $8!-4!\times 5$ ! <br> (b) ${ }^{6} P_{3} \times 5!$ <br> (c) $2!\times 5!\times 3!$ <br> (d) ${ }^{4} \mathrm{P}_{3} \times 5$ ! | C |
| Q137 | In Question No.131, how many of them have aprangements that vowels occupy odd Places? <br> (a) 8 ! $-4!\times 5$ ! <br> (b) ${ }^{6} P_{3} \times 5!$ <br> (c) $2!\times 5!\times 3!$ <br> (d) ${ }^{4} P_{3} \times 5$ ! | D |
| Q138 | Number of 2-digit numbers which are divisible by 6 is $\qquad$ <br> (a) 16 <br> (b) 15 <br> (c) 17 <br> (d) 14 | B |
| Q139 | How many different signals are possible if we wish to make signals by arranging 3 red, 2 yellow \& 2 green flags in one post. <br> (a) 210 <br> (b) 6,420 <br> (c) 40,320 <br> (d) 96 | A |
| Q140 | Let $S$ be the collection of eight points in the plane with no three points on the straight line. Find the number of triangles that have points of $S$ as vertices. <br> (a) 52 choices <br> (b) 55 choices <br> (c) 48 choices <br> (d) 56 choices | D |
| Q141 | The number of ways in which 8 sweets of different sizes can be given among 8 persons of different ages so that the largest sweet always goes to be younger assuming that each one of them gets a sweet is $\qquad$ <br> (a) 8 ! <br> (b) 5,040 <br> (c) 5,039 <br> (d) None | B |
| Q142 | Number of ways in which aprangements of 4 letters can be made from the word "MATHEMATICS". <br> (a) 1,680 <br> (b) 756 <br> (c) 18 <br> (d) 2454 | D |
| Q143 | Total number of ways in which six '+' \& four '-' signs can be apranged in a line such that no two '-' signs occur together is $\qquad$ <br> (a) $7!/ 3!$ <br> (b) $6!\times(7!/ 3!)$ <br> (c) 35 <br> (d) None | C |
| Q144 | In how many ways 21 red balls \& 19 blue balls can be apranged in a pow so that no two blue balls are together. <br> (a) 1,540 <br> (b) 1,520 <br> (c) 1,560 <br> (d) None | A |
| Q145 | Find the number of divisors of 21,600 excluding $1 \&$ the number itself <br> (a) 72 <br> (b) 142 <br> (c) 35 <br> (d) 70 | D |
| Q146 | A computer has 5 terminals \& each terminal is capable of four distinct positions including the positions of rest what is the total number of signals that can be made? <br> (a) 20 <br> (b) 1020 <br> (c) 1023 <br> (d) None | C |


| Q147 | In order to pass PCA examination minimum marks have to be secured in each of 7 subjects. In how many ways can a pupil fail? <br> (a) 128 <br> (b) 64 <br> (c) 127 <br> (d) 63 | C |
| :---: | :---: | :---: |
| Q148 | In how many ways can 9 letters be posted in 4 letter boxes? <br> (a) $4^{9}$ <br> (b) $4^{5}$ <br> (c) ${ }^{9} \mathrm{P}_{4}$ <br> (d) ${ }^{9} \mathrm{C}_{4}$ | A |
| Q149 | If all the permutations of the letters of the word "CHALK" are written in a dictionary the pank of this word will be $\qquad$ <br> (a) 30 <br> (b) 31 <br> (c) 32 <br> (d) None | C |
| Q150 | Number of ways the letters of the word COMPUTER can be rearpanged as $\qquad$ <br> (a) 40,320 <br> (b) 40,319 <br> (c) 40,318 <br> (d) None | B |
| Q151 | No. of words which can be formed with 2 different consonants \& 1 vowel out of 7 different consonants \& 3 different vowels. vowel to lie between 2 consonants is__. <br> (a) $3 \times 7 \times 6$ <br> (b) $2 \times 3 \times 7 \times 6$ <br> (c) $2 \times 3 \times 7$ <br> (d) None | A |
| Q152 | If the letter of the word ATTEMPT are written down at pandom, the chance that all Ts are consecutive is $\qquad$ <br> (a) $1 / 42$ <br> (b) $6 / 7$ <br> (c) $1 / 7$ <br> (d) 1 | C |
| Q153 | There are 50 stations on a railway line how many different kinds of single first class tickets may be printed to enable a passenger to travel from one station to other? <br> (a) 2,500 <br> (b) 2,450 <br> (c) 2,400 <br> (d) None | B |
| Q154 | A letter lock has three rings each marked with 10 different letters. In how many ways it is possible to make an unsuccessful attempt to open the lock? <br> (a) 1,000 <br> (b) 999 <br> (c) 5040 <br> (d) None | B |
| Q155 | In how many different ways 3 rings of a lock can not combine when each ring has digits $0,1,2$..... 9 leading to unsuccessful events? <br> (a) 999 <br> (b) $10^{3}$ <br> (c) 10 ! <br> (d) 997 | A |
| Q156 | In how many different ways can 7 persons stand in a line for a group photograph? <br> (a) $7 \times 6$ ! <br> (b) 6 ! <br> (c) 7 <br> (d) 24 | A |

- 

$\square$

## CHAPTER 5B. COMBINATION

## INTRODUCTION

- Definition: The number of ways of SELECTING all or some of the given things out of given things is called combination.
- The order in which things ape apranged is NOT important.
- Number of Permutations of ' $r$ ' different objects out of ' $n$ ' different objects $={ }^{n} \mathbf{C}_{r}=\frac{n!}{(n-r)!\times r!}$


## PROPERTIES OF ${ }^{n} \mathrm{C}_{r}$

1) ${ }^{n} C_{r}={ }^{n} C_{n-p}$
2) ${ }^{n} C_{x}={ }^{n} C_{y} \Rightarrow$ Either $x=y$ op $x+y=n$

CQ1: Find ' r ' if ${ }^{18} \mathrm{C}_{p}={ }^{18} \mathrm{C} p+2$
Ans: $p$ cannot be equal to $p+2$. Therefore $p+(p+2)=18 \Rightarrow 2 p+2=18 \Rightarrow 2 p=16 \Rightarrow p=8$.
3) ${ }^{n} C_{r}+{ }^{n} C_{p-1}={ }^{n+1} C_{r}$

CQ2: Find $x$ if ${ }^{12} \mathrm{C}_{5}+2^{12} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{3}=14 \mathrm{C}_{\mathrm{x}}$
Ans: ${ }^{12} \mathrm{C}_{5}+2 .{ }^{12} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{3} \quad \Rightarrow{ }^{12} \mathrm{C}_{5}+{ }^{12} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{3} \quad \Rightarrow{ }^{13} \mathrm{C}_{5}+{ }^{13} \mathrm{C}_{4}={ }^{14} \mathrm{C}_{5}$.
Using ${ }^{n} \mathrm{C}_{\mathrm{r}}={ }^{\mathrm{n}} \mathrm{C}_{n-\mathrm{r},}{ }^{14} \mathrm{C}_{5}={ }^{14} \mathrm{C}_{14-5}={ }^{14} \mathrm{C}_{9}$
Thus LHS $={ }^{14} \mathrm{C}_{5}={ }^{14} \mathrm{C}_{9}$ \& RHS $={ }^{14} \mathrm{C}_{\mathrm{x}} \quad \Rightarrow$ Either $\mathrm{x}=5$ or $\mathrm{x}=9$.
4) ${ }^{n} \mathrm{C}_{0}+{ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{2}+\ldots \ldots+{ }^{n} \mathrm{C}_{(n-1)}+{ }^{n} \mathrm{C}_{n}=2^{n}$.

CQ3: ${ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{5}=$
(a) 30
(b) 31
(c) 32
(d) 25
5) ${ }^{n} C_{0}=1$.
6) ${ }^{n} C_{n}=1$. Here $p=n, \quad\left[{ }^{n} C_{n}=\frac{n!}{(n-n)!\times n!}=\frac{n!}{0!\times n!}=1\right]$.
7) ${ }^{n} C_{r}=\frac{n P r}{r} \Rightarrow{ }^{n} P_{r=r} .{ }^{n} C_{r}$

CQ4: If ${ }^{10} p_{p}=6,04,800$ and ${ }^{10} C_{p}=120$; find the value of $r$,
[Ans: $p=7]$
8) ${ }^{n} \mathrm{C}_{\Gamma}=\frac{n}{r} \cdot{ }^{(n-1)} \mathrm{C}_{(n-1)} \Rightarrow{ }^{10} \mathrm{C}_{3}=\frac{10}{3} .{ }^{9} \mathrm{C}_{2}$

CQ5: Find no. of different poker hands (5 cards) in a pack of 52 playing cards.
Ans: In cards, order is not important. Thus, out of 52 cards, 5 cards at a time. ${ }^{\mathbf{5 2}} \mathbf{C}_{\mathbf{5}}=\mathbf{2 , 5 9 8}, \mathbf{9 6 0}$.
CQ6: A committee is to be formed of 3 persons out of 12. Find the number of ways of forming such a committee.
[Ans: ${ }^{12} \mathrm{C}_{3}=220$ ways.]
CQ7: A person has 12 friends of whom 8 are relatives. In how many ways can he invite 7 guests such that 5 of them are relatives?
[Ans: ${ }^{8} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{2}=336$ ways]
CQ8: A building contractor needs 3 helpers \& 10 men apply. In how many ways can these selections take place?
[Ans: ${ }^{10} \mathrm{C}_{3}$ ways]
CQ9: A committee of 7 members is to be chosen from 6 CAs, 4 Economists \& 5 Cost Accountants. In how many ways can this be done if in committee, there must be at least one member from each group and at least 3 CAs?
Ans: The various methods of selecting the persons from the various groups are shown below:

| Committee of 7 members |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | C.A.s [Total 6] | Economists [Total 4] | Cost Accountants [Total 5] | Ways |
| Method 1 | $3 \Rightarrow{ }^{6} \mathrm{C}_{3}$ ways $=20$ | $1 \Rightarrow{ }^{4} \mathrm{C}_{1}$ ways $=4$ | $3 \Rightarrow{ }^{5} \mathrm{C}_{3}$ ways $=10$ | 800 |
| Method 2 | $3 \Rightarrow{ }^{6} \mathrm{C}_{3}$ ways $=20$ | $2 \Rightarrow{ }^{4} \mathrm{C}_{2}$ ways $=6$ | $2 \Rightarrow{ }^{5} \mathrm{C}_{2}$ ways $=10$ | 1200 |
| Method 3 | $3 \Rightarrow{ }^{6} \mathrm{C}_{3}$ ways $=20$ | $3 \Rightarrow{ }^{4} \mathrm{C}_{3}$ ways $=4$ | $1 \Rightarrow{ }^{5} \mathrm{C}_{1}$ ways $=5$ | 400 |
| Method 4 | $4 \Rightarrow{ }^{6} \mathrm{C}_{4}$ ways $=15$ | $1 \Rightarrow{ }^{4} \mathrm{C}_{1}$ ways $=4$ | $2 \Rightarrow{ }^{5} \mathrm{C}_{2}$ ways $=10$ | 600 |
| Method 5 | $4 \Rightarrow{ }^{6} \mathrm{C}_{4}$ ways $=15$ | $2 \Rightarrow{ }^{4} \mathrm{C}_{2}$ ways $=6$ | $1 \Rightarrow{ }^{5} \mathrm{C}_{1}$ ways $=5$ | 450 |
| Method 6 | $5 \Rightarrow{ }^{6} \mathrm{C}_{5}$ ways $=6$ | $1 \Rightarrow{ }^{4} \mathrm{C}_{1}$ ways $=4$ | $1 \Rightarrow{ }^{5} \mathrm{C}_{1}$ ways $=5$ | 120 |

Therefore, total number of ways $=800+1200+400+600+460+120=\mathbf{3 , 5 7 0}$
CQ10: A box contains 7 red, 6 white \& 4 blue balls. How many selections of 3 balls can be made so that (a) all three are ped (b) none is red (c) one is of each colour?
Ans: (a) ${ }^{7} \mathbf{C}_{3}=\mathbf{3 5}$ ways. (b) ${ }^{10} \mathbf{C}_{3}=\mathbf{1 2 0}$ ways. (c) ${ }^{4} \mathbf{C}_{1}=\mathbf{4}$ ways.
Thus, Number of groups of three balls such that one is of each colop $=7 \times 6 \times 4=168$ ways.
CQ11: Find no. of ways of selecting 4 letteps from word 'EXAMINATION'. [Ans: 136 ways]

## CONGEPT 1: SOME STANDARD RESULTS

1. Total no. of ways in which it is possible to form groups by taking all of $n$ things $=\left(2^{n}-1\right)$.

Explanation: We have total ' $n$ ' things. Each of ' $n$ ' different things may be dealt with in 2 ways
(i) Selected in group;
(ii) Not Selected in group


$$
2 \times 2 \times 2 \times 2 \times \ldots \ldots n \text { times }=2^{n}
$$

$\mathrm{n}^{\text {th }}$ thing $=2$ ways;

But this answer of $2^{n}$ includes the case when all the things are not selected $\&$ thus no group will be formed.

But we have to find the ways of forming the group. Thus, we will have to subtract this case from our answer. \& Therefore,
Total number of ways of forming a group by taking all of ' $n$ ' different things is $2^{n}-1$.

CQ12: An examination paper with 10 questions consists of 6 questions in Algebra \& 4 questions in Geometry. At least one question from each section is to be attempted. In how many ways can this be done?
Ans: A student must answer at least one question from each section \& he may answer all questions from each section.
Algebra: There are 6 questions and he may answer a question or he may not answer it.
$\mathbf{2}^{6 .}$ But this includes the possibility of none of the question from Algebra being attempted.
Thus, we have to subtract 1 from the answer. Thus $\left(2^{6}-1\right)$ ways.
Geometry: There are 4 questions and he may answer a question or he may not answer it.
$2^{4 .}$ But this includes the possibility of none of the question from Algebra being attempted.
Thus, we have to subtract 1 from the answer. Thus $\left(2^{4}-1\right)$ ways.
Thus, Examination paper can be attempted in $\left(2^{6}-1\right)\left(2^{4}-1\right)$ number of ways.

CQ13: A man has 5 friends. In how many ways can he invite one or more of his friends to dinner? Ans: As he has to select one or more of his 5 friends, he can do so in $25-1=\mathbf{3 1}$ ways.
Altepnate Method: He can invite his friends one by one, in twos, in threes, etc. and hence the number of ways. $={ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{5}=5+10+10+5+1=31$ ways.

## ALIKE GROUPS

2. Combinations of ' $n$ ' things taken some or all at a time when ' $p$ ' things are same of one kind, ' $q$ ' things are same of another kind, ' $r$ ' things are same of a third kind \& remaining ' $s$ ' things are different $=\left[(p+1)(q+1)(p+1) 2^{s}\right]-1$.
3. The combinations of selecting $r_{1}$ things from a set having $n_{1}$ objects \& $r_{2}$ things from a set having $n_{2}$ objects where combination of $r_{1}$ things, $r_{2}$ things are independent $={ }^{n} \mathbf{C}_{r_{1}} \times{ }^{n} \mathbf{C}_{r 2}$.
4. Number of Diagonals of a polygon with ' $n$ ' sides $=\frac{n(n-3)}{2}$.
5. No. of Triangles from ' $n$ ' points if ' $m$ ' points are collinear $={ }^{n} \mathbf{C}_{3}-{ }^{m} \mathbf{C}_{3}$ [ $2^{\text {nd }}$ part gets cancelled if no points are collinear].
6. No. of lines from ' $n$ ' points if ' $m$ ' points are collinear $={ }^{n} C_{2}-{ }^{m} \mathbf{C}_{2}+1$.
7. No. of parallelogram formed from ' $m$ ' parallel lines intersecting another ' $n$ ' parallel lines = ${ }^{m} C_{2} \times{ }^{n} C_{2}$
8. If there are ' $(a+b+c)$ ' things which are to be divided in equal groups having "a' things, " $b$ ' things \& ' $c$ ' things respectively, [such that $a=b=c$ ], it can be done in $\frac{(a+b+c)!}{a!. b!c!(\text { no.of equal groups)! }}$.

CQ14: The number of ways in which 12 things can be divided into 3 equal groups $=\frac{9!}{3!3!3!3!.4!}$.
Ans: Each group will have 3 things. Thus, we have 3 equal groups of 4 things each.
Thus no. of equal groups $=34$. Thus, answer will be $\frac{9!}{3!3!3!.4!}$.
CQ15: If 7 things are to be divided into 3 groups, of $2,2,3$ things respectively, find the number of ways in which this can be done.
Ans: No. of equal groups $=2$ groups $[2,2 \mathrm{ka}] .=\frac{(a+b+c)!}{a!. b!c!(n o . o f ~ e q u a l ~ g r o u p s)!}=\frac{7!}{2!2!2!2!}=105$.

## CONCEPT 2: FINDING RANK (POSITION) OF A WORD IN DICTIONARY [Shortout Trick]

## Steps:

1. Write alphabets in alphabetical order in vertical form \& give them numbers starting from 0 .
2. Now find the number given to $1^{\text {st }}$ alphabet in step 1 we want as per the question. Write that number in the answer followed by factorial of remaining alphabets.
3. Eliminate $1^{\text {st }}$ alphabet \& re - number the vertical alphabets starting from ' $O$ ' except the eliminated alphabets \& repeat step 2 until you have only last alphabet left.

The value for last alphabets will be 0 !.
CQ16: Find the rank of 'KNIFE' in the dictionary.

## Answer:

| Step 1 |  | Step 3 | Step 4 |
| :--- | :--- | :--- | :--- |
| E | 0 | 0 | 0 |
| F | 1 | 1 | 1 |
| I | $Z$ | $Z$ | $Z$ |
| K | 3 | NA | NA |
| N | 4 | 3 | NA |


| K | N | I | F | E |
| :--- | :--- | :--- | :--- | :--- |

Step 1: Done.
Step 2: $1^{\text {st }}$ alphabet is ' $K$ '. So, we find the number given to ' $K$ ' in step 1 . The number is 3 . Remaining alphabets are $N, I, F, E=4$. Thus, the required number is 3.4 !
Step 3: Eliminate ' $K$ ' from vertical form \& re - number alphabets starting from ' $O$ ' except ' $K$ '.
Now we find the number given to ' $N$ ' in vertical form. The number is 3 .
Remaining alphabets ape $I, F, E=3$. Thus, the required number is 3.3 !.
Step 4: Eliminate ' $N$ ' from vertical form \& re-number the alphabets starting from ' $O$ ' except K \& $N$. Now we find the number given to ' $I$ ' in vertical form. The number is 2.
Remaining alphabets are $F, E=2$. Thus, the required number is 2.2!.
Step 5: Eliminate ' $I$ ' from vertical form \& re-number the alphabets starting from ' $O$ ' except $K$, $N \& I$. Now we find the number given to ' $F$ ' in vertical form. The number is 1.
Remaining alphabets are $E=1$. Thus, the required number is 1.1!
Step 6: We have only one alphabet left. Thus, the value for it will be 0!
Rank of KNIFE $=$ Sum of all values $=3.4!+3.3!+2.2!+1.1!+0!=3.24+3.6+2.2+1+1=96^{\text {th }}$ pank.
CQ17: If all permutations of word "CHALK" are written in a dictionary rank of this word will $\qquad$ —.
(a) 30
(b) 31
(c) 32
(d) None

Ans:

| Step 1 |  | Step 3 | Step 4 | Step 5 |
| :--- | :--- | :--- | :--- | :--- |
| A | $\theta$ | $\theta$ | $\theta$ | NA |
| G | 7 | NA | NA | NA |
| $H$ | $Z$ | 4 | NA | NA |
| K | 3 | 2 | 1 | 0 |
| L | 4 | 3 | 2 | 1 |

## CHALK

| C | H | A | L | K |
| :--- | :--- | :---: | :---: | :---: |
| $1.4!$ | $+1.3!$ | $+0.3!$ | $+1.1!$ | $+\mathrm{O}!$ |
| $=$ | $24+6+0+1+1$ | $=32^{\text {nd }}$ | rank. |  |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

COMBINATION OF DISSIMILAR THINGS UNDER RESTRICTION
(OUT OF ' $n$ ' THINGS)

| Cases | Things taken | Formula | Formula |
| :---: | :---: | :---: | :---: |
| A particular things is NOT ALLOWED | R | ${ }^{n-1} \mathrm{C}_{r}$ |  |
| A particular things is ALWAYS ALLOWED | R | $\left({ }^{(1-1} \mathrm{C}_{\mathrm{p}-1}\right)$ | $\left({ }^{n} \mathrm{C}_{r}-{ }^{n-1} \mathrm{C}_{r}\right)$ |
| Selecting 1 op more out of ' $n$ ' things | 1 or More | $2^{n-1}$ |  |
| ALIKE GROUPS |  |  |  |
| ' $p$ ' of $1^{\text {st }}$ type, ' $q$ ' of $2^{\text {nd }}, ~ ' p$ ' of $3^{\text {rd }} \&{ }^{\text {d }} s^{\prime}$ different | 1 or More | $\left[(p+1)(q+1)(p+1) 2^{s}\right]-1$ |  |

## DISTRIBUTION OF DISSIMILAR THINGS INTO GROUPS OR PERSONS (OUT OF 'N' THINGS)

| No. of things | Relationship | Distributed to | Formula | Formula |
| :---: | :---: | :---: | :---: | :---: |
| $p+q=n$ | $p \neq q$ | Persons/ Groups | $\frac{n!}{p!q!}$ | ${ }^{n} \mathrm{C}_{\mathrm{p}} \times{ }^{9} \mathrm{C}_{q}$ |
| $p+q=n$ | $p=q$ | Persons | $\frac{n!}{p!q!}$ | ${ }^{n} \mathrm{C}_{\mathrm{p}} \times{ }^{\mathrm{P}} \mathrm{C}_{\mathrm{p}}$ |
| $p+q=n$ | $p=q$ | Groups | $\frac{n!}{2!\times p!q!}$ |  |
| $p+q+p=n$ | $p=q=p$ | Persons | $\frac{n!}{p!q!r!}$ | ${ }^{n} C_{p} \times{ }^{q+1} C_{q} \times{ }^{r} C_{r}$ |
| $p+q+p$ | $p=q=p$ | Groups | $\frac{n!}{3!\times p!q!r!}$ | No. of equal groups ka fraction |

## COMBINATION - QUESTION BANK

| SN | CHAPTER 5B. COMBINATION | Ans |
| :---: | :---: | :---: |
| Q157 | ${ }^{n} p_{p}=720$ and ${ }^{n} C_{p}=120$ Find $p$ ? <br> (a) 6 <br> (b) 4 <br> (c) 3 <br> (d) 2 | C |
| Q158 | Solve for ' $n$ ' if ${ }^{n} \mathrm{C}_{4}:{ }^{n+2} \mathrm{C}_{\mathrm{n}}=5$ :18 <br> (a) 5 <br> (b) 7 <br> (c) -8 <br> (d) 7 or 8 | B |
| Q159 | If ${ }^{500} \mathrm{C}_{92}={ }^{499} \mathrm{C}_{407}+{ }^{n} \mathrm{C}_{\mathrm{r}}=56$, then n is $\qquad$ <br> (a) 501 <br> (b) 500 <br> (c) 502 <br> (d) 499 | D |
| Q160 | If ${ }^{1000} \mathrm{C}_{98}={ }^{999} \mathrm{C}_{97}+{ }^{\times} \mathrm{C}_{901}$ then the value of x will be $\qquad$ <br> (a) 999 <br> (b) 998 <br> (c) 997 <br> (d) None | A |
| Q161 | A team of 12 men is to be formed out of $n$ persons. Then number of times 2 men "A" \& " $B$ " are together is $\qquad$ <br> (a) ${ }^{n} \mathrm{C}_{12}$ <br> (b) ${ }^{n-1} C_{11}$ <br> (c) ${ }^{n-2} \mathrm{C}_{10}$ <br> (d) None | C |
| Q162 | Every person shakes hands with each other in a party and the total number of handshakes is 66. The number of guests in the party is $\qquad$ <br> (a) 11 <br> (b) 12 <br> (c) 13 <br> (d) 14 | B |
| Q163 | Out of 10 different consonants and 4 different vowels how many words can be formed each containing 6 consonant and 3 vowels? <br> (a) ${ }^{10} \mathrm{C}_{6} \times{ }^{4} \mathrm{C}_{3}$ <br> (b) ${ }^{10} \mathrm{C}_{6} \times{ }^{4} \mathrm{C}_{3} \times 9$ ! <br> (c) ${ }^{10} \mathrm{C}_{6} \times{ }^{4} \mathrm{C}_{3} \times 10$ ! <br> (d) None | B |
| Q164 | First, second and third prizes are to be awarded at an engineering fair in which 13 exhibits have been entered. In how many ways can the prizes be awarded? <br> (a) 1,462 <br> (b) 1,716 <br> (c) 1,876 <br> (d) 1,672 | B |
| Q165 | You are selecting a cricket team of first 11 players out of 16 including 4 bowlers and 2 wicket-keepers. In how many ways you can do it so that the team contains exactly 3 bowleps and 1 wicket-keeper? <br> (a) 960 <br> (b) 840 <br> (c) 420 <br> (d) 252 | A |
| Q166 | In Question No.165, would your answer be different if the team contains at least 3 bowlers and at least 1 wicket-keeper? <br> (a) 2,472 <br> (b) 960 <br> (c) 840 <br> (d) 420 | A |
| Q167 | A party of 6 is to be formed from 10 men and 7 women as so as to include 3 men and 3 women. In how many ways the partly can be formed if two particular women pefuses to join it? <br> (a) 4,200 <br> (b) 600 <br> (c) 1,200 <br> (d) None | C |
| Q168 | In how many ways can a consonant and a vowel be chosen out of the letters of the word 'LOGARITHM? <br> (a) 18 <br> (b) 15 <br> (c) 3 <br> (d) None | A |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q169 | A box contains 7 red, 6 white and 4 blue balls. How many selections of three balls can be made so that (a) all are red (b) none is red (c) one is of each colour? <br> (a) 35 ways, 120 ways, 168 ways <br> (b) 35 ways, 140 ways, 168 ways <br> (c) 30 ways, 120 ways, 168 ways <br> (d) 35 ways, 120 ways, 148 ways | A |
| :---: | :---: | :---: |
| Q170 | Five bulbs of which three are defective are to be bled in two bulb points in a dark poom. Hunter of trials the room shall be lighted $\qquad$ <br> (a) 6 <br> (b) 8 <br> (c) 5 <br> (d) 7 | D |
| Q171 | A candidate is required to answer 6 out of 12 questions which are divided into two groups containing 6 questions in each group. He is not permitted to attempt not more than four from any group. The number of choices are $\qquad$ <br> (a) 750 <br> (b) 850 <br> (c) 800 <br> (d) None | B |
|  | HOMEWORK QUESTIONS |  |
| Q172 | If $c(n, 8)=c(n, 6)$, find $c(n, 2)$ <br> (a) 14 <br> (b) 91 <br> (c) 19 <br> (d) 41 | B |
| Q173 | If ${ }^{n} \mathrm{C}_{p-1}={ }^{n} \mathrm{C}_{p+1}=15$ and ${ }^{n} \mathrm{C}_{p}=20$, then the value of ${ }^{\mathrm{n}} \mathrm{C}_{2}$ is $\qquad$ <br> (a) 3 <br> (b) $\mid 3$ <br> (c) $\mid 4$ <br> (d) 12 | A |
| Q174 | There are 7 men and 3 ladies. Find the number of ways in which a committee of 6 can be formed of them if the committee is to include at least 2 ladies? <br> (a) 120 <br> (b) 160 <br> (c) 140 <br> (d) 150 | C |
| Q175 | In how many ways a committee of 5 people can be formed out of 5 males \& 6 females such that there are 3 males and 2 females? <br> (a) 150 <br> (b) 200 <br> (c) 1 <br> (d) 461 | A |
| Q176 | In Question No.175, how many choices you have to make if there are 2 males? <br> (a) 150 <br> (b) 200 <br> (c) 1 <br> (d) 461 | B |
| Q177 | In Question No.175, how many choices you have to make if there is no female? <br> (a) 150 <br> (b) 200 <br> (c) 1 <br> (d) 461 | C |
| Q178 | In Question No.175, how many choices you have to make if there is at least one female? <br> (a) 150 <br> (b) 200 <br> (c) 1 <br> (d) 461 | D |
| Q179 | In Question No.175, how many choices you have to make if there are not more than 3 males? <br> (a) 200 <br> (b) 1 <br> (c) 461 <br> (d) 401 | D |
| Q180 | A person has 8 friends. The number of ways in which he may invite one or more of them to a dinner is $\qquad$ <br> (a) 250 <br> (b) 255 <br> (c) 200 <br> (d) None | B |
| Q181 | In how many ways can a consonant and a. vowel be chosen out of the letters of the word 'EQUATION? | B |



|  | (a) n (b) 0 | (c) 1 | (d) $\infty$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Q195 | The value of ${ }^{n} \mathrm{C}_{n}$ is $\qquad$ <br> (a) $n$ <br> (b) 1 | $\text { (c) } 0$ | (d) $\infty$ | B |
| Q196 | ${ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3}+{ }^{n} \mathrm{C}_{4}+\ldots . . . . .+$ equals <br> (a) $2^{n}-1$ <br> (b) $2^{n}$ | (c) $2^{n}+1$ | (d) None | A |
| Q197 | Which one is true? <br> (a) ${ }^{n} C_{p}<{ }^{n} C_{n-p}$ <br> (b) ${ }^{n} C_{r}>{ }^{n} C_{n-r}$ | (c) ${ }^{n} C_{p}={ }^{n} C_{n-p}$ | (d) ${ }^{n} C_{p}{ }^{n} C_{n-p}$ | C |
| Q198 | ${ }^{n} \mathrm{C}_{r}$ has a meaning only when $\qquad$ <br> (a) $0<p<n$ <br> (b) $0<=p<=n$ | (c) $\mathrm{O}<\mathrm{p}<=\mathrm{n}$ | (d) $0<=p<n$ | B |
| Q199 | The value of ${ }^{7} \mathrm{C}_{1}$ is $\qquad$ <br> (a) 1 <br> (b) 7 |  | (d) 8 | B |
| Q200 | The value of ${ }^{8} \mathrm{C}_{3}$ is $\qquad$ <br> (a) 48 <br> (b) 65 | (c) 24 | (d) 56 | D |
| Q201 | The value of ${ }^{9} \mathrm{C}_{9}$ is $\qquad$ (a) 0 <br> (b) 9 |  | (d) 1 | D |
| Q202 | The value of ${ }^{8} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{4}$ is $\qquad$ <br> (a) 75 <br> (b) 24 | (c) 30 |  | A |
| Q203 | ${ }^{5} \mathrm{C}_{1}+{ }^{5} \mathrm{C}_{2}+{ }^{5} \mathrm{C}_{3}+{ }^{5} \mathrm{C}_{4}+{ }^{5} \mathrm{C}_{5}$ is equal to <br> (a) 30 <br> (b) 31 | (c) 32 | (d) 25 | B |
| Q204 | If ${ }^{18} \mathrm{C}_{\mathrm{r}}={ }^{18} \mathrm{C}_{\mathrm{r}+2^{2}}$ the value of ${ }^{\mathrm{r}} \mathrm{C}_{5}$ is $\qquad$ <br> (a) 55 <br> (b) 50 | (c) 56 | (d) None | C |
| Q205 | If ${ }^{n} \mathrm{C}_{10}={ }^{n} \mathrm{C}_{14}$ then ${ }^{25} \mathrm{C}_{n}$ is $\qquad$ <br> (a) 24 <br> (b) 25 | $\text { (c) } 1$ | (d) None | B |
| Q206 | If ${ }^{n} \mathrm{C}_{18}={ }^{n} \mathrm{C}_{12}$, then the value of ${ }^{32} \mathrm{C}_{n}$ is <br> (a) 30 <br> (b) (\|32/ |6) | (c) $[\mid 32 /(\underline{\|26 \times\| 6)}]$ | (d) 496 | B |
| Q207 | Find n if $4 \times{ }^{n} \mathrm{C}_{2}={ }^{n+2} \mathrm{C}_{3}$ <br> (a) 2,6 <br> (b) 3,8 | (c) 5,3 | (d) 2,7 | D |
| Q208 | If $(n+1) c_{p-1}: n_{c 1}: n-1 c_{p-1}=8: 3: 1$ then find <br> (a) 14 <br> (b) 15 | he value of $n$ ? <br> (c) 16 | (d) 17 | B |
| Q209 | Find $n$ if ${ }^{n+2} \mathrm{C}_{n}=45$ <br> (a) 12 <br> (b) 10 | (c) 8 | (d) 15 | C |
| Q210 | If ${ }^{18} \mathrm{C}_{\mathrm{n}}={ }^{18} \mathrm{C}_{n+2}$ then the value of n is $\qquad$ <br> (a) 0 <br> (b) -2 | (c) 8 | (d) None | C |
| Q211 | If ${ }^{n} P_{r}=336$ and ${ }^{n} C_{p}=56$, then $n$ and $p$ <br> (a) $(3,2)$ <br> (b) $(8,3)$ | ill be $\qquad$ <br> (c) $(7,4)$ | (d) None | B |


| Q212 | If ${ }^{10} P_{r}=6,04,800$ and ${ }^{10} C_{r}=120$; find the value of $r$ ? <br> (a) 12 <br> (b) 7 <br> (c) 8 <br> (d) 9 | B |
| :---: | :---: | :---: |
| Q213 | Find $r$ if ${ }^{12} \mathrm{C}_{5}+2{ }^{12} \mathrm{C}_{4}+{ }^{12} \mathrm{C}_{3}=14 \mathrm{C}_{r}$ <br> (a) 5,9 <br> (b) 4,9 <br> (c) 5,8 <br> (d) 4,8 | A |
| Q214 | If ${ }^{28} \mathrm{C}_{2 r 0}{ }^{24} \mathrm{C}_{2 r-4}=225: 11$, find $p$ ? <br> (a) 9 <br> (b) 6 <br> (c) 8 <br> (d) 7 | D |
| Q215 | If ${ }^{n} C_{p-1}=56,{ }^{n} C_{p}=28$ and ${ }^{n} C_{p+1}=8$, then $r$ is equal to $\qquad$ <br> (a) 8 <br> (b) 6 <br> (c) 5 <br> (d) None | B |
| Q216 | A committee is to be formed of 3 persons out of 12 . Find the number of ways of forming such Committee. <br> (a) 220 <br> (b) 240 <br> (c) 36 <br> (d) 4 | A |
| Q217 | Out of 7 gents and 4 ladies a committee of 5 is to be formed. The number of committee such that each committee includes at least one lady is $\qquad$ <br> (a) 400 <br> (b) 440 <br> (c) 441 <br> (d) None | C |
| Q218 | 5 letters are written and there are five letter-boxes. The number of ways the letters can be dropped into the boxes, one in each. <br> (a) 119 <br> (b) 120 <br> (c) 121 <br> (d) None | B |
| Q219 | A committee of 7 members is to be chosen from 6 Chartered Accountants, 4 Economist and 6 Cost Accountants. In how many ways can this be done if in the committee, there must be at least one member from each group and at least 3 Chartered Accountants. <br> (a) 3,450 <br> (b) 3,570 <br> (c) 3,690 <br> (d) 3,200 | B |
| Q220 | A committee of 3 ladies and 4 gents is to be formed out of 8 ladies and 7 gents. Mps.X refuses to serve in a committee in which Mr.Y is a member. The number of such committees is $\qquad$ <br> (a) 1,530 <br> (b) 1,500 <br> (c) 1,520 <br> (d) 1,540 | D |
| Q221 | Out of 6 members belonging to party "A" and 4 to party " $B$ " in how many ways a committee of 5 can be selected so that members of party "A" are in a majority? <br> (a) 180 <br> (b) 186 <br> (c) 185 <br> (d) 184 | B |
| Q222 | A person has 10 friends of which 6 of them are relatives. He wishes to invite 5 persons so that 3 of them are relatives. In how many ways he can invites? <br> (a) 450 <br> (b) 600 <br> (c) 120 <br> (d) 810 | C |
| Q223 | In how many ways 4 members can occupy 9 vacant seats in a row? <br> (a) 3204 <br> (b) 3024 <br> (c) $4^{9}$ <br> (d) $9^{4}$ | B |
| Q224 | The number of ways in which a person can chose one or more of the four electrical appliances: T.V, Refrigerator, Washing Machine and a cooler is $\qquad$ <br> (a) 15 <br> (b) 25 <br> (c) 24 <br> (d) None | A |
| Q225 | A building contractor needs three helpers and ten men apply. In how many ways | A |


|  | can these selections take place? <br> (a) 120 ways <br> (b) 30 ways <br> (c) 150 ways <br> (d) 240 ways |  |
| :---: | :---: | :---: |
| Q226 | A company having 6 departments wishes to simultaneously promote two of its Department's Heads to Asst. Managers. In how many ways these promotions can take place? <br> (a) 15 ways <br> (b) 12 ways <br> (c) 24 ways <br> (d) 30 ways | A |
| Q227 | Total number of Hand shakes in a group of 10 persons to each other are $\qquad$ <br> (a) 45 <br> (b) 54 <br> (c) 90 <br> (d) 10 | A |
| Q228 | 6 seats of articled clerks are vacant in a 'Chartered Accountant firm'. How many different batches of candidates can be chosen out of 10 candidates if one candidate is always selected? <br> (a) 124 <br> (b) 125 <br> (c) 126 <br> (d) None | C |
| Q229 | In your office 4 posts have fallen vacant. In how many ways a selection out of 31 candidates can be made if one candidate is always included? <br> (a) ${ }^{30} \mathrm{C}_{3}$ <br> (b) ${ }^{30} \mathrm{C}_{4}$ <br> (c) ${ }^{31} \mathrm{C}_{3}$ <br> (d) ${ }^{31} \mathrm{C}_{4}$ | A |
| Q230 | In Q229 would your answer be different if one candidate is always excluded? <br> (a) ${ }^{30} \mathrm{C}_{3}$ <br> (b) ${ }^{30} \mathrm{C}_{4}$ <br> (c) ${ }^{31} \mathrm{C}_{3}$ <br> (d) ${ }^{31} \mathrm{C}_{4}$ | B |
| Q231 | In your college Union Election you have to choose candidates. Out of 5 candidates 3 are to be elected and you are entitled to vote for any number of candidates but not exceeding the number to be elected. In how ways it can be done? <br> (a) 25 <br> (b) 5 <br> (c) 10 <br> (d) None | A |
| Q232 | Find the number of ways of selecting 4 letters from the word EXAMINATION. <br> (a) 140 ways <br> (b) 136 ways <br> (c) 152 ways <br> (d) 128 ways | B |
| Q233 | Find the number of ways in which a selection of 4 letters can be made from the word "Mathematics" <br> (a) 130 <br> (b) 132 <br> (c) 134 <br> (d) 136 | D |
| Q234 | The number of different words that can be formed with 12 consonants and 5 vowels by taking 4 consonants and 3 vowels in each word is $\qquad$ <br> (a) ${ }^{12} \mathrm{C}_{4} \mathrm{X}^{5} \mathrm{C}_{3}$ <br> (b) ${ }^{17} \mathrm{C}_{7}$ <br> (c) $4950 \times 17!$ <br> (d) None | C |
| Q235 | How many different numbers can be formed by using any three out of five digits $1,2,3,4,5$, no digit being repeated in any number? <br> (a) 60 <br> (b) 50 <br> (c) 40 <br> (d) 30 | A |
| Q236 | How many different numbers can be formed by using any three out of five digits $1,2,3,4,5$, no digit being repeated in any number? How many of these will begin with a specified digit? <br> (a) 8 <br> (b) 10 <br> (c) 12 <br> (d) 18 | C |
| Q237 | How many different numbers can be formed by using any three out of five digits $1,2,3,4,5$, no digit being repeated in any number? How many of these will begin | C |

$\square$

|  | with a specified digit and end with another specified digit? <br> (a) 12 <br> (b) 6 <br> (c) 3 <br> (d) 18 |  |
| :---: | :---: | :---: |
| Q238 | How many four digit numbers can be formed out of the digits $1,2,3,5,7,8,9$, if no digit is repeated in any number? How many of these will be greater than 3,000 ? <br> (a) 1,000 <br> (b) 1,200 <br> (c) 600 <br> (d) 400 | C |
| Q239 | In how many ways 3 scholarships can be awarded to 5 students when each student is eligible for any of the scholarships? <br> (a) 15 <br> (b) $3^{5}$ <br> (c) $5^{3}$ <br> (d) ${ }^{5} \mathrm{P}_{3}$ | C |
| Q240 | You have to make choice of 7 questions out of 10 questions set you can do it in _ <br> (a) ${ }^{10} \mathrm{C}_{7}$ <br> (b) ${ }^{10} P_{7}$ <br> (c) $7!\times{ }^{10} \mathrm{C}_{7}$ <br> (d) None | A |
| Q241 | You have to make a choice of 4 balls out of one red one blue and ten while balls. The number of ways this can be done to always the red ball is $\qquad$ <br> (a) ${ }^{11} \mathrm{C}_{3}$ <br> (b) ${ }^{10} \mathrm{C}_{3}$ <br> (c) ${ }^{10} \mathrm{C}_{4}$ <br> (d) None | A |
| Q242 | In Question No.241, the number of ways in which this can be done to include the red ball but exclude the blue ball always is $\qquad$ <br> (a) ${ }^{11} \mathrm{C}_{3}$ <br> (b) ${ }^{10} \mathrm{C}_{3}$ <br> (c) ${ }^{10} \mathrm{C}_{4}$ <br> (d) None | B |
| Q243 | In Question No.241, the number of ways in which this can be done to exclude both the red and blues ball is $\qquad$ <br> (a) ${ }^{11} \mathrm{C}_{3}$ <br> (b) ${ }^{10} \mathrm{C}_{3}$ <br> (c) ${ }^{10} \mathrm{C}_{4}$ <br> (d) None | C |
| Q244 | Out of 8 different balls taken three at a time without taking same three together more than once for how many number of times you can select a particular ball? <br> (a) ${ }^{7} \mathrm{C}_{2}$ <br> (b) ${ }^{8} \mathrm{C}_{3}$ <br> (c) ${ }^{7} P_{2}$ <br> (d) ${ }^{8} \mathrm{P}_{3}$ | A |
| Q245 | In Question no.244, for how many number of times you can select any ball? <br> (a) ${ }^{7} \mathrm{C}_{2}$ <br> (b) ${ }^{8} \mathrm{C}_{3}$ <br> (c) ${ }^{7} \mathrm{P}_{2}$ <br> (d) ${ }^{8} \mathrm{P}_{3}$ | B |
| Q246 | The number of diagonals in a decagon is $\qquad$ <br> (a) 30 <br> (b) 35 <br> (c) 45 <br> (d) None | B |
| Q247 | A regular Polygon has 45 diagonals then the no. of sides are $\qquad$ <br> (a) 8 <br> (b) 9 <br> (c) 10 <br> (d) 11 | D |
| Q248 | No. of ways in which 15 mangoes can be equally divided among 3 students is $\qquad$ <br> (a) $\|15 /\|(5)^{4}$ <br> (b) $\|15 /\|(5)^{3}$ <br> (c) $\|15 /\|(5)^{2}$ <br> (d) None | D |
| Q249 | In a school number of students in each section is 36 . If 12 new students are added, then the number of sections are increased by 4, and the number of students in each section becomes 30 . The original number of sections at first is $\qquad$ <br> (a) 6 <br> (b) 10 <br> (c) 14 <br> (d) 18 | D |
| Q250 | Raj has 3 books on A/c, 3 books on Economics, 5 on Maths. If these books are to be appanged subjectwise. In how many ways can these can be placed on a shelf. <br> (a) 25,290 <br> (b) 25,920 <br> (c) 4,230 <br> (d) 4,320 | B |

## CHAPTER 6A. ARITHMETIC PROGRESSION

## INTRODUCTION

- SEQUENCE: A set of numbers apranged in a definite opder as per a definite rule op law is called a sequence if we can find out the next unknown term.
Ex: 1, 2, 3, 4, $5 \rightarrow$ Sequence of consecutive natural numbers.
Ex: $-1,-27,-125 \ldots \rightarrow$ Sequence of cube of odd numbers in negative. [Next term will be -343]
- SERIES: All terms of sequence are added/subtracted, it forms a series. [Ex: $t_{1}+t_{2}+t_{3} \ldots .+t_{n}$ ] Ex: $1+3+5+7+9 \ldots$


## ARITHMETIC PROGRESSION (AP)

- A sequence in which "difference between two consecutive terms" is "constant (same)".
- This constant difference is denoted by 'd' \& is called the common difference of the AP.
- First term of AP is denoted by ' $\alpha$ '.

Ex: (a) $2,5,8,11,14,17$ is an AP in which $d=3$ is the common diference.
Ex: (b) $15,13,11,9,7,5,3,1,-1$ is an AP in which -2 is the common difference.
CQ1. If the terms $2 x,(x+10)$ and $(3 x+2)$ be in $A P$, the value of $x$ is $\qquad$ .

## CONGEPT 1: ARITHMETIC MEAN

If $a, b, c$ are in AP, then $b-a=c-b$; then $b=\frac{a+c}{2}$ which is called Arithmetic Mean.
CQ2. Arithmetic mean bet $33 \& 77=\frac{33+77}{2}=55$.

## CONCEPT 2: Finding $n^{\text {th }}$ term (Tn) of an AP

- In AP, we can find out next term of an AP if we know the first term (a) \& 'd'.
- Let $T_{1}$ be $a$, then, $\boldsymbol{T}_{2}=T_{1}+d=\boldsymbol{a}+\boldsymbol{d}$

$$
\begin{align*}
& \mathbf{T}_{\mathbf{3}}=T_{2}+d=(a+d)+d=\boldsymbol{a}+\mathbf{2 d} \text { Substituting the value of } T_{2} \text { from (i) }  \tag{ii}\\
& \mathbf{T}_{4}=T_{3}+d=(a+2 d)+d=\boldsymbol{a}+\mathbf{3} \mathbf{d} ; \quad \mathbf{T}_{\mathbf{5}}=T_{3}+d=(a+2 d)+d=\boldsymbol{a}+\mathbf{4 d}
\end{align*}
$$

$$
\begin{aligned}
& T_{7}= \\
& =a+6 d \\
& T_{n}=\alpha+(n-1) d
\end{aligned}
$$

- We can also use this formula when Sn is known $\mathbf{T}_{\mathrm{n}}=\mathbf{S}_{\mathrm{n}}-\mathbf{S}_{\mathrm{n}-1}$.


## CONCEPT 3: COMMON DIFFERENCE 'd' OF AP

- Diffn bet ${ }^{n}$ two consecutive terms is common difference ' $d$ '.
- $d=\left(T_{2}-T_{1}\right)$ or $\left(T_{3}-T_{2}\right)$ or $\left(T_{4}-T_{3}\right) \ldots \ldots \ldots$ or $\left(T_{n-2}-T_{n-3}\right)$ or $\left(T_{n}-T_{n-1}\right) \rightarrow$ $D=T_{n}-T_{n-1}$

CQ3: Find the $n^{\text {th }}$ term of the given AP 4,7,10......
[Ans: $3 n+1$ ]

## CONCEPT 4: GENERAL FORM OF $\mathrm{T}_{\mathrm{n}}$

- General Form of $\mathbf{T}_{\mathbf{n}}=\mathbf{A n}+\mathbf{B}$; (where $A \& B$ are constants which will be given in question) PC Note: If you are given $T_{n}$ in $A n+B$ format $\rightarrow D=$ Co-efficient of ' $n$ '. $[d=A \& a=(A+B)]$ CQ4: If $T_{n}=5 n+1$, find the AP.
[Ans: AP is $6,11,16,21 . .$, ]


## PC NOTE:

- If 2 non-consecutive terms in AP (say $T_{m} \& T_{n}$ ) \& their values are given in question \& you are asked to find out AP: $D=\frac{\left(T_{m}-T_{n}\right)}{m-n}$

CQ9: If $5^{\text {th }} \& 12^{\text {th }}$ terms of an AP are $14 \& 35$ respectively, find AP.
[Ans: AP is $2,5,8,11$.]

## CONCEPT 5: INSERTION OF ' $n$ ' ARITHMETIC MEANS BETWEEN TWO NUMBERS

- Total number of terms in the required AP will be $(n+2)$.
- Take $1^{\text {st }}$ given number as $T_{1} \& 2^{\text {nd }}$ given number as $T_{n+2} \&$ use the above given note.

CQ10: Two AMs between $-7 \& 14$ is $\qquad$ _.

Ans: If we insert 2 AMs between $-7 \& 14$, total number of terms will be $4 . \rightarrow-7, A M_{1}, A M_{2}, 14$.
Take $T_{1}=-7 ; \quad \& T_{2+2}=14 ;$ Thus $T_{4}=14$.
Now we will use the above note.
$(4-1) d=14-(-7) \rightarrow 3 d=21 \rightarrow d=7$.
Now, AM, which is $2 n d$ term of AP can be calculated using Tn formula;
$T_{2}=a+d=-7+7=0 \& A M_{2}$ which will be $3^{\text {rd }}$ term of AP; $T 3=a+2 d=-7+2(7)=7$.
So, the two apithmetic means between -7 \& 14 are $\mathbf{0}$ \& 7 .
CQ11: Insert 4 arithmetic means between 4 \& 324.
[Ans: 68, 132, 196, 260]

## CONGEPT 6: SUM OF FIRST 'N' TERM OF AP

$\mathbf{S}_{\mathrm{n}}=\frac{n}{2} \times\left(\mathbf{T}_{1}+\mathbf{T}_{n}\right)\left(T_{n}=\right.$ Last term \& $T_{1}=1^{\text {st }}$ term \& $n=$ No. of terms $) \rightarrow$ Used when $T_{1} \& T_{n}$ are given $S_{n}=\frac{n}{2} \times\left[T_{1}+\mathbf{a}+(\mathbf{n}-\mathbf{1}) d\right] \rightarrow$ By substituting value of $T_{n}=a+(n-1) d$ in above formula $\& T_{1}=a$.
$\mathbf{S}_{\mathrm{n}}=\frac{\boldsymbol{n}}{2} \times[2 a+(n-1) d] \quad \rightarrow$ Used when $T_{1}, d \& n$ are given in the question
CQ11: The sum of the series $9,5,1 \ldots$ to 100 terms is $\qquad$ .
Ans: $n=100, a=9, d=-4 ; S n=\frac{n}{2} \times[2 a+(n-1) d] ; S n=\frac{100}{2} \times[(2(9)+(100-1)(-4)] \rightarrow \mathbf{S n}=\mathbf{- 1 8 9 0 0}$. CQ12. Find Sn of the given $\mathrm{AP} 4,8,12,16 \ldots \ldots$.
Ans: $S n=\frac{n}{2} \times[2 a+(n-1) d]=\frac{n}{2} \times[2.4+(n-1) 4]=\frac{n}{2} \times[8+4 n-4]=\frac{n}{2} \times[4 n+4]=\frac{n}{2} \times 2[2 n+2]=\mathbf{2 n} \mathbf{n} \mathbf{~} \mathbf{2 n}$

## CONCEPT 7: GENERAL FORM OF $\mathrm{S}_{\mathrm{n}}$

Genepal Form of $\mathbf{S}_{\mathbf{n}}=\mathbf{A} \mathbf{n}^{\mathbf{2}}+\mathbf{B n}$; (where $\mathrm{A} \& B$ are constants)
PC Note: If you are given $S_{n}$ in $A n^{2}+B n$ format $\rightarrow d=2 A \&(\alpha)=(A+B)$
CQ13. The sum of $n$ terms of an AP is $3 n^{2}+5 n$. Find the series.
[Ans: AP is $8,14,20,26 \ldots$. .]

CONCEPT 8: ASSUMPTIONS OF THE TERMS IN AP

| If No. of terms given <br> in question ape | Middle <br> Term | Common <br> Difference | Examples of Tepms |
| :---: | :---: | :---: | :---: |
| ODD No. of terms | $a$ | $D$ | 3 terms: $(a-d), a,(a+d) ;$ <br> 5 terms: $(a-2 d),(a-d), a,(a+d),(a+2 d)$ |
| EVEN No. of terms | $(a-d) \&$ <br> $(a+d)$ | $2 d$ | 2 terms: $(a-d) \&(a+d) ;$ <br> 4 terms: $(a-3 d),(a-d),(a+d),(a+3 d)$ |

CQ14. 3 numbers are in A.P. whose sum is 69 and the product of first two is 483 . Numbers are
(a) $25,23,21$
(b) $21,23,25$
(c) $19,22,25$
(d) None

Ans: since the number of terms given in the question are 3 (ODD), we assume 3 numbers as: ( $a-d$ ), $a,(a+d)$; Thus ( $a-d$ ) $+a+(a+d)=69$. $3 a=69$. $a=23$. $(a-d) \times a=483 ; \quad(23-d)=483 / 23 ; \quad(23-d)=21 \& d=2$.
Numbers are (23-2), 23, $(23+2)=\mathbf{2 1}, \mathbf{2 3}, 25$
PC NOTE: But we will go by OPTION METHOD in such type of questions TO SAVE TIME.

Whatsapp: 8888111134

## CONCEPT 9: SOME IMPORTANT SERIES

| sum OF | FORMULA | EXAMPLE |
| :---: | :---: | :---: |
| 1. $1^{\text {st }}$ ' $n$ ' NATURAL No. | $\sum n=\frac{n(n+1)}{2}$ | $1+2+3+\ldots .100=\frac{n(n+1)}{2}=\frac{100(\mathbf{1 0 0 + 1})}{2}$ |
| 2. $1^{\text {st }}$ ' n ' ODD natural No. | $\sum(2 n-1)=n^{2}$ | $1+3+5+7+9=5^{2}=25$ |
| 3. $1^{\text {st }}$ ' $n$ ' EVEN Natural No. | $\sum 2 n=n(n+1)$ | $2+4+6+8+10=n(n+1)=5(6)=30$ |
| 4. SQUARE of $1^{\text {st }}$ ' $n$ ' Natural No. | $\begin{gathered} \sum_{n(n+1)(2 n+1)} n^{2}= \\ \frac{6}{n} \end{gathered}$ | $\begin{gathered} 1^{2}+2^{2}+\ldots 10 O^{2}=\frac{n(n+1)(2 n+1)}{6}= \\ \frac{100(100+1)(200+1)}{6} \end{gathered}$ |
| 5. CUBES of $1^{\text {st }}$ ' $n$ ' Natural No. | $\sum \boldsymbol{n}^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$ | $1^{3}+2^{3}+3^{3} \ldots 100^{3}=\left[\frac{n(n+1)}{2}\right]^{2}=\left[\frac{100(\mathbf{1 0 0 + 1 )}}{2}\right]^{2}$ |

PROPERTIES OF AP

| Papticulaps | Examples |
| :---: | :---: |
| 1. If $S_{n}=S_{m} \rightarrow S_{(m+n)}=0$ | If $\mathrm{S}_{7}=\mathrm{S}_{11} \rightarrow \mathrm{~S}_{18}=0$ |
| 2. $\mathrm{T}_{\mathrm{p}}=\frac{1}{q} \& \mathrm{~T}_{\mathrm{q}}=\frac{1}{p^{i}} \rightarrow \mathbf{T}_{\mathrm{pq}}=1 \& \mathrm{~S}_{\mathrm{pq}}=\frac{p q+1}{2}$ | $\mathrm{T}_{3}=\frac{1}{2} \& \mathrm{~T}_{2}=\frac{1}{3} ; \rightarrow \mathrm{T}_{6}=1 \& \mathrm{~S}_{6}=\frac{6+1}{2}=\frac{7}{2}$ |
| 3. If $S_{p}=q \& S_{q}=p \rightarrow S_{(p+q)}=-(p+q)$ | If $S_{7}=11 \& S_{11}=7, \rightarrow S_{18}=-(11+7)=-18$ |
| 4. If $T_{p}=q \& T_{q}=p$ then $T_{r}=(p+q-p)$ | 5. If $T_{p}=q \& T_{q}=p$ then $T_{(p+q)}=0$. |
| 6. If ratio of $S_{n}$ of $2 A P s=\frac{A n^{2}+B n}{C n^{2}+D n}=\frac{A n+B}{C n+D}$; Ratio of their $T_{m}=\frac{A(\mathbf{m}-\mathbf{1})+B}{C(\mathbf{m}-\mathbf{1})+D}$. <br> Q. Sum of ' $n$ ' terms of 2 APs are in the ratio of $\frac{(5 n+2)}{(11 n-7)}$. Ratio of their sixth terms is |  |
| 7. We add/subtract/multiply/divide all terms of AP by any no. pesulting series is AP. |  |
| 8. If we form a series from the reciprocal of all the terms of AP, it becomes HP. |  |
| 9. If 3 numbers are given in AP, Put $1^{\text {st }} \mathrm{no}=1 ; 2^{\text {nd }} \mathrm{no}=2 ; \& 3^{\text {rd }}$ no. $=3 ;$ (If necessary). |  |
| 10. If $a, b, c$ are in $A P \rightarrow$ Put their value as $1,2,3$ in options \& get the answer. |  |
| 11. If $\boldsymbol{a}^{2}, \boldsymbol{b}^{2}, \mathbf{c}^{2}$ are in AP $\rightarrow$ Put value as 1, 5, $\mathbf{7}$ in options \& get answer $[1,25,49 \rightarrow$ AP] |  |

## ARITHMETIC PROGRESSION - QUESTION BANK

| SN | GA. ARTHMETIC PROGRESSION | Ans |
| :---: | :---: | :---: |
| Q1 | Two APs have the same common difference. If the difference between their 100th terms is 111222333, then the difference between their millionth terms is $\qquad$ <br> (a) 123 <br> (b) 112233 <br> (c) 111222333 <br> (d) 112333 | C |
| Q2 | $n^{\text {th }}$ term of the sequence $2,4,6,8 \ldots$. is $\qquad$ <br> (a) $2 n$ <br> (b) $2 n-1$ <br> (c) $2 n+1$ <br> (d) N | A |
| Q3 | Number of terms in the series $1+3+5+7+\ldots+61$ is $\qquad$ <br> (a) 30 <br> (b) 28 <br> (c) 31 <br> (d) 29 | C |
| Q4 | If $1^{\text {st }}$ term of an AP is $5 \&$ its $100^{\text {th }}$ term is -292 , then its $51^{\text {st }}$ term is $\qquad$ <br> (a) -142 <br> (b) -149 <br> (c) 155 <br> (d) -145 | D |
| Q5 | In a certain arithmetic sequence, if the 24 th term is twice the $10^{\text {th }}$ term, then $72^{\text {nd }}$ term is twice the $\qquad$ . <br> (a) $30^{\text {th }}$ term <br> (b) $40^{\text {th }}$ term <br> (c) $34^{\text {th }}$ term <br> (d) $38^{\text {th }}$ term | C |
| Q6 | If 10th term of an A.P. is twice the 4 th term \& 23rd term is ' $k$ ' times the 8 th term, then $k=$ $\qquad$ <br> (a) 2.5 <br> (b) 3 <br> (c) 3.5 <br> (d) 4 | A |
| Q7 | The two apithmetic means between -6 and 14 is $\qquad$ <br> (a) $2 / 3,1 / 3$ <br> (b) $2 / 3,22 / 3$ <br> (c) $-2 / 3,-22 / 3$ <br> (d) None | B |
| Q8 | The sum of the series $3 \frac{1}{2}+7+10 \frac{1}{2}+14+\ldots$ to 17 terms is $\qquad$ <br> (a) 530 <br> (b) 535 <br> (c) $535 \frac{1}{2}$ <br> (d) None | C |
| Q9 | The sum of an A.P. whose first term is -4 and the last term is 146 is 7171 . Find the Value of $n$. <br> (a) 99 <br> (b) 101 <br> (c) 100 <br> (d) 102 | B |
| Q10 | The number of the terms of the series $10+93 \frac{2}{3}+9 \frac{1}{3}+9 \ldots$ will amount to 155 is $\qquad$ <br> (a) 30 <br> (b) 31 <br> (c) 32 <br> (d) None | D |
| Q11 | $a=14$ \& sum of first 5 terms \& sum of first 10 terms are equal is magnitude but opposite in sign. $\mathrm{T}_{3}$ is $\qquad$ <br> (a) $70 / 11$ <br> (b) 6 <br> (c) $4 / 11$ <br> (d) None | A |
| Q12 | The sum of progression $(a+b), a,(a-b)$ upto $n$ terms is $\qquad$ . <br> (a) $\frac{n}{2}[2 a+(n-1) b]$ <br> (b) $\frac{n}{2}[2 a+(3-n) b]$ <br> (c) $\frac{n}{2}[2 a+(3-n)]$ <br> (d) $\frac{n}{2}[2 a(n-1)]$ | B |
| Q13 | The maximum sum of the AP series $40,36,32,28 \ldots$. is $\qquad$ . [Hint: $2 \times 10 \times 11$ ] <br> (a) 220 <br> (b) 225 <br> (c) 232 <br> (d) 320 | A |
| Q14 | How many terms are there in the AP whose $1^{\text {st }} \& 5^{\text {th }}$ ape $-14 \& 2$ respectively \& sum | B |


|  | of the term is 40 ? <br> (a) $2 \times \mathrm{d}$ <br> (b) 10 <br> (c) 8 <br> (d) 14 |  |
| :---: | :---: | :---: |
| Q15 | pth term of an AP is $\frac{3 p-1}{6}$. The sum of the first $n$ terms of the AP is $\qquad$ <br> (a) $n(3 n+1)$ <br> (b) $\frac{n}{12}(3 n+1)$ <br> (c) $\frac{n}{12}(3 n-1)$ <br> (d) None | B |
| Q16 | Find the sum of first 25 terms of AP series whose $n^{\text {th }}$ term is $(n / 5)+2$ <br> (a) 105 <br> (b) 115 <br> (c) 125 <br> (d) 135 | B |
| Q17 | The sum of $n$ terms of an AP is $2 n^{2}+3 n$. Find the $n^{\text {th }}$ term. <br> (a) $4 n+1$ <br> (b) $4 n-1$ <br> (c) $2 n+1$ <br> (d) $2 n-1$ | A |
| Q18 | Sum of all natural numbers from 100 to 300 which are divisible by 4 or 5 is $\qquad$ <br> (a) 10200 <br> (b) 15200 <br> (c) 16200 <br> (d) None | A |
| Q19 | The sum of all natural numbers from 100 to 300 which are divisible by 5 is $\qquad$ <br> (a) 10200 <br> (b) 30000 <br> (c) 8200 <br> (d) 2200 | C |
| Q20 | Sum of all natural numbers from 100 to 300 which are divisible by 4 and 5 is $\qquad$ <br> (a) 10200 <br> (b) 30000 <br> (c) 8200 <br> (d) 2200 | D |
| Q21 | The sum of natural numbers upto 200 excluding those divisible by 5 is $\qquad$ <br> (a) 20100 <br> (b) 4100 <br> (c) 16000 <br> (d) None | C |
| Q22 | Find three numbers in AP whose sum is 6 and the product is -24 <br> (a) $-2,2,6$ <br> (b) $-1,1,3$ <br> (c) $1,3,5$ <br> (d) $1,4,7$ | A |
| Q23 | The four numbers in AP whose sum is 24 and their product is 945 are $\qquad$ <br> (a) $3,5,7,9$ <br> (b) $2,4,6,8$ <br> (c) $5,9,13,17$ <br> (d) None | A |
| Q24 | 4 numbers in AP with the sum of $2^{\text {nd }} \& 3^{\text {rd }}$ being 22 and the product of $1^{\text {st }} \& 4^{\text {th }}$ being 85 are $\qquad$ _. <br> (a) $3,5,7,9$ <br> (b) $2,4,6,8$ <br> (c) $5,9,13,17$ <br> (d) None | C |
| Q25 | Divide 12.50 in 5 parts in AP such that the first part and the last part are in the patio $2: 3$ <br> (a) 2, 2.25, 2.5, 2.75, 3 <br> (b) $-2,-2.25,-2.5,-2.75,-3$ <br> (c) $4,4.5,5,5.5,6$ <br> (d) $-4,-4.5,-5,-5.5,-6$ | A |
| Q26 | Find four numbers in AP with the sum of $2^{\text {nd }} \& 3^{\text {rd }}$ is $22 \&$ product of $1^{\text {st }} \& 4^{\text {th }}$ is 85 . <br> (a) $3,5,7,9$ <br> (b) $2,4,6,8$ <br> (c) $5,9,13,17$ <br> (d) None. | C |
| Q27 | The sum of the series $1+2+3+4+\ldots \ldots . .+100$ is $\qquad$ <br> (a) $\frac{100(101)}{2}$ <br> (b) $\left[\frac{100(101)}{2}\right]^{2}$ <br> (c) $100 \times 101$ <br> (d) None | A |
| Q28 | The value of $11^{2}+12^{2}+\ldots \ldots+20^{2}$ is $\qquad$ <br> (a) 3845 <br> (b) 2485 <br> (c) 2870 <br> (d) 3255 | B |
| Q29 | The value of $\frac{1^{3}+2^{3}+\cdots+10^{3}}{1+2+\cdots+10}$ is $\qquad$ <br> (a) 45 <br> (b) 55 <br> (c) 385 <br> (d) 285 | B |


| Q30 | If $a, b, c$ ape in AP then the value of $\frac{\left(a^{3}+4 b^{3}+c^{3}\right)}{b\left(a^{2}+c^{2}\right)}$ <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) None | C |
| :---: | :---: | :---: |
| Q31 | If $a, b, c$ are in AP then $(b+c),(c+a),(a+b)$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | A |
| Q32 | If $a, b, c$ are in the $p^{\text {th }}, q^{\text {th }}$ and $p^{\text {th }}$ terms of an AP, value of $a(q-r)+b(p-p)+c(p-q)$ is <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q33 | If $a^{2}, b^{2}, c^{2}$ are in AP then $(b+c),(c+a),(a+b)$ ape in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | C |
| Q34 | A person pays Rs. 975 by monthly instalment each less then the former by Rs.5. The first instalment is Rs. 100. Time by which the entire amount will be paid is $\qquad$ <br> (a) 10 months <br> (b) 15 months <br> (c) 14 months <br> (d) None | B |
| Q35 | If $n^{\text {th }}$ terms of two A.P's are in the ratio $(3 n+1):(n+4)$ the patio of fourth term is $\qquad$ <br> (a) 2 <br> (b) 3 <br> (c) 4 <br> (d) None | A |
| Q36 | $10^{\text {th }}$ term from the end of the AP 4,9,14,... 254. <br> (a) 204 <br> (b) -209 <br> (c) 209 <br> (d) 214 | C |
| Q37 | Find the sum to $n$ terms of $(1-1 / n)+(1-2 / n)+(1-3 / n)+\ldots \ldots$. <br> (a) $1 / 2(n-1)$ <br> (b) $1 / 2(n+1)$ <br> (c) $(n-1)$ <br> (d) $(n+1)$ | A |
| Q38 | Sum of $n$ tepms of $(x+y)^{2},\left(x^{2}+y^{2}\right),(x-y)^{2}$, is $\qquad$ <br> (a) $(x+y)^{2}-2(n-1) x y$ <br> (b) $n(x+y)^{2}-n(n-1) x y$ <br> (c) both the above <br> (d) None | B |
| Q39 | Sum of $n$ terms of $(1 / n)(n-1),(1 / n)(n-2),(1 / n)(n-3)$ is $\qquad$ <br> (a) 0 <br> (b) $(1 / 2)(n-1)$ <br> (c) $(1 / 2)(n+1)$ <br> (d) None | B |
| Q40 | Value of $n^{2}+2 n[1+2+3+\ldots . .+(n-1)]$ is $\qquad$ <br> (a) $n^{3}$ <br> (b) $n^{2}$ <br> (c) $n$ <br> (d) None | A |
| Q41 | Which term of series $7+11+15$ $\qquad$ $=403$. <br> (a) 50 <br> (b) 100 <br> (c) 101 <br> (d) 51 | B |
| Q42 | The sum $1+3+5+7+\ldots .+99$ is equal to $\qquad$ <br> (a) 2499 <br> (b) 2401 <br> (c) 9801 <br> (d) None | D |
| Q43 | If $\mathrm{S} n$ the sum of first $n$ terms in a series is given by $2 n^{2}+3 n$ the series is in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | A |
| Q44 | $n^{\text {th }}$ term of the series whose sum to $n$ terms is $5 n^{2}+2 n$ is $\qquad$ <br> (a) $3 n-10$ <br> (b) $10 n-2$ <br> (c) $10 n-3$ <br> (d) None | C |
| Q45 | $t_{1}=n, t_{2}=n+1, t_{3}=n+2$ and so on, then $t_{n}=$ $\qquad$ <br> (a) $n$ <br> (b) $2 n-1$ <br> (c) $2 n+1$ <br> (d) $2 n$ | B |
| Q46 | Sum of all natural numbers between 200 and 400 which are divisible by 7 is___. | B |


|  | (a) 7730 | (b) 8729 | (c) 7729 | (d) 8730 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q47 | Sum of all <br> (a) 28400 | umbers be <br> (b) 28405 | \& 1000 w <br> (c) 28410 | e by 13 is $\qquad$ <br> (d) None | A |
| Q48 | Number <br> (a) 5090 | between <br> (b) 5097 | 556 divisib <br> (c) 5095 | (d) None | B |
| Q49 | Sum $1^{2}+2^{2}$ <br> (a) 385 | $+\ldots . .10^{2}$ is <br> (b) 386 | (c) 384 | (d) None | A |
| Q50 | Sum of $1^{3}$ <br> (a) 4410 | $4^{3}+\ldots .10$ <br> (b) 3025 | to $\qquad$ <br> (c) 3470 | (d) None | B |
| Q51 | Sum of $n$ <br> (a) $2 n^{2}$ | he sepies <br> (b) $n^{2}$ | $+$ is <br> (c) $n^{2} / 2$ | (d) $4 n^{2}$ | A |
| Q52 | Unity is <br> (a) 'a' per <br> (c) 'a' num | um of any | terms of <br> (b)'a' perf <br> (d) None | resulting sum is | B |
| Q53 | Find the that resul <br> (a) -1 | should be <br> o AP <br> (b) 0 | the sum of <br> (c) 1 | terms of AP so <br> (d) None | C |
| Q54 | If $a, b, c$ <br> (a) $a^{2}-3 b$ <br> (c) $a^{2}+3 b$ | $P$ then $\qquad$ $\begin{aligned} & { }^{2}=0 \\ & t^{2}=0 \end{aligned}$ | (b) $a^{2}+3 b^{2}$ <br> (d) None |  | D |
| Q55 | $\begin{aligned} & \text { If } a, b, c \\ & \left(\frac{b}{q}\right)(p-p)+ \end{aligned}$ <br> (a) 0 | ns of $p, q$, $\qquad$ <br> (b) 1 | espectively <br> (c) -1 | alue of $\left(\frac{a}{p}\right)(q-p)+$ <br> (d) None | A |
| Q56 | If $a, b, c$, <br> (a) $a-b$ | in AP then <br> (b) a-2c | (c) $b-2 c$ | (d) All | D |
| Q57 | A person Rs. 100 m the 1st ye <br> (a) Rs. 1 | 16,500 in 10 he did in th $\qquad$ <br> (b) Rs. 150 | In each ye ing year. T <br> (c) Rs. 120 | $t$ year he saved ney he saved in <br> (d) none | C |
| Q58 | The sum <br> (a) $n(a-b)$ | of $a+b, 2 a$, <br> (b) $n(a+b)$ | $\qquad$ <br> (c) both th | (d) None | D |
| Q59 | A sum of more tha <br> (a) Rs. 36 | paid off in eding insta <br> (b) Rs. 30 | lments such he value of (c) Rs. 60 | allment is Rs. 10 $n t$ is $\qquad$ <br> (d) None | D |
| Q60 | 2, 5, 8, 11 | is an A.P in | common did |  | B |



| Q77 | The last term of the series $5,7,9, \ldots \ldots$ to 21 term is $\qquad$ <br> (a) 44 <br> (b) 43 <br> (c) 45 <br> (d) None | C |
| :---: | :---: | :---: |
| Q78 | The last term of the A.P $0.6,1.2,1.8$ to 13 term is <br> (a) 8.7 <br> (b) 7.8 <br> (c) 7.7 <br> (d) None | B |
| Q79 | Determine the first term of an A.P. with common difference 3 \& 7 th term being 11 <br> (a) -7 <br> (b) 7 <br> (c) 6 <br> (d) 5 | A |
| Q80 | If the $10^{\text {th }}$ term of an A.P. is twice the $4^{\text {th }}$ term, and the $23^{\text {rd }}$ term is ' $k$ ' times the $8^{\text {th }}$ term, then the value of ' $k$ ' is <br> (a) 2.5 <br> (b) 3 <br> (c) 3.5 <br> (d) 4 | A |
| Q81 | The sum of $\qquad$ between the actual values and the A.M is zero. <br> (a) sums <br> (b) differences <br> (c) product <br> (d) square root | B |
| Q82 | AM between a \& c is $\qquad$ <br> (a) ac <br> (b) $\frac{(a+c)}{2}$ <br> (c) $\frac{a c}{2}$ <br> (d) $\frac{(a-c)}{2}$ | B |
| Q83 | A. M between 2 \& 4 is <br> (a) 2 <br> (b) 4 <br> (c) 3 <br> (d) 6 | C |
| Q84 | AM between 8 \& 20 is <br> (a) 6 <br> (b) 12 <br> (c) 14 <br> (d) 18 | C |
| Q85 | AM between 5 and 13 is <br> (a) 9 <br> (b) 10 <br> (c) 8 <br> (d) None | A |
| Q86 | AM between 33 and 77 is <br> (a) 50 <br> (b) 45 <br> (c) 55 <br> (d) None | C |
| Q87 | 4 arithmetic means between -2 and 23 are <br> (a) $3,13,8,18$ <br> (b) $18,3,8,13$ <br> (c) $3,8,13,18$ <br> (d) None | C |
| Q88 | If the AM of two numbers is 6 and GM is 6 then find the numbers. <br> (a) 6,6 <br> (b) 10,8 <br> (c) 10,6 <br> (d) 9, 2 | A |
| Q89 | Find the numbers whose GM is 5 and AM is 7.5 . <br> (a) 12 and 13 <br> (b) 13.09 and 1.91 <br> (c) 14 and 11 <br> (d) 17 and 19 | B |
| Q90 | Between the two numbers whose sum is $\frac{13}{6}$, an even number of A.M is inserted. If the sum of arithmetic mean exceeds their number by unity, then number of apithmetic means inserted are <br> (a) 6 <br> (b) 10 <br> (c) 8 <br> (d) 12 | D |
| Q91 | Three numbers $a, b, c$ ape in A.P, Find $a-b+c$ <br> (a) a <br> (b) -b <br> (c) b <br> (d) c | C |
| Q92 | In an A.P. if the 3rd term is 18,7 term is 30 then the sum of first 20 terms is $\qquad$ <br> (a) 810 <br> (b) 520 <br> (c) 180 <br> (d) 250 | A |


| Q93 | $2^{\text {nd }}$ term of A.P. is $a_{2}$, its common difference is' $d$ '. Sum of its first ' $n$ ' terms $=$ $\qquad$ <br> (a) $\frac{n}{2}\left[2 a_{2+}(n-1) d\right]$ <br> (b) $\frac{n}{2}\left[2 a_{1+}(n-1) d\right]$ <br> (c) $\frac{n}{2}\left[2 a_{2}+(n-3) d\right]$ <br> (d) $\frac{n}{2}\left[a_{2+}(n-1) d\right]$ | C |
| :---: | :---: | :---: |
| Q94 | The sum of the series $1+2+4+8+\ldots$ to 10 term is $\qquad$ <br> (a) 1024 <br> (b) 1023 <br> (c) 1025 <br> (d) None | B |
| Q95 | The sum of series $8,4,0$ $\qquad$ to 50 terms is $\qquad$ <br> (a) 18900 <br> (b) 9000 <br> (c) -4500 <br> (d) None | C |
| Q96 | The sum of all numbers between 200 and 300 <br> (a) 11,600 <br> (b) 12,490 <br> (c) 12,500 <br> (d) 24,750 | D |
| Q97 | The sum $1+2+3+4$ $\qquad$ +70 is equal to $\qquad$ <br> (a) 2484 <br> (b) 2485 <br> (c) 2845 <br> (d) None | B |
| Q98 | The sum of series $8,4,0 \ldots \ldots$ to 50 terms is $\qquad$ <br> (a) 18900 <br> (b) 9000 <br> (c) -4500 <br> (d) None | C |
| Q99 | In an A.P. if $S_{n}=3 n^{2}-n$ \& its common difference is ' 6 ', then the First term is <br> (a) 2 <br> (b) 3 <br> (c) 4 <br> (d) 6 | A |
| Q100 | The sum of $\frac{1}{(x+y)}$ and $\frac{1}{(x-y)}$ is $\qquad$ . <br> (a) $\frac{2 y}{\left(x^{2}-y^{2}\right)}$ <br> (b) $\frac{2 x}{\left(x^{2}-y^{2}\right)}$ <br> (c) $\frac{2 y}{\left(x^{2}+y^{2}\right)}$ <br> (d) $-\frac{2 x}{\left(x^{2}-y^{2}\right)}$ | B |
| Q101 | $\frac{a^{2}}{a^{2}-b^{2}}+\frac{b^{2}}{b^{2}-a^{2}}=$ $\qquad$ <br> (a) $a-b$ <br> (b) $a+b$ <br> (c) $a^{2}-b^{2}$ <br> (d) 1 | D |
| Q102 | $8^{\text {th }}$ term of the progression $8,5,2,-1,-4, \ldots$ is $\qquad$ <br> (a) -12 <br> (b) -13 <br> (c) 13 <br> (d) 12 | B |
| Q103 | Sum of a series in AP is 72 the first term being 17 and the common difference -2 . Number of terms is $\qquad$ <br> (a) 6 <br> (b) 12 <br> (c) 6 op 12 <br> (d) None | C |
| Q104 | Number of terms of series needed for sum of the series $50+45+40+\ldots \ldots$. becomes zero <br> (a) 22 <br> (b) 21 <br> (c) 20 <br> (d) None | B |
| Q105 | Sum of certain numbers of terms of an AP series $-6,-3,0 \ldots \ldots$ is 225 . Number of terms is $\qquad$ _. <br> (a) 16 <br> (b) 15 <br> (c) 14 <br> (d) 13 | B |
| Q106 | The number of terms in the A.P. $7,13,19, \ldots . . . .97$ is $\qquad$ <br> (a) 97 <br> (b) 17 <br> (c) 16 <br> (d) 15 | C |
| Q107 | The sum of all natural numbers from 100 to 300 which are divisible by 4 is $\qquad$ <br> (a) 10200 <br> (b) 30000 <br> (c) 8200 <br> (d) 2200 | A |


| Q108 | Sum of $n$ terms of 2 APs are in the ratio of $\frac{7 n-5}{5 n+17}$. Then $\qquad$ term of the two series are equal <br> (a) 12 <br> (b) 6 <br> (c) 3 <br> (d) None | B |
| :---: | :---: | :---: |
| Q109 | The sum of the first 100 terms common to the series $17,21,25 \ldots$. And 16, 21, 26,... is $\qquad$ . <br> (a) 202200 <br> (b) 100101 <br> (c) 101010 <br> (d) 101100 | D |
| Q110 | If the $p^{\text {th }}$ term of an $A P$ is $q \&$ the $q^{\text {th }}$ term is $p$ the value of the $r$ th terms is $\qquad$ <br> (a) $p-q-p$ <br> (b) $p+q-r$ <br> (c) $p+q+p$ <br> (d) None | B |
| Q111 | The $p^{\text {th }}$ term of an AP is $\frac{1}{q}$ and the $q^{\text {th }}$ term is $\frac{1}{p}$. The sum of the pq term is $\qquad$ <br> (a) $\frac{1}{2}(p q+1)$ <br> (b) $\frac{1}{2}(p q-1)$ <br> (c) $(p q+1)$ <br> (d) $(p q-1)$ | A |
| Q112 | Sum of $p$ terms of an AP is $q$ and the sum of $q$ terms is $p$. The sum of $p+q$ terms is <br> (a) $-(p+q)$ <br> (b) $(P+q)$ <br> (c) $(p-q)^{2}$ <br> (d) $p^{2}-q^{2}$ | A |
| Q113 | If $S_{1}, S_{2}, S_{3}$ be respectively, sum of $n, 2 n, 3 n$ terms of an AP the value of $S_{3} \div\left(S_{2}-S_{1}\right)$ is $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) None | C |
| Q114 | If $S_{1}, S_{2}, S_{3}$ be the sums of $n$ terms of three APs the first term of each being unity and the respective common differences $1,2,3$ then $\frac{\left(S_{1}+S_{3}\right)}{s_{2}}$ is $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) -1 <br> (d) None | B |
| Q115 | Sum of ' $n$ ' terms of two A.Ps are in the ratio of $\frac{(5 n+2)}{(11 n-7)}$ the ratio of their sixth terms is $\qquad$ _. <br> (a) $32: 59$ <br> (b) $1: 1$ <br> (c) $2: 1$ <br> (d) $5: 11$ | D |
| Q116 | If $m, p, q$ are consecutive terms in an A.P. then $p$ is $\qquad$ <br> (a) $\frac{\mathrm{mq}}{2}$ <br> (b) $\frac{(\mathrm{m}-\mathrm{q})}{2}$ <br> (c) $2\left(m^{2}+q^{2}\right)$ <br> (d) $\frac{(m+q)}{2}$ | D |
| Q117 | The five numbers in AP with their sum 25 and sum of their squares 135 are $\qquad$ <br> (a) $3,4,5,6,7$ <br> (b) $3,3.5,4,4.5,5$ <br> (c) $-3,-4,-5,-6,-7$ <br> (d) $-2,-3.5,-4,-4.5,-5$ | A |
| Q118 | Three numbers are in A.P. whose sum is 69 and the product of first two is 483. Numbers ape $\qquad$ <br> (a) 25, 23, 21 <br> (b) $21,23,25$ <br> (c) $19,22,25$ <br> (d) None | B |
| Q119 | Three numbers are in A.P. of whose sum is 15 and whose product is 105 , then numbers ape $\qquad$ <br> (a) $3,5,7$ <br> (b) $2,5,8$ <br> (c) $0,5,10$ <br> (d) None | A |
| Q120 | Three number in AP whose sum is 27 and the sum of their squares is 341 are $\qquad$ <br> (a) 2, 9, 16 <br> (b) $16,9,2$ <br> (c) Both <br> (a) and (b) <br> (d) $-2,-9,-16$ | C |
| Q121 | Four numbers in AP whose sum is 20 and the sum of their squares is 120 are ___. | B |


|  | $\begin{array}{llll}\text { (a) } 3,5,7,9 & \text { (b) } 2,4,6,8 & \text { (c) } 5,9,13,17 & \text { (d) None }\end{array}$ |  |
| :---: | :---: | :---: |
| Q122 | Divide 69 into 3 parts which are in A.P and are such that product of the $1^{\text {st }}$ two parts is 483. <br> (a) $21,23,25$ <br> (b) $23,25,27$ <br> (c) $19,21,23$ <br> (d) 17,19,21 | A |
| Q123 | Sum of 3 numbers in A.P. is 12 and the sum of their cube is 408 . Numbers are $\qquad$ <br> (a) $3,4,5$ <br> (b) $1,4,7$ <br> (c) $2,4,6$ <br> (d) None | B |
| Q124 | Five numbers in AP with the sum 20 and product of the first and last 15 are $\qquad$ <br> (a) $3,4,5,6,7$ <br> (b) $3,3.5,4,4.5,5$ <br> (c) $-3,-4,-5,-6,-7$ <br> (d) $-2,-3.5,-4,-4.5,-5$ | B |
| Q125 | If sum of first 50 natural numbers is 1275 and the sum of first 50 odd numbers is 2500, then the sum of the first 50 even numbers is $\qquad$ <br> (a) 2550 <br> (b) 1275 <br> (c) 1725 <br> (d) 2500 | A |
| Q126 | Sum of three integers in AP is 15 and their product is 80 . the integers are $\qquad$ <br> (a) $2,5,8$ <br> (b) $8,5,2$ <br> (c) $2,8,5$ <br> (d) Both (a) and (b) | D |
| Q127 | Sum of all natural no. from 100 to 300 which are exactly divisible by 4 or 5 is $\qquad$ <br> (a) 10200 <br> (b) 15200 <br> (c) 16200 <br> (d) None | C |
| Q128 | In an Ashoka Chakra, central angle made by the smallest sector, two small sectors, three small sectors and so on are $\qquad$ <br> (a) In A.P. <br> (b) Equal <br> (c) In G.P. <br> (d) Such that their summation is $360^{\circ}$ | A |
| Q129 | A person employed in a company at Rs. 3000 per month and he would get an increase of Rs. 100 per year. Find the total amount which he receives in 25 years and the monthly salary in the last year. <br> (a) 1380000 and 6200 <br> (b) 930000 and 5400 <br> (c) 1480000 and 7200 <br> (d) 1570000 and 4800 | B |
| Q130 | A person received the salary for the $1^{\text {st }}$ Year is Rs. $5,00,000$ per year and he received an increment of Rs. 15,000 per year then the sum of the salary he taken in 10 years <br> (a) Rs. 56,75,000 <br> (b) Rs. 72,75,000 <br> (c) Rs. 63,75,000 <br> (d) None | A |
| Q131 | The sum of $n$ terms of an AP is $3 n^{2}+5 n$, which term of AP is 164 . <br> (a) 25 <br> (b) 27 <br> (c) 29 <br> (d) 31 | B |
| Q132 | Sum of $n$ terms of $(x+y)^{2},\left(x^{2}+y^{2}\right),(x-y)^{2} \ldots$ <br> (a) $(x+y)^{2}-2(n-1) x y$ <br> (b) $n(x+y)^{2}-n(n-1) x y$ <br> (c) $n(x+y)^{2}-n(n+1) x y$ <br> (d) None | B |
| Q133 | Sum of $n$ terms of $(n-1) / n,(n-2) / n,(n-3) / n \ldots$ is $\qquad$ <br> (a) 0 <br> (b) $(n-1) / 2$ <br> (c) $(n+1) / 2$ <br> (d) None | B |
| Q134 | The sum of first n natural number is | A |



| Q151 | Sum $1^{2}+2^{2}+3^{2}+4^{2}+\ldots \ldots .10^{2}$ is equal to $\qquad$ <br> (a) 385 <br> (b) 386 <br> (c) 384 <br> (d) None | A |
| :---: | :---: | :---: |
| Q152 | Sum of $1^{3}+2^{3}+3^{3}+4^{3}+\ldots .10^{3}$ is equal to $\qquad$ <br> (a) 4410 <br> (b) 3025 <br> (c) 3470 <br> (d) None | B |
| Q153 | Sum of $n$ terms of the series $2+6+10+$ $\qquad$ is $\qquad$ <br> (a) $2 n^{2}$ <br> (b) $n^{2}$ <br> (c) $n^{2} / 2$ <br> (d) $4 n^{2}$ | A |
| Q154 | If $a, b, c$ d ape in AP then $\qquad$ . <br> (a) $a^{2}-3 b^{2}-3 c^{2}-d^{2}=0$ <br> (b) $a^{2}+3 b^{2}+3 c^{2}+d^{2}=0$ <br> (c) $a^{2}+3 b^{2}+3 c^{2}-d^{2}=0$ <br> (d) $a^{2}-3 b^{2}+3 c^{2}-d^{2}=0$ | D |
| Q155 | If $a, b, c$ be the sums of $p, q, r$ terms respectively of an $A P$, the value of $\left(\frac{a}{p}\right)(q-p)+\left(\frac{b}{q}\right)(p-p)+\left(\frac{c}{r}\right)(p-q)$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) - 1 <br> (d) None | A |
| Q156 | If $10^{\text {th }}$ term of AP is twice the $4^{\text {th }}$ term $\& 23^{\text {rd }}$ term is ' $k$ ' times the $8^{\text {th }}$ term, $k=$ $\qquad$ <br> (a) 2.5 <br> (b) 3 <br> (c) 3.5 <br> (d) 4 | A |
| Q157 | Value of $11^{2}+12^{2}+\ldots \ldots+2 \mathrm{O}^{2}=$ $\qquad$ <br> (a) 3845 <br> (b) 2485 <br> (c) 2870 <br> (d) 3255 | B |
| Q158 | Value of $\frac{1^{3}+2^{3}+\cdots+10^{3}}{1+2+\cdots+10}=$ $\qquad$ <br> (a) 45 <br> (b) 55 <br> (c) 385 <br> (d) 285 | C |
| Q159 | If $a, b, c$ are in AP, then value of $\frac{\left(a^{3}+4 b^{3}+c^{3}\right)}{b\left(a^{2}+c^{2}\right)}=$ $\qquad$ <br> (a) 1 <br> (b) 2 <br> (c) 3 <br> (d) None | C |
| Q160 | If $a, b, c$ are in AP then $(b+c),(c+a),(a+b)$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | A |
| Q161 | If $a, b, c$ are in $p^{\text {th }}, q^{\text {th }} \& p^{\text {th }}$ terms of an AP, value of $a(q-r)+b(p-p)+c(p-q)$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q162 | If $a^{2}, b^{2}, c^{2}$ are in AP then $(b+c),(c+a),(a+b)$ are in $\qquad$ <br> (a) $A P$ <br> (b) GP <br> (c) $H P$ <br> (d) None | C |

## CHAPTER 6B. GEOMETRIC PROGRESSION

## INTRODUCTION

- It is a sequence in which "any term divided by its preceding term" is "same/constant".
- Ratio between two consecutive terms of the series is "constant". Such Ratio is known as Common Ratio \& is denoted by ' $r$ '.
- First term of GP is denoted by ' $a$ '.
- $\mathrm{p}=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\frac{T_{4}}{T_{3}}-\cdots-\cdots \frac{T_{n}}{T_{n-1}}$
- Common Ratio of GP ' $\rho^{\prime}=\frac{T_{\mathrm{n}}}{T_{\mathrm{n}-1}}$


## CONCEPT 1: Finding $n^{\text {th }}$ TERM OF GP

- If $a=5 \& p=2$
- $T_{1}=a_{;}$
$\mathrm{T}_{2}=\alpha . \mathrm{p}_{\mathrm{g}}$
$T_{3}=T_{2} \cdot p=a p \cdot p=a p^{2} ;$

$$
T_{4}=T_{3} \cdot r=r^{2} p=a p^{3} ;
$$

- $\quad T_{n}=a \cdot p^{n-1}$

CQ1: Find the $8^{\text {th }}$ term of series $4,8,16$ $\qquad$ is
[Ans: 512]
CQ2: $10^{\text {th }}$ term of the G.P. $\frac{1}{2}, 1,2,22, \ldots .$. is
[Ans: 256]
CQ3: The last term of the series $x^{2}, x, 1, \ldots$ to 31 terms is
[Ans: $\frac{1}{x^{28}}$ ]
CQ4: Which term of the G.P. series $1 / 4,-1 / 2,1 \ldots$. is -128 ?
CQ5: The number of terms in $6,18,54$, $\qquad$ upto 1458 is $\qquad$ .

CQ6: Which term of series $3, \sqrt{3}, 1, \frac{1}{\sqrt{3}} \ldots$ is $\frac{1}{243}$ ?

## CONCEPT 2: GEOMETRIC MEAN

- If $a, b, c$ ape in $G P, b / a=c / b=b^{2}=a c, b$ is called GM between $a \& c$.

CQ7: If $(k+9),(k-6) \& 4$ forms three consecutive terms of a G.P. then the value of ' $k$ ' is $\qquad$ .

## PC NOTE

If two non-consecutive terms in GP (say $T_{m}$ \& $T_{n}$ ) \& their values ape given in question \& you are asked to find out GP. $\quad p^{m-n}=\frac{T_{m}}{T_{n}}$

CQ8: Find GP where $T_{3}$ is 36 \& $T_{5}$ is 324 .
Ans: $p^{5-3}=324 / 36 ; \quad r^{2}=9 \quad \& \quad$ thus $r= \pm 3$.
$a p^{2}=36$.
$\alpha .9=36$.
$a=4$.
GP will be $4, \pm 12, \pm 36, \pm 108 \ldots$.

## CONCEPT 3: INSERTION OF ' $n$ ' GEOMETRIC MEANS BETWEEN TWO NUMBERS

- Total number of terms in the required GP will be $(n+1)$.
- Take the $1^{\text {st }}$ given number as $T_{1} \& 2^{\text {nd }}$ given number as $T_{n+2}$

$$
p=\left(\frac{b}{a}\right)^{\frac{1}{n+!}}
$$

CQ9: Insert 3 geometric means between $1 / 9 \& 9$.
Ans: Insert 3 GMs between $1 / 9 \& 9$, total number of terms will be $5 \rightarrow 1 / 9, G M_{1}, G M_{2,} G M_{3}, 9$.
Take $T_{1}=1 / 9$; \& Thus $T_{5}=9$.
[Now we will use the above note.]
$p^{5-1}=9 / 1 / 9 \quad p^{4}=\mathbf{8 1} \quad$ \& thus $p=3$.
$G M_{1}=1 / 9 \times 3=\mathbf{1} / \mathbf{3}, G M_{2}=1 / 3 \times 3=1, G M_{3}=1 \times 3=\mathbf{3}$.
GP will be $1 / 9,1 / 3,1,3,9$.
HQ1: Second terms of a GP is 24 and fifth term is 81 . The series is $\qquad$ .
(a) $16,36,24,54$
(b) $24,36,53$
(c) $16,24,36,54$
(d) None

## CONCEPT 4: SUM OF FIRST 'N' TERM OF GP

$\mathrm{S}_{\mathrm{n}}=\alpha \times \frac{1-\mathrm{r}^{\mathrm{n}}}{(1-\mathrm{r})}$ when $\mathrm{p}<1$
$S_{n}=\alpha \times \frac{r^{n}-1}{(r-1)}$ when $p>1$

## CONCEPT 5: SUM OF INFINITE GP ( $\mathrm{S}_{\infty}$ )

- It is denoted by $S_{\infty}$
- $\mathrm{S}_{\infty}=\frac{a}{1-r}$


## CONCEPT 5: ASSUMPTIONS OF THE TERMS IN GP

| If No. of tepms given <br> in question are | Middle Term | Common Difference | Examples of Tepms |
| :---: | :---: | :---: | :---: |
| ODD No. of terms | A | $p$ | $\begin{gathered} 3 \text { tepms: }(\alpha / r), a,(\alpha p) ; \\ 5 \text { terms: }\left(\alpha / r^{2}\right),(\alpha / r), a,(\alpha p),\left(a p^{2}\right) \end{gathered}$ |
| EVEN No. of terms | $(a / r) \&(a p)$ | $p^{2}$ | $\begin{gathered} 2 \text { terms: }(a / p) \&(a r) ; \\ 4 \text { terms: }\left(a / r^{3}\right),(\alpha / r),(a r),\left(a r^{3}\right) \end{gathered}$ |

PC NOTE: But we will go by OPTION METHOD in such type of questions TO SAVE TIME. CQ10: In a GP series, the product of the first three terms $27 / 8$. The middle term is $\qquad$ -.
(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) $\frac{2}{5}$
(d) None

## CONCEPT 6: PROPERTIES OF GP

| Particulars | Examples |
| :---: | :---: |

1. If we add/subtract all the terms of GP by any number, resulting series is NOT a GP.
2. If we Multiply/divide all the terms of GP by any number, resulting series is a GP.
3. Reciprocal of all the terms of a GP will be in GP (New GP).
4. All the numbers of GP raised to the power $k$ (any number) will also be in GP.
5. If $a, b, c$ OR $a^{2}, b^{2}, c^{2}$ are in $G P \rightarrow$ Put $a, b, c$ value $a s 1,2,4$ in options \& get the answer.
6. Log of all terms of a GP, it will become AP.
7. If there are ' $n$ ' terms in a GP, $m^{\text {th }}$ term from the end will be $(m-n+1)^{\text {th }}$ term from the start.

Ex: If there are 7 terms in a GP, $2^{\text {nd }}$ term from the end will be $(7-2+1)^{\text {th }}$ term from the start.

## PROPERTIES OF A.P. \& G.P.

- A sequence is both A.P. \& G.P., if it is constant sequence, i.e. all the terms are equal $(d=0, r=1)$.
- If A.M. \& G.M. of 2 no. is known, the two no. are: A.M. $\pm \sqrt{(\text { A.M. })^{2}-(\boldsymbol{G} . \boldsymbol{M} .)^{2}}$
- If A.M. \& G.M. of 2 no. is in ratio $m: n$, then no. are in ratio $\left(m+\sqrt{(m)^{2}-(n)^{2}}\right):\left(m-\sqrt{(m)^{2}-(n)^{2}}\right)$
- If $T_{n}=A n^{3}+B n^{2}+C n+D$, then $S_{n}=\sum T_{n}=A \sum n^{3}+B \sum n^{2}+C \sum n+n D$


## HARMONIC MEAN (H.P.)

A sequence of non-zero number $a_{1}, a_{2}, a_{3}, \ldots \ldots$. are in H.P. if $\frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, \ldots \ldots \ldots$. are A.P.
Ex: The sequence $1,1 / 3,1 / 5,1 / 7, \ldots \ldots$... are in H.P. since $1,3,5,7, \ldots \ldots$ are in A.P.

- Standard form of a H.P. is: $\frac{1}{a^{9}} \frac{1}{a+d^{9}}, \frac{1}{a+2 d^{\prime}}, \ldots \ldots .$.
- $n^{\text {th }}$ term of a H.P. is $t_{n}=\frac{1}{a+(n-1) d}$
- If 3 terms are in H.P. $\mathrm{b}=\frac{2 a c}{a+c}$, b is the H.M. between ' $\mathrm{a}^{\prime} \&{ }^{\circ} \mathrm{c}^{\prime}$
- For any two distinct positive numbers, A.M. > G.M. > H.M. \& (G.M.) ${ }^{2}=$ A.M. $\times$ H.M.
- If $a, b, c$ are in G.P. then $a+b, 2 b, c+d$ are in H.P. (Ex: 1, 2, $4=3,4,6$ )


## Space fop PC Class Note:

## GEOMETRIC PROGRESSION - QUESTION BANK

| SN | 6B. GEOMETRIC PROGRESSION | Ans |
| :---: | :---: | :---: |
| Q163 | $6^{\text {th }}$ term of series $a b, a^{2} b^{3}, a^{3} b^{5}=$ $\qquad$ <br> (a) $a^{6} b^{11}$ <br> (b) $a^{11} b^{30}$ <br> (c) $a^{15} b^{36}$ <br> (d) Cannot say | A |
| Q164 | If the fifth term of a G.P. is $3^{4} \&$ second term is $3(2)^{3}$ then the first term is $\qquad$ <br> (a) $2^{4}$ <br> (b) 8 <br> (c) 32 <br> (d) $3.2^{3}$ | A |
| Q165 | If $n, p, q$ are in G.P, then the expression for $p$ in terms of $n \& q$ is $\qquad$ <br> (a) $\frac{n}{q}$ <br> (b) $(n q)^{1 / 2}$ <br> (c) $q^{2 n}$ <br> (d) Nq | B |
| Q166 | $n^{\text {th }}$ poot of the product of $n$ observations is $\qquad$ <br> (a) G.M <br> (b) H.M <br> (c) Median <br> (d) A.M | A |
| Q167 | If an observation in the data set in zero, then its geometric mean is $\qquad$ <br> (a) Positive <br> (b) Negative <br> (c)Zepo <br> (d) Indeterminant | C |
| Q168 | The AM of two positive numbers is 40 and their GM is 24 . The numbers are $\qquad$ <br> (a) $(72,8)$ <br> (b) $(70,10)$ <br> (c) $(60,20)$ <br> (d) None | A |
| Q169 | AM is never $\qquad$ than GM. <br> (a) mope <br> (b) less <br> (c) maximum <br> (d) minimum | B |
| Q170 | If $A$ be the $A M$ of two positive unequal quantities $x$ and $y$ and $G$ be their $G M$, then <br> (a) $A<G$ <br> (b) $A>G$ <br> (c) $A \geqslant G$ <br> (d) $A \leqslant G$ | B |
| Q171 | $1^{\text {st }}$ term is $1 \& 6^{\text {th }}$ term is 32 , find ' $r$ '. <br> (a) 3 <br> (b) $32 / 5$ <br> (c) 2 <br> (d) 160 | C |
| Q172 | Four geometric means between 4 and 972 are $\qquad$ <br> (a) $12,48,192,768$ <br> (b) $16,64,256,512$ <br> (c) $12,36,108,324$ <br> (d) None | C |
| Q173 | The sum of the series $\frac{1}{\sqrt{3}}+1+\frac{3}{\sqrt{3}}+\ldots$ to 18 terms is $\qquad$ <br> (a) $9841\left(1+\frac{1}{\sqrt{3}}\right)$ <br> (b) 9841 <br> (c) $\frac{9841}{\sqrt{3}}$ <br> (d) None | A |
| Q174 | The sum of the series $1+2+4+8+\ldots$ to $n$ term <br> (a) $2^{n}-1$ <br> (b) $2 n-1$ <br> (c) $1 / 2^{n}-1$ <br> (d) None | A |
| Q175 | The sum of $n$ terms of a GP is $1 \frac{127}{128^{\prime}}$, its first term is 1 and the common ratio is $\frac{1}{2}$. The value of $n$ is $\qquad$ <br> (a) 7 <br> (b) 8 <br> (c) 6 <br> (d) None | B |
| Q176 | If $p=3$ \& the last term is 486. If the sum of these terms be 728, then the value of first term is $\qquad$ <br> (a) 4 <br> (b) 2 <br> (c) 9 <br> (d) 1 | B |
| Q177 | The sum of the first 20 terms of a GP is 244 terms the sum of its first 10 terms. The common ratio is $\qquad$ _. | A |


|  | $\begin{array}{llll}\text { (a) } \pm \sqrt{3} & \text { (b) } \pm 3 & \text { (c) } \sqrt{3} & \text { (d) None }\end{array}$ |  |
| :---: | :---: | :---: |
| Q178 | Find the sum to Infinity of the Following series : 1-1+1-1+1-1... $\infty$ <br> (a) 1 <br> (b) $1 / 2$ <br> (c) 0 <br> (d) None | B |
| Q179 | Sum upto $\infty$ of the series $8+4 \sqrt{2}+4 \ldots$. is $\qquad$ <br> (a) $8(2+\sqrt{2})$ <br> (b) $8(2-\sqrt{2})$ <br> (c) $4(2+\sqrt{2})$ <br> (d) $4(2-\sqrt{2})$ | A |
| Q180 | The sum of the first two terms of a GP is $\frac{5}{3}$ and the sum to infmity of the series is <br> 3. The common ratio is $\qquad$ <br> (a) $1 / 3$ <br> (b) $2 / 3$ <br> (c) $-2 / 3$ <br> (d) Both (b) and (c) | D |
| Q181 | The infinite GP series with first term $\frac{1}{4}$ and sum $\frac{1}{3}$ is $\qquad$ <br> (a) $\frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \ldots$ <br> (b) $\frac{1}{4}, \frac{1}{16}, \frac{1}{64}, \ldots$ <br> (c) $\frac{1}{4}, \frac{1}{18}, \frac{1}{16} \ldots$ <br> (d) None | D |
| Q182 | The sum of 3 numbers of a GP is 39 and their product is 729 . The numbers are $\qquad$ <br> (a) $3,27,9$ <br> (b) $9,3,27$ <br> (c) $3,9,27$ <br> (d) None | C |
| Q183 | If the sum of three numbers in GP is 21 and the sum of their squares is 189 the numbers are $\qquad$ <br> (a) $3,6,12$ <br> (b) $12,6,3$ <br> (c) Both <br> (d) None | C |
| Q184 | If continued product of three numbers in GP is $27 \&$ sum of their products in pairs is 39 . The numbers are $\qquad$ <br> (a) $1,3,9$ <br> (b) $9,3,1$ <br> (c) Both (a) and (b) <br> (d) None | C |
| Q185 | If $a, b, c$ are in GP, then the value of $a\left(b^{2}+c^{2}\right)-c\left(a^{2}+b^{2}\right)$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q186 | If $a, b, c, d$ ape in $G P,(a+b),(b+c),(c+d)$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | B |
| Q187 | If $a,(b-a),(c-a)$ are in GP and $a=\frac{b}{3}=\frac{c}{5}$ then $a, b, c$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | A |
| Q188 | If $a, b, c$ are in AP and $x, y, z$ in GP, then the value of $x^{b-c} \cdot y^{c-a} . z^{a-b}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | B |
| Q189 | If $a, b, c$ ape the $p^{\text {th }}, q^{\text {th }}$ and $p^{\text {th }}$ terms of $a$ GP, the value of $a^{q-p} b^{p-p} . c^{p-q}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | B |
| Q190 | If $a, b, c$ are in $A P \& a, x, b$ are in $G P \& b, y, c$ are in GP then $x^{2}, b^{2}, y^{2}$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | A |
| Q191 | Three numbers are in AP \& their sum is 15 . If $8,6,4$ be added to them respectively, they will be GP. They are $\qquad$ <br> (a) $2,6,7$ <br> (b) $4,6,5$ <br> (c) $3,5,7$ <br> (d) None | C |
| Q192 | The least value of $n$ for which the sum of $n$ terms of the series $1+3+3^{2}+\ldots$ is greater than 7000 is $\qquad$ _. | A |


|  | $\begin{array}{llll}\text { (a) } 9 & \text { (b) } 10 & \text { (c) } 8 & \text { (d) } 7\end{array}$ |  |
| :---: | :---: | :---: |
| Q193 | $6^{\text {th }}$ term from the end of the geometric progression $8,4,2,1,1 / 2,1 / 4, \ldots . .1 / 1024$ is <br> (a) $1 / 4$ <br> (b) $1 / 16$ <br> (c) $1 / 32$ <br> (d) $1 / 64$ | C |
| Q194 | The numbers $x, 8, y$ are in GP and the numbers $x, y,-8$ are in AP. The value of $x$ and $y$ are $\qquad$ <br> (a) $(-8,-8)$ <br> (b) $(16,4)$ <br> (c) (\%8) <br> (d) None | B |
| Q195 | The sum of four numbers in GP is 60 and the AM of $1^{\text {st }}$ and the last term is 18 . The numbers are $\qquad$ <br> (a) $4,8,16,32$ <br> (b) $4,16,8,32$ <br> (c) $16,8,4,20$ <br> (d) None | A |
| Q196 | The sum of the series $1-1+1-1+1-1+\ldots$. to 100 terms is equal to $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d) 50 | C |
| Q197 | Find the sum to $n$ terms of the series $3+33+333+\ldots$ <br> (a) $\frac{1}{27}\left(10^{n+1}-9 n-10\right)$ <br> (b) $\frac{1}{27}\left(10^{n-1}-9 n-10\right)$ <br> (c) $\frac{1}{27}\left(10^{n-1}+9 n+10\right)$ <br> (d) $\frac{1}{27}\left(10^{n+1}+9 n+10\right)$ | C |
| Q198 | The sum upto infinity of the series $\frac{2}{3}+\frac{5}{9}+\frac{2}{27}+\frac{5}{81}+\ldots$. . is $\qquad$ <br> (a) $11 / 8$ <br> (b) $8 / 11$ <br> (c) $3 / 11$ <br> (d) None | A |
| Q199 | If $\mathrm{x}=\mathrm{a}+\frac{a}{r}-\frac{a}{r^{2}}+\ldots . \alpha, \mathrm{y}=\mathrm{b}-\frac{b}{r}+\frac{b}{r^{2}}-\ldots \alpha, \mathrm{z}=\mathrm{c}+\frac{c}{r}+\frac{c}{r^{3}}+\ldots . \alpha$ then the value of $\frac{x y}{z}-\frac{a b}{c}$ is <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q200 | Given $x, y, z$ are in GP and $x p=y q=z p$, then $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) Both AP and GP <br> (d) None | B |
| Q201 | If $a, b, x, y, z$ are positive numbers such that $a, x, b$ are in AP and $a, y, b$ are in GP and $z=\frac{(2 a b)}{(a+b)}$ then $\qquad$ <br> (a) $x, y, z$ are in GP <br> (b) $x \geqslant y \geqslant z$ <br> (c) Both <br> (d) None | C |
| Q202 | A padioactive sample decays \& pemaining sample at infinite time is given by $b=1$ $-\left(\frac{1}{2}+\frac{1}{4}+\ldots\right.$ to $\left.\infty\right)$, then $b$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) $1 / \sqrt{2}$ <br> (d) $1 / 2$ | A |
| Q203 | The value of $A^{\frac{1}{2}} \cdot A^{\frac{1}{4}} \cdot A^{\frac{1}{8}}$ to infinity is $\qquad$ <br> (a) Zepo <br> (b) Infinity <br> (c) $1 / 2$ <br> (d) A | B |
| Q204 | The sum upto infinity of the series $\frac{4}{7}-\frac{5}{7^{2}}+\frac{4}{7^{3}}-\frac{5}{7^{4}}+\ldots$. is $\qquad$ <br> (a) $\frac{23}{48}$ <br> (b) $\frac{25}{48}$ <br> (c) $\frac{1}{2}$ <br> (d) None | A |
| Q205 | Sum upto $\infty$ of the series $\frac{1}{2}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{4}}+\frac{1}{2^{5}}+\frac{1}{3^{6}}+\ldots \ldots$. is $\qquad$ <br> (a) $19 / 24$ <br> (b) $24 / 19$ <br> (c) $5 / 24$ <br> (d) None | A |

Q206 If $1+a+a^{2}+\ldots \infty=x ; \quad 1+b+b^{2}+\ldots \infty=y$ and $1+a b+a^{2} b^{2}+\ldots \infty$ is given by - $\quad A$
(a) $\frac{x y}{x+y-1}$
(b) $\frac{x y}{x-y+1}$
(c) $\frac{x y}{x+y+1}$
(d)None

Q207 If $S_{1}, S_{2}, . . S_{n}$ are the sum of Infinite GPs whose first terms are $1,2,3 \ldots n \&$ whose common ratios are $\frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n+1}$ then the value of $\mathrm{S}_{1}+\mathrm{S}_{2}+\mathrm{S}_{3}+\ldots \mathrm{S}_{\mathrm{n}}$, is $\qquad$ .
(a) $\frac{n(n+3)}{2}$
(b) $\frac{n(n+2)}{2}$
(c) $\frac{n(n+1)}{2}$
(d) $\frac{n^{2}}{n+1}$

Q208 The least vale of ' $n$ ' satisfying $1+2+2^{2}+\ldots+2^{n-1}>300$ is $\qquad$ .
(a) 8
(b) 9
(c) 10
(d) 6

Q209 Find the sum of $n$ terms of the series $0.7+0.77+0.777+\ldots$ to $n$ terms.
(a) $\frac{7}{81}\left\{9 n+1+10^{-n}\right\}$
(b) $\frac{7}{81}\left\{9 n-1+10^{-n}\right\}$
(c) $\frac{7}{81}\left\{9 n+1+10^{n}\right\}$
(d) $\frac{7}{81}\left\{9 n-1-10^{n}\right\}$

Q210 Three real numbers are such that their integer parts are in A.P. with common differences=3 and their decimal parts are in G.P. with common ratio $=2$, and sum of three numbers is 25.4 . Find the middle number
(a) 6.4
(b) 11.2
(c) 5.2
(d) 8.4

Q211 If geometrical progressions $5,10,20, \ldots \& 1280,640,320 \ldots$ have their $p^{\text {th }}$ terms equal, then value of ' $p$ ' is $\qquad$ -.
(a) 10
(b) 75
(c) 5
(d) 40

Q212 In a GP if the $(p+q)^{\text {th }}$ terms is $m$ and the ( $p-q$ )th term is $n$ then the pth term is
(a) $(m n)^{1 / 2}$
(b) $m n$
(c) $m+n$
(d) $m-n$

Q213 The Lt $1+\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots+\frac{1}{3^{n-1}}=n \rightarrow \infty$
(a) $\frac{2}{3}$
(b) $\frac{3}{2}$
(c) $\frac{4}{5}$
(d) None

Q214 The sum of $n$ terms of $(x+y)^{2},\left(x^{2}+y^{2}\right),(x-y)^{2} \ldots$
(a) $(x+y)^{2}-2(n-1) x y$
(b) $n(x+y)^{2}-n(n-1) x y$
(c) Both the above
(d) None

Q215 The sum of $n$ terms of $(n-1) / n,(n-2) / n,(n-3) / n \ldots$ is $\qquad$ .
(a) 0
(b) $(n-1) / 2$
(c) $(n+1) / 2$
(d) None

Q216 The sum of $n$ terms of the series $1.2+2.3+3.4+\ldots$ is $\qquad$ .
(a) $\left(\frac{n}{3}\right)(n+1)(n+2)$
(b) $\left(\frac{n}{2}\right)(n+1)(n+2)$
(c) $\left(\frac{n}{3}\right)(n+1)(n-2)$
(d) None

Q217 The sum of $n$ terms of the series $1.4+3.7+5.10+\ldots$ is $\qquad$ .
(a) $n\left(4 n^{2}+5 n-1\right) / 2$
(b) $n\left(5 n^{2}+4 n-1\right) / 2$
(c) $n\left(4 n^{2}+5 n+1\right) / 2$
(d) None

Q218 If $a, b, c$ ape in G.P. the $b^{2}=$ $\qquad$ _.
(a) ac
(b) $-a c$
(c) $a+b$

Q219 If $a, a r, a p^{2}, a p^{3}, \ldots$ be in G.P. Find the common ratio.
(a) $a$
(b) $a p$
(c) $r$
(d) $\frac{1}{\mathrm{r}}$

| Q220 | Suppose $x, y, z$ form a geometric sequence with common ratio $p(0<p<1)$, if $x, 2 y$, $3 z$ form an arithmetic sequence, then value of $Y$ is $\qquad$ <br> (a) $\frac{1}{3}$ <br> (b) 1 <br> (c) $\frac{1}{4}$ <br> (d) Dependent of $x, y$, <br> z | A |
| :---: | :---: | :---: |
| Q221 | The common ratio of the G.P $2,-6,18,-54$ is $\qquad$ <br> (a) 3 <br> (b) -3 <br> (c) 4 <br> (d) -4 | B |
| Q222 | In $5,15,45,135, \ldots$ the common ratio is $\qquad$ <br> (a) 3 <br> (b) 5 <br> (c) 10 <br> (d) 30 | A |
| Q223 | The sum of first eight terms of GP is five times the sum of the first four terms. The common ratio is $\qquad$ <br> (a) $\sqrt{2}$ <br> (b) $-\sqrt{2}$ <br> (c) Both <br> (d) None | C |
| Q224 | The number of terms in $6,18,54, \ldots \ldots . .1458$ is $\qquad$ <br> (a) 5 <br> (b) 7 <br> (c) 8 <br> (d) 6 | D |
| Q225 | Third term of geometric progression is 4 . Then product of the first 6 terms is $\qquad$ <br> (a) $4^{6}$ <br> (b) $4^{7.5}$ <br> (c) $4^{5}$ <br> (d) $4^{15}$ | B |
| Q226 | If the $(p+q)^{\text {th }}$ term of a G.P. is $X$ and the $(p-q)^{\text {th }}$ term is $Y$, then $p^{\text {th }}$ term is $\qquad$ <br> (a) $X Y$ <br> (b) $\frac{(X+Y)}{2}$ <br> (c) $\sqrt{X Y}$ <br> (d) $\sqrt{\frac{\mathrm{X}^{2}+\mathrm{Y}^{2}}{2}}$ | C |
| Q227 | Which term of the progression $1,2,4,8 \ldots \ldots \ldots$ is 64 <br> (a) 7 <br> (b) 5 <br> (c) 6 <br> (d) 9 | A |
| Q228 | Which term of series $3, \sqrt{3}, 1, \frac{1}{\sqrt{3}} \ldots .$. is $\frac{1}{243}$ ? <br> (a) 13 <br> (b) 14 <br> (c) 15 <br> (d) 12 | A |
| Q229 | Which term of the progression is $1,2,4,8, \ldots$ is 256 ? <br> (a) 10 <br> (b) 9 <br> (c) 12 <br> (d) 13 | B |
| Q230 | The $4^{\text {th }}$ term of the series $0.04,0.2,1, \ldots$ is $\qquad$ <br> (a) 0.5 <br> (b) $\frac{1}{2}$ <br> (c) 5 <br> (d) None | C |
| Q231 | The sixth term of a G.P with common ratio as 2 and first term being 5 is $\qquad$ <br> (a) 160 <br> (b) 32 <br> (c) 800 <br> (d) 64 | A |
| Q232 | The $7^{\text {th }}$ term of the series $6,12,24, \ldots$ is $\qquad$ <br> (a) 384 <br> (b) 834 <br> (c) 438 <br> (d) None | A |
| Q233 | $t_{8}$ of the series $6,12,24$, is $\qquad$ <br> (a) 786 <br> (b) 768 <br> (c) 867 <br> (d) None | B |
| Q234 | $t_{12}$ of the series $-128,64,-32, \ldots$ is $\qquad$ <br> (a) $-\frac{1}{16}$ <br> (b) 16 <br> (c) $\frac{1}{16}$ <br> (d) None | C |

Q235 In a GP series, the product of the first three $\frac{27}{8}$. The middle term is $\qquad$ .
(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) $\frac{2}{5}$
(d) None

Q236 In a GP, the $6^{\text {th }}$ term is 729 and the common patio is 3 , then the $1^{\text {st }}$ term is $\qquad$
(a) 2
(b) 3
(c) 4
(d) 7

Q237 In a GP series the product of first three term is $\frac{729}{8}$. The middle term is $\qquad$ —.
(a) $\frac{3}{2}$
(b) $\frac{9}{2}$
(c) $\frac{2}{9}$
(d) None

Q238 The last term of the series $1,2,4 \ldots \ldots$ to 10 terms is $\qquad$ -.
(a) 512
(b) 256
(c) 1024
(d) None

Q239 The last term of the series $1-3,9,-27$, upto 7 terms is $\qquad$ -.
(a) 297
(b) 729
(c) 927
(d) None

Q240 The last term of the series $x^{2}, x, 1, \ldots$ to 31 terms is $\qquad$ -.
(a) $x^{28}$
(b) $\frac{1}{x}$
(c) $\frac{1}{\mathrm{x}^{28}}$
(d) None

Q241 The $n$th element of the sequence $-1,2-4,8 \ldots$ is $\qquad$ .

A
(a) $(-1)^{n} 2^{n-1}$
(b) $2^{n-1}$
(c) $2^{n}$
(d) None

Q242 The second terms of a GP is 24 and fifth term is 81 . The series is $\qquad$ .
(a) $16,36,24,54$
(b) $24,36,53$
(c) $16,24,36,54$
(d) None

Q243 The sum of the series $1-1+1-1+1-1+\ldots \ldots .$. to 101 terms is equal to $\qquad$ .
(a) 1
(b) -1
(c) 0
(d) 100

Q244 Product of 3 numbers in GP is 729 and Sum of squares is 819 . the numbers ape $\qquad$ -
(a) $9,3,27$
(b) $27,3,9$
(c) $3,9,27$
(d) None

Q245 Sum of three numbers in GP is 35 and their product is 1000 the numbers ape $\qquad$ .
(a) 20105
(b) 51020
(c) Both
(d) None

Q246 The numbers in GP with their sum 130 and their product 27000 ape $\qquad$ .
(a) $103090 . \ldots$.
(b) $903010 \ldots$
(c) Both
(d) None

Q247 Three numbers in GP with their sum $\frac{13}{3}$ and sum of their squares $\frac{91}{9}$ are $\qquad$ .
(a) $\frac{1}{3}, 1,3$
(b) $3,1, \frac{1}{3}$
(c) Both
(d) None

Q248 Find five numbers in GP such that their product is 32 and product of last two is 108.
(a) $\frac{2}{9}, \frac{2}{3}, 2,6,18$
(b) $18,6,2, \frac{2}{3} \frac{2}{9}$
(c) Both
(d) None

Q249 Find three numbers in G.P whose sum is 52 and Sum of their product in pairs is 624.
(a) 4, 12, 36
(b) $10,16,26$
(c) $5,17,30$
(d) None

Q250 Numbers $a, X, c$ are in AP if $X=25 \& a, Y, c$ are in GP if $Y=7$, then value of $(a, c)$ are_ $\qquad$

Q265 If $a, b, c$ are in AP $a \times b$ are in GP and $b y c$ are in GP then $x^{2}, b^{2}, y^{2}$ are in_._.
$\qquad$ . A
(a) AP
(b) GP
(c) HP
(d) None

Q266 If $a, b, c$ ape in $G P a^{2}+b^{2}, a b+b c, b^{2}+c^{2}$ ape in $\qquad$ .
(a) AP
(b) GP
(c) $H P$
(d) None

Q267 If $a, b, c$ are in GP then value of $(a-b+c)(a+b+c)^{2}-(a+b+c)\left(a^{2}+b^{2}+c^{2}\right) \quad A$ is
$\qquad$ .
(a) 0
(b) 1
(c) -1
(d) None

Q268 If $a, b, c$ are in GP then value of $a^{2} b^{2} c^{2}\left(a^{-3}+b^{-3}+c^{-3}\right)-\left(a^{3}+b^{3}+c^{3}\right)$ is given by $\qquad$ .
(a) 0
(b) 1
(c) -1
(d) None

Q269 If $a, b, c d$ are in AP then $\qquad$ .
(a) $a^{2}-3 b^{2}+3 c^{2}-d^{2}=0$ (b) $a^{2}+3 b^{2}+3 c^{2}+d^{2}=0$
(d) None
(c) $a^{2}+3 b^{2}+3 c^{2}-d^{2}=0$ (b) $a^{2}+3 b^{2}+3 c^{2}+d^{2}=0$
(d) None
$\qquad$

Q270 If $a, b, c, d$, e are in AP then .
(a) $a-b-d+e=0$
(b) $a-2 c+e=0$
(c) $b-2 c+d=0$
(d) All

Q271 If $a, b, c$, $d$ ape in GP. Then the value of $b(a b-c d)-(c+a)\left(b^{2}-c^{2}\right)$ is $\qquad$ ـ.
(a) 0
(b) 1
(c) -1
(d) None

Q272 If $a, b, c, d$ are in GP then $(a-b)^{2},(b-c)^{2}(c-d)^{2}$ are in $\qquad$ .
(a) AP
(b) GP
(c) $H P$
(d) None

Q273 If $a, b, c, d$ are in GP then value of $(b-c)^{2}+(c-a)^{2}+(d-b)^{2}-(a-d)^{2}$ is $\qquad$ _.
(a) 0
(b) 1
(c) -1
(d) None

Q274 If $(a-b),(b-c),(c-a)$ are in GP then value of $(a+b+c+)^{2}-3(a b+b c+c a)$ is $\qquad$ -.
(a) 0
(b) 1
(c) -1
(d) None

Q275 Numbers $x, 8, y$ are in GP and numbers $x, y,-8$ are in AP. Value of $x$ and $y$ are $\qquad$ . B
(a) (-8-8)
(b) $(16,4)$
(c) $(8,8)$
(d) None

Q276 The sum of 3 numbers in AP is 15. If 1,4 and 19 be added to them respectively, the results ape is GP. The numbers are $\qquad$ _.
(a) $26,5,-16$
(b) $2,5,8$
(c) $5,8,2$
(d) Both (a) and (b)

Q277 The sum of three numbers in GP is 70. If the two extremes be multiplied each by 4 and the mean by 5 , the products are in AP. The numbers are $\qquad$ .
(a) 12, 18, 40
(b) $10,20,40$
(c) $40,20,10$
(d) Both (b) and (c)

Q278 A person boprows Rs. 8000 at $2.76 \%$ simple interest per annum. The principal and the interest are to be paid in 10 monthly installments. If each installment is double the preceding one, find the value of the first and the last installment.
(a) 12 and 6048
(b) 6 and 3036
(c) 4 and 2024
(d) 8 and 4096

Q279 A sum of Rs. 6240 is paid off in 30 installments such that each instalment is Rs. 10 more than the preceding instalment. The value of the $1^{\text {st }}$ instalment is $\qquad$ .

|  | $\begin{array}{llll}\text { (a) Rs. } 36 & \text { (b) Rs. } 30 & \text { (c) Rs. } 60 & \text { (d) None }\end{array}$ |  |
| :---: | :---: | :---: |
| Q280 | $10 \%$ CL p.a sum of money accumulate to Rs. 8650 in 5 yr . Sum invested initially is $\qquad$ <br> (a) Rs. 5976.37 <br> (b) Rs. 5970 <br> (c) Rs. 5975 <br> (d) None | D |
| Q281 | The population of a country was 55 crores in 2005 and is growing at $2 \%$ p.a.C.I. the population in the year 2015 is estimated as $\qquad$ <br> (a) 5705 <br> (b) 6005 <br> (c) 6700 <br> (d) None | D |
| Q282 | If you save 1 paise today, 2 paise the next day 4 paise the succeeding day and so or, then your total savings in two weeks will be $\qquad$ <br> (a) Rs. 163 <br> (b) Rs. 18 <br> (c) Rs. 163.83 <br> (d) None | C |
| Q283 | In the series $2+8+32+$ $\qquad$ common ratio is $\qquad$ <br> (a) 24 <br> (b) 6 <br> (c) 4 <br> (d) 10 | C |
| Q284 | The sum of $1+2+4+8+$ $\qquad$ to 8 terms is $\qquad$ <br> (a) 255 <br> (b) 252 <br> (c) 254 <br> (d) 256 | A |
| Q285 | The sum of the series $-2,6-18, \ldots$ to 7 terms is $\qquad$ <br> (a) -1094 <br> (b) 1094 <br> (c) -1049 <br> (d) None | A |
| Q286 | Find the sum of progression $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \ldots . . . .10$ terms <br> (a) 1.9 <br> (b) 1.989 <br> (c) 1.998 <br> (d) 1.89 | C |
| Q287 | The sum of $1.03+(1.03)^{2}+(1.03)^{3}+\ldots$ to $n$ terms is $\qquad$ <br> (a) $103\left\{(1.03)^{n}-1\right\}$ <br> (b) $\frac{103}{3}\left\{(1.03)^{\mathrm{n}}-1\right\}$ <br> (c) $(1.03)^{n-1}$ <br> (d) None | B |
| Q288 | Sum of the series $1+3+9+27$ $\qquad$ is 364 . The number of terms is $\qquad$ <br> (a) 5 <br> (b) 6 <br> (c) 11 <br> (d) None | B |
| Q289 | How many terms of the GP 1416 .... Are to be taken to have their sum 341 ? <br> (a) 8 <br> (b) 5 <br> (c) 3 <br> (d) None | B |
| Q290 | Sum of all natural numbers from 100 to 300 which are exactly divisible by 4 \& 5 is $\qquad$ <br> (a) 2200 <br> (b) 2000 <br> (c) 2220 <br> (d) None | A |
| Q291 | The GP series whose $3^{\text {rd }}$ and $6^{\text {th }}$ terms are $1,-\frac{1}{8}$ respectively is $\qquad$ <br> (a) $4,-2,1 \ldots$ <br> (b) $4,2,1 \ldots$ <br> (c) $4,-1, \frac{1}{4}$ <br> (d) None | A |
| Q292 | Sum of $n$ terms of a GP with last term $128 \&$ common patio 2 is 255 value of $n$ is $\qquad$ <br> (a) 8 <br> (b) 5 <br> (c) 3 <br> (d) None | A |
| Q293 | The nth term of the series $16,8,4, \ldots \ldots$ is $\frac{1}{2^{17}}$. The value of $n$ is $\qquad$ <br> (a) 20 <br> (b) 21 <br> (c) 22 <br> (d) None | C |
| Q294 | The sum of $n$ terms of the series $1.03+1.03^{2}+1.03^{3}+\ldots$ is____. | A |


|  | (a) $\left(\frac{103}{3}\right)\left(1.03^{\mathrm{n}}-1\right)$ <br> (b) $\left(\frac{103}{3}\right)\left(1.03^{\mathrm{n}}+1\right)$ <br> (c) $\left(\frac{103}{3}\right)\left(1.03^{n+1}-1\right)$ <br> (d) None |  |
| :---: | :---: | :---: |
| Q295 | Sum of $n$ terms of the series $4+44+444+\ldots$ is $\qquad$ <br> (a) $\frac{4}{9}\left(\frac{10}{9}\left(10^{n}-1\right)-n\right)$ <br> (b) $\frac{10}{9}\left(10^{n}-1\right)-n$ <br> (c) $\frac{4}{9}\left(10^{n}-1\right)-n$ <br> (d) None | B |
| Q296 | $-5+25-125+625, \ldots$ can be written as $\qquad$ <br> (a) $\sum_{\mathrm{k}=1}^{\infty}(-5)^{\mathrm{k}}$ <br> (b) $\sum_{k=1}^{\infty} 5^{\mathrm{k}}$ <br> (c) $\sum_{\mathrm{k}=1}^{\infty}-5^{\mathrm{k}}$ <br> (d) None | A |
| Q297 | The sum of the series $1, \frac{1}{3^{\prime}}, \frac{1}{3^{2}}, \frac{1}{3^{3}} \ldots \ldots \ldots$....to $\infty$ is $\qquad$ <br> (a) $\frac{4}{3}$ <br> (b) $\frac{3}{2}$ <br> (c) $\frac{1}{3}$ <br> (d) None | A |
| Q298 | The sum of the infinite GP $14-2+\frac{2}{7}-\frac{2}{49}+\ldots$ is $\qquad$ <br> (a) $4 \frac{1}{12}$ <br> (b) $12^{1 / 4}$ <br> (c) 12 <br> (d) None | D |
| Q299 | The sum of the infinite GP 0.171-0.114+0.076 is $\qquad$ <br> (a) 0.1226 <br> (b) 0.1020 <br> (c) 0.1026 <br> (d) None | B |
| Q300 | If $S=1+(1.04)^{-1}+\frac{1}{(1.04)^{2}}+(1.04)^{-3}+\ldots$ to infinity, then the value of ' $S$ ' is $\qquad$ <br> (a) 25 <br> (b) 26 <br> (c) 2.74 <br> (d) 27.4 | C |
| Q301 | The sum upto infinity of the series $0.4+0.8+0.16+\ldots$. is $\qquad$ <br> (a) 5 <br> (b) 10 <br> (c) 8 <br> (d) None | A |
| Q302 | The sum upto infinity of the series $\left(1+2^{-2}\right)+\left(2^{-1}+2^{-4}\right)+\left(2^{-2}+2^{-6}\right)+\ldots$ is $\qquad$ <br> (a) $\frac{7}{3}$ <br> (b) $\frac{3}{7}$ <br> (c) $\frac{4}{7}$ <br> (d) None | A |
| Q303 | The sum of an infinite GP is 15 and the sum of their squares is 45 . Series is $\qquad$ <br> (a) $5,10,20 \ldots$ <br> (b) $5+\frac{5}{3}+\frac{5}{9}+\ldots$ <br> (c) $5+\frac{10}{3}+\frac{20}{9}+\cdots$ <br> (d) None | A |
| Q304 | If the first term of a GP exceeds the second term by 2 and the sum to infinity is 50 the series is $\qquad$ <br> (a) $108 \frac{32}{5}$ <br> (b) $108 \frac{5}{2}$ <br> (c) $10 \frac{10}{3} \frac{10}{9} \ldots$ <br> (d) None | A |
| Q305 | $1^{\text {st }}$ term is $1 \& 6^{\text {th }}$ term is 32 , find ' $r$ '. <br> (a) 3 <br> (b) $32 / 5$ <br> (c) 2 <br> (d) 160 | C |
| Q306 | If $p=3$ \& last term is 486. If sum of these terms be 728 , then first term is $\qquad$ <br> (a) 6 <br> (b) 2 <br> (c) 18 <br> (d) 162 | B |
| Q307 | If sum of three numbers in GP is 21 \& sum of their squares is 189 , numbers are $\qquad$ <br> (a) $3,6,12$ <br> (b) $12,6,3$ <br> (c) Both <br> (d) None | C |
| Q308 | If $a, b, c$ are in $A P \& a, x, b$ are in GP and $b, y, c$ are in GP then $x^{2}, b^{2}, y^{2}$ are in <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | A |


| Q309 | $6^{\text {th }}$ term from the end of GP $8,4,2,1,1 / 2,1 / 4, \ldots . .1 / 1024$ is $\qquad$ <br> (a) $1 / 4$ <br> (b) $1 / 16$ <br> (c) $1 / 32$ <br> (d) 1/64 | C |
| :---: | :---: | :---: |
| Q310 | Given $x, y, z$ are in GP and $x p=y q=z r$, then $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}$ are in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) Both AP and GP <br> (d) None | B |
| Q311 | Sum upto infinity of the series $\frac{4}{7}-\frac{5}{7^{2}}+\frac{4}{7^{3}}-\frac{5}{7^{4}}+\ldots$. is $\qquad$ <br> (a) $\frac{23}{48}$ <br> (b) $\frac{25}{48}$ <br> (c) $\frac{1}{2}$ <br> (d) None | A |
| Q312 | The geometric mean between $6 \& 96$ is $\qquad$ <br> (a) 24 <br> (b) 4 <br> (c) 2 <br> (d) 16 | A |
| Q313 | If the A.M. and G.M. of two observations are 5 and 4 respectively, then the two observations are $\qquad$ <br> (a) 8,2 <br> (b) 7,3 <br> (c) 6.4 <br> (d) 5,5 | A |
| Q314 | The AM \& GM of two positive numbers is 10 . The numbers are $\qquad$ <br> (a) $(10,10)$ <br> (b) $(15,5)$ <br> (c) $(5,15)$ <br> (d) $(20,0)$ | A |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## SPECIAL SERIES ON AP \& GP

| SN | 6C. SPECIAL SERIES ON AP \& GP | Ans |
| :---: | :---: | :---: |
| Q315 | Find the sum to infinity of the series $\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\ldots$. <br> (a) $\left(\frac{n}{4}\right)(3 n+4)^{-1}$ <br> (b) $\left(\frac{n}{4}\right)(3 n-4)^{-1}$ <br> (c) $\left(\frac{n}{2}\right)(3 n+4)^{-1}$ <br> (d) None | A |
| Q316 | The sum of $n$ terms of the series $4+6+9+13 \ldots$ is $\qquad$ <br> (a) $\left(\frac{n}{6}\right)\left(n^{2}+3 n+20\right)$ <br> (b) $\left(\frac{n}{6}\right)(n+1)(n+2)$ <br> (c) $\left(\frac{n}{2}\right)(n+1)(n+2)$ <br> (d) None | A |
| Q317 | The sum of $n$ terms of $1,(1+2),(1+2+3) \ldots .$. is $\qquad$ <br> (a) $\left(\frac{n}{6}\right)(n+1)(n+2)$ <br> (b) $\left(\frac{n}{3}\right)(n+1)(n+2)$ <br> (c) $n(n+1)(n+2)$ <br> (d) None | A |
| Q318 | The sum of $n$ terms of the series $\frac{1}{(4.9)}+\frac{1}{(9.14)}+\frac{1}{(14.19)}+\frac{1}{(19.24)}+\ldots$ is $\qquad$ (a) $\left(\frac{n}{4}\right)(5 n+4)^{-1}$ <br> (b) $\left(\frac{n}{3}\right)(5 n+4)$ <br> (c) $\left(\frac{n}{2}\right)(5 n-4)^{-1}$ <br> (d) None | A |
| Q319 | The sum of $n$ terms of the sepies $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$ is $\qquad$ <br> (a) $\left(\frac{n}{12}\right)(n+1)^{2}(n+2)$ <br> (b) $\left(\frac{n}{12}\right)(n-1)^{2}(n+2)$ <br> (c) $\left(\frac{n}{12}\right)\left(n^{2}-1\right)(n+2)$ <br> (d) None | A |
| Q320 | The sum of $n$ terms of the series $1+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{3}+\frac{1}{3^{2}}\right)+\ldots$ is $\qquad$ <br> (a) $\left(\frac{3}{2}\right)\left(1-3^{-n}\right)$ <br> (b) $\left(\frac{3}{2}\right)\left[n-(1 / 2)\left(1-3^{-n}\right)\right]$ <br> (c) Both <br> (d) None | B |
| Q321 | The sum of $n$ terms of the series $\frac{1^{2}}{1}+\frac{\left(1^{1}+2^{2}\right)}{(1+2)}+\frac{\left(1^{2}+2^{2}+3^{2}\right)}{(1+2+3)}+\ldots$. is $\qquad$ <br> (a) $n(n+2) / 3$ <br> (b) $n(n+1) / 3$ <br> (c) $n(n+3) / 3$ <br> (d) None | A |
| Q322 | The sum of $n$ terms of the series $\frac{1^{3}}{1}+\frac{\left(1^{3}+2^{3}\right)}{2}+\frac{\left(1^{3}+2^{3}+3^{3}\right)}{3}+\ldots$ is $\qquad$ <br> (a) $\left(\frac{n}{48}\right)(n+1)(n+2)(3 n+5)$ <br> (b) $\left(\frac{n}{3}\right)(n+1)(n+2)(3 n+5)$ <br> (c) $\left(\frac{n}{2}\right)(n+1)(n+2)(5 n+3)$ <br> (d) None | A |
| Q323 | Three numbers whose sum is 15 are in AP. If they are added by $1,4,19$, they are in GP. The numbers ape $\qquad$ <br> (a) $2,5,8$ <br> (b) $26,5,-16$ <br> (c) Both <br> (d) None | C |
| Q324 | Three numbers in GP with their sum $\frac{13}{3}$ and sum of their squares $\frac{91}{9}$ are $\qquad$ <br> (a) $\frac{1}{3}, 1,3$ <br> (b) $3,1, \frac{1}{3}$ <br> (c) Both <br> (d) None | C |
| Q325 | The number of terms to be taken so that $1+2+4+8+$ will be 8191 is $\qquad$ <br> (a) 10 <br> (b) 13 <br> (c) 12 <br> (d) None | B |


| Q326 | If you save 1 paise today, 2 paise next day, 4 paise succeeding day \& so on, then total savings in two weeks = $\qquad$ <br> (a) Rs. 163 <br> (b) Rs. 18 <br> (c) Rs. 163.83 <br> (d) None | C |
| :---: | :---: | :---: |
| Q327 | The sum of the series $1, \frac{1}{3}, \frac{1}{3^{2}}, \frac{1}{3^{3}}, \ldots$, to $\infty$ is $\qquad$ <br> (a) $4 / 3$ <br> (b) $3 / 2$ <br> (c) $1 / 3$ <br> (d) None | B |
| Q328 | The sum of the infinite GP $14-2+\frac{2}{7}-\frac{2}{49}+\ldots$ is $\qquad$ <br> (a) $9 / 2$ <br> (b) $49 / 4$ <br> (c) $42 / 4$ <br> (d) None | B |
| Q329 | Sum of $n$ terms of a GP with last term 128 \& common ratio 2 is 255 value of $n$ is $\qquad$ <br> (a) 8 <br> (b) 5 <br> (c) 3 <br> (d) None | A |
| Q330 | If $a, b, c$ are in GP, $\left(a^{2}+b^{2}\right),(a b+b c),\left(b^{2}+c^{2}\right)$ ape in $\qquad$ <br> (a) AP <br> (b) GP <br> (c) $H P$ <br> (d) None | B |
| Q331 | The sum upto infinity of the series $\left(1+2^{-2}\right)+\left(2^{-1}+2^{-4}\right)+\left(2^{-2}+2^{-6}\right)+\ldots$ is $\qquad$ <br> (a) $7 / 3$ <br> (b) $3 / 7$ <br> (c) $4 / 7$ <br> (d) None | A |
| Q332 | The sum of $n$ terms of the series $1.03+1.03^{2}+1.03^{3}+\ldots$ is $\qquad$ <br> (a) $\left(\frac{103}{3}\right)\left(1.03^{n}-1\right)$ <br> (b) $\left(\frac{103}{3}\right)\left(1.03^{n}+1\right)$ <br> (c) $\left(\frac{103}{3}\right)\left(1.03^{n+1}-1\right)$ <br> (d) None | A |
| Q333 | The sum of $n$ terms of the sepies 1.2.3 + 2.3.4 +3.4.5 $+\ldots$. is $\qquad$ <br> (a) $n(n+1)(n+2)(n+3) / 4$ <br> (b) $n(n+1)(n+2)(n+3) / 3$ <br> (c) $n(n+1)(n+2)(n+3) / 2$ <br> (d) None | A |
| Q334 | Evaluate $(a+b)+\left(a^{2}+2 b\right)+\ldots .$. to 4 terms if $a=3, b=-7$ <br> (a) 190 <br> (b) 50 <br> (c) 110 <br> (d) 170 | B |
| Q335 | The average of 15 numbers is 18 . The average of first 8 is 19 and that last 8 is 17 , then the $8^{\text {th }}$ number is $\qquad$ <br> (a) 15 <br> (b) 16 <br> (c) 18 <br> (d) 20 | C |
| Q336 | $t_{1}=n, t_{2}=n+1, t_{3}=n+2$ and so on, then $t_{n}=$ $\qquad$ <br> (a) $n$ <br> (b) $2 n-1$ <br> (c) $2 n+1$ <br> (d) $2 n$ | B |
| Q337 | In the sequence whose $t_{n}=\frac{3 n-2}{4} ; n \notin N$ the first term of the sequence is $\qquad$ <br> (a) $\frac{1}{4}$ <br> (b) $\frac{3}{4}$ <br> (c) $1 / 2$ <br> (d) 1 | A |
| Q338 | The weighted mean of first $n$ natural numbers whose weights are equal to the squares of corresponding numbers is $\qquad$ <br> (a) $\frac{(\mathrm{n}+1)}{2}$ <br> (b) $\frac{[3 \mathrm{n}(\mathrm{n}+1)]}{[2(2 \mathrm{n}+1)]}$ <br> (c) $\frac{[(\mathrm{n}+1)(2 \mathrm{n}+1)]}{6}$ <br> (d) $\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ | B |
| Q339 | If $n$th term of a sequence be $2^{3 n}(-5)^{n}$, then the common ratio of sequence is $\qquad$ <br> (a) -40 <br> (b) 40 <br> (c) 80 <br> (d) -80 | A |
| Q340 | The mean of the cubes of the first $n$ natural numbers is $\qquad$ <br> (a) $\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}$ <br> (b) $\frac{\mathrm{n}(\mathrm{n}+1)^{2}}{4}$ <br> (c) $\frac{[\mathrm{n} \times(\mathrm{n}+1) \times(\mathrm{n}+2)]}{8}$ <br> (d) $n^{2}+n+1$ | B |

Q341 The mean of the squares of the first $n$ natural number is $\qquad$ .
(a) $n^{2}+1$
(b) $\left(n^{4}+1\right)$
(c) $\frac{[(\mathrm{n}+1)(2 \mathrm{n}+1)]}{6}$
(d) $\frac{\mathrm{n}(\mathrm{n}-1)}{2}$

Q342 The sum of $n$ terms of the series $1+3+5+\ldots$ is $\qquad$ .
(a) $n^{2}$
(b) $2 n^{2}$
(c) $\frac{\mathrm{n}^{2}}{2}$
(d) None

Q343 The value of $11^{2}+12^{2}+$ $\qquad$ $+2 \mathrm{O}^{2}$ is .
(a) 3845
(b) 2485
(c) 2870
(d) 3255

Q344 If $1^{2}+2^{2}+\ldots+10^{2}=385$, then $2^{2}+4^{2}+6^{2}+\ldots+20^{2}$ is $\qquad$ .
(a) 770
(b) 1150
(c) 1540
(d) $385 \times 385$

Q345 Find the sum of $n$ terms of $\left(1-\frac{1}{n}\right)+\left(1-\frac{2}{n}\right)+\left(1-\frac{3}{n}\right)+\cdots$ $\qquad$ -.
(a) $\frac{1}{2}(\mathrm{n}-1)$
(b) $\frac{1}{2}(n+1)$
(c) $(\mathrm{n}-1)$
(d) $(n+1)$

Q346 The sum to $n$ terms of the series $11,23,59,167$ is $\qquad$ -.

| (a) $n^{2}$ | (b) $2 n^{2}$ | (c) $\frac{n^{2}}{2}$ | (d) None |
| :--- | :--- | :--- | :--- |


| Q354 | The sum of $n$ terms of the series $\frac{1}{(4.7)}+\frac{1}{(7.10)}+\frac{1}{(10.13)}+\cdots$. is $\qquad$ <br> (a) $\left(\frac{1}{3}\right)\left[(3 n+1)^{-1}-(3 n+4)^{-1}\right]$ <br> (b) $\left.\left(\frac{1}{3}\right)(3 n-1)^{-1}-(3 n+4)^{-1}\right]$ <br> (c) $\left(\frac{1}{3}\right)\left[(3 n+1)^{-1}-(3 n-4)^{-1}\right]$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q355 | The sum of $n$ terms of $\left(\frac{1}{n}\right)(n-1),\left(\frac{1}{n}\right)(n-2),\left(\frac{1}{n}\right)(n-3), \ldots$ is $\qquad$ <br> (a) 0 <br> (b) $\left(\frac{1}{2}\right)(n-1)$ <br> (c) $\left(\frac{1}{2}\right)(n+1)$ <br> (d) None | B |
| Q356 | The value of $\frac{1^{3}+2^{3}+\cdots+10^{3}}{1+2+\cdots+10}$ is $\qquad$ -. <br> (a) 45 <br> (b) 55 <br> (c) 385 <br> (d) 285 | B |
| Q357 | The value of $1^{3}+2^{3}+3^{3}+m^{3}$ is equal to $\qquad$ <br> (a) $\left[\frac{\mathrm{m}(\mathrm{m}+1)}{2}\right]^{3}$ <br> (b) $\frac{m(m+1)(2 m+1)}{6}$ <br> (c) $\left[\frac{\mathrm{m}(\mathrm{m}+1)}{2}\right]^{2}$ <br> (d) None | C |
| Q358 | The sum of m terms of the series is $1+11+111+$ $\qquad$ is equal to $\qquad$ <br> (a) $\frac{1}{81}\left[10^{m+1}-9 m-10\right]$ <br> (b) $\frac{1}{27}\left[10^{m+1}-9 m-10\right]$ <br> (c) $\left[10^{m+1}-9 m-10\right]$ <br> (d) None | A |
| Q359 | 1+11+111+ $\qquad$ n terms <br> (a) $[10 n+1-9 n-10]$ <br> (b) $[10 n+1-9 n-10]$ <br> (c) $[10 n+1-9 n-10]$ <br> (d) None | C |
| Q360 | Sum of first $n$ terms of an A.P is $6 n 2+6 n$. Then find 4 th term of series. <br> (a) 120 <br> (b) 72 <br> (c) 48 <br> (d) 24 | C |
| Q361 | In an A.P. If $S_{n}=n^{2} p$ and $S_{m}=m^{2} p,(m \neq n)$ the $S_{p}=$ $\qquad$ <br> (a) $P^{3}$ <br> (b) $\mathrm{P}^{2}$ <br> (c) $2 p^{3}$ <br> (d) $P^{4}$ | B |
| Q362 | If the numbers $x, y, z$ are in G.P then the numbers $x^{2}+y^{2}, x y+y z, y^{2}+z^{2}$ are in <br> (a) A.P <br> (b) G.P <br> (c) H.P <br> (d) None | B |
| Q363 | $2.353535=$ $\qquad$ <br> (a) $\frac{233}{99}$ <br> (b) $\frac{234}{99}$ <br> (c) $\frac{232}{99}$ <br> (d) $\frac{235}{99}$ | A |
| Q364 | Sum of $n$ terms of the series $1.2+2.3+3.4+\ldots$. is $\qquad$ <br> (a) $\left(\frac{n}{3}\right)(n+1)(n+2)$ <br> (b) $\left(\frac{n}{2}\right)(n+1)(n+2)$ <br> (c) $\left(\frac{n}{3}\right)(n+1)(n-2)$ <br> (d) None | A |
| Q365 | Sum of $n$ terms of the series $1.4+3.7+5.10+\ldots$ is $\qquad$ <br> (a) $n\left(4 n^{2}+5 n-1\right) / 2$ <br> (b) $n\left(5 n^{2}+4 n-1\right) / 2$ <br> (c) $n\left(4 n^{2}+5 n+1\right) / 2$ <br> (d) None | A |
| Q366 | The sum of $n$ terms of the series $1+5+12+22+\ldots$ is $\qquad$ <br> (a) $n^{2}(n+1) / 2$ <br> (b) $n^{2}(n+1)$ <br> (c) $n^{2}(n+2) / 2$ <br> (d) None | A |
| Q367 | The sum of $n$ terms of the series $4+14+30+52+80+\ldots \ldots$ is $\qquad$ <br> (a) $n(n+1)^{2}$ <br> (b) $n(n-1)^{2}$ <br> (c) $n\left(n^{2}-1\right)$ <br> (d) None | A |


| Q368 | The sum of $n$ terms of the series $1+(1+3)+(1+3+5)+\ldots$ is $\qquad$ <br> (a) $\left(\frac{n}{6}\right)(n+1)(2 n+1)$ <br> (b) $\left(\frac{n}{6}\right)(n+1)(n+2)$ <br> (c) $\left(\frac{n}{3}\right)(n+1)(2 n+1)$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q369 | The sum of $n$ terms of the series $2.3^{2}+5.4^{2}+8.5^{2}+\ldots$ is $\qquad$ <br> (a) $\left(\frac{n}{12}\right)\left(9 n^{3}+62 n^{2}+123 n+22\right)$ <br> (b) $\left(\frac{n}{12}\right)\left(9 n^{3}-62 n^{2}+123 n+22\right)$ <br> (c) $\left(\frac{n}{6}\right)\left(9 n^{3}+62 n^{2}+123 n+22\right)$ <br> (d) None | A |
| Q370 | The sum of $n$ terms of $1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots$ is $\qquad$ <br> (a) $n\left(4 n^{2}-1\right) / 3$ <br> (b) $(n)\left(4 n^{2}-1\right)$ <br> (c) $n\left(4 n^{2}+1\right) / 3$ <br> (d) None | A |
| Q371 | The sum of $n$ terms of the series $2^{2}+5^{2}+8^{2}+\ldots$ is $\qquad$ <br> (a) $n\left(6 n^{2}+3 n-1\right)$ <br> (b) $n\left(6 n^{2}-3 n-1\right) / 2$ <br> (c) $n\left(6 n^{2}+3 n+1\right)$ <br> (d) None | A |
| Q372 | The sum of $n$ terms of the sepies 2.4.6+4.6.8+6.8.10+.... is $\qquad$ <br> (a) $2 n\left(n^{3}+6 n^{2}+11 n+6\right)$ <br> (b) $2 n\left(n^{3}-6 n^{2}+11 n-6\right)$ <br> (c) $n\left(n^{3}+6 n^{2}+11 n+6\right)$ <br> (d) $n\left(n^{3}-6 n^{2}+11 n-6\right)$ | A |
| Q373 | The sum of $n$ terms of the series $\frac{1}{(3.8)}+\frac{1}{(8.13)}+\frac{1}{(13.18)}+\ldots$. is $\qquad$ . <br> (a) $\left(\frac{n}{3}\right)(5 n+3)^{-1}$ <br> (b) $(n)(5 n+3)^{-1}$ <br> (c) $\left(\frac{n}{2}\right)(5 n+3)^{-1}$ <br> (d) None | A |
| Q374 | The sum of $n$ terms of the series $\frac{1}{1}+\frac{1}{(1+2)}+\frac{1}{(1+2+3)}+\ldots$ is $\qquad$ <br> (a) $2 n(n+1)^{-1}$ <br> (b) $n(n+1)^{-1}$ <br> (c) $2 n(n-1)^{-1}$ <br> (d) None | A |

## CHAPTER 7A. SET

## INTRODUCTION

- Sets: A set is a well-defined collection of objects. [If we can cleaply say whether a given object belongs to it or not].

Ex: The collection of all English Alphabets is a set [Say Set A].

- Element: Each object in a set is called an element of the set.
$E x: A=\{a, b, c, d, e, \ldots \ldots . ., x, y, z\}$
- A set is denoted by 'capital letters' \& their elements are denoted by 'small letters'.

Example: $A=\{a, e, i, o, u\}$,
' $a$ ' is an element and we write $\mathbf{a} \in \mathbf{A}$ \& read as ' $a$ ' belongs to ' $A$ '. But 3 is not an element of $B=$ $\{2,4,6,8,10\}$ \& we write $b \notin B$ \& read as ' 3 ' does not belong to ' $B$ '.

## METHODS OF WRITING A SET

- Roster op Braces Method: All elements of the set ape listed and put it within braces $\}$.
$E x: A=\{a, b, c, d, e, \ldots \ldots . ., x, y, z\}$.
- Set Buildep Method: In this method, Rules or properties to write down a set is given. $E x: A=\{x: x$ is a set of all English Alphabets $\}$.

CQ1: Reppesent the following sets in set notations:-
(i) Set of all alphabets in English language.
(ii) Set of all odd integers less than 25.
(iii) Set of all odd integers.
(iv) Set of positive integers ' $x$ ' satisfying' the equation $x^{2}+5 x+7=0$.

Ans:
(a) $A=\{x: x$ is an alphabet in English $\} ;\{x: x$ is an odd integer $>25\} ;\{2468 \ldots\} ;\left\{x: x^{2}+5 x+7=0\right\}$
(b) $A=\{x: x$ is an alphabet in English $\} ;\{x: x$ is an odd integer $<25\} ;\{1357 \ldots\} ;.\left\{x: x^{2}+5 x+7=0\right\}$
(c) $A=\left\{x: x\right.$ is an alphabet in English\}; $\{x: x$ is an odd integer $\leq 25\} ;\{1357 \ldots\} ;\left(x: x^{2}+5 x+7=0\right\}$
(d) None
> Repetition of elements in a set is MEANINGLESS.
> Opder of the elements in a set is NOT RELEVANT.

Whatsapp: 8888111134

## CONCEPT 1: TYPES OF SETS

| Universal Set | A set containing all the possible elements of a particular situation. <br> Ex: $A=\{x: x$ is the set of All English Alphabets $\}$ |
| :---: | :---: |
| Null Set | Set having NO element is called Null set (Empty set/void set). [ $\}$ \} or $\varnothing$ ] $E x: A=\{x: x$ is odd no. divisible by 2$\}=\{ \}$ or $\varnothing$; |
| Singleton Set | A set having only one element is called singleton set. Ex: $A=\{1\}$ |
| Equal Set | If every element of $A$ is in $B$ \& every element of $B$ is in $A, A \& B$ are equal sets. <br> Ex: If $A=\{2,4,6\}$ and $B=\{6,2,4\}$ then $A=B$. [Opder of element is NOT pelevant] |
| Equivalent Set: | If number of elements in Set $A$ \& Set $B$ are SAME, they are equivalent sets. <br> $E x: A=\{a, b, c\} \& B=\{1,2,3\} ; n(A)=3 \& n(B)=3, A \& B$ are equivalent sets. |
| Subset | If all the elements of set $A$ are present in Set $B, A$ is a subset of $B$. $[\mathbf{A} \subseteq \mathbf{B}]$. $E x: A=\{1,2\} \& B=\{1,2,3\}$ then $A$ is subset of $B$. [ $B$ is said to be a superset of $A$ ] <br> * PC Note: In subset, there exist an equal set \& null set also. Ex: $\{1,2,3\}$ <br> Number of Subsets of $a$ set $=\mathbf{2}^{n}$ <br> [where ' $n$ ' = Number of elements] |
| Proper <br> Subset | Set $A$ is a proper subset of $B$ if Set $A$ is a subset of Set $B$ but not equal set. <br> $A \subseteq B \& A \neq B$. <br> $E x: A=\{1,2,3\}$; Proper Subset of $A$ includes $\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\} \&\{ \}$. <br> * PC Note: Proper Subset does not include Equal set of the given set. <br> A Null set does not have a Proper subset. <br> Number of Subsets of a set $=\mathbf{2}^{\text {n }} \mathbf{- 1} \quad$ [where ' $n$ ' = Number of elements] <br> Ex: Set containing 3 elements has $\left(2^{3}-1\right)=7$ Proper subsets |
| Power <br> Set: | The set of all subsets of a set is called Power set. <br> $E x: A=\{1,2,3\}$; Subset of $A$ include $\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\} \&\{ \}$. <br> Power set of $\boldsymbol{A}=\{\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\},\{ \}\}$. |
| Disjoint Sets | If Set $A \&$ Set $B$ has NO Common element, they are disjoint Sets. [ $A \cap B=\varnothing]$ $E x: A=\{a, b, c\} \& B=\{1,2,3\} ; A \& B$ are disjoint sets (no common element.) |

## CONCEPT 2: OPERATIONS ON SETS

Let $A=\{1,2,3,6,8,9\} \& B=\{2,4,6,8,10\}$

| Union Of Sets (AUB) | It contains all elements which are EITHER in Set A OR in Set B. <br> $E x:(A \cup B)=\{1,2,3,4,6,8,9,10\}$. |
| :---: | :---: |
| Intersection Of Sets $(A \cap B)$ | It contains all the elements which ape in Set A AND Set B. <br> $\mathbf{E x}:(A \cap B)=\{2,68\}$. |
| Difference Of Sets $(A-B)$ | Set of elements which are in Set A but not in Set B <br> ( $B-A$ ): Set of elements which ape in Set $B$ but not in Set $A$. <br> Ex: If $A=\{1,2,3,5,7\} \& B=\{1,3,6,7,15\}$, $A-B=\{2,5) \quad \& B-A=\{6,15\} .$ <br> CQ2: $U=\{1,2,3,4,5\}$; $A=\{1,2,5\} ;$ $\begin{aligned} & 1 \rightarrow A-B \\ & 2 \rightarrow A \cap B \\ & 3 \rightarrow B-A \\ & 1+2+3 \rightarrow A \cup B \end{aligned}$ |
| Complimentary Set ( $A^{\prime}$ ) | Set of elements which are in Universal set but not in Set A are called complementary set of A $\text { CQ3: } U=\{1,2,3,4,5,6,7,8,9\} ; P=\{2,4,6,8\} ; Q=\{1,2,3,4,5) \text {. }$ <br> Ans: <br> (i) $(P \cup Q)=\{1,2,3,4,5,6,8\}$; <br> (ii) $(P \cup Q)^{\prime}=\{7,9\}$; <br> (iii) $(P \cap Q)=\{2,4\}$; <br> (iv) $(P \cap Q)^{\prime}=\{1,3,5,6,7,8,9\}$; <br> (v) $\mathrm{P}^{\prime}=\{1,3,5,7,9\}$; <br> (vi) $Q^{\prime}=\{0,6,7,8,9\}$; <br> (vii) $P-Q=\{6,8\}$; <br> (viii) $Q-P=\{1,3,5\}$. <br> CQ4: If $U=\{x: x$ is a positive integer $<25\}, A=\{2,6,8,14,22\}$, <br> $B=\{4,8,10,14\}$ then $\qquad$ <br> (a) $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$ <br> (b) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ <br> (c) $\left(A^{\prime} \cap B\right)^{\prime}=\phi$ <br> (d) None |

## GONCEPT 8: ALGEBRA OF SETS

| $A \cup B=B \cup A$ | $(A \cup B) \cup C=A \cup(B \cup C)$ | $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ | $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ | $A \cap A^{\prime}=\varnothing$ |
| :---: | :---: | :---: | :---: | :---: |
| $A \cap B=B \cap A$ | $(A \cap B) \cap C=A \cap(B \cap C)$ | $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ | $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ | $A \cup A^{\prime}=U$ |
| $A \cap A=A$ | $A \cup A=A$ | $A \cup \emptyset=A$ | $A \cap U=A$ |  |

CQ5: If $A=\{a, b, c, d, e, f\} \& \quad B=\{a, e, i, o, u\} \& C=\{m, n, o, p, q, r, s, t, u\}$ then
(i) $A \cup B=$ $\qquad$ _.
(a) $\{a, b, c, d, e, f, i, o, u\}$
(b) $\{a, b, c, s, t, u\}$
(c) $\{d, e, f, p, q, r\}$
(d) None
(ii) $\mathrm{A} \cup \mathrm{C}=$ $\qquad$ .
(a) $\{a, b, c, d, e, f, m, n, o, p, q, r, s, t, u\}$
(b) $\{a, b, c, s, t, u\}$
(c) $\{d, e, f, p, q, r\}$
(d) None
(iii) $B \cup C=$ $\qquad$ .
(a) $\{a, e, i, o, u, m, n, p, q, r, s, t\}$
(b) $\{a, e, i, p, s, t\}$
(c) $\{i, o, u, p, q, r\}$
(d) None
(iv) $A-B=$ $\qquad$ .
(a) $\{b, c, d, f\}$
(b) $\{a, e, i, o\}$
(c) $\{m, n, p, q\}$
(d) None
(v) $A \cap B=$ $\qquad$ .
(a) $\{a, e\}$
(b) $\{i, o\}$
(c) $\{0, u\}$
(d) None
(vi) $\mathrm{B} \cap \mathrm{C}=$ $\qquad$ .
(a) $\{a, e\}$
(b) $\{i, o\}$
(c) $\{0, u\}$
(d) None
(vii) $A \cup(B-C)=$ $\qquad$ .
(a) $\{a, b, c, d, e, i, f\}$
(b) $\{a, b, c, d, e, f, o\}$
(c) $\{a, b, c, d, e, f\}$
(d) None
(viii) $A \cup B \cup C=$ $\qquad$ .
(a) $\{a, b, c, d, e, f, i, o, u, m, n, p, q, r, s, t\}$
(b) $\{a, b, c, r, s, t\}$
(c) $\{d, e, f, p, q\}$
(d) None
(ix) $A \cap B \cap C=$ $\qquad$ _.
(a) $\phi$
(b) $\{a \mathrm{e}\}$
(c) $\{m \mathrm{n}\}$
(d) None

## CONCEPT 4: APPLICATIONS OF SET THEORY

| - $n(A \cup B)=n(A)+n(B)-n(A \cap B)$ | - $n(B)=n(B-A)+n(A \cap B)$. |
| :--- | :--- |
| - $n(A)=n(A-B)+n(A \cap B)$. | - $n(A \cup B)=n(A-B)+n(B-A)+n(A \cap B)$. |

- $n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(C \cap A)+n(A \cap B \cap C)$.
- $n(A \Delta B)=$ No. of elements which belongs to exactly one of $A$ or $B=n(A)+n(B)-2 n(A \cap B)$.
- No. of elements in exactly two of the sets $A, B, C=n(A \cap B)+n(B \cap C)+n(C \cap A)-3 n(A \cap B \cap C)$.
- No. of elements in exactly one of the sets

$$
A, B, C=n(A)+n(B)+n(C)-2 n(A \cap B)-2 n(B \cap C)-2 n(C \cap A)+3 n(A \cap B \cap C) .
$$

## SOLVED EXAMPLES

CQ6: Out of a group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry. 4 teach Mathematics and Physics but none teach both Mathematics and Chemistry. How many teach Chemistry and Physics? How many teach only Physics?

Ans: Let $x$ be the no. of teachers who teach both Physics \& Chemistry.
Thus, $9-4-x+6+7-x+4+x=20 ; \quad 22-x=20 ; x=2$. Hence, 2 teachers teach both Physics and Chemistry \&
3 (9-4-2) teachers teach only Physics.


CQ7: $74 \%$ of the Indians like grapes, whereas $68 \%$ like bananas. What \% of Indians like both grapes \& bananas?

Ans: Let $P$ \& $Q$ denote the sets of Indians who like grapes and bananas respectively.
Thus, $n(P)=74, n(Q)=68 \& n(P \cup Q)=100$.
We know that $n(P \cap Q)=n(P)+n(Q)-n(P \cup Q)=74+68-100=42$
Hence, $42 \%$ of the Indians like both grapes and bananas.
CQ8: In a class of 60 students, 40 students like Maths, 36 like Science, and 24 like both the subjects. Find the number of students who like
(i) Maths only.
(ii) Science only.
(iii) Maths op Science.
(iv) Not Maths \& Science.

Ans: Let $M=$ students who like Maths \& $S=$ students who like Science;-
$n(M)=40, n(S)=36 \& n(M n S)=24$.
(i) $n(M)-n(M \cap S)=40-24=16$.
(ii) $n(S)-n(M \cap S)=36-24=12$.
(iii) $n($ MUS $)=n(M)+n(S)-n(M \cap S)=40+36-24=52$.(iv) $n(M \cup S)^{C}=60-n(M U S)=60-52=8$.

Whatsapp: 8888111134

## CONGEPT 5: PRODUCT SET

ORDERED PAIR:- Two elements ' $a$ ' \& 'b', listed in a specific order, form an ordered pair. It is denoted by ( $a, b$ ).
Here ' $a$ ' is called ' 1 st element' or $1^{\text {st }}$ co-ordinate \& ' $b$ ' is called $2^{\text {nd }}$ element or $2^{\text {nd }}$ co-ordinate.
Note: $(a, b) \neq\{a, b\}$.
If $a \neq b$, then $(a, b) \neq\{b, a\}$. Thus if $(a, b)=(c, d)$, it means that $a=c \& b=d$.

- In set theory, repetition of elements is meaningless \& thus if we have set $A=\{5,5\}$, it means we have only one element in the set.
- But for ordered pairs, $(5,5)$ means 5 belongs in both the sets under consideration.

CARTESIAN PRODUCT OF SETS:- Set of all ordered pairs $(a, b)$ such that $a \in A \& b \in B$, is called Cartesian product of $A \& B$. It is denoted by $A \times B$. Thus, $A \times B=\{(a, b): a \in A \& b \in B\}$.

## Cardinal Number:

- Number of elements in a set is known as its cardinal number.
- Cardinal number of set $A$ is denoted as $n(A)$.

Number of Elements of $n(A \times B)=n(A) \times n(B)$.
CQ9: If $P=\{1,3,6\} \& Q\{3,5\}$. Find $P \times Q \& Q \times P$.
Ans:
$P \times Q=\{(1,3),(1,5),(3,3),(3,5),(6,3),(6,5)\} ;$
$Q \times P=\{(3,1),(3,3),(3,6),(5,1),(5,3),(5,6)\}$
It is noted that ordered pairs $(3,5) \&(5,3)$ are not equal. So, $P \times Q \neq Q \times P$; but $n(P \times Q)=n(Q \times P)$.


CQ10: If $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$, find $A$ and $B$.
[Ans: $A=\{3,5\} \& B=\{2,4\}]$ CQ11: $A=\{1,2,3\}, B=\{4,5\}$. Find $A \times B \& n(A \times B)$.
[Ans: 6]
CQ12: If the set $P$ has 3 elements, $Q$ has $4, \& R$ has 2 , then the set $P \times Q \times R$ contains $\qquad$ .
(a) 9 elements
(b) 20 elements
(c) 24 elements
(d) None.

CQ13: If $A=(1,2,3,5,7)$ and $B=(1,3,6,10,15)$ then cardinal number of $A-B$ is $\qquad$ .
(a) 3
(b) -4
(c) 6
(d) None of these

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## SETS - QUESTION BANK

| SN | CHAPTER 7A. SETS | Ans |
| :---: | :---: | :---: |
| Q1 | If $A=\{a, b, c\}$, then $n(p(A))$ is $\qquad$ <br> (a) 3 <br> (b) 8 <br> (c) 6 <br> (d) 1 | B |
| Q2 | The set $\left\{2^{x_{0}} \mathrm{x}\right.$ is any positive rational number $\}$ is $\qquad$ <br> (a) Infinite set <br> (b) Null set <br> (c) Finite set <br> (d) None | A |
| Q3 | $\left\{\frac{n(n+1)}{2}: \mathrm{n}\right.$ is a positive integer $\}$ is $\qquad$ <br> (a) A finite set <br> (b) An infinite set <br> (c) Is an empty set <br> (d) None | B |
| Q4 | State whether the following sets are finite, infinite or empty <br> (i) $X=\{1,2,3, \ldots .500\}$ <br> (ii) $Y=\left\{y: y=a^{2} ; a\right.$ is an integer $)$ <br> (iii) $A=\{x: x$ is a positive integer multiple of 2$\}$ <br> (iv) $B=\{x: x$ is an integer which is a perfect poot of $26<x<3.5\}$ <br> (a) Finite, Infinite, Infinite, Empty <br> (b)Infinite, Infinite, Finite, Empty <br> (c) Infinite, Finite, Infinite, Empty <br> (d) None | A |
| Q5 | If $E=\{1,2,3,4,5,6,7,8,9\}$, the subset of $E$ satisfying $5+x>10$ is $\qquad$ <br> (a) $\{5,6,7,8,9\}$ <br> (b) $\{6,7,8,9\}$ <br> (c) $\{7,8,9\}$ <br> (d) None | B |
| Q6 | If $A=\{12 \ldots .9\} ; \quad B=\{2468\} ; \quad C=\{13579\} ; \quad D=\{345\} ; \quad E=\{35\}$ |  |
|  | (i) What is the set $S$ if it is also given that $S \subset D$ and $S \not \subset A$ <br> (a) $\{35\}$ <br> (b) $\{24\}$ <br> (c) $\{79\}$ <br> (d) None | A |
|  | (ii) What is set $S$ if it is also given that $S \subset B$ and $S \not \subset C$ <br> (a) $\{35\}$ <br> (b) $\{24\}$ <br> (c) $\{56789\}$ <br> (d) $\{579\}$ | B |
| Q7 | Following set notations represent: $A \subset B ; x \notin A ; A \supset B ;\{0\} ; A \not \subset B$ <br> (a) $A$ is a proper subset of $B ; x$ is not an element of $A ; A$ contains $B$; singleton with an only element zero; $A$ is not contained in $B$. <br> (b) $A$ is a proper subset of $B ; x$ is an element of $A ; A$ contains $B$; singleton with an only element zero; $A$ is contained in $B$. <br> (c) $A$ is a proper subset of $B ; x$ is not element of $A ; A$ does not contains $B$; contains elements other than zero; $A$ is not contained in $B$. <br> (d) None | A |
| Q8 | If $P=\{1,2,3,4\} ; Q=\{2,4,6\}$ then $P \cup Q=$ $\qquad$ <br> (a) $\{1,2,3,6\}$ <br> (b) $\{1,4,6\}$ <br> (c) $\{1,2,3,4,6\}$ <br> (d) None | C |
| Q9 | $A=\{2,3,5,7\} \& B=\{4,6,8,10\}$ then $A \cap B$ can be written as $\qquad$ <br> (a) $\}$ <br> (b) $\{\phi\}$ <br> (c) $(A \cup B)^{\prime}$ <br> (d) None | A |
| Q10 | If $A \Delta B=(A-B) \cup(B-A)$ and $A=\{1,2,3,4\}, B=\{3,5,7\}$ then $A \Delta B$ is $\qquad$ <br> (a) $\{1,2,4,5,7\}$ <br> (b) $\{3\}$ <br> (c) $\{1,2,3,4,5,7\}$ <br> (d) None | A |


| Q11 | Identify the elements of $P$ if set $Q=\{1,2,3\}$ and $P \times Q=\{(4,1) ;(4,2) ;(4,3) ;(5,1) ;(5,2)$; ( 5,3 ); $(6,1) ;(6,2) ;(6,3)\}$ <br> (a) $\{3,4,5\}$ <br> (b) $\{4,5,6\}$ <br> (c) $\{5,6,7\}$ <br> (d) None | B |
| :---: | :---: | :---: |
| Q12 | If $A=\{2,3\} ; B=\{4,5\} ; C=\{5,6\}$ then |  |
|  | (i) $A \times(B \cup C)$ <br> (a) $\{(2,4) ;(2,5) ;(2,6) ;(3,4) ;(3,5) ;(3,6)\}$ <br> (b) $\{(2,5) ;(3,5)\}$ <br> (c) $\{(2,4) ;(2,5) ;(3,4) ;(3,5) ;(4,5) ;(4,6) ;(5,5) ;(5,6)\}$ <br> (d) None | A |
|  | (ii)The set $A \times(B \cap C)$ is $\qquad$ <br> (a) $\{(2,4) ;(2,5) ;(2,6) ;(3,4) ;(3,5) ;(3,6)\}$ <br> (b) $\{(2,5) ;(3,5)\}$ <br> (c) $\{(2,4) ;(2,5) ;(3,4) ;(3,5) ;(4,5) ;(4,6) ;(5,5) ;(5,6)\}$ <br> (d) None | B |
|  | (iii) The $\operatorname{set}(A \times B) \cup(B \times C)$ is $\qquad$ <br> (a) $\{(2,4) ;(2,5) ;(2,6) ;(3,4) ;(3,5) ;(3,6)\}$ <br> (b) $\{(2,5) ;(3, S)\}$ <br> (c) $\{(2,4) ;(2,5) ;(3,4) ;(3,5) ;(4,5) ;(4,6) ;(5,5) ;(5,6)\}$ <br> (d) None | C |
| Q13 | $S=\{0,1,2,3,4,5,6,7,8,9\}, P=\{0,2,4,6,8\}$, and $Q=\{1,2,3,4,5\}$, then $Q$ is $\qquad$ <br> (a) $\{0,6,7,8,9\}$ <br> (b) $\{1,2,4,5,6\}$ <br> (c) $\{1,3,5,7,9\}$ <br> (d) $\{0,2,4,6,8\}$ | A |
| Q14 | If $A=\{(1234\} B=\{2379\}$ and $C=\{1479\}$ then $\qquad$ <br> (a) $A \cap B \neq \phi, B \cap C \neq \phi, A \cap B \cap C=\phi$ <br> (b) $A \cap B=\phi B \cap C=\phi A \cap B \cap C=\phi$ <br> (c) $A \cap B \neq \phi A \cap C \neq A \cap B \cap C=\phi$ <br> (d) None | A |
| Q15 | $N$ is the set of natural numbers and $I$ is the set of positive integers, then $\qquad$ <br> (a) $N=I$ <br> (b) $\mathrm{N} \subset \mathrm{I}$ <br> (c) $\mathrm{N} \supset \mathrm{I}$ <br> (d) None | A |
| Q16 | $R$ is the set of positive pational number and $E$ is the set of real numbers then $\qquad$ <br> (a) $R \subset E$ <br> (b) $R \subseteq E$ <br> (c) $E \supseteq R$ <br> (d) None | B |
| Q17 | $E$ is a set of positive even no. \& $O$ is a set of positive odd no., then $E \cup O$ is $\qquad$ <br> (a) Set of whole numbers <br> (b) N <br> (c) A set of pational number <br> (d) None | B |
| Q18 | In a group of 20 children, 8 drink tea but not coffee and 13 like tea. The number of childpen drinking coffee but not tea is $\qquad$ <br> (a) 6 <br> (b) 7 <br> (c) 1 <br> (d) None | D |
| Q19 | If $A$ has 32 elements, $B$ has 42 elements $\& A \cup B$ has 62 elements, the number of elements in $A \cap B=$ $\qquad$ <br> (a) 12 <br> (b) 74 <br> (c) 10 <br> (d) None | A |
| Q20 | In a group of 40 children 16 like wicket but not movie and 26 like cricket. The number of childpen like movie but not cricket ape $\qquad$ <br> (a) 12 <br> (b) 24 <br> (c) 2 <br> (d) None | D |
| Q21 | Sample of income group of 1,172 families was surveyed and noticed for income groups <Rs.6000/- Rs.6000/- to Rs.10999/-, Rs.11000/- to Rs.15999/-, Rs. 16000 and |  |


|  | above, no TV set is available to $70,50,20,50$ families, one set is available to 152 , $308,114,46$ families, and two or mope sets ape available to $10,174,84,94$ families. <br> $A=\{x \mid x$ is a family owning two or more sets $\}$ <br> $B=\{x \mid x$ is a family with one set $\}$ <br> $C=\{x \mid x$ is a family with income less than Rs.6000/- $\}$ <br> $D=\{x \mid x$ is a family with income Rs.6000/- to Rs.10999/- $\}$ <br> $E=\{x \mid x$ is a family with income Rs.11000/- to Rs.15999/- $\}$ |  |
| :---: | :---: | :---: |
|  | (i) Find the number of families in each of the following sets (i) $C \cap B$ (ii) $A \cup E$ <br> (a) 152,580 <br> (b) 15220 <br> (c) 15250 <br> (d) None | A |
|  | (ii) Find the number of families in each of the following sets <br>  <br> (2) $(C \cup D \cup E) \cap(A \cup B)^{\prime}$ <br> (a) 20,50 <br> (b) 152,20 <br> (c) 152,50 <br> (d) None | A |
|  | (iii) Express the following sets in set notation <br> (1) $\{x \mid x$ is a family with one set and income of less than Rs.11000/-) <br> (2) $\{x \mid x$ is a family with no set and income over Rs.16000/-) <br> (a) $(C \cup D) \cap B$ <br> (b) $(A \cup B)^{\prime} \cap\left(C^{\prime} \cup D^{\prime} \cup E^{\prime}\right)$ <br> (c) both <br> (d) None | C |
|  | (iv) Express the following sets in set notation <br> (i) $\{x \mid x$ is a family with two op more sets op income of Rs. 11000/-1 o Rs. 15999/-\} <br> (ii) $\{x \mid x$ is a family with no set $\}$ <br> (a) $(A \cup E)$ <br> (b) $(A \cup B)^{\prime}$ <br> (c) Both <br> (d) None | C |
| Q22 | Out of 60 students 25 failed in paper (1), 24 in paper (2), 32 paper in (3), 9 in paper (1) alone, 6 in paper(2) alone, 5 in papers (2) and (3), and 3 in papers (1) and (2). |  |
|  | (i)Find how may failed in all the three papers. <br> (a) 10 <br> (b) 60 <br> (c) 50 <br> (d) None | A |
|  | (ii)How many passed in all the three papers? <br> (a) 10 <br> (b) 60 <br> (c) 50 <br> (d) None | A |
| Q23 | At a certain conference of 100 people there are 29 Indian women and 23 Indian men. Out of these Indian people 4 are doctors and 24 are either men or doctors. There are no foreign doctors. The number of women doctors attending the conference is $\qquad$ <br> (a) 2 <br> (b) 4 <br> (c) 1 <br> (d) None | C |
| Q24 | On a survey of 100 boys it was found that 50 used white shirt 40 red and 30 blue. 20 were habituated in using both white and red shirts 15 both red and blue shirts and 10 blue and white shirts. Find the number of boys using all the colours. <br> (a) 20 <br> (b) 25 <br> (c) 30 <br> (d) None | B |
| Q25 | Out of total 150 students 45 passed in Accounts, 50 in Maths, 30 in Costing, 30 in both Accounts and Maths, 32 in both Maths and Costing, 35 in both Accounts and | B |


|  | Costing. 25 students passed in all the three subjects. Find the number who passed at least in any one of the subjects. <br> (a) 63 <br> (b) 53 <br> (c) 73 <br> (d) None |  |
| :---: | :---: | :---: |
| Q26 | If four members $a, b, c$, $d$ of a decision making body are in a meeting to pass a resolution where rule of majority prevails. Given that $a, b, c, d$ owns $50 \%, 20 \%$, $15 \%, 15 \%$ shares each. |  |
|  | (i) List the winning conditions. <br> (a) $\{a, b\} ;\{a, c\} ;\{a, d\} ;\{a, b, c\} ;\{a, b, d\} ;\{a, b, c, d\}$ <br> (b) $\{b, c, d\} ;\{a\}$ <br> (c) $\{b, c\} ;\{b, d\} ;\{c, d\} ;\{b\} ;\{c\} ;\{d\}$ <br> (d) None | A |
|  | (ii) List the blocking conditions. <br> (a) $\{a b\}\{a c\}\{a d\}\{a b c\}\{a b d\}\{a b c d\}$ <br> (b) $\{b \subset d\},\{a\}$ <br> (c) $\{b c\}\{b d\}\{c d\}\{b\}\{c\}\{d\} \phi$ <br> (d) None | B |
|  | (iii) List the losing conditions. <br> (a) $\{a b\}\{a c\}\{a d\}\{a b c\}\{a b d\}\{a b c d\}$ <br> (b) $\{b \subset d\},\{a\}$ <br> (c) $\{b c\}\{b d\}\{c d\}\{b\}\{c\}\{d\} \phi$ <br> (d) None | C |
| Q27 | Out of 1000 students 658 failed in the aggregate 16 in the aggregate and in groupI 434 in aggregate and in group-II 372 in group-I 590 in group-II and 126 in both the groups. |  |
|  | (i) Find out how many failed in all the three <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 | A |
|  | (ii) How many failed in the aggregate but not in group-II? <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 | B |
|  | (iii) How many failed in group-I but not in the aggregate. <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 | C |
|  | (iv) How many failed in group-II but not in group-I? <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 | D |
|  | (v) How many failed in the aggregate or group-II but not in group-I? <br> (a) 206 <br> (b) 464 <br> (c) 628 <br> (d) 164 | C |
|  | (vi) How many failed in the aggregate but not in group-I and group-II? <br> (a) 206 <br> (b) 464 <br> (c) 628 <br> (d) 164 | D |
| Q28 | If $A=\{2,5,6,8\}$, then $n(A)$ is $\qquad$ <br> (a) 2 <br> (b) 4 <br> (c) 5 <br> (d) 1 | B |
| Q29 | If $A=(a, b, c, d)$ list the element of power set $P(A)$ <br> (a) $\{\phi\},\{a\},\{b\},\{c\},\{d\},\{a b\},\{a c),\{a d\},\{b c\},\{b d\},\{c d\}$ <br> (b) $\{a b c\}\{a b d\}\{a c d)\{b c d\}$ <br> (c) $\{a b c d\}$ | D |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

|  | (d) All the above elements are in $\mathrm{P}(\mathrm{A})$ |  |
| :---: | :---: | :---: |
| Q30 | The set of cubes of the natural number is $\qquad$ <br> (a) A finite set <br> (b) An infinite set <br> (c) A null set <br> (d) None | B |
| Q31 | The set of squares of positive integers is $\qquad$ <br> (a) A finite set <br> (b) Null set <br> (c) Infinite set <br> (d) None | C |
| Q32 | Equal sets are $\qquad$ <br> (a) Equivalent <br> (b) Null <br> (c) Disjoint <br> (d) None | A |
| Q33 | If cardinal number of two finite sets is same, then the sets are $\qquad$ <br> (a) Equivalent <br> (b) Equal <br> (c) Null <br> (d) Singleton | A |
| Q34 | The range set of a constant function is a $\qquad$ <br> (a) Disjoint set <br> (b) Singleton set <br> (c) Void set <br> (d) Infinite set | B |
| Q35 | Let $A=\{a, b\}$. Set of subsets of $A$ is called power set of $A$ denoted by $P(A)$. Now $n(P(A))$ is $\qquad$ <br> (a) 2 <br> (b) 4 <br> (c) 3 <br> (d) None | B |
| Q36 | The number of subsets of the set $\{2,3,5\}$ is $\qquad$ <br> (a) 3 <br> (b) 8 <br> (c) 6 <br> (d) None | B |
| Q37 | $A \cup A$ is equal to $\qquad$ <br> (a) $A$ <br> (b) E <br> (c) $\varphi$ <br> (d) None | A |
| Q38 | $A \cup A^{\prime}$ is equal to $\qquad$ <br> (a) $A$ <br> (b) E <br> (c) $\phi$ <br> (d) None | B |
| Q39 | $A \cup E$ is equal to $\qquad$ <br> (a) $A$ <br> (b) E <br> (c) $\phi$ <br> (d) None | B |
| Q40 | $A \cap A$ is equal to $\qquad$ <br> (a) $\phi$ <br> (b) A <br> (c) E <br> (d) None | A |
| Q41 | $A \cap \varphi$ is equal to $\qquad$ <br> (a) $A$ <br> (b) E <br> (c) $\varphi$ <br> (d) None | C |
| Q42 | $A \cap A^{\prime}$ is equal to $\qquad$ <br> (a) $E$ <br> (b) $\varphi$ <br> (c) A <br> (d) None | B |
| Q43 | If $A=\{1,2,3,4\}$ and $B=\{2,4\}$ then $A \cap B$ can be written as $\qquad$ <br> (a) $\phi$ <br> (b) $\{1,3\}$ <br> (c) $\{2,4\}$ <br> (d) $\{0\}$ | C |
| Q44 | If $A=\{1,2,3,4\}, B=\{5,6,7\}$ then cardinal number of the set $A \times B$ is $\qquad$ <br> (a) 7 <br> (b) 1 <br> (c) 12 <br> (d) None | C |
| Q45 | If $A=\{1,2,3\}, B=\{4,5\}$, then $A \times B$ is $\qquad$ <br> (a) $\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$ <br> (b) $\{(1,2),(2,3),(3,4),(4,5),(5,1),(5,2)\}$ | A |


|  | (c) $\{(4,1),(4,2),(5,1),(5,2),(3,1),(3,2)\}$ <br> (d) $\{(1,2),(2,3),(3,4),(4,5)\}$ |  |
| :---: | :---: | :---: |
| Q46 | $S=\{0,1,2,3,4,5,6,7,8,9\}, P=\{0,2,4,6,8\}$, and $Q=\{1,2,3,4,5\}$, then $P^{\prime}$ is $\qquad$ <br> (a) $\{0,6,7,8,9\}$ <br> (b) $\{1,2,4,5,6\}$ <br> (c) $\{1,3,5,7,9\}$ <br> (d) $\{0,2,4,6,8\}$ | C |
| Q47 | $S=\{0,1,2,3,4,5,6,7,8,9\}, P=\{0,2,4,6,8\}$, and $Q=\{1,2,3,4,5\}$, then $P^{\prime} \cap Q^{\prime}$ is__. <br> (a) $\{7,6\}$ <br> (b) $\{2,4\}$ <br> (c) $\{5,9\}$ <br> (d) $\{7,9\}$ | D |
| Q48 | $S=\{0,1,2,3,4,5,6,7,8,9\}, P=\{0,2,4,6,8\}$, and $Q=\{1,2,3,4,5\}$, then $P^{\prime} \cup Q^{\prime}$ is__. <br> (a) $\{0,1,3,5,6,7,8,9\}$ <br> (b) $\{1,2,4,5,6,7,8,9\}$ <br> (c) $\{0,1,2,3,5,7,9\}$ <br> (d) $\{0,2,4,6,8\}$ | A |
| Q49 | If $A=\{3,4,5,6\} ; B=\{3,7,9,5\} \& C=\{6,8,10,12,7\} \& U=\{3,4, \ldots .11,12,13\}$ then |  |
|  | (i) $A^{\prime}$ is $\qquad$ <br> (a) $\{7812$ 13 $\}$ <br> (b) $\{46810 \ldots 13\}$ <br> (c) $\{345791113\}$ <br> (d) None | A |
|  | (ii) The set $B^{\prime}$ is $\qquad$ <br> (a) $\{7812$ 13\} <br> (b) $\{46810 \ldots .13\}$ <br> (c) $\{345911$ 13 $\}$ <br> (d) None | B |
|  | (iii) The set $C^{\prime}$ is $\qquad$ <br> (a) $\{7812$ 13\} <br> (b) $\{46810 \ldots .13\}$ <br> (c) $\{345911$ 13 $\}$ <br> (d) None | C |
|  | (iv) The set $\left(A^{\prime}\right)^{\prime}$ is $\qquad$ <br> (a) $\{3456\}$ <br> (b) $\{3795\}$ <br> (c) $\{810111213\}$ <br> (d) None | A |
|  | (v) The set $\left(B^{\prime}\right)^{\prime}$ is $\qquad$ <br> (a) $\{3456\}$ <br> (b) $\{3795\}$ <br> (c) $\{810111213\}$ <br> (d) None | B |
|  | (vi) The set $(A \cup B)^{\prime}$ is $\qquad$ <br> (a) $\{3456\}$ <br> (b) $\{3795\}$ <br> (c) $\{810111213\}$ <br> (d) None | C |
|  | (vii) The set $(A \cap B)$ ' is $\qquad$ <br> (a) $\{8101112$ 13\} <br> (b) $\{467 \ldots 13\}$ <br> (c) $\{34578$... 13 $\}$ <br> (d) None | B |
|  | (viii) The set $A^{\prime} \cup C^{\prime}$ is $\qquad$ <br> (a) $\{8101112$ 13 $\}$ <br> (b) $\{467 \ldots 13\}$ <br> (c) $\{34578 \ldots .13\}$ <br> (d) None | C |
| Q50 | $A$ has 70 elements, $B$ has 32 elements and $A \cap B$ has 22 elements then $A \cup B$ is $\qquad$ <br> (a) 60 <br> (b) 124 <br> (c) 80 <br> (d) None | C |
| Q51 | If $n(P)=3$ and $n(Q)=4$, then $n(P \times Q)$ is $\qquad$ <br> (a) 3 <br> (b) 4 <br> (c) 12 <br> (d) 1 | C |
| Q52 | When $5 x<24 \& x$ belongs to set of natural numbers then the solution set is $\qquad$ <br> (a) $\{1,2,3,4,5\}$ <br> (b) $\{1,2,3,4\}$ <br> (c) $\{1,2,3\}$ <br> (d) $\{0,1,2,3,4\}$ | B |
| Q53 | If $V=\{x: x+2=0\} R=\left\{x: x^{2}+2 x=0\right\}$ and $S=\left\{x: x^{2}+x-2=0\right\}$ then $V, R, S$ are equal for which value of $x$ ? | C |


|  | (a) 0 | (b) -1 | (c) -2 | (d) None |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Q54 | For $3 x+1 \leqslant 16 \& x$ belongs to set of natural number, the solution set is $\qquad$ <br> (a) $\{1,2,3,4\}$ <br> (b) $\{1,2,3,4,5\}$ <br> (c) $\{1,2,3\}$ <br> (d) $\{1,2,3,4,5,6\}$ |  |  |  | B |
| Q55 | $\begin{aligned} & \text { If } A=\{1,2,3,5, \\ & \text { (a) } n(b)=n(A) \end{aligned}$ | $\begin{aligned} & d B=\left\{x^{2} \cdot X \in A\right\} \\ & \text { (b) } n(B)>n(A) \end{aligned}$ | $\text { (c) } n(A) \neq n(B)$ | $\text { (d) } n(A)<n(B)$ | A |
| Q56 | If $A=\{1,2\}$ and $B=\{2,3\}$ then $A \times B$ is equal to $\qquad$ <br> (a) $\{(1,2),(1,3),(2,2),(2,3)\}$ <br> (b) $\{(2,1),(2,2),(3,1),(3,2)\}$ <br> (c) $\{(1,1),(1,2),(2,2),(2,1)\}$ <br> (d) $\{(3,1),(2,1),(3,3),(2,3)\}$ |  |  |  | A |
| Q57 | A supvey shows that $68 \%$ of women like apples, $74 \%$ of women like orange. What percentage like both? <br> (a) $12 \%$ <br> (b) $6 \%$ <br> (c) $21 \%$ <br> (d) $42 \%$ |  |  |  | D |
| Q58 | A survey shows that $74 \%$ of the Indians like grapes, whereas $68 \%$ like bananas. What \% of Indians like both grapes and bananas? <br> (a) $32 \%$ <br> (b) $26 \%$ <br> (c) $42 \%$ <br> (d) $50 \%$ |  |  |  | C |
| Q59 | In a class 30 students, 20 students like maths, 18 like science and 12 like both the subject. Find the number of student who likes no subject. <br> (a) 4 <br> (b) 5 <br> (c) 8 <br> (d) None |  |  |  | A |
| Q60 | Complaints about works canteen had been about Mess(M) Food(F) and Services(S). Total complaints 173 were received as follows $-n(M)=110 ; n(F)=55 ; n(S)=67 ; n(M$ $\left.\cap F \cap S^{\prime}\right)=20 ; n\left(M \cap S \cap F^{\prime}\right)=1 ; n\left(F \cap S \cap M^{\prime}\right)=16$. |  |  |  |  |
|  | (i) Determine the complaints about all the three. <br> (a) 6 <br> (b) 43 <br> (c) 35 <br> (d) None |  |  |  | A |
|  | (ii) Determine the complaints about two or more than two. <br> (a) 6 <br> (b) 53 <br> (c) 35 <br> (d) None |  |  |  | B |
| Q61 | After qualifying out of 400 professionals 112 joined industry 120 started practice and 160 joined as paid assistants. There were 32 who were in both practice and service 40 in both practice and assistantship and 20 in both industry and assistantship. There were 12 who did all the three. |  |  |  |  |
|  | (i) Find how many could not get any of these <br> (a) 88 <br> (b) 244 <br> (c) 122 <br> (d) None |  |  |  | A |
|  | (ii) Find how many of them did only one of these <br> (a) 88 <br> (b) 244 <br> (c) 122 <br> (d) None |  |  |  | A |
| Q62 | The number of subsets of the sets $\{6,8,11\}$ is $\qquad$ <br> (a) 9 <br> (b) 6 <br> (c) 8 |  |  |  | C |
| Q63 | If $A=\{1,3,5\}, B=\{0,2\}$ then $A \cup B$ is $\qquad$ <br> (a) $\{0,1,2,3,5)$ <br> (b) 0 <br> (c) $\{1,3,5,7,9,13\}$ |  |  | (d) None | A |
| Q64 | If $A=\{3,5,7\} B=\{0,2,4,6\}$ then $A \cup B$ is |  |  |  | B |


|  | $\begin{array}{llll}\text { (a) } \varphi & \text { (b) }\{0,2,3,4,5,6,7\} & \text { (c) }\{0\} & \text { (d) None }\end{array}$ |  |
| :---: | :---: | :---: |
| Q65 | If $A=\{1,3,5,7,9\}, D=\{2,4,6,8,10\}$ then $A \cup B$ is $\qquad$ . <br> (a) $\{0\}$ <br> (b) $\{1,2,3,4,5,6,7,8,9,10\}$ <br> (c) $\varphi$ <br> (d) None | B |
| Q66 | If $P=\{1,2,3,5,7\} \& Q=\{1,3,6,10,15\}$ |  |
|  | (i) The cardinal number of $P \cap Q$ is $\qquad$ <br> (a) 3 <br> (b) 2 <br> (c) 0 <br> (d) None | B |
|  | (ii) The cardinal number of $P \cup Q$ is $\qquad$ <br> (a) 10 <br> (b) 9 <br> (c) 8 <br> (d) None | B |
| Q67 | If $P=\{3,4,5,6\}$ then cardinal number of $P$ is $\qquad$ <br> (a) 3 <br> (b) 5 <br> (c) 4 <br> (d) 6 | C |
| Q68 | The null set is represented by $\qquad$ <br> (a) $\{\Phi\}$ <br> (b) $\{0\}$ <br> (c) $\Phi$ <br> (d) None | C |
| Q69 | If $A=\{1,2,3\}$, then $P(A)$ is $\qquad$ <br> (a) 3 <br> (b) $\{\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\}, \Phi\}$ <br> (c) $\{1,2,3\}$ <br> (d) $\{\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\}\}$ | B |
| Q70 | The number of subsets of a set containing $n$ elements is $\qquad$ <br> (a) $2^{n}$ <br> (b) $2^{-n}$ <br> (c) $n$ <br> (d) None | A |
| Q71 | A set containing 4 elements have $\qquad$ <br> (a) 15 subsets <br> (b) 16 subsets <br> (c) 14 subsets <br> (d) 13 subsets | B |
| Q72 | What is the relationship between the following sets? <br> $A=\{x: x$ is a letter in the word flower $\} \quad B=\{x: x$ is a letter in the world flow $\}$ <br> $C=\{x: x$ is a letter in the world wolf $\} \quad D=\{x: x$ is a leter in the word follow $\}$ <br> (a) $B=C=D$ and all these are subsets of the set $A$ <br> (b) $B=C \neq D$ <br> (c) $B \neq C \neq D$ <br> (d) None | A |
| Q73 | If $P=\{1,2,3,4\}: Q=\{2,4,6\}$ then $P \cup Q$ <br> (a) $\{1,2,3,6\}$ <br> (b) $\{1,4,6\}$ <br> (c) $\{1,2,3,4,6\}$ <br> (d) None | C |
| Q74 | If $P$ is a set of natural number then $P \cap P^{\prime}$ is $\qquad$ <br> (a) $\phi$ <br> (b) Sample Space. <br> (c) 0 <br> (d) $\left(P \cup P^{\prime}\right)^{\prime}$ | A |
| Q75 | $(A \cup B)^{\prime}$ is equal to $\qquad$ <br> (a) $(A \cap B)^{\prime}$ <br> (b) $A \cup B^{\prime}$ <br> (c) $A^{\prime} \cap B^{\prime}$ <br> (d) None | C |
| Q76 | $(A \cap B)^{\prime}$ is equal to $\qquad$ <br> (a) ( $\left.A^{\prime} \cup B^{\prime}\right)$ <br> (b) $A \cup B^{\prime}$ <br> (c) $A^{\prime} \cap B^{\prime}$ <br> (d) None | A |
| Q77 | If $A=\{a b \subset d e f\} B=\{a e \mid \circ u\}$ and $C=\{m n \circ p q p s t u\}$ then |  |
|  | (i) $A \cup B$ is | A |


|  | (a) $\{a b c d e f i o u\}$ <br> (c) $\{d e f p q r\}$ | (b) $\{a b \cot u\}$ <br> (d) None |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (ii) $A \cup C$ is $\qquad$ <br> (a) $\{a b \subset d e f m n o p q p s t u\}$ <br> (c) $\{d e f p q p\}$ | (b) $\{a b c s t u\}$ <br> (d) None |  | A |
|  | (iii) $B \cup C$ is $\qquad$ - <br> (a) $\{a \operatorname{loumnpqrst}\}$ <br> (c) $\{i \circ u p q p\}$ | (b) $\{a \operatorname{eipst}\}$ <br> (d) None |  | A |
|  | (iv) $A-B$ is $\qquad$ <br> (a) $\{b \subset d f\}$ <br> (b) $\{a \mathrm{e} i o\}$ | (c) $\{m n p q\}$ | (d) None | A |
|  | (v) $A \cap B$ is $\qquad$ <br> (a) $\{a \mathrm{e}\}$ <br> (b) $\{\mathrm{i} \circ$ o | (c) $\{o u\}$ | (d) None | A |
|  | (vi) $B \cap C$ is $\qquad$ <br> (a) $\{a \mathrm{e}\}$ <br> (b) $\{\mathrm{i} \circ \mathrm{o}\}$ | (c) $\{o u\}$ | (d) None | C |
|  | (vii) $A \cup(B-C)$ is $\qquad$ <br> (a) $\{a b c d e f i\}$ <br> (b) $\{a b c d e f o\}$ | (c) $\{a b c d e f u\}$ | (d) None | A |
|  | (viii) $A \cup B \cup C$ is $\qquad$ <br> (a) $\{a b c d e f i o u m n p q p s t\}$ <br> (c) $\{d e f n p q\}$ | (b) $\{a b c p s t\}$ <br> (d) None |  | A |
|  | (ix) $A \cap B \cap C$ is $\qquad$ <br> (a) $\varphi$ <br> (b) $\{a \mathrm{e}\}$ | (c) $\{m \mathrm{n}\}$ | (d) None | A |
| Q78 | If the set $P$ has 3 elements, $Q$ four and <br> (a) 9 elements <br> (b) 20 elements | $R$ two then the set <br> (c) 24 elements | $P \times Q \times R$ contains <br> (d) None | C |
| Q79 | If the set $P$ has $6, Q$ has 5 and $R$ has <br> (a) 13 <br> (b) 9 | elements then the <br> (c) 60 | t $P \times Q \times R$ contains <br> (d) None | C |
| Q80 | If $A \times B=\{(3,2),(3,4),(5,2),(5,4)\}$, <br> (a) $A=\{3,5\}$ and $B=\{2,4\}$ <br> (c) $A=\{3,2\}$ and $B=\{5,4\}$ | find $A$ and $B$. <br> (b) $A=\{3,4\}$ and $B$ <br> (d) $A=\{5,4\}$ and $B$ | $\begin{aligned} & =\{2,5\} \\ & =\{2,3\} \end{aligned}$ | A |
| Q81 | If $A=(1,2,3,5,7)$ and $B=(1,3,6,10,15)$ th <br> (a) 3 <br> (b) -4 | cardinal number <br> (c) 6 | $A-B$ is $\qquad$ <br> (d) None | A |
| Q82 | If $V=\{012 \ldots .9\} X=\{02468\} Y=\{3$ | 7\} and $Z=\{37\}$ th |  |  |
|  | (i) $Y \cup Z,(V \cup Y) \cap X,(X \cup Z) \cup V$ ape $p$ <br> (a) $\{357\}\{02468\}\{012 \ldots .9\}$ <br> (c) $\{246\}\{012 \ldots .9\}\{02468\}$ | pectively <br> (b) $\{246\}\{0246$ <br> (d) None | $\{012 \ldots 9\}$ | A |
|  | (ii) $(X \cup Y) \cap Z$ and $(\Phi \cup V) \cap \Phi$ ape resper | ectively |  | B |


|  | $\begin{array}{llll}\text { (a) }\{02468\} \Phi & \text { (b) }\{37\} \Phi & \text { (c) }\{357\} \Phi\end{array}$ |  |
| :---: | :---: | :---: |
| Q83 | $\left\{1-(-1)^{\times}\right\}$for all integral $x$ is the set is $\qquad$ <br> (a) $\{0\}$ <br> (b) $\{2\}$ <br> (c) $\{0,2\}$ <br> (d) None | C |
| Q84 | The set $\{x \mid 0<x<5\}$ represents the set when $x$ may take integral values only <br> (a) $\{0,1,2,3,4,5\}$ <br> (b) $\{1,2,3,4\}$ <br> (c) $\{1,2,3,4,5\}$ <br> (d) None | B |
| Q85 | If the universal set is $X=\{x: x \in N I \leqslant x \leqslant 12\}$ and $A\left\{\begin{array}{ll}1 & 9 \\ 10\end{array}\right\} B=\left\{\begin{array}{lll}3 & 6 & 11 \\ 12\end{array}\right\}$ and $C=\left\{\begin{array}{lll}2 & 5 & 6\end{array}\right\}$ are subsets of $X$ |  |
|  | (i) The set $A \cup(B \cap C)$ is $\qquad$ <br> (a) $\{346$ 12 $\}$ <br> (b) $\{16910\}$ <br> (c) $\{256$ 11 $\}$ <br> (d) None | B |
|  | (ii) The set $(A \cup B) \cap(A \cup C)$ is $\qquad$ <br> (a) $\{346$ 12 $\}$ <br> (b) $\{16910\}$ <br> (c) $\{256$ 11 $\}$ <br> (d) None | B |
| Q86 | Universal set $E=\{x \mid x$ is a positive integer $<25\}, A=\{2,6,8,14,22\}, B=\{4,8,10,14\}$ then <br> (a) $(A \cup B)^{\prime}=A^{\prime} \cup B^{\prime}$ <br> (b) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ <br> (c) $\left(A^{\prime} \cap B\right)^{\prime}=\Phi$ <br> (d) None | B |
| Q87 | Represent the following sets in set notation set of all alphabets in English language set of all odd integers less than 25 set of all odd integers set of positive integers $x$ satisfying the equation $x^{2}+5 x+7=0-$ <br> (a) $A=\{x: x$ is an alphabet in English $\} \mid=\{x: x$ is an odd integep $>25\}=\{2468 \ldots\} \mid.=$ $\left\{x: x^{2}+5 x+7=0\right\}$ <br>  $\left\{x: x^{2}+5 x+7=0\right\}$ <br> (c) $A=\{x: x$ is an alphabet in English $\} \left\lvert\,=\{x: x$ is an odd integer $\leqslant 25\}=\left\{\left.\begin{array}{lll}13 & 5 & 7 \ldots .\end{array} \right\rvert\,=\right.\right.$ $\left\{x: x^{2}+5 x+7=0\right\}$ <br> (d) None | B |
| Q88 | Re-write the following sets in a set builder form $A=\{a$ elou $B=\{1234 \ldots \ldots\} C$ is $a$ set of integers between - 15 and 15 . <br> (a) $A=\{x: x$ is a constant $\} B=\{x: x$ is an iprational number $\} C=\{x:-15<x<15 \wedge x$ is $a$ fraction\} <br> (b) $A=\{x: x$ is a vowel $\} B=\{x: x$ is a natural number $\} C=\{x:-15 \geqslant x \geqslant 15 \wedge x$ is a whole number \} <br> (c) $A=\{x: x$ is a vowel $\} B=\{x: x$ is a natural number $\} C=\left\{x_{:}-15<x<15 \wedge x\right.$ is a whole number\} <br> (d) None | C |
| Q89 | Comment on the coprectness or otherwise of the following statements <br> (i) $\{a b c\}=\{c b a\}$ <br> (ii) $\{a \subset a d c d\} \supset\{a c d\}$ <br> (iii) $\{b\} \notin\{\{b\}\}$ <br> (iv) $\{b\} \subset\{\{b\}\}$ and $\Phi \subset\{\{b\}\}$ <br> (a) Only (iv) is incoprect <br> (b) (i) (ii) are incoprect <br> (c) (ii) (iii) ape incoprect <br> (d) All ape incoprect | A |


| Q90 | If $A=\{a b c\} B=\{a b\} c=\{a b d\} D=\{c d\} m E=\{d\}$ state which of the following statements are correct <br> (i) $\mathrm{B} \subset \mathrm{A}$ <br> (ii) $D \neq C$ <br> (iii) $C \supset E$ <br> (iv) $D=E$ <br> (v) $D \subset B$ <br> (vi) $D=A$ <br> (vii) $B \not \subset C$ <br> (viii) Ec A <br> (ix) $E \not \subset B$ <br> (x) $a \in A$ <br> (xi) $a \subset A$ <br> (xii) $\{a\} \in A$ <br> (xiii) $\{a\} \subset A$ <br> (a) (i) (ii)(iii) (ix) (x) (xiii) only are coprect <br> (b) (ii) (iii) (iv) (x) (xii) (xiii) only are coprect <br> (c) (i) (ii) (iv) (ix) (xiii) only are coprect <br> (d) None | A |
| :---: | :---: | :---: |
| Q91 | Let $A=\{0\} B=\left\{\begin{array}{ll}0 & 1\end{array}\right\} C=\Phi D=\{\Phi\} E=\{x \mid x$ is a human being 300 years old $\} F=\{x \mid x$ $\in A$ and $x \in B\}$ state which of the following statements are true <br> (i) $A \subset B$ <br> (ii) $B=F$ <br> (iii) C $\subset D$ <br> (iv) $\mathrm{C}=\mathrm{E}$ <br> (v) $A=F$ <br> (vi) $F=1$ <br> (vii) $E=C=D$ <br> (a) (iii) (iv) and (v) only are true <br> (b) (i) (ii) (iii) and (iv) only are true <br> (c) (i) (ii) (iii) and (vi) only are true <br> (d) None | B |
| Q92 | If $A=\left\{\begin{array}{ll}0 & 1\end{array}\right\}$ state which of the following statements are true <br> (i) $\{1\} \subset A$ <br> (ii) $\{1\} \in A$ <br> (iii) $\Phi \in A$ <br> (iv) $0 \in A$ <br> (v) $1 \subset A$ <br> (vi) $\{0\} \subset A$ <br> (vii) $\Phi \subset A$ <br> (a) (i) (iv) and (vii) only are true <br> (b) (i), (iv) and (vi) only are true <br> (c) (ii), (iii) and (vi) only are true <br> (d) None | A |
| Q93 | Out 2000 staff $48 \%$ preferped coffee $54 \%$ tea and $64 \%$ cocoa. Of the total $28 \%$ used coffee and tea $32 \%$ tea and cocoa and $30 \%$ coffee and cocoa. Only $6 \%$ did none of these. |  |
|  | (i) Find the number having all the three. <br> (a) 360 <br> (b) 280 <br> (c) 160 <br> (d) None | A |
|  | (ii) Find the number having tea and cocoa but not coffee. <br> (a) 360 <br> (b) 280 <br> (c) 160 <br> (d) None | B |
|  | (iii) Find the number having only coffee. <br> (a) 360 <br> (b) 280 <br> (c) 160 <br> (d) None | C |
| Q94 | Out of 1000 students 658 failed in the aggregate 16 in the aggregate and in groupI 434 in aggregate and in group-II 372 in group-I 590 in group-II and 126 in both the groups. |  |
|  | (i) Find out how many failed in all the three <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 | A |


|  | (ii) How many failed in the aggregate but not in group-II? <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 |  |  |  | B |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | (iii) How many failed in group-I but not in the aggregate. <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 |  |  |  | C |
|  | (iv) How many failed in group-II but not in group-I? <br> (a) 106 <br> (b) 224 <br> (c) 206 <br> (d) 464 |  |  |  | D |
|  | (v) How many failed in the aggregate or group-II but not in group-I? <br> (a) 206 <br> (b) 464 <br> (c) 628 <br> (d) 164 |  |  |  | C |
|  | (vi) How many failed in the aggregate but not in group-I and group-II? <br> (a) 206 <br> (b) 464 <br> (c) 628 <br> (d) 164 |  |  |  | D |
| Q95 | Asked if you will cast your vote for a party the following feed back is obtained |  |  |  |  |
|  |  | Yes | No | Don't kn |  |
|  | Adult Male | 10 | 20 | 5 |  |
|  | Adult Female | 20 | 15 | 5 |  |
|  | Youth over 18 years | 10 | 5 | 10 |  |
|  | If $A=$ set of Adult Males, $C=$ Common set of Women and Youth $Y=$ set of positive opinion, $N=$ set of negative opinion then |  |  |  |  |
|  | (i) $n\left(A^{\prime}\right)$ is $\qquad$ <br> (a) 25 <br> (b) 40 <br> (c) 20 <br> (d) None |  |  |  | A |
|  | (ii) The set $n(A \cap C)$ is $\qquad$ <br> (a) 25 <br> (b) 40 <br> (c) 20 <br> (d) None |  |  |  | B |
|  | (iii) The set $n(Y \cup N)^{\prime}$ is $\qquad$ <br> (a) 25 <br> (b) 40 <br> (c) 20 <br> (d) None |  |  |  | C |
|  | (iv) The set $n(A \cap(Y \cap N)$ is $\qquad$ <br> (a) 25 <br> (b) 40 <br> (c) 20 <br> (d) None |  |  |  | C |
| Q96 | A survey of 1000 customers revealed the following in respect of their buying habits of different grades: |  |  |  |  |
|  | A grade only |  |  | 180 |  |
|  | $A$ and C grades |  |  | 80 |  |
|  | C grades |  |  | 480 |  |
|  | A grade but not B grade |  |  | 230 |  |
|  | A grade |  |  | 280 |  |
|  | $C$ and $B$ grades |  |  | 80 |  |
|  | None |  |  | 240 |  |




|  | (i) $\mathbf{P} \times \mathbf{Q}$ is $\qquad$ <br> (a) $\{(1 a),(1 x),(1 y) ;(2 a),(2 x),(2 y) ;(x a),(x x),(x y)\}$ <br> (b) $(1 x),(1 y),(1 z) ;(2 x),(2 y),(2 z) ;(x x),(x y),(x y)\}$ <br> (c) $\{(a x),(a y),(a z) ;(x x),(x y),(x z) ;(y x),(y y),(y z)\}$ <br> (d) $\{(1 x),(1 y) ;(2 x) .(2 y) ;(x x),(x y)\}$ | A |
| :---: | :---: | :---: |
|  | (ii) The set $\mathbf{P} \times \mathbf{R}$ is $\qquad$ <br> (a) $\{(1 a),(1 x),(1 y) ;(2 a),(2 x),(2 y) ;(x a),(x x),(x y)\}$ <br> (b) $\{(1 x),(1 y),(1 z) ;(2 x),(2 y),(2 z) ;(x x),(x y),(x z)\}$ <br> (c) $\{(a x),(a y),(a z) ;(x x),(x y),(x z) ;(y x),(y y),(y z)\}$ <br> (d) $\{(1 x),(1 y) ;(2 x),(2 y) ;(x x),(x y)\}$ | B |
|  | (iii)The set $Q \times R$ is $\qquad$ <br> (a) $\{(1 a),(1 x),(1 y) ;(2 a),(2 x),(2 y) ;(x a),(x x),(x y)\}$ <br> (b) $\{(1 x),(1 y),(1 z) ;(2 x),(2 y),(2 z) ;(x x),(x y),(x y)\}$ <br> (c) $\{(a x),(a y),(a z) ;(x x),(x y),(x z) ;(y x),(y y),(y z)\}$ <br> (d) $\{(1 x),(1 y) ;(2 x),(2 y) ;(x x),(x y)\}$ | C |
|  | (iv) The set $(P \times Q) \cap(P \times R)$ is $\qquad$ <br> (a) $\{(1 a),(1 x),(1 y) ;(2 a),(2 x),(2 y) ;(x a),(x x),(x y)\}$ <br> (b) $\{(1 x),(1 y),(1 z) ;(2 x),(2 y),(2 z) ;(x x),(x y),(x y)\}$ <br> (c) $\{(a x),(a y),(a z) ;(x x),(x y),(x z) ;(y x),(y y),(y z)\}$ <br> (d) $\{(1 x),(1 y) ;(2 x),(2 y) ;(x x),(x y)\}$ | D |
|  | (v) The set $(R \times Q) \cap(R \times P)$ is $\qquad$ <br> (a) $\{(a x),(a y),(a z),(x x),(x y),(x z),(y x),(y y),(y z)\}$ <br> (b) $\{(1 x),(1 y),(2 x),(2 y)\}$ <br> (c) $\{(x x),(y x),(z x)\}$ <br> (d) $\{(1 a),(1 x),(1 y),(2 a),(2 x),(2 y),(x a),(x y),(x 1),(x 2),(y 1),(y 2),(y x),(z 1),(z 2),(z x)\}$ | C |
|  | (vi) The $\operatorname{set}(P \times Q) \cup(R \times P)$ is $\qquad$ . <br> (a) $\{(a x),(a y),(\alpha z),(x x),(x y),(x z),(y x),(y y),(y z)\}$ <br> (b) $\{(1 x),(1 y),(2 x),(2 y),(x x),(y x),(z x)$ <br> (c) $\{(x),(y x),(z x)\}$ <br> $(d)\{(1 a),(1 x),(1 y),(2 a),(2 x),(2 y),(x a),(x x),(x y),(x 1),(x 2),(y 1),(y 2),(y x),(z 1),(z 2)$, (zx) $\}$ | D |
| Q108 | Out of 2000 staff, $48 \%$ preferred coffee, $54 \%$ tea and $64 \%$ cocoa. Of the total $28 \%$ used coffee and tea; $32 \%$ tea and cocoa; $30 \%$ coffee and cocoa. Only $6 \%$ did none of these. |  |
|  | (i) Find the number having all the three. <br> (a) 360 <br> (b) 280 <br> (c) 160 <br> (d) None | A |
|  | (ii) Find the number having tea and cocoa but not coffee. | B |



## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CHAPTER 7B. RELATIONS

## INTRODUCTION

- Any subset of the product set $A \times B$ is called a relation from $A$ to $B$. It is denoted by $R$.
- $R \subseteq \mathbf{A} \times \mathbf{B}$.

Domain \& Range of a pelation: If $R$ is a relation from $A$ to $B$;
> Set of all first elements of the ordered pair that belongs to $R$ is called the domain of $R$.
$>$ Set of all second elements of the ordered pair that belongs to $R$ is called the pange of $R$.
So, $\operatorname{Dom}(R)=\{a:(a, b) \in R\}$ \& Range $(R)=\{b:(a, b) \in R\}$.
CQ1: Let Set $A=\{1,2,3\}$ \& Set $B=\{2,4,6\}$.
Then $A \times B=\{(1,2),(1,4),(1,6),(2,2),(2,4),(2,6),(3,2),(3,4),(3,6)\}$ We know that every subset of the product set $A \times B$ is called a relation from $A$ to $B$. Now we consider the relation which is the subset of $\boldsymbol{A} \times \boldsymbol{B}$. Let $\mathbb{R}=\{(1,2),(1,4),(3,2),(3,4)\}$. Domain of $R=1^{\text {st }}$ Elements $=\{1,3\}$ \& Range of $R=2^{\text {nd }}$ Element $=\{2,4\}$

## TYPES OF RELATION

| Identity <br> Relation | If both the elements of ordered pairs are same, it is an identity relation. <br> The relation $I=\{(a, a): \alpha \in A\}$ is called the identity relation on $A$. <br> Ex: Let $A=\{1,2,3\}$ then $I=\{(1,1),(2,2),(3,3)\}$ |
| :---: | :---: |
| Reflexive Relation | $R$ is reflexive pelation if $(a, \alpha) \in R \& a=\alpha$. <br> PC Note: $R$ is reflexive if it contains ALL POSSIBLE ORDERED PAIRS of the type ( $x, x$ ). <br> Ex: Let $\boldsymbol{A}=\{1,2,3\} ; \boldsymbol{A} \times \boldsymbol{A}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$. <br> Now let us consider a relation $R$ which is a subset of $A \times A$. <br> (i) If $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)\}$; It is a reflexive relation because all the possible ordered pair of the form ( $x, x$ ) are present in the given relation. <br> (ii) If $R=\{(1,1),(1,3),(2,3),(3,1),(3,3)\}$ is NOT a reflexive pelation because $(2,2)$ is missing in $R$ |
| Symmetric Relation | $R$ is symmetric relation if $(a, b) \in R$; then $(b, a)$ should also $\in R$. <br> PC NOTE: For each ordered pair ( $a, b$ ), the reverse pair ( $b, a$ ) should also be present in R. |


|  | Ex: $R=\{(1,1),(1,3),(1,2),(2,1),(3,1)\}$; In a symmetric relation becoz all reverse pair are present <br> Reverse pair of $(1,1)$ is $(1,1)$ itself \& repetition is meaningless. Thus, it is given only once. <br> Reverse pair of $(1,3)$ is $(3,1)$ which is present \& Reverse pair of $(1,2)$ is $(2,1)$ which is also present. |
| :---: | :---: |
| Transitive Relation | $R$ is transitive relation if $(a, b) \in R \&(b, c) \in R$, then $(a, c)$ should $\in R$. Ex: $a\\|b, b\\| c{ }^{\square} \\|_{\\|}$. |
| Equivalence pelation | A relation which is reflexive, symmetric \& transitive is called an equivalence relation. <br> Ex: "is equal to" is an equivalence relation. |
| Inverse Relation | $R$ is a relation from $A$ to $B$, then relation $R^{-1}$ from $B$ to $A$ $=\{(b, a):(a, b) \in R\} .$ <br> Dom of $\left(R^{-1}\right)=$ Range of $(R)$ \& Range of $\left(R^{-1}\right)=\operatorname{Dom}$ of $(R)$. <br> Ex: Let $A=\{1,2,3\} \& R=\{(1,2),(2,2),(3,1),(3,2)\}$. $R$ being a subset of $A \times A$, is a relation on $A$. <br> Dom of $(R)=\{1,2,3\}$ \& Range of $(R)=\{2,1\}$. Now, $R^{-1}=\{(2,1),(2,2),(1,3),(2,3)\}$. <br> $\operatorname{Dom}\left(R^{-1}\right)=\{2,1\}=$ Range $(R) \&$ Range $\left(R^{-1}\right)=\{1,2,3\}=\operatorname{Dom}(R)$. |
| Universal Relation | A relation $R$ from $A$ to $B$ is said to be universal relation if $R=A \times B$ <br> Ex: Let $A=\{1,2\}$ then, $R=A \times A=\{(1,1),(1,2),(2,1),(2,2)\}$ is universal pelation on A |
| Void Relation | A relation $R$ from $A$ to $B$ is said to be void relation if $R=\varnothing$ <br> Ex: Let $A=\{7,11\}$ and $B=\{3,5\}$. Let $R=[(a, b): a \in A, b \in B, a-b$ is odd $\}$, then $R$ $=\varnothing$ |
| (b) <br> (c) $T r$ | IS EQUAL TO" Relation <br> (a) Reflexive: $a=a$. <br> Symmetric: $a=b \Rightarrow b=a$. <br> nsitive: $a=b, b=c \Rightarrow a=c$. <br> "IS PARALLEL TO" Relation <br> (a) Reflexive: a la. <br> (b) Symmetric: $a\\|b \Rightarrow b\\| a$. <br> (c) Transitive: $a\\|b, b\\| c \Rightarrow a \\| c$ |

## RELATIONS - QUESTION BANK

| SN | CHAPTER 7B. RELATION | Ans |
| :---: | :---: | :---: |
| Q111 | "Is equal to" over the set of all rational numbers is $\qquad$ <br> (a) Transitive <br> (b) Symmetric <br> (c) Reflexive <br> (d) Equivalence | D |
| Q112 | "Is smaller than" over the set of eggs in a box is $\qquad$ <br> (a) Transitive ( $T$ ) <br> (b) Symmetric (S) <br> (c) Reflexive (R) <br> (d) Equivalence(E) | A |
| Q113 | "Is greater than" over the set of all natural number if known as $\qquad$ <br> (a) Transitive <br> (b) Symmetric <br> (c) Reflexive <br> (d) Equivalence | A |
| Q114 | Relation "is parallel to" on the set of all straight lines in a plane is $\qquad$ Relation. <br> (a) an Equivalence <br> (b) an Equal <br> (c) Reflexive <br> (d) Transitive | A |
| Q115 | "Is perpendicular to" over the set of straight lines in a given plane is $\qquad$ <br> (a) Symmetric <br> (b) Reflexive <br> (c) Transitive <br> (d) Equivalence | A |
| Q116 | "Is the reciprocal of" over the set of non zero real numbers is $\qquad$ <br> (a) Symmetric <br> (b) Reflexive <br> (c) T pansitive <br> (d) None | A |
| Q117 | "Is the square of" over $n$ set of reai numbers is $\qquad$ <br> (a) Reflexive <br> (b) Symmetric <br> (c) Transitive <br> (d) None | D |
| Q118 | "Has the same father" as $\qquad$ over the set of children <br> (a) Reflexive <br> (b) Symmetric <br> (c) Transitive <br> (d) Equivalence | D |
| Q119 | $\{(x, y) \mid x, x, y y, y=x\}$ is $\qquad$ <br> (a) Reflexive <br> (b) Symmetric <br> (c) Transitive <br> (d) Equivalence | D |
| Q120 | $\{(x, y) \mid x+y=2 x$ where $x$ and $y$ are positive integers $\}$ is $\qquad$ <br> (a) Reflexive <br> (b) Symmetric <br> (c) Transitive <br> (d) Both (a) and (b) | D |
| Q121 | If $A=\{1,2,3\}$ then $R=\{(1,1),(2,2),(3,3),(1,2)\}$ is $\qquad$ <br> (a) reflexive \& transitive but not symmetric <br> (b) reflexive \& symmetric but not transitive <br> (c) symmetric and transitive but not peflexive <br> (d) identity pelation | A |
| Q122 | If $a=\{1,2,3\}$ then $a$ relation $\{(1,1),(2,2),(3,3)\}$ is $\qquad$ Relation <br> (a) an Into <br> (b) an Identity <br> (c) Symmetric <br> (d) Transitive | B |
| Q123 | In inverse relation $R$ $\qquad$ <br> (a) domain ( $R$ inverse) $=$ pange ( $R$ inverse) <br> (b) domain $(R)=$ pange $(R)$ <br> (c) domain ( $R$ inverse ) pange ( $R$ ) <br> (d) domain $(R)=$ pange ( $R$ inverse) | C |
| Q124 | If a relation $R=\{(1,1),(2,2),(1,2),(2,1)\}$ is symmetric on $A=\{1,2,3\}$ then $R$ is $\qquad$ <br> (a) Reflexive but not Transitive <br> (b) Transitive but not Reflexive <br> (c) Reflexive and Transitive <br> (d) Neither Reflexive nor Transitive | B |

$\square$

## CHAPTER 7C. FUNCTIONS

## INTRODUCTION

- Function means any relation from $X$ to $Y$ in which two different ordered pairs should not have same first element.
- If any ordered pair of a relation have same first element, then such relation is not a function.
- If each element ' $x$ ' of $A$ is related with a unique element $f(x)$ of $B$, it is called a function or mapping from $A$ to $B$ and it is written as $f: A \rightarrow B$.
- The element $f(x)$ is called the image of $x$, while ' $x$ ' is called the pre-image of $f(x)$.
- Let $f: A \rightarrow B$, ' $A$ ' is called the domain; while ' $B$ ' is called the pange.

Ex: $A=\{1,2,3\} \& B=\{a, b\}$. Let us consider $a$ function $\{(\mathbf{1}, \boldsymbol{a}),(\mathbf{2}, b)\}$.
In this case, no ordered pair have same first element, so it is a function.
Ex: Let $N$ be the set of all natupal numbers.
Then, rule $f(x)=2 x$ for all $x \in N$ is a function from $N$ to $N$, since twice a natural number is unique. Now, $f(1)=2 ; f(2)=4 ; f(3)=6$ and so on.
Here domain of function $=\{1,2,3,4, \ldots \ldots \ldots \ldots$.$\} \& range of function =\{2,4,6, \ldots \ldots \ldots .$.
$\mathbf{E x}:$ Let $A=\{1,2,3,4\} \& B=\{1,2,3\}$.
$\boldsymbol{A} \times \boldsymbol{B}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)\}$

| (i) | $R=$ Subset $\{(1,2),(1,3),(2,3)\}$ is a relation on $A \times B$. <br> This relation contains all ordered pair in $A \times B$ for which $A<B$. So, it is "less than" relation. <br> This relation is not a function because it includes two different ordered pairs $(1,2),(1,3)$ <br> have same $1^{\text {st }}$ element. |
| :--- | :--- |
| (ii) | Subset $\{(1,1),(2,2),(3,3)\}$ defines the function $y=x$ as different ordered pairs of this <br> subset have different $1^{\text {st }}$ element. |

CQ1. If $f(x)=2 x^{2}-5 x+4$ then $2 f(x)=f(2 x)$ for
[Ans: C]
(a) $x=1$
(b) $x=-1$
(c) $x= \pm 1$
(d) None

CQ2. If $f(x)=x^{2}-5$, evaluate $f(3), f(-4), f(5)$ and $f(1)$.
[Ans: C]
(a) $0,11,20,4$
(b) $-4,11,-2,4$
(c) $4,11,20,-4$
(d) $4,10,20,5$

CQ3. Which of these is a function from $A \rightarrow B A=\{x, y, z\} B=\{a, b, c, d\}$
[Ans: C]
(a) $\{(x, a)(x, b)(y, c)\}$
(b) $\{(x, a)(x, b)(y, c)(z, d)\}$
(c) $\{(x, a)(y, b)(z, d)\}(d)\{(a, x)(b, z)(c, y)\}$

## TYPES OF FUNCTIONS

1 One - One function (Injective function)

- If every element in Set $A$ have different images in Set $B$, such function is one-one function.
- If $f(a)=f(b) \Rightarrow a=b$.

Ex: Let $A=\{1,2,3\}$ and $B=\{2,4,6\}$. Thus the function is $f: A \rightarrow B: \mathbf{f}(\mathbf{x})=\mathbf{2 x}$.
Then $f(1)=2 ; f(2)=4 ; f(3)=6$. Since every element in A have different images in $B$, it is oneone function.
2 Many-one function

- If two or more elements in $A$ have same image (corpesponding value) in $B$, such function is many-one function.
- Ex: $f(x)=x^{2} ; x \in R$.
$f(1)=(1)^{2}=1 \quad \& f(-1)=f(-1)^{2}=1$.
So, two elements of Set A have the same image in Set B. Hence it is a many - one function.
Onto function (Surjective function)
- $f: A \rightarrow B$ is called onto function if for all $b \in B$, there is at least one $a \in A$ with $f(a)=b$.

PC Note: If every element in $B$ has at least one pre-image in $A$, it is onto function.

## Range $=$ Co-domain.

Ex: $A=\{1,2,3\} \& B=\{a, b\}$. Let $f=\{(1, a),(2, a),(3, a)\}$.
In this case, no ordered pair have same first element, so it is a function.
In the given function, ' $a$ ' have 3 pre images but ' $b$ ' does not have any pre image.
Hence it is not onto function. It is into function.

## Into function

If at least one element in $B$ has no pre-image in $A$, then the function is into function.
$E x: A=\{1,2,3\} \& B=\{a, b\}$. Let $f=\{(1, a),(2, a),(3, a)\}$.
In this case, no ordered pair have same first element, so it is a function.
In the given function, ' $a$ ' have 3 pre images but ' $b$ ' does not have any pre image. Hence it is not onto function. It is into function.
$E x: A=\{1,2,3\} \& B=\{a, b, c, d\}$. Let $f=\{(1, a),(2, b),(3, c)\}$.
In this case, no ordered pair have same first element, so it is a function.
Here the element ' $d$ ' in $B$ does not have a pre images in $A$. Thus it is into function.
Ex: $A=\{2,3,5,7\} \& B=\{0,1,3,5,7\}$. Let us consider $f: A \rightarrow B ; f(x)=x-2$.
Then $f(2)=0 ; f(3)=1 ; f(5)=3 \& f(7)=5$.
Here there exists an element 7 in $B$, having no pre-mage in $A$. Thus it is into function.

Whatsapp: 8888111134


## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## FUNCTIONS - QUESTION BANK

| SN | CHAPTER 7C. FUNCTIONS | Ans |
| :---: | :---: | :---: |
| Q125 | $A=\{1,2,3,4, \ldots\} \& B=\{1,4,9,16 \ldots\}$ \& if $f$ is a mapping from $A \rightarrow B$ such that $f(x)=x^{2}$, then $\qquad$ <br> (a) domain $(f)=\{1,2,3,4, \ldots\}$ \& pange $(f)=\{1,4,9, \ldots\}$ <br> (b) pange $(f)=\{1,2,3,4, \ldots\}$ \& domain $(f)=\{1,4,9, \ldots\}$ <br> (c) domain $(f)=\{1,2,9,16, \ldots$.$\} \& pange (f)=\{1,2,3, \ldots$. <br> (d) pange $(f)=\{1,2,9,16, \ldots$.$\} \& domain (f)=1,2,3, \ldots$. | A |
| Q126 | Domain of $\{(1,7),(2,6)\}$ is $\qquad$ <br> (a) $(1,6)$ <br> (b) $(7,6)$ <br> (c) $(1,2)$ <br> (d) $(6,7)$ | C |
| Q127 | Range of $\{(3,0),(2,0),(1,0),(0,0)\}$ is $\qquad$ <br> (a) $(0,0)$ <br> (b) (0) <br> (c) $\{0, O, O, O\}$ <br> (d) None | B |
| Q128 | The pange of $\{(1,6),(2,7)\}$ is $\qquad$ <br> (a) $(6,7)$ <br> (b) $(1,7)$ <br> (c) $(1,2)$ <br> (d) $(6,2)$ | A |
| Q129 | Domain \& pange of $\left\{(x, y): Y=x^{2}\right.$ is $\qquad$ <br> (a) (Real, Natural No.) <br> (b) (Real, +ve Real) <br> (c) (Real, Real) <br> (d) None | B |
| Q130 | Let the domain of $x$ be the set $\{0,1\}$. Which of the following functions is equals to 1 . <br> (a) $f(x)=x^{2}, g(x)=x$ <br> (b) $f(x)=x, g(x)=1-x$ <br> (c) $f(x)=x^{2}+x+2, g(x)=(x+1)^{2}$ <br> (d) None | A |
| Q131 | Range of function $f(x)=\frac{1}{1-x}$ is $\qquad$ <br> (a) Set of rational numbers <br> (b) Set of real numbers (except 0) <br> (c) Set of natural numbers <br> (d) Set of integers. | B |
| Q132 | Range of function $f(x)=\log _{10}(1+x)$ for domain of real values of $x$ when $0 \leq x \leq 9$ is $\qquad$ <br> (a) $\{0\}$ <br> (b) $\{0,1,2\}$ <br> (c) $\{0,1\}$ <br> (d) None | C |
| Q133 | For function $h(x)=10^{1+x}$ domain of real values of $x$ where $0 \leq h(x) \leq 9$, pange is $\qquad$ <br> (a) $10 \leq h(x) \leq 10^{10}$ <br> (b) $0 \leq h(x) \leqslant 10$ <br> (c) $0<h(x)<10$ <br> (d) None | A |
|  | Finding Value of Function |  |
| Q134 | If $f(x)=\frac{x+1}{x^{2}-3 x-4}$, find $f(0), f(1), f(-1)$. <br> (a) $1,3,0$ <br> (b) $\frac{1}{4},-\frac{1}{3}, 0$ <br> (c) $-\frac{1}{4},-\frac{1}{3}, \frac{0}{0}$ <br> (d) $0,1,0$ | C |
| Q135 | If $f(x)=x^{3}-x^{2}+x+1$ then the value of $[f(1)+f(-1)]$ will be $\qquad$ <br> (a) 5 <br> (b) 2 <br> (c) 0 <br> (d) -2 | C |
| Q136 | If $f(x)=x^{2}+3 x$ then $f(2)-f(4)$ is equal to $\qquad$ <br> (a) -15 <br> (b) -18 <br> (c) 18 <br> (d) 12 | B |
| Q137 | If $f(x)=2 x+3$ then $f(2 x)-2 f(x)+3=$ | B |


|  | (a) 1 (b) 0 | (c) -1 | (d) None |  |
| :---: | :---: | :---: | :---: | :---: |
| Q138 | Given the function $f(x)=x^{2}-5 ; f(5)$ is $\qquad$ <br> (a) 0 <br> (b) 5 | $\text { (c) } 10$ | (d) 20 | D |
| Q139 | If $f(x)=x^{2}-x$ then $f(h+1)$ is equal to $\qquad$ <br> (a) $f(h)$ <br> (b) $f(-h)$ | (c) $f(-h+1)$ | (d) None | B |
| Q140 | If $f: R \rightarrow R, f(x)=x^{2}+8$, then $f(-3)$ is $\qquad$ <br> (a) 1 <br> (b) 17 | $\text { (c) }-1$ | $\text { (d) }-17$ | B |
| Q141 | If $f(x)=\|x\|+\|x-2\|$, then redefine the functio <br> (a) $5,6,2$ <br> (b) $2,4,5$ | Hence find $f$ <br> (c) $7,6,5$ | $f(-2), f(1.5)$ <br> (d) $0,2,5$ | A |
| Q142 | If $f(x)=x^{3}+\frac{1}{x^{3}}$ then value of $f(x)-f(1 / x)$ is eq <br> (a) 0 <br> (b) 1 | to $\qquad$ <br> (c) $x^{3}+\frac{1}{x^{3}}$ | (d) None | A |
| Q143 | If $f(x)=\frac{5}{x}$, then $f(0)$ is $\qquad$ <br> (a) $+\infty$ <br> (b) $-\infty$ | $\text { (c) } 5$ | (d) Undefined | D |
| Q144 | If $f(x)=\frac{1-x}{1+x}$ then $f\{f(1 / x)\}=$ $\qquad$ <br> (a) $1 / x$ <br> (b) $x$ | (c) $-1 / x$ | (d) None | A |
| Q145 | If $f(x+1)=2 x+7$ then $f(0)=$ $\qquad$ <br> (a) 5 <br> (b) 4 | (c) 3 | (d) 0 | A |
| Q146 | If $f(x)=x^{2}-1$ and $g(x)=\frac{x+1}{2}$ then $\frac{f(3)}{f(3)+g(3)}$ is <br> (a) $5 / 4$ <br> (b) $4 / 5$ | (c) $3 / 5$ | (d) $5 / 3$ | B |
| Q147 | If $f(x)=\frac{q \times(x-p)}{(q-p)}+\frac{p \times(x-q)}{(p-q)}$ then $f(p)+f(q)$ is equ <br> (a) $f(p+q)$ <br> (b) $\mathrm{f}(\mathrm{pq})$ | to $\qquad$ <br> (c) $f(p-q)$ | (d) None | A |
| Q148 | If $f(x)=\log x(x>0)$ that $f(p)+f(q)+f(p)$ is <br> (a) $f(p q r)$ <br> (b) $f(p) f(q) f(p)$ | (c) $f(1 / p q r)$ | (d) None | A |
| Q149 | If $y=h(x)=\frac{p x-q}{q x-p}$, then $x=$ $\qquad$ <br> (a) $h(1 / y)$ <br> (b) $h(-y)$ | (c) $h(y)$ | (d) None | C |
| COMPOSITE FUNCTION |  |  |  |  |
| Q150 | If $f(x)=x+3, g(x)=(x)^{2}$ then $\operatorname{gof}(x)$ is $\qquad$ <br> (a) $(x+3)^{2}$ <br> (b) $x^{2}+3$ | (c) $x^{2}(x+3)$ | (d) $x^{2}+(x+3)$ | A |
| Q151 | Find fog $(x)$ for the functions $f(x)=x^{8}, g(x)=$ <br> (a) $x^{8}\left(2 x^{2}+1\right)$ <br> (b) $x^{8}$ | $k^{2}+1$ <br> (c) $2 x^{2}+1$ | (d) $\left(2 x^{2}+1\right)^{8}$ | D |
| Q152 | Find fog $(x)$ for the functions $f(x)=x^{2}, g(x)=x$ <br> (a) $x^{2}(x+1)$ <br> (b) $x^{2}$ | (c) $x+1$ | (d) $(x+1)^{2}$ | D |
| Q153 | If $f(x)=x+3, g(x)=x^{2}$, then $\operatorname{gof}(x)$ is |  |  | A |


|  | $\begin{array}{ll}\text { (a) }(x+3)^{2} & \text { (b) } x^{2}+3\end{array}$ | (c) $x^{2}(x+3)$ | (d) None |  |
| :---: | :---: | :---: | :---: | :---: |
| Q154 | If $f(x)=x+3, g(x)=x^{2}$ then $f \circ g(x)$ is $\qquad$ <br> (a) $x^{2}+3$ <br> (b) $x^{2}+x+3$ | (c) $(x+3)^{2}$ | (d) None | A |
| Q155 | If $f(x)=x^{2}+3, g(x)=x$ then $f \circ g(x)$ is $\qquad$ <br> (a) $x^{2}+3$ <br> (b) $(x)^{2}+\left(x^{2}+3\right)$ | (c) $(x+3)^{2}$ | (d) $(x)^{2}\left(x^{2}+3\right)$ | A |
| Q156 | If $f(x)=x^{2}+3, g(x)=x$ then $g \circ f(x)$ is $\qquad$ <br> (a) $x^{2}+3$ <br> (b) $(x)^{2}+\left(x^{2}+3\right)$ | (c) $(x+3)^{2}$ | (d) $(x)^{2}+\left(x^{2}+3\right)$ | A |
| Q157 | Find $g \circ f(x)$ for the functions $f(x)=\sqrt{x}, g(x)$ <br> (a) $2 x^{2}+1$ <br> (b) $2 x+1$ | $2 x^{2}+1$ <br> (c) $\left(2 x^{2}+1\right) \sqrt{x}$ | (d) $\sqrt{x}$ | B |
| Q158 | $f(x)=2 x+2, g(x)=x^{2}, f \circ g(4)=?$ <br> (a) 100 <br> (b) 10 | (c) 34 | (d) 36 | C |
| Q159 | If $f(x)=\|x+1\| \& g(x)=3 x^{2}-5$, find the value <br> (a) $3 x^{2}+6 x-2$ <br> (b) $2 x^{2}-6 x+3$ | gof $=$ $\qquad$ <br> (c) $\|3 x-5\|$ | (d) $x-5$ | A |
| Q160 | If $f(x)=x+3, g(x)=x^{2}$ then $f(x) \cdot g(x)$ is $\qquad$ <br> (a) $(x+3)^{2}$ <br> (b) $x^{2}+3$ | (c) $x^{3}+3 x^{2}$ | (d) None | C |
| Q161 | If $f(x)=\frac{1}{1-x}$ and $g(x)=\frac{x-1}{x}$, then $g \circ f(x)$ is $\qquad$ <br> (a) $x$ <br> (b) $1 / x$ | $\text { (c) }-x$ | (d) None | A |
| Q162 | If $f(x)=\frac{1}{1-x}$ and $g(x)=\frac{x}{x-1}$, then $f \circ g(x)$ is $\qquad$ <br> (a) $x$ <br> (b) $1 / x$ | $\text { (c) }-x$ | (d) None | A |
| Q163 | If $f(x)=x+2, g(x)=7^{x}$, then $g$ of $f(x)=$ $\qquad$ <br> (a) $7^{x} \cdot x+2.7^{x}$ <br> (b) $7^{x+2}$ | (c) $\left(7^{x}\right)+2$ | (d) None | B |
| Q164 | If $f(x)=\log \left(\frac{1+x}{1-x}\right)$ then $f\left(\frac{2 x}{1+x^{2}}\right)=$ $\qquad$ . <br> (a) $f(x)$ <br> (b) $2 f(x)$ | (c) $3 f(x)$ | $\text { (d) }-f(x)$ | B |
| Q165 | If $f(x)=x+2, g(x)=7^{x}$, then $g$ of $f(x)=$ $\qquad$ <br> (a) $7^{x} \cdot x+2.7^{x}$ <br> (b) $7^{x+2}$ | (c) $\left(7^{x}\right)+2$ | (d) None | B |
| Q166 | If $f(x)=a x^{2}+b$, find $\frac{f(x+h)-f(x)}{h}=$ $\qquad$ <br> (a) $2 x+h$ <br> (b) $a(2 x+h)$ | (c) $a(2 x-h)$ | (d) $2 x-h$ | B |
| Q167 | If $f(x)=2 x^{2}-5 x+2$ then the value of $\frac{f(4+h)-f(4)}{h}$ <br> (a) 11-2h <br> (b) $11+2 \mathrm{~h}$ | $\qquad$ <br> (c) $2 \mathrm{~h}-11$ | (d) None | B |
| Q168 | $f(x)=\frac{x}{x-1} \text {, then } \frac{f(x / y)}{f(y / x)}=$ $\qquad$ <br> (a) $\frac{x}{y}$ <br> (b) $\frac{y}{x}$ | $\text { (c) }-\frac{x}{y}$ | $\text { (d) }-\frac{y}{x}$ | C |
| Inverse Function |  |  |  |  |
| Q169 | Inverse $h^{-1}(x)$ when $h(x)=\log _{10} x$ is ___. |  |  | B |


|  | (a) $\log _{10} x \quad$ (b) $10^{x}$ | (c) $\log _{10}(1 / x) \quad$ (d) None |  |
| :---: | :---: | :---: | :---: |
| Q170 | If $f(x)=\frac{1}{1-x^{\prime}}$, then $f^{-1}(x)$ is $\qquad$ <br> (a) $1-x$ <br> (b) $(x-1) / x$ | (c) $x / x-1$ <br> (d) None | B |
| Q171 | Find $f^{-1}(x)$ when $f(x)=x^{2}$ is $\qquad$ <br> (a) $1 / x^{2}$ <br> (b) $\sqrt{x}$ | (c) $1 / x$ <br> (d) None | B |
| Q172 | If $f(x)=100 x$; then $f^{-1}(x)=$ $\qquad$ <br> (a) $\frac{X}{100}$ <br> (b) $\frac{1}{100 \mathrm{X}}$ | (c) $\frac{1}{100}$ <br> (d) None | A |
| Q173 | A function is invertible if and only if $f$ is <br> (a) one -one <br> (c) one-one, onto | (b) one-one, into <br> (d) many -one, into | C |
| MISCELLANEOUS QUESTIONS |  |  |  |
| Q174 | If $A=\{1,2,3\}$ and $B=\{4,6,7\}$ then the relation $=\{(2,4)(3,6)\}$ is $\qquad$ . <br> (a) Function from $A$ to $B$ <br> (b) Function from $B$ to $A$ <br> (c) Both (a) \& (b) <br> (d) Not a Function |  | D |
| Q175 | $\left\{(x, y)\right.$ such that $\left.y=x^{2}\right\}$ is $\qquad$ <br> (a) Not a function <br> (b) A function <br> (c) Inverse mapping <br> (d) None |  | B |
| Q176 | If $f(x)=x^{2}, x>0$, then the function is . $\qquad$ <br> (a) Not one to one <br> (b) One to one <br> (c) Into <br> (d) None |  | B |
| Q177 | $N$ is the set of all natural numbers and $E$ is the set of all even numbers. If $f: N E$ defined by $f(x)=2 x$, for all $x \varepsilon N$ is: $A$ <br> (a) One - one and onto <br> (b) One - one into <br> (c) Many one onto <br> (d) Can't say |  | A |
| Q178 | $\{(x, y)$ such that $x<y\}$ is a $\qquad$ <br> (a) Not a function <br> (b) A function <br> (c) One-one mapping <br> (d) None |  | A |
| Q179 | $\{(x, y) ; x=4\}$ is a $\qquad$ <br> (a) Not a function <br> (b) Function <br> (c) One-one mapping <br> (d) None |  | A |
| Q180 | $\{(x, y)$ such that $(x+y=5)\}$ is $\qquad$ function. <br> (a) Not a function <br> (b) Composite <br> (c) One-one mapping <br> (d) None |  | C |
| Q181 | Function $f(x)=2^{x}$ is $\qquad$ <br> (a) One one mapping <br> (b) One many | (c) Many one <br> (d) None | A |


| Q182 | If $f(x)=\|x\| \forall x \in R$, then the function is $\qquad$ . <br> (a) Not one to one <br> (b) One to one <br> (c) Into <br> (d) Not into | C |
| :---: | :---: | :---: |
| Q183 | Let $A=\{2,3,5,7\}$ and $B=[0,1,3,5,7\}$. If $f$ is a mapping from $A$ to $B$ such that $f(x)=x$ $-2 ; f$ is $\qquad$ <br> (a) Into <br> (b) an onto <br> (c) constant <br> (d) identical | A |
| Q184 | If $A=\{0,1,3,5,6\} \& B=\{2,4,8,9\}$; then function is $\qquad$ <br> (a) onto function <br> (b) into function <br> (c) Many one onto <br> (d) None |  |
| Q185 | $F: R \rightarrow R$ is defined by $f(x)=2^{x}$ then $f$ is $\qquad$ <br> (a) One - one \& onto <br> (b) One - one \& into(c) Many to one <br> (d) None | B |
| Q186 | If $A=\{x, y, z\}, B=\{p, q, r, s\}$ which of the relation on $A, B$ are function. <br> (a) $\{(x, p),(y, p),(z, s)\}$ <br> (b) $\{(x, s),(y, s),(z, s)\}$ <br> (c) $\{(n, p),(x, q),(y, p),(z, s)\}$ <br> (d) Both (a) and (b) | D |
| EVEN \& ODD FUNCTION |  |  |
| Q187 | If $g(x)=3-x^{2}$ then $g(x)$ is $\qquad$ function. <br> (a) Odd <br> (b) Periodic <br> (c) Even <br> (d) None | C |
| Q188 | A function $f(x)$ is an even function if $\qquad$ <br> (a) $-f(x)=f(x)$ <br> (b) $f(-x)=f(x)$ <br> (c) $f(-x)=-f(x)$ <br> (d) None | B |
| Q189 | If $f(x)=\frac{5^{x}+1}{5^{x}-1}$ then $f(x)$ is $\qquad$ <br> (a) Even <br> (b) Odd <br> (c) Composite <br> (d) None | B |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

## CHAPTER 8A. DIFFERENTIAL CALCULUS

## INTRODUCTION

Ex: Let us consider a function $y=f(x)=3 x^{2}+5 x+2$.
The value of $f(x)$ i.e ' $y$ ' will depend on value of ' $x$ '.
[Note: $x$ can take any value] Thus, we can say that ' $y$ ' is a dependent variable \& ' $x$ ' is an independent variable.
If $x=1, y=3(1)^{2}+5(1)+2=10 ; \quad$ If $x=2, y=3(2)^{2}+5(2)+2=24$.
Thus, we can say that if we change the value of $x$ from 1 to 2 , value of $y$ changes from 10 to 24 . Now let's jump on to the definition of derivative.

## MEANING OF DERIVATIVE [DIFFERENTIATION]

- It is a process of finding "change in dependent variable" w.r.t "change in independent variable".
- It measures the rate at which the changes are taking place.
- Change in ' $x$ ' is denoted by $\Delta x$ \& Change in ' $y$ ' is denoted by $\Delta y$. [Called as 'delta' $x$ ]
- It involves a very small change in dependent variable (i.e y) w.r.t a very small change in independent variable (i.e x). Thus, it studies "Instantaneous rate of change of a function".

Differentiation is the process of finding "change in value of $y$ " w.p.t "change in value of $x$ ".
( Change in ' $x$ ' is so small that it tends to Zepo. [ $\Delta x \rightarrow 0$ ] \& thus we say that it studies "instantaneous rate of change of a function".

- It is defined as the limiting value of the ratio of change (increment) in the function corpesponding to a small change (increment) in independent variable as the later tends to zero.
(T) The derivative of $f(x)$ is also known as differential coefficient of $f(x)$ with respect to $x$.

This is denoted as $\frac{d y}{d x}$ or $f^{\prime}(x)$ [Derivative of ' $y^{\text {' }}$ w.r.t ${ }^{6} x^{\text {s }}$ ]

PC NOTE: To differentiate a function, we have to differentiate it w.r.t independent variable only.
Note: (i) $\frac{d}{d x} \boldsymbol{f}(\boldsymbol{x}) \neq \frac{d}{d x} \times \boldsymbol{f}(\boldsymbol{x}) . \quad$ (ii) $\frac{d y}{d x} \neq \mathrm{dy} \div \mathrm{dx}$.
(iii) $\frac{d y}{d x}$ represents slope of tangent to the curve $y=f(x) \&$ is known as "gradient" of the curve.

## SOME STANDARD RESULTS BASED ON FIRST PRINCIPLE

| Function $\mathrm{f}(\mathrm{x})$ | Depivative | When to apply the formula |
| :---: | :---: | :---: |
| (i) $x^{n}$ | n. $\mathrm{x}^{(n-1)}$ | When we have a constant number in power. <br> [ $n \rightarrow$ denotes a constant number (+ve/-ve)]. |
| (ii) $e^{x}$ | $\mathrm{e}^{\mathrm{x}}$ | When we have ' e ' in base. [Value of ' e ' $=2.71828$ is iprelevant] |
| (iii) $a^{x}$ | $a^{x} . \log a$ | When we have a number in base. <br> $[a \rightarrow$ denotes $a$ constant number $(a>0 \& a \neq 1)$ ] |
| (iv) $\log x$ | (1/x) | When we have 'log'. |
| (v) Constant (C) | ZERO | Derivative of $a$ "constant" is "Zero". [Note: $e^{n} \& \boldsymbol{a}^{a}$ are constants]. |
| (vi) C. $f(x)$ | C. $f^{\prime}(x)$ | Take 'C' outside; differentiate $f(x)$ \& then multiply $f^{\prime}(x)$ by C. |

## FORMULAE WITH EXAMPLE

| Formula | Function | Depivatives of Function |
| :---: | :---: | :---: |
| $\frac{d}{d x} x^{n}=n \cdot x^{(n-1)}$ | $x^{5}$ | $\frac{d y}{d x}=5 \cdot x^{(5-1)}=5 \cdot x^{4}$ |
|  | $\sqrt{\mathrm{X}}$; | $Y=x^{1 / 2} ; \frac{d y}{d x}=(1 / 2) \cdot x^{\left(\frac{1}{2}-1\right)}=(1 / 2) x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$ |
|  | $x \sqrt{x}$ | $Y=x^{3 / 2} ; \frac{d y}{d x}=\frac{3}{2} \cdot x^{\left(\frac{3}{2}-1\right)}=\frac{3}{2} \cdot x^{\frac{1}{2}}=\frac{3}{2 \sqrt{x}}$ |
|  | $\frac{1}{x}$ | $\mathrm{Y}=\mathrm{x}^{(-1)} ; \frac{d y}{d x}=(-1) \cdot x^{(-1-1)}=(-1) x^{-2}=-\frac{1}{\mathrm{x}^{2}}$ |
|  | $\frac{1}{\sqrt{x}}$ | $\mathrm{Y}=\mathrm{X}^{-1 / 2} ; \frac{d y}{d x}=(-1 / 2) \cdot x^{\left(-\frac{1}{2}-1\right)}=(-1 / 2) x^{-\frac{3}{2}}=-\frac{1}{2 \cdot x \sqrt{x}}$ |
|  | $\mathrm{x}^{-7 / 3}$; | $\frac{d y}{d x}=-\frac{7}{3} \cdot\left(x^{-\frac{7}{3}-1}\right)=-\frac{7}{3} \cdot x^{-\frac{10}{3}} .$ |
|  | X | $Y=x^{1} ; \frac{d y}{d x}=1 . x^{(1-1)}=1 . x^{0}=1.1=1$ |

Class work:

| $\frac{d}{d x}\left(e^{x}\right)=e^{x}$ | $e^{x}$ | $\frac{d y}{d x}=\mathrm{e}^{\mathrm{x}}$ |
| :---: | :---: | :---: |
|  | $e^{2}$ | $\frac{d y}{d x}=$ Zero since $\mathrm{e}^{2}$ is a constant. |
| $\frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \log a$ | $\mathrm{a}^{\text {x }}$ | $\frac{d y}{d x}=\mathrm{a}^{\mathrm{x}} . \log \mathrm{a}$ |
|  | $2^{\text {x }}$ | $\frac{d y}{d x}=2^{\mathrm{x}} . \log 2$ |
| $\frac{d}{d x} \log x=\frac{1}{x}$ | $\log x$ | $\frac{d y}{d x}=\frac{1}{x}$ |
|  | $2^{\text {x }}$ | $\frac{d y}{d x}=2^{\mathrm{x}} . \log 2$ |
| $\frac{d}{d x}$ C. $f(x)=$ C. $f^{\prime}(x)$ | $12 x^{5}$ | $\frac{d y}{d x}=12 . \frac{d}{d x}\left(x^{5}\right)=12.5 x^{4}=60 . x^{4}$ |
|  | $a x^{3}$ | a. $\frac{d}{d x}\left(x^{3}\right)=a \cdot 3 x^{2}=3 a x^{2}$. |
|  | $(-3) x^{-2}$ | $(-3) \cdot \frac{d}{d x}\left(x^{-2}\right)=(-3) \cdot(-2) \cdot x^{(-2-1)}=6 x^{-3} .$ |
|  | $\frac{x^{5}}{2}$ | $(1 / 2) \cdot \frac{d}{d x}\left(x^{5}\right)=(1 / 2) \cdot 5 x^{4}=\frac{5}{2} x^{4}$ |

## BASIC LAWS FOR DIFFERENTIATION

SUM/DIFFERENCE RULE: $\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x}[f(x)] \pm \frac{d}{d x}[g(x)]$
$E x: \frac{\mathrm{d}}{\mathrm{dx}}\left[a x^{2}+b x+c\right]=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{ax} x^{2}\right)+\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{bx})+\frac{\mathrm{d}}{\mathrm{dx}}(\mathrm{c})=\mathrm{a} \cdot \frac{d}{d x}\left(\mathrm{x}^{2}\right)+\mathrm{b} \cdot \frac{d}{d x}(\mathrm{x})+\frac{d}{d x}(\mathrm{c})=\mathrm{a} \cdot 2 \mathrm{x}+\mathrm{b} \cdot 1+0=2 \mathrm{ax}+\mathrm{bx}+0$
Ex: $\frac{\mathrm{d}}{\mathrm{dx}}\left[3 \mathrm{x}^{2}+5 \mathrm{x}-2\right]=\frac{\mathrm{d}}{\mathrm{dx}}\left(3 \mathrm{x}^{2}\right)+\frac{\mathrm{d}}{\mathrm{dx}}(5 \mathrm{x})-\frac{\mathrm{d}}{\mathrm{dx}}(2)=3 \cdot \frac{d}{d x}\left(\mathrm{x}^{2}\right)+5 \cdot \frac{d}{d x}(\mathrm{x})-\frac{d}{d x}(2)=3 \cdot 2 \mathrm{x}+5.1-\mathrm{o}=6 \mathrm{x}+5$.
Ex: $\frac{d}{d x}\left[a^{x}+x^{a}+\alpha^{a}\right]=\frac{d}{d x}\left(a^{x}\right)+\frac{d}{d x}\left(x^{a}\right)+\frac{d}{d x}\left(a^{a}\right)=a^{x} . \log a+a \cdot x^{(a-1)}+0$.
Let $f(x)=U \& g(x)=V ; \quad$ PRODUCT RULE: $\frac{d}{d x}[U \times V]=U . \frac{d}{d x}[V]+V \cdot \frac{d}{d x}[U]$
Ex: $\frac{d}{d x}\left(2^{x} \cdot x^{5}\right)=2^{x} \cdot \frac{d}{d x}\left(x^{5}\right)+x^{5} \cdot \frac{d}{d x}\left(2^{x}\right)=2^{x} \cdot\left(5 x^{4}\right)+x^{5} \cdot\left(2^{x} \cdot \log 2\right)=2^{x} \cdot x^{4}[5+x \cdot \log 2]$
$E x: \frac{d}{d x}\left(2^{x} \cdot \log x\right)=2^{x} \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}\left(2^{x}\right)=2^{x} \cdot\left(\frac{1}{x}\right)+\log x\left(2^{x} \cdot \log 2\right)=2^{x}\left[\left[\frac{1}{x}\right)+\log x \cdot \log 2\right]$
$E x: \frac{d}{d x}\left(x^{2} \cdot \log x\right)=x^{2} \cdot \frac{d}{d x}(\log x)+\log x \cdot \frac{d}{d x}\left(x^{2}\right)=x^{2} \cdot\left(\frac{1}{x}\right)+\log x \cdot(2 x)=x+2 x \cdot \log x=x(1+2 \cdot \log x)$

QUOTIENT RULE: $\frac{d}{d x}\left[\frac{U}{V}\right]=\frac{V \cdot \frac{d}{d x}[U]-U \cdot \frac{d}{d x}[V]}{V^{2}}$
$E x: \frac{d}{d x} \frac{e^{x}}{\log x}=\frac{\log x \cdot \frac{d}{d x}\left(e^{x}\right)-e^{x} \cdot \frac{d}{d x}(\log x)}{(\log x)^{2}}=\frac{\log x \cdot\left(e^{x}\right)-e^{x} \cdot \frac{1}{x}}{(\log x)^{2}}=\frac{e^{x}\left[\log x-\frac{1}{x}\right]}{(\log x)^{2}}$
$E x: \frac{d}{d x}\left(\frac{x^{2}}{e^{x}}\right)=\frac{e^{x} \cdot \frac{d}{d x}\left(x^{2}\right)-x^{2} \cdot \frac{d}{d x}\left(e^{x}\right)}{\left(e^{x}\right)^{2}}=\frac{e^{x} \cdot 2 x-x^{2} \cdot\left(e^{x}\right)}{\left(e^{x}\right)^{2}}=\frac{x \cdot e^{x}[2-x]}{\left(e^{x}\right)^{2}}=\frac{x[2-x]}{e^{x}}$
$E x: \frac{\mathrm{d}}{\mathrm{dx}} \frac{3-5 x}{3+5 x}=\frac{(3+5 x) \frac{d}{d x}(3-5 x)-(3-5 x) \frac{d}{d x}(3+5 x)}{(3+5 x)^{2}}=\frac{(3+5 x)(-5)-(3-5 x)(5)}{(3+5 x)^{2}}$
$=\frac{[-15-25 x]-[15-25 x]}{(3+5 x)^{2}}=\frac{[-15-25 x]-15+25 x]}{(3+5 x)^{2}}=\frac{-30}{(3+5 \mathrm{x})^{2}}$
"DERIVATIVE OF ONE FUNCTION" WITH RESPECT TO "ANOTHER FUNCTION".
Let $f(x)$ be one function \& $g(x)$ be another function, then Depivative of $f(x)$ w.p.t $g(x)=\frac{\frac{d}{d x} f(x)}{\frac{d}{d x} g(x)}$
Ex: Differentiate ${ }^{6} \log x^{9}$ w.r.t $\left(x^{2}\right)$.
Ans: $\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{\frac{d}{d x} \log x}{\frac{d}{d x} x^{2}}=\frac{\frac{1}{x}}{2 x}=\frac{1}{2 x^{2}}$.
Ex: Differentiate ( $x^{2}$ ) w.r.t $e^{x}$.
Ans: $\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{\frac{d}{d x} x^{2}}{\frac{d}{d x} e^{x}}=\frac{2 x}{e^{x}}$.
Ex: Differentiate ( $a^{x}$ ) w.r.t $\log x$.
Ans: $\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{\frac{d}{d x} a^{x}}{\frac{d}{d x} \log x}=\frac{a^{x} \cdot \log a}{\frac{1}{x}}=x \cdot a^{x} \cdot \log a$

## CHAIN RULE

We have studied the following formulae eapliep:

| $\mathbf{f}(\mathbf{x})$ | Depivative |
| :---: | :---: |
| $(x)^{n}$ | $n \cdot x^{(n-1)}$ |
| $e^{x}$ | $e^{x}$ |
| $a^{x}$ | $a^{x} \cdot \log a$ |
| $\log x$ | $\frac{1}{x}$ |
| $\sqrt{x}$ | $\frac{1}{2 \sqrt{x}}$ |
| $x$ | 1 |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

PC NOTE: $\Rightarrow$ If there is anything other than ' $x$ ' in the above formulae; Take it as ' $y$ ' \& use the same rule (replace $x$ with ' $y$ ' in the formula \& multiply it with additional $\mathrm{dy} / \mathrm{dx}$.

So, the above formulae will look like this:

| $f(x)$ | Derivative |
| :---: | :---: |
| $(y)^{n}$ | $n \cdot y^{(n-1)} \cdot \frac{d y}{d x}$ |
| $e^{y}$ | $e^{y} \cdot \frac{d y}{d x}$ |
| $a^{y}$ | $a^{y} \cdot \log a \cdot \frac{d y}{d x}$ |
| $\log y$ | $\frac{1}{y} \cdot \frac{d y}{d x}$ |
| $\sqrt{y}$ | $\frac{1}{2 \sqrt{y}} \cdot \frac{d y}{d x}$ |
| $y$ | $1 \cdot \frac{d y}{d x}=\frac{d y}{d x}$ |


| SOLVED EXAMPLES | HOMEWORK QUESTIONS |
| :---: | :---: |
| CQ1: Find $\frac{d}{d x}\left(3 x^{3}-5 x^{2}+8\right)^{3}$. <br> Ans: Referping formula 1, we see that $y=\left(3 x^{3}-5 x^{2}+8\right) ; \frac{d y}{d x}=9 x^{2}-10 x$. Thus $\frac{d}{d x}\left(3 x^{3}-5 x^{2}+8\right)^{3}=3\left(3 x^{3}-5 x^{2}+8\right)^{2}\left(9 x^{2}-10 x\right)$. | 1) $\frac{d}{d x}\left[(\log \mathrm{x})^{2}\right]$ <br> 2) $\frac{d}{d x}\left[\left(6 x^{5}-7 x^{3}+9\right)^{-1 / 3}\right]$ |
| CQ2: $\frac{d}{d x}\left[\mathrm{e}^{\mathrm{ax}}+\mathrm{bx}+\mathrm{c}\right]$ <br> Ans: Referping formula 2, we see that $y=\left(a x^{2}+b x+c\right) ; \frac{d y}{d x}=(2 a x+b)$ Thus $\frac{d}{d x} e^{a x^{2}+b x+c}=e^{a x^{2}+b x+c} .(2 a x+b)$ | 3) $\frac{d}{d x}\left[e^{(2 \log x)}\right]$ <br> 4) $\frac{d}{d x} e^{(x-y)}$ <br> 5) $\frac{d}{d x}\left[e^{(x y)}\right]$ |
| CQ3: $\frac{\mathrm{d}}{\mathrm{dx}}\left[\mathrm{a}^{\log \mathrm{x}}\right]$ <br> Ans: Referping formula 3 , we see that $y=(\log x) ; \frac{d y}{d x}=\frac{1}{x}$ <br> Thus $\frac{d}{d x}\left[a^{\log x}\right]=\left[a^{\log x}\right] . \log a \cdot \frac{1}{x}$ | 6) $\frac{d}{d x} \mathrm{a}^{\mathrm{x}^{2}}$ <br> 7) $\frac{d}{d x} 5^{(3 x+2)}$ |
| CQ4: $\frac{d}{d x}\left[\log \left(1+x^{2}\right)\right]$ <br> Ans: Referping formula 4, we see that $y=\left(1+x^{2}\right) ; \frac{d y}{d x}=2 x$. <br> Thus $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(1+\mathrm{x}^{2}\right)\right]=\frac{1}{1+\mathrm{x}^{2}} .2 \mathrm{x}=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$ | 8) $\frac{d}{d x}[\log (5 \mathrm{x})]$ <br> 9) $\frac{d}{d x}\left[\log \left(x . \mathrm{e}^{\mathrm{x}}\right)\right]$ |

CQ5: Find $\frac{d}{d x} \sqrt{x+\sqrt{x}}$.
Ans: Referping formula 5 . We see that $y=x+\sqrt{x} ; \& \frac{d y}{d x}=1+\frac{1}{2 \sqrt{x}}$ Thus $\frac{d(\sqrt{x+\sqrt{x}})}{d x}=\frac{1}{2 \sqrt{y}} \cdot \frac{d y}{d x}=\frac{1}{2 \sqrt{x+\sqrt{x}}} .\left[1+\frac{1}{2 \sqrt{x}}\right]$
10) $\frac{d}{d x}\left[\sqrt{\left(1+x^{2}\right)}\right]$
11) $\frac{d}{d x} \sqrt{(\log x)}$

## IMPLICIT FUNCTIONS

- A function in the form $f(x, y)=0$.
- In Implicit function, $y$ cannot be directly defined as a function of $x$.

Ex: $5 x^{2} y^{2}+x^{2} y+x y^{2}+x+y=0$
PC Note: In Implicit function, $x \& y$ are related in such a way that neither ${ }^{6} x$ ' nor ${ }^{6} y^{9}$ cannot be expressed in terms of each other.

## STEPS TO DIFFERENTIATE IMPLICIT FUNCTION

1. Differentiate both sides w.r.t " $x$ '. [If RHS $=0$, Its derivative will also be 0]
2. All the terms having $\frac{d y}{d x}$ shall be brought to one side $\&$ all other terms (not having $\frac{d y}{d x}$ ) shall be taken to another side.
3. Take $\frac{d y}{d x}$ common from all the terms having $\frac{d y}{d x}$ \& remainder shall be sent to another side (division)

CQ6: If $x^{3}-2 x^{2} y^{2}+5 x+y+5=0$, find $\frac{d y}{d x}$.
Ans: Differentiating both sides w.r.t $x$, we get
$\Rightarrow 3 x^{2}-2 \times \frac{d}{d x}\left[x^{2} \times y^{2}\right]+5+\frac{d y}{d x}+\mathrm{O}=0 ; \quad \Rightarrow 3 x^{2}-2\left[x^{2} \cdot \frac{d}{d x}\left(y^{2}\right)+y^{2} \cdot \frac{d}{d x}\left(x^{2}\right)\right]+5+\frac{d y}{d x}=0$
$\Rightarrow 3 x^{2}-2\left[x^{2} .2 \mathrm{y} \frac{d y}{d x}+y^{2} \cdot 2 x\right]+5+\frac{d y}{d x}=0 \quad \Rightarrow 3 x^{2}-4 x^{2} y \cdot \frac{d y}{d x}-4 x y^{2}+5+\frac{d y}{d x}=0$
Taking all the terms containing $\frac{d y}{d x}$ to one side \& other terms on another side,
$\Rightarrow 3 x^{2}-4 x y^{2}+5=4 x^{2} y \cdot \frac{d y}{d x}-\frac{d y}{d x} \quad \Rightarrow \frac{d y}{d x}\left(4 x^{2} y-1\right)=3 x^{2}-4 x y^{2}+5: \quad \frac{d y}{d x}=\frac{\mathbf{3} x^{2}-\mathbf{4 x} \boldsymbol{y}^{2}+\mathbf{5}}{\left(\mathbf{4} \boldsymbol{x}^{2} \boldsymbol{y}-\mathbf{1}\right)}$

## PARAMETRIC FUNCTIONS

In parametric function, both ' $x$ ' \& ' $y$ ' are expressed in terms of a third variable (generally $t$ ).

$$
\frac{d y}{d x}=\frac{d y}{d t} \times \frac{d t}{d x}
$$

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

PC Note: While calculating $\frac{d y}{d x}$, replace ' $t$ ' with ' $x$ ' \& use the normal rule \& then again replace ' $x$ ' with 't'.

$$
\frac{d y}{d x}=\frac{\text { " Derivative of } y " \text { after applying the above note }}{\text { " Derivative of } x " \text { after applying the above note }}
$$

Ex: Given $x=2 t+5 ; y=t^{2}-2$, find $\frac{d y}{d x}$.
Ans: $x^{\rho}=2 ; \quad y^{\prime}=2 t ; \frac{d y}{d x}=\frac{\text { Derivative of } y}{\text { Derivative of } \mathrm{x}}=\frac{2 t}{2}=t$.
Ex: If $u=\left(x^{3}+1\right)^{5}$ and $y=\left(x^{3}+7\right)$ then $\frac{d u}{d y}=$
Ans: $u^{9}=5\left(x^{3}+1\right)^{4} .3 x^{2} ; \quad y^{9}=3 x^{2} ;$
$\frac{d u}{d y}=\frac{\text { Derivative of } \mathrm{u}}{\text { Derivative of } \mathrm{y}}=\frac{5\left(\mathrm{x}^{3}+1\right)^{4} \cdot 3 \mathrm{x}^{2}}{3 \mathrm{x}^{2}}=5\left(\mathrm{x}^{3}+1\right)^{4}$.
HW. $x=a^{3} ; \quad y=\frac{a}{t^{3}} ;$ find $\frac{d y}{d x}$.
Ex: Given $x=a t^{2} ; y=2 a t$; find $\frac{d y}{d x}$.
Ans: $x^{\prime}=2 a t ; y^{\prime}=2 a ; \frac{d y}{d x}=\frac{\text { Derivative of } y}{\text { Derivative of } x}=\frac{2 a}{2 a t}=\frac{1}{\mathbf{t}}$.
Ex: If $x=3 t^{2}-1, y=t^{3}$, then $\frac{d y}{d x}=$
Ans: $\frac{\mathrm{dy}}{\mathrm{dt}}=3 \mathrm{t}^{2} ; \quad \frac{\mathrm{dx}}{\mathrm{dt}}=6 \mathrm{t} ; \quad \quad \frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{6 \mathrm{t}}$ $\frac{d y}{d x}=\frac{\mathrm{dy}}{\mathrm{dt}} \times \frac{\mathrm{dt}}{\mathrm{dx}}{ }^{9} \quad=3 \mathrm{t}^{2} \times \frac{1}{6 \mathrm{t}}=\frac{\mathrm{t}}{2}$
[Ans: $\frac{-1}{\mathrm{t}^{6}}$ ]

HW. If $x=\frac{1-t^{2}}{1+t^{2}}{ }^{2} \quad y=\frac{2 t}{1+t^{2}}$ then $\frac{d y}{d x} @ t=1$ is
[Ans: $\frac{d y}{d x}=\frac{\mathrm{t}^{2}-1}{2 \mathrm{t}}=0$ ]

## LOGARITHMIC DIFFERENTIATION

The process of finding derivative by taking logarithm of both sides \& then applying antilog is called logarithmic differentiation.

## When to use Logapithmic Differentiation:

1. The given function involves function in its power. [Ex: $x^{x}$ since neither $x^{n}$ nor $a^{x}$ formula is applicable in this case].
2. The given function is the product of number of functions.
[Ex: $\left.x^{y}+y^{x}\right]$
3. If using basic formulae will consume more time. [Depends on judgment of the student].

CQ7: Differentiate $x^{x}$ w.p.t ' $x$ '.
Ans: Let $y=x^{x} ; \quad$ Taking $\log$ of both sides, we get $\log y=\log x^{x}$
$\Rightarrow$ Log $y=x \cdot \log x\left[u s i n g \log m^{n}=n . \log m\right]$
Differentiating w.p.t x we get $\frac{1}{y} \times \frac{d y}{d x}=\mathrm{x} \times \frac{1}{x}+\log \times 1$
$\Rightarrow \frac{d y}{d x}=y[1+\log x] \& \quad \frac{d y}{d x}=x^{x}[1+\log \mathrm{x}]$.

## SOME ADVANCED QUESTIONS

CQ8: Differentiate $x^{x^{x}}$ w.r.t ${ }^{6} x^{\text {' }}$.
Ans: Let $y=x^{x^{x}} ; \quad$ Taking $\log$ of both sides, we get $\log y=\log x^{x^{x}}$
$\log y=x^{x} \cdot \log x \quad\left[\right.$ Using $\left.\log m^{n}=n \cdot \log m\right]$
Differentiating w.r.t $\times$ we get $\frac{1}{y} \times \frac{d y}{d x}=x^{x} \times \frac{1}{x}+\log \mathrm{x}\left[x^{x}(1+\log x)\right]$;
$\Rightarrow \frac{d y}{d x}=y\left[x^{x}\left\{\frac{1}{x}+\log x .(1+\log x)\right\}\right] \&$ thus $\frac{d y}{d x}=x^{x^{x}} \times x^{x}\left[\frac{1}{x}+\log x .(1+\log x)\right]$
CQ9: If $x^{m} \cdot y^{n}=(x+y)^{m+n}$, find $\frac{d y}{d x}$
Ans: Taking log of Both Sides, $\log \left(x^{m} \cdot y^{n}\right)=\log (x+y)^{m+n}$
$\Rightarrow \log x^{m}+\log y^{n}=\log (x+y)^{m+n}$ [Using $\left.\log m n=\log m+\log n\right]$
$\Rightarrow m \cdot \log x+n \cdot \log y=(m+n) \cdot \log (x+y)\left[\right.$ using $\left.\log m^{n}=n \cdot \log m\right]$
Differentiating both sides w.r.t ' $x$ ' we get
$\Rightarrow m \cdot \frac{1}{x}+\mathrm{n} \cdot \frac{1}{y} \cdot \frac{d y}{d x}=(m+n) \times \frac{1}{(x+y)}\left[1+\frac{d y}{d x}\right] ; \quad \Rightarrow \frac{m}{x}+\frac{n}{y} \cdot \frac{d x}{d y}=\frac{m+n}{x+y}+\frac{m+n}{x+y} \cdot \frac{d y}{d x}$
$\Rightarrow \frac{n}{y} \cdot \frac{d x}{d y}-\left(\frac{m+n}{x+y}\right) \times \frac{d y}{d x}=\frac{(m+n)}{x+y}-\frac{m}{x} ; \quad \Rightarrow \frac{d y}{d x}\left[\frac{n}{y}-\frac{m+n}{x+y}\right]=\frac{(m+n)}{x+y}-\frac{m}{x}$
$\Rightarrow \frac{d y}{d x}\left[\frac{n(x+y)-(m+n) y}{(x+y)(y)}\right]=\frac{(m+n) x-m(x+y)}{x(x+y)} ;$
$\Rightarrow \frac{d y}{d x}=\frac{\frac{m x+n x-m x-m y}{x}}{\frac{n x+n y-m y-n y}{y}}=\frac{\frac{n x-m y}{x}}{\frac{n x-m y}{y}}$
\& thus, $\frac{d y}{d x}=\frac{y}{x}$.

CQ10: If $y=\sqrt{\frac{1-x}{1+x}}$ show that $\left(1-x^{2}\right) \frac{d y}{d x}+y=0$
Ans: Taking log of both sides we get, $\log y=\frac{1}{2}[\log (1-x)-\log (1+x)]$
Differentiating both sides w.r.t ' $x$ ', we have,
$\frac{1}{y} \frac{d y}{d x}=\frac{1}{2} \frac{d}{d x}[\log (1-x)-\log (1+x)]=\frac{1}{2}\left(\frac{-1}{1-x}-\frac{1}{1+x}\right)=-\frac{1}{1-x^{2}}$
By cross - multiplication $\left(1-x^{2}\right) \frac{d y}{d x}=-y ; \quad\left(1-x^{2}\right) \frac{d y}{d x}+y=0$.

CQ11: If $x^{y}=e^{x-y}$ prove that $\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}$
Ans: Taking $\log$ of both sides, we have $y \cdot \log x=(x-y) \log e \quad[\log e=1]$
$\Rightarrow y \cdot \log x=x-y ; \quad \Rightarrow y \cdot \log x+y=x ; \quad \Rightarrow y(\log x+1)=x \quad \Rightarrow y=\frac{x}{(\log x+1)}$
$\Rightarrow$ Differentiating w.r.t x we get $\frac{d y}{d x}=\frac{(\log \mathrm{x}+1)[1]-(x[1 / x])}{(\log \mathrm{x}+1)^{2}}$;
$\Rightarrow \frac{d y}{d x}=\frac{(\log x+1-1)}{(\log x+1)^{2}}=\frac{\log x}{(1+\log x)^{2}}$

CQ12: $\frac{\mathrm{d}}{\mathrm{dx}}\left[\log \left(x+\sqrt{x^{2}+a^{2}}\right)\right]$
Ans: Let $y=\left(x+\sqrt{x^{2}+a^{2}}\right)$
Thus $\frac{\mathrm{dy}}{\mathrm{dx}}=\left[1+\frac{1}{2 \sqrt{x^{2}+a^{2}}} \cdot \frac{\mathrm{~d}}{\mathrm{dx}}\left(x^{2}+a^{2}\right]=\left[1+\frac{1}{2 \sqrt{x^{2}+a^{2}}} \cdot 2 \mathrm{x}\right]=\left[1+\frac{x}{\sqrt{x^{2}+a^{2}}}\right]=\frac{\sqrt{x^{2}+a^{2}}+x}{\sqrt{x^{2}+a^{2}}}=\frac{\mathrm{y}}{\sqrt{x^{2}+a^{2}}}\right.$
Thus $\frac{d y}{d x}=\frac{\mathrm{y}}{\sqrt{x^{2}+a^{2}}}$
Now, $\frac{d}{d x}[\log y]=\frac{1}{y} \times \frac{d y}{d x^{3}} \quad=\frac{1}{y} \times \frac{\mathrm{y}}{\sqrt{x^{2}+a^{2}}}=\frac{1}{\sqrt{x^{2}+a^{2}}}$

## HIGHER ORDER DERIVATIVE

- $\frac{d y}{d x}$ is known as first order derivative of ' $y$ ' w.r.t ' $x$ '.
- If we differentiate $\frac{d y}{d x}$ again w.p.t ' $x$ ', we will get $2^{\text {nd }}$ order derivative of ' $y$ ' w.r.t. ' $x$ ', written as $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$.

CQ13: If $y=a e^{m x}+b e^{-m x}$ prove that $\frac{d^{2} y}{d x^{2}}=m^{2} y$.
Ans: $\frac{d y}{d x}=\frac{d}{d x}\left(a e^{m x}+b e^{-m x}\right)=a m e^{m x}-b m e^{-m x}$
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(a m e^{m x}-b m e^{-m x}\right)$
$=a m^{2} e^{m x}+b m^{2} e^{-m x}=m^{2}\left(a e^{m x}+b e^{-m x}\right)=m^{2} y$.
CQ14: Find third order derivative of $\log \left[(3 x+4)^{1 / 2}\right]$
Ans: $y^{\prime}=\frac{1}{2} \cdot \frac{1}{(3 x+4)} \cdot 3=\frac{3}{2(3 x+4)}$
$\left.y^{\prime \prime}=\frac{3}{2} \cdot \frac{d}{d x}\left[\frac{1}{(3 x+4)}\right]=\frac{3}{2} \cdot(-1) \frac{3}{(3 x+4)^{2}}\right]=-\frac{3}{2} \cdot \frac{3}{(3 x+4)^{2}}=-\frac{9}{2} \cdot \frac{1}{(3 x+4)^{2}}$
$y^{\prime \prime \prime}=-\frac{9}{2} \cdot \frac{d}{d x}\left[\frac{1}{(3 x+4)^{2}}\right]=-\frac{9}{2} \cdot(-2) \cdot\left[\frac{3}{(3 x+4)^{3}}\right]=\frac{27}{(3 x+4)^{3}}$

CQ15: Find the second differential coefficient of $y_{9}=x^{2} \log x$
Ans: $\frac{d y}{d x}=x^{2} \cdot \frac{1}{x}+\log x .2 x=x+2 x \cdot \log x$
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}[x+2 x \cdot \log x]$
$=1+2 \cdot \frac{d}{d x}[x \cdot \log x] \quad \Rightarrow 1+2\left[x \cdot \frac{1}{x}+\log x \cdot 1\right] \quad \Rightarrow 1+2[1+\log x] \quad \Rightarrow 1+2+2 \log x$
$=3+2 \log x=3+\log x^{2}$
CQ16: If $f(x)=x^{3}-2 x ; 2^{\text {nd }}$ order derivative of $f(x)$ is $\qquad$ -.

Ans: $\frac{d y}{d x}=3 x^{2}-2 ; \quad \frac{d^{2} y}{d^{2}}=6 x$.
CQ17: If $x=a t^{2}$ and $y=2 a t$ then $\frac{d^{2} y}{d x^{2}}=$
Ans: Here $x=a t^{2}$ and $y=2 a t$. Differentiating, we get:
$\Rightarrow \frac{d x}{d t}=2 a t$
$\& \frac{d y}{d t}=2 \mathrm{a} ;$
$\Rightarrow \frac{d x}{d y}=\frac{d y / d t}{d x / d t}=\frac{2 a}{2 a t}=\frac{1}{t}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{d}{d x}\left(\frac{1}{t}\right)=\frac{1}{t^{2}} \frac{d t}{d x}=-\frac{1}{t^{2}} \times \frac{1}{2 a t}$
$\left[\operatorname{From}(1), \frac{d x}{d t}=2 a t: \cdot \frac{d t}{d x}=\frac{1}{2 a t}\right]$ $\frac{d^{2} y}{d x^{2}}=\frac{1}{2 a t^{3}}$

## APPLICATIONS OF DIFFERENTIAL CALCULUS

* Gradient (slope) of the curve is given by $\frac{d y}{d x}$.

CQ18: Find the gradient of the curve $y=3 x^{2}-5 x+4$ at the point $(1,2)$.
Ans: $\frac{\mathrm{dy}}{\mathrm{dx}}=6 x-5=6(1)-5=1$. Thus, gradient of the curve at $(1,2)$ is 1 .

* To find out Minima \& Maxima of the function.

Steps to find out Minima \& Maxima of the function:

1. Find $f^{\prime}(x)$.
2. Put $f^{\prime}(x)=0$ \& obtain the values of ${ }^{6} x^{\prime}$ from the equation formed.
3. Find $f^{\prime \prime}(x)$.
4. Put the values of ${ }^{6} x^{\prime}$ obtained in step 2 in $f^{9}(x)$.

- If result $>0$, then that value of ' $x$ ' is Minima.
- If result $<0$, then that value of ' $x$ ' is Maxima.
- If Result $=0$, it means $2^{\text {nd }}$ order derivative test failed.

We will use $1^{\text {st }}$ order derivative test. If it also fails, then such point is neither minima nor maxima.

Such point is called "Point of Inflexion".

PC Note: By Putting Minima in $f(x)$, we will get the minimum value of the function.
By Putting Maxima in $f(x)$, we will get the maximum value of the function.

Q19. Find the minimum \& maximum value of $f(x)=x^{3}+2 x^{2}-4 x+6$.
Ans: Step 1: $f^{\prime}(x)=3 x^{2}+4 x-4$.
Step 2: $3 x^{2}+4 x-4=0$

$$
\Rightarrow x=-2, \frac{2}{3}
$$

Step 3: $f{ }^{n}(x)=6 x+4$.
Step 4: Putting $x=-2$ in $f^{\prime \prime}(x) \Rightarrow 6(-2)+4=-12+4=-8$ which is less than 0 .
Thus $x=-2$ is Minima.
Putting $x=\frac{2}{3}$ in $f^{\prime \prime}(x) \Rightarrow 6\left(\frac{2}{3}\right)+4=4+4=8$ which is greater than 0 . Thus $x=\frac{2}{3}$ is Maxima
$\Rightarrow$ Minimum value of function $=(-2)^{3}+2(-2)^{2}-4(-2)+6=-8+8+8+6=14$.
$\Rightarrow$ Maximum value of function $=\left(\frac{2}{3}\right)^{3}+2\left(\frac{2}{3}\right)^{2}-4\left(\frac{2}{3}\right)+6=\frac{8}{27}+\frac{8}{9}-\frac{8}{3}+6=\frac{122}{27}$.

Total Cost Function C(x): Total cost consists of two parts (i) Variable Cost (ii) Fixed Cost.
Variable cost depends upon the number of units produced (i.e value of $x$ ) whereas fixed cost is independent of the level of output $x$.
> Total Cost $C(x)=V C+F C=V(x)+F(x)$
$>$ Average cost $=\frac{\text { Total Cost }}{\text { No.of units }}=\frac{C(x)}{x}$.
Total Revenue Function $\mathbf{R}(\mathbf{x})$ : It is the amount received by selling ' $x$ ' units @ Rs. 'p' per unit.
> Total Revenue $R(x)=p \times x$.

- Average Revenue $=\frac{\text { Total Revenue }}{\text { No.of units }}=\frac{R(x)}{x}$
* Ppofit Function $\mathrm{P}(\mathrm{x})$ : Revenue Function - Cost Function $=\mathbf{R}(\mathrm{x})-\mathbf{C}(\mathrm{x})$.
* Break - Even Point (BEP): It is the point at which revenue $=$ cost.
* Marginal Cost (MC): Cost of producing an additional unit.
[@ BEP: $R(x)=C(x)]$.
$M C=\frac{d}{d x}[C(x)]$.
* Marginal Revenue (MR): Revenue from selling an additional unit.
$M R=\frac{d}{d x}[R(x)]$.
* Marginal Profit (MP): Profit from selling an additional unit.
$M P=\frac{d}{d x}[P(x)]$
* Marginal Propensity to Consume (MPC): The consumption function $C=F(Y)$ expresses the relationship between the total consumption and total Income (Y), then the marginal propensity to consume is defined as the rate of Change consumption per unit change in Income i.e. $\frac{\mathrm{dC}}{\mathrm{dy}}$.
By consumption we mean expenditure incurped in on Consumption.
* Marginal Propensity to save (MPS): Saving (S) is the difference between income (I) \& consumption (c) given by $\frac{\mathrm{dS}}{\mathrm{dY}}$.

CQ20: Total cost of producing 20 items of a commodity is Rs. 205, while total cost of producing 10 items is Rs. 135. Assuming that the cost function is a linear function, find the cost function and marginal cost function.
Ans: Let cost function be $C(x)=a x+b$ [ $x$ being no. of items and $a, b$ being constants] - (i)
Given, $C(x)=205$ for $x=20$ and $C(x)=135$ for $x=10$.
Putting these values in (i), 205 = 20a+b-(ii) \& $135=10 a+b-$ (iii)
(ii) - (iii) gives, $70=10 a$ or, $a=7$

From (iii), $b=135-10 a=135-70=65$
Required cost function is given by $C(x)=7 x+65$. Marginal cost function $=\frac{d}{d x} \mathbf{C}(x)=7$.
CQ21: A company decided to set up a small production plant for manufacturing electronic clocks. The total cost for initial set up (fixed cost) is Rs. 9 lacs. The additional cost for producing each clock is Rs. 300. Each clock is sold at Rs. 750. Duping the first month, 1,500 clocks are produced and sold.
(i) What profit or loss company incurs during the first month, when all the 1,500 clocks ape sold?
(ii) Determine the break-even point.

Ans: Cost function $C(x)$ for ' $x$ ' clocks $=9,00,000(F C)+300 x$ (VC).
Revenue function $R(x)$ from ' $x$ ' clocks $=p \times x=750 \times x=750 x$.
(i) Profit function $P(x)=R(x)-C(x)=750 x-[9,00,000+300 x]=450 x-9,00,000$.

Thus, when all 1500 clocks are sold $=450 \times 1500-9,00,000=-$ Rs. $2,25,000=$ Loss of Rs. $2,25,000$
(ii) At BEP, $C(x)=R(x)$;
$\Rightarrow 9,00,000+300 x=750 x ; \quad \Rightarrow 450 x=9,00,000 \quad \Rightarrow x=2,000$ units.
Hence, 2000 clocks have to be sold to achieve the break-even point.
CQ22: A computer software company wishes to start the production of floppy disks. It was observed that the company had to spend Rs. 2 lakhs for the technical informations. The cost of setting up the machine is Rs. 88,000 and the cost of producing each unit is Rs. 30, while each floppy could be sold at Rs. 45. Find:
(i) Total cost function for producing $x$ floppies; \& (ii) Break- Even point.

Ans: (i) Total Cost function $C(x)=F C+V C=2,88,000+30 x$. Revenue function $R(x)=p \times x=45 x$. (ii) At BEP, $C(x)=R(x)$;
$\Rightarrow 2,88,000+30 x=45 x ; \quad \Rightarrow 15 x=2,88,000 \quad \Rightarrow x=19,200$ units.
Hence, 19,200 units have to be sold to achieve the break-even point.

CQ23: The total cost function of a firm is $C(x)=\frac{x^{3}}{3}-5 x^{2}+28 x+10$, where $C$ is the total cost and $x$ is output. A tax at Rs. 2 per unit of output is imposed and the producer adds it to his cost. If the market demand function is given by $p=2530-5 x$, where $p$ is price p.u of output, find (i) Profit maximizing output \& (ii) Price for maximum profit.

## Ans:

After imposition of tax of Rs. 2 per unit, the total new cost is $C(x)=\frac{x^{3}}{3}-5 x^{2}+28 x+10+2 x$;
Revenue Function $R(x)=p \times x=(2530-5 x) \times x=2530 x-5 x^{2}$;
(i) $P(x)=R(x)-C(x)=\left[2530 x-5 x^{2}\right]-\left[\frac{x^{3}}{3}-5 x^{2}+28 x+10+2 x\right]=-\frac{x^{3}}{3}+2500 x-10$.

We know that $P(x)=$ profit per unit $\& P^{\prime}(x)$ is change in profit for additional unit.
We want profit maximizing output [i.e output at which profit is maximum] \& $P^{\prime}(x)=0$.
$P^{\prime}(x)=\frac{-3 x^{2}}{3}+2500=-x^{2}+2500$.
Putting $P^{\prime}(x)=0$, we get ${ }^{6} x^{\prime}= \pm 50$. Since output cannot be negative, we consider $x=50$. $P{ }^{\prime 9}(x)=-2 x$.
Putting the value of ' $x^{\prime}=50$ in $P^{\prime \prime}(x)$, we get $-2.50=-100$ which is less than ${ }^{6} O^{\prime}$.
Thus $x=50$ is maxima. Thus, the profit is maximum at $x=50$.
(ii) Putting $x=50$ in demand function, the corpesponding price is $p=2530-5 \times 50=$ Rs. 2280 .

Price for maximum profit = Rs. 2280.
CQ24: The cost function of a company is given by: $C(x)=100 x-8 x^{2}+\frac{x^{3}}{3}$
Find the level of output at which: (i) Marginal cost is minimum\& (ii) Average cost is minimum.
Ans: Average Cost $A(x)=\frac{\mathbf{C}(\mathbf{x})}{\mathbf{x}}=\left[100 x-8 x^{2}+\frac{x^{3}}{3}\right] / x=100-8 x+\frac{x^{2}}{3}$.
$A^{\prime}(x)=-8+\frac{2 x}{3} ; \quad \& \quad A^{\prime 9}(x)=\frac{2}{3}{ }^{9}$
Marginal Cost $M(x)=C^{\prime}(x)=\frac{d}{d x}\left[100 x-8 x^{2}+\frac{x^{3}}{3}\right]=100-16 x+x^{2}$
$M^{\prime}(x)=-16+2 x ; \quad$ \& $\quad M^{9}(x)=2$.
(i) Marginal Cost $M(x)$ is Minimum or Maximum when $M^{\prime}(x)=0 . \quad-16+2 x=0 \Rightarrow \mathbf{x}=\mathbf{8}$.

Putting $x=2$ in $M^{\circ 9}(x)$, we get ${ }^{6} 2$ ' which is greater than 0 , thus $x=2$ is Minima.
Thus, Marginal cost is minimum at $x=8$.
(ii) Average Cost $A(x)$ is Minimum or Maximum when $A^{\prime}(x)=0 . \quad-8+\frac{2 x}{3}=0 \Rightarrow x=12$.

Putting $x=12$ in $A^{\prime \prime}(x)$, we get $\frac{2}{3}$ which is greater than $O$, thus $x=12$ is Minima.
Thus, Average cost is minimum at $x=12$.
Minimum Average Cost $=100-8(12)+\frac{(12)^{2}}{3}=100-96+144 / 3=52$.

Space fop PC Class Note:

## DIFFERENTIAL CALCULUS - QUESTION BANK

| SN | 8A. DIFFERENCIAL CALCULAS | Ans |
| :---: | :---: | :---: |
| Q1 | $D_{x y}$ represents $\qquad$ <br> (a) $d y / d x$ <br> (b) $d x / d y$ <br> (c) $f(x)$ <br> (d) $f(y)$ | A |
| Q2 | If $y=5 x^{2}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $10 x$ <br> (b) $5 x$ <br> (c) $2 x$ <br> (d) None | A |
| Q3 | If $y=x^{3}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\frac{x^{4}}{4}$ <br> (b) $-\frac{x^{4}}{4}$ <br> (c) $3 x^{2}$ <br> (d) $-3 x^{2}$ | C |
| Q4 | The derivative of $\frac{x^{3}}{2}(x>0)$ is $\qquad$ . <br> (a) $2 \frac{x^{2}}{3}$ <br> (b) $3 \frac{x^{2}}{2}$ <br> (c) $5^{2 \times / 5}$ <br> (d) $5^{5 \times / 2}$ | B |
| Q5 | Find $\frac{d y}{d x}$, when $y=10 x^{8}$ <br> (a) $80 x^{7}$ <br> (b) $10 x^{7}$ <br> (c) $80 x^{8}$ <br> (d) None | A |
| Q6 | If $f(x)=x^{k}$ and $f^{\prime}(1)=10$ the value of $k$ is $\qquad$ <br> (a) 10 <br> (b) -10 <br> (c) $1 / 10$ <br> (d) None | A |
| Q7 | If $y=-3 x^{-7 / 3}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $7 x^{-10 / 3}$ <br> (b) $-7 x^{-10 / 3}$ <br> (c) $-\frac{7}{3} x-1013$ <br> (d) None | A |
| Q8 | If $1^{\text {st }}$ order derivative of $f(x)=3 x^{2}+2$ and $f(0)=0$ then $f(2)$ is $\qquad$ <br> (a) 12 <br> (b) 21 <br> (c) 10 <br> (d) 1 | A |
| Q9 | If $y=2 x+x^{2}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $2(x+1)$ <br> (b) $2(x-1)$ <br> (c) $x+1$ <br> (d) $x-1$ | A |
| Q10 | If $y=4 x^{3}-7 x^{4}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $2 x\left(-14 x^{2}+6 x\right)$ <br> (b) $2 x\left(14 x^{2}+6 x\right)$ <br> (c) $2 x\left(14 x^{2}-6 x\right)$ <br> (d) None | A |
| Q11 | If $f(x)=x^{3}+5 x^{2}-8$ the value of 1st derivative of $f(x)$ when $x=2$ is $\qquad$ <br> (a) 32 <br> (b) 33 <br> (c) 23 <br> (d) 34 | A |
| Q12 | Differentiate $3 x^{2}+5 x-2$ with respect to $x$. <br> (a) 6 <br> (b) $6 x+5$ <br> (c) $3 x^{2}+5$ <br> (d) 5 | B |


| Q13 | $\frac{d}{d x}(x-1)(x-2)$ is equal to $\qquad$ <br> (a) $2 x-3$ <br> (b) $3 x-2$ <br> (c) 1 <br> (d) None | A |
| :---: | :---: | :---: |
| Q14 | If $y=x(x-1)(x-2)$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $3 x^{2}-6 x+2$ <br> (b) $-6 x^{2}+2$ <br> (c) $3 x^{2}+2$ <br> (d) $3 x^{3}+5$ | A |
| Q15 | The derivative of $\frac{x^{2}-1}{x}$ is $\qquad$ <br> (a) $1+\frac{1}{x^{2}}$ <br> (b) $1-\frac{1}{x^{2}}$ <br> (c) $\frac{1}{x^{2}}$ <br> (d) None | A |
| Q16 | The differential coefficients of $\frac{x^{2}-1}{x}$ is $\qquad$ <br> (a) $1+\frac{1}{x^{2}}$ <br> (b) $1-\frac{1}{x^{2}}$ <br> (c) $\frac{1}{x^{2}}$ <br> (d) None | B |
| Q17 | If $y=\left[\frac{(1-x)}{x}\right]^{2}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $2\left(x^{-3}+x^{-2}\right)$ <br> (b) $2\left(-x^{-3}+x^{-2}\right)$ <br> (c) $2\left(x^{-3}-x^{-2}\right)$ <br> (d) None | B |
| Q18 | $y=9 x^{4}-7 x^{3}+8 x^{2}-\frac{8}{x}+\frac{10}{x^{3}}$ then $\frac{d y}{d x}$ is $\qquad$ . <br> (a) $36 x^{3}-21 x^{2}+16 x+8 x^{-2}-30 x^{-4}$ <br> (b) $36 x^{3}-21 x^{2}+16 x-8 x^{-2}+30 x^{-4}$ <br> (c) $36 x^{3}+21 x^{2}+16 x+8 x^{-2}+30 x^{-4}$ <br> (d) None | A |
| Q19 | If $y=\left(3 x^{2}+1\right)\left(x^{3}+2 x\right)$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $15 x^{4}+21 x^{2}+2$ <br> (b) $15 x^{3}+21 x^{2}+2$ <br> (c) $15 x^{3}+21 x+2$ <br> (d) None | A |
| Q20 | Differentiate $y$ w.r.t. $x$ when $y=\left(x^{2}-2 x\right)\left(x^{2}+1\right)$ <br> (a) $4 x^{3}+6 x^{2}-2 x+2$ <br> (b) $4 x^{3}-6 x+2$ <br> (c) $4 x^{3}-6 x^{2}+2 x-2$ <br> (d) None | C |
| Q21 | If $f(x)=x^{2}-6 x+8$ then $f^{\prime}(5)-f^{\prime}(8)$ is equal to $\qquad$ <br> (a) $f^{\prime}(2)$ <br> (b) $3 f^{\prime}(2)$ <br> (c) $2 \mathrm{f}^{\prime}(2)$ <br> (d) None | B |
| Q22 | If $x^{2}-y^{2}+3 x-5 y=0$ then 3) $\frac{d y}{d x}$ is $\qquad$ . <br> (a) $(2 x+3)(2 Y+5)^{-1}$ <br> (b) $(2 x+3)(2 y-5)^{-1}$ <br> (c) $(2 x-3)(2 y-5)^{-1}$ <br> (d) None | A |
| Q23 | If $x^{2}+y^{2}-2 x=0$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\frac{(1-x)}{y}$ <br> (b) $\frac{(1+x)}{y}$ <br> (c) $\frac{(x-1)}{y}$ <br> (d) None | A |
| Q24 | If $y=a x^{3}+b x^{2}+c x+d$ then $\frac{d y}{d x}$ is equal to $\qquad$ <br> (a) $3 a x^{2}+2 b x+c$ <br> (b) $\frac{a x^{2}}{4}+\frac{b x^{3}}{3}+\frac{\alpha^{2}}{2}+d x$ <br> c) 0 <br> (d) None | A |


| Q25 | If $y=\left(x-x^{-1}\right)^{2}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $2 x-2 x^{-3}$ <br> (b) $2 x+2 x^{-3}$ <br> (c) $2 x+2 x^{3}$ <br> (d) $2 x-2 x^{3}$ | A |
| :---: | :---: | :---: |
| Q26 | If $y=\left(x^{1 / 3}-x^{-1 / 3}\right)$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $1-x^{-2}+x^{-2 / 3}-x^{-4 / 3}$ <br> (b) $1+x^{-2}+x^{-2 / 3}-x^{-4 / 3}$ <br> (c) $1+x^{-2}+x^{-2 / 3}+x^{-4 / 3}$ <br> (d) None | A |
| Q27 | $y=2 x^{3 / 2}\left(x^{1 / 2}+2\left(x^{1 / 2}-1\right)\right.$ then $d y / d x$ is $\qquad$ <br> (a) $4 x+5 x(x-6)^{1 / 2} x^{1 / 2}$ <br> (b) $4 x+5 x(x-3)^{1 / 2} x^{1 / 2}$ <br> (c) $4 x+5 x(x-2)^{1 / 2} x^{1 / 2}$ <br> (d) None | A |
| Q28 | Find $\frac{d y}{d x}$ of $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right)$ <br> (a) $-b^{2} x / a^{2} y$ <br> (b) $-b^{2} y / a^{2} x$ <br> (c) $-b^{2} / a^{2}$ <br> (d) None | A |
| Q29 | The gradient of the curve $y=2 x^{3}-3 x^{2}-12 x+8$ at $x=0$ is $\qquad$ <br> (a) -12 <br> (b) 12 <br> (c) 0 <br> (d) 1 | A |
| Q30 | The gradient of the curve $y=2 x^{3}-5 x^{2}-3 x$ at $x=0$ is $\qquad$ <br> (a) 3 <br> (b) -3 <br> (c) $1 / 3$ <br> (d) -1 | B |
| Q31 | If $x^{3}-2 x^{2} y^{2}+5 x+y-5=0$ then $\frac{d y}{d x}$ at $x=1 y=1$ is equals to $\qquad$ <br> (a) $4 / 3$ <br> (b) $-4 / 3$ <br> (c) $3 / 4$ <br> (d) None | A |
| Q32 | If $\frac{x^{2}}{\mathrm{a}^{2}}-\frac{y^{2}}{a^{2}}=1 ; \frac{d y}{d x}$ can be expressed as $\qquad$ <br> (a) $\frac{x}{a}$ <br> (b) $\frac{x}{\sqrt{x^{2}-a^{2}}}$ <br> (c) $\frac{1}{\sqrt{\frac{x^{2}}{a^{2}}-1}}$ <br> (d) $\frac{x}{y}$ | D |
| Q33 | If $y=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+. .+\frac{x^{n}}{n}+\cdots \infty$ then $\frac{d y}{d x}-y$ is $\qquad$ <br> (a) 1 <br> (b) -1 <br> (c) 0 <br> (d) None | C |
| Q34 | The derivative of $e^{\circ}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) e <br> (d) $\infty$ | A |
| Q35 | If $\mathrm{f}(\mathrm{x})=e^{a x^{2}+b x+c}$ then $\mathrm{f}^{\prime}(\mathrm{x})$ is $\qquad$ <br> (a) $e^{a x^{2}+b x+c}$ <br> (b) $e^{a x^{2}+b x+c}(2 \mathrm{ax}+\mathrm{b})$ <br> (c) $2 a x+b$ <br> (d) $a+b$ | B |
| Q36 | If $\mathrm{y}=\mathrm{e}^{\times}+\mathrm{e}^{\times}$then $\frac{d y}{d x}-\sqrt{y^{2}-4}$ is equal to | C |




|  | (a) $\frac{\left(y^{2}-3 x^{2}\right)}{2 y(3-x)}$ <br> (b) $\frac{\left(y^{2}-3 x^{2}\right)}{2 y(x-3)}$ <br> (c) $\frac{\left(y^{2}-3 x^{2}\right)}{2 y(3+x)}$ | (d) $\frac{\left(y^{2}-3 x^{2}\right)}{(3-x)}$ |  |
| :---: | :---: | :---: | :---: |
| Q61 | If $f(x y)=x^{3}+y^{3}-3 a x y=0 \frac{d y}{d x}$ can be found out as $\qquad$ <br> (a) $\frac{a y-x^{2}}{y^{2}+a x}$ <br> (b) $\frac{a y-x^{2}}{y^{2}-a x}$ <br> (c) $\frac{a y+x^{2}}{y^{2}+a x}$ | (d) None | B |
| Q62 | Find $\frac{d y}{d x}$ for $x^{2} y^{2}+3 x y+y=0$ <br> (a) $\frac{(2 x y+y)}{(x+2 x)}$ <br> (b) $-\frac{\left(2 x y^{2}+3 y\right)}{\left(2 x^{2} y+3 x+1\right)}$ <br> (c) $\frac{x^{2} y^{2}-2 y}{2 x y}$ | (d) $-\frac{\left(2 x^{2} y-3 y\right)}{\left(x^{2} y+3 x\right)}$ | B |
| Q63 | If $x(1+y)^{1 / 2}+y(1+x)^{1 / 2}=0$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $-\left(1+x^{2}\right)^{-1}$ <br> (b) $\left(1+x^{2}\right)^{-1}$ <br> (c) $-\left(1+x^{2}\right)^{-2}$ | (d) $\left(1+x^{2}\right)^{-2}$ | A |
| Q64 | If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \frac{d y}{d x}$ is $\qquad$ <br> (a) $-\frac{(a x+h y+g)}{(h x+b y+f)}$ <br> (b) $\frac{(a x+h y+g)}{(h x+b y+f)}$ <br> (c) $\frac{(a x-h y+g)}{(h x-b y+f)}$ | (d) $\frac{h(a x-y+g)}{(x-b y+f)}$ | A |
| Q65 | If $x^{2}+3 x y+y^{2}-4=0$ then $\frac{d y}{d x}$ is -. $\qquad$ <br> (a) $-\frac{(2 x+3 y)}{(3 x+2 y)}$ <br> (b) $\frac{(2 x+3 y)}{(3 x+2 y)}$ <br> (c) $-\frac{(3 x+3 y)}{(2 x+3 y)}$ | (d) $\frac{(3 x+3 y)}{(2 x+3 y)}$ | A |
| Q66 | If $x^{2} \mathrm{e}^{y}+4 \log \mathrm{x}=0$ then $\frac{d y}{d x}$ is $\qquad$ . <br> (a) $\frac{e^{y} 2 x^{2}+4+8 x}{x^{3} e^{y}}$ <br> (b) $\frac{e^{y} 2 x^{2}-4}{x^{3} e^{y}}$ <br> (c) $\frac{-e^{y} 2 x^{2}-4}{x^{3} e^{y}}$ | (d) None | C |
| Q67 | $F(x)=\operatorname{Iog}_{e}\left(\frac{x-1}{x+1}\right)$ and $f^{\prime}(x)=1$ then the value of $\mathrm{x}=$ $\qquad$ <br> (a) 1 <br> (b) 0 <br> (c) $\pm \sqrt{3}$ | (d) $\pm \sqrt{2}$ | A |
| Q68 | Let $p=x^{3} \log x$, so what is the value of $\frac{d^{2} p}{d x^{2}}$ ? <br> (a) $5 x+6 x \log x$ <br> (b) $5 x^{2}+\log x^{2}$ <br> (c) $5 x^{2}+6 x \log x$ | (d) None | A |
| Q69 | Differentiate $\frac{x^{2}}{e^{x}}$ with respect to x . <br> (a) $e^{x}+\frac{2}{x}$ <br> (b) $\frac{x(2-x)}{e^{x}}$ <br> (c) $e^{x} \log x$ | (d) $e^{2 x}$ | B |
| Q70 | The derivative of $\frac{3-5 x}{3+5 x}$ is $\qquad$ . <br> (a) $30(3+5 x)^{-2}$ <br> (b) $1 /(3+5 x)^{2}$ <br> (c) $-\frac{30}{(3+5 x)^{2}}$ | (d) None | C |
| Q71 | If $f(x)=\frac{x^{2}+1}{x^{2}-1}$ then $f^{\prime}(x)$ is $\qquad$ <br> (a) $-\frac{4 x}{\left(x^{2}-1\right)^{2}}$ <br> (b) $4 x\left(x^{2}-1\right)^{2}$ <br> (c) $\frac{x}{\left(x^{2}-1\right)^{2}}$ | (d) $4 \times+1$ | A |


| Q72 | If $y=\frac{x^{2}-1}{x^{2}+1} \operatorname{then} \frac{d y}{d x}$ is $\qquad$ <br> (a) $4 x\left(x^{2}+1\right)^{-2}$ <br> (b) $4 x\left(x^{2}+1\right)^{2}$ <br> (c) $4 x\left(x^{2}-1\right)^{-2}$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q73 | Find value of $\frac{d y}{d x}$ if $y=x^{x}$ <br> (a) $x^{\times}(1+\log x)$ <br> (b) $1+\log x$ <br> (c) $y \cdot \log x$ <br> (d) None | D |
| Q74 | If $y=f(x)=\frac{a x+b}{a x-a}$ then $f^{\prime}(y)$ is $\qquad$ <br> (a) $-x$ <br> (b) $2 x$ <br> (c) x <br> (d) None | A |
| Q75 | If $y=\frac{x^{1 / 2}+2}{x^{1 / 2}}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $-x^{-3 / 2}$ <br> (b) $3 x$ <br> (c) $x$ <br> (d) None | A |
| Q76 | If $y=\frac{x^{1 / 2}(5-2 x)^{2 / 3}}{(4-3 x)^{3 / 4}(7-4 x)^{4 / 5}}$ then the value of $\frac{d y / d x}{y}$ is $\qquad$ . <br> (a) $\frac{1}{2 x}-\frac{4}{3(5-2 x)}+\frac{9}{4(4-3 x)}+\frac{16}{5(7-4 x)}$ <br> (b) $\frac{1}{2 x}-\frac{3}{4(5-2 x)}+\frac{4}{9(4+3 x)}+\frac{16}{(7+4 x)}$ <br> (c) $\frac{1}{x}-\frac{3}{4(5-2 x)}+\frac{4}{9(4-3 x)}+\frac{16}{5(7-4 x)}$ <br> (d) None | A |
| Q77 | If $y=\frac{(x+a)(x+b)(x+c)(x+d)}{(x-a)(x-b)(x-c)(x-d)}$ ffien value al $\frac{d y / d x}{y}$ is $\qquad$ . <br> (a) $(x+a)^{-1}+(x+b)^{-1}+(x+c)^{-1}+(x+d)^{-1}-(x-a)^{-1}-(x-b)^{-1}-(x-c)^{-1}-(x-d)^{-1}$ <br> (b) $(x+a)^{-1}-(x+b)^{-1}+(x+c)^{-1}-(x+d)^{-1}-(x-a)^{-1}-(x-b)^{-1}+(x-c)^{-1}-(x-d)^{-1}$ <br> (c) $(x-a)^{-1}+(x-b)^{-1}+(x-c)^{-1}+(x-d)^{-1}-(x+a)^{-1}-(x+b)^{-1}-(x+c)^{-1}-(x+d)^{-1}$ <br> (d) None | A |
| Q78 | If $y=\frac{(x+1)(2 x-1)}{(x-3)}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\frac{2\left(x^{2}-6 x-1\right)}{(x-3)^{2}}$ <br> (b) $\frac{2\left(x^{2}+6 x-1\right)}{(x-3)^{2}}$ <br> (c) $\frac{2\left(x^{2}+6 x+1\right)}{(x-3)^{2}}$ <br> (d) None | A |
| Q79 | If $y=\frac{5 x^{4}-6 x^{2}-7 x+8}{5 x-6}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\left(75 x^{4}-120 x^{3}-30 x^{2}+72 x+2\right)(5 x-6)^{-2}$ <br> (b) $\frac{\left(75 x^{4}-120 x^{3}+30 x^{2}-72 x+2\right)}{5 x-6}$ <br> (c) $\frac{\left(75 x^{4}-120 x^{3}-30 x^{2}+72 x-2\right)}{(5 x-61}$ <br> (d) None | A |
| Q80 | Differentiate $\frac{e^{x}}{\log x}$ with respect to $x$. <br> (a) $\frac{e^{x}(x \log -1)}{x(\log x)}$ <br> (b) $\frac{e^{x}(\times \log x-1)}{x(\log x)^{2}}$ <br> (c) $e^{x} \log x$ <br> (d) None | B |


| Q81 | If $y=\frac{e^{x}+1}{e^{x}-1}$ then $\frac{d y}{d x}$ is equal to $\qquad$ <br> (a) $\frac{-2 e^{x}}{\left(e^{x}-1\right)^{2}}$ <br> (b) $2 e^{x}\left(e^{x}-1\right)^{2}$ <br> (c) $2\left(e^{x}-1\right)^{2}$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q82 | Given $x=2 t+5 ; y=t^{2}-2 \frac{d y}{d x}$ is calculated as $\qquad$ <br> (a) $t$ <br> (b) $-1 / t$ <br> (c) $1 / \mathrm{t}$ <br> (d) None | A |
| Q83 | If $x=3 t^{2}-1, y=t^{3}$ then $\frac{d y}{d x}$ is equal to $\qquad$ <br> (a) $\frac{3 t^{2}}{6 t}$ <br> (b) $3 t^{2}-1$ <br> (c) $3 t+1$ <br> (d) None | A |
| Q84 | Given $x=a t^{2} ; y=2 a t \frac{d y}{d x}$ is $\qquad$ <br> (a) $t$ <br> (b) $-1 / t$ <br> (c) $1 / t$ <br> (d) None | C |
| Q85 | If $x=\mathrm{at}^{2} ; y=2 \mathrm{at}, \frac{d y}{d x}$ t=2 is equal to $\qquad$ <br> (a) $1 / 2$ <br> (b) -2 <br> (c) $-1 / 2$ <br> (d) None | A |
| Q86 | If $x=\frac{1-t^{2}}{1+t^{2}} ; y=\frac{2 t}{1+t^{2}}$ then $\frac{d y}{d x}$ at $t=1$ is $\qquad$ <br> (a) $1 / 2$ <br> (b) 1 <br> (c) 0 <br> (d) None | C |
| Q87 | If $u=\left(x^{3}+1\right)^{5}$ and $y=\left(x^{3}+5 x+7\right)$ then $\frac{d u}{d y}$ is $\qquad$ <br> (a) $\frac{15 x^{2}\left(x^{3}+1\right)^{4}}{3 x^{2}+5}$ <br> (b) $\frac{10\left(x^{2}+1\right)^{4}}{3 x^{2}+5}$ <br> (c) $5 x\left(x^{2}+1\right)^{4}$ <br> (d) None | D |
| Q88 | If $y=x^{2 x}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $2 x^{2 x}(1+\log x)$ <br> (b) $2(1+\log x)$ <br> (c) $x^{2 x}(1+\log x)$ <br> (d) None | A |
| Q89 | If $y=\left(3 x^{2}-7\right)^{1 / 2}$ then $\frac{d y}{d x}$ is $\qquad$ _. <br> (a) $3 x\left(3 x^{2}-7\right)^{-1 / 2}$ <br> (b) $6 x\left(3 x^{2}-7\right)^{-1 / 2}$ <br> (c) $3 x\left(3 x^{2}+7\right)^{-1 / 2}$ <br> (d) None | A |
| Q90 | If $y=\left(6 x^{5}-7 x^{3}+9\right)^{-1 / 3}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\left(-\frac{1}{3}\right)\left(6 x^{5}-7 x^{3}+9\right)^{-4 / 3}\left(30 x^{4}-21 x^{2}\right)\left(\right.$ b) $\left(\frac{1}{3}\right)\left(6 x^{5}-7 x^{3}+9\right)^{-4 / 3}\left(30 x^{4}-21 x^{2}\right)$ <br> (c) $\left(-\frac{1}{3}\right)\left(6 x^{5}-7 x^{3}+9\right)^{4 / 3}\left(30 x^{4 \prime}-21 x^{2}\right)$ (d) None | A |
| Q91 | If $y=5 x^{x}$, then $\frac{d y}{d x}$ is equal to $\qquad$ <br> (a) $5 x^{x}(1-\log x)$ <br> (b) $5 x^{x-1}$ <br> (c) $5 x^{x}(1+\log x)$ <br> (d) None | C |
| Q92 | Let $\mathrm{y}=\sqrt{2 x}+3^{2 x}$ then $\frac{d y}{d x}$ is equal to | A |


|  | $\begin{array}{llll}\text { (a) } \frac{1}{\sqrt{2 x}}+2.3^{2 x} \log e^{3} \text { (b) } \frac{1}{\sqrt{2 x}} & \text { (c) } 2.3^{2 x} \log e^{3} & \text { (d) None }\end{array}$ |  |
| :---: | :---: | :---: |
| Q93 | Let $f(y)=x^{x^{3}}$ then $f^{\prime}(y)$ is . $\qquad$ <br> (a) $x^{3}\left[x^{2}+3 x \cdot \log \mathrm{x}\right]$ <br> (b) $x^{x^{3}}\left[x^{2}+3 x^{2} \cdot \log \mathrm{x}\right]$ <br> (c) $x^{x^{3}}\left[x^{2}-3 x \cdot \log \mathrm{x}\right]$ <br> (d) None | B |
| Q94 | If $x^{y}=\mathrm{e}^{x-y}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\frac{\log x}{(1-\log x)^{2}}$ <br> (b) $\frac{\log x}{(1+\log x)^{2}}$ <br> (c) $\frac{\log x}{(1-\log x)}$ <br> (d) $\frac{\log x}{(1+\log x)}$ | B |
| Q95 | If $y=(1+x)^{2 x}$ then the value of $\frac{1}{y} \times \frac{d y}{d x}$ is $\qquad$ <br> (a) $2\left[x(x+1)^{-1}+\log (x+1)\right]$ <br> (b) $x(x+1)^{-1}+\log (x+1)$ <br> (c) $2\left[x(x+1)^{-1}-\log (x+1)\right]$ <br> (d) None | A |
| Q96 | If $y=x^{a}+a^{x}+x^{x}+a^{a}$ then the value of $\frac{1}{y} \times \frac{d y}{d x} \times$ is . $\qquad$ <br> (a) $x^{-2}(1-\log x)$ <br> (b) $x^{2}(1-\log x)$ <br> (c) $x^{2}(1+\log x)$ <br> (d) None | A |
| Q97 | If $y=x^{x^{x}}$ then the value of $\frac{d y}{d x}$ is . $\qquad$ <br> (a) $x^{x^{x}}\left[\mathrm{x}^{\mathrm{x}-1}+\log \mathrm{x} \cdot \mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x})\right]$ <br> (b) $x^{x^{x}}\left[\mathrm{x}^{\mathrm{x}-1}+\log \mathrm{x} .(1+\log \mathrm{x})\right]$ <br> (c) $x^{x^{x}}\left[\mathrm{x}^{\mathrm{x}-1}+\log \mathrm{x} \cdot \mathrm{x}^{\mathrm{x}}(1-\log \mathrm{x})\right]$ <br> (d) $x^{x^{x}}\left[\mathrm{x}^{\mathrm{x}-1}-\log \mathrm{x} \cdot \mathrm{x}^{\mathrm{x}}(1-\log \mathrm{x})\right]$ | A |
| Q98 | If $y=\sqrt{x}^{\sqrt{x}}$ then $\frac{d y}{d x}$ is equal to $\qquad$ <br> (a) $\frac{y^{2}}{2-y \log x}$ <br> (b) $\frac{y^{2}}{x(2-y \log x)}$ <br> (c) $y \log x$ <br> (d) $\frac{y(\log x+2)}{4 \sqrt{x}}$ | B |
| Q99 | If $y=x^{\log x}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $x^{2}-y^{2}+3 x-5 y=0$ <br> (b) $(2 x+3)(2 y+5)^{-1}$ <br> (c) $2 \times^{\log x-1} \cdot \log x$ <br> (d) None | A |
| Q100 | If $y=x^{x^{x \ldots \alpha}}$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\frac{y^{2}}{[x(1-y \log x)]}$ <br> (b) $\frac{y}{[(1-y \log x)]}$ <br> (c) $\frac{y}{[x(1+y \log x)]}$ <br> (d) $\frac{y^{2}}{[(1+y \log x)]}$ | A |
| Q101 | The derivative of $\log x . e^{x}$ is $\qquad$ <br> (a) $\frac{e^{x}}{x}+e^{x}(\log x)$ <br> (b) $e^{x}\left(\frac{1}{x}-\log x\right)$ <br> (c) $e^{x}(1+\log x)$ <br> (d) None | A |
| Q102 | If $y=\left(3 x^{3}-5 x^{2}+8\right)^{3}$ then $\frac{d y}{d x}$ is . $\qquad$ <br> (a) $3\left(3 x^{3}-5 x^{2}+8\right)^{2}\left(9 x^{2}-10 x\right)$ <br> (b) $3\left(3 x^{3}-5 x^{2}+8\right)^{2}\left(9 x^{2}+10 x\right)$ <br> (c) $3\left(3 x^{3}-5 x^{2}+8\right)^{2}\left(10 x^{2}-9 x\right)$ <br> (d) None | A |


| Q103 | Differentiate $\log \left(x+\sqrt{x^{2}+a^{2}}\right)$ with respect to $x$. <br> (a) $\frac{1}{\sqrt{x}}$ <br> (b) $\frac{1}{\sqrt{x^{2}-a^{2}}}$ <br> (c) $\frac{1}{\sqrt{x^{2}+a^{2}}}$ <br> (d) $\frac{x}{\sqrt{x^{2}-a}}$ | C |
| :---: | :---: | :---: |
| Q104 | Differentiate $\log (\sqrt{x-a}+\sqrt{x-b})$ with respect to $x$. <br> (a) $\frac{1}{2(x-a)(x-b)}$ <br> (b) $\frac{1}{2 \sqrt{x-a} \sqrt{x-b}}$ <br> (c) $\frac{1}{2(\sqrt{x-a b)}}$ <br> (d) $\frac{1}{\sqrt{x-a}+\sqrt{x-b}}$ | B |
| Q105 | If $y=\log \left[(x-1)^{1 / 2}-(x+1)^{1 / 2}\right]$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\left(\frac{1}{2}\right)\left(x^{2}-1\right)^{-1 / 2}$ <br> (b) $\left(-\frac{1}{2}\right)\left(x^{2}-\right)^{-1 / 2}$ <br> (c) $\left(\frac{1}{2}\right)\left(x^{2}-1\right)^{1 / 2}$ <br> (d) None | A |
| Q106 | If $y=\log \left[e^{x} \frac{(x-2)}{(x+3)}\right]^{3 / 4}$ then $\frac{d y}{d x}$ is $\qquad$ . <br> (a) $1+\left(\frac{3}{4}\right)(x-2)^{-1}-\left(\frac{3}{4}\right)(x+3)^{-1}$ <br> (b) $1-\left(\frac{3}{4}\right)(x-2)^{-1}+\left(\frac{3}{4}\right)(x+3)^{-1}$ <br> (c) $1+\left(\frac{3}{4}\right)(x-2)^{-1}+\left(\frac{3}{4}\right)(x+3)^{-1}$ <br> (d) None | A |
| Q107 | If $f(x)=x^{3}-2 x$ then $2 n$ order derivative of $f(x)$ is $\qquad$ <br> (a) 6 <br> (b) $6 x$ <br> (c) $3 x^{2}-2$ <br> (d) $3 x$ | B |
| Q108 | If $f(x)=x^{4}$ then 3rd order derivative of $f(x)$ when $x=3$ is $\qquad$ <br> (a) 72 <br> (b) 108 <br> (c) 27 <br> (d) 81 | A |
| Q109 | If $x=a t^{2}$ and $y=2 a t$ then $\frac{d^{2} y}{d x^{2}}$ is $\qquad$ <br> (a) $\frac{1}{2 a t^{3}}$ <br> (b) $-\frac{1}{2 a t^{3}}$ <br> (c) $2 a t^{3}$ <br> (d) None | B |
| Q110 | If $x=\frac{1-t}{1+t}$ and $t=\frac{2 t}{1+t}$ then $\frac{d^{2} y}{d x^{2}}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q111 | $y=e^{t}$ and $x=\log t$, then $\frac{d y}{d x}=$ $\qquad$ <br> (a) $\frac{1}{t}$ <br> (b) $t \cdot e^{t}$ <br> (c) $-\frac{1}{t^{2}}$ <br> (d) None | B |
| Q112 | Find the second differential coefficient of $y=x^{2} \log x$ <br> (a) $x+2 x \log x$ <br> (b) $3+2 \log x$ <br> (c) $3 \log x$ <br> (d) $2 x \log x$ | B |
| Q113 | If $y=a e^{m x}+b e^{-m x}$ then $\frac{d^{2} y}{d x^{2}}$ is $\qquad$ <br> (a) $m^{2} y$ <br> (b) my <br> (c) $-m^{2} y$ <br> (d) -my | A |
| Q114 | If $y=x^{m} e^{n x}$ then $\frac{d^{2} y}{d x^{2}}$ is $\qquad$ <br> (a) $m(m+1) x^{m-2} e^{n x}+2 x^{m-1} e^{n x}+n^{2} x^{m}$ <br> (b) $m(1-m) x^{m-2}+2 m n x^{m-1} e^{n x}+x^{m} e^{n x}$ | D |


|  | (c) $m(1-m) x^{m-2}+2 m n x^{m-1} e^{n x}+e^{n x} \quad$ (d) $m(m-1) x^{m-2} e^{n x}+2 m n x^{m-1} e^{n x}+n^{2} x^{m} e^{n x}$ |  |
| :---: | :---: | :---: |
| Q115 | Find the fourth derivative of $\log \left[(3 x+4)^{1 / 2}\right]$ <br> (a) $-243(3 x+4)^{-4}$ <br> (b) $243(3 x+4)^{-4}$ <br> (c) $-243(4 x+3)^{-4}$ <br> (d) None | A |
| Q116 | If $y=\sqrt{x^{2}+m^{2}}$ then $y$ y1 (Where $\left.y^{1}=\frac{d y}{d x}\right)$ is equal to $\qquad$ <br> (a) $-x$ <br> (b) $x$ <br> (c) $1 / x$ <br> (d) None | B |
| Q117 | If $y=\left(x+\sqrt{x^{2}+m^{2}}\right)^{n}$ then $\frac{d y}{d x}$ equals to $\qquad$ <br> (a) ny <br> (b) $\frac{n y}{\sqrt{x^{2}+m^{2}}}$ <br> (c) $-\frac{n y}{\sqrt{x^{2}+m^{2}}}$ <br> (d) None | B |
| Q118 | If $(x+y)^{m+n}-\mathrm{x}^{m} y^{n}=0$ then $\frac{d y}{d x}$ is $\qquad$ <br> (a) $\frac{y}{x}$ <br> (b) $-\frac{y}{x}$ <br> (c) $-x / y$ <br> (d) None | A |
| Q119 | If $y=\sqrt{\frac{x}{m}}+\sqrt{\frac{m}{x}}$ then $2 x y \frac{d y}{d x}-\frac{x}{m}+\frac{m}{x}$ is equal to $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q120 | If $y=\left(x+\sqrt{x^{2}-1}\right) m$, then the value of $\left(x^{2}-1\right)\left(\frac{d y}{d x}\right)^{2}-m^{2} y^{2}$ <br> (a) -1 <br> (b) 1 <br> (c) 0 <br> (d) None | C |
| Q121 | If $y=a e^{2 x}+b x e^{2 x}$ where $a \& b$ are constants, value of expression $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y$ is <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q122 | If $y=(x+1)^{1 / 2}-(x-1)^{1 / 2}$ value of expression $\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+s \frac{d y}{d x}-\frac{y}{4}$ is given by <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q123 | If $y=\log \left[x+\left(1+x^{2}\right)^{1 / 2}\right]$ the value of the expression $\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$ is $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | A |
| Q124 | If $x^{2}+y^{2}=\alpha^{2}$, then $\frac{d y}{d x}$ at $(-2,2)$ is $\qquad$ <br> (a) 2 <br> (b) 2 <br> (c) 1 <br> (d) 3 | C |
| Q125 | If $f(x)=2 x^{3}-9 x^{2}+12 x+5$, then 1st opder derivative of $f(x)$ equal to zero implies $\qquad$ <br> (a) $x=1$ and $x=2$ <br> (b) $x=2$ and $x=-1$ <br> (c) $x=1$ and $x=1$ <br> (d) $x=2$ and $x=2$ | B |
| Q126 | If $y=2 x^{2}+3 x+10$ then $\frac{d y}{d x}$ at $(0,0)$ is $\qquad$ <br> (a) 10 <br> (b) 0 <br> (c) 3 <br> (d) None | C |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q127 | The slope of the tangent to the curve $\mathrm{X}=\frac{(t-1)}{(t+1)}, Y=\frac{(t+1)}{(t-1)}$ at the point $t=2$ is $\qquad$ <br> (a) 9 <br> (b) $\frac{1}{9}$ <br> (c) -9 <br> (d) $-\frac{1}{9}$ | C |
| :---: | :---: | :---: |
| Q128 | Find slope of tangent of curve $Y=\frac{x-1}{x+2}$ at $x=2$. <br> (a) $3 / 16$ <br> (b) $5 / 17$ <br> (c) $9 / 11$ <br> (d) None | A |
| Q129 | The curve $4 y=u x^{2}+v$ passes through the point $p$ at $(2,3)$ and $\frac{d y}{d x}=4$ this point ' $p$ '. So the values of $u$ and $v$ are $\qquad$ <br> (a) $u=2, v=2$ <br> (b) $u=-4, v=-4$ <br> (c) $u=4, v=4$ <br> (d) None | C |
| Q130 | The gradient of the curve $y=-2 x^{3}+3 x+5$ at $x=2$ is $\qquad$ <br> (a) -20 <br> (b) 27 <br> (c) -16 <br> (d) -21 | D |
| Q131 | The gradient of curve $y=x^{3}-x^{2}$ at $(0,0)$ <br> (a) 1 <br> (b) 0 <br> (c) -1 <br> (d) None | B |
| Q132 | The gradient of the curve $y=x y+2 p x+3 q y$ at the point $(3,2)$ is $\frac{-2}{3}$. The values of pand q are $\qquad$ <br> (a) $\left(\frac{1}{2}, \frac{1}{2}\right)$ <br> (b) $(2,2)$ <br> (c) $\left(-\frac{1}{2},-\frac{1}{6}\right)$ <br> (d) $(0,0)$ | C |
| Q133 | The slope of the tangent to the curve $y=\sqrt{4 x^{2}}$ at the point where the ordinate and the abscissa are equal is $\qquad$ <br> (a) -1 <br> (b) 1 <br> (c) 0 <br> (d) None | A |
| Q134 | The slope of tangent at the point $(2-2)$ to curve $x^{2}+x y+y^{2}-4=0$ is given by $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) -1 <br> (d) None | B |
| Q135 | The slope of the tangent to the curve $y=x^{2}-x$ at the point where the line $y=2$ cuts the curve in the $1^{\text {st }}$ quadrant is $\qquad$ . <br> (a) 2 <br> (b) 3 <br> (c) -3 <br> (d) None | B |
| Q136 | The curve $y=-e^{-x}$ is $\qquad$ <br> (a) Concave upward for $x>0$. <br> (b) Concave downward for $x>0$. <br> (c) Everywhere concave upward. <br> (d) Everywhere concave downward. | D |
| Q137 | A function $f(x)$ is maximum at $x=c$ if $\qquad$ . <br> (a) (2nd order derivative of $f(x)$ when $x=c$ ) $>0$ <br> (b) (2nd order derivative of $f(x)$ when $x=c$ ) $<0$ <br> (c) (2nd order derivative of $f(x)$ when $x=c$ ) $=0$ | B |


|  | (d) (2nd order depivative of $f(x)$ when $x \geqslant f(c)$ ) |  |
| :---: | :---: | :---: |
| Q138 | A function $f(x)$ is minimum at $x=b$ if $\qquad$ <br> (a) (2nd order derivative of $f(x)$ when $x=b$ ) $>0$ <br> (b) (2nd order derivative of $f(x)$ when $x=b$ ) <0 <br> (c) (2nd order derivative of $f(x)$ when $x=b$ ) $=0$ <br> (d) (2nd order derivative of $f(x)$ when $x \geqslant f(b)$ ) | A |
| Q139 | Find the maximum and minimum value of $y=x^{3}-2 x^{2}-4 x-1$ <br> (a) $a x \frac{13}{27}, \min -9$ <br> (b) $\operatorname{Max} \frac{1}{2}, \min -9$ <br> (c) $\operatorname{Max} 9, \min -\frac{13}{27}$ <br> (d) $\operatorname{Max} 9, \min -\frac{1}{2}$ | A |
| Q140 | Find the maximum and minimum value of $y=2 x^{3}-15 x^{2}+36 x+12$ <br> (a) Max 40, Min39 <br> (b) Max 39, Min38 <br> (c) Max 41, Min 40 <br> (d) None | A |
| Q141 | In question above, at which values of $x$ maximum and minimum occur pespectively? <br> (a) 2,3 <br> (b) 3,2 <br> (c) $-2,-3$ <br> (d) $-3,-2$ | A |
| Q142 | Find the maximum and minimum value of $y=\frac{x^{3}}{3+x^{2}-3 x}$ <br> (a) -5 <br> (b) 5 <br> (c) 5 <br> (d) -5 | A |
| Q143 | In question above, at which values of $x$ maximum and minimum occur pespectively? <br> (a) $-3,1$ <br> (b) $-3,-1$ <br> (c) 3,1 <br> (d) $3,-1$ | A |
| Q144 | The point of inflexion of the curve $y=x^{4}$ is at $\qquad$ <br> (a) $x=0$ <br> (b) $x=3$ <br> (c) $x=12$ <br> (d) No where | D |
| Q145 | At which values of $x$ maximum and minimum occur respectively in respect of $y=x^{5}$ $5 x^{4}+5 x^{3}-1 ?$ <br> (a) 13 <br> (b) 03 <br> (c) Both <br> (d) None | C |
| Q146 | At $x=3, y=(x-2)^{6}(x-3)^{5}$ is $\qquad$ <br> (a) A maxima <br> (b) A minima <br> (c) A point of inflexion <br> (d) None | C |
| Q147 | $y=x^{3}-3 x^{2}+3 x+7$ has $\qquad$ <br> (a) A maxima <br> (b) A minima <br> (c) Both <br> (d) None | D |
| Q148 | $y=x^{2}-6 x+13$ has $\qquad$ <br> (a) A maxima <br> (b) A minima <br> (c) Both <br> (d) None | B |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION

| Q149 | In question above, the extreme value of $y$ is $\qquad$ <br> (a) 4 <br> (b) 3 <br> (c) -4 | $\text { (d) }-3$ | A |
| :---: | :---: | :---: | :---: |
| Q150 | $u=5 t^{4}+4 t^{3}+2 t^{2}+t+4 a t t=-1$ find $d u / d t$ <br> (a) -11 <br> (b) 11 <br> (c) -16 | (d) 16 | A |
| Q151 | If $e^{x y}-4^{x y}=4$ then $\frac{d x}{d y}$ : $\qquad$ <br> (a) $\frac{y}{x}$ <br> (b) $\frac{-y}{x}$ <br> (c) $\frac{x}{y}$ | $\text { (d) } \frac{-x}{y}$ | B |
| Q152 | If $x^{p} \cdot y^{q}=(x+y)^{p+q}$ then $\frac{d x}{d y}$ : $\qquad$ <br> (a) $\frac{y}{x}$ <br> (b) $\frac{-y}{x}$ <br> (c) $\frac{p}{q}$ | (d) $\frac{-p}{q}$ | B |
| Q153 | If $=1+\frac{x}{1^{1}}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \ldots+\frac{x^{n}}{n!}+\cdots \ldots \infty$, then $\frac{d x}{d y} y=$ <br> (a) 1 <br> (b) 0 <br> (c) -1 | (d) None | B |
| Q154 | $\int_{0}^{2}\|1-x\| d x=$ $\qquad$ <br> (a) 23 <br> (b) 21 <br> (c) 0 | (d) 1 | D |

## CHAPTER 8B. INTEGRAL CALCULUS

## INTRODUCTION

Integration is the reverse (inverse) process of differentiation $\&$ is denoted by the symbol $\int$.


## BASIC FORMULAE

| DIFFERENTIATION | INTEGRATION | Examples |
| :--- | :--- | :--- |
| 1. $\frac{d}{d x}\left[\frac{x^{n+1}}{n+1}\right]=x^{n} ;(n \neq-1)$ | $\int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}+C ;(n \neq-1)$ | $\int x^{3}=\frac{x^{3+1}}{3+1}+C=\frac{x^{4}}{4}+C$ |
| 2. $\frac{d}{d x}(x)=1$ | $\int 1 \cdot d x=x+C$ | $\int \sqrt{x}=\frac{x^{\frac{1}{2}+1}}{\frac{1}{2}+1}+C=\frac{2\left(x^{\frac{3}{2}}\right)}{3}+C$ |
| 3. $\frac{d}{d x}[\log x]=\frac{1}{x}$ | $\int \frac{1}{x} \cdot d x=\log x+C$ | $\int \frac{1}{\sqrt{x}}=\frac{x^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+C=\frac{2\left(x^{\frac{1}{2}}\right)}{1}=2 \sqrt{x}$ |
| 4. $\frac{d}{d x} e^{x}=e^{x}$ | $\int e^{x} \cdot d x=e^{x}+C$ | $\int \sqrt{x}=\frac{x^{\frac{3}{2}}+1}{\frac{3}{2}+1}+C=\frac{2\left(x^{\frac{5}{2}}\right)}{5}+C$ |
| 5. $\frac{d}{d x} a^{x}=a^{x} \cdot \log a$ | $\int a^{x} \cdot d x=\frac{3^{x}}{\log a}+C$ | $3^{x}$ |

## CONSTANT OF INTEGRATION (C)

- In integration of every function, we add " $+c^{\prime \prime}$ (constant of integration) since $\frac{d}{d x}$ (Constant) $=$ 0.

Let us understand this concept.

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}\right)=2 x \& \quad \frac{d}{d x}\left(x^{2}+5\right)=2 x . \quad \text { Because derivative of a constant is always 'Zero. } \\
& \int 2 x \cdot d x=x^{2} \cdot \& \int(2 x+5) \cdot d x=x^{2} .
\end{aligned}
$$

There may be cases when the constant was there in $f(x)$ but it doesn't appeap in $f^{\prime}(x)$ because of its derivative being "Zero. So we always have to add a constant in integration. Such constant is "Constant of Integration".

## ELEMENT OF INTEGRATION

- ' $d x^{\prime}$ ' is called element of integration. It indicates the variable w.r.t which $f(x)$ is to be integrated.
- In differentiation we use to write $\frac{\mathrm{d}}{\mathrm{dx}}$, \& in Integration we write ' dx .

In $\int x^{5} . d x ; d x$ indicates that $x^{5}$ is to be integrated w.p.t ${ }^{6} x$ '

CHAIN RULE [Here we have to DIVIDE by $\frac{\mathrm{dy}}{\mathrm{dx}}$ ]

| Basic Rules | Chain Rule | Example |
| :--- | :--- | :--- |
| $\int x^{n} \cdot d x=\frac{x^{n+1}}{n+1}+C ;$ | $\int y^{n} \cdot d x=\frac{y^{n+1}}{(n+1)} \div \frac{d y}{d x}$ | $\int(4 x+5)^{6} \cdot d x=\frac{(4 x+5)^{6+1}}{(6+1) \cdot 4}=\frac{(4 x+5)^{7}}{28}+C$ |
| $\int \frac{1}{x} \cdot d x=\log x+C$ | $\int \frac{1}{y} \cdot d x=\log y \div \frac{d y}{d x}$ | $\int \frac{1}{(2 x+5)} \cdot d x=\frac{\log (2 x+5)}{2}+C$ |
| $\int e^{x} \cdot d x=e^{x}+C$ | $\int e^{y} \cdot d x=e^{y} \div \frac{d y}{d x}$ | $\int e^{-3 x)}=\frac{e^{-3 x}}{-3}=-\frac{1}{3 \cdot e^{3 x}}+C$ |
| $\int a^{x} \cdot d x=\frac{a^{x}}{\log a}+C$ | $\int a^{y} \cdot d x=\frac{a^{y}}{\log a} \div \frac{d y}{d x}$ | $\int 5^{(3 x+5)}=\frac{5^{(3 x+5)}}{(\log 5) \cdot 3}+C$ |

## RULES FOR INTEGRATION

| Rules | Examples |
| :--- | :--- |
| 1. $\int C \cdot f(x)=C \cdot \int f(x)$ | $\int\left[7 x^{5}\right] \cdot d x=7 \cdot \int x^{5} \cdot d x=7 \cdot \frac{x^{5+1}}{5+1}=7 \cdot \frac{x^{6}}{6}=\frac{7}{6} \cdot x^{6}+C$ |
| 2. $\int[f(x) \pm g(x)]=\int f(x) \pm \int g(x)$ | $\int\left[5 x^{4}+3 x^{3}-2\right] \cdot d x=5 \cdot \int x^{4} \cdot d x+3 \cdot \int x^{2} \cdot d x-2 \int 1 \cdot d x$ <br> $=5 \cdot \frac{x^{5}}{5}+3 \cdot \frac{x^{3}}{3}-2 x=x^{5}+x^{3}-2 x+C$ |

## SOME SOLVED EXAMPLES

1) $\int\left(x+\frac{1}{x}\right)^{2} \cdot d x=\int x^{2} \cdot d x+2 \int d x+\int \frac{1}{x^{2}} \cdot d x$

$$
\text { i. }=\frac{x^{3}}{3}+2 \mathrm{x}+\frac{x^{-2+1}}{-2+1} \quad=\frac{x^{3}}{3}+2 \mathrm{x}-\frac{1}{x}+c
$$

2) $\int \sqrt{x}\left(x^{3}+2 x-3\right) \mathrm{dx}=\int x^{7 / 2} \mathrm{dx}+2 \int x^{3 / 2} \mathrm{dx}-2 \int x^{1 / 2} \mathrm{dx}$

$$
\text { i. }=\frac{x^{7 / 2+1}}{7 / 2+1}+\frac{2 x^{3 / 2+1}}{3 / 2+1}-\frac{3 x^{1 / 2+1}}{1 / 2+1} \quad=\frac{2 x^{9 / 2}}{9}+\frac{4 x^{5 / 2}}{5}-2 x^{3 / 2}+\mathrm{c}
$$

3) $\int\left(e^{2 x}+e^{-4 x}\right) \cdot \mathrm{dx}=\int e^{2 x} \cdot \mathrm{dx}+\int e^{-4 x} \cdot \mathrm{dx}=\frac{e^{2 x}}{2}+\frac{e^{-4 x}}{-4}=\frac{e^{2 x}}{2}-\frac{1}{4 e^{4 x}}+\mathrm{c}$
4) $\int \frac{x^{2}}{x+1} \cdot d x=\int \frac{x^{2}-1+1}{x+1} d x$
$=\int \frac{\left(x^{2}-1\right)}{x+1} \mathrm{~d} \mathrm{x}+\int \frac{d x}{x+1}$
$=\int(x-1) \cdot d x++\int \frac{d x}{x+1}$
$=\frac{x^{2}}{2}-\mathrm{x}+\log (\mathrm{x}+1)+\mathrm{c}$

## METHOD OF SUBSTITUTION

- Sometimes, integration of a given function becomes simple by substitution of a new variable (say $t$ ) in place of the given variable ' $x$ '.
- Element of integration $(d x)$ is also changed to ' $d t$ ' after proper adjustments.

PC Note: Generally (not always), term (variable) on complex side is taken as 't'.

## SOME SOLVED EXAMPLES

CQ1: $\int \frac{x^{3}}{\left(x^{2}+1\right)^{3}} \cdot d x$.
Ans: $t=\left(x^{2}+1\right)$
Now we have to replace ' $d x$ ' with ' $d t$ '. SO we find relation between ' $d x$ ' \& ' $d t$ '.
Differentiating B.S w.r.t ' $x$ ', we get $\frac{\mathrm{dt}}{\mathrm{dx}}=2 x$;
If we observe the question carefully, we have 'x. $d x$ ' in the numerator. So we will find its value in terms of $d t$.
We get $x . d x=\frac{d t}{2}-------(i i)$;

$$
\begin{equation*}
\Rightarrow \text { we have } x^{2}=(t-1) \text { from (i)- } \tag{iii}
\end{equation*}
$$

Thus $\int \frac{x^{2} \cdot x \cdot d x}{\left(x^{2}+1\right)^{3}}$

$$
\begin{equation*}
\Rightarrow \int \frac{(\mathrm{t}-1) \cdot \mathrm{dt}}{2 \mathrm{t}^{3}}--- \text { Substituting value of } \mathrm{x}^{2} \& x \cdot d x \text { from (ii) \& } \tag{iii}
\end{equation*}
$$

$\Rightarrow \frac{1}{2}\left[\int \frac{(\mathrm{t})}{\mathrm{t}^{3}} \cdot \mathrm{dt}-\frac{1}{\mathrm{t}^{3}} \cdot \mathrm{dt}\right.$
$\Rightarrow \frac{1}{2}\left[\int \frac{(1)}{t^{2}} \cdot d t-\int \frac{1}{t^{3}} \cdot d t\right]$
$\Rightarrow \frac{1}{2}\left[\frac{\mathrm{t}^{-2+1}}{-2+1}-\frac{\mathrm{t}^{-3+1}}{-3+1}\right]$
$\Rightarrow \frac{1}{2}\left[\frac{\mathrm{t}^{-1}}{-1}-\frac{\mathrm{t}^{-2}}{-2}\right]$
$\Rightarrow \frac{1}{2}\left[-\frac{1}{\mathrm{t}}+\frac{1}{2 \mathrm{t}^{2}}\right]$
$\Rightarrow \frac{1}{4 t^{2}}-\frac{1}{2 t}+C \quad \Rightarrow \frac{1}{4\left(x^{2}+1\right)^{2}}-\frac{1}{2\left(x^{2}+1\right)}+C$
CQ2: $\int \frac{x-1}{\sqrt{(x+4)}} \cdot d x$
Ans: $t=\sqrt{(x+4)} \&$ thus $t^{2}=x+4$
Now we have to replace ' $d x^{\prime}$ with ' $d t$ '. SO we find relation between ' $d x$ ' \& ' $d t$ '.
Differentiating B.S w.r.t ' $x$ ', we get $2 t \cdot \frac{\mathrm{dt}}{\mathrm{dx}}=1$;
If we observe the question carefully, we have ' dx ' in the numerator. So we will find its value in terms of $d t$.

We get $d \mathbf{x}=\mathbf{2 t} . d \mathbf{t}$.

$$
\begin{aligned}
& \text { we have } x=\left(\mathrm{t}^{2}-4\right) \text { from (i) } \\
& \Rightarrow 2 \int\left(\mathrm{t}^{2}-5\right)
\end{aligned}
$$

$\Rightarrow 2\left[\int \mathrm{t}^{2} . \mathrm{dt}-\int 5 . \mathrm{dt}\right]$
$\Rightarrow 2\left[\frac{\mathrm{t}^{3}}{3}-5 \mathrm{t}\right]+\mathrm{C}$
$\Rightarrow \frac{2 .(x+4)^{3 / 2}}{3}-10 \sqrt{(x+4)}+C$
CQ3: $\int \frac{d x}{x\left(x^{3}+1\right)}=\int \frac{x^{2} d x}{x^{3}\left(x^{3}+1\right)}$
Ans: Let $\mathrm{t}=x^{3} ; \frac{\mathrm{dt}}{\mathrm{dx}}=3 \mathrm{x}^{2}$
$\Rightarrow \frac{\mathrm{dt}}{3}=\mathrm{x}^{2} . \mathrm{dx}$
$=\int \frac{d t}{3 . t(t+1)}$
$=\frac{1}{3} \int\left(\frac{1}{t}-\frac{1}{t+1}\right) \cdot d t$

$$
=\frac{1}{3}[\log t-\log (t-1)] \quad=\frac{1}{3} \log \left(\frac{x^{3}}{x^{3}-1}\right)+C
$$

$$
\begin{aligned}
\Rightarrow \int \frac{1}{\mathrm{t}} \cdot d t & \left.-\int 5 \cdot d t\right] \\
\Rightarrow & \frac{2 . \mathrm{t}^{3}}{3}-10 t+C
\end{aligned}
$$

## INTEGRATION BY PARTS

Let $\mathrm{f}(\mathrm{x})=\mathrm{u} \& \mathrm{~g}(\mathrm{x})=\mathrm{v}, \quad \int(u, v)=u \int v-\int\left\{\frac{d u}{d x} . \int v\right\}$

## How to find ' $u$ ' \& ' $v$ ':

Sequence shall be LAE:

| L | A | E |
| :---: | :---: | :---: |
| Logarithmic function | Algebraic functions [Involving $x$ ] | Exponential function [Involving $x$ ] |

Different Cases: [Note: Sequence of the functions given in the question is NOT RELEVANT]

| Question Consists of | $\mathbf{u}$ | $\mathbf{v}$ |
| :--- | :--- | :--- |
| 1. Logarithmic function \& Algebraic function | Logarithmic function | Algebraic function |
| 2. Logarithmic function \& Exponential function | Logarithmic function | Exponential function |
| 3. Algebraic function \& Exponential function | Algebraic function | Exponential function |

## SOME SOLVED EXAMPLES

(i) $\int x e^{x} d x$

Ans: $x \rightarrow$ Algebraic Function \& $\mathrm{e}^{\mathrm{x}} \rightarrow$ Exponential Function; Thus $u={ }^{\circ} \mathrm{x}^{\prime} \& v=\mathrm{e}^{\mathrm{x}}$.

$$
\begin{aligned}
& =x \int e^{x} d x-\int\left\{\frac{d}{d x}(x) \int e^{x} d x\right\} d x \\
& =x e^{x}-\int 1 \cdot e^{x} \cdot d x=\boldsymbol{x} \boldsymbol{e}^{x}-\boldsymbol{e}^{x}+\boldsymbol{c}
\end{aligned}
$$

(ii) $\int x \log x d x$

Ans: $x \rightarrow$ Algebraic Function \& Log $x \rightarrow$ Logarithmic Function; Thus $u={ }^{\circ} \log x^{\prime} \& v={ }^{6} x^{\prime}$.

Whatsapp: 8888111134

$$
\begin{array}{ll}
=\log x \int x d x-\int\left\{\frac{d}{d x}(\log x) \int x d x\right\} d \mathrm{dx} & \\
=\log \mathrm{x} \cdot \frac{x^{2}}{2}-\int\left[\frac{1}{x} \cdot \frac{x^{2}}{2}\right] \mathrm{dx} & =\frac{x^{2}}{2} \log x-\frac{1}{2} \int x \cdot d x \\
=\frac{x^{2}}{2} \log \mathrm{x}-\frac{1}{2} \cdot \frac{x^{2}}{2}+\mathrm{c} & =\frac{x^{2}}{2} \log \mathrm{x}-\frac{x^{2}}{4}+\mathrm{c}
\end{array}
$$

(iii) $\int x^{2} e^{x} d x$;

Ans: $\mathrm{x}^{2} \rightarrow$ Algebraic Function \& $\mathrm{e}^{\mathrm{x}} \rightarrow$ Exponential Function; Thus $\mathrm{u}={ }^{6} \mathrm{x}^{29} \& v={ }^{6} \mathrm{e}^{\mathrm{x}}$.

$$
\begin{aligned}
& =x^{2} \int e^{x} \mathrm{dx}-\int\left[\left(\frac{d}{d x} x^{2}\right) \cdot \int e^{x} \cdot d x\right] \\
& =x^{2} e^{x}-\int\left(2 x \cdot e^{x}\right)
\end{aligned}=x^{2} e^{x}-2 \int\left(x e^{x}\right) \mathrm{dx}
$$

We will have to integrate $\int\left(x e^{x}\right)$ again. Thus $u={ }^{6} x^{\prime} \& v={ }^{6} e^{x}$.

$$
\begin{aligned}
& =x^{2} e^{x}-2\left[x \cdot \int e^{x} \cdot \mathrm{dx}-\left[\int\left[\frac{d x}{d x}\right] \int e^{x} d x\right] \quad=x^{2} e^{x}-2\left[x e^{x}-\int 1 \cdot e^{x} \cdot \mathrm{dx}\right]\right. \\
& =x^{2} e^{x}-2\left[x e^{x}-e^{x}\right] \\
& =e^{x}\left[x^{2}-2 x+2\right]+\mathrm{C}
\end{aligned}
$$

(iv) $\int x^{2} e^{a x} d x$

Ans: $\mathrm{x}^{2} \rightarrow$ Algebraic Function $\& \mathrm{e}^{\mathrm{ax}} \rightarrow$ Exponential Function; Thus $u={ }^{6} \mathrm{x}^{2} \&{ }^{2} \mathrm{v}={ }^{6} \mathrm{e}^{\mathrm{ax}}{ }^{9}$.

$$
\begin{aligned}
& =x^{2} \int e^{a x} d x-\int\left\{\frac{d}{d x}\left(x^{2}\right) \int e^{a x} d x\right\} d x \\
& =x^{2} \cdot \frac{e^{a x}}{a}-\int 2 x \cdot \frac{e^{a x}}{a} d x \quad=\frac{x^{2}}{a} e^{a x}-\frac{2}{a} \int x \cdot e^{a x} d x
\end{aligned}
$$

We will have to integrate $\int\left(x e^{a x}\right)$ again. Thus $u={ }^{6} x^{\prime} \& v={ }^{\circ} e^{a x}$.

$$
\begin{aligned}
&=\frac{x^{2}}{a} e^{a x}-\frac{2}{a}\left\{\mathrm{x} \cdot \int e^{a x} \cdot d x-\int\left[\frac{d}{d x}(x) \int e^{a x} d x\right]\right. \\
&=\frac{x^{2}}{a} e^{a x}-\frac{2}{a}\left[\mathrm{x} \cdot \frac{e^{a x}}{a}-\frac{e^{a x}}{a^{2}}\right]=\frac{2}{a}\left[\mathrm{x} \cdot \frac{e^{a x}}{a}-\int 1 \cdot \frac{e^{a x}}{a} d x\right] \\
& e^{a x}-\frac{2 e^{a x}}{a^{2}}+\frac{2 e^{a x}}{a^{3}}+c
\end{aligned}
$$

## IMPORTANT STANDARD FORMULAE

1. $\int \frac{f^{\prime}(x)}{f(x)} \cdot \mathrm{dx}=\log f(\mathrm{x})+\mathrm{c}$
2. $\int e^{x}\left[f(x)+f^{\prime}(x)\right] \cdot d x=e^{x} \cdot f(x)+c$
3. $\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \frac{x-a}{x+a}+\mathrm{c}$
4. $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+c$
5. $\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c$
6. $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\log \left(x+\sqrt{x^{2}-a^{2}}\right)+c$
7. $\int \sqrt{x^{2}+a^{2}} \cdot \mathrm{dx}=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log (x+$ $\left.\sqrt{x^{2}+a^{2}}\right)+c$
8. $\int \sqrt{x^{2}-a^{2}} \cdot \mathrm{dx}=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log (x+$ $\left.\sqrt{x^{2}-a^{2}}\right)+c$

## Example

(a) $\int \frac{e^{x}}{e^{2 x}-4} \mathrm{dx}=\int \frac{d z}{z^{2}-2^{2}}$ where $\mathrm{z}=e^{x} \mathrm{~d} z=e^{x} \mathrm{dx}$
$=\frac{1}{4} \log \left(\frac{e^{x}-2}{e^{x}+2}\right)+c$
(b) $\int \frac{1}{x+\sqrt{x^{2}-1}} \mathrm{~d} \mathrm{x}=\int \frac{x-\sqrt{x^{2}-1}}{\left(x+\sqrt{x^{2}-1}\right)\left(x-\sqrt{x^{2}-1}\right)} \mathrm{dx}=\int\left(x-\sqrt{x^{2}-1}\right) \mathrm{dx}$

$$
=\frac{x^{2}}{2}-\frac{x}{2} \sqrt{x^{2}-1}+\frac{1}{2} \log \left(x+\sqrt{x^{2}-1}\right)+\mathrm{c}
$$

(c) $\int e^{x}\left(x^{3}+3 x^{2}\right) \mathrm{dx}=\int e^{x}\left\{\mathrm{f}(\mathrm{x})+\mathrm{f}^{\prime}(\mathrm{x})\right\} \mathrm{dx}$, where $\mathrm{f}(\mathrm{x})=x^{2}$ [by (e) above] $=e^{x} x^{3}+c$

## INTEGRATION BY PARTIAL FRACTION

- If $f(x) \& g(x)$ are polynomials in $x$, then $\frac{f(x)}{g(x)}$ is called a rational function.
- If degree of $f(x)<$ degree of $g(x)$, it is a proper rational function. [Ex: $\frac{8 x+1}{5 x^{3}+7}$ i.e $\frac{\text { Degree } 1}{\text { Degree } 3}$.]
- If degree of $f(x)>$ degree of $g(x)$, it is an improper pational function.
[Ex: $\frac{5 x^{3}+7}{8 x+1}$ i.e $\frac{\text { Degree } 3}{\text { Degree 1 }}$.]
An improper pational function can be written as a sum of a polynomial \& a proper rational function by dividing $f(x)$ by $g(x)$.
If we break any fraction into parts, then the fractions into which the original fraction is broken up are called partial fractions.
[ $E x: \frac{4}{x-3} \& \frac{-3}{x-2}$ are the partial fractions of $\frac{x+1}{x^{2}-5 x+6}$ ]


## STEPS TO BREAK $\frac{\mathrm{f}(\mathrm{X})}{\mathrm{g}(\mathrm{x})}$ INTO PARTIAL FRACTION

* If $\frac{f(\mathbf{X})}{\mathbf{g}(\mathbf{x})}$ is not a proper function, then reduce it to a sum of a polynomial \& a proper function by dividing the numerator by the denominator as stated above.
* Resolve the denominator into simple factors (linear/quadratic) as far as possible.

The factors of the denominator $g(x)$ may consist of the following forms:
Case 1: When denominator has all distict linear factors [say ( $a x+b$ ), $(c x+d)$ ]:

- For every distinct linear factor, there exists a single partial fraction of the form, $\frac{A}{a x+b}, \frac{B}{c x+d}$ where $A \& B$ are constants to be determined.
Ex. $\int \frac{(3 x+2) d x}{(x-2)(x-3)}$
Ans: [Degree of numerator must be < degree of denominator; denominator contains nonrepeated linear factor]

Let $\frac{(3 x+2)}{(x-2)(x-3)}=\frac{A}{(x-2)}+\frac{B}{(x-3)}=\frac{\mathrm{A}(\mathrm{x}-3)+\mathrm{B}(\mathrm{x}-2)}{(x-2)(x-3)}$
$\Rightarrow 3 \mathrm{x}+2=\mathrm{A}(\mathrm{x}-3)+\mathrm{B}(\mathrm{x}-2)$
$\Rightarrow$ We have to find the values of $A \& B$; Thus we will put such value of ${ }^{6} x$ which will make coefficient of either ${ }^{6} A$ ' or ${ }^{6} B^{\prime}=0$ \& we can get the value of other term.
If we put $x=2$ in (i); it will make ' $B^{\prime}=0$ \& thus we can get ' $A$ '.
$\Rightarrow 3.2+2=A(2-3)+B(2-2) \Rightarrow A=-8$.
If we put $x=3$ in $(i)$; it will make ' $A$ ' $=0$ \& thus we can get ' $B$ '.
$\Rightarrow 3.3+2=A(3-3)+B(3-2) \Rightarrow B=11$.
$\int \frac{(3 x+2) d x}{(x-2)(x-3)}=\int \frac{-8}{(x-2)} \cdot d x+\int \frac{11}{(x-3)} \cdot d x \quad \Rightarrow-8 \cdot \log (x-2)+11 \cdot \log (x-3)+c$
Case 2: When denominator has repeated linear factors, (say ax $+b$, occurs $n$ times):

- To every repetition $n$ times, there corresponds sum of $n$ partial fractions of form, $\frac{A_{1}}{a x+b}+$ $\frac{A_{2}}{(a x+b)^{2}}+\ldots+\frac{A_{n}}{(a x+b)^{n}}$ where $A_{1}, \mathbf{A}_{2} \ldots \ldots . \mathbf{A}_{n}$ are constants to be determined.

Ex: $\int \frac{(3 x+2)}{(x-2)^{2}(x-3)} \cdot d \boldsymbol{x}$
Ans: Let $\frac{(3 x+2) d x}{(x-2)^{2}(x-3)}=\frac{A}{(x-2)}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-3)}=$
$3 x+2=A(x-2)(x-3)+B(x-3)+C(x-2)^{2}$
Comparing coefficients of $x^{2}, x$ and the constant terms of both sides, we find

By $(\mathrm{ii})+(\mathrm{iii}) \Rightarrow A-2 B=5-\cdots---(\mathrm{iv})$
By (i) $-(\mathrm{iv}) \Rightarrow 2 B+C=-5$
From (iv) $\Rightarrow A=5+2 B$;
From $(v) \Rightarrow C=-5-2 B$
From $(\mathrm{ii}) \Rightarrow-5(5+2 B)+B-4(-5-2 B)=3$
$\Rightarrow-25-10 B+B+20+8 B=3$
$\Rightarrow-\mathrm{B}-5=3$
$\Rightarrow B=-8$
$\Rightarrow A=5-16=-11$ from (iv)
$\Rightarrow C=-A=11$
Therefore $\int \frac{(3 x+2) d x}{(x-2)^{2}(x-3)}$ can be written as:
$=\int \frac{-11}{(x-2)} \cdot d x+\frac{-8}{(x-2)^{2}} \cdot d x+\int \frac{11}{(x-3)} \cdot d x \quad=-11 \int \frac{d x}{(x-2)}-8 \frac{d x}{(x-2)^{2}}+11 \int \frac{d x}{(x-3)}$
$=-11 \cdot \log (x-2)+\frac{8}{(x-2)}+11 \cdot \log (x-3) \quad=11 \log \frac{(x-3)}{(x-2)}+\frac{8}{(x-2)}+c$
Case 3: When denominator has a quadratic factors, [say $\left(a x^{2}+b x+c\right)$ :

- To every quadratic factor, there corresponds a partial fraction of the form, $\frac{\mathrm{Ax}+\mathrm{B}}{\mathrm{ax}+\mathrm{bx}+\mathrm{c}}$ where A \& B ape constants to be determined.
$E x: \int \frac{\left(3 x^{2}-2 x+5\right)}{(x-1)^{2}\left(x^{2}+5\right)} \cdot d x$

Ans: Let $\frac{\left(3 x^{2}-2 x+5\right)}{(x-1)^{2}\left(x^{2}+5\right)}=\frac{A}{x-1}+\frac{B x+C}{\left(X^{2}+5\right)}$
Thus $3 x^{2}-2 x+5=A\left(x^{2}+5\right)+(B x+C)(x-1)$
Equating the coefficients of $x^{2}, x$ and the constant terms from both sides we get,
$A+B=3$
$C-B=-2$
(ii);
$5 A-C=5$

From (i) $+(i i): A+C=1$
(iv);

From (iii) + (iv) $6 A=6$
$\Rightarrow A=1$
$\Rightarrow B=3-1=2 \&$
$\Rightarrow C=0$
Thus $\int \frac{\left(3 x^{2}-2 x+5\right)}{(x-1)^{2}\left(x^{2}+5\right)} \mathrm{dx}$
$=\int \frac{1}{x-1} \cdot d x+\frac{2 x+0}{x^{2}+5} \cdot d x$
$=\log (x-1)+\log \left(x^{2}+5\right)$
$=\log (x-1)\left(x^{2}+5\right)+c$
SUMMARY TABLE FOR PARTIAL FRACTION

| Rational Fopm | $\frac{p x+q}{(x-a)(x-b)}$ | $\frac{p x+q}{(x-a)^{2}}$ | $\frac{p x^{2}+q x+r}{(x-a)\left(x^{2}+b x+c\right)}$ |
| :---: | :---: | :---: | :---: |
| Partial Fopm | $\frac{A}{(x-a)}+\frac{B}{(x-b)}$ | $\frac{A}{(x-a)}+\frac{B}{(x-a)^{2}}$ | $\frac{A}{(x-a)}+\frac{B x+c}{x^{2}+b x+c}$ |

## SOME SOLVED EXAMPLES:

CQ4: $\int e^{\sqrt{x}} \mathrm{~d} \mathrm{x}$
Ans: Let $\mathrm{t}=\sqrt{x}$; Differentiating both sides w.r.t $\frac{\mathrm{dt}}{\mathrm{dx}}=\frac{1}{2 \sqrt{x}}=\frac{1}{2 t} ; \mathrm{dx}=2 \mathrm{t}$. dt
$\Rightarrow \int e^{\sqrt{x}} . \mathrm{dx}$
$\Rightarrow \int e^{t} .2 \mathrm{t} . \mathrm{dt}$.
$\Rightarrow 2 \int\left(e^{t} \cdot \mathrm{t}\right) \cdot \mathrm{dt}$;
Apply $u . v$ rule, $u={ }^{\circ} t$ ' \& $v={ }^{\circ} e^{t}$ '
$\Rightarrow 2\left[t . \int e^{t}-\int \frac{d t}{d t} \cdot e^{t}\right]$
$\Rightarrow 2\left[t . e^{t}-e^{t}\right]=2\left[\sqrt{x} \cdot e^{\sqrt{x}}-e^{\sqrt{x}}\right]+c$.
CQ5: Find equation of the curve where slope at $(x, y)$ is $9 x$ and which passes through the origin. Ans: We are given that slope is $9 \mathrm{x} \&$ slope means $\frac{d y}{d x}$.
We know that integration of the derivative of a function is that function itself.
Thus $\int \frac{d y}{\mathrm{dx}}=Y \Rightarrow \frac{9 x^{2}}{2}+C$
Since it passes through the origin, $C=0 ; \quad$ Thus the required equation is $9 \boldsymbol{x}^{2}=\mathbf{2 y}$.

## DEFINITE INTEGRATION

- Let a function be $f(x)$.
- As ' $x$ ' changes from ' $a$ ' to ' $b$ ', value of the integral changes from $f(a)$ to $f(b)$. This is as

$$
\int_{a}^{b} f(x)=f(b)-f(a) \quad \text { ' } b \text { ' is called the upper limit \& ' } a \text { ' the lower limit of integration. }
$$

- No need to add "constant of integration" in definite integration.


## How To Solve Definite Integration:

- We shall first find out the integration \& then find $f(a) \& f(b)$. Answer $=f(b)-f(a)$.

CQ6: $\int_{0}^{2} x^{5} . d x$
Ans: Firstly, we will integrate the function. $\quad \int x^{5} . d x=\frac{x^{6}}{6}$.
Now we will put the upper limit \& lower limit respectively.
$f(2)=\frac{x^{6}}{6}=\frac{2^{6}}{6}=\frac{64}{6}=\frac{32}{3} \quad \& f(0)=\frac{0^{6}}{6}=0$.
$f(2)-f(0)=\frac{32}{3}-0=\frac{32}{3}$.
CQ7: $\int_{1}^{2}\left(x^{2}-5 x+2\right) \cdot d x$
Ans: Firstly, we will integrate the function. $\quad \int\left(x^{2}-5 x+2\right) \cdot d x=\frac{x^{3}}{3}-\frac{5 x^{2}}{2}+2 x$
Now we will put the upper limit \& lower limit respectively.
$f(2)=\frac{(2)^{3}}{3}-\frac{5(2)^{2}}{2}+2(2)=\frac{8}{3}-10+4=-\frac{10}{3} \quad \& f(1)=\frac{(1)^{3}}{3}-\frac{5(1)^{2}}{2}+2(1)=\frac{1}{3}-\frac{5}{2}+2=-\frac{1}{6}$
$f(2)-f(1)=-\frac{10}{3}-\left[-\frac{1}{6}\right]=-\frac{19}{6}$

## IMPORTANT PROPERTIES OF DEFINITE INTEGRAL

1. $\int_{a}^{b} f(x) \cdot d x=\int_{a}^{b} f(t) \cdot d t$
2. $\int_{a}^{b} f(x) \cdot d x=-\int_{b}^{a} f(x) \cdot d x$
3. $\int_{a}^{b} f(x) \cdot d x=\int_{a}^{c} f(x) \cdot d x+\int_{c}^{b} f(x) \cdot d x[a<c<b]$.
4. $\int_{0}^{a} f(x) \cdot d x=\int_{0}^{a} f(a-x) \cdot d x$
5. $\int_{-a}^{a} f(x) \cdot d x=2 \int_{0}^{a} f(a) \cdot d x$
if $f(-x)=f(x)$
[i.e If even Function]
$=0$
if $f(-x)=-f(x)$
[i.e If odd Function]
6. When $f(x)=f(a+x) \quad \Rightarrow \int_{0}^{n a} f(x) \cdot d x=n \cdot \int_{0}^{a} f(x) \cdot d x$.

CQ8: $\int_{0}^{2} \frac{x^{2} d x}{x^{2}+(2-x)^{2}}$
Ans: Let $\mathrm{I}=\int_{0}^{2} \frac{x^{2} d x}{x^{2}+(2-x)^{2}}$
\& by Property IV; $\mathrm{I}=\int_{0}^{2} \frac{(2-x)^{2} d x}{(2-x)^{2}+x^{2}}$
$\mathrm{I}+\mathrm{I}=2 \mathrm{I}=\int_{0}^{2} \frac{x^{2} d x}{x^{2}+(2-x)^{2}}+\int_{0}^{2} \frac{(2-x)^{2} d x}{(2-x)^{2}+x^{2}}$
$2 \mathrm{I}=\int_{0}^{2} \frac{x^{2}+(2-x)^{2}}{x^{2}+(2-x)^{2}} \mathrm{~d} \mathrm{x}$
$2 \mathrm{I}=\int_{0}^{2} d x=[x]_{0}^{2}=2-\mathrm{O}=2$
$2 I=2$ \& thus $\mathbf{I}=1$.
CQ9: Evaluate $\int_{-2}^{2} \frac{x^{4} d x}{a^{10}-x^{10}}(\alpha>2)$
Ans: $\frac{x^{4} d x}{a^{10}-x^{10}}=\frac{x^{4} d x}{\left(a^{5}\right)^{2}-\left(x^{5}\right)^{2}}$
Let $t=x^{5}$; Differentiating both sides w.r.t 't', we get $\frac{\mathrm{dt}}{\mathrm{dx}}=5 x^{4} \quad \Rightarrow x^{4}$. $\mathrm{dx}=\frac{\mathrm{dt}}{5}$
$=\frac{1}{5} \int \frac{d t}{\left(a^{5}\right)^{2}-t^{2}} \quad$ [Substituting the value of $x^{4} . \mathrm{dx}=\frac{\mathrm{dt}}{5}$ in (i)]
$=\frac{1}{5} \cdot \frac{1}{2 a^{5}} \log \frac{a^{5}+x^{5}}{a^{5}-x^{5}} \quad$ [Using the formula $\int \frac{d x}{a^{2}-x^{2}}=\frac{1}{2 a} \log \frac{a+x}{a-x}+\mathrm{c}$ ]
Therefore, $\int_{-2}^{2} \frac{x^{4} d x}{a^{10}-x^{10}}$

$$
=2 \int_{0}^{2} \frac{x^{4} d x}{a^{10}-x^{10}}
$$

[Using Property V]
$=2 \times \frac{1}{10 a^{5}} \log \left[\frac{a^{5}+x^{5}}{a^{5}-x^{5}}\right]_{0}^{2}$
$=\frac{1}{5 a^{5}} \log \frac{a^{5}+32}{a^{5}-32}$

## INDEFIITE INTEGRAL - QUESTION BANK

| SN | 8B. INDEFINITE INTEGRALS CALCULUS | Ans |
| :---: | :---: | :---: |
| Q155 | Integrate $(x+a)^{n}$ <br> (a) $\frac{(x+a)^{n+1}}{n+1}$ <br> (b) $\frac{(x+a)^{n}}{n}$ <br> (c) $\frac{(x+a)^{n-1}}{n-l}$ <br> (d) None | A |
| Q156 | Evaluate $\int 5 x^{2} d x$ and the answer will be $\qquad$ <br> (a) $\frac{5}{3} x^{3}+k$ <br> (b) $\frac{5 x^{3}}{3}$ <br> (c) $\frac{5}{x^{-3}}$ <br> (d) None | A |
| Q157 | Integration of $3-2 x-x^{4}$ will become $\qquad$ —. <br> (a) $-x^{2}-\frac{x^{5}}{5}$ <br> (b) $3 x-x^{2}-\frac{x^{5}}{5}$ <br> (c) $3 x-x^{2}-\frac{x^{5}}{5}+k$ <br> (d) None | C |
| Q158 | Evaluate result of $\int\left(x^{2}-1\right)^{2} d x$ is $\qquad$ <br> (a) $\frac{x^{5}}{5}-\frac{2}{3} x^{3}+x+k$ <br> (b) $\frac{x^{5}}{5}-\frac{2}{3} x^{3}+k$ <br> (c) $2 x$ <br> (d) None | A |
| Q159 | Find $\int \sqrt{x} d x$ <br> (a) $\frac{2 x^{\frac{3}{2}}}{3}+c$ <br> (b) $\frac{2 x}{3}+c$ <br> (c) $-\frac{2 x^{\frac{1}{2}}}{5}+c$ <br> (d) $\frac{2}{x^{2}}+c$ | A |
| Q160 | Find $\int \frac{1}{\sqrt{x}} d x$. <br> (a) $2 x+c$ <br> (b) $\frac{\sqrt{x}}{2}+c$ <br> (c) $2 \sqrt{x}+c$ <br> (d) $\frac{\sqrt{x}+c}{2}$ | C |
| Q161 | Integrate, $x^{-1 / 2}$ <br> (a) $2 x^{1 / 2}$ <br> (b) $\frac{1}{2} x^{1 / 2}$ <br> (c) $-\frac{3}{2} x^{-3 / 2}$ <br> (d) None | A |
| Q162 | Find $\int x \sqrt{x} \mathrm{dx}$. <br> (a) $\frac{2}{5} x^{\frac{5}{2}}+c$ <br> (b) $\frac{3}{5} x^{\frac{3}{2}}+c$ <br> (c) $\frac{2}{3} x^{\frac{1}{2}}+c$ <br> (d) $x^{2}+c$ | A |
| Q163 | Evaluate $\int\left(x+\frac{1}{x}\right)^{2} d x$ <br> (a) $\frac{x^{3}}{2}+2 x+c$ <br> (b) $\frac{3 x}{2}-\frac{1}{x}+c$ <br> (c) $\frac{x^{3}}{3}+2 x-\frac{1}{x}+c$ <br> (d) $\frac{x^{2}}{3}-\frac{2}{x}+c$ | C |
| Q164 | Evaluate $\int \sqrt{x}(x 3+2 x-3) d \mathrm{~d}$. <br> (a) $\frac{x^{\frac{7}{2}}}{5}+\frac{3 x^{2}}{7}-8 x+c$ <br> (b) $\frac{2 x^{\frac{9}{2}}}{9}+\frac{4 x^{\frac{5}{2}}}{5}-2 x^{\frac{3}{2}}+c$ (c) $\frac{3 x^{\frac{7}{2}}}{7}+\frac{x^{\frac{3}{2}}}{5}-2 x^{\frac{3}{2}}+c$ (d) <br> (d) $\frac{2 x^{\frac{5}{2}}}{7}-\frac{x^{\frac{3}{2}}}{9}-2 x^{\frac{5}{2}}+c$ | B |
| Q165 | $\int\left(7 x^{2}-3 x+8-x^{-1 / 2}+x^{-1}+x^{-2}\right) d x$ <br> (a) $\frac{7}{3} x^{3}-\frac{3}{2} x^{2}+8 x-2 x^{1 / 2}+\log x-x-1$ <br> (b) $\frac{3}{7} x^{3}-\frac{2}{3} x^{2}+8 x-\frac{1}{2} x^{1 / 2}+\log x+x^{-1}$ | A |


|  | (c) $\frac{7}{3} x^{3}+\frac{3}{2} x^{2}+8 x-2 x^{1 / 2}+\log x+x-1 \quad$ (d) None |  |
| :---: | :---: | :---: |
| Q166 | Integrate $\frac{\left(a x^{3}+b x^{2}+c x+d\right)}{x}$ <br> (a) $\frac{1}{3} a x^{3}+\frac{1}{2} b x^{2}+c x+\mathrm{d} \log x$ <br> (b) $3 a x^{3}+2 b x^{2}+c x+d \log x$ <br> (c) $2 a x+b-d x^{-2}$ <br> (d) None | A |
| Q167 | Integrate $\frac{\left(4 x^{6}+3 x^{5}+2 x^{4}+x^{3}+x^{2}+1\right)}{x^{3}}$ <br> (a) $x^{4}+x^{3}+x^{2}+x+\log \mathrm{x}-\frac{1}{2 x^{2}}$ <br> (b) $x^{4}+x^{3}+x^{2}+x+\operatorname{Iog} x+(1 / 2) x^{-2}$ <br> (c) $x^{4}+x^{3}+x^{2}+x+\log x+2 x^{-2}$ <br> (d) None | A |
| Q168 | Integrate $4 x^{3}+3 x^{2}-2 x+5$ <br> (a) $x^{4}+x^{3}-x^{2}+5 x$ <br> (b) $x^{4}-x^{3}+x^{2}-5 x$ <br> (c) $x^{4}+x^{3}+x^{2}-5$ <br> (d) None | A |
| Q169 | The integral of $p x^{3}+q x^{2}+p k+\frac{w}{x}$ is $\qquad$ <br> (a) $p x^{2}+q x+p+k$ <br> (b) $\frac{p x^{3}}{3}+\frac{q x^{2}}{2}+r x$ <br> (c) $3 p x+2 q-\frac{w}{x^{2}}$ <br> (d) $\frac{p x^{4}}{4}+\frac{q x^{3}}{3}+w \log x+r k x$ | D |
| Q170 | Integrate $\left(x^{4}+1\right) / x^{2}$ <br> (a) $\frac{x^{3}}{3}-\frac{1}{x}$ <br> (b) $\frac{1}{x}-\frac{x^{3}}{3}$ <br> (c) $\frac{x^{3}}{3}+\frac{1}{x}$ <br> (d) None | A |
| Q171 | Integrate $(4 x+5)^{6}$ <br> (a) $\frac{1}{128}(4 x+5)^{7}$ <br> (b) $\frac{1}{7}(4 x+5)^{7}$ <br> (c) $\frac{7}{(4 x+5)^{-7}}$ <br> (d) None | A |
| Q172 | $\int \frac{1}{\sqrt{1+x}}$ is equal to $\qquad$ <br> (a) $\frac{2}{(1+x)^{1 / 2}}$ <br> (b) $(1+x)^{1 / 2}$ <br> (c) $2(1+x)^{1 / 2}$ <br> (d) None | C |
| Q173 | $\int e^{a x} d x$ <br> (a) $e^{x}$ <br> (b) $\frac{e^{a x}}{a}$ <br> (c) $\log x$ <br> (d) $\frac{1}{e^{-a x}}$ | B |
| Q174 | $\int e^{3 x+5} \mathrm{dx}$ is equal to $\qquad$ <br> (a) $\frac{e^{3 x+5}}{3}+c$ <br> (b) $\frac{e^{3 x}}{5}+c$ <br> (c) $\frac{-e^{3 x+5}}{3}+c$ <br> (d) None | A |
| Q175 | The value of $\int\left(6 x^{5}+3 e^{2 x}+5\right) \mathrm{dx}$ is equal to $\qquad$ <br> (a) $x^{6}+\frac{3}{2} e^{2 x}+5 x+k$ <br> (b) $30 x^{4}+6 e^{2 x}$ <br> (c) $x^{6}+\frac{3}{2} e^{2 x}$ <br> (d) None | A |


| Q176 | Find $\int e^{-3 x} \mathrm{dx}$. <br> (a) $-(1 / 3) e^{-3 x}+c$ <br> (b) $e^{-3 x}+c$ <br> (c) $(1 / 3) e^{-x}+c$ <br> (d) $(1 / 3) e^{x}+c$ | A |
| :---: | :---: | :---: |
| Q177 | Evaluate $\int \frac{e^{3 x}+e^{-3 x}}{e^{x}} \mathrm{dx}$. <br> (a) $\frac{e^{3 x}}{3}-\frac{1}{2 x}+c$ <br> (b) $\frac{e^{2 x}}{2}-\frac{1}{4 e^{4 x}}+c$ <br> (c) $\frac{e^{3 x}}{2}+\frac{1}{3 e^{2 x}}+c$ <br> (d) $-\frac{e^{2 x}}{2}-\frac{1}{3 e^{2 x}}+$ | B |
| Q178 | Find $\int 3^{x} d x$. <br> (a) $\log _{e} 3+c$ <br> (b) $\frac{e^{x}}{3} \log 3+c$ <br> (c) $\frac{3^{x}}{\log _{e} 3}+c$ <br> (d) $3^{x}+c$ | C |
| Q179 | Integrate $\sqrt{x}-\frac{x}{2}+\frac{2}{\sqrt{x}}$ <br> (a) $\frac{2}{3} x \sqrt{x}-\frac{1}{4} x^{2}+4 \sqrt{x}+c$ <br> (b) $\frac{3}{2} \sqrt{x}-\frac{1}{4} x^{2}+\sqrt{x}+c$ <br> (c) $\frac{2}{3} \sqrt{x}-\frac{1}{2} x^{2}-\frac{1}{2} \sqrt{x}+c$ <br> (d) None | A |
| Q180 | Integrate $\frac{3}{x}+4 x^{2}-3 x+8$ <br> (a) $3 \operatorname{Iog} x-\frac{4}{3} x^{3}+\frac{3}{2} x^{2}-8 x+c$ <br> (b) $3 \operatorname{Iog} x+\frac{4}{3} x^{3}-\frac{3}{2} x^{2}+8 x+c$ <br> (c) $3 \operatorname{Iog} x+\frac{4}{3} x^{3}+\frac{3}{2} x^{2}+8 x+c$ <br> (d) None | B |
| Q181 | Integrate $\left(a x+\frac{b}{x^{3}}+\frac{c}{x^{7}}\right) x^{2}$ <br> (a) $\frac{1}{4} a x^{4}+b \log x-\frac{1}{4} c x^{-4}+k$ <br> (b) $4 a x^{4}+b \log x-4 c x^{-4}+k$ <br> (c) $\frac{1}{4} a x^{4}+b \log x+\frac{1}{4} c x^{-4}+k$ <br> (d) None | A |
| Q182 | Integrate $\left[2^{x}+\frac{1}{2} e^{-x}+\frac{4}{x}-x^{-1 / 3}\right]$ <br> (a) $\frac{2^{x}}{\log 2}-\frac{1}{2} e^{-x}+4 \operatorname{Iog} x-\frac{3}{2} x^{2 / 3}+k$ <br> (b) $\frac{2^{x}}{\log 2}+\frac{1}{2} e^{-x}+4 \operatorname{Iog} x+\frac{3}{2} x^{2 / 3}+k$ <br> (c) $\left.\frac{2^{x}}{\log 2}-2 e^{-x}+4 \right\rvert\, \log x-\frac{2}{3} x^{2 / 3}+k$ <br> (d) None | A |
| Q183 | $\int\left(x^{4}+\frac{3}{x}\right) d x$ is equal to $\qquad$ <br> (a) $\frac{x^{5}}{5}+3 \log \|x\|$ <br> (b) $\frac{1}{5} x^{5}+3 \log \|x\|+k$ (c) $\frac{1}{5} x^{5}+k$ <br> (d) None | A |
| Q184 | Evaluate the integral $\int \frac{(1-x)^{3}}{x} d x$ <br> (a) $\operatorname{Iog}\|x\|-3 x+\frac{3}{2} x^{2}+k$ <br> (b) $\log \mathrm{x}-2+3 x^{2}+k$ <br> (c) $\log x+3 x^{2}+k$ <br> (d) $\log \|x\|-\frac{x^{3}}{3}-3 x+\frac{3 x^{2}}{2}+k$ | D |


| Q185 | Integrate $\frac{x^{2}}{\left(x^{3}+2\right)^{1 / 4}}$ <br> (a) $(4 / 9)\left(x^{3}+2\right)^{\frac{3}{4}}+k$ <br> (b) $(9 / 4)\left(x^{3}+2\right)^{3 / 4}+k$ <br> (c) $(3 / 4)\left(x^{3}+2\right)^{3 / 4}+k$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q186 | Evaluate $\int \frac{x^{2}}{x+1} d x$. <br> (a) $\frac{3 x^{2}}{4}+x-\operatorname{Iog}(x+1)+c$ <br> (b) $\frac{x^{2}}{2}-x+\log (2 x-1)+c$ <br> (c) $\frac{x^{2}}{2}-x+\operatorname{Iog}(x+1)+c$ <br> (d) None | C |
| Q187 | Evaluate $\int \frac{x^{3}+5 x^{2}-3}{(x+2)} \mathrm{dx}$. <br> (a) $\frac{x^{3}}{3}+\frac{2 x^{2}}{5}+4 x+6 \operatorname{Iog}(x+3)+c$ <br> (b) $\frac{x^{3}}{5}+\frac{7 x^{2}}{2}-5 x-9 \operatorname{Iog}(x-8)+c$ <br> (c) $\frac{x^{3}}{2}-\frac{7 x^{2}}{9}-6 x-9 \operatorname{Iog}(x-4)+c$ <br> (d) $\frac{x^{3}}{3}+\frac{3 x^{2}}{2}-6 x+9 \operatorname{Iog}(x+2)+c$ | D |
| Q188 | $\int \frac{8 x^{2}}{\left(x^{3}+2\right)^{3}} d x$ is equal to $\qquad$ <br> (a) $(-4 / 3)\left(x^{3}+2\right)^{2}$ <br> (b) $\frac{-4}{3\left(x^{3}+2\right)^{2}}+k$ <br> (c) $\frac{4}{3}\left(x^{3}+2\right)^{2}+k$ <br> (d) None | B |
| Q189 | Evaluate $\int x\left(x^{2}+4\right)^{5} d x$ <br> (a) $\left(x^{2}+4\right)^{6}+k$ <br> (b) $\frac{1}{12}\left(x^{2}+4\right)^{6}+k$ <br> (c) $\frac{\left(x^{2}+4\right)^{6}}{k}$ <br> (d) None | B |
| Q190 | Evaluate $\int \frac{x^{3}}{\left(x^{2}+1\right)^{3}} d x$. <br> (a) $\frac{1}{4} \cdot \frac{1}{\left(x^{2}+1\right)^{2}}-\frac{1}{2} \cdot \frac{1}{x^{2}+1}+c$ <br> (b) $\frac{3}{4} \cdot \frac{1}{\left(x^{3}+1\right)^{2}}-\frac{3}{2} \cdot \frac{1}{x^{2}-1}+c$ <br> (c) $\frac{5}{4} \cdot \frac{1}{\left(x^{2}-1\right)^{2}}-\frac{3}{2} \cdot \frac{1}{x^{2}+1}+c$ <br> (d) $\frac{7}{4} \cdot \frac{1}{\left(x^{2}+1\right)^{2}}+\frac{1}{2} \cdot \frac{1}{x^{2}+1}+c$ | A |
| Q191 | Evaluate $\int \frac{d x}{x\left(x^{3}+1\right)}$ <br> (a) $\operatorname{Iog}(x / x+1)+c$ <br> (b) $(1 / 3) \log \frac{x^{3}}{x^{3}+1}+c$ <br> (c) $(1 / 3) \log \frac{x}{x^{3}+1}+c$ <br> (d) $\frac{1}{3} \log \frac{x^{3}}{x^{3}-1}+c$ | D |
| Q192 | Integrate $\left(x^{2}+2\right)^{-3} x^{3}$ <br> (a) $-\frac{2 x^{2}+3}{2\left(x^{2}+2\right)^{2}}$ <br> (b) $\frac{1}{2} \frac{\left(2 x^{2}+3\right)}{\left(x^{2}+1\right)^{2}}$ <br> (c) $-\frac{1}{4} \frac{\left(2 x^{2}+1\right)}{x^{2}+1}$ <br> (d) $\frac{1}{4} \frac{\left(2 x^{2}+1\right)}{x^{2}+1}$ | A |
| Q193 | Integrate $x\left(x^{2}+3\right)^{-2}$ <br> (a) $-\frac{1}{2\left(x^{2}+3\right)}$ <br> (b) $\frac{1}{2\left(x^{2}+3\right)}$ <br> (c) $\frac{2}{x^{2}+3}$ <br> (d) None | A |
| Q194 | Evaluate $\int \frac{(2-x) e^{x}}{(1-x)^{2}} \mathrm{dx}$ and the value is _._. | A |


|  | $\begin{array}{llll}\text { (a) } \frac{e^{x}}{1-x}+k & \text { (b) } e^{x}+k & \text { (c) } 1-x+k & \text { (d) None }\end{array}$ |  |
| :---: | :---: | :---: |
| Q195 | Evaluate $\int\left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right) d x$ and the value is $\qquad$ <br> (a) $\log _{e}\left\|e^{x}+e^{-x}\right\|$ <br> (b) $\log _{e}\left\|e^{x}+e^{-x}\right\|+k$ <br> (c) $\log _{e}\left\|e^{x}-e^{-x}\right\|+k$ <br> (d) None | B |
| Q196 | Integrate $\left(x^{3}+2\right)^{2} 3 x^{2}$ <br> (a) $\frac{1}{3}\left(x^{3}+2\right)^{3}+c$ <br> (b) $3\left(x^{3}+2\right)^{3}+c$ <br> (c) $3 x^{2}\left(x^{3}+2\right)^{3}+c$ <br> (d) $9 x^{2}\left(x^{3}+2\right)^{3}+c$ | A |
| Q197 | Integrate $\left(x^{3}+2\right)^{1 / 2} x^{2}$ <br> (a) $\frac{2}{9}\left(x^{3}+2\right)^{3 / 2}+c$ <br> (b) $\frac{2}{3}\left(x^{3}+2\right)^{3 / 2}+c$ <br> (c) $\left(\frac{9}{2}\right)\left(x^{3}+2\right)^{3 / 2}+c$ <br> (d) None | A |
| Q198 | The integral of $\frac{x^{3}}{x^{2}+1}$ is equal to $\qquad$ <br> (a) $\frac{1+2 x^{2}}{4\left(x^{2}+1\right)^{2}}+c$ <br> (b) $\frac{1-2 x^{2}}{4\left(x^{2}+1\right)^{2}}+c$ <br> (c) $\frac{-\left(1+2 x^{2}\right)}{4\left(x^{2}+1\right)}+c$ <br> (d) None | D |
| Q199 | Integrate $\frac{3 x}{\left(x^{2}+1\right)^{n}}$ <br> (a) $\frac{3}{2} \frac{\left(x^{2}+l\right)^{1-n}}{1-n}$ <br> (b) $\frac{3}{2} \frac{\left(x^{2}+l\right)^{n-1}}{1-n}$ <br> (c) $\frac{2}{3} \frac{\left(x^{2}+l\right)^{1-n}}{1-n}$ <br> (d) None | A |
| Q200 | $\int \frac{d x}{e^{x}+1}$ is equal to $\qquad$ <br> (a) $-\log \left(1+e^{-x}\right)+K$ <br> (b) $\left(e^{x}+1\right)^{-2}+K$ <br> (c) $\frac{1}{1+e^{x}}+K$ <br> (d) None | A |
| Q201 | $\int_{0}^{5} \frac{x^{2}}{x^{2}+(5-x)^{2}} d x$ is equal to $\qquad$ <br> (a) 5 <br> (b) $5 / 2$ <br> (c) 1 <br> (d) None | B |
| Q202 | If $f(x)=\sqrt{1+x^{2}}$ then $\int f(x) \mathrm{dx}$ is $\qquad$ <br> (a) $\frac{2}{3}\left(1+x^{2}\right)^{\frac{3}{2}}+k 2 / 3\left(1+x^{2}\right)^{\frac{3}{2}}+k$ <br> (b) $\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \log \left(x+\sqrt{x^{2}+1}\right)$ <br> (c) $\frac{2}{3} x\left(1+x^{2}\right)^{\frac{3}{2}}+k$ <br> (d) None | B |
| Q203 | Value of $\int \frac{d x}{16-9 x^{2}}$ <br> (a) $\frac{1}{24} \log \left\|\frac{4+3 x}{4-3 x}\right\|+c$ <br> (b) $\frac{16}{9} \log \left\|\frac{4+x}{4-x}\right\|+c$ <br> (c) $\frac{1}{4} \log \left\|\frac{3 x}{4}\right\|+c$ <br> (d) $\operatorname{Iog}\left\|\frac{4+3 x}{4-3 x}\right\|+c$ | A |
| Q204 | The integral of $\int \frac{d x}{x^{2}-a^{2}}$ will be $\qquad$ <br> (a) $\frac{1}{2 a} \operatorname{Iog} \frac{(x-a)}{(x+a)}$ <br> (b) $\frac{1}{2 a} \log \frac{(x+a)}{(x-a)}$ <br> (c) $\frac{1}{2 a} \log \frac{x}{(x+a)}$ <br> (d) None | A |


| Q205 | $\int \sqrt{x^{2}+a^{2}} d x$ is equal to $\qquad$ <br> (a) $\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left\|x^{2}+\sqrt{x^{2}+a^{2}}\right\|$ <br> (b) $\frac{x}{2} \sqrt{x^{2}-a^{2}}+\frac{a^{2}}{2} \log \left\|x^{2}-\sqrt{x^{2}-a^{2}}\right\|$ <br> (c) $\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left\|x^{2}+\sqrt{x^{2}+a^{2}}\right\|$ <br> (d) None | A |
| :---: | :---: | :---: |
| Q206 | Evaluate $\int \frac{(3 x+2) d x}{(x-2)(x-3)}$. <br> (a) $-\log (x-2)+11 \operatorname{Iog}(x-3)+c$ <br> (b) $\operatorname{Iog}(x-2)(x-3)+c$ <br> (c) $\operatorname{Iog}(3 x+2)+c$ <br> (d) $-\operatorname{Iog}(x-2)+\operatorname{Iog}(x-3)+c$ | A |
| Q207 | Evaluate $\int \frac{(3 x+2) d x}{(x-2)^{2}(x-3)}$ <br> (a) $11 \operatorname{Iog} \frac{(x-3)}{(x-2)}+\frac{8}{(x-2)}+c$ <br> (b) $\operatorname{Iog}(x-2)+\operatorname{Iog}(x-3)+c$ <br> (c) $\operatorname{Iog} \frac{(x-3)}{(x-2)}+\log (3 x+2)+c$ <br> (d) $\operatorname{Iog}(3 x+2)+c$ | A |
| Q208 | Evaluate $\int \frac{\left(3 x^{2}-2 x-5\right)}{(x-1)\left(x^{2}+5\right)} \mathrm{dx}$. <br> (a) $\log \left(3 x^{2}-2 x-5\right)+c$ <br> (b) $\log \left(x^{2}+5\right)(x-1)+c$ <br> (c) $\log (3 x-5)+c$ <br> (d) $\log (x-1)^{2}+c$ | B |
| Q209 | $\int \frac{x e^{x}}{(x+1)^{2}} d x$ is equal to $\qquad$ <br> (a) $\frac{e^{x}}{x+1}+k$ <br> (b) $\frac{e^{x}}{x}+k$ <br> (c) $e^{x}+k$ <br> (d) None | A |
| Q210 | Integrate $\frac{1}{x^{2}-a^{2}}$ is $\qquad$ <br> (a) $\operatorname{Iog}\left\|\frac{x-a}{x+a}\right\|+k$ <br> (b) $\operatorname{Iog}(x-a)-\log (x+a)$ <br> (c) $\frac{1}{2 a} \log \left\|\frac{x-a}{x+a}\right\|+k$ <br> (d) $\frac{1}{2} \log \left\|\frac{x+a}{x-a}\right\|+k$ | C |
| Q211 | Evaluate $\int \frac{e^{x}}{e^{2 x}-4} d x$ <br> (a) $\frac{3}{4} \operatorname{Iog}\left(\frac{e^{x}+2}{e^{x}-2}\right)+c$ <br> (b) $-\frac{5}{4} \operatorname{Iog}\left(\frac{e^{x}-2}{e^{x}+2}\right)+c$ <br> (c) $\frac{1}{4} \log \left(\frac{e^{x}-2}{e^{x}+2}\right)+c$ <br> (d) $\frac{7}{4} \operatorname{Iog}\left(\frac{e^{x}+2}{e^{x}-2}\right)+c$ | C |
| Q212 | Evaluate $\int \frac{x+5}{(x+1)(x+2)^{2}} \mathrm{~d} \mathrm{x}$ <br> (a) $4 \operatorname{Iog}(x+1)-4 \operatorname{Iog}(x+2)+\frac{3}{x+2}+k 4$ <br> (b) $4 \operatorname{Iog}(x+2)-\frac{3}{x+2}+k$ <br> (c) $4 \log (x+1)-4 \operatorname{Iog}(x+2)$ <br> (d) None | A |
| Q213 | Evaluate $\int \frac{x^{2}-1}{x^{4}+x^{2}+1} d x$ | B |


|  | $\begin{array}{llll}\text { (a) } \frac{1}{4} \log \left\|\frac{x^{2}-x+1}{x^{2}+x+1}\right\| & \text { (b) } \frac{1}{2} \log \left\|\frac{x^{2}-x+1}{x^{2}+x+1}\right\| & \text { (c) } \frac{1}{3} \log \left\|\frac{x^{2}-x+1}{x^{2}+x+1}\right\| & \text { (d) } \frac{1}{3} \log \left\|\frac{x^{2}+x+1}{x^{2}-x+1}\right\|\end{array}$ |  |
| :---: | :---: | :---: |
| Q214 | Integrate $\frac{1}{x-x^{3}}$ <br> (a) $\frac{1}{2} \log \left[x^{2} /\left(1-x^{2}\right)\right]$ <br> (b) $\frac{1}{2} \log \left[x^{2} /(1-x)^{2}\right]$ <br> (c) $\frac{1}{2} \log \left[x^{2} /(1+x)^{2}\right]$ <br> (d) $\frac{1}{2} \log \left[x^{2} /\left(1+x^{2}\right)\right]$ | A |
| Q215 | The value of $\int \frac{d x}{x\left(x^{2}-1\right)}$ is equal to $\qquad$ <br> (a) $\frac{1}{2} \log \left(1+\frac{1}{x^{2}}\right)$ <br> (b) $\frac{1}{2} \log \left(1-\frac{1}{x^{2}}\right)+k$ <br> (c) $\operatorname{Iog}\left(1-\frac{1}{x^{2}}\right)$ <br> (d) None | B |
| Q216 | Evaluate the integral of $\int x \cdot e^{x} \mathrm{dx}$ <br> (a) $e^{x}\left(x^{2}+1\right)+c$ <br> (b) $e^{x}(x+1)+c$ <br> (c) $e^{x}(2 x+1)+c$ <br> (d) $e^{x}(x-1)+c$ | D |
| Q217 | The value of $\int\left(5 x \cdot e^{\mathrm{x}}+10\right) d x$ is equal to $\qquad$ <br> (a) $5 x e^{x}-5 e^{x}+10 x+c$ <br> (b) $5 x e^{x}+5 e^{x}+10 x+c$ <br> (c) $x e^{x}-5 e^{x}+10 x+c$ <br> (d) None | B |
| Q218 | Integrate $\log x$ <br> (a) $x(\log x-1)$ <br> (b) $x(\log x+1)$ <br> (c) $\log x-1$ <br> (d) $\log x+1$ | A |
| Q219 | $\int \frac{\log (\log x)}{x} d x \mathrm{dx}$ is $\qquad$ <br> (a) $\log (\log x-1)+k$ <br> (b) $\log x-1+k$ <br> (c) $[\log (\log x-1)] \log x+k$ <br> (d) None | C |
| Q220 | $\int_{1}^{e} \frac{e^{x}\left(\times \log _{e} x+1\right)}{x} d x=$ $\qquad$ <br> (a) $e^{e}-1$ <br> (b) $e^{e}$ <br> (c) $e-1$ <br> (d) none | B |
| Q221 | $\int(\operatorname{Iog} x)^{2} x d x$ is equal to $\qquad$ <br> (a) $\frac{x^{2}}{2}\left[(\operatorname{Iog} x)^{2}-\operatorname{Iog} x+\frac{1}{2}\right]+c$ <br> (b) $(\log x)^{2}-\log x+\frac{1}{2}+k$ <br> (c) $\frac{x^{2}}{2}\left[(\operatorname{Iog} x)^{2}+1 / 2\right]+k$ <br> (d) None | A |
| Q222 | Integrate $x^{3} \log x$ <br> (a) $x^{4} / 16+k$ <br> (b) $x^{4} / 16(4 \operatorname{Iog} x-1)+k$ <br> (c) $4 \operatorname{Iog} x-1+k$ <br> (d) None | B |
| Q223 | Evaluate $\int x^{3} e^{x} d x$ <br> (a) $\left(x^{3}-3 x^{2}+6 x-6\right) e^{x}+c$ <br> (b) $\left(x^{3}+3 x^{2}+6 x-6\right) e^{x}+c$ <br> (c) $\left(x^{3}-3 x^{2}-6 x-6\right) e^{x}+c$ <br> (d) $\left(x^{3}+3 x^{2}+6 x+6\right) e^{x}+c$ | A |


| Q224 | Evaluate $\int x \log x \mathrm{~d}$. <br> (a) $x \log x+c$ <br> (b) $x \log x-\frac{x}{3}+c$ <br> (c) $\frac{x^{2}}{2} \operatorname{Iog} x-\frac{x^{2}}{4}+c$ <br> (d) $\frac{1}{x \log x}+c$ | C |
| :---: | :---: | :---: |
| Q225 | Evaluate $\int x^{2} e^{a x} \mathrm{~d} \mathrm{x}$. <br> (a) $\frac{x^{2} e^{a x}}{a}-\frac{2 x e^{a x}}{a^{2}}+\frac{2}{a^{3}} e^{a x}+c$ <br> (b) $2 x e^{a x}+c$ <br> (c) $\frac{x^{2}}{a}-\frac{2}{a^{2}} e^{a x}+x e^{x}-\frac{x}{a}+c$ <br> (d) $e^{a x}+c$ | A |
| Q226 | $\int(\operatorname{Iog} x)^{2} d x$ and the pesults is $\qquad$ . <br> (a) $x(\operatorname{Iog} x)^{2}-2 x \log x+2 x$ <br> (b) $x(\operatorname{Iog} x)^{2}-2 x$ <br> (c) $2 x \log x-2 x$ <br> (d) $x(\operatorname{Iog} x)^{2}-2 x \log x+2 x+k$ | D |
| Q227 | $\int \log x^{2} d x$ is equal to $\qquad$ <br> (a) $x(\operatorname{Iog} x-1)+k$ <br> (b) $2 x(\operatorname{Iog} x-1)+k$ <br> (c) $2(\operatorname{Iog} x-1)+k$ <br> (d) None | B |
| Q228 | Integrate $\frac{l}{x \log x \log (\log x)}$ <br> (a) $\log [\operatorname{Iog}(\operatorname{Iog} x)]$ <br> (b) $\log (\log x)$ <br> (c) $\operatorname{Iog} x$ <br> (d) $1 / x$ | A |
| Q229 | Integrate $\frac{1}{x(\log x)^{2}}$ <br> (a) $\frac{-1}{\operatorname{Iog} x}$ <br> (b) $\frac{1}{\operatorname{Iog} x}$ <br> (c) $\operatorname{Iog} x$ <br> (d) None | A |
| Q230 | Integrate $x^{2} e^{x}$ <br> (a) $e^{x}\left(x^{2}-2 x+2\right)$ <br> (b) $e^{x}\left(x^{2}+2 x+2\right)$ <br> (c) $e^{x}(x+2)^{2}$ <br> (d) None | A |
| Q231 | Integrate $x^{2} e^{3 x}$ <br> (a) $\frac{1}{3}\left(x^{2} e^{3 x}\right)-\frac{2}{9}\left(x e^{3 x}\right)+\frac{2}{27} e^{3 x}$ <br> (b) $\frac{1}{3}\left(x^{2} e^{3 x}\right)+\frac{2}{9}\left(x e^{3 x}\right)+\frac{2}{27} e^{3 x}$ <br> (c) $\frac{1}{3}\left(x^{2} e^{3 x}\right)-\frac{1}{9}\left(x e^{3 x}\right)+\frac{2}{27} e^{3 x}$ <br> (d) None | A |
| Q232 | Integrate $x^{n} \log x$ <br> (a) $\frac{x^{n+1}}{n+1}\left[\operatorname{Iog} x-\frac{1}{n+1}\right]$ <br> (b) $\frac{x^{n-1}}{n-1}\left[\operatorname{Iog} x-\frac{1}{n-1}\right]$ <br> (c) $\frac{x^{n+1}}{n+1}\left[\operatorname{Iog} x+\frac{1}{n+1}\right]$ <br> (d) None | D |
| Q233 | Integrate $\frac{x e^{x}}{(x+1)^{2}}$ <br> (a) $\frac{e^{x}}{x+1}$ <br> (b) $\frac{e^{x}}{(x+1)^{2}}$ <br> (c) $\frac{x e^{x}}{x+1}$ <br> (d) None | A |
| Q234 | Integrate $\mathrm{x} \log x$ | A |


|  | $\begin{array}{lll}\text { (a) } \frac{1}{4} x^{2} \log \left(x^{2} / e\right) & \text { (b) } \frac{1}{2} x^{2} \log \left(x^{2} / e\right) & \text { (c) } \frac{1}{4} x^{2} \log (\mathrm{x} / \mathrm{e})\end{array}$ | (d) None |  |
| :---: | :---: | :---: | :---: |
| Q235 | Integrate $\frac{e^{x}(1+x)}{(x+2)^{2}}$ <br> (a) $\frac{e^{x}}{x+2}$ <br> (b) $\frac{-e^{x}}{2+x}$ <br> (c) $\frac{e^{x}}{2(2+x)}$ | (d) None | A |
| Q236 | Evaluate $\int e^{x}\left(x^{3}+3 x^{2}\right) d x$ <br> (a) $e^{x}+3 x+c$ <br> (b) $e^{3 x}+3 x+c$ <br> (c) $e^{x} \cdot x^{3}+c$ | (d) $e^{3 x}+3 x+x^{3}+c$ | C |
| Q237 | $\int \frac{\log x}{x} d x$ is equal to $\qquad$ <br> (a) $\frac{1}{2} \log x+k$ <br> (b) $\frac{1}{2}(\operatorname{Iog} x)^{2}+k$ <br> (c) $\frac{1}{2} x^{2}+k$ | (d) None | B |
| Q238 | Integrate $e^{x} \frac{(1+x \log x)}{x}$ <br> (a) $e^{x} \log x$ <br> (b) $-e^{x} \log x$ <br> (c) $e^{x} x^{-1}$ | (d) None | A |
| Q239 | $\int \frac{\log (\log x)}{x} d x$ is equal to $\qquad$ <br> (a) $\operatorname{Iog}(\operatorname{Iog} x)-1+k$ <br> (b) $\log (\log x)+k$ <br> (c) $\log \mathrm{x}[\log (\log x)-1]+k$ <br> (d) None |  | C |
| Q240 | The value of the integral $\int \frac{1}{x \log x} d x$ is $\qquad$ <br> (a) $\frac{1}{(x \log x)^{2}}+c$ <br> (b) $\log (x \log x)+c$ <br> (c) $\log (\log x)+c$ | (d) None | C |
| Q241 | Evaluate $\int \frac{\log x}{(1+\log x)^{2}} d x$ <br> (a) $x \log (x+1)+c$ <br> (b) $\operatorname{Iog}(x+1)+c$ <br> (c) $\frac{x}{(\log x+1)}+c$ | (d) $\operatorname{Iog} x+c$ | C |
| Q242 | Evaluate $\int e^{x}\left(\frac{1}{x}-\frac{1}{x^{2}}\right) d x$ <br> (a) $\frac{e^{x}}{x}+c$ <br> (b) $\frac{e^{x}}{x^{2}}+c$ <br> (c) $\frac{e^{x}}{x-x^{2}}+c$ | (d) $e^{x}+c$ | A |
| Q243 | Evaluate $\int e^{x} \frac{x}{(x+1)^{2}} d x$ <br> (a) $\frac{e^{x}}{(x+1)^{2}}+c$ <br> (b) $\frac{e^{x}}{x 1}+c$ <br> (c) $\frac{e^{x}}{x+1}+c$ | (d) $\frac{e^{x}}{(x+1)^{\frac{1}{2}}}+c$ | C |
| Q244 | $\int(x-1) \frac{e^{x}}{x^{2}} \mathrm{dx}$ is equal to $\qquad$ <br> (a) $\frac{e^{x}}{x}+k$ <br> (b) $\frac{e^{-x}}{x}+k$ <br> (c) $\frac{-e^{x}}{x}+k$ | (d) None | A |
| Q245 | $\int \frac{e^{x}(x \log +1)}{x} d x$ is equal to $\qquad$ <br> (a) $e^{x} \log x+k$ <br> (b) $e^{x}+k$ <br> (c) $\log x+k$ | (d) None | A |


| Q246 | Evaluate $\int \frac{1}{x\left\{6(\log x)^{2}+7 \log x+2\right\}} d x$ <br> (a) $\operatorname{Iog}\left\|\frac{2 \log x-1}{3 \log x-2}\right\|+c$ <br> (b) $\operatorname{Iog}\left\|\frac{2 \log x+1}{3 \log x+2}\right\|+c$ <br> $t(c) \operatorname{Iog}\left\|\frac{3 \log x+1}{2 \log x+2}\right\|+c$ <br> (d) $\operatorname{Iog}\left\|\frac{3 \log x+1}{2 \log x+2}\right\|+c$ | B |
| :---: | :---: | :---: |
| Q247 | $\int \frac{\left(x^{2}+1\right)}{\sqrt{x^{2}+2}}$ is equal to $\qquad$ <br> (a) $2 \sqrt{x^{2}+2}+k$ <br> (b) $\sqrt{x^{2}+2}+k$ <br> (c) $\left(x^{2}+2\right)^{3 / 2}+k$ <br> (d) None | D |
| Q248 | $\int\left(e^{x}+e^{-x}\right)^{2}\left(e^{x}-e^{-x}\right) d x$ is $\qquad$ <br> (a) $\frac{1}{3}\left(e^{x}+e^{-x}\right)^{3}+k$ <br> (b) $\frac{1}{2}\left(e^{x}-e^{-x}\right)^{2}+k$ <br> (c) $e^{x}+k$ <br> (d) None | A |
| Q249 | $\int \frac{1 / 2}{0} \frac{1}{\sqrt{3-2 x}} d x$ is equal to $\qquad$ <br> (a) 1 <br> (b) $1-\frac{\sqrt{3}}{2}$ <br> (c) $\sqrt{3}-\sqrt{2}$ <br> (d) $2-\sqrt{3}$ | C |
| Q250 | $\int_{0}^{1} x e^{x 2} \mathrm{dx}$ <br> (a) 1 <br> (b) e- 1 <br> (c) $\frac{e}{2}-1$ <br> (d) $\frac{1}{2}(e-1)$ | D |
| Q251 | The equation of the curve which passes through the point $(1,3)$ and has the slope $4 x-3$ at any point ( $x y$ ) <br> (a) $y=2 x^{3}-3 x+4$ <br> (b) $y=2 x^{2}-3 x+4$ <br> (c) $x=2 y^{2}-3 y+4$ <br> (d) None | B |
| Q252 | The equation of the curve in the form $y=f(x)$ if the curve passes through the point (1 0) and $f(x)=2 x-1$ is $\qquad$ <br> (a) $y=x^{2}-x$ <br> (b) $x=y^{2}-y$ <br> (c) $y=x^{2}$ <br> (d) None | A |

## DEFINITE INTEGRAL - QUESTION BANK

| SN | 8C. DEFINITE INTEGRAL CALCULUS | Ans |
| :---: | :---: | :---: |
| Q253 | $\int_{0}^{a}[f(x)+f(-x)] d x$ is equal to $\qquad$ <br> (a) $\int_{0}^{a} 2 f(x) d x$ <br> (b) $\int_{-a}^{a} f(x) d x$ <br> (c) 0 <br> (d) $\int_{-a}^{a}-f(-x) d x$ | B |
| Q254 | Evaluate $\int_{2}^{4}(3 x-2)^{2} d x$ and the value is $\qquad$ . <br> (a) 104 <br> (b) 100 <br> (c) 10 <br> (d) None | A |
| Q255 | Evaluate $\int_{0}^{1}\left(2 x^{2}-x^{3}\right) d x$ and the value is $\qquad$ <br> (a) $4 / 3$ <br> (b) $5 / 12$ <br> (c) $-4 / 3$ <br> (d) None | B |
| Q256 | $\int_{0}^{2} 3 x^{2} d x$ is $\qquad$ <br> (a) 7 <br> (b) -8 <br> (c) 8 <br> (d) None | C |
| Q257 | Evaluate $\int_{1}^{4}(2 x+5) d x$ and the value is $\qquad$ <br> (a) 3 <br> (b) 10 <br> (c) 30 <br> (d) None | C |
| Q258 | The value of $\int_{0}^{1}(2 x+5) d x$ Is $\qquad$ <br> (a) 54 <br> (b) 6 <br> (c) 19 <br> (d) None | B |
| Q259 | $\int_{0}^{4} \sqrt{3 x+4} d x$ Is equal to $\qquad$ <br> (a) $9 / 112$ <br> (b) $125 / 9$ <br> (c) $11 / 9$ <br> (d) None | B |
| Q260 | $\int_{0}^{1} 10 x^{5} d x$ is equal to $\qquad$ <br> (a) $\frac{5}{3} x^{6}$ <br> (b) $\frac{3}{5}$ <br> (c) $\frac{5}{3}$ <br> (d) None | C |
| Q261 | Evaluate $\int_{0}^{1}\left(2 x^{2}-x^{3}\right) d x$ and the value is $\qquad$ <br> (a) $\frac{4}{3}+k$ <br> (b) $5 / 12$ <br> (c) $-4 / 3$ <br> (d) None | B |
| Q262 | Find the Value of $\int_{3}^{3} x \sqrt{8-x^{2}} d x$ <br> (a) -1 <br> (b) 1 <br> (c) 0 <br> (d) None | C |
| Q263 | Evaluate $\int_{3}^{3}\left\|x^{2}+2 x-3\right\| d x$ <br> (a) 1 <br> (b) -6 <br> (c) 4 <br> (d) 2 | C |
| Q264 | Evaluate $\int_{1}^{4}(\|x-1\|+\|x-2\|+\|x-3\|) d x$ <br> (a) $17 / 2$ <br> (b) $15 / 2$ <br> (c) $19 / 2$ <br> (d) 7 | C |
| Q265 | $\text { Evaluate } \int_{0}^{5} \frac{\sqrt[4]{x+4}}{\sqrt[4]{x+4}+\sqrt[4]{9-x}} d x$ | B |

## ERRORLESS MATHEMATICS BY CA PRANAV CHANDAK BEST BOOK FOR CA FOUNDATION



| Q279 | The value of $\int_{2}^{3} \frac{x+3}{x+1} d x$ <br> (a) $1+2 \operatorname{Iog} \frac{4}{3}$ <br> (b) $1-2 \operatorname{Iog}(4 / 3)$ <br> (c) $1+\operatorname{Iog} \frac{3}{4}$ | (d) None | A |
| :---: | :---: | :---: | :---: |
| Q280 | $\int_{2}^{e} \operatorname{Iog} x d x$ is equal to $\qquad$ <br> (a) $\operatorname{Iog} 2-1$ <br> (b) $-(2 \log 2-2)$ <br> (c) $2 \log 2-1$ | (d) 0 | B |
| Q281 | The value of $\int_{0}^{1} x(1-x)^{n} d x$ is equal to $\qquad$ <br> (a) 0 <br> (b) 1 <br> (c) $\frac{1}{(n+1)(n+2)}$ | (d) $(n+1)(n+2)$ | C |
| Q282 | Evaluate $\int_{-3}^{3}\left(x^{3}+x\right) d x$ <br> (a) 0 <br> (b) 3 <br> (c) -3 | (d) 1 | A |
| Q283 | Evaluate the value of $\int_{0}^{3}\left(3 x^{2}+5 x+2\right) d x$ <br> (a) 55 <br> (b) 57 <br> (c) 55.5 | (d) 56 | C |
| Q284 | $\int \mathrm{x}^{\mathrm{x}} \mathrm{dx}$ with upper limit 1 and lower limit 0 is $\qquad$ <br> (a) -1 <br> (b) 0 <br> (c) 1 | $\text { (d) } \infty$ | C |
| Q285 | $\int_{3}^{4} \frac{1}{25-x^{2}} d x$ <br> (a) $(3 / 4) \log (1 / 5)$ <br> (b) $(1 / 5) \log (3 / 4)$ <br> (c) $(1 / 5) \log (4 / 3)$ | (d) $(3 / 4) \log 5$ | B |
| Q286 | Integrate $\int_{3}^{11}(2 x+3)^{1 / 2} d x$ <br> (a) 33 <br> (b) $100 / 3$ <br> (c) $98 / 3$ | (d) None | C |
| Q287 | If $\int_{0}^{1}\left(3 x^{2}+2 x+k\right) d x=0$, find $k$. <br> (a) 0 <br> (b) -1 <br> (c) -2 | $\text { (d) } 1$ | C |
| Q288 | If $\int_{a}^{b} x^{3} d x=0$ and if $\int_{a}^{b} x^{2} d x=\frac{2}{3}$, find $a$ and $b$, <br> (a) 0 and 1 <br> (b) 1 and -1 <br> (c) -1 and 1 | (d) 0 and -1 | C |
| Q289 | Evaluate $\int_{1}^{2} \frac{\log \mathrm{x}}{\mathrm{x}^{2}} \mathrm{dx}$ <br> (a) $\log \left(\mathrm{e}^{2} / 2\right)$ <br> (b) $(1 / 2) \log (\mathrm{e} / 2)$ <br> (c) $\log _{2} \mathrm{e}$ | (d) $\log 2^{e}$ | B |
| Q290 | Evaluate $\int_{0}^{4} \frac{1}{x+\sqrt{x}} d x$ <br> (a) $\log 6$ <br> (b) $\log 3$ <br> (c) $2 \log 3$ <br> (d) 2 loge |  | C |


[^0]:    Follow on Youtube \& Telgram for Revision - Pranav Chandak Academy

    - YouTube

    Telegram

