

FORMULA BOOK MATHEMATICS – CA FOUNDATION DEC 23

FORMULA BOOK MATHS CA FOUNDATION DEC 2023

CA. PRANAV POPAT

FORMULA MARATHON MATHS SESSION LINK:

https://www.youtube.com/live/m8mrt v9sKt0?si=3BULrmrGh7fNmXVN

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

PRANA

Formula 1	If a quantity increases or decreases in the ratio a:b then		
Formula 2	new quantity = b/a times of original quantity Inverse Ratio of a:b is b:a		
Formula 3			
FOITINIA 5	Ratio compounded of the two ratios a:b and c:d is ac : bd		
Formula 4	• a ² : b ² is the duplicate ratio of a:b		
	• a ³ : b ³ is the triplicate ratio of a:b		
Formula 5	• \sqrt{a} : \sqrt{b} is the sub-duplicate ratio of a:b		
	• $\sqrt[3]{a}$: $\sqrt[3]{b}$ is the sub-triplicate ratio a:b		
	Continued Ratio: Two different ratios can be put into continued if there common term		
Formula 6	is same. If given ratios are a:b and b:c, we can make the continued ratio a:b:c if we		
	make term b as same in both ratios		
	Continuous Proportion: $\frac{a}{b} = \frac{b}{c} \Rightarrow b^2 = ac$		
Formula 7			
	here, a = first proportional, c = third proportional and b is mean proportional (because		
	b is GM of a and c)		
Formula 8	Invertendo: If a:b = c:d, then b:a = d:c		
Formula 9	Alternendo: If $a:b = c:d$, then $a:c = b:d$		
Formula 10 Formula 11	Componendo: If $a:b = c:d$, then $(a+b):b = (c+d):d$		
Formula 11	Dividendo: If a:b = c:d, then (a-b):b = (c-d):d		
Formula 12	Componendo and Dividendo: If a:b = c:d, then		
Formula 12	$\frac{a+b}{a-b} = \frac{c+d}{c-d}$ and $\frac{a-b}{a+b} = \frac{c-d}{c+d}$		
Formula 13	Addendo: if $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$, then $\frac{a+c+e+}{b+d+f+} = k$		
Formula 14	Subtrahendo: if $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$, then $\frac{a-c-e}{b-d-f} = k$		
	Indices - Standard Results		
Formula 15	• Any base raised to the power zero is defined to be 1 i.e. $a^0 = 1$		
	1		
	• Roots can also be expressed in the form of power i.e. $\sqrt{a} = a^{r}$		
Formula 16	Law of Indices 1: (sum of powers)		
	$a^m \times a^n = a^{m+n}$		
Formula 17	Law of Indices 2: (difference of powers)		
Formula 17	$\frac{a^m}{a^n} = a^{m-n}$		
	Law of Indices 3: (power of power)		
Formula 18			
	$(a^m)^n = a^{m \times n}$		
	Law of Indices 4:		
Formula 19	$(a \times b)^n = a^n \times b^n$		
	Calculator Trick for Power (Integer) of any number:		
Formula 20	$Base \times = = = = = = = = = =$		
	Calculator Trick for Reciprocal of any number:		
Formula 21			
	Number ÷ =		

ULTIMATE CA' FORMULA BOOK MATHEMATICS – CA FOUNDATION DEC 23

$g_{a} m^{n} = nlog_{a} m$ ange of Base Theorem: $log_{b} m = \frac{logm}{logb} = \frac{log_{a} m}{log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \theta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha \beta = 0$ forminant $d = b^{2} - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$ here, a is coefficient of x, b is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_{1}x + b_{1}y + c_{1} = 0$ & $a_{2}x + b_{2}y + c_{2} = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_{1}x + b_{1}y + c_{1} = 0$ & $a_{2}x + b_{2}y + c_{2} = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ form of Simultaneous Linear Equations $a_{1}x + b_{1}y + c_{1} = 0$ & $a_{2}x + b_{2}y + c_{2} = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ coss Multiplication Method of solving Simultaneous Linear Equations $\frac{x}{c_{2} - b_{2}c_{1}} = \frac{y}{c_{1}a_{2} - c_{2}a_{1}} = \frac{1}{a_{1}b_{2} - a_{2}b_{1}}$ rm of Cubic Equation, $ax^{3} + bx^{2} + cx + d = 0$ nple Interest: $Sl = \frac{P.r.t}{100}$
ange of Base Theorem: $\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$ rm of Quadratic Equation: $ax^2 + bx + c = 0$ Iution of Quadratic Equation: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ here, a is coefficient of x^2 , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ scriminant $d = b^2 - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$ here, a is coefficient of x, b is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ coss Multiplication Method of solving Simultaneous Linear Equations $\frac{x}{c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$ rm of Cubic Equation, $ax^3 + bx^2 + cx + d = 0$
ange of Base Theorem: $\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$ rm of Quadratic Equation: $ax^2 + bx + c = 0$ Iution of Quadratic Equation: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ here, a is coefficient of x^2 , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ scriminant $d = b^2 - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$ here, a is coefficient of x, b is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_1x + b_1y + c_1 = 0$ & $a_2x + b_2y + c_2 = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ coss Multiplication Method of solving Simultaneous Linear Equations $\frac{x}{c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ Scriminant $d = b^{2} - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$ here, a is coefficient of x, b is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_{1}x + b_{1}y + c_{1} = 0 \& a_{2}x + b_{2}y + c_{2} = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$ pass Multiplication Method of solving Simultaneous Linear Equations
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ scriminant $d = b^{2} - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$ here, a is coefficient of x, b is constant, $a \neq 0$ rm of Simultaneous Linear Equations $a_{1}x + b_{1}y + c_{1} = 0$ & $a_{2}x + b_{2}y + c_{2} = 0$ here, a is coefficient of x, b is coefficient of y, c is constant, $a \neq 0$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x ² , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ scriminant $d = b^{2} - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$ here, a is coefficient of x, b is constant, $a \neq 0$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha \beta = 0$ scriminant $d = b^{2} - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$ rm of Simple Equation (One Variable) $ax + b = 0$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha \beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ scriminant $d = b^{2} - 4ac$ njugate Pairs: if one root of the equation is $m + \sqrt{n}$ then other is $m - \sqrt{n}$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, a $\neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ poduct of Roots $\alpha\beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$ scriminant $d = b^{2} - 4ac$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ oduct of Roots $\alpha\beta = \frac{c}{a}$ nstruction of Quadratic Equation $-(\alpha + \beta)x + \alpha\beta = 0$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, a $\neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$ boduct of Roots $\alpha\beta = \frac{c}{a}$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ here, a is coefficient of x^{2} , b is coefficient of x, c is constant, $a \neq 0$ m of Roots $\alpha + \beta = -\frac{b}{a}$
ange of Base Theorem: $\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$ rm of Quadratic Equation: $ax^2 + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ here, a is coefficient of x ² , b is coefficient of x, c is constant, a $\neq 0$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$ lution of Quadratic Equation: $\frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$ rm of Quadratic Equation: $ax^{2} + bx + c = 0$
ange of Base Theorem: $\log_{b} m = \frac{\log m}{\log b} = \frac{\log_{a} m}{\log_{a} b}$
w of Log 3: Log of Number with Power
$g_a \frac{m}{n} = \log_a m - \log_a n$
w of Log 2: Log of product of two numbers
w of Log 1: Log of product of two numbers gamn=logam+logan
 Log of 1 (one) for any base is equal to zero i.e. log_a 1=0
 Log of a number with same base as number is equal to 1 i.e. log_a a = 1
g Standard Results:
nditions: $n > 0, a > 0, a \neq 1$
sic Logarithm: if $a^x = n$ then $\log_n n = x$
$\sqrt[3]{\sqrt{100}}$ 12times $\frac{1}{\sqrt{100}}$ $\frac{1}{10$
$ se[\sqrt{ \sqrt{ }}12times[-1]] \div n] + 1 ×= ×= 12times$ Iculator Trick for Power (also non-integer)
Iculator Trick for n th root of a number se $\sqrt[]{\sqrt{1}}$ 12times -1 ; n +1 × = × =12times

ULTIMATE CA' FORMULA BOOK MATHEMATICS – CA FOUNDATION DEC 23

Formula 42	Amount under Simpl	P.r.t	rt		
Formula 42	Amount under Simple Interest: $A = P + SI = P + \frac{P.r.t}{100} = P(1 + \frac{rt}{100})$				
Formula 43	Number of Conversio				
	Conversion Period	Description	Number of Conversion		
	1 day	Compounded Daily	Period in a year		
	1 day 1 month	Compounded Daily Compounded Monthly	365 12		
	3 months	Compounded Quarterly	4		
	6 months	Compounded semi annually	2		
	12 months	Compounded Annually	1		
		, ,			
	Amount under Compound Interest: $A = P(1+i)^n$ where, P = Initial Principal, i = adjusted interest rate, n = no. of periods				
Formula 44					
	$i = \frac{r\%}{n \circ n = t \times n \circ c c p y}$ and $n = t \times n \circ c c p y$				
Former la AF	посрру				
Formula 45	Calculator Tricks for Amount under CI: $ \mathbf{P} + \mathbf{i} \% + \mathbf{i} \%$ n times				
Formula 46	-	$CI = A - P = P[(1+i)^n - 1]$			
Formula 47	Effective Interest Rat	e: $E = [(1+i)^n - 1]$			
Formula 48	Future Value of a sing	gle cashflow: $FV = CF(1+i)^n$			
	where CF means Cas	hflow/ Sum for which future va	alue is to be calculated		
	Future Value – Annuity Regular: FVAR = A _i × FVAF(n, i)				
	$\left[\left[(1+i)^n - 1 \right] \right]$				
Formula 49	$FVAR = A_i \times \left\{ \frac{[(1+i)^n - 1]}{i} \right\}$				
	where, A _i = Annuity (Installment), FVAF = Future Value Annuity Factor/ Multiplier				
	i = adjusted interest rate, n = no. of periods				
		ty Due: FVAD = $A_i \times FVAF(n, i) \times$	(1+i)		
Formula 50					
	$FVAD = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\} \times (1+i)$				
)		
Formula 51	Present Value of a sir	ngle cashflow: $PV = \frac{CF}{(1+i)^n}$			
Formula 51					
	where CF means Cashflow/ Sum for which present value is to be calculated				
Formula 52	Compounding Factor	is $\times (1+i)^n$ and Discounting Fac	tor is $\times \frac{1}{(1+i)^n}$		
		uity Regular: $PVAR = A_i \times PVAF($			
Formula 53	$PVAR = A_i \times \left[\frac{1}{i} \times \left\{1 - \frac{1}{(1+i)^n}\right\}\right]$				
		nt Value Annuity Factor/ Mult			
Formula 54		$VAF [1+i] \div =n - times GT$			
Formula 55	Present Value of Annuity Due PVAD = $[A_i \times PVAF\{(n-1), i\}] + A_i$				
	(since first installmer	(since first installment is already in present we need to discount second onwards)			
Formula 56	Present Value of Per	petuity PVP = $\frac{A_i}{i}$			
		i			

Formula 58	resent Value of Growing Perpetuity $PVGP = \frac{A_1}{i-g}$ here A_1 is the first installment et Present Value: PV = Present Value of Cash Inflows – Present Value of Cash Outflows		
Formula 58	et Present Value:		
Formula 58			
N	PV = Present Value of Cash Inflows – Present Value of Cash Outflows		
	Real Rate of Return = Nominal Rate of Return – Rate of Inflation		
	CAGR = annual rate used in compound interest		
Formula 61	ultiplication (AND) Addition (OR) Rules one thing can be done in m ways and another thing can be done in n ways		
N	umber of ways of doing both things simultaneously/ together: m × n ways umber of ways of doing either of the jobs: m + n ways		
Farmula 62	nctorial n!=n(n-1)(n-2)3.2.1		
FOITINIA 62	also, $n! = 1.2.3(n-2)(n-1)n$		
Sp	pecial Formula in Factorial:		
n!	l=n(n-1)!		
Formula 63	=n(n-1)(n-2)!		
	! = 1		
	ermutation Theorem:		
	umber of Permutations when r objects are chosen out of n different objects		
"F	$P_r = \frac{n!}{(n-r)!}$ also, you can use ${}^nP_r = n(n-1)(n-2)$ for r factors		
w	here n and r are always positive and $n \ge r$		
N	umber of Permutations all objects are chosen out of n different objects		
Formula 65	$P_n = n!$		
Formula 66 Sp	becial Formula: $(n+1)!-n!=n.n!$		
N	umber of Circular permutations when all objects are chosen out of n different		
Formula 67 ot	ojects (n-1)!		
Nu	umber of Circular permutations when all objects are chosen out of n different		
Formula 68	bjects such that no two persons have same two neighbours $\frac{(n-1)!}{2}$		
	2		
	ermutation with Restrictions (Theorem 1)		
	umber of permutations of n distinct objects taken r at a time when a particular		
	bject is not taken in any arrangement is ⁿ⁻¹ P _r		
	umber of permutations of r objects out of n distinct objects when a particular object		
IS	always included in any arrangement is r. ⁿ⁻¹ P _{r-1}		
	¹ P_r (one thing always included) + r. ⁿ⁻¹ P_{r-1} (one thing always excluded) = ⁿ P_r (total)		
Formula /2	umber of ways when a group of objects are never together =		
Ic	otal ways – Number of ways when objects are always together		
N	umber of Combinations when r objects are chosen out of n different objects		
Formula 73	$C_r = \frac{n!}{(n-r)!r!}$ where n and r are always positive and $n \ge r$		
Formula 74 Lin	nkage of Permutation and Combination Theorem: ${}^{n}C_{r} = \frac{{}^{n}P_{r}}{r!}$		

ULTIMATE CA' FORMULA BOOK MATHEMATICS – CA FOUNDATION DEC 23

Formula 75	Standard Result of Combinations: ${}^{n}C_{0} = 1$ ${}^{n}C_{n} = 1$		
Formula 76	Complimentary Combinations: ${}^{n}C_{r} = {}^{n}C_{n-r}$		
Formula 77	$^{n+1}C_r = {}^{n}C_r + {}^{n}C_{r-1}$ (Special Formula)		
Formula 78	Combinations of one or more out of n things (when there are two choices) = $2^n - 1$ Combinations of one or more out of n things (when there are three choices) = $3^n - 1$		
Formula 79	Formulas in Geometry using Combinations Number of Straight Lines with the given n points: ${}^{n}C_{2}$ Number of Triangles with n given points: ${}^{n}C_{3}$ Number of Triangles with n given points where m points are collinear: ${}^{n}C_{3} - {}^{m}C_{3}$		
	Number of Parallelograms with given two sets of m and n parallel lines: ${}^{n}C_{2} \times {}^{m}C_{2}$ Number of Diagonals out of n lines of a polygon: ${}^{n}C_{2} - n$		
Formula 80	Common Difference in AP: $d = t_2 - t_1 = t_3 - t_2 = = t_n - t_{n-1}$		
Formula 81	General term of an AP: $t_n = a + (n-1)d$ where, $a = first term, d = common difference, n = term number$		
Formula 82	Calculator Trick of General Term of an AP: $a \pm d = = = \dots =$ (First equal press will give you 2 nd term and so on)		
Formula 83	Sum of first n terms of an AP $S_n = \frac{n}{2}(a+t_n)$ or $S_n = \frac{n}{2}\{2a+(n-1)d\}$		
Formula 84	Calculator Trick for Sum of n terms of an AP: $a \pm d = = = = GT + a$		
Formula 85	Sum of first n natural or counting numbers: $S = \frac{n(n+1)}{2}$		
Formula 86	Sum of first n odd numbers: $S = n^2$		
Formula 87	Sum of the squares of first n natural numbers: $S = \frac{n(n+1)(2n+1)}{6}$		
Formula 88	Sum of the cubes of first n natural numbers: $S = \left\{\frac{n(n+1)}{2}\right\}^2$		
Formula 89	Common Ratio of GP: $r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \frac{t_n}{t_{n-1}}$ General Term of an GP: $t_n = ar^{n-1}$		
Formula 90	General Term of an GP: $t_n = ar^{n-1}$ where, a = first term, r = common ratio, n = term number		
Formula 91	Calculator Trick for General Term of GP: $r \times a = = =$ = (First equal press will give you 2 nd term and so on)		
Formula 92	Sum of first n terms of a GP when r<1, $S_n = \frac{a(1-r^n)}{1-r}$ and when r>1 $S_n = \frac{a(r^n - 1)}{r-1}$		
Formula 93	Calculator Trick for n terms of GP $r \times a = = = = GT + a$		

Sum of Infinite Geometric Series (only applicable if $-1 < r < 1$)	
$S_{\infty} = \frac{a}{1-r}$	
Number of subsets of a set containing n elements = 2^{n}	
Number of proper subsets of a set containing n elements = $2^n - 1$	
De Morgan's Law	
$(P \cup Q)' = P' \cap Q'$ and $(P \cap Q)' = P' \cup Q'$	
2 Sets Operations Formula	
$n(A \cup B) = n(A) + n(B) - n(A \cap B)$	
$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$	
Composite Functions	
fog = fog(x) = f[g(x)] and $gof = gof(x) = g[f(x)]$	

About CA. Pranav Popat Sir

ULTIMATE CA

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 6+ years of experience.
- He is an Educator by Passion and his Choice (Dil Se♥)
- Taught 10k + students
- He teaches subjects of Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 3) at CA Intermediate Level.

Hope this formula book helps you in revising all formulas and become helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Ab mushkil nahi kuch bhi, nahi kuch bhi!!!

With Lots of Love

CA. Pranav Popat (P^2 SIR)

