

OTM – Only This Much SET RELATION & FUNCTION

MATH, LR & STATS CA FOUNDATION DEC 2023

CA. PRANAV POPAT

SESSION LINK:

https://www.youtube.com/live/5UJco6KW_j0?si =K1fXLfOqT0W7sB2F

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

Dil Se Re 🖤 Instagram: @ca_pranav Telegram @learnwithpranav

PAST TRENDS

Attempt	Marks
May 2018	3
Nov 2018	4
Jun 2019	5
Nov 2019	3
Nov 2020	4
Jan 2021	3
Jul 2021	4
Dec 2021	3
Jun 2022	5
Dec 2022	3
Jun 2023	5

Sets – Basics			
Meaning	 Object: In our mathematical language, everything in this universe, whether living or non-living, is called an object. Sets: Well defined And Distinct Collection of Objects Elements: Each object of Set 		
How to denote	Elements: Small Letter		
Forms of Presentation	Descriptive Form•when set is written in the form of Paragraph and elements are not listed Examples: •Descriptive Form•A = the set of vowels in the English alphabet • B = the set of even numbers between 2 and 10 both inclusive • P = the set of first six prime numbersRoster Form•when elements of sets are listed and closed with braces (curly brackets)		
	 Set Builder/ Algebraic Form (only for numbers) Sets can also be presented using algebraic statements which can be understood by examples below. The method of writing the set is called as Property Method 		
Belongs to	 an element 'a' which is part of Set A can be shown as a ∈ A If an element b is not part of Set A, then b do not belongs to A can be shown as b ∉ A 		
Subset	 if every element of Set A is also an element of Set B we say that A is a subset of B A B we can say that B is a super set of A shown as B A 		

	• Proper Subset: When A is a subset of B and both sets are not equal , then A is a proper subset of B.
	then A is a proper subset of B.
Types of Subsets	 Improper Subset: When A is a subset of B and also B is a subset of
Types of Subsets	A, then both are improper subsets of each other, and this is possible
	only when they are equal.
	$A \subseteq B$
Number of Subsets	• No. of possible subsets of any set = 2 ⁿ
Number of Subsets	• No. of proper subsets of any set = $2^n - 1$
Faual Sets	 Two sets are equal if they have exactly same elements
	Order of elements has no relevance
	A set which contains no elements
Null Set / Empty Set /	It is a proper subset of all sets
Void Set	It has no proper subsets
	• Denoted by $\{\}$ or $oldsymbol{arphi}$
	• The number of distinct elements contained in a finite set A is called
Cardinal Number	its cardinal number.
Cardinal Number	 It is shown as n(A)
	Example : If $A = \{2, 5, 7, 9\}$ then $n(A) = 4$
Equivalent Cata	• Two sets having same cardinal number are called as Equivalent Sets
Equivalent Sets	 If n(A) = n(B) then A and B are equivalent sets
	• Finite Set: if set contains finite number of elements
Einite and Infinite Sets	• Infinite Set: if set contains infinite number of elements where it is
Time and minine sets	impossible to list all. (to show an infinite set in roster form, we use
	three dots after few elements)

	If A = {1, 2, 3, 4, 5, 6, 7,	8 <i>,</i> 9} and B = {2	, 4, 6, 7, 9}, ther	ו how many prop	per subset
PYQ Dec 22	of $A \cap B$ can be created	1?			
	a. 16	b. 15	c. 32	d.	31
Ans: d					
PYQ Jun 19	The number of proper s	ubsets of the s	et {3,4,5,6,7} is		
PYQ May 18 PYQ Dec 22	a. 32	b. 31	c. 30	d.	25
Ans: b					
PYQ Nov 20 PYQ Jun 22	Two finite sets respective of subsets of the first is The value of x and y res	vely have x and 56 more than t pectively is	y number of ele he total numbe	ements. The tota r of subsets of th	l number ne second.
_	a. 6 and 3	b. 4 and 2	c. 2 an	d 4 d.	3 and 6
Ans: a					
PYQ Nov 20 PYQ Jan 21	The set of cubes of the a. null set c. an infinite set	natural numbe	r of is b.afin d.afin	ite set ite set of three n	umbers
Ans: c					

Sets – Operations			
Intersection Sets	 A new set that contains all the common elements between set A and set B is called as intersection set of set A and B. It is denoted by A ∩ B 		
Union Set	 A set that contains all the elements of Set A and Set B without repeating the common elements between them is called Union Set of A and B It is denoted by A \cup B 		
Universal Set	 The set which contains all the elements under consideration in a particular problem is called the universal set denoted by S. 		
Complimentary Set	 Complimentary Set of P: It is a set that contains all the elements of universe other than P It is denoted by P' or P^c 		
De-Morgan's Law	$(P \cap Q)' = P' \cup Q'$ or $(P \cup Q)' = P' \cap Q'$		
Set A-B	It is a set that contains all the elements of A which are not common with B. A-B Set can also be called as Only A		
Set B-A	It is a set that contains all the elements of B which are not common with A. B-A Set can also be called as Only B		
Power Set	 The collection of all possible subsets of a given set A is called the power set of A. It is denoted by P(A) 		
Cardinal Number	 Total number of elements in a set Set A = {3, 6, 5, 7}, n(A) = 4 		

DVO Nov 18	If A = {1,2,3,4,5,6,7} an	d B = {2,4,6,8}	. Cardinal Nun	nber of A – B is	
	a. 4	b. 3	c. 9	d.	7
Ans: a					
	If $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$	<i>϶</i> },Β= {1,3,4,	5,7,8},C={2,	6,8} then find (A	–B)∪C
PYQ Jun 19	a. {2,6}		b. {2,	6, 8}	
	c. {2, 6, 8, 9}		d. No	ne of these	
Ans: c					
	Let U be the universal se	et, A and B are	the subsets of	f U. If n(U) = 650,	n(A) = 310,
PVO lun 19	n(A \cap B) = 95 and n(B) =	190, then $n(\overline{A}$	$\overline{G} \cap \overline{B}$ is equal t	0	
	a. 400		b. 20	0	
	c. 300		d. 24	5	
Ans: d					

	Venn Diagrams
2 Sets Formula	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$
3 Sets Formula	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B)$
	$-n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$
Important Tip	Total Quantity given in the question may be taken as Universal or Union –will depend on data available in the question and situation.

PYQ May 18 PYQ Nov 20	In a town of 20,000 families, it w families buy newspaper B, 10% B, 3% buy B and C and 4% buy A then the number of families wh	vas found that 40 families buy nev and C. If 2% fami ich buy A only is:	% families buy newspaper A, 20% vspaper C, 5% families buy A and lies buy all the three newspapers,
	a. 6600	b.	6300
	c. 5600	d.	600
Ans: a			
PYQ Dec 21	Out of a group of 20 teachers in and 7 teach Chemistry. 4 teach Mathematics and Chemistry. Ho teach only Physics? a. 2, 3	n a school, 10 tea n Mathematics a ow many teach C b.	ach Mathematics, 9 teach Physics and Physics but none teach both Chemistry and Physics; how many 3, 2
	c. 4,6	d.	6, 4
Ans: a			

MTP Dec 22 Series 2	Out of total 150 students, 4 30 in both Accounts and Accounts and Economics, numbers who passed at le	5 passed in Accounts, 30 in Economics and 50 in Maths, Maths, 32 in both Maths and Economics, 35 in both 25 students passed in all the three subjects. Find the ast in any one of the subjects:	
	a. 63	b. 53	
	c. 73	d. None	

Ans: b

Relations		
Ordered Pair	Two elements a and b, listed in a specific order , form an ordered pair, denoted by (a, b)	
Cartesian Product of Sets:	 If A and B are two non-empty sets, then the set of all ordered pairs (a, b) such that a belongs to A and b belongs to B, is called the Cartesian product of A and B, denoted by A × B 	
How to Denote Product Set	$A \times B = \{(a,b) : a \in A, b \in B\}$	
Why Product Set	$n(A \times B) = n(A) \times n(B)$	
Relation Set	 Relation set from A to B is any subset of product set AxB containing only those elements which satisfy a given relation between both the elements of ordered pair Format: R: A→B={(a,b): a is related to b,a∈A,b∈B} 	
Types of Relations	ReflexiveIf relation sets contains ordered pair in the form of (a,a), (b,b) and so onSymmetricIf relation set contains an ordered pair (a,b) it must also contain (b,a)TransitiveIf relation set contains an ordered pair (a,b) and (b,c) it must also contain (a,c)EquivalenceIf a relation is Reflexive, Symmetric and Transitive then it is called as Equivalence	
Number of Relations between two sets	• 2 ⁿ wh	nere n = no. of elements in the product set

PYQ Nov 18	If A = {1,2} and B = a. 3	{3,4}. Determine the b. 16	e number of relations c. 5	from A and B: d. 6
Ans: b				
PYQ Jun 19	If A = {1,2,3,4,,10 then domain of R ⁻ a. {5, 4, 3, 2, c. {1, 2, 4, 5,	} a relation on A i.e. ¹ is 1} 6, 7}	R = {(x,y): x + y = 10, x b. {0, 3, 5, 7, d. None	x∈A,y∈A,x≥y} 9}
Ans: a				

PYQ Jan 21	 In the set of all straight lines on a plane which of the following is not TRUE? a. "Parallel to" is an equivalence relation b. "Perpendicular to" is a symmetric relation c. "Perpendicular to" is an equivalence relation d. "Parallel to" is a reflexive relation
Ans: c	
PYQ Dec 21	If a is related to b if and only if the difference in a and b is an even integer. This relation is a. Symmetric, reflexive but not transitive b. Symmetric, transitive but not reflexive c. Transitive, reflexive but not symmetric d. Equivalence relation
Ans: d	
PYQ Dec 22	Let A = (1,2,3) and consider the relation R = Then R is: {(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)} a. Symmetric and transitive b. Reflexive but not transitive c. Reflexive but not symmetric d. Neither symmetric, nor transitive
Ans: c	

Functions					
					
	Function Set:				
Function Set	Set It is a relation set with the condition that				
	No distinct ordered pairs of set have same first element				
Demote a Franction	if f is a function defined from Set A to Set B it is denoted as				
Denote a Function	$f: A \rightarrow B$				
		Mapping	Considered as Function		
Check Function using		One to One	Function		
Mapping		One to Many	Not a Function		
		Many to One	Function		

	If a function is de	fined from Set A to Set B i.e., $f: A \rightarrow B$		
	Domain	Set A = First Set = Set from where first elements (inputs)		
		of ordered pair are taken		
	Codomain of	Set B = Second Set = Set from where second elements		
Torms Used in	Function	(outputs) are taken		
Function	Range of	Set of those elements of Codomain which are part of		
Function	Function	Function Set. It is a subset of Codomain. It may or may		
		not be equal to Codomain.		
	Preimage	Input or First element in an ordered pair of Function Set		
	Image	Output or Second element in an ordered pair of		
		Function Set		
	One-One	• Let $f: A \rightarrow B$, if different elements in A have		
	Function	different images in B, then f is said to be a		
Types of Function –	(Injective)	one-one		
Based on Mapping		Also called as injective function or mapping.		
	Many-One	• Let $f: A \rightarrow B$, if two or more elements in A		
	Function	have common image in B, then f is said to be		
		i many-one		
	Onto Function	• Let $f: A \rightarrow B$, if every element in B has at		
	(Surjective)	least one pre-image in A, then f is said to be		
		an onto function.		
		Also called as Surjective Function		
Types of Function –	Into Function	In an onto function, Range = Codomain		
Based on Range	into Function	• Let $f: A \rightarrow B$, if even one element in B		
		then f is said to be an into function		
		In other words, if even one is single in		
		Codomain Set		
		 In an onto function, Range⊂Codomain 		
• A one		e and onto function is said to be bijective.		
Bijection Function	It is also called as one-to-one correspondence.			
	a talanati d	injective + surjective = Bijective		
Identity Function	 Identical = Same 			
identity function	 It in a function set values of preimage and image are same for all and area pairs 			
		Jalis.		
Constant Function	■ II III d IUII nreimage	is the value of image remains constant for any value of		
		tions fand gare said to be equal written as $f - \sigma$		
Found Found:	• I wo functions f and g are said to be equal, written as $I = g$			
Equal Functions	• if they have the same domain and they satisfy the condition			
	f(x) = g(x), for all x.			
Composition of	• $fog = fog(x) = f[g(x)]$			
Functions	• gof = go	gof = gof(x) = g[f(x)]		
	0 8-			

OTM Set Relation & Function | MSLR | CAF DEC 2023

Inverse Functions	•	In a function a set of preimages when used as input gives us images, now to obtain such a function which can be used in reverse way i.e., using image values as input and gives pre-images as output.	
	1.	Write your function in the form of y: $y = f(x)$	
Steps to obtain	2.	From above expression, find the value of x: $x = \Box$	
inverse of a function 3. Interchange value of x		Interchange value of x and y: $y = \Box$, now the RHS is inverse function	
		of f(x)	

PYQ Nov 18 PYQ Jun 19	Identify which of the below is a function a. $\{(1,1),(1,2),(1,3)\}$ c. $\{(1,2),(2,2),(3,2),(4,2)\}$	b. d.	{(1,1),(2,1),(2,3)} None of these
Ans: c			
PYQ May 18	Let N be the set of all natural numbers; E then the function; $f: N \rightarrow E$ defined as $f(x)$ a. One-One and Into	be the x = 2x V b. d	set of all even natural numbers where $x \in N$ is function. Many-One and Into Many-One and Onto
Ans: c		u.	many one and onto
PYQ Nov 18	A is {1,2,3,4} and B is {1,4,9,16,25} if a fun f(x) = x ² then the range of f is a. {1, 2, 3, 4} c. {1, 4, 9, 16, 25}	ction f b. d.	is defined from set A to B where {1, 4, 9, 16} None
Ans: b			
PYQ Jun 19	If $f(x) = x^2$ and $g(x) = \sqrt{x}$ then a. $gof(3) = 3$ c. $gof(9) = 3$	b. d.	gof(-3) = 9 gof(-9) = 3
Ans: a			
PYQ Nov 19	f(n) = f(n-1) + f(n-2) when n = 2, 3, 4 a. 3 c. 8	f (0) = b. d.	0, f (1) = 1 then f (7) 5 13
Ans: d			
PYQ Nov 19	$f(x) = \frac{x+1}{x} \text{ find } f^{-1}(x)$ a. $\frac{1}{x-1}$ c. $\frac{1}{y} - 1$	b. d.	$\frac{1}{y-1}$ x
Ans: a			

Dil Se Re 🖤 Instagram: @ca_pranav Telegram @learnwithpranav

ULTIMATE CA

OTM Set Relation & Function | MSLR | CAF DEC 2023

PYQ Nov 20	The inverse function f^{-1} of $f(y) = 3y$ is: a. $1/3y$ c. $-3y$	b. d.	y/3 1/y
Ans: b			
PYQ Jan 21	Let F: R be defined by $f(x) = \begin{cases} 2x_for_x > 3\\ x^2_for_1 < x \le 3\\ 3x_for_x \le 1 \end{cases}$ The value of f(-1) + f(2) + f(4) is a. 9 c. 5	b. d	14
Ans: a		u.	

