OTM - Only This Much SET RELATION \& FUNCTION

MATH, LR \& STATS
CA FOUNDATION DEC 2023

CA. PRANAV POPAT

SESSION LINK:

https://www.youtube.com/live/5UJco6KW i0?si
 =K1fXLfOqTOW7sB2F

JOIN TELEGRAM CHANNEL FOR ALL UPDATES AND NOTES:

https://telegram.me/learnwithpranav

PAST TRENDS

Attempt	Marks
May 2018	3
Nov 2018	4
Jun 2019	5
Nov 2019	3
Nov 2020	4
Jan 2021	3
Jul 2021	4
Dec 2021	3
Jun 2022	5
Dec 2022	3
Jun 2023	5

Sets - Basics

Meaning	- Object: In our mathematical language, everything in this universe, whether living or non-living, is called an object. - Sets: Well defined And Distinct Collection of Objects - Elements: Each object of Set
How to denote	- Sets: Capital Letters - Elements: Small Letter
Forms of Presentation	- when set is written in the form of Paragraph and elements are not listed Examples: Descriptive Form - A = the set of vowels in the English alphabet - $=$ the set of even numbers between 2 and 10 both inclusive -P = the set of first six prime numbers
	Roster Form when elements of sets are listed and closed with braces (curly brackets)
	Set Builder/ -Sets can also be presented using algebraic statements which can be understood by Algebraic Form (only for numbers) examples below. The method of writing the set is called as Property Method
Belongs to	- an element ' a ' which is part of Set A can be shown as $a \in A$ - If an element b is not part of Set A, then b do not belongs to A can be shown as $\mathrm{b} \notin \mathrm{A}$
Subset	- if every element of Set A is also an element of Set B we say that A is a subset of $B A \subset B$ - we can say that B is a super set of A shown as $B \supset A$

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { - Proper Subset: When } A \text { is a subset of } B \text { and both sets are not equal, } \\ \text { then } A \text { is a proper subset of } B .\end{array} \\ \text { Types of Subsets } & \text { - Improper Subset: When } A \text { is a subset of } B \text { and also } B \text { is a subset of } \\ \text { A, then both are improper subsets of each other, and this is possible } \\ \text { only when they are equal. }\end{array}\right\}$

PYQ Dec 22

Ans: d
PYQ Jun 19
PYQ May 18
PYQ Dec 22
Ans: b

PYQ Nov 20 PYQ Jun 22

Ans: a

PYQ Nov 20 PYQ Jan 21

If $A=\{1,2,3,4,5,6,7,8,9\}$ and $B=\{2,4,6,7,9\}$, then how many proper subset of $A \cap B$ can be created?
a. 16
b. 15
c. 32
d. 31

The number of proper subsets of the set $\{3,4,5,6,7\}$ is
a. 32
b. 31
c. 30
d. 25

Two finite sets respectively have x and y number of elements. The total number of subsets of the first is 56 more than the total number of subsets of the second. The value of x and y respectively is
a. 6 and 3
b. 4 and 2
c. 2 and 4
d. 3 and 6

The set of cubes of the natural number of is
a. null set
b. a finite set
c. an infinite set
d. a finite set of three numbers

Ans: c

Sets - Operations

Intersection Sets	- A new set that contains all the common elements between set A and set B is called as intersection set of set A and B. - It is denoted by $\mathrm{A} \cap \mathrm{B}$
Union Set	- A set that contains all the elements of Set A and Set B without repeating the common elements between them is called Union Set of A and B - It is denoted by $A \cup B$
Universal Set	- The set which contains all the elements under consideration in a particular problem is called the universal set denoted by S .
Complimentary Set	Complimentary Set of P : - It is a set that contains all the elements of universe other than P - It is denoted by P^{\prime} or P^{C}
De-Morgan's Law	$(P \cap Q)^{\prime}=P^{\prime} \cup Q^{\prime}$ or $(P \cup Q)^{\prime}=P^{\prime} \cap Q^{\prime}$
Set A-B	It is a set that contains all the elements of A which are not common with B. A-B Set can also be called as Only A
Set B-A	It is a set that contains all the elements of B which are not common with A. B-A Set can also be called as Only B
Power Set	- The collection of all possible subsets of a given set A is called the power set of A. - It is denoted by $\mathbf{P}(\mathbf{A})$
Cardinal Number	- Total number of elements in a set - Set $A=\{3,6,5,7\}, n(A)=4$

PYQ Nov 18
If $A=\{1,2,3,4,5,6,7\}$ and $B=\{2,4,6,8\}$. Cardinal Number of $A-B$ is
a. 4
b. 3
c. 9
d. 7

Ans: a

PYQ Jun 19
If $A=\{1,2,3,4,5,6,7,8,9\}, B=\{1,3,4,5,7,8\}, C=\{2,6,8\}$ then find $(A-B) \cup C$

Ans: c

PYQ Jun 19
Let U be the universal set, A and B are the subsets of U. If $n(U)=650, n(A)=310$, $n(A \cap B)=95$ and $n(B)=190$, then $n(\bar{A} \cap \bar{B})$ is equal to
a. 400
b. 200
c. 300
d. 245

Ans: d

Venn Diagrams	
2 Sets Formula	$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
3 Sets Formula	$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)$
Important Tip	Total Quantity given in the question may be taken as Universal or Union -will depend on data available in the question and situation.

PYQ May 18 PYQ Nov 20

In a town of 20,000 families, it was found that 40\% families buy newspaper A, 20\% families buy newspaper B, 10% families buy newspaper C, 5% families buy A and $B, 3 \%$ buy B and C and 4% buy A and C. If 2% families buy all the three newspapers, then the number of families which buy A only is:
a. 6600
b. 6300
c. 5600
d. 600

Ans: a
Out of a group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry. 4 teach Mathematics and Physics but none teach both
PYQ Dec 21 Mathematics and Chemistry. How many teach Chemistry and Physics; how many teach only Physics?
a. 2,3
b. 3,2
c. 4,6
d. 6,4

Ans: a

MTP Dec 22 Series 2

Out of total 150 students, 45 passed in Accounts, 30 in Economics and 50 in Maths, 30 in both Accounts and Maths, 32 in both Maths and Economics, 35 in both Accounts and Economics, 25 students passed in all the three subjects. Find the numbers who passed at least in any one of the subjects:
a. 63
b. 53
c. 73
d. None

Ans: b

Relations

Ordered Pair	Two elements a and b, listed in a specific order, form an ordered pair, denoted by (\mathbf{a}, \mathbf{b})	
Cartesian Product of Sets:	- If A and B are two non-empty sets, - then the set of all ordered pairs (a, b) such that a belongs to A and b belongs to B, is called the Cartesian product of A and B, denoted by $A \times B$	
How to Denote Product Set	$A \times B=\{(a, b): a \in A, b \in B\}$	
Why Product Set	$n(A \times B)=n(A) \times n(B)$	
Relation Set	- Relation set from \mathbf{A} to \mathbf{B} is any subset of product set $A x B$ - containing only those elements which satisfy a given relation between both the elements of ordered pair - Format: $R: A \rightarrow B=\{(a, b): a$ is related to $b, a \in A, b \in B\}$	
Types of Relations	Reflexive	If relation sets contains ordered pair in the form of (a, a), (b,b) and so on
	Symmetric	If relation set contains an ordered pair (\mathbf{a}, \mathbf{b}) it must also contain (b,a)
	Transitive	If relation set contains an ordered pair (\mathbf{a}, \mathbf{b}) and (\mathbf{b}, \mathbf{c}) it must also contain (a, c)
	Equivalence	If a relation is Reflexive, Symmetric and Transitive then it is called as Equivalence
Number of Relations between two sets	- 2^{n} where $\mathrm{n}=$ no. of elements in the product set	

PYQ Nov 18
Ans: b
b. 16
c. 5
d. 6

If $A=\{1,2,3,4, \ldots, 10\}$ a relation on A i.e. $R=\{(x, y): x+y=10, x \in A, y \in A, x \geq y\}$
PYQ Jun 19 then domain of R^{-1} is
a. $\{5,4,3,2,1\}$
b. $\{0,3,5,7,9\}$
c. $\{1,2,4,5,6,7\}$
d. None

Ans: a

PYQ Jan 21

Ans: c

PYQ Dec 21

Ans: d

PYQ Dec 22

Ans: c

In the set of all straight lines on a plane which of the following is not TRUE?
a. "Parallel to" is an equivalence relation
b. "Perpendicular to" is a symmetric relation
c. "Perpendicular to" is an equivalence relation
d. "Parallel to" is a reflexive relation

If a is related to b if and only if the difference in a and b is an even integer. This relation is
a. Symmetric, reflexive but not transitive
b. Symmetric, transitive but not reflexive
c. Transitive, reflexive but not symmetric
d. Equivalence relation

Let $A=(1,2,3)$ and consider the relation $R=$ Then R is: $\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$
a. Symmetric and transitive
b. Reflexive but not transitive
c. Reflexive but not symmetric
d. Neither symmetric, nor transitive

Functions

Function Set	Function Set: - It is a relation set with the condition that - No distinct ordered pairs of set have same first element	
Denote a Function	if f is a function defined from Set A to Set B it is denoted as$f: A \rightarrow B$	
Check Function using Mapping	Mapping Considered as Function	
	One to One	Function
	One to Many	Not a Function
	Many to One	Function

Terms Used in Function	If a function is defined from Set A to Set B i.e., $f: A \rightarrow B$	
	Domain	Set $A=$ First Set $=$ Set from where first elements (inputs) of ordered pair are taken
	Codomain of Function	Set $\mathrm{B}=$ Second Set $=$ Set from where second elements (outputs) are taken
	Range of Function	Set of those elements of Codomain which are part of Function Set. It is a subset of Codomain. It may or may not be equal to Codomain.
	Preimage	Input or First element in an ordered pair of Function Set
	Image	Output or Second element in an ordered pair of Function Set
Types of Function - Based on Mapping	One-One Function (Injective)	- Let $f: A \rightarrow B$, if different elements in A have different images in B, then f is said to be a one-one - Also called as injective function or mapping.
	Many-One Function	- Let $f: A \rightarrow B$, if two or more elements in A have common image in B, then f is said to be many-one
Types of Function Based on Range	Onto Function (Surjective)	- Let $f: A \rightarrow B$, if every element in B has at least one pre-image in A, then f is said to be an onto function. - Also called as Surjective Function - In an onto function, Range = Codomain
	Into Function	- Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$, If even one element in B codomain is not having any pre-image in A, then f is said to be an into function. - In other words, if even one is single in Codomain Set - In an onto function, Range \subset Codomain
Bijection Function	- A one-one and onto function is said to be bijective. - It is also called as one-to-one correspondence. Injective + Surjective $=$ Bijective	
Identity Function	- Identical = Same - If in a function set values of preimage and image are same for all ordered pairs.	
Constant Function	- If in a function the value of image remains constant for any value of preimage	
Equal Functions	- Two functions f and g are said to be equal, written as $f=g$ - if they have the same domain and they satisfy the condition $f(x)=g(x)$, for all x.	
Composition of Functions	- $\mathrm{fog}=\mathrm{fog}(\mathrm{x})=\mathrm{f}[\mathrm{g}(\mathrm{x})]$ - $\operatorname{gof}=\operatorname{gof}(x)=g[f(x)]$	

Inverse Functions	- In a function a set of preimages when used as input gives us images, now to obtain such a function which can be used in reverse way i.e., using image values as input and gives pre-images as output.
Steps to obtain inverse of a function	1. Write your function in the form of $\mathrm{y}: \mathrm{y}=\mathrm{f}(\mathrm{x})$ 2. From above expression, find the value of $\mathrm{x}: \mathrm{x}=\square$ 3. Interchange value of x and $\mathrm{y}: \mathrm{y}=\square$, now the RHS is inverse function of $f(\mathrm{x})$

PYQ Nov 18
PYQ Jun 19

Ans: c

PYQ May 18

Ans: c

PYQ Nov 18

Ans: b

PYQ Jun 19

Ans: a

PYQ Nov 19

Ans: d

PYQ Nov 19
$f(x)=\frac{x+1}{x}$ find $f^{-1}(x)$
a. $\frac{1}{x-1}$
b. $\frac{1}{y-1}$
c. $\frac{1}{y}-1$
d. x
a. $\operatorname{gof}(3)=3$
b. $\operatorname{gof}(-3)=9$
c. $\quad g \circ f(9)=3$
d. $\operatorname{gof}(-9)=3$
$f(n)=f(n-1)+f(n-2)$ when $n=2,3,4 \ldots f(0)=0, f(1)=1$ then $f(7)$
a. 3
b. 5
c. 8
d. 13
a. $\{1,2,3,4\}$
b. $\{1,4,9,16\}$
c. $\{1,4,9,16,25\}$
d. None

If $f(x)=x^{2}$ and $g(x)=\sqrt{x}$ then
a. $\{(1,1),(1,2),(1,3)\}$
b. $\{(1,1),(2,1),(2,3)\}$
c. $\{(1,2),(2,2),(3,2),(4,2)\}$
d. None of these

Let N be the set of all natural numbers; E be the set of all even natural numbers then the function; $f: N \rightarrow E$ defined as $f(x)=2 x$ where $x \in N$ is \qquad function.
a. One-One and Into
b. Many-One and Into
c. One-One and Onto
d. Many-One and Onto
A is $\{1,2,3,4\}$ and B is $\{1,4,9,16,25\}$ if a function f is defined from set A to B where
$f(x)=x^{2}$ then the range of f is

PYQ Nov 20

Ans: b

Ans: a

The inverse function f^{-1} of $f(y)=3 y$ is:
a. $1 / 3 y$
b. $y / 3$
c. $-3 y$
d. $1 / y$
Let $F: R$ be defined by

PYQ Jan 21 | $2 x_{-}$for_ $x>3$ |
| :--- |
| x^{2} for_ $1<x \leq 3$ |
| $3 x_{-}$for_ $x \leq 1$ |

\[\)| The value of $f(-1)+f(2)+f(4) \text { is }$ | |
| :--- | :--- |
| a. 9 | b. 14 |
| c. 5 | d. 6 |

\]

