

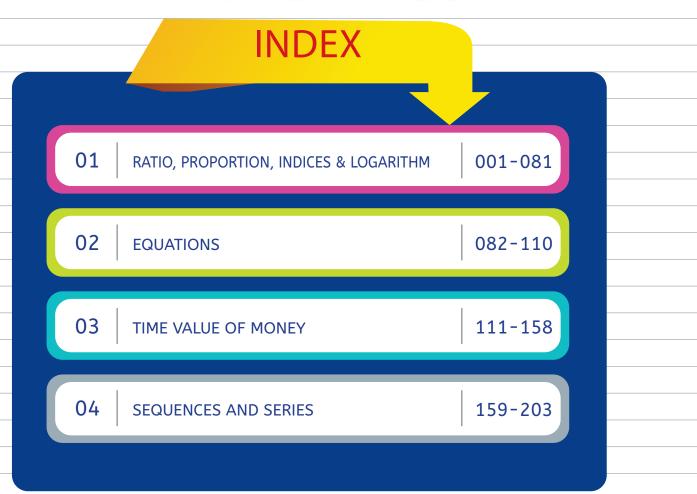
Foundation \rightarrow Intermediate \rightarrow Final CA 7

FOUNDATION

CA

MATHEMATICS

Head Office


Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400 069.

() +91 - 73044 54689

🔟 f /officialjksc 💮 jkshahclasses.com

1

CA FOUNDATION - MATHEMATICS

RATIO, PROPORTION, INDICES & LOGARITHM

 THEORY
Ratio
A ratio is a fraction (either proper or improper) which compares two or more quantities of
similar kind, which enables us to understand as to how many times one quantity is involved
in the other.
 • If A : B ($\frac{A}{B}$) is a ratio, then the numerator A is called "Antecedent" and the denominator B
 is called the "Consequent".
Ratios must be expressed in the simplest possible form and we can calculate ratios only
when the quantities are commensurable (fully quantifiable).
Spriss
Two or more ratios can be bridged in order to have a continuous comparison between more
than two variables.
and conte
Rule for bridging more than two ratios :
If ,a,b,c,d,e are five Quantities, and
$\frac{a}{b} = \frac{N_1}{D_1}; \frac{b}{c} = \frac{N_2}{D_2}; \frac{c}{d} = \frac{N_3}{D_2}; \frac{d}{e} = \frac{N_4}{D_4}$
$b D_1 c D_2 d D_3 e D_4$
 Then, a:b:c:d:e= $N_1N_2N_3N_4: D_1N_2N_3N_4: D_1D_2N_3N_4: D_1D_2D_3N_4: D_1D_2D_3N_4$
 Let a : b is a ratio, then:
 • $\frac{a}{b} > 1$ (Ratio of Greater Inequality)
 • $\frac{a}{b} < 1$ (Ratio of Lesser Inequality)
 • $\frac{a}{b} = 1$ (Ratio of Equality)

- $a^2:b^2$ (Duplicate Ratio)
- $a^3:b^3$ (Triplicate Ratio)
- \sqrt{a} : \sqrt{b} (Sub-Duplicate Ratio) •
- $\sqrt[3]{a}:\sqrt[3]{b}$ (Sub-Triplicate Ratio)
- $\frac{d}{b} = \frac{c}{d} = \frac{e}{f} = \dots$ If then the value of each ratio can be obtained by mean of any one of the following two operations;
- Each ratio = $\frac{a+c+e+....}{b+d+f+...}$ (ADDENDO) Or a.
- Each ratio = $\frac{a-c-e-\dots}{b-d-f-\dots}$ (SUBTRANDENDO) b.

INVERSE RATIO:

- IR of a:b is b : a
- IR of a:b:c is bc : ac : ab •
- IR of a:b:c:d is bcd : acd : abd : abc •

COMPOUND RATIO:

Finterprist The multiplying effect of all ratios given is known as compound ratio. If a:b and c:d are two ratios, then ac : bd is called the compounded ratio of the two.

Proportion

- Proportion is defined as the equality of two or more ratios. If $\frac{a}{b} = \frac{c}{d}$, in such a case the quantities a,b,c,d are said to be proportional, here 'd' is called the fourth proportional.
- If $\frac{a}{b} = \frac{b}{c}$, then a,b,c are said to be in continued proportion, where 'b' is called the mean proportional and 'c' is called third proportional.

• If
$$\frac{a}{b} = \frac{b}{c}$$
 or $b^2 = ac$ $\therefore b = \sqrt{ac}$

IF	THEN	PROPERTY							
	ad = bc	PRODUCT OF EXTREMES =							
		PRODUCT OF MEANS							
	$\frac{b}{d} = \frac{d}{d}$	INVERTENDO							
$\frac{a}{b} = \frac{c}{d}$	$\frac{a}{c} = \frac{b}{d}$	ALTERNENDO							
	$a+b_c+d$	COMPONENDO							
	b - d								
	$\frac{a-b}{b} = \frac{c-d}{d}$	DIVIDENDO							
	$\frac{a+b}{a+b} = \frac{c+d}{a+b}$	COMPONENDO & DIVIDENDO							
	$\frac{1}{a-b} = \frac{1}{c-d}$								
	$\frac{a-b}{a+b} = \frac{c-d}{c+d}$	DIVIDENDO &							
	$a+b^{-}c+d$	COMPONENDO							
		19							
	G								
		orise							
Serprise Ada Enterprise									
	Ad Er								
V	L'iliano								
Ć	Ac.								
	0								
	3								

CLASSWORK SECTION

1. Two numbers are in the ratio 5 : 6. If 5 is subtracted from each number, the ratio								
	becomes 4 : 5. The numbers are:							
	α)	15, 20	b)	5, 10				
	c)	10, 15	d)	25, 30				
2.	Two	o numbers are	in th	e ratio 3 : 4. If 6 be added to each terms of the ratio, then the				
	nev	w ratio will be	4:5	. The two numbers are:				
	α)	24, 32	b)	18, 24				
	c)	15, 20	d)	9, 12				
				R				
3.	Dai	ily earnings of	two	persons are in the ratio 4 : 5 and their daily expenses are in				
	the	ratio 7 : 9. If e	each	saves ₹ 50 per day, their daily incomes are ₹				
	α)	(40, 50)	b)	(50, 40)				
	c)	(400, 500)	d)	None of these				
				29 rprise				
4.	The	e sum of the a	ges o	f 3 persons is 150 years. 10 years ago their ages were in the				
	rat	io 7 : 8 : 9. The	eir pr	esent ages are:				
	α.	40, 60, 50	b.	50, 45, 55				
	с.	55, 35, 60	d.	45, 50, 55				
				-				
5.	Мо	i earns ₹ 80 in	7 ho	urs and Zen earns ₹ 90 in 12 hours. The ratio of their earnings				
	is:							
	α)	32:21	b)	23:12				
	c)	8:9	d)	None of the above				
6.	The	e ratio betweer	n the	speeds of two trains is 7 : 8. If the second train runs 400 kms				
	in 5	5 hrs, what is t	he sp	beed of the first train?				
	α)	10 km per ho	ur	b) 70 km per hour				
	c)	50 km per ho	ur	d) None of the above				

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

 av	a Veranda Enterprise									
7.	The ratio of the speeds of two trains is 2 : 5. If the distances they travel are in the									
	ratio 5 : 9, find the ratio of the times taken by them.									
	α.	18:25			b. 5:	4				
	c.	25:18			d. 1:1	1				
8.	lf x	/2 = y/3 = z/7,	then	find the value of	(2x – 5	y + 4z) / 2y.				
	α)	6/23	b)	23/6	c) 3/2	2	d) 17/6			
9.	The	e ratio of the n	umbe	er of 50 paise, Re.	1 and	₹ 5 coins wi	ith Mr. Zen is 5 : 2 : 1. If			
	the	amount with I	him i	s ₹ 38, then the nu	Imber (of Re. 1 coin	s with him is:			
	α)	4	b)	8	c) 12		d) 16			
10.	Ab	oy has five rup	ee co	pins, two rupee coi	ns and	one rupee c	oins in the ratio 3:4:5. If			
	he	has an amount	t of ₹	224, then find the	e numt	pers of one ru	upee coins with the boy.			
	α)	40	b)	35	c) 20		d) 30			
						7,6				
11.	lf -	$\frac{a}{b+c} = \frac{b}{c+a} = -$	$\frac{c}{a+b}$. Then find the val	ue of e	each ratio.				
	α.		b.	$\frac{1}{2}$	c. <u>1</u>	rorise	d. None of the above			
				<u> </u>	-20	err				
12.	Ар	precious stone v	vorth	1₹15,600 is accide	ently di	ropped and l	broken into three pieces,			
	the	weights of wh	ich a	re respectively prop	portior	nal to 2 : 3 : 5	5. The value of the stone			
	of	this variety var	ries a	is the cube of its v	veight.	Calculate t	he percentage loss thus			
	inc	urred by this br	reaka	ıge.						
	α)	80%	b)	90%						
	c)	84%	d)	78%						
13.	An	employer redu	ces t	he number of emp	loyees	in the ratio	of 19 : 16 and increases			
	the	ir wages in the	e rati	o of 4 : 5. What is	the ra	tio of the wo	age bill of the employer			
	init	ially and now?)							
	α.	20:19	b.	17:16						
	c.	16:17	d.	19:20						
Туре	s of	Ratios:								
14.	The	e duplicate rati	o of	3 : 4 is						
	α)	$\sqrt{3}:2$	b)	4:3						
	c)	9:16	d)	None of these						

J.K. SHAH [®]
CLASSES
a Verondo Enterprise

a l⁄	dranc	la Enterprise		
15.	The	e sub-duplicat	e rati	o of 25 : 36 is
	α)	6:5	b)	36:25
	c)	50:72	d)	5 :6
16.	The	e triplicate rati	o of 2	2 : 3 is
	α)	8:27	b)	6:9
	c)	3:2	d)	None of these
17.	The	e sub-triplicate	e rati	o of 8 : 27 is
	α)	27:8	b)	24:81
	c)	2:3	d)	None of these
18.				icate ratio of $(p - x^2)$: $(q - x^2)$, then find the value of x^2 .
	α)	p / (p + q)	b)	q / (p + q)
	c)	pq / (p – q)	d)	pq/p+q
				0.29
 Com	pou	nd Ratio		G De Frie
				S sprise
 19.				of 2 : 3, 9 : 4, 5 : 6 and 8 : 10 is
 	a)	1:1		1:5
	c)	3:8	d)	None of these
				310
20.			indec	l of 4 : 9, the duplicate ratio of 3 : 4, the triplicate ratio of
		3 and 9 : 7 is		
	-	2:7	•	7:2
	c)	2:21	d)	None of these
21.		•		ratio of 275 : 31, inverse of 729 : 1331, duplicate ratio of
		-	tio of	9 : 11, sub-duplicate ratio of 961 : 1296, sub-triplicate ratio
		729:1331.		
		1:1		1:2
	с.	275:11	d.	31:25

_	۵V	eranda Enterprise				
	Inver	rse Ratio				
	22.	The Inverse ratio	of 11	l : 15 is		
		a) 15:11	b)	$\sqrt{11}$: $\sqrt{15}$		
		c) 121:255				
	23.	The ratio of the	quan	tities is 5 : 7. If t	he consequ	uent of its inverse ratio is 5, the
		antecedent is				
		a) 5	b) v	/5	c) 7	d) None of these
	Joint	t Ratio				
	24.	If $\frac{a}{b} = \frac{2}{3}$ and $\frac{b}{c} = \frac{4}{5}$, the	ratio a : b : c = ?		®
		a) 4:6:15				
		c) 8:12:15	d)	8:16:25		
						79
	25.	If A : B = 2 : 3, B	: C =	4 : 5 and C : D = 3	3:7, find A	: B : C : D
		a) 4:6:15:35			b) 4 : 12	: 15 : 35
		c) 8:12:15:3	5		d) 8:16	: 25 : 35
					d L	
	26.	lf a : b = 3 : 5, b	:c=	5:4,c:d=2:	3 and d is	50% more than e, find the ratio
		between a and e.		ave.		
		a) 2:3	b)	3:4		
		c) 3:5	d)	4:5		
	27.	Aoi, Boi and Coi	work	in a company. Tl	he ratio of	Aoi's age to Boi's age is 11 : 13
		and Boi's age to	Coi's	age is 13:14. If	the sum of	their ages is 76, what are their
		respective ages?				
		a) 33, 39, 42	b)	23, 27, 32		
		c) 22, 26, 28	d)	24, 28, 30		
	28.	If $\frac{a}{b} = \frac{2}{3}$ and $\frac{b}{c} = \frac{4}{5}$, ther	n find the value of	$=\frac{a+b}{b+c}$	
		a) 8:15	b)	20:27	- • •	
		c) 3:4	d)	27:20		

J.	K.	<u>SHAH</u> SSES		CA FOUNDATION - MATHEMATICS
 a۷		da Enterprise		
 29.	Ah	medabad, Bom	ibay o	and Calcutta are three cities. The ratio of average temperature
 	bet	ween Ahmeda	bad o	and Bombay is 11 : 12 and the average between Ahmedabad
 			: 8. 7	Then the ratio between the average temperature of Bombay
	an	d Calcutta is:		
	α)	22:27	b)	27:22
	c)	32:33	d)	None of the above
 30.	A r	nan distributes	his p	property of ₹ 6,00,000 among his three sons. The share of his
	firs	t son is thrice	that	of the second son's share and the share of the second son is
	twi	ce that of the	third	son. Find the ratio in which sons share the property.
	α)	1:2:6	b)	3:4:5
	c)	6:2:1	d)	2:4:6
				®
Prop	ortic	on		
31.	The	e fourth propor	rtionc	al to 4, 6, 8 is
	α)	12	b)	32
	c)	48	d)	None of these
				Senterp
32.	The	e third proporti	ional	to 12, 18 is
	α)	24	b)	27
	c)	36	d)	None of these
33.	The	e mean propor	tiona	l between 25, 81 is
	α)	40	b)	50
	c)	45	d)	None of these
34.	The	e fourth propor	rtionc	al to 2a, a³ & c is
	α)	ac/2	b)	ac
	c)	2/ac	d)	a²c/2
35.	lf f	our numbers 1	/2, 1/	/3, 1/5, 1/x are proportional then x is
	α)	6/5	b)	5/6
	c)	15/2	d)	None of these

av	erund	uu enterprise					
36.	The	e mean propor	tiona	l between 12x² ar	d 27y ² is		
	α)	18×y	b)	81xy			
	c)	8xy	d)	None of these			
37.	lf x	: / y = z / w, im	plies	y /x = w / z, then	the process	is called	
	α)	Dividendo	b)	Componendo			
	c)	Alternendo	d)	None of these.			
38.	lf p	o /q = r / s = p	- r /	q - s, the process	is called		
	α)	Subtrahendo	b)	Addendo			
	c)	Invertendo	d)	None of these.			
39.	lf c	ı/b = c/d, then	the p	process (a+b)/(a-b	= (c+d)/(c	-d), is called	
	α)	Componendo					
	b)	Dividendo					
	c)	Componendo	and	Dividendo		19	
	d)	None of these	•	6			
					9	01150	
40.	lf u	ı / v = w / p. th	en tł			o) / (w+p), is called	
	α)	Invertendo		P de	3		
	b)	Alternendo	/_	Verandr			
	c)	Addendo	\mathcal{O}	3			
	d)	None of these	e.				
	6	u h					
41.	If $\frac{1}{4}$	$\frac{a}{b} = \frac{b}{5}$ then					
		. 4 1 5		a+4 b+5			
	α)	$\frac{a+4}{a-4} = \frac{b-5}{b+5}$		b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$			
	c)	$\frac{a-4}{a+4} = \frac{b+5}{b-5}$		d) None of these			
42.					, 38 and 1	34 so that the numb	er become
	-	portionate to					
	α)	3	b)	5	c) 7	d) 2	

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

CA FOUNDATION - MATHEMATICS

Mixtures and Alligation

 43.	In	what proport	ion mu	ust rice @ ₹ 3.10/kg be mixed with rice @ ₹ 3.60/kg to make
	the	e mixture wor	rth₹3.	25/kg?
	α.	3:5	b.	5:3
	c.	3:7	d.	7:3
44.	On	combining t	wo gro	oups of students having 30 and 40 marks respectively in an
	exc	am, the result	tant gr	oup has an average score of 34. Find the ratio of the number
	of	students in tł	ne first	group to the number of students in the second group.
	α.	2:3	b.	3:5
	c.	5:3	d.	3:2
				R
45.	A r	nerchant has	100 kg	g of sugar, part of which he sells at 7% profit and the rest at
 	17	% profit. He g	gains 1	0% on the whole. Find how much is sold at 7% profit.
 	α.	30 kg	b.	70 kg
	c.	55 kg	d.	45 kg
				5 5 rprise
 				SENTEN
				dd -
				L'Idsoll'
				310

PAST YEAR QUESTIONS

	46.	An alloy is to con	tain c	opper and zinc in the ratio 9	: 4. The zinc required to melt with
		24 kg of copper is	S		
		(a) 10 ² / ₃ kg	(b)	$10\frac{1}{2}$ kg	
		3		3	
		(c) $9\frac{2}{r}$ kg	(d)	9 kg	
		3			
	47.	A box contains ₹	56 ir	the form of coins of one ru	pee, 50 paise and 25 paise. The
		number of 50 pa	ise co	n is double the number of 2	5 paise coins and four times the
		numbers of one r	upee	coins. The numbers of 50 po	ise coins in the box is
		(a) 64	(b)	32 (c) 16	(d) 14
	48.	Eight people are	plan	ning to share equally the co	ost of a rental car. If one person
		• • •			are equally entire cost of the car,
				of the remaining persons in	
		(a) 1/9	(b)		(d) 7/8
		(0) 1/5		1/8 (c) 1/7	
	49.	The incomes of /		B are in the ratio 3 : 2 an	d their expenditures in the ratio
	43.			,500, then B's income is:	
		(a) ₹ 6000			
			(b)	₹ 4500	
		(c) ₹ 3000	(d)	₹7500	
	50.				o of glycerine and water is 3 : 1.
				added in the mixture in orde	
		(a) 15 litres	(b)	10 litres (c) 8 litre	s (d) 5 litres
	51.	The third proport	ional	between $(a^2 - b^2)$ and $(a + b^2)$) ² is :
		(a) $\frac{a+b}{a-b}$	(b)	$\frac{a-b}{a+b}$	
		u – v		_ u v	
		$(a b)^2$		$(2 + b)^3$	
		(c) $\frac{(a - b)^{-}}{a + b}$	(d)	$\frac{(a+b)^3}{a-b}$	
		<u> </u>		~ M	
_					

	®				
J.]	K. SHAH				CA FOUNDATION - MATHEMATICS
aV	dranda Enterprise				
52.	In a film shootir	ng, A	and B received m	noney in a ce	ertain ratio and B and C also
	received the mor	ney in	the same ratio. I	f A gets ₹ 1,	60,000 and C gets ₹ 2,50,000.
	Find the amount	recei	ved by B?		
	(a) ₹2,00,000	(b)	₹ 2,50,000		
	(c) ₹1,00,000	(d)	₹ 1,50,000		
53.	The ratio compo	unded	l of 4:5 and sub-d	uplicate of a	: 9 is 8 : 15. Then value of a is:
	(a) 2	(b)	3	(c) 4	(d) 5
54.	Find two numbe	ers su	ch that mean pr	oportional b	etween them is 18 and third
	proportional bet	ween	them is 144		
	(a) 9,36	(b)	8, 32	(c) 7, 28	(d) 6, 24
55.	If the salary of P	is 259	% lower than that	of Q and the	salary of R is 20% higher than
	that of Q, the ra	tio of	the salary of R an	d P will be:	
	(a) 5:8	(b)	8:5	(c) 5 : 3	9 (d) 3 : 5
			6		P.
56.	A dealer mixes r	rice co	sting ₹ 13.84 per	kg. with rice	costing ₹ 15.54 and sells the
	mixture at ₹ 17.	.60 pe	er kg. So, he earn	is a profit of	14.6% on his sale price. The
	proportion in wh	ich he	e mixes the two qu	alities of rice	e is:
	(a) 3:7	(b)	5:7	(c) 7:9	(d) 9 : 11
		\mathcal{O}	210.		
57.	X, Y, Z together	starts	a business. If X i	nvests 3 time	es as much as Y invests and Y
	invests two third	ofwl	nat Z invests, then	the ratio of	capitals of X, Y, Z is
	(a) 3:9:2	(b)	6:3:2		
	(c) 3:6:2	(d)	6:2:3		
58.	There are total 2	23 coi	ns of ₹ 1, ₹ 2 and	₹5 in a bag	. If their value is ₹ 43 and the
	ratio of coins of	₹1 ar	id ₹ 2 is 3 : 2. Thei	n the number	r of coins of ₹ 1 is :
	(a) 12	(b)	5	(c) 10	(d) 14
59.	The ratio of the r	numbe	er of ₹ 5 coins and	₹ 10 coins is	8 : 15. If the value of ₹ 5 coins
	is ₹ 360, then the	e num	ber of ₹ 10 coins v	will be:	
	(a) 72	(b)	120	(c) 135	(d) 185

HOMEWORK SECTION

1.	The inverse ratio	of 11	: 15 is		
	(a) 15:11	(b)	$\sqrt{11}$: $\sqrt{15}$		
	(c) 121 : 225	(d)	none of these		
2.	The ratio of two c	quant	ities is 3 : 4. If the	antecedent is 15,	the consequent is
	(a) 16	(b)	60	(c) 22	(d) 20
3.	The ratio of the o	quan	tities is 5 : 7. If the	ne consequent of i	ts inverse ratio is 5, the
	antecedent is				
	(a) 5	(b)	$\sqrt{5}$	(c) 7	(d) none of these
				®	
4.	The ratio compou	ndec	l of 2 : 3, 9 : 4, 5 :	6 and 8 : 10 is	
	(a) 1:1	(b)	1:5	(c) 3 : 8	(d) none of these
				1/9	
5.	The duplicate rati	io of	3 : 4 is		
	(a) √3:2	(b)	4:3	(c) 9 : 16	(d) none of these
			/9	enterr	
6.	The sub-duplicat	e rati	io of 25 : 36 is	3	
	(a) 6:5	(b)	36:25	(c) 50 : 72	(d) 5 : 6
		\mathcal{O}			
7.	The triplicate rati	o of a	2 : 3 is		
	(a) 8:27	(b)	6:9	(c) 3 : 2	(d) none of these
8.	The sub-triplicate				
	(a) 27:8	(b)	24:81	(c) 2 : 3	(d) none of these
9.	-			luplicate ratio of 3	
	(a) 1:4	(b)	1:3	(c) 3 : 1	(d) none of these
10.		indeo	d of 4 : 9, the dup	olicate ratio of 3 :	4, the triplicate ratio of
	2 : 3 and 9 : 7 is				
	(a) 2:7	(b)	7:2	(c) 2 : 21	(d) none of these

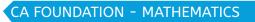
J.K. SHAH C L A S S E S a Veranda Enterprise

	al	eranda Enterprise					
	11.	The ratio compou	Inded	of duplicate ratio	of 4 : 5, triplicate	ratio o	f 1 : 3, sub duplicate
		ratio of 81 : 256	and s	sub-triplicate ratio	o of 125 : 512 is		
		(a) 4:512	(b)	3:32	(c) 1 : 12	(d) r	none of these
	12.	lf a : b = 3 : 4, th	e val	ue of (2a+3b) : (3a	+4b) is		
		(a) 54:25	(b)	8:25	(c) 17:24	(d)	18:25
	13.	Two numbers are	in th	e ratio 2 : 3. If 4 be	e subtracted from	each,	they are in the ratio
		3 : 5. The numbe	rs are	2			
		(a) (16, 24)	(b)	(4, 6)	(c) (2, 3)	(d)	none of these
	14.	The angles of a t	riang	le are in ratio 2 : 7	7 : 11. The angles	are	
		(a) (20°, 70°, 90°)		®		
		(b) (30°, 70°, 80°)				
		(c) (18°, 63°, 99°)			2	
		(d) none of these	5			2	
				6		2	
	15.	Division of ₹ 324	betw	een X and Y is in t	he ratio 11 : 7. X	& Y wo	ould get Rupees
		(a) (204, 120)	(b)	(200, 124)	enterr		
		(c) (180, 144)	(d)	none of these	3		
			/	L'and			
	16.	The ratio of two	numt	pers is 7 : 10 and t	heir difference is :	105. Tł	ne numbers are
		(a) (200, 305)	(b)	(185, 290)			
		(c) (245, 350)	(d)	none of these			
	17.	P, Q and R are t	hree	cities. The ratio of	average temper	ature l	petween P and Q is
		11 : 12 and that k	betwe	en P and R is 9 : 8.	The ratio betweer	n the a	verage temperature
		of Q and R is					
		(a) 22:27	(b)	27:22	(c) 32 : 33	(d)	none of these
	18.	lf x : y = 3 : 4, the	e valı	$1e ext{ of } x^2y + xy^2 : x^3 + xy^2 = x^3 + xy^2 = x^3 + xy^2 = x^3 + xy^2 = x^3 + x^$	+ y³ is		
		(a) 13:12		12:13	(c) 21 : 31	(d)	none of these
	19.	If p : q is the sub	-dup	licate ratio of p-x²	r^2 : q-x ² then x ² is		
		(a) <u>p</u>	(b)		(c) $\frac{pq}{p+q}$	(d) I	None of these
		p+q		p+q	p+q		
—							

J.K. SHAH C L A S S E S a Veranda Enterprise

 al⁄	dranda Enterprise					
20.	If 2s : 3t is the	duplica	te ratio of 2s – p :	3t – p then		
	(a) p ² = 6st	(b)	p = 6st	(c) 2p = 3st	(d) r	none of these
21.	lf p : q = 2 : 3 c	ınd x : y	• = 4 : 5, then the	value of 5px + 3qy	: 10p	ox + 4qy is
	(a) 71:82	(b)	27:28	(c) 17:28	(d) r	none of these
22.	The number w	hich wh	nen subtracted fro	om each of the ter	ms c	of the ratio 19 : 31
	reducing it to 1	: 4 is				
	(a) 15	(b)	5	(c) 1	(d)	none of these
23.	Daily earnings	of two p	persons are in the	ratio 4:5 and their	daily	expenses are in the
	ratio 7 : 9. If ea	ach save	es ₹ 50 per day, th	eir daily earnings i	n ₹ a	re
	(a) (40, 50)	(b)	(50, 40)	(c) (400, 500)	(d)	none of these
24.	The ratio betwe	een the	speeds of two trai	ns is 7 : 8. If the se	cond	train runs 400 kms.
 	in 5 hours, the	speed c	of the first train is	29		
	(a) 10 Km/hr	(b)	50 Km/hr	(c) 70 Km/hr	(d)	none of these
 				Suprise		
25.	The fourth prop	oortion		Enterpris		
 	(a) 12	(b)	32	(c) 48	(d)	none of these
 		<u> </u>				
 26.	The third propo	ortional	to 12, 18 is			
 	(a) 24	(b)	27	(c) 36	(d)	none of these
27.			l between 25, 81			
	(a) 40	(b)	50	(c) 45	(d)	none of these
 28.				26 that 6 has to 1		
	(a) 11	(b)	10	(c) 21	(d) r	none of these
 29.	The fourth prop					
 	(a) ac/2	(b)	ac	(c) 2/ac	(d)	none of these
30.	If four numbers	5 1/2, 1,	/3, 1/5, 1/x are pr	oportional then x i	S	
 	(a) 6/5	(b)	5/6	(c) 15/2	(d)	none of these

J.K. SHAH C L A S S E S a Veranda Enterprise


 a r	eranaa Enterprise					
31.	The mean propor	tionc	ιl between 12x² αn	d 27y² is		
	(a) 18xy	(b)	81×y	(c) 8×y	(d)	none of these
	(Hint: Let z be the	e meo	an proportional an	d z = $\sqrt{(12x^2 \times 27y^2)}$)	
32.	lf A = B/2 = C/5, t	then	A : B : C is			
	(a) 3:5:2	(b)	2:5:3	(c) 1 : 2 : 5	(d)	none of these
33.	$lf \alpha/3 = b/4 = c/7$, the	n a + b + c/c is			
	(a) 1	(b)	3	(c) 2	(d)	none of these
34.	lf p/q = r/s = 2.5/	1.5,	the value of ps : qr	' is		
	(a) 3/5		1:1	(c) 5/3	(d) r	none of these
				®		
35.	lf x : y = z : w = 2	2.5:2	1.5, the value of (x	+ z)/(y + w) is		
	(a) 1	(b)	3/5	(c) 5/3	(d)	none of these
				2/9		
36.	lf (5x - 3y)/(5y -	3x) =	3/4, the value of >	<: y is		
	(a) 2:9		7:2	(c) 7:9 015	(d)	none of these
			9	Enterr		
37.	If A : B = 3 : 2 and	dB:	C = 3 : 5, then A : I	3 : C is		
	(a) 9:6:10	(b)	6:9:10	(c) 10:9:6	(d)	none of these
		0	ave			
38.	If $x/2 = y/3 = z/7$,	, ther	n the value of (2x -	- 5y + 4z)/2y is		
	(a) 6/23	(b)	23/6	(c) 3/2	(d)	17/6
39.	lf x : y = 2 : 3, y :	z = 4	: 3 then x : y : z is			
	(a) 2:3:4	(b)	4:3:2	(c) 3 : 2 : 4	(d)	none of these
40.	Division of ₹ 750	into 3	3 parts in the ratio	4:5:6 is		
	(a) (200, 250, 30	0)		(b) (250, 250, 250))	
	(c) (350, 250, 15	0)		(d) 8 : 12 : 9		
41.	The sum of the a	ges c	of 3 persons is 150	years. 10 years ag	jo the	eir ages were in the
	ratio 7 : 8 : 9. The	eir pr	esent ages are			
	(a) (45, 50, 55)			(b) (40, 60, 50)		
	(c) (35, 45, 70)			(d) none of these		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

av	Canda Enterprise						
42.	The numbers 14	, 16, 3	35, 42 are no	t in proportion. The	fourth	term for which the	y
	will be in propor	rtion is	;				
	(a) 45	(b)	40	(c) 32	(d)	none of these	
43.	lf x/y = z/w, imp	lies y/	x = w/z, then	the process is called	d		
	(a) Dividendo			(b) Componen	do		
	(c) Alternendo			(d) none of the	ese		
44.	lf p/q = r/s = p -	• r/q –	s, the process	s is called			
	(a) Subtrahendo)		(b) Addendo			
	(c) Invertendo			(d) none of the	ese		
45.	If $a/b = c/d$, imp	lies (a	+ b)/(a - b) =	<pre>(c + d)/(c - d), theg</pre>	orocess	is called	
	(a) Componendo	0		(b) Dividendo			
	(c) Componendo	o and	Dividendo	(d) none of the	ese		
					9		
46.	If $u/v = w/p$, the	n (u –	v)/(u + v) = (v	v – p)/(w + p). The p	rocess is	s called	
	(a) Invertendo			(b) Alternendo			
	(c) Addendo			(d) none of the	ese		
				<u>da</u>			
47.	12, 16, *, 20 are	in pro		* is			
	(a) 25	(b)	14	(c) 15	(d)	none of these	
48.	4, *, 9, 13½ are	in prop	oortion. Then	* is			
	(a) 6	(b)	8	(c) 9	(d)	none of these	
49.				gms and 5.6 gms i			
	(a) 28 gms	(b)	2.8 gms	(c) 3.2 gms	(d)	none of these	
	_ a b c	a+h+	<i>C</i> + .				
50.	If $\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$ the						
	(a) 4	(b)	2	(c) 7	(d)	none of these.	
51.				f 6 be added to each	terms o	of the ratio, then th	е
	new ratio will be						
	(a) 14,20	(b)	17, 19	(c) 18 and 24	(d)	none of these	

52.	If $\frac{a}{4} = \frac{b}{5}$ then						
	(a) $\frac{a+4}{a-4} = \frac{b-5}{b+5}$	(b)	$\frac{a+4}{b+5} = \frac{b+5}{b+5}$				
			a-4 b-5				
	(c) $\frac{a-4}{a+4} = \frac{b+5}{b-5}$	(d)	none of these				
 53.	lf a : b = 4 : 1						
	(a) 5/2	(b)	4	(c) 5	(d)	none of these	
 	X		Z				
 54.	If $\frac{x}{b+c-a} = -\frac{a}{a}$	c+a-b	a+b-c then				
	(b - c)x + (c -	a)y + (a ·	- b)z is				
	(a) 1	(b)		(c) 5	(d) r	one of these	
					®		
					5		
					19		
			G				
				79	orise		
				2 enter			
			averan	90 r			
		<u> </u>	Vid(di)				
			3				
				_			

HOMEWORK SOLUTION

	1.	(a)	15:11
	2.	(d)	20
			Ratio = $\frac{3}{4}$, antecedent = 3 × 5 = 15
			\Box consequent = 4 × 5 = 20
			_
	3.	(c)	1
	,	(1 - 1
	4.	(a)	1:1
	5.	(c)	9:16
	5.	(C)	5.10
	6.	(d)	5:6
	7.	(a)	8:27
			Senterr
	8.	(c)	8:27 2:3 1/4
			id come
	9.	(a)	1/4
			Compound ratio = $\frac{4}{9} \times \frac{9}{16} = \frac{1}{4}$
	10.		2:27
		Com	pound ratio = $\frac{4}{9} \times \frac{9}{16} \times \frac{8}{27} \times \frac{9}{7} = \frac{2}{21}$
	4.4	(1)	Neve of these
	11.	(a)	None of these apound ratio = $\frac{16}{25} \times \frac{1}{27} \times \frac{9}{16} \times \frac{5}{8} = \frac{1}{120}$
		Corr	$\frac{100010}{25} = \frac{25}{27} = \frac{16}{16} = \frac{120}{120}$
	12	(d)	18:25
			e, a : b = 3 : 4
			= 3, b = 4
			ılue of 2a + 3b : 3a + 4b
_			3) + 3(4) : 3(3) + 4(4)
			3:25
_			

	•	
		CA FOUNDATION - MATHEMATICS
		/dranda Enterprise
	13.	(a) 16, 24
		Let numbers are 2 : 3 = 2x : 3x
		□ If 4 subtract from each
		2x - 4 = 3
		$\Box \ \frac{2x-4}{3x-4} = \frac{3}{5}$
		$\Box 5(2x - 4) = 3(3x - 4)$
		$\Box 10x - 20 = 9x - 12$
		□ x = 8
		□ the numbers are = 2x, 3x
		= 16, 24
	14.	(c) (18°, 63°, 99°)
		Angles of triangle = 2 : 7 : 11
		= 2x, 7x, 11x
		Let 2x + 7x + 11x = 180
		□ 20x = 180
		 x = 9 Angles of triangle = 2x, 7x, 11x
		= 18, 63, 99
		L Idiana
	15.	(d) None of these Trial and error
	16.	(c) (245, 350) Trial and error
	17.	(b) 27:22
		Here, P : Q = 11 : 12, P : R = 9 : 8
		□ Q : P = 12 : 11
		Joint ratio = Q : P P : R
		9 × (12 : 11) (9 : 8) × 11
		= 108 : 99 99 : 88
		□ Ratio of Q : R = 108 : 88
		= 27 : 22
_		

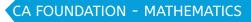
J.K. SHAH	
CLASSES	
a Veranda Enterprise	

a Veranda Enterprise
18. (b) 12:13
Here, x : y = 3 : 4
$\Box x = 3, y = 4$
the value of x²y + xy² : x³ + y³
$= (3)^2(4) + 3(4)^2 : (3)^3 + (4)^3$
= 36 + 48 : 27 + 64
= 84 : 91
= 12 : 13
19. (c) pq / p + q
$\frac{p}{q} = \frac{\sqrt{p - x^2}}{\sqrt{q - x^2}}$
$\frac{p^2}{q^2} = \frac{p - x^2}{q - x^2}$
$q^2 q - x^2$
$\Box p^{2}(q - x^{2}) = q^{2}(p - x^{2})$
$\Box p^{2}q - p^{2}x^{2} = pq^{2} - q^{2} \cdot x^{2}$
$ \begin{array}{c} \begin{array}{c} p \ q & p \ x & p \ q & q \ x \\ \end{array} \\ \hline p^2 q - p q^2 = p^2 x^2 - q^2 x^2 \\ \hline p q (p - q) = x^2 (pp - qq) \\ \hline p q (p - q) = x^2 (p - q) (p + q) \\ \hline x^2 = \frac{pq}{p + q} \end{array} $
$\Box pq(p-q) = x^{2}(pp-qq)$
$\Box pq(p - q) = x^2(p - q)(p + q)$
$\Box x^2 = \frac{pq}{p+q}$
20. (a) $p^2 = 6 st$
$\frac{2s}{2s} = \frac{(2s-p)^2}{2s}$
$3t (3t - p)^2$
$\frac{2s}{12} = \frac{4s^2 - 4sp + p^2}{2}$
$3t 9t^2 - 6tp + p^2$
$\Box 2s(9t^2 - 6tp + p^2) = 3t(4s^2 - 4sp + p^2)$
\Box 18t ² s – 12ps + 2p ² s = 12ts ² – 12tps + 3pt
$\Box 18t^2s - 12 + s^2 = 3p^2t - 2p^2s$
$\Box 6ts(3t - 2s) = p^2(3t - 2s)$
$\Box p^2 = 6st$

J.K. SHAH CLASSES a Veranda Enterprise

a Veranda Enterprise
21. (c) 17:28
p:q=2:3,x:y=4:5
□ the value of 5px + 3qy : 10px + 4qy
= 5(2)(4) + 3(3)(5) : 10(2)(4) + 4(3)(5)
= 85 : 140 = 17 : 28
22. (a) 15 Trial and error
$\frac{19-15}{10} = \frac{4}{10} = \frac{1}{10}$
$\frac{1}{31-15} = \frac{1}{16} = \frac{1}{4}$
23. (c) (400, 500) Trial and error
24. (c) 70 km/hrs
Speed d 2 nd train = $\frac{\text{Distance}}{\text{Time}}$
 $= \frac{000}{5}$
 S S S S S S S S S S S S S S S S S S S
□ Speed of 2 nd train = 80 km/hr
S17 Enter
Speed ratio = $\frac{S_1}{S_2} = \frac{7}{8}$
$\Box S_1 = \frac{7}{8} \times S_2$
 $= \frac{7}{8} \times 80$
\Box S ₁ = 70 km/hr.
2E (a) = 12
 25. (a) 12 $\frac{4}{3} = \frac{8}{3}$
 $\frac{-}{6} = -$
$\therefore x = \frac{8 \times 6}{4}$
$\therefore x =$
□ v = 12
 □ x = 12

a V	K. SHAH ASSES dranda Enterprise
26.	(b) 27
	$\frac{12}{18} = \frac{18}{x}$
	$\therefore x = \frac{18 \times 18}{12}$
	□ x = 27
~ -	
27.	(c) 45
	Mean proportion = $\sqrt{25 \times 81}$
	= 45
28.	(d) None of these
	x 6
	$\frac{x}{26} = \frac{6}{13}$
	$\therefore x = \frac{6 \times 26}{13}$
	□ x = 12
	500
29.	$(\alpha) \frac{ac}{2}$
	$a^2 - x$
	$\frac{2a}{a^2} = \frac{c}{x}$
	$\therefore x = \frac{ca^2}{2a}$
	$x = \frac{ac}{2}$
	2
• •	
30.	
	$\frac{1}{2} = \frac{5}{1}$
	$\frac{2}{1} = \frac{5}{1}$
	$\frac{1}{3}$ $\frac{1}{x}$
	$\therefore \frac{3}{2} = \frac{x}{5}$
	$\therefore x = \frac{3 \times 5}{2} = \frac{15}{2}$
	2 2



al	dranda Enterprise
31.	(a) 18×y
	Mean proportion = $\sqrt{12x^2 + 27y^2}$
	$=\sqrt{324.x^2.y^2}$
	= 18×y
32.	(c) 1:2:5
	B C
	Here A = $=\frac{B}{2}=\frac{C}{5}$
	A = 1, B = 2, C = 5
	□ A : B : C = 1 : 2 : 5
33.	(c) 2 Here, $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$
	□ a = 3, b = 4, c = 7 ③
	$\frac{a+b+c}{c} = \frac{3+4+7}{7} = \frac{14}{7} = 2$
	c 7 7 ⁻
34.	(b) 1:1
	$\frac{p}{q} = \frac{r}{s} = \frac{2.5}{1.5}$
	q s 1.5
	(b) 1:1 $\frac{p}{q} = \frac{r}{s} = \frac{2.5}{1.5}$ $\square p = r = 2.5, q = s = 1.5$ $\frac{ps}{qr} = \frac{(2.5)(1.5)}{(1.5)(2.5)} = \frac{1}{2}$
	$\frac{ps}{qr} = \frac{(2.5)(1.5)}{(1.5)(2.5)} = \frac{1}{2}$
	qr (1.5)(2.5) 2
	(<u>)</u> 5
35.	(c) $\frac{5}{3}$
	$\frac{x}{x} = \frac{z}{2} = \frac{2.5}{1.5}$
	y 2 1.5
	x = z = 2.5, y = w = 1.5
	the value of $x + z = 2.5 + 2.5 = 5$
	the value of $\frac{x+z}{y+w} = \frac{2.5+2.5}{1.5+1.5} = \frac{5}{3}$

	K. SHAH [®]
CL	ASSES
 	dranda Enterprise
 36.	(d) $\frac{27}{29}$
	Here, $\frac{5x - 3y}{5y - 3x} = \frac{3}{4}$
	$\Box 4(5x - 3y) = 3(5y - 3x)$
	$\Box 20x - 12y = 15y - 9x$
	□ 29x = 27y
	$\Box \frac{x}{y} = \frac{27}{29}$
	y 29
 37	(a) 9:6:10
51.	A:B B:C
 	□ A : B : C = 9 : 6 : 10
	17
 38.	(d) $\frac{17}{16}$
	$\frac{x}{2} = \frac{y}{3} = \frac{z}{7}$
	$\Box = 2, y = 3, z = 1$ $\Box = The value of \frac{2x - 5y + 4z}{2y}$
	$=\frac{2(2)-5(3)+4(7)}{2(3)}$
	$=\frac{17}{6}$
39.	(d) 8:12:9
	x:y y:z
	4 × (2 : 3) (4 : 3) × 3
	□ 8:12 12:9
	□ x : y : z = 8 : 12 : 9
	, 0.11.0
 40	(a) (200, 250, 300) Trial and error
-10.	
 /, 1	(a) (45, 50, 55) Trial and error
 41.	

	CA FOUNDATION - MATHEMATICS
	a Veranda Enterprise
42	2. (b) 40
	14 35
	$\frac{14}{16} = \frac{35}{x}$
	35 × 16
	$\therefore x = \frac{35 \times 16}{14}$
	x = 40
43	3. (d) None of these
44	4. (a) Subtrahendo
45	5. (c) Componendo & Dividendo
46	5. (d) None of these
47	7. (c) 15 🛞
	12 x
	$\frac{12}{16} = \frac{x}{20}$
	$\therefore x = \frac{12 \times 20}{16}$
	x = 15 Senterprise
	Senter
48	3. (a) 6 $\frac{4}{x} = \frac{9}{13.5}$
	$\frac{4}{2} = \frac{9}{2}$
	$\overline{x} = \overline{13.5}$
	$\therefore x = \frac{4 \times 13.5}{9}$
	x = 6
49	9. (b) 2.8
	Mean proportion = $\sqrt{1.4 \times 5.6}$
	= 2.8
50	D. (b) 2
	$\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$
	□ a = 4, b = 5, c = 9
	$\therefore \ \frac{a+b+c}{c} = \frac{4+5+9}{9} = 2$

J.K. SHAH [®] CA FOUNDATION - MATHEMATICS
CLASSES a Veranda Enterprise
51. (c) 18, 24
$\frac{3x+6}{2} = \frac{4}{2}$
$\frac{1}{4x+6} = \frac{1}{5}$
$\Box 5(3x + 6) = 4(4x + 6)$
\Box 15x + 30 = 16x + 24
\Box 6 = x
□ numbers = 3x = 3(6) = 18
4x = 4(6) = 24
a + 4 $b + 5$
52. (b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$
53. (a) $\frac{5}{2}$
2 ®
Here, $\frac{a}{b} = \frac{1}{1}$
$\frac{1}{1} \cdot \frac{\sqrt{a}}{\sqrt{b}} = \frac{2}{1}, \frac{\sqrt{b}}{\sqrt{a}} = \frac{1}{2}$
\sqrt{b} 1' \sqrt{a} 2
$\therefore \text{ Value of } \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} = \frac{2}{1} + \frac{1}{2}$
Vb Va 1 2
 $=\frac{4+1}{2}$
 2
 54. (b) 0
 Cyclical terms in base.

Indices, Surds and Logarithms THEORY $a^{\times} = N$ a = base x = Power/Exponent/Index N = Product [But, $a \neq 0, 1, \pm \infty$] Theory of Indices deals with the various changes in power, during various mathematical operations. $(a^m)^n = a^{mn}; \text{ m is added n times}$ $(ab)^m = a^m r^{km}$ **Basic Rules** 1. 2. $\frac{a^m}{a^n} = a^{m-n}$ 3. 4. $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ 5. 6. $a^0 = 1$ 7. $a^{-n} = \frac{1}{a^n}$ If $a^m = a^n \Rightarrow m = n$; where, $a \neq 0, 1, -1, \pm \infty$ 8.

a Veranda Enterprise						
9. For $a^m = b^m$ if m \neq 0 then						
(i) $a = b$ (when m is odd)						
(ii) $a = \pm b$ (when m is even)						
10. $a^x = N$						
1						
$\Rightarrow a = N^{\frac{1}{x}} = \sqrt[x]{N}$						
11. $(i)0^a = 0$						
$(ii)1^a = 1$						
$(iii)a^1 = a$						
$(iv)a^0 = 1$						
$(v)0^{\circ}$ has no meaning						
Basic Formulae						
1. $(a+b)^2 = a^2 + 2ab + b^2$						
2. $(a-b)^2 = a^2 - 2ab + b^2$						
Senterr						
3. $a^2 - b^2 = (a + b)(a - b)$						
id contraction of the second sec						
4. $(a+b)^2 + (a-b)^2 = 2(a^2+b^2)$						
2. $(a-b)^2 = a^2 - 2ab + b^2$ 3. $a^2 - b^2 = (a+b)(a-b)$ 4. $(a+b)^2 + (a-b)^2 = 2(a^2 + b^2)$ 5. $(a+b)^2 - (a-b)^2 = 4ab$						
6. $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$						
7. $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$						
8. $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$						
9. $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$						
10. $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$						
11. If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$						

12. If $a^3 + b^3 + c^3 = 3abc$, then either $a + b + c = 0$ or $a = b = c$
but both the results cannot hold true simultaneously
Rational Numbers, Irrational Numbers & Surds
• A Rational Number is a number which can be expressed in the form p/q, where $q \neq$
0; p & q are integers and p and q are prime to each other, i.e., there is no common
factor between p & q, other than 1.
Any terminating and recurring decimals are rational numbers.
• Thus any non-recurring and non-terminating decimals are irrational numbers, and
when the irrational numbers are expressed in radical form (root form), it is known
as "Surds".
Thus all the surds are irrational, but all irrational numbers are not surds.

The numbers whose perfect root can be evaluated are rational quantities and • numbers for which perfect roots cannot be evaluated are irrational quantities. Veranda

Order of Surds

If $\sqrt[k]{m} = (m)^{\frac{1}{k}}$ is a surd, then, it is said to be a surd of order "k".

Pure Surds and Mixed Surds

In case of pure surds, entire expression is kept within the radical sign. In mixed surds, it is expressed as a product of one rational and one irrational quantity.

Example:

 $\sqrt{7}$ is a pure surd; $\sqrt{12} = \sqrt{4x^3} = 2\sqrt{3}$ is a mixed surd.

Conjugate of a Surd

If $(a + \sqrt{b})$ or $(\sqrt{a} + \sqrt{b})$ are surds, their respective conjugates would be given by,

 $(a-\sqrt{b})$ or $(\sqrt{a}-\sqrt{b})$ and vice-versa.

Rationalization of Surds

Rationalization is a process, where we convert the irrational part of the surd into a rational quantity, with help of its conjugate.

Note: 1

- Rational + Rational = Rational •
- Rational Rational = Rational •
- Rational x Rational = Rational •
- Rational ÷ Rational = Rational •

Note: 2

- Irrational + Irrational = Irrational •
- Irrational Irrational = Rational (only when the quantities are equal); otherwise -•
- Irrational Irrational = Irrational
- Irrational x Irrational = May be Rational or Irrational •
- Irrational ÷ Irrational = May be Rational or Irrational Rational + Irrational = Irrational Rational x Irrational = Irrational Rational ± Irrational = Irrational •

Note: 3

- •
- •
- •
- •

Square Root of Surds

- The square root of a surd is always a surd.
- Every answer for square root must contain +ve or -ve sign and in the absence of • +/- sign, "none of these" will be marked as answer.
- If the given surd, whose square root is to be evaluated is in the form $(a \pm \sqrt{b})$, then ٠ the answer will also be in the form $\pm (x \pm \sqrt{y})$.
- Square the options, in order to get the question back. •

		_ A S S E S /dranda Enterprise				
					IDICES	
	1.	The value of 4/	(32) ^{1/5} i	s		
		(a) 8	(b)	2		
		(c) 4	(d)	none of these		
	2.	2 ^{1/2} . 4 ^{3/4} is equ	al to			
		(a) a fraction			(b) a positive inte	eger
		(c) a negative	integer		(d) none of these	2
	3.			$x^{c} \times y^{c-\alpha} \times y^{-\alpha-b}$ is		
		(a) y ^{a+b}	(b)	-		
		(c) 1	(d)	1/y ^{a+b}	B	
	,	C(0	10 71-1/2	12212121-1/5		
	4.			× (32/243) ^{-1/5} is		· · · · · · · · · · · · · · · · · · ·
		(a) $9/4$		4/9		
		(c) 2/3	(a)	none of these	Grise	
	5.	[<i>J</i> (2)1/2 (<i>J</i>)3/4 (8)	5/6 116	^{7/8} . (32) ^{9/10} } ⁴] ^{3/25} is	S Enterprise	
	5.	(a) A fraction		an integer	Enc	
		(d) A fraction (c) 1	(d)	none of these		
		(C) 1		Home of these		
_	6.	$[1 - {1 - (1 - x^2)}]$	-1}-1]-1/2	is equal to		
	•••	(a) x		1/x		
		(c) 1		none of these		
			,			
	7.	If a ³ - b ³ = (a -	b) (a² +	ab + b²), then the	e simplified form o	f
		2 2	2	2 2	2	
		$\frac{x^{l}}{x}$ \times	x ^m	$\frac{mn+n^2}{x}$ $\frac{x^n}{x^1}$	-	
		[x ^m]	x ⁿ			
		(a) 0	(b)	1	(c) ×	(d) none of these
				1		
	8.	The value of	x xb xb	$\left(\frac{\mathbf{x}^{b}}{\mathbf{x}^{c}}\right)^{b+c} \times \left(\frac{\mathbf{x}^{c}}{\mathbf{x}^{a}}\right)^{c+c}$		
		()			
		(a) 1	(b)	0	(c) 2	(d) none of these

 	•					
		(a ² +	$ab+b^2$) (b^2+b	$bc+c^2$) (c	² +ca+a ²)	
9.	The value of	$\left(\frac{X^{a}}{b} \right)$	$\frac{ab+b^2}{x} \left(\frac{x^b}{x^c}\right)^{(b^2+b)}$	$\times \left(\frac{\mathbf{x}^{c}}{\mathbf{a}} \right)$		
		(x ²)	(\mathbf{x}^{*})	(x°)		
	(a) 1	(b)	0	(c) -1	(d) none (of these
 10.			– 3ab(a – b) tic	k the correct	of these when x =	$p^{1/3} - p^{-1/3}$
	(a) $x^3 + 3x = p$	•				
	(b) $x^3 + 3x = p$	•				
	(c) $x^3 + 3x = p$	o + 1 (d)	none of these			
	$\frac{1}{2}$ $-\frac{1}{2}$					
11.	If $x = 3^3 + 3^3$,					
 	(a) 15					
 	(c) 12	(d)	none of these		8	
12		7	the second s			
 12.	If $a^x = b$, $b^y = c$					
	(a) 1	(b)			9	
 	(c) 3	(a)	none of these		rise	
12	$1f v^{1/p} - v^{1/q}$	^{1/r} and x	yz = 1, then the	value of n t	t + r ic	
 15.	(a) 1	(b)			1 1 15	
 	(c) 1/2		none of these	30		
 			Home of these			
 14.	On simplificat	ion 1/(1	$+ q^{m-n} + q^{m-p}$	+ 1/(1 + a ^{n - m}	$+ a^{n-p} + 1/(1 + q^{n-p})$	$a^{p-m} + a^{p-n}$ is
 	equal to	, _, (_	,	-/(
 	(a) 0	(b)	α	(c) 1	(d) 1/a	
	· •	/			• • • •	
15	If 2× = 2v - 6-z	1 1	$\frac{1}{2}$ is			
1).	If $2^x = 3^y = 6^{-z}$,	, <u> </u>	15 Z			
	(a) 1	(b)	0	(c) 2	(d) none	of these
		(0)	5			
 16	On simplificat	ion $\frac{2^{x+3}}{2}$	$\frac{\times 3^{2x-y} \times 5^{x+y+3}}{6^{x+1} \times 10^{y+3} \times 15}$	$\times 6^{\gamma+1}$ reduce	es to	
10.	en simplineau		$6^{x+1} \times 10^{y+3} \times 15$	×		
	(a) -1	(b)	0	(c) 1	(d) 10	
	,, <u> </u>	(/	-	, -		

	- y - 2 y - 1	V					
17.	If $\frac{9^{\sqrt{3^2}}(3^{-\sqrt{3^2}})^{-1}-2}{3^{3^{-2}}}$	$\frac{27}{2} = \frac{1}{27}$ then x	ĸ − y is gi	iven by			
	35.25	27					
	(a) -1	(b) 1		(c) 0		(d) none	
	(_)a+	+b b+c	c)c+a				
18.	Show that $\left(\frac{x^a}{x^b}\right)^{a+1}$	$\times \frac{\mathbf{x}^{D}}{c} \times$	$\frac{\mathbf{x}^{c}}{a}$ is	s given by			
	(x [*])	(x ²) (x				
	(a) 0	(b) –1		(c) 3		(d) 1	
		$(\mathbf{x}^{b})^{a}$	(x ^c) ^b	x ^a) ^c			
19.	Show that reduc	ces to $\frac{x}{x^{c}}$ ×	$\frac{x}{x^a}$ ×	x ^b			
)			
	(a) 1	(b) 3		(c) 0	B	(d) 2	
					5		
20.	The value of z is g	given by the fo	llowing i	$fz^{z\sqrt{z}} = (z\sqrt{z})$	z) ^z		
		3		3	19	9	
	(a) 2	<u>3</u> (b) 2	6	$(c)^{-\frac{1}{2}}$		(d) 4	
				$fz^{z\sqrt{z}} = (z\sqrt{z})^{2}$ $(c) \overline{2}$ $1 = 0$	01150		
21.	lf (5.678)× = (0.56	78) ^y = 10 ^z ther	$\sqrt{9}$	enter			
	$\frac{1}{2}$ - $\frac{1}{2}$ + $\frac{1}{2}$ - 1		$\frac{1}{x} \frac{1}{y}$	$\frac{1}{2} = 0$			
	$\frac{1}{(a)} \frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$	(b)	ху	z			
	$\frac{1}{2} - \frac{1}{2} + \frac{1}{2} = -1$	O ave					
	(c) × y z	(d)	None				
 22.	If $3^{\alpha} = 5^{b} = (75)^{c}$, t	then the value	of ab - d	c(2a + b) rec	duces to		
	(a) 1	(b) 0		(c) 3		(d) 5	
				1	1		
23.	If $2^{a} = 4^{b} = 8^{c}$ and	l abc = 288 the	en the va	$lue \frac{1}{2a} + \frac{1}{4b}$	$+\frac{1}{8c}$ is	given by	
	<u>1</u>	1		11		11	
	(a) 8	(b) <u>8</u>		(c) 96		(d) 96	
24.	If $ax^{2/3} + bx^{1/3} + c$						
	(a) 3abcx	(b) -3abcx		(c) 3abc		(d) -3abc	
	$-2_{b}-1_{-1}$ $b_{2}-1_{-1}$	$2_{2}-1_{1}-1_{2}$					
25.	$x^{a^{2}b^{-1}c^{-1}}.x^{b^{2}c^{-1}a^{-1}}.x^{c^{-1}}}.x^{c^{-1}a^{-1}}.x^{c^{-1}}.x^{c^{-1}}}.x^{c^{-1}}}.x^{c^{-1}}.x^{c^{-1}}}.x^{c^{-1$		uld redu				
	(a) 1	(b) -1		(c) 0		(d) None	
			27				

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	<u>J.</u>]	K. SHAH [®]				CA FOL	JNDATION -	- MATHEMATICS
		ASSES Granda Enterprise						
				a a				
	26.	If $a^b = b^a$, then the	e val	ue of $\left(\frac{a}{b}\right)^{b} - a^{\frac{a}{b}-1}$	reduces to			
		(a) a	(b)	b	(c) 0		(d) None	
	SURE	DS						
				e value of $a^{1/2} + a^{-1}$	^{-1/2} is			
		(a) $\sqrt{2}$ (c) $2\sqrt{2}$	(b)	-\sqrt{2}				
		(c) 2 √2	(d)	$-2\sqrt{2}$				
	28.	If a = $\sqrt{\frac{7 + 4\sqrt{3}}{7 + 4\sqrt{3}}}$ t	hen t	he value of [a(a –	14)] ² is			
		(a) 14	(b)	7	(c) 2	B	(d) 1	
	29.	The square root o	of 3 +	- √5 is		5/		
		<u>, 5</u> <u>1</u>		(5 ± 1)		<u>79</u>		
		(a) $\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}$		(b) $\left(\sqrt{2} \right) \left(\sqrt{2} \right)$	K	ice		
					Sort	<u>ori</u>		
		(c) Both the abo		(d) None	Enter			
	20	$\sqrt{3} + \sqrt{2}$	$\sqrt{3}$	$-\sqrt{2}$		L2:-		
	30.	If $a = \frac{1}{\sqrt{3} - \sqrt{2}}$, b	= √3	$\frac{-\sqrt{2}}{+\sqrt{2}}$, then the val		D ⁻ IS		
		(a) 10	(b)	100	(c) 0.9		(4) 00	
		(a) 10	(b)	100	(c) 98		(d) 99	
	р∆ст	YEAR QUESTIONS						
			-1/8) (/	a ^{1/8} - a ^{-1/8}) (a ^{1/4} + a	1 ^{-1/4}) (a ^{1/2} + 4	n ^{-1/2}) ic.		
	J 1.			$a - \frac{1}{a}$			(d) a ² – –	1
		· · · · · · · · · · · · · · · · · · ·		a — — — — a	a	2		2
_	32.	If $2^{x} - 2^{x-1} = 4$ the	en x× i	s equal to:				
	•	(a) 7	(b)	-	(c) 27		(d) 9	
_		· /	1				• • -	
_		$a^n \cdot a^{n-1}$						
	33.	$\frac{2^{n}+2^{n-1}}{2^{n+1}-2^{n}}$						
		(a) 1/2	(b)	3/2	(c) 2/3		(d) 1/3	
			-					

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

aŀ	dranda Enterprise					
34.	If $2^x \times 3^y \times 5^z$	= 360. Th	en what	is the value of x, y, z ?		
	(a) 3, 2, 1	(b)	1, 2, 3	(c) 2, 3, 1	(d) 1, 3, 2	
				$\left[\frac{a+b+c}{a} \right]^{3}$		
35.	If $\sqrt[3]{a} + \sqrt[3]{b} + \sqrt[3]{b}$			lue of $\left(\frac{a+b+c}{3}\right)$		
	(a) abc		9abc	, 		
	(c) $\frac{1}{abc}$	(d)	1 9abc			
36.				ue of x will be:		
 	(a) 5 ³	(b)	54	(c) 5 ²	(d) 5	
 37.				the value of xyz will be :		
 	(a) 0	(b)	1	(c) 3	(d) 6	
 				3		
				A 1 /9	7	
 				GIVE .ce) ¢	
 			.	S Enterprise		
 				5 Enteri		
		<u> </u>	<u> </u>	iauga		
			ave	-		
 				24		
1				36		

a	Veranda Enterprise				
		SPEC	IAL TYPE OF		
		QL	JESTIONS		
1.	(i) The valu	ue of $\sqrt{20 + \sqrt{20 + \sqrt{20 + \dots}}}$	<i>to∞</i> is		
		(b) 4		(d) None	
	(ii) The valu	ue of $\sqrt{20 - \sqrt{20 - \sqrt{20}}}$	<i>to</i> ∞ is		
	(a) 5	(b) 4		(d) None	
	(iii) $\sqrt{20}\sqrt{20}$	$\sqrt{20}$ to ∞			
	(a) 5	(b) 4	(c) 20	(d) None	
			ß		
	(iv) The valu	Le of $\sqrt{8 \div \sqrt{8 \div \sqrt{8 \div \dots }}}$	to ∞		
	(a) 2	(b) 8	(c) 6	(d) None	
				2	
	(v) The valu	Le of $\sqrt{8\sqrt{8\sqrt{8}}}$		e	
	(a) 4	(b) 2	(c) 8	(d) None	
			SENTE		
2.	lf xyz = 1 the	n the value of $\frac{1}{1+x+y}$	$\frac{1}{1} + \frac{1}{1+y+z^{-1}} + \frac{1}{1+z+x^{-1}}$	is	
	(a) 1	(b) 0	(c) -2	(d) None	
3.	If x = $\sqrt{2} - \sqrt{2}$ -	$-\sqrt{2-}\infty$ the value of	X is given by		
	(a) - 2	(b) 1	(c) 2	(d) 0	
4.	If $x = \sqrt{7\sqrt{7}\sqrt{7}}$	$\overline{\psi_{\dots,\infty}}$ the value of X is	given by		
	(a) - 3	(b) 3	(c) 12	(d)	
5.	Simplify $\sqrt{a}\sqrt{a}$	$a\sqrt{a\sqrt{a}}$ for a = 3 ^{16/15}			
	(a) 0;	(b) 2;	(c) 3;	(d) None	
			37		
			51		

Logarithms

THEORY

If $a^x=N$, then $x=\log_a N$; * $a \neq 0,1, \pm \alpha$ and for the purpose of log, any negative quantity. * x is called the logarithm of N (product) to the base "a".

Base "a"

- The base "a" of log can be any positive real number except 1.
- The base of log can be clearly divided into two parts: 💿
- 0 < a < 1 (the proper fraction)
- a > 1 (positive integer / mixed fraction)
- Unless otherwise specified, the base of log is always taken to be 10 and this is known as Common Logarithm.
- For theoretical purpose, the base is always taken to be "e", where "e" is a constant and this is known as "Natural Logarithm".
- Common Logarithms are used for numerical calculations and Natural Logarithms
 are used in calculus.

Basic Rules

 $1. \quad \log_a mn = \log_a m + \log_a n$

2.
$$\log_a \frac{m}{n} = \log_a m - \log_a m$$

3.
$$\log_a m^n = n \log_a m$$

- 4. $\log_a a = 1$
- 5. $\log_a 1 = 0$

6. $\log_a 0 =$ Undefined

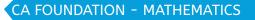
7. $\log_a - ve =$ Undefined

8. $\log_a m = \log_a n \Rightarrow m = n$

Change of Base in Logarithms

1.
$$\log_{b}a = \frac{\log_{m}a}{\log_{m}b}$$
 (m can be any common base) (m $\neq 0, 1, \pm \alpha$,-ve value)

$$2. \quad \log_a b = \frac{1}{\log_b a}$$


$$3. \quad a^{\log_a x} = x$$

Nature of Log Values

- All the values which are obtained from log tables are irrational numbers provided the numbers are not 10 or in the form of 10ⁿ.
- $\log_b a$ is a rational quantity only when, $\frac{\log a}{\log b}$ is rational.
- If K is a number, then its log value, logK can be divided into two parts: a) Integral
 Part, b) Fractional Part.
- The integral part is called "Characteristics" and the fractional part is called "Mantissa".

• The integral characteristics part can be positive or negative or zero but not a fraction.

- The values of mantissa are always positive fractions.
- The values for mantissa are obtained from log tables.
- Characteristics are to be calculated before we evaluate mantissa from the log table.
- Value of characteristics = number of significant digits before decimal 1

CLASSWORK SECTION

- $\log_{10} 10 + \log_{10} 100 + \log_{10} 1000 + \log_{10} 10000 + \log_{10} 100000$ is 1.
 - a) 15

2.

- b) log₁₀ 11111
- c) log₁₀ 1111
- d) 14log₁₀ 100

If $\log\left(\frac{a}{b}\right) + \log\left(\frac{b}{a}\right) = \log(a+b)$, then which of the following is true?

α)	a + b = 1	
b)	a + b = 0	
c)	a = b	8

d) a - b = 1

3. Find the value of $\log_{10}\left(\frac{4}{25}\right) + \log_{10}\left(\frac{4}{25}\right)$ $-\log_{10}\left(\frac{2}{7}\right)$. a) 1 b)

None of the above Service 18 equals d) c) 41

$\frac{1}{2}\log_{10}25 - 2\log_{10}3 + \log_{10}18$ equals 4.

- a) 18
- b) 1
- c) 3
 - d) None of the above

5. $7\log\frac{16}{15} + 5\log\frac{25}{24} + 3\log\frac{81}{80} =$

- a) log 2
- b) log 3
- c) log 5
- d) None of the above

If $\log_{10} [98 + \sqrt{x^2 - 12x + 36}] = 2$, then x =6.

a) 4 b) 8 c) 12 d) 4,8

J.K. SHAH CLASSES a Veranda Enterprise

a Veranda Enterprise
7. If $\log_5(x^2 + x) - \log_5(x + 1) = 2$; then find the value of x.
a) 5
b) 1/5
c) 5 ²
d) None of the above
$(21)^{\mathbf{x}}$
8. If $\left(\frac{21}{10}\right)^2$ = 2, then x = ?
log 2 log 2
a) $\frac{\log 2}{\log 3 + \log 7 + 1}$ b) $\frac{\log 2}{\log 3 + \log 7 - 1}$
log 2
c) $\frac{\log 2}{\log 7 + \log 3 + 2}$ d) None of the above
9. Evaluate: x ^{logy - logz} . y ^{logz - logx} . z ^{logx - logy} .
 a. 0 b. 1 c. 2 d 1
10. The value of is a ^{log b/c} . b ^{log c/a} . c ^{log a/b}
a) 0 b) 1 c) -1 d) None
11. Given log2 = 0.3010 and log3 = 0.4771, find the value of log6.
a) 0.9030 b) 0.9542
c) 0.7781 d) None of the above
 12. Civen that less 2 wand less 2 we the value of less (0 is eveneed as
 12. Given that log₁₀2 = x and log₁₀3 = y, the value of log₁₀ 60 is expressed as: a) x + y + 1 b) x - y + 1
c) $x - y - 1$ d) None of the above
c, x = y = 1 a) inone of the above
13. Given logx = m + n and logy = m − n, the value of log (10x/y²) is expressed in terms
of m and n as:
a) $1 - m + 3n$ b) $m - 1 + 3n$
 c) m + 3n + 1 d) None of the above
, - ,
 14. If $\log(\frac{x+y}{z}) = \frac{1}{2}(\log x + \log y)$, then $\frac{x}{z} + \frac{y}{z} =$
 14. If $\log(\frac{x+y}{5}) = \frac{1}{2}(\log x + \log y)$, then $\frac{x}{y} + \frac{y}{x} =$ a) 20 b) 23 c) 22 d) 21
 15. If $\log a = \frac{1}{2}\log b = \frac{1}{5}\log c$, then find the value of $a^4b^3c^{-2}$.
15. If $\log a = \frac{1}{2}\log b = \frac{1}{5}\log c$, then find the value of $a^4b^3c^{-2}$.a) 0b) -1c) 1d) None of the above

		®						
$\frac{\mathbf{J}}{\mathbf{C}}$		SHAH SSES				CA FOL	JND	ATION - MATHEMATICS
		la Enterprise						
 16.	Fine	d the value of		₃ 1728.				
	α)	2	b)	6	c)	1	d)	None of the above
17.	On	solving the eq	Juatio	n logt + log (t - 3)) =	1 we get the va	lue	of t as
	α)	5	b)	2	c)	3	d)	0
18.	For	any three con	secut	ive integers x, y, z.	th	e equation log (1 +	xz) – 2logy = 0 is:
	α)	True		b) False				
	c) Sometimes true			d) Cannot be det	ern	nined in case of	сус	lic order
19.	If lo	og ₂ (log ₃ (log ₂ x	:)) = 1	, then x =				
	α)	512	b)	128	c)	12	d)	0
						R		
20.	If lo	og _{0.5} (log _x (log ₄	32)) =	: 2, then x =				
	α)	5/2	b)	625/16	c)	25/4	d)	None of the above
						2/9		
21.	If ×	= log _a bc; y = l	.og _b co	; z = log _c ab, then [.]	the	value of xyz - : - 1	x –	y – z is:
	α)	1	b)	2	c)	21 vorise	d)	0
				/9	C	nterr		
22.	Fine	d the value of	log₅5	.log ₄ 9.log ₃ 2.	>			
	α)		b)	2 verance	c)	5	d)	None of the above
			\mathcal{O}	Ve				
23.	Fine	d the value of	(log,	$a \times \log_{c} b \times \log_{c} c)^{3}$				
	a).		b)	2	c)	3	d)	None of the above
24.	If lo	og,x + log,x = (6, the	n the value of x is				
	a)		b)	4	c)	8	d)	16
	-						-	
25.	If lo	$\log_{10}\sqrt{x} = 2 \log_{10} \sqrt{x}$	_10, t	hen a possible val	.ue	of x is given by:		
	a)		× / b)	$\frac{1}{100}$		$\frac{1}{1000}$		None of the above
				100	•	1000		
26.	Evo	Iluate : $a^{\frac{1}{\log_b a}}$	-					
	a)		b)	b	c)	a + b	d)	None of the above
	•		•					
27.	Fine	d the value of	the fo	ollowing expressio	n: ($a^{\log_a b \cdot \log_b c}$	log	$g_c d \log_d t$
	a)			ıbcdt			d)	None of the above
	1	-			-/		1	
				12				

	ASSES					CA FOU	INDA	TION - MATHEMATICS	
 al	dranda Enterprise	F		1					
 		1 +	1 1						
 28.	The value of	$\log_{\underline{p}} x = \log_{\underline{p}} x$	$\frac{g_q x \log_r x}{r}$	is?					
 	a) 3	b)	2	c)	1		d) N	lone of the above	
29.	$\log_2 \log_{\sqrt{2}} \log_{100}$	₃ 81 = ?							
	a) 3	b)	2	c)	1		d) ()	
30.	If MOI = $\log_2 l$.og ₂ log ₄ 2	256 + 2log	$\sqrt{2}$ 2, then	MOI eq	uals:			
	α) 3	b)	5	c)	7		d) 2	25	
31.	Given log2 = (0.30103, 1	the numbe	r of digits	in 2⁵⁰ is	5			
	a) 14	b)	16	c)	18	B	d) 2	25	
 32.	log ₂ 5								
	a) An integer	r		b)	A ratio	onal num	nber		
	c) An irration	d)	A prim	ne numbe	er				
 	399 mise								
 33.	$5^{\sqrt{\log_5^7}} - 7^{1}$	$\sqrt{\log_7^5}$		19	ret	N.			
	a) log 2	b)	1	C)	0		d) N	lone of the above	
			Via	300-					
 34.	The value of l	og, [log,	[log, (log, 2	27³)}] is eq	ual to				
 	(a) 1	(b)		(c)			(d) r	one of these	
 	· •	/		,				-	
 35.	If log ₂ x + log	x + loa	x = 21/4.1	these x is e	equal to	0			
 	(a) 8	(b)			16		(d) r	one of these	
 	, .	~~/	-	(-)	-*		(/ 1		
 36	Given that loc	1.2=x	a = y	then log	1.2 is e	expressed	d in t	erms of x and y as	
 	(a) x + 2y - 1								
		(6)	X y 1	(0)	LA y	-	(0) 1		
 37	The value of l	0a 25 ai	ven log 2 =	0 3010 is					
 51.	(a) 1	(b)			1.5482	2	(d) r	one of these	
 	(u) 1	(0)	۲	(C)	1.0402	<u></u>	(u) (

J.K. SHAH C L A S S E S a Veranda Enterprise

a Veranda Enterprise									
38. If $a = b^2 = c^3 = d^4$ then the value of log_a (abcd) is									
	(a) $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$								
	2 3 4	2! 3! 4	.!						
	(c) 1 + 2 + 3 + 4	(d) None							
 20	The sum of the series lo	$a_{b+} \log b_{2+} \log b$	$ab^3 + \pm \log b^n is a$	iven hv					
 55.	The sum of the series lo (a) $\log_a b^n$ (b) lo		(c) log ["] b ⁿ	(d) None					
		- Ja ~							
 4.0	$ \mathbf{f} \mathbf{a}^2 + \mathbf{b}^2 - 7\mathbf{c}\mathbf{b} + \mathbf{b}\mathbf{c}\mathbf{c} + \mathbf{b}$		$\frac{a}{3} - \frac{\log a}{2} - \frac{\log b}{2}$						
40.	If $a^2 + b^2 = 7ab$ then the			(d) 7					
 	(a) 0 (b) 1		(c) -1	(d) 7					
			1						
41.	If $a^3 + b^3 = 0$ then the v	alue of log(a + b)	$\frac{-1}{2}$ (log a + log b +	log 3) is equal to					
			B						
	(a) 0 (b) 2	1	(c) -1	(d) 3					
PAS	YEAR QUESTIONS		17.9						
		6	Ve						
42.	The value of 2 log x + 2	2 log x ² + 2 log x ³	+ + 2 log x ⁿ wi	ll be:					
	(a) $\frac{n(n+1)\log x}{2}$	9	b) n(n + 1) log ×	<					
	(c) n² log x		d) none of these	e					
		Vidian							
43.	If n = m! where ('m' is o	i positive integer	2) then the value	of:					
	$\frac{1}{\log_2 n} + \frac{1}{\log_3 n} + \frac{1}{\log_4 n} +$	log _m n							
	(a) 1 (b)	0	(c) -1	(d) 2					
44.	Which of the following	is true. If $\frac{1}{ab} + \frac{1}{bc}$	$-+\frac{1}{ca}=\frac{1}{abc}$						
	(a) log(ab + bc + ca) =								
	(b) $\log\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) = \alpha$	bc							
	(c) $\log(abc) = 0$								
	(d) $\log (a + b + c) = 0$								
45	For what value of x, the	e equation (log - 1	$(2)^2 = \log 2$ is true?						
чJ.	(a) 16 (b) 3		(c) 8	(d) 4					
 		L		(u) 4					

46.	If x = log ₂₄ 12, y	/ = log ₃₆ 24 and z	$x = \log_{48} 36$, then xy	z + 1 =	
	(a) 2xy	(b) 2xz	(c) 2yz	(d) 2	
47.	The value of lo	g $(1^3 + 2^3 + 3^3 + .)$	n³) is equal to:		
	(a) 3 log 1 + 3	log 2 + + 3 lo	og n		
	(b) 2 log n + 2	log (n + 1) – 2 log	g 2		
	(c) log n + log	(n + 1) + log (2n -	+ 1) – log 6		
	(d) 1				
				8	
 				9	
			5/6*	rise	
 			G ter	0	
			> IN ENCO		
 			anac		
		C VC	S Enter		
 		3			

 a	/@randa Enterprise								
 			CIAL TYPE OF						
 			UESTIONS						
1.	Find the sim	nplest value of $\log_{17}\sqrt{17}$	$\sqrt{17\sqrt{17\infty}}$						
		(b) – 1;	(c) 0;	(d) None					
		_1							
2.	If $\log_{1000} x = -$	$\frac{-1}{4}$, then x is given by:							
		(b) 1/10	(c) 1/20	(d) None of these					
 				R					
 				Č					
 				6					
 Serprise Sentemprise Add Enterprise									
 				ise					
 			e to						
 Ente									
 L'Idrai.									
		3							
			46						

HOMEWORK SECTION (INDICES & LOG)

			(INDI)	CES & LOG)	
1.	4x ^{-1/4} is expressed	d as			
	(a) -4x ^{1/4}	(b)	X ⁻¹	(c) 4/x ^{1/4}	(d) none of these
2.	The value of 8 ^{1/3}	is			
	(a) 3√2	(b)	4	(c) 2	(d) none of these
3.	The value of 2 × ((32)1/5	⁵ is		
	(a) 2	(b)	10	(c) 4	(d) none of these
4.	The value of 4/(3	2) ^{1/5} i	S		
	(a) 8	(b)	2	(c) 4 🕓	(d) none of these
5.	The value of (8/2	7) ^{1/3} i	S		/
	(a) 2/3	(b)	3/2	(c) 2/9	(d) none of these
			6	V V .ce	
6.	The value of 2(25	6) ^{-1/8}	is	9 rorise	/
	(a) 1	(b)	2 9	(c) 1/2	(d) none of these
			Verandr	3	
7.	2 ^{1/2} . 4 ³ /4 is equal to		, digin		
	(a) a fraction		210	(b) a positive inte	eger
	(c) a negative int	-		(d) none of these	2
	$\left(\frac{81x^4}{y^{-8}}\right)^{\frac{1}{4}}$ has simp				
8.	$\left(\frac{1}{y^{-8}}\right)$ has simp	olified	value equal to		
	(a) xy ²	(b)	x²y	(c) 9xy ²	(d) 3xy ²
9.	$\mathbf{x}^{a-b} \times \mathbf{x}^{b-c} \times \mathbf{x}^{c-a}$ is				
	(a) x	(b)		(c) 0	(d) none of these
	(2)	$p^2 q^3$	0 where p,q,x,y≠0		
10.		· · ·			
	(a) 0	(b)	2/3	(c) 1	(d) none of these
11.	$\{(3^3)^2 \times (4^2)^3 \times (5^3)\}$				
	(a) 3/4	(b)	4/5	(c) 4/7	(d) 1

_	R					
J.	K. SHAH				CA FOUNDA	TION - MATHEMATICS
 al	dranda Enterprise					
 12.	Which is True ?					
	(a) $2^{\circ} > (1/2)^{\circ}$		(b)	2° < (1/2)°		
	(c) $2^{\circ} = (1/2)^{\circ}$		(d)	none of these		
 13.	If $x^{1/p} = y^{1/q} = z^{1/r}$	and xyz	= 1, th	en the value of p +	q + r is	
 	(a) 1	(b) 0		(c) 1/2	(d)	none of these
 14.	The value of y ^{a-b}	°×y ^{b−c} ×y	^{c-a} × y ⁻	a-b is		
	(a) ya+b	(b) y		(c) 1	(d) 1	1/y ^{a+b}
15.	The True option	is				
	(a) $x^{2/3} = \sqrt[3]{x^2}$			$\mathbf{X}^{2/3} = \sqrt{\mathbf{X}^3}$		
	(c) $x^{2/3} > 3\sqrt{x^2}$		(d)	$x^{2/3} < 3\sqrt{x^3}$	ß	
					5	
16.	The simplified v	alue of 16	5x ⁻³ y ² >	< 8 ⁻¹ x ³ y ⁻² is		
	(a) 2×y	(b) xy/2	2	(c) 2	9 (d) r	none of these
				<u><u>S</u></u>		
17.	The value of (8/	27) ^{-1/3} × (2	32/243		prise	
	(a) 9/4	(b) 4/	/9	(c) 2/3	(d) r	none of these
			<u> </u>	× 90 r		
18.	log 6 + log 5 is	expressed	as	(dl)		
	(a) log 11	(b) lo	g 30	(c) log 5/	6 (d) r	none of these
19.	log ₂ 8 is equal to)				
	(a) 2	(b) 8		(c) 3	(d) r	none of these
20.	log 32/4 is equa	ıl to				
	(a) log 32/log 4		(b) lo	og 32 – log 4		
	(c) 23		(d) no	one of these		
21.	log (1 × 2 × 3) is	equal to				
	(a) log 1 + log 2	2 + log 3		(b) log 3		
	(c) log 2			(d) none	of these	
22.	The value of log	0.0001 t	o the b	base 0.1 is		
	(a) -4	(b) 4		(c) 1/4	(d) r	none of these

	.11	CUAL	R						
		ASSES	6				CA FOUNDATIO	DN - MATHEMATI	CS
╉		/dranda Enterprise		v is eas					
	23.	If 2 log x = 4				<u>ີ</u>	/		
+		(a) 3	(b)	9	(c)	۷	(a) noi	ne of these	
╉	24.	$\log_{\sqrt{2}} 64$ is e	equal to						
		(a) 12	(b)	6	(c)	1	(d) nor	ne of these	
	25.	$\log_{2\sqrt{3}} 1728$	is equal to)					
		(a) 2√3	(b)	2	(c)	6	(d) noi	ne of these	
	26.	log (1/81) to	o the base	9 is equa	al to				
		(a) 2	(b)	1/2	(c)	-2	(d) noi	ne of these	
	27.	log 0.0625 t					®		
		(a) 4	(b)	5	(c)	1	(d) nor	ne of these	
	28.				= 0.4771 the				
		(a) 0.9030	(b)	0.9542		0.7781		ne of these	
						nterr	pri-		
	29.	The value of				nte			
		(a) 0	(b)	2	0(c)	1	(d) noi	ne of these	
	30.	The value of				4		• • •	
		(a) - ½	(b)	1/2	(c)	1	(d) n	none of these	
\parallel	24	16 L							
\parallel	31.				in be expresse		/ 15		
		(a) x-1	(b)	X	(c)	x/x-1	(d) noi	ne of these	
	22	The units		(loc //	a 273\)1 :-				
	32.				$g_{3}27^{3}$] is equ		. (ام /	no of these	
╢		(a) 1	(b)	2	(c)	U	(a) noi	ne of these	
	30	If log y the		= 21//	those wis com				
	55.			4	these x is equ		(1) 000	ne of these	
+		(a) 8	(b)	4	(C)	16	(a) noi	ne of these	
+	21.	Given that I		ad loc i	3 = x + b + c + c	In of los	60 is overes	sod as	
	J4.	(a) $x - y + $			3 = y, the valu (b) x + y +		g ₁₀ 60 is express	seu us	
		(d) $x - y +$ (c) $x - y -$			(d) x + y +				
		(c) x - y -	1						

J.K. SHAH [®]
CLASSES
a Vergodo Enterprise

al	dranda Enterprise				
35.	Given that log ₁₀ 2	! = x, l	.og ₁₀ 3 = y, then log	J ₁₀ 1.2 is expressed	in terms of x and y as
	(a) x + 2y - 1		(b) x + y - 1		
	(c) 2x + y - 1		(d) none of these	2	
36.	Given that log ×	= m +	n and log y = m ·	- n, the value of l	og 10x/y² is expressed in
	terms of m and r	n as			
	(a) 1 – m + 3n		(b) m – 1 + 3n		
	(c) m + 3n + 1		(d) none of these	2	
37.	The simplified va	ilue of	f 2 log ₁₀ 5 + log ₁₀ 8	- ½ log ₁₀ 4 is	
	(a) 1/2	(b)		(c) 2	(d) none of these
38.	log [1 - {1 - (1 -	x ²) ⁻¹ } ⁻	¹] ^{-1/2} can be writte	n as 🛞	
	(a) log x ²	(b)	log x		
	(c) log 1/x	(d)	none of these		/
					2
 39.	The simplified va	ilue of	f log ∜729 ∛9 ⁻¹ .2	7 ^{-4/3} is	
	(a) log 3	(b)	log 2	(c) log 1/2	(d) none of these
			- / 9	Enterp	
40.	The value of (log	l₀a × l	og b × log c)³ is eq	ual to	
	(a) 3	(b)		(c) 1	(d) none of these
		\mathcal{O}	Ne.		
41.	The logarithm of	² 64 to	the base $2\sqrt{2}$ is		
	(a) 2	(b)	$\sqrt{2}$	(C) ¹ / ₂	(d) none of these
42.	The value of log ₈	,25 giv	ven log 2 = 0.3010	is	
	(a) 1	(b)	2		
	(c) 1.5482	(d)	none of these		
	. 1/		1/ 1/		
43.	Show that $\left(\frac{x^b}{x^c}\right)^{\prime b}$	$\int_{a}^{c} \mathbf{X} \left(\frac{x^{c}}{x^{a}}\right)$	$\int_{x}^{1/ca} x \left(\frac{x^a}{x^b}\right)^{1/ab} reduce$	ces to	
	(a) -1			(c) 1	(d) None
		2 -	2) (12.1.2)		
44.	Show that $\left(\frac{x^a}{x^b}\right)^{(a)}$	- - + ab+ b	²) X $\left(\frac{x^b}{x^c}\right)^{(b^2+bc+c^2)}$	$\left(\frac{x^{c}}{x^{a}}\right)^{\left(c^{2}+ca+a^{2}\right)}$ is	given by
	(<i>x</i> -)		(A)		
	(a) 1	(b)	-1	(c) 0	(d) 3

		K. SHAH [®]		_		
		ASSES		CA	Foundation - Mathemat	TICS
		/dranda Enterprise		$\frac{1}{1+z^{b-c}+z^{b-a}} + \frac{1}{1+z^{c-a}+z^{c-b}} WC$		
	45.					
_		(a) 0	(b) -1	(c) 1	(d) 2	
_		······································				
_	46.			-15x is given by	()) = =	
_			(b) 26	(c) 27	(d) 30	
			$\frac{1}{\frac{a}{a-b}} \times \frac{x^{\frac{b}{b-b}}}{\frac{a}{b}}$	a		
	47.	On simplification	on x	- reduces to		
_			X ^{a+b} X ^{b+}	.g		
_		(a) 1	(b) -1	(c) 0	(d) None	
_			x ^{ab}	$\frac{(x^{b^2+c^2})^{b+c}}{x^{bc}} x \left[\frac{x^{ca}}{x^{c^2+a^2}} \right]^{c+a} reduce$		
	48.	On simplification	$\frac{\text{on}}{x^{a^2+b^2}} x -$	x^{bc} $x \left[\frac{x^{c^2+a^2}}{x^{c^2+a^2}} \right]$ reduce	ces to	
		() 2.2		,	11 2/0 ³ +1 ³ , 0 ³ 1	
_		(a) x ^{-2a3}	(b) x ^{2a3}	(c) X 2(0 10 10	(d) x $2(a^3+b^3+c^3)$	
-		3/10 + 1	3/12 1			
_	49.			the value of $a^3 + 3a - 2$ is	6	
_		(a) 3	(b) 0	(c) 2	(d) 1	
_		$\frac{1}{100} = \frac{1}{100} \left(5 \sqrt{21} \right)^{-1}$			se	
_	50.	-		of $a^3 + a^{-3} - 5a^2 - 5a^{-2} + a^{-3} - 5a^{-3} - 5a^{-2} + a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} + a^{-3} - 5a^{-3} - 5a^{-3} - 5a^{-3} + a^{-3} - 5a^{-3} -$		
_		(a) 0	(b) 1	S (c) 5 term	(d) - 1	
-	F 4	11		radu		
	51.	$1 + log_a(bc) + \frac{1}{1 + log_a(bc)}$	$\frac{1}{g_b(ca)} + \frac{1}{1 + \log_c(ab)}$ (b) 1			
		(a) U	(b) 1	(c) 3	(d) -1	
		, loga logh	logc			
	52.	$\frac{\text{If } y - z}{y - z} = \frac{z - y}{z - x} =$	$=\frac{\log c}{x-y}$ the value	e of abc is		
		(a) 0	(b) 1	(c) -1	(d) None	
	F 2	10 ¹ 1000 1100	h 1,			
	53.		$b = \frac{1}{5} \log c$ the vc			
		(a) 0	(b) 1	(c) -1	(d) None	
	54.			e value of a ³ b ² c is	()) NI	
		(a) 0	(b) 1	(c) -1	(d) None	
			1 _ 1			
	55.			the value if z is given by		
		(a) abc	(b) a+b+c	(c) a(b+c)	(d) (a+b)c	

56. If I = 1+log_abc, m = 1+log_bca, n = 1+log_cab then the value of $\frac{1}{l} + \frac{1}{m} + \frac{1}{n} - 1$ is (b) 1 (c) -1 (a) 0 (d) 3 57. If $(4.8)^{\times} = (0.48)^{\vee} = 1,000$ then the value of $\frac{1}{x} - \frac{1}{y}$ is (b) -3 (a) 3 (c) 1/3 (d) -1/3 58. If $x^{2\alpha-3}y^{2\alpha} = x^{6-\alpha}y^{5\alpha}$ then the value of alog $\left(\frac{x}{y}\right)$ is (a) 3 log x (b) log x (c) 6 log x (d) 5 log x Senterprise Veranda Enterprise

J.K. SH

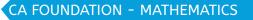
a Veranda Enterprise

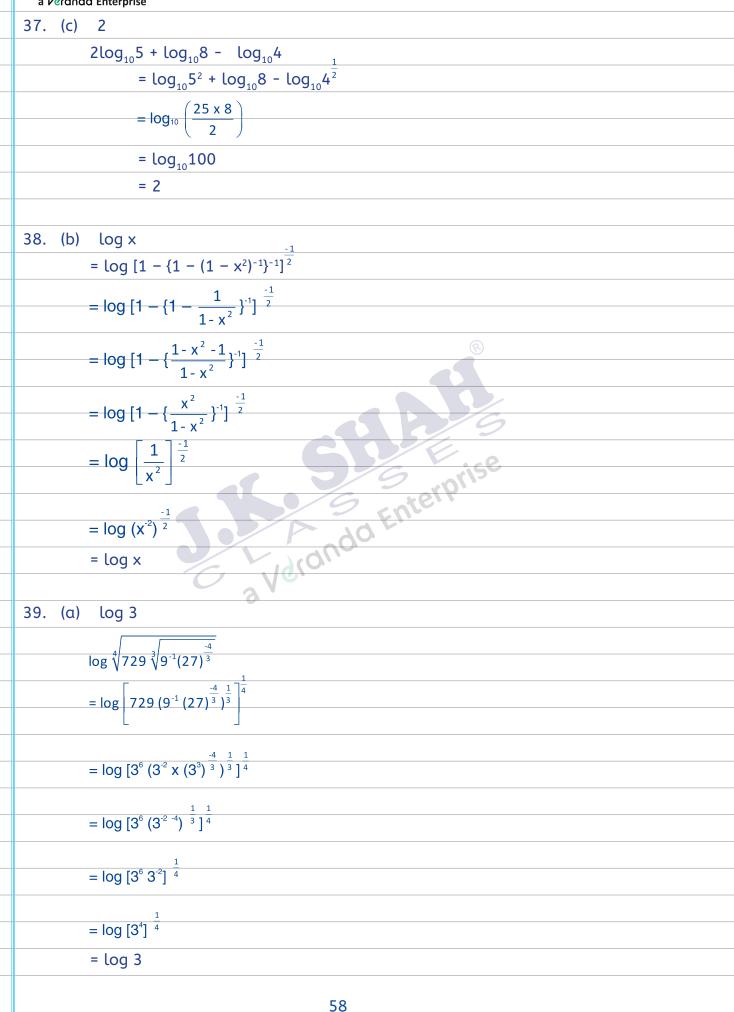
HOMEWORK SOLUTION

		4
	1.	(c) $\frac{1}{x^{1/4}}$
	2.	(c) 2
	3.	(c) 4
	4.	(b) 2
	5.	(a)
		8
	6.	(a) 1
	7.	(b) A positive integer
		$2^{1/2} \cdot (4)^{3/4} = 2^{1/2} \cdot (2^2)^{3/4}$
		$= 2^{1/2} \cdot (2)^{3/2}$
		$2^{1/2} \cdot (4)^{3/4} = 2^{1/2} \cdot (2^2)^{3/4}$ $= 2^{1/2} \cdot (2)^{3/2}$ $= 2^{\frac{1}{2} + \frac{3}{2}}$ $= 2^{2}$ $= 4$
		$= \frac{1}{2^2} + \frac{3}{2}$ = 2 ²
		= 4
		- 4 0
	8.	(d) 3xy ²
	0.	$(21 + 4)^{1/4}$ $(24 + 4)^{1/4}$
		$\left(\frac{81.x^4}{y-8}\right)^{1/4} = \left(\frac{3^4.x^4}{y^{-8}}\right)^{1/4}$
		$=\frac{3x}{y^{-2}}=3xy^2$
	9.	(b) 1 Cyclical terms (in power)
_	10.	(c) 1
	11.	
		$\frac{3^6 \times 4^6 \times 5^6}{3^6 \times 4^6 \times 5^6} = 1$
		$3^6 \times 4^6 \times 5^6$

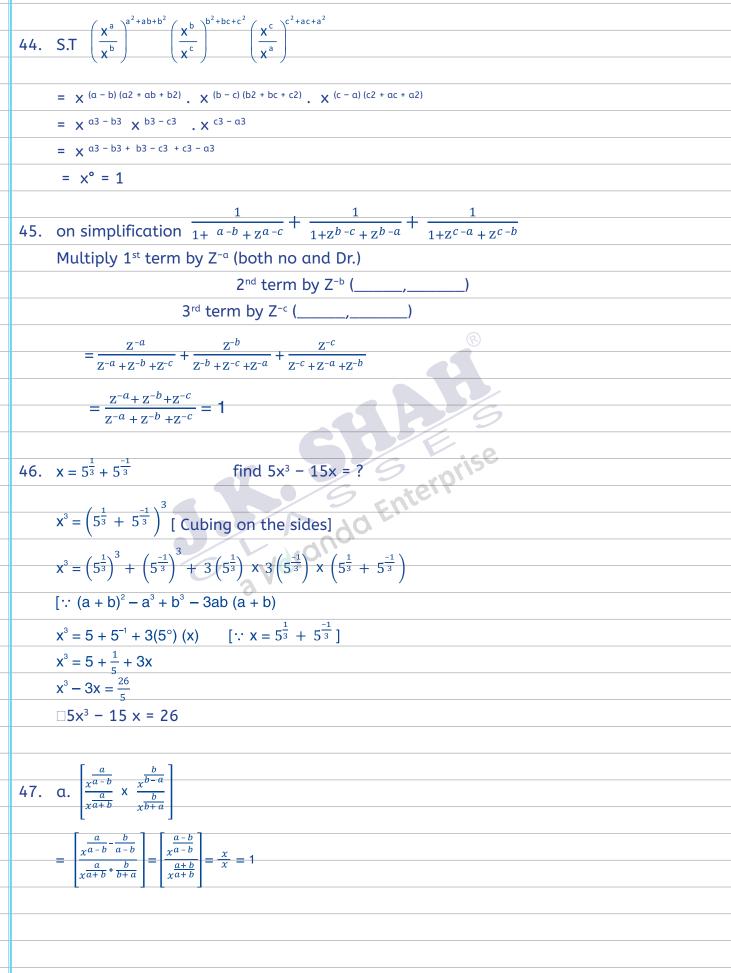
12. (c) $2^{\circ} = \left(\frac{1}{2}\right)^{\circ}$
	(2)
13. (b) 0
	$x^{1/p} = y^{1/q} = z^{1/r} = k$
	$x^{1/p} = k \qquad \Rightarrow x = k^{p}$
	$y^{1/q} = k \qquad \Longrightarrow x = k^q$
	$z^{1/r} = k \qquad \Rightarrow z = k^r$
	xyz = 1
	k^{p} , k^{q} , $k^{r} = k^{o}$
	$k^{p+q+r} = k^{o}$
[] p + q + r = 0
	8
14. (d) $\frac{1}{v^{a+b}}$
	$y^{a-b} \times y^{b-c} \times y^{c-a} \times y^{-a-b}$
	$= y^{a-b+b-c+c-a-a-b}$
=	$\frac{x + y + x + y + x + y}{y^{a-b+b-c+c-a-a-b}}$ $= \frac{1}{y^{a+b}}$ a) $x^{2/3} = \sqrt[3]{x^2}$
 	1 y ^{a+b}
	y ^{a+b}
15. (a) $x^{2/3} = \sqrt[3]{x^2}$
16. (c) 2
	$= 16 \cdot x^{-3} \cdot y^2 \cdot 8^{-1} \cdot x^3 \cdot y^{-2}$
	$=\frac{16.y^2.x^3}{8.x^3.y^2}$
 :	= 2
	9
17. (a) $\frac{1}{4}$
($\left(\frac{8}{27}\right)^{-1/3} \cdot \left(\frac{32}{243}\right)^{-1/5} = \left(\frac{27}{8}\right)^{1/3} \cdot \left(\frac{243}{32}\right)^{1/5}$
(
	$=\frac{3}{2}\cdot\frac{3}{2}$
	2 2
 	$=\frac{9}{4}$
	4

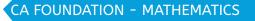
J.K. SHAH [®] CA FOUNDATION - MATHEMATICS
a Veranda Enterprise
18. (b) log 30
log (6 × 5) = log 30
19. (c) 3
$\log_2 8 = \log_2 2^3 = 3 \log_2 2 = 3$
20. (b) log 32 – log 4
21. (a) log 1 + log 2 + log 3
22. (b) 4
$\log_{0.1} 0.0001 = \log_{0.1} (0.1)^4 = 4 \log_{0.1} 0.1 = 4$
(R)
23. (b) 9
$Log x^2 = log 3^4$
$\Box X^2 = 3^4$
$\nabla Y - 2^2 - 0$
24. (a) 12 $\log_{\sqrt{2}} 64 = \log_{\sqrt{2}} \left(\left(\sqrt{2} \right)^2 \right)^6$
$Log_{\sqrt{2}} 64 = log_{\sqrt{2}} ((\sqrt{2})^2)^6$
$= \log_{\sqrt{2}} (\sqrt{2})^{12}$ = 12
=12
25. (c) 6
 $L \operatorname{og}_{258} 1728 = \log_{2\sqrt{3}} \left(2\sqrt{3} \right)^{6}$
 =6
 26 (c) - 2
 26. (c) -2
 $Log_9\left(\frac{1}{81}\right) = log_9(81)^{-1}$
 $= \log_9(9)^{-2}$
= -2
27. (d) None of these trial and error


CL	CA FOUNDATION - MATHEMATICS
_	/dranda Enterprise
20.	(c) 0.7781
_	$\therefore \text{ Log } 6 = \log (2 \times 3) = \log 2 + \log 3$
_	= 0.3010 + 0.4771 = 0.7781
_	- 0.//01
29	(c) 1
	$\log_2 \log_2 \log_2 16 = \log_2 \log_2 \log_2 2^4$
_	
_	$= \log_2 \log_2 4$
_	$= \log_2 \log_2 2_2$
_	= log ₂ 2 = 1
20	
50.	$(a) \frac{-1}{2}$
	$\log_{9} \frac{1}{3} = \frac{\log(3)^{-1}}{\log 9} = \frac{-1\log 3}{2\log 3} = \frac{-1}{2}$
21	$\frac{x}{x-1}$
<u> </u>	$\frac{1}{\log x + \log y} = \log (x + y)$
_	$\frac{1}{2} \log (xy) = \log (x + y)$
	$\Box xy = x + y$ $\Box xy - y = x$
	$ \log (xy) = \log (x + y) $ $ xy = x + y $ $ xy - y = x $ $ y (x - 1) = x $
	$\therefore y = \frac{x}{x-1}$
32.	(c) 0
	$\log_{2} [\log_{2} {\log_{3} (\log_{3} 27^{3})}]$
	$= \log_2 [\log_2 \{\log_3 (\log_3 (3^3)^3)\}]$
	$= \log_{2} [\log_{2} {\log_{3} 9}]$
	$= \log_2 [\log_2 2]$
	$= \log_2 1$


J.K. SHAH [®]
CLASSES
a Veranda Enterprise

a Veranda Enterprise
33. (a) 8
$\frac{\log_{10} x + \log_{4} x + \log_{10} x = \frac{21}{4}}{100}$
$\frac{\log x}{\log 2} + \frac{\log x}{\log 4} + \frac{\log x}{\log 16} = \frac{21}{4}$
log 2 log 4 log 16 4
$\therefore \frac{\log x}{\log 2} \left[1 + \frac{1}{2} + \frac{1}{4} \right] = \frac{21}{4}$
$\therefore \log_2 x \left[\frac{4+2+1}{4} \right] = \frac{21}{4}$
$\therefore \log_2 x = 3$
$\therefore 2^3 = x$
∴ x = 8
34. (b) x + y + 1 ③
$\log_{10} 60 = \log_{10} (2 \times 3 \times 10)$
= log 2 + log 3 + log 10
= x + y + 1
G J / / .ce
35. (c) $2x + y - 1$ $\log_{10} 12 = \log_{10} \frac{12}{10}$
$\log_{10} 12 = \log_{10} \frac{1}{10}$
= log 12 - log 10
= log (2 × 2 × 3) - log 10
= log 2 + log 2 + log 3 - log 10
= x + x + y - 1
= 2x + y - 1
36. (a) $1 - m + 3n$
$\log \frac{10x}{y^2} = \log 10 + \log x - \log y^2$
$= \log 10 + \log x - 2 \log y$
= 1 + m + n - 2 (m - n)
= 1 + m + n - 2m - 2n
= 1 – m + 3n




J.K. SHAH C L A S S E S a Veranda Enterprise

a 🗸	randa Enterprise
40.	(c) 1
	The value of (log _b a x log _c b x log _a c)
	$= \left(\frac{\log a}{\log b} \times \frac{\log b}{\log c} \times \frac{\log c}{\log a}\right)^{3}$
	<pre>[logb `logc `loga]</pre>
	$= (1)^3$
	= 1
41.	(d) 4
	$\log_{2\sqrt{2}} 64 = \log_{2\sqrt{2}} (2\sqrt{2})^4$
	= 4
42.	(c) 1.5482
	$\log_{8}25 = \log_{8}\left(\frac{25\times4}{4}\right) = \log_{8}\left(\frac{100}{4}\right)$
	$= \log_8\left(\frac{100}{4}\right)$
	= <u>log 100 - log 4</u>
	log 8
	$= \frac{\log 20 - \log 2}{\log 2}$
12	Show that $\left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \cdot \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} \cdot \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}}$.
43.	Show that $\left(\frac{1}{x^c}\right) \cdot \left(\frac{1}{x^b}\right) \cdot \left(\frac{1}{x^b}\right)$.
	$M - 1 \left(x^{b-c}\right)^{\frac{1}{bc}} \cdot \left(x^{c-a}\right)^{\frac{1}{ca}} \cdot \left(x^{a-b}\right)^{\frac{1}{ab}} \cdot \frac{1}{ab}$
	$\frac{b-c}{c} + \frac{c-a}{c} + \frac{a-b}{c}$
	$= \frac{\log 20 - \log 2}{\log 2}$ Show that $\left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \cdot \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} \cdot \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}}$ $M - 1 \left(x^{b-c}\right)^{\frac{1}{bc}} \cdot \left(x^{c-a}\right)^{\frac{1}{ca}} \cdot \left(x^{a-b}\right)^{\frac{1}{ab}}$ $= \frac{b-c}{x^{bc}} + \frac{c-a}{ca} + \frac{a-b}{ab}$ $(b-c) + b(c-a) + c(a-b)$
	$= x^{\frac{(b-c)+b(c-a)+c(a-b)}{abc}}$ [Taking L.C.M. in the power]
	ab - ac + bc - ac + ac - ab
	= x abc
	$= \chi abc$
	$= x^{\circ} = 1$
	<u>k</u> <u>k</u> <u>d</u>
	$M - II = \frac{\frac{\cancel{b}}{\cancel{bc}}}{x^{\cancel{bc}}} \frac{x^{\cancel{c}}}{x^{\cancel{c}a}} \frac{x^{\cancel{a}}}{\cancel{ab}}}{x^{\cancel{ab}}}$
	$x^{be} x^{ca} x^{ab}$
	1 1 1
	$= \frac{x^{\frac{1}{z'}}}{x^{\frac{1}{b'}}} \frac{x^{\frac{1}{a'}}}{x^{\frac{1}{z'}}} \frac{x^{\frac{1}{b'}}}{x^{\frac{1}{a'}}} = 1$
	$\mathbf{x}^{\mathbf{x}}$ $\mathbf{x}^{\mathbf{x}}$ $\mathbf{x}^{\mathbf{x}}$ $\mathbf{x}^{\mathbf{x}}$

48. $\left(\frac{x^{ab}}{x^{a^2+b^2}}\right)^{a+b} \left(\frac{x^{b^2+c^2}}{x^{bc}}\right)^{b+c} \left(\frac{x^{ca}}{x^{c^2+a^2}}\right)^{a+b}$ $= (x^{ab-a^2-b^2})^{a+b} x^{(b^2+c^2-bc)(b+c)} x^{(ca-c^2-a^2)(c+a)}$ $= x^{-(a^2+b^2-ab)(a+b)} x^{(b^2+c^2-bc)(b+c)} x^{-(c^2-a^2-ca)(c+a)}$ = $x^{-(a^3+b^3)} x^{b^3+c^3} x^{-(c^3+a^3)}$ $= \mathbf{x}^{-a^{3}-b^{3}+b^{3}+c^{3}-c^{3}-a^{3}}$ $= x^{-2a^3}$ **49.** If $a = a = \sqrt[3]{\sqrt{2}+1} - \sqrt[3]{\sqrt{2}-1}$ Then the value of $a^3 + 3a-2$ is $a = (\sqrt{2} + 1)^{\frac{1}{3}} - (\sqrt{2} + 1)^{\frac{1}{3}}$ Cubing on both sides, we get, $a^{3} = \left[\left(\sqrt{2} + 1 \right)^{\frac{1}{3}} - \left(\sqrt{2} - 1 \right)^{\frac{1}{3}} \right]^{3}$ $=\sqrt{2}+1-(\sqrt{2}-1)-3\left[(\sqrt{2}+1)^{\frac{1}{3}}\left(\sqrt{2}-1\right)^{\frac{1}{3}}\right](\sqrt{2}+1)^{\frac{1}{3}}-(\sqrt{2}-1)^{\frac{1}{3}}$ $= \sqrt{2} + 1 - \sqrt{2} + 1 - 3a \left[(\sqrt{2})^2 - (1)^2\right]^{\frac{1}{3}}$ $= 2 - 3a^{\frac{1}{2}}$ $a^3 = 2 - 3a[2 - 1]^{\frac{1}{3}}$ $a^3 = 2 - 3a$ $\therefore a^3 + 3a - 2 = 0$ 50. $a = \frac{1}{2}(5 - \sqrt{21})$ $a = \frac{(5 - \sqrt{21})}{2}; \frac{1}{a} = \frac{1}{2}(5 + \sqrt{21})$ $\therefore a + \frac{1}{a} = \frac{5\sqrt{21} + 5 + \sqrt{21}}{2} = \frac{10}{2} = 5$

	a Veranda Enterprise
	$\frac{51.}{1 + \log_{a}bc} + \frac{1}{1 + \log_{b}ca} + \frac{1}{1 + \log_{c}ab} = ?$
	$1 + \log_{a}bc$ $1 + \log_{b}ca$ $1 + \log_{c}ab$
	M – I
	Let, a = 2, b = 4, c = 8
	1 1 1
	$=\frac{1}{1+\log_{2}^{32}}+\frac{1}{1+\log_{4}^{16}}+\frac{1}{1+\log_{8}^{8}}$
	$=\frac{1}{1+5\log_2^2}+\frac{1}{1+2\log_4^4}+\frac{1}{1+1}$
	$=\frac{1}{1+5} + \frac{1}{1+2} + \frac{1}{2}$
	$=\frac{1}{6} + \frac{1}{3} + \frac{1}{2}$
	$=\frac{1+2+3}{6}$
	$=\frac{6}{6}$
	M-II
	1 1 1 1 9 9
	$\frac{1}{\log_{a}^{a} + \log_{a}^{bc}} + \frac{1}{\log_{b}^{b} + \log_{b}^{ac}} + \frac{1}{\log_{c}^{c} + \log_{a}^{ab}}$
	$\log_{a} + \log_{a} - \log_{b} + \log_{b} - \log_{c} + \log_{a}$ $= \frac{1}{\log_{a} abc} + \frac{1}{\log_{b} abc} + \log_{c} abc$ $= \log_{a} \frac{abc}{a} + \log_{b} \frac{abc}{b} + \log_{c} \frac{abc}{c}$ $= \log_{abc} a + \log_{abc} b + \log_{abc} c$
	Aden
	$= \log_{a}^{abc} + \log_{b}^{abc} + \log_{c}^{abc}$
	$= \log_{abc} a + \log_{abc} b + \log_{abc} c$
	= log _{abc} abc = 1
	52. $\log_{10} \log_{10} \log_{$
	$\frac{y - z}{y - z} = \frac{y - z}{z - x} = \frac{y - z}{x - y} = \frac{y - z}{x - y}$
	log a = k (y - z)
	$\log b = k (z - x)$
	$\log c = k (x - y)$
	log a + log b + log c = 0
	log abc = 0 = log 1
	$\Box abc = 1$
	Hence, x, y, z are in cyclic order, 🛛 their sums is 0
	M-II
	$\log_{10} abc = 0$
	$10^{\circ} = abc = 1$
_	

a V	dranda Enterprise
53.	$a^4 - bc = ?$
	1. 1 1.
	$\frac{1}{2}\log a = \frac{1}{3}\log b = \frac{1}{5}\log c = k$
	$\log_{10}a = 2k$; $\log_{10}b = 3k$; $\log_{10}c = 5k$
	10 ^{2k} = a ;10 ^{3k} = b ;10 ^{5k} = c
	a ⁴ = 10 ^{8k} ;
	10 ^{8k} - 10 ^{3k} × 10 ^{5k}
	10 ^{8k} - 10 ^{8k}
	= 0
54.	
	$\frac{1}{4}\log_2 a = \frac{1}{6}\log_2 b = \frac{-1}{24}\log_2 c = k \qquad a^3 b^2 c = ?$
	$\log_2 a = 4k$; $\log_2 b = 6k$; $\log_2 c = -24k$
	$2^{4k} = a; 2^{6k} = b; 2^{-24k} = c$
	$a^{3} = (2^{4k})^{3} = 2^{12k}$; $b^{2} = (2^{6k})^{2} = 2^{12k}$
	$\therefore a^{3}b^{2}c = 2^{12k} 2^{12k} 2^{-24k}$
	= 2 ^{24k-24k}
	$= 2^{\circ} = 1$ 1 + 1 + 1 = + 1 - z = ? 00
	Senteri
55.	log _a t log _b t log _c t log _c t
	$\log_t a + \log_t b + \log_t c = \log_t z$
	log _t αbc = log _t z
	abc = z
56.	$L = 1 + \log_{\alpha}bc$
	$M = 1 + \log_{b} ac$
	$M = 1 + \log_{c} ab$
	M- I
	Take, a = 2 ; b = 2 ² ; c = 2 ³ = 8
	$L = 1 + \log_2^{32} = 1 + 5 \log_2^{2} = 6$
	$M = 1 + \log_4^{16} = 1 + 2 = 3$
	$N = 1 + \log_8^8 = 1 + 1 = 2$
	$=\frac{1}{-+}$, $\frac{1}{-+}$, $\frac{1}{}$
	$= \frac{1}{L} + \frac{1}{M} + \frac{1}{N} + \frac{1}{N}$

J.K. SHAH [®] CA FOUNDATION - MATHEMATICS						
CLASSES a Veranda Enterprise						
1 1 1 .						
$=\frac{1}{6}+\frac{1}{3}+\frac{1}{2}-1$						
1+2+3						
$=\frac{1+2+3}{6}-1$						
= 1 - 1 = 0						
M- II						
Let a = b = c						
$L = 1 + \log_{\alpha}bc = 1 + \log_{\alpha}\alpha^2 = 1 + 2 = 3$						
M = 3 ; N = 3.						
$= \frac{1}{L} + \frac{1}{M} + \frac{1}{N} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} - 1 = 1 - 1 = 0$						
57. $(4.8)^{\times} = (0.48)^{\vee} = 1,000$ $\frac{1}{x} + \frac{1}{y} = ?$	B					
$(4.8)^{\times} = (0.48)^{\vee} = (10)^{3}$						
$(4.8)^{\times} = 10^3$; $(0.48)^{\circ} = 10^3$	19					
3 3						
$4.8 = 10^{\frac{1}{x}}$; 0.48 = $10^{\frac{1}{y}}$	orise					
S Enter						
$0.48 \times 10 = 10^{\frac{1}{v}} 10$						
$0.48 \times 10 = 10^{\circ} \ 10$ $4.8 = 10^{\frac{3}{\gamma} + 1}$						
3 3 1						
$\therefore 10^{\frac{3}{\gamma}} = 10^{\frac{3}{\gamma}+1}$						
$\therefore \frac{3}{x} = \frac{3}{y} + 1$						
xy						
$\therefore \frac{3}{x} - \frac{3}{y} = 1$						
$= 3\left(\frac{1}{x} - \frac{1}{y}\right) = 1$						
$=\frac{1}{x}-\frac{1}{y}=\frac{1}{3}$						
хур						

J.K. SHAH CLASSES a Veranda Enterprise
a Veranda Enterprise
58. $x^{2a-3}y^{2a} = x^{6-a}y^{5a}$ $a \log\left(\frac{x}{y}\right) = 3 \log^{x}$
$\frac{x^{2a-3}}{x^{6-a}} = \frac{y^{5a}}{y^{2a}}$
x^{6-a} y^{2a}
$x^{2a-3-6} = y^{3a}$
$x^{30-9}y^{3a}$
X ^{3a} 3a
$\frac{x^{3a}}{x^9} = y^{3a}$
$\frac{x^{3a}}{y^{3a}} = x^9$
$\overline{y^{3a}} = X^{3a}$
$\left(\mathbf{X}\right)^{3a}_{a}$
$\frac{y}{\left(\frac{x}{y}\right)^{3a}} = x^{9}$
6 2/9
 S Enterprise
 9 9 mise
 Senterp
Ad En
 L'ACONCE
 a veranda Er

		S	ELF ASSES	SSMENT TEST	1	
				tion and Mix		
				tion, 20 Marks		
1.	The ratio of A	A to B is 4	: 5 and that	of C to B is 3 : 2. If	f A = 800, C = ?	
	a) 1000		b) 1200	c) 1500	d) 2000	
2.	Three numbe	rs A, B an	nd C are in the	e ratio 1 / 2 : 2 / 3 :	: 3 / 4. The differen	ce between
	the greatest	and the s	mallest num	ber is 36. Find A.		
	a) 60		b) 72	c) 84	d) None of th	ne above
3.	Ratio of land	and wat	er on earth is	1:2. In northern	hemisphere, the ro	itio is 2 : 3.
	What is the r	atio in th	e southern he	emisphere?	B	
	a) 3:11	b)	2:11	c) 4:11	d) 5:11	
4.	The ratio of	copper a	nd zinc in a (63 kg alloy is 4:	3. Some amount o	f copper is
	extracted from	m the allo	by and the rat	io becomes 10 : 9. H	How much copper is	extracted?
	a) 6 kg	b)	8 kg	c) 12 kg	d) 10 kg	
				9 Enter		
 5.	A bag contair	ns Rs. 55 i	n the denomi	nations of Re 1, 50	paise and 25 paise	e coins. The
	coins are in t	he ratio 1	.: 2:3. Find	the number of 50 p	paise coins.	
	a) 15	b)	30	c) 40	d) 45	
6.	A person cov	er certain	distance by	train, bus and car	in the ratio 4 : 3 : 2	2. The ratio
 	of fare is 1 :	2:4 per	km. The tot	al expenditure as	fare is Rs. 720. Fin	d the total
	expenditure o	as fare or	ı train.			
	a) Rs. 140		b) Rs. 150	c) Rs. 160	d) Rs. 170)
7.					12 : 9 respectively	
				their incomes. If t	the sum of their inc	come is Rs.
	15,300; find	B's salary				
	a) Rs. 4800		b) Rs. 5000	c) Rs. 490	00 d) Rs. 5	100

J . C L a V	ASSES Granda Enterprise		CA F	OUNDATION - MATHEMATICS
8.	One year ago, the	ratio between A and	B salary was 3 : 5. 1	The ratio of their individual
				respectively. If their total
		sent year is Rs. 4300		
	a) Rs. 1200	b) Rs. 1800	c) Rs. 1600	d) Can't be determined
9.	The income of A a	nd B is in the ratio 5 :	3. The expenses of	A, B and C are in the ratio
	8 : 5 : 2. If C spen	ds Rs. 2000 and B sa	ves Rs. 700, then h	ow much did A saves?
	a) Rs. 500	b) Rs. 1500	c) Rs. 1000	d) Rs. 250
10.	The ratio of total	amount distributed ir	n all the males and	females as salary is 6 : 5.
	The ratio of salary	y of each male and fe	emale is 2 : 3. Find	the ratio of the number of
	male and female.			
	α) 5 : 9	b) 5 : 7	c) 9:5 🛞	d) 7 : 5
11.	Rs. 56000 is to be	divided among A, B,	C and D in such a v	way that the ratio of share
	of A : B is 1 : 2, B	: C is 3 : 1 and C : D	is 2 : 3. Find the su	m of share of A & C and B
	& C.	C		2.
	a) Rs. 24000, Rs.	. 30000	b) Rs. 20000, R	s. 32000
	c) Rs. 24000, Rs.	. 32000	d) Rs. 20000, R	s. 30000
			d L	
12.	A, B and C works	on a project for 30,	50 and 60 days res	spectively. The ratio of the
	salary of each da	y is 4 : 3 : 2 respecti	vely. If the total ar	mount received by A is Rs.
	14,400, find total	amount received by	В.	
	a) Rs. 18000	b) Rs. 19000	c) Rs. 18500	d) Rs. 19500
13.	Two numbers are	in the ratio 4 : 5.	If each number is	reduced by 25, the ratio
	becomes 3 : 4. Fin	id the second numbe	r.	
	a) 120	b) 130	c) 125	d) 135
14.				ts weight. A person broke
	down the gold in	the ratio of 3 : 2 : 1 c	and faces a loss of	Rs. 46,200. Find the initial
	price of the gold.			
	a) Rs. 75,200	b) Rs. 75,400	c) Rs. 75,300	d) Rs. 75,600

a Vergoda Enterprise 15. Rs. 78,000 is distributed among A, B and C such that the share of A = 3 / 4 share of B and share of B = 2 / 3 of the share of C. What is the difference between the shares of B and C? c) Rs. 11000 a) Rs. 9000 b) Rs. 10000 d) Rs. 12000 16. A dog chases a rabbit. The dog takes 6 leaps for every 7 leaps of the rabbit. The rabbit takes 6 leaps for every 5 leaps of the dog. What is the ratio of speed of dog and rabbit? a) 36 : 35 b) 36 : 40 c) 35 : 36 d) None of the above 17. A mixture contains milk and water in the ratio of 4 : 3 respectively. If 6 litres of water is added to this mixture, the respective ratio of water and milk becomes 7 : 8. What is the quantity of milk in the original mixture? a) 96 litres d) 48 litres b) 84 litres c) 36 litres 18. There are X members in a club, whose average age is 26 years. 3 more persons join them at the 35th Annual General Meeting, and thus the average age of members now increases by 1 year. If the average age of 3 new members joining at the 35th AGM is 29 years, find X. randoc) 8 d) None of the above a) 6 b) 7 19. If the ratio of volume of two cubes with Amit and Ajay is 125 : 8, then find the ratio of the total surface area of the cubes with Ajay and Amit. a) 25:4 b) 4:25 c) 5:2 d) 2:5 20. Mr. Azon divides \$ 51,300 among his four partners A, B, C and D such that 3 times A's share = 4 times B's share = 5 times C's share = 6 times D's share. What is the share of B? a) \$11,000 b) \$ 13,500 c) \$ 15,300 d) \$ 12,350

J.K. SHAH
CLASSES
a Veranda Enterprise

al	Veranda Enterprise
	EXPLANATORY
	ANSWERS
1.	A : B = 4 : 5
	B:C=2:3
	A : B : C = 8 : 10 : 15
	C = 800/8 * 15 = 1500
	Option C
2.	A:B:C=1/2:2/3:3/4=6:8:9
	9x - 6x = 3x = 36; x = 12
	A = 6 * 12 = 72
	Option B
	8
3.	Let total = 300. At earth, Land = 100, Water = 200
	In northern hemisphere = 150, Land = 150 * 2/5 = 60, Water = 90
	In southern hemisphere: Land = 100 - 60 = 40, Water = 200 - 90 = 110
	Ratio = 40 : 110 = 4 : 11
	Option C
	S Enteri
4.	Alloy: Copper = 4/7 * 63 = 36; Zinc = 3/7 * 63 = 27
	(36 - X) / 27 = 10 / 9
	36 - X = 30; X = 6
	Option A
5.	$X + (2X)^{1/2} + (3X)^{1/4} = 55$
	11X/4 = 55
	X = 20
	No. of 50 paise coins = 2X = 40
	Option C
6.	4x * 1 + 3x * 2 + 2x * 4 = 18x = 720; x = 40
	Fare expenditure on train = 4 * 40 = 160; Option C
7.	Expenditure = 100% - Savings%
	16x/80% + 12X/75% + 9X/60% = 20x + 16x + 15x = 51x = 15300; x = 300
	B's income = 16 * 300 = 4800; Option A

	K. SHAH ASSES Veranda Enterprise
 8.	One year ago = 3x, 5x
	Present salary = (3x)3/2 : (5x)5/4 = 18 : 25
	A's present salary = 18/43 * 4300 = 1800; Option B
9.	Income = 5x, 3x
	Expenses = 8y, 5y, 2y
	2y = 2000; y = 1000
	3x - 5000 = 700; x = 1900
	A saves = (5 * 1900) - (8 * 1000) = 9500 - 8000 = 1500
	Option B
10.	Person = Total salary/Salary per person
	M:F=6/2:5/3=9:5
	Option C
11.	A : B = 1 : 2
	B:C=3:1
	C: D = 2:3
	B: C = 3 : 1 C: D = 2 : 3 A : B : C : D = 6 : 12 : 4 : 6 = 3 : 6 : 2 : 3 A & C = $5/14 + 56000 = 20000$
	A A C = 3/14 - 30000 - 20000
	B & C = 8/14 * 56000 = 32000
	Option B
12.	30x(4) + 50x(3) + 60x(2) = 390x
	120× = 14400; × = 120
	B's amount = 150x = 150 * 120 = 18000
	Option A
13.	(4x - 25): (5x - 25) = 3 / 4
	16x - 100 = 15x - 75
	Or, x = 25
	Second number = 5 * 25 = 125
	Option C

	J.]	K. SHAH ASSES CA FOUNDATION - MA
		P = k.w ²
_	14.	New P = k (9 + 4 + 1) = $14k$
		Old P = k(6)2 = 36k
		Loss = 36k - 14k = 22k = 46200; k = 2100
		Old P = 36 * 2100 = 75600; Option D
	15.	A : B = 3 : 4
		B : C = 2 : 3
		A : B : C = 6 : 8 : 12
		6x + 8x + 12x = 78000; x = 78000 / 26 = 3000
		B – C difference = 4 * 3000 = 12000
		Option D
		®
	16.	1 leap of dog = 1 units
		6 leaps of dog = 6 units = 7 leaps of rabbit; 1 leap of rabbit = 6/7 units
		In a given time: 6 rabbit = 5 dog; 6(6/7) : 5 (1) = 36 : 35
		Speed of dog and rabbit = 35 : 36
		Speed of dog and rabbit = $35:36$ Option C
		S Enteri
	17.	3×/7 + 6 = 7/15 (× + 6)
		$5x/7 + 6 = 7/15 (x + 6)$ $45x + 630 = 49x + 294$ $4x = 336 \ x = 84$
		4x = 336, x = 84
		Milk in original mixture = 4/7 * 84 = 48
		Option D
	18.	Total age of 26 members = 26X
		Total age of 29 members = 26X + (29x3) = 27(X + 3)
		26X + 87 = 27X + 81
		X = 6
		Option A
	19.	Amit : Ajay
		V = 125 : 8

Side = 5 : 2

Total Surface = 25 : 4

Option B

Option B				
			®	
			9	
	<u> </u>		<u>e</u>	
		S Enterpr	190	
		S Enteri		
		90		
	3			

al	Veranda E	nterprise						
			S	ELF ASSESSN	IENT TEST 2			
Surds, Indices & Logarithms								
		_		30 Question,	.			
1. The value of is: $30 + \sqrt{30 + \sqrt{30 + \dots + 1000}}$								
	a) 6	,	b)		c) 3	d) None of these		
2.	If 8× =	4 ^y , what is	the v	alue of K ^(3x - 2y) ?				
	a) K		b)	K2	c) 0	d) 1		
3.	If X =	log2log3log	₂ 512;	find the value of (X - 1)!			
	a) 1		b)	4	c) 6	d) 24		
4.	lf 2log	$\frac{4}{2} - \log \frac{x}{12} + \log \frac{x}{12}$	$g\frac{63}{160} =$	0 , find the value	of x.			
		3 10	160					
	a) 3		b)	4	c) 7 / 9	d) 9		
				6				
5.	If log	2 = 0.3010	3; the	n find the number	of digits in 2510			
	a) 13		b)	15 9	c) 14	d) 25		
				P de	3			
6.	Find t	ne value of	^{91/3} .9	^{1/9} .9 ^{1/27} .9 ^{1/81} .				
	a) 3		b)	9	c) 81	d) None of the above		
7.	If X =	cube root c	of 2, Y	$' = 6^{th} root of 3, Z$	= 9 th root of 4; the	en which of the following		
	is true	?						
	a) X	= Y = Z	b)	X > Y > Z	c) X < Y < Z	d) X = Y < Z		
8.	lf (AB)	^{1/2} = 6 and	A & E	3 are positive integ	jers, then which of	f the following could not		
	be a v	alue of C =	(A –	B)?				
	a) 0		b)	5	c) 8	d) 9		
9.	lf x = 3	3 + (8) ^{1/2} , th	nen wl	hat is the value of	x ⁴ + x ⁻⁴ ?			
	a) 11	.54	b)	1145	c) 1164	d) 1146		
10.	If a ^z =	b ^y = c ^x and	b ² = 0	ca, then find the v	alue of y(x + z).			
	a) 2		b)	2xz	c) ×z	d) None of these		
				72				

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	11.	If ^{lo}	$\log\left(\frac{a+b}{7}\right) = \frac{1}{2}(\log a)$	r+log	^{b)} , then which of t	he [·]	following is true	e?	
			a + b = 49				$a^{2} + b^{2} = 47ab$		
		c)	$a^2 - b^2 = 49ab$)	d)	Nc	one of these		
			1	3 100/	1728)				
	12.	Giv	$ren X = \frac{1}{6} \cdot \frac{1}{1+-1}$	og(0.3	$\frac{1728}{16) + \frac{1}{3}\log 8}$, find the	e vo	alue of (2X – 1).		
			1 4		.				
_		a)	4	b)	1	c)	0	d)	- 1
_	10	IF	6ab then the		x+3a $x+3b$	ic			
_	15.	11)	a+b	le vu	$\frac{1}{x-3a} + \frac{x+3b}{x-3b}$	15			
		a)	0	b)	1	c)	2	d)	None of the above
							®	•	
	14.	lf X	$\zeta = 3\sqrt{2} + 7\sqrt{8} + $	√27	+ 5√3. Find X.				
		a)	$17\sqrt{2} + \sqrt{3}$	b)	17√2 + 8√3				
		c)	15√2 + 8√3	d)	None of the abov	e	29		
			$\sqrt{x+4} + \sqrt{x-3}$	10	5		E ice		
	15.	Giv	$\frac{\sqrt{x+4}+\sqrt{x}}{\sqrt{x+4}-\sqrt{x-3}}$	10 = 1	5/2 . The value of x is	s:	2 roris		
_						Ę	nu		. – .
_		α)	1	b)	331/5	C)	263/20	d)	17/21
_	10	الح م	1	a	ib Vecor				
_	16.		1 : D = 3 : -1, TH		+b		- 3	4)	None of the above
_		u)	1	DJ	5	C)	- 3	u)	None of the above
	17.	lf ^{lo}	$\log \frac{12}{12} - \log \frac{7}{25} + \log \frac{10}{12}$	$\frac{91}{2} = x$, find the value of	×.			
			<u>13 25</u> 0		1	c)		d)	3
		1				,		•	
	18.		1 is equal to v	vhich	of the following?				
			X						
		α)	(x + 1)	b)	(x + 1)-1				
		c)	x(x + 1) ⁻¹	d)	None of the above	e			
		10.0	$b^{3}-b^{3}$ 13	<i>.</i>	a = a + b				
	19.	lf –	$\frac{b}{b^3+b^3}=\frac{15}{14}$; ther	n find	the value of $\frac{a+b}{a-b}$	•			
		c)	1	<u>م</u>	2		1 5	<i>ط</i> ا	None of the above
		u)	1	b)	۷	0	1.5	α)	None of the above

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

al	a Veranda Enterprise							
20.	0. If $(x + x^{-1}) = 3$, then the value of $(x^{6} + x^{-6})$ is							
	α)	927	b)	364	c)	414	d)	322
21.	Wh	ich of the follo	owing	g relations is true?				
	α)	$\sqrt{4} + \sqrt{3} < \sqrt{5}$	+ √2					
	b)	$\sqrt{4} + \sqrt{3} = \sqrt{5}$	+ √2					
	c)	$\sqrt{4} + \sqrt{3} > \sqrt{5}$	+ √2					
	d)	None of the a	bove	is true				
					2			
22.	The	e expression sir	mplif	ies to: $\frac{(y-1)(y-2)(y-2)}{(y-2)(y^2)}$	2 – 9 2 v	$\frac{9y+14}{4}$		
	α)	(y – 1)	b)	ies to: $\frac{(y-1)(y-2)(y)}{(y-7)(y^2-1)(y-7)}$	<i></i>	- 21		
	c)	(y – 2)	d)	(y - 7) ⁻¹				
				_				
23.	lf x	$=\frac{\sqrt{3}+1}{\sqrt{3}-1}$ and y	$=\frac{\sqrt{3}}{\sqrt{3}}$	$\frac{-1}{-1}$, then find the v	alu	e of $\frac{x^2 + xy + y^2}{x^2 - xy + y^2}$.		
		V3 1	V 3 1	1				
	α)	13/15	b)	15/13		29		
	c)	2/13	d)	11/13		V		
				1 3		4 ror15		
24.	Fin	d the value of	<u></u>	$-2\sqrt{30}$ $\sqrt{7-2\sqrt{10}}$	√8-	+ 4 \[\]		
					2)			
	α)	√6 + √2	b)	√6 + √5				
	c)	$\sqrt{5} + \sqrt{2}$	d)	None of the abov	e			
25.	If X	x = 3 log5 + 2 l	og4 ·	- log2, Find the va	lue	of (X + 3).		
	α)	0	b)	6	c)	3	d)	None of the above
26.	If lo	ogX = log1.5 +	log1	2, Find the value o	of X	/3.		
	α)	0	b)	6	c)	3	d)	None of the above
27.	Fin	d the value of		Log (X - 13) + 3 Lo	og2	= Log(3X + 1).		
	α)	21	b)	22	c)	20	d)	24
28.				the value of log (0.				
	α)	2.702	b)	- 0.0552	c)	2.2402	d)	- 2.689

J.K. SHAH C L A S S E S a Veranda Enterprise CA FOUNDATION - MATHEMATICS 29. $E = \frac{1}{\log_{xy}(xyz)} + \frac{1}{\log_{yz}(xyz)} + \frac{1}{\log_{zx}(xyz)}$. Find the value of (E - 3). b) 1 c) -1 d) None of the above a) 0 30. If $\log \frac{75}{35} + 2\log \frac{7}{5} - \log \frac{105}{x} - \log \frac{13}{25} = 0$ find the value of x. b) 45 a) 13 c) 50 d) 65 Ada Enterpris 76

		EXPLANATORY
		ANSWERS
	1.	30 = 6*5. If A = K(K +1) and you find "+" sign in it, answer is always (k + 1). Option A
	2.	8 [×] = 4 ^y
		3x = 2y
		(3x – 2y) = 0. K ^o = 1; Option D
_	3.	$X = \log_2 \log_3 \log_2 512$
		$= \log_2 \log_3 \log^2(2)^9$
		= log ₂ log ³ 9
		$= \log_2 \log_3(3)^2 $
		$= \log_2 2 = 1$
		(X – 1)! = 0! = 1; Option A
		6 2/9
	4.	$2\log \frac{4}{3} - \log \frac{x}{10} + \log \frac{63}{160} = 0$ $2\log \frac{4}{3} + \log \frac{63}{160} = \log \frac{x}{10}$ $\log \left(\frac{4^* 4^* 7^* 3^* 3}{3^* 3^* 4^* 4^* 10}\right) = \log \frac{7}{10} = \log \frac{x}{10}$ x = 7: Option C
_		$2\log\frac{4}{3} + \log\frac{63}{160} = \log\frac{x}{10}$
_		
_		$\log\left(\frac{4*4*7*3*3}{3*3*4*4*10}\right) = \log\frac{7}{10} = \log\frac{x}{10}$
_		
_		x = 7; Option C
_	-	N 2510
_	5.	$X = 25^{10}$
_		LogX = 10Log25 = 20Log5 = 20(1 - Log2) = 20(1 - 0.30103) = 13.97
_		Characteristics of LogX = 13
_		Thus number of digits in X = C + 1 = 13 + 1 = 14; Option C
_	6.	9 ^{1/3} .9 ^{1/9} .9 ^{1/27} .9 ^{1/81} .
	0.	$= 9^{1/3+1/9+1/27+1/81} = 9^{40/81} = 3^{80/81}$
_		
_		Option D
_	7.	$X = 2^{1/3} = 2^{6/18} = 64^{1/18}$
_		$Y = 3^{1/6} = 3^{3/18} = 27^{1/18}$
		$Z = 4^{1/9} = 4^{2/18} = 16^{1/18}$
		X > Y > Z. Option B
		77

J.K. SHAH CLASSES a Veranda Enterprise

CA FOUNDATION - MATHEMATICS

8. AB = 36. Possible pairs (1, 36) (2, 18) (3, 12) (4, 9) (6, 6) C = |A - B| = 35, 16, 9, 5, 0Option C 9. $X = 3 + \sqrt{8}$ $X^{-1} = (3 - \sqrt{8})/(9 - 8) = 3 - \sqrt{8}$ $X + X^{-1} = 6$ $X^2 + X^{-2} = 36 - 2 = 34$ $X^4 + X^{-4} = 34^2 - 2 = 1156 - 2 = 1154$ Option A 10. $A^z = B^y = C^x = K$ $K^{2/y} = K^{1/z+1/x}$ 2xz = y(x + z); Option B $11. \quad \log\left(\frac{a+b}{7}\right) = \frac{1}{2}(\log a + \log b)$ 2ab = 49ab; Option B $12. \quad X = \frac{1}{6} \cdot \frac{3 \log(1728)}{1 + \frac{1}{2} \log(0.36) + \frac{1}{3} \log 8}$ $\frac{X = 1}{6} \cdot \sqrt{\frac{3 \log(1728)}{1 + \frac{1}{2} \log(0.36)}}$ $=\frac{1}{6}\sqrt{9} = \frac{1}{6} \times 3 = \frac{1}{2}$ $\therefore x = \frac{1}{2}$ $\therefore 2x = 1$ $\therefore 2x - 1 = 0$ Option C

	J.K. SHAH CLASSES
	a Veranda Enterprise
	13. $6ab \times 2b \times + 3a \times a + 3b$
	$\frac{13.}{x = \frac{6ab}{a+b}; \frac{x}{3a} = \frac{2b}{a+b}; \frac{x+3a}{x-3a} = \frac{a+3b}{b-a}}$
	$x = \frac{6ab}{a+b}; \frac{x}{3b} = \frac{2a}{a+b}; \frac{x+3b}{x-3b} = \frac{3a+b}{a-b}$
	$\frac{x+3a}{x-3a} + \frac{x+3b}{x-3b} = \frac{a+3b}{b-a} + \frac{3a+b}{a-b} = \frac{-a-3b+3a+b}{(a-b)} = \frac{2a-2b}{a-b} = 2$
	Option C
	14. $3\sqrt{2} + 7\sqrt{8} + \sqrt{27} + 5\sqrt{3} = 3\sqrt{2} + 14\sqrt{2} + 3\sqrt{3} + 5\sqrt{3} = 17\sqrt{2} + 8\sqrt{3}$
	Option B
	$15. \qquad \sqrt{x+4} + \sqrt{x-10} = 5$
	$\frac{\sqrt{x+4}-\sqrt{x-10}}{2}$
	$\frac{2\sqrt{x+4}}{2\sqrt{x-10}} = \frac{5+2}{5-2} = \frac{7}{3}$
	$\frac{x+4}{x-10} = \frac{49}{9}; \frac{2x-6}{14} = \frac{58}{40}; \frac{x-3}{7} = \frac{29}{20}$
	20x - 60 = 203; x = 263/20. Option C
	16. $a:b = 3:-1 \text{ find } \frac{ab}{a+b}$
	a & b = $\frac{ab}{(a+b)}$, find 3 & (& -1)
	28.1 - 3(-1) - 3
	$3 \& -1 = \frac{3(-1)}{3-1} = \frac{-3}{2}$
	Then, $3 \& (3 \& -1) = \frac{(3)\left(\frac{-3}{2}\right)}{3 - \left(\frac{3}{2}\right)} = \frac{\frac{-9}{2}}{\frac{3}{2}} = -3$
	$3-\left(\frac{1}{2}\right)$ \overline{z}
	12 7 91 (2*2*3 5*5 13*7)
	17. $\log \frac{12}{13} - \log \frac{7}{25} + \log \frac{91}{3} = \log \left(\frac{2^* 2^* 3}{13} x \frac{5^* 5}{7} x \frac{13^* 7}{3} \right) = \log 100$
	x = log100 = 2. Option C
	1 v .
	$\frac{1}{18. \frac{1}{1+\frac{1}{x}}} = \frac{x}{x+1} = x (x+1)^{-1}$
	$\frac{1+x}{x}$
	Ontion C
	Option C
	$a^3 - b^3 = 13 - 2a^3 - 27 - 2 - 2 - 4 - 4$
	19. $\frac{a^3-b^3}{a^3+b^3} = \frac{13}{14}; \frac{2a^3}{-2b^3} = \frac{27}{-1}; \frac{a^3}{b^3} = \frac{27}{1}; \frac{a}{b} = \frac{3}{1}; \frac{a+b}{a-b} = \frac{4}{2} = 2$
	Option B
-	

.11	K. SHAH [®]
	ASSES
 	$x + x^{-1} = 3$
 20.	$x + x^{-2} = 9 - 2 = 7$
	$x^3 + x^{-3} = (3)(7-1) = 18$
	x ⁶ + x ⁻⁶ = 18 ² - 2 = 324 - 2 = 322. Option D
 21	$2 + \sqrt{3} = 2 + 1.732 = 3.732$
 21.	$2 + \sqrt{3} = 2 + 1.732 = 3.732$ $\sqrt{5} + \sqrt{2} = 2.23 + 1.41 = 3.64$
 	Option C
 22.	$\frac{(y-1)(y-2)(y^2-9y+14)}{(y-7)(y^2-3y+2)} = \frac{(y-1)(y-2)(y-7)}{(y-7)(y-2)(y-1)} = (y-2)$
 22.	
 	Option C
 22	
 25.	(x + y) = 8/2 = 4; xy = 1
 	$\frac{x^{2} + xy + y^{2}}{x^{2} - xy + y^{2}} = \frac{(x + y)^{2} - xy}{(x + y)^{2} - 3xy} = \frac{16 - 1}{16 - 3} = \frac{15}{13}$
 	Online D
	$\frac{1}{\sqrt{11-2\sqrt{30}}} - \frac{3}{\sqrt{7-2\sqrt{10}}} - \frac{4}{\sqrt{8+4\sqrt{3}}}$
 24.	1 3 4 6 6
 27.	$\sqrt{11-2\sqrt{30}} - \sqrt{7-2\sqrt{10}} - \sqrt{8+4\sqrt{3}}$
 	$\sqrt{6} - \sqrt{5} - \sqrt{2} - \sqrt{2} + \sqrt{2}$
 	$= \frac{1}{\sqrt{6} - \sqrt{5}} - \frac{3}{\sqrt{5} - \sqrt{2}} - \frac{4}{\sqrt{6} + \sqrt{2}}$ $= \frac{\sqrt{6} + \sqrt{5}}{6 - 5} - \frac{3(\sqrt{5} + \sqrt{2})}{(5 - 2)} - \frac{4(\sqrt{6} - \sqrt{2})}{(6 - 2)}$
 	$= \sqrt{6} + \sqrt{5} - \sqrt{2} - \sqrt{6} + \sqrt{2} = 0$
 	Option D
	·
25.	X = Log(5*5*5*16/2) = Log(1000) = 3
	(X + 3) = 3 + 3 = 6. Option B
26.	LogX = Log(1.5*12) = Log18.
	X = 18. X/3 = 18/3 = 6. Option B
27.	(X - 13).8 = (3X + 1)
	8X - 104 = 3x + 1; 5X = 105; X = 21. Option A

TK SUAU®	
J.K. SHAH CLASSES a Veranda Enterprise	CA FOUNDATION - MATHEMATICS
a veranda Enterprise $\left(81 \right)^2$ $\left(27 \right)^{2/3}$.	
28. $\log\left(\frac{81}{100}\right)^2 * \log\left(\frac{27}{10}\right)^{2/3} \div \log\left(\frac{27}{10}\right)^{2/3}$	<u>,9</u>
$=(8\log 3-4)(2\log 3-2/3)*$	(1/2log3)
= (3.8168 - 4) (0.9542	-0.6667)(1/0.9542) = (-0.1832)(0.2875)/(0.9542)
= - 0.0552	
Option B	
1 1	$1 \log xy \log yz \log zx \log z$
29. $E = \overline{\log_{xy}(xyz)}^+ \overline{\log_{yz}(xyz)}^+$	$\frac{1}{\log_{zx}(xyz)} = \frac{\log xy}{\log xyz} + \frac{\log yz}{\log xyz} + \frac{\log zx}{\log xyz} = \log_{xyz}(xyz)^2 = 2$
(E - 3) = (2 - 3) = - 1	
Option C	
30. $\log \frac{75}{35} + 2\log \frac{7}{5} - \log \frac{105}{x} - \log \frac{105}{x}$	$g\frac{13}{25} = 0$
$\log\left(\frac{75*49*25}{35*25*13}\right) = \log\frac{105}{13} =$	
$\log\left(\frac{100}{35*25*13}\right)^{-100}$	
x = 13	
Option A	0/9
	S Enterprise
	S S rorise
	9 enteri
	, drange
0	
	81

EQUATIONS

PART A - THEORY

Equations

An equation is defined as a mathematical statement of equality.

(5	27	N -
)
્પા	eie .	/

Types of Equations

- a) Linear equation in one variable.
- b) Linear simultaneous equations in 2 or 3 variables.
- c) Quadratic equations.
- d) Cubic equations.
- e) Bi-quadratic equations.
- f) Exponential equations.

Quadratic Equations

- A quadratic equation is defined as polynomial equation of degree 2.
- A quadratic equation can be expressed in the following general form:

$$ax^{2} + bx + c = 0; (a \neq 0)$$

• A quadratic equation can also be expressed in the factor form as follows:

$$a(x-\alpha)(x-\beta) = 0$$

Here, α and β are the roots or solutions of quadratic equations.

• The general solution of the quadratic equation can be obtained as follows:

$$\alpha = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } \beta = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Sum of roots =
$$\alpha + \beta = -\frac{b}{a}$$

Product of roots =
$$\alpha\beta = \frac{c}{a}$$

Structure of Quadratic Equations

If Sum (S) (α + β) and Product (P) ($\alpha\beta$) of the roots are known, then the quadratic equation is

 $x^2 - Sx + P = 0$

Sign of Roots of a Quadratic Equation

- When c=0, one root of the equation must be 0.
- When b and c are 0, then both the roots must be 0.
- If a, b, c all are of same sign, both roots are negative.
- If a and c are of same sign, opposite to that of b, then both the roots will be positive.

CA FOUNDATION - MATHEMATICS

• If a and c are of opposite signs, one root is positive and another root is negative.

Nature of Roots

The expression " $b^2 - 4ac$ " is called the "Discriminant (D)" of the quadratic equation.

- When D > 0, Roots are real and distinct.
- When D = 0, Roots are real and equal.
- When D < 0, Roots are imaginary.
- When $D \ge 0$, Roots are real.
- When D is a perfect square, Roots are real, rational and unequal.
- When D is not a perfect square, Roots are real, irrational and unequal.
- If roots are equal use $b^2 = 4ac$.
- If roots are reciprocal of each other, use a = c
- If roots are equal but of opposite sign, use b = 0
- If roots are reciprocal but opposite in sign, use c = -a

Note

• Irrational roots will always appear in conjugate pairs.

$$\alpha = (a - \sqrt{b})$$
 and $\beta = (a + \sqrt{b})$

randa

• Imaginary roots will always appear in conjugate pairs

$$\alpha = (a - ib)$$
 and $\beta = (a + ib)$

Cubic Equations

• A cubic equation is a polynomial equation of degree 3, and the general form is represented as follows:

(0)

$$ax^{3} + bx^{2} + cx + d = 0$$
: $(a \neq a)$

• The factor form of a cubic equation is given as follows:

$$a(x-\alpha)(x-\beta)(x-\gamma) = 0$$

Here, $\alpha,\beta,$ and γ are the roots or solutions of the cubic equation.

- Sum of roots = $\alpha + \beta + \gamma = -b/a$
- Product of the roots = $\alpha\beta\gamma$ = -d/a

Bi-Quadratic Equations

• A bi-quadratic equation is a polynomial of degree 4, and the general form is represented as follows:

$$ax^4 + bx^3 + cx^2 + dx + e = 0; (a \neq 0)$$

• The factor form of a cubic equation is given as follows:

$$(x-\alpha)(x-\beta)(x-\gamma)(x-\delta) = 0$$

S Enterprise

Here, α , β , γ and δ are the roots or solutions of the bi-quadratic equation.

- Sum of roots = $\alpha + \beta + \gamma + \delta = -b/a$
- Product of the roots = $\alpha\beta\gamma\delta$ = e/a

PART B - CLASSWORK

Cho	hoose the most appropriate option (a), (b), (c) or (d). . The sum of two numbers is 52 and their difference is 2. The numbers are									
1.	The	sum of two numbe	ers is 52	and their differ	ence is 2. The	numbers are				
	α)	17 and 15	b)	12 and 10						
	c)	27 and 25	d)	none of these	2					
 2.	The	diagonal of a recto	angle is !	5 cm and one o	f its sides is 4	cm. Its area is				
	α)	20 sq.cm.	b)	12 sq.cm.						
	c)	10 sq.cm.	d)	none of these	2					
 					ß					
 3.				nat three times	the first part	exceeds one third of the				
 	seco	ond by 48. The part	s are.							
 	a)	(20, 36)	b)	(25, 31)	<u> </u>					
	c)	(24, 32)	d)	none of these	· Vice					
				9	orpris					
 4.						e subtracted from it the				
		ts in the resulting n			ne number is					
	α)	37	b) 7:							
	c)	75	ad) n	one of these nu	ımbers.					
 		6								
 5.		fourth part of a nu			part by 4. Th	e number is				
 	a)	84	b) 4							
 	c) 4	8	d) n	one of these						
	-		<u> </u>		C 1 +					
 6.						on. Ten years hence, the				
 			be twice	that of his son	. The present	ages of the father and				
 		son are.	L1 /	<u> </u>						
 	a)	(50, 20)		50, 20)						
 	c)	(55, 25)	a) n	one of these						
 7	TI - 1	product of the			au attant sul					
 7.					quotient whe	en the larger number is				
 		ded by the smaller			(60.20)	d) (00 (0)				
 	a) (16, 200)	b) (160,	20) C)	(60, 30)	d) (80, 40)				

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	al	∕dra∩da Enterprise								
	8.	One student is asl	ked to divide a half	f of a number by	6 and other half by 4 and the	n				
		to add the two qu	antities. Instead o	f doing so the st	udent divides the given numbe	er				
		by 5. If the answer is 4 short of the correct answer then the number was								
		a) 320	b) 400	c) 480	d) none of these.					
	9.	If a number of wh	nich the half is gre	ater than 1/5 tl	n of the number by 15 then th	е				
		number is								
		a) 50	b) 40	c) 80	d) none of these.					
_										
	10.	Monthly incomes	of two persons ar	e in the ratio 4	: 5 and their monthly expense	25				
		are in the ratio 7	: 9. If each saves ₹	50 per month f	ind their monthly incomes.					
		a) (500, 400)	b) (400, 500)	c) (300, 600)	d) (350, 550)					
					®					
	11.	The age of a pers	on is twice the sum	n of the ages of	his two sons and five years ag	0				
		his age was thrice	e the sum of their o	ages. Find his pr	esent age.					
		a) 60 years	b) 52 years	c) 51 years	d) 50 years					
			6	PE	P					
	12.	A number betwee	n 10 and 100 is fiv	e times the sum	of its digits. If 9 be added to	it				
		the digits are reve	ersed find the num	ber. cntet						
		a) 54	b) 53	c) 45	d) 55					
			10							
	13.	The wages of 8 m	en and 6 boys am	ount to ₹ 33. If	4 men earn ₹ 4.50 more than	5				
		boys determine th	ne wages of each n	nan and boy.						
		a) (₹ 1.50 <i>,</i> ₹ 3)	b) (₹ 3 <i>,</i> ₹ 1.50)	c) (₹ 2.50 <i>,</i> ₹	2) d) (₹ 2, ₹ 2.50)					
	14.	y is older than x b	oy 7 years 15 years	s back, x's age w	vas 3/4 of y's age. Their preser	nt				
		ages are:								
		a) (x=36, y=43)	b) (x=50,	y=43)						
		c) (x=43, y=50)	d) (x=40,	, y=47)						
	15.	The sum of the d	igits in a three dig	git number is 12	2. If the digits are reversed th	e				
		number is increas	ed by 495 but reve	ersing only of th	e ten's and unit digits increase	es				
		the number by 36	.The number is							
		a) 327	b) 372	c) 237	d) 273					
_										

J.K. SHAH[®] C.L.A.S.S.E.S a Veranda Enterprise

a۷	Veranda Enterprise										
16.	The demand and supply equations for a certain commodity are 4q + 7p = 17 and										
	$p = \frac{q}{4} + \frac{7}{2}$ respectively where p is the market price and q is the quantity then the										
	³ ⁴ equilibrium price and quantity are:										
	3	1	3								
	(a) 2, $\frac{3}{4}$	(b) $3, \frac{1}{2}$	(c) 5, $\frac{5}{5}$	(d) None of these.							
	-	L	5								
17.	The sum of two nu	mbers is 8 and the s	sum of their squares	s is 34. Taking one number							
	as x form an equat	tion in x and hence	find the numbers. T	he numbers are							
	a) (7, 10)	b) (4, 4)	c) (3 <i>,</i> 5)	d) (2, 6)							
18.	Five times of a posi	itive whole number	is 3 less than twice	the square of the number.							
	The number is										
	a) 3	b) 4	c) −3 🛞	d) 2							
19.	Two squares have	sides p cm and (p ·	+ 5) cms. The sum o	of their squares is 625 sq.							
	cm. The sides of th	e squares are		2							
	a) (10 cm, 30 cm)	b) (1	2 cm, 25 cm)	>							
	c) 15 cm, 20 cm)	d) ne	one of these	0							
		9	cnterr								
20.	Divide 50 into two	parts such that the	sum of their recipro	ocals is 1/12. The numbers							
	are	, digin									
	a) (24, 26)	b) (28, 22)	c) (27, 23)	d) (20, 30)							
21.	There are two con	secutive numbers s	uch that the differe	ence of their reciprocals is							
	1/240.The numbers	s are									
	a) (15, 16)	b) (17, 18)	c) (13, 14)	d) (12, 13)							
22.	The sum of two nu	mbers is 45 and the	e mean proportiona	l between them is 18. The							
	numbers are										
	a) (15, 30)	b) (32, 13)	c) (36, 9)	d) (25, 20)							
23.	The sides of an equ	uilateral triangle ar	e shortened by 12 ι	inits 13 units and 14 units							
	respectively and a	right angle triangle	is formed. The side	of the equilateral triangle							
	is										
	a) 17 units	b) 16 units	c) 15 units	d) 18 units							

PAST YEAR QUESTIONS

24.	Area and p	erimeter of rec	tangle is 6000 cm² and	d 340 cm length of re	ectangle is
	(a) 140	(b) 120	(c) 170	(d) 200	

25. If length of rectangle is 5 cm more than the breadth and if perimeter of rectangle is40 cm, length and breadth of rectangle will be

	,	J	
(a)	7.5 cm, 2.5 cm	(b)	10 cm, 5 cm
(c)	12.5 cm, 7.5 cm	(d)	15.5 cm, 10.5 cm

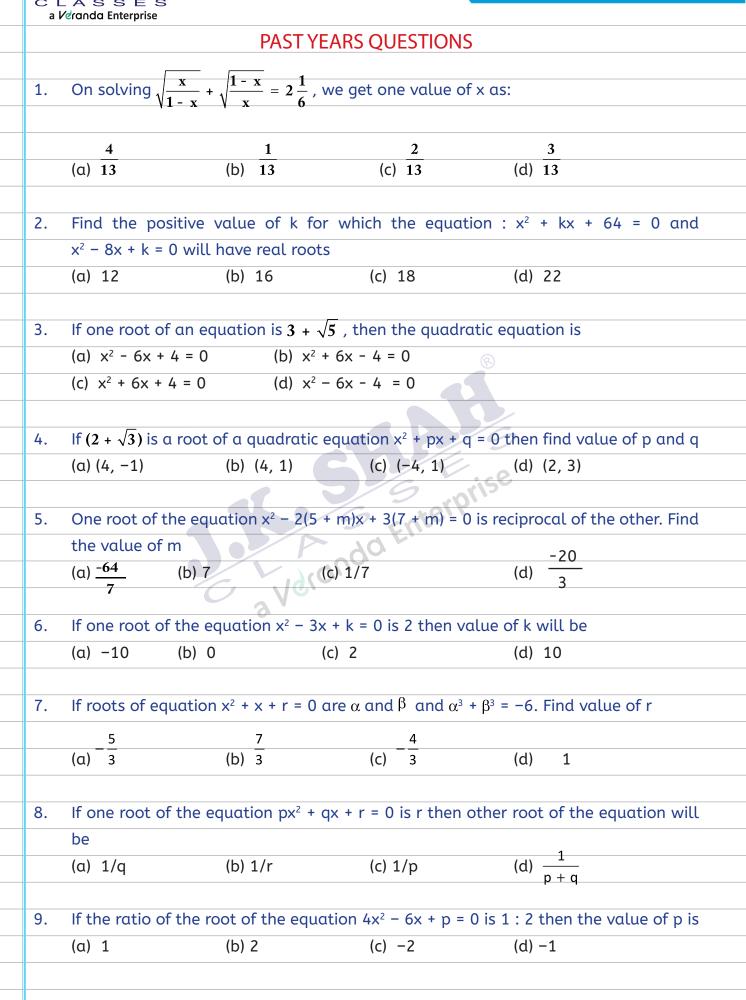
26. Number of students in each section of a school is 36. After admitting 12 new students, four new sections are started. If total number of students in each section now is 30, then number of section initially were

Ada Enterprise Veranda

(d) 18

(a) 6	(b) 10	(c) 14	

Hilling



QUADRATIC EQUATIONS

1.	Equation : $x^2 + x + 1 = 0$ roots are
	(a) Real and equal (b) Real and unequal
	(c) Imaginary (d) Real and rational
2.	For what value of 'c', the roots of the equation $2x^2 - 10x + c = 0$ are real and equal
	(a) 25/2 (b) 25/4 (c) 25/3 (d) none
3.	If '-4' is a root of the equation $x^2 + ax - 4 = 0$ and the equation $x^2 + ax + b = 0$ has
	equal roots, the value of 'a' & 'b' are
	(a) $a = 2, b = \frac{5}{4}$ (b) $a = 3, b = \frac{9}{4}$
	(c) $a = , b = \frac{5}{2}$ (d) none
4.	If the roots of equation $x^2 + (2k - 1)x + k^2 = 0$ are real, condition is
	(a) $k \ge 1$ (b) $k \le 4$
	(c) $k \ge \frac{1}{4}$ (d) $k \le \frac{1}{4}$
5.	If the equation $x^2 - (b + 4)x + 2b + 5 = 0$ has equal roots, then the values of 'b'
	(a) -2 (b) 2 (c) ± 2 (d) ± 1
6.	If α and β are roots of $x^2 + 2x + 1 = 0$, $\alpha^3 + \beta^3 =$
	(a) 2 (b) -2 (c) 4 (d) -4
7.	If p + q + r = 0 and p, q, r are rational nos. the roots of equation
	$(q + r - p)x^{2} + (r + p - q)x + (p + q - r) = 0$
	(a) real and irrational (b) real & equal
	(c) imaginary (d) real & rational
8.	If one root of the equation $x^2 - 8x + k = 0$ exceeds the other by 4, value of k is
	(a) $k = 10$ (b) $k = 11$ (c) $k = 9$ (d) $k = 12$
9.	If one root is double the other for the equation $ax^2 + bx + c = 0$, then
	(a) $b^2 = 4ac$ (b) $2b^2 = 9ac$ (c) $3b^2 = 10ac$ (d) $4b^2 = 9ac$

J.K. SHAH CLASSES a Veranda Enternrise

	randa Enterprise
10.	If roots of the equation $ax^2 + bx + c = 0$ are in the ratio $\frac{1}{m}$, then value of b^2/ac is
	(a) $\frac{(l+m)^2}{lm}$ (b) $\frac{l+m}{lm}$ (c) $\left(\frac{l-m}{lm}\right)^2$ (d) $\frac{l-m}{lm}$
	lm lm (lm) lm
 11.	If α , β are roots of equation $x^2 - 5x + 6 = 0$, $\alpha > \beta$, then equation with roots
	$\alpha + \beta$, $\alpha - \beta$ as
	(a) $x^2 - 6x + 5 = 0$ (b) $2x^2 - 6x + 5 = 0$
	(c) $2x^2 - 5x + 6 = 0$ (d) $x^2 - 5x + 6 = 0$
12.	The values of 4 + $\frac{1}{4+1}{4+\frac{1}{4}1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4+\frac{1}{4}$
	$\frac{41}{4+\frac{1}{4+\dots\infty}}$
	(a) $1 \pm \sqrt{2}$ (b) $2 + \sqrt{5}$ (c) $2 \pm \sqrt{5}$ (d) None of these
	If the sum of the roots of the quadratyic equation $ax^2 + bx + c = 0$ is equal to the
	sum of the squares of their reciprocals then $\frac{b^2}{ac} + \frac{bc}{a^2}$ is equal to
	a) 2 b) -2 c) 1 d) -1
14.	If p ≠ q and p ² = 5p - 3 and q ² = 5q - 3 the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is
	(a) $x^2 - 19x + 3 = 0$ (b) $3x^2 - 19x - 3 = 0$
	(c) $3x^2 - 19x + 3 = 0$ (d) $3x^2 + 19x + 3 = 0$
	, diana
 15.	If one root of $5x^2 + 13x + p = 0$ be reciprocal of the other then the value of p is
	a) -5 b) 5 c) 1/5 d) -1/5
	90

J.K. SHAH C L A S S E S a Veranda Enterprise

 av	reranac	a Enterprise				
10.	lf p	and q are the I	root of equation x^2 ·	- bx + c = 0 then w	hat is the equation w	vhose
	root	:s are (pq + p +	q) and (pq - p - q)			
 	(a)	$x^2 - 2cx + c^2 -$	b ² = 0	(b) $x^2 - 2cx + c^2 + c^2$	b ² = 0	
	(c)	$cx^{2} - 2(a + c)x$	$+ c^2 = 0$	(d) $x^2 + 2bx - (c^2 + c^2)$	$(-b^2) = 0$	
					ე	02
11.	lfα,	β are the roots	of the quadratic eq	$ation 2x^2 - 4x = 1$	then the value of $\frac{\alpha^2}{\beta}$	$-+\frac{\beta^2}{\alpha}$
		-11	(b) 22		(d) 11	U.
12.	lf di	fference betwe	en the roots of the e	equation x ² - kx + 8	B = 0 is 4 then the val	ue of
	k is					
	(a)	0	(b) ±4	(c) ±8√3	(d) ±4√3	
				®		
					>	
					3	
			2			
 				9 intis	6	
				2 - sterp		
				d Elle		
		C		Senterpris		
			SAG			
 			3			
			02			

Hiller

CUBIC EQUATION

 				-				
Cho	ose th	e most appropria	te optic	on (a), (b), (c) o	r (d)			
1.	The	solution of the	cubic e	equation x ³ -	6x ² +11	x-6=0 is give	en by the triplet:	
	a) -	-1, 1 -2	b) 1,	2, 3	c) -2,	2, 3	d) 0, 4, -5	
2.	The	cubic equation	x ³ +2x ²	-x-2=0 has	3 roots	namely.		
	α)	1, -1, 2	b) -1	, 1, -2	c)-1,	2, -2	d) 1, 2, 2	
3.	x,x-	4,x+5 are the fo	actors	of the left-h	and sid	le of the equ	lation.	
	α)	$x^{3} + 2x^{2} - x - 2 = 0$)		b)	x ³ +x ² -20x=	0	
	c)	x ³ -3x ² -4x+12=	=0		d)	x ³ -6x ² +11x	-6=0	
4.	The	equation 3x ³ + !	$5x^2=3x$	+5 has got 3	roots o	and hence th	ne factors of the left-ha	nd
	side	of the equation	n 3x ³ +5	5x ² -3x-5=0 c	are		2	
	α)	x-1,x-2,x-5/3		6	b)	x-1,x+1,	3x +5	
	c)	x+1,x-1,3x-5			d)	x-1,x+1,x-	2	
				5/9	2 61	iteri		
5.		roots of the eq						
	a) (-	-3,-9,-1)	b) (3,	-9,-1)	d) (3,9	9,1)	e) (-3,9,1)	
			2					
 6.	lf 4x	$x^{3}+8x^{2}-x-2=0$ th			-			
	a) 4	, -1, 2	b) -4	, 2, 1	c) 2, -	-4, -1	d) None of these	
7.	The	rational root o	f the e	quation 2x ³ -	x ² -4x+	2=0 is		
				1				
	a)	$\frac{1}{2}$	b)	- 1/2		c) 2	d) -2	
				BI QUADRA				
 1.	Solv	ving equation 6	× ⁴ + 11	$x^3 - 9x^2 - 11$	x + 6 =	0 following	roots are obtained	
 		$-11 \pm \sqrt{37}$			1	2, $\frac{-1 \pm \sqrt{37}}{6}$		
 	a)	$\frac{1}{2}$, -2, $\frac{-1\pm\sqrt{37}}{6}$		b)	2 '	-, 6		
		$\frac{1}{2}$, -2, $\frac{5}{6}$, $\frac{-7}{6}$						
 	c)	2, -, 6, 6		d)	None			

J.K. SHAH CLASSES a Veranda Enterprise

al	/dranda Ente	rprise									
2.	Find the	roots of the	equation: 2x	4 – 9x	$x^3 + 14x^2 -$	- 9x + 2 =	0				
	a) 1, 2, ²	/2	b) - 1, 2, ½		c) - 2, 1,	1/2	d) - ½, 1, 2	2			
CONSISTENCY OF EQUATION											
1.	The syst	em of equati	on 5x – 4y =	7 and	d 3x – 2y	= 15 have	2				
	(a) uni	que solution		b)	infinite s	olution					
	(c) no	solution		d)	none						
2.		-	on 9x – 17y -			-	5 have				
		que Solution		b)	infinite S	olution					
	(c) no	solution		(d)	none						
						B					
3.			on 6x + 5y =	11 ar			1 have				
		que Solution		b)	infinite S	olution					
	(c) no	solution		(d)	none	0/9	2				
						V.e					
4.			on 4x + 7y =				25 have				
		que solution			infinite s	olution					
	(c) no	solution		d)	none						
				2/,-							
5.			ich the syster	n of e	quations	: 7x - y =5	; 21x - 3y =	k have infin	ite		
	solution										
	(a) k =	4	(b) k = 15		(c)	k =3		(d) k=7			
	—										
6.			s of a and b f				-				
			e many solut	ions:		<u> </u>		a-1)y = 5b	-1		
		-7, b =3				a = 7, b	=3				
	(c) a :	= -7, b = -3			(d)	None					

1.	The solution of	the equation (p	o+2) (p-	-3)+(p+3) (p-4)=	p(2p-5) is		
	(a) 6	(b) 7		(c) 5	(d) none	of these	
			_				
2.	The equation ¹²	$\frac{2x+1}{4} = \frac{15x-1}{5} + \frac{2x+1}{3x+1}$	- <u>-</u> is	true for			
	(a) x=1 (b) x	= 2 (c) x =	5 (d)	x = 7			
		4 5	2				
3.	Solve for x and	$\mathbf{y}: \frac{4}{x} - \frac{5}{y} = \frac{x+y}{xy} +$	$-\frac{3}{10}$ and	d 3xy= 10 (y-x)			
	(a) (5,2)	(b) (-2,-5)		(c) (2,-5)	(d) (2,5)		
					8		
4.	The simultaned	ous equations 7:	≺-3y =	31, 9x-5y = 41	have solutions	given by	
	(a) (-4, -1)	(b) (-1, 4)		(c) (4, -1)	(d) (3, 7	·)	
	<u> </u>	72			9		
5.	$\frac{xy}{x+y} = 20, \frac{yz}{y+z} = 1$	40, $\frac{2x}{z+x} = 24$		PE	::60		
	(a) (120, 60, 3	30)	(b)	(60, 30, 120)	(1)		
	(c) (30, 120, 6	50)	(d)	(30, 60, 120)			
	<i>XV</i> 110 <i>VZ</i>	100 2%		90 -			
6.	$\frac{xy}{y-x} = 110, \frac{yz}{z-y} = 110$						
	(a) (12,11,1	0)	(b)	(10, 11, 12)			
	(c) (11, 10, 12	2)	(d)	(12, 10, 11)			
7.	If the roots of t		+ 8x -		al then value o	of m is	
	(a) - 3	(b) – 1		(c) 1	(d) – 2		
8.	If $2^{2x+3} - 3^2$. 2^x		lues of				
	(a) 0, 1	(b) 1,2		(c) 0 <i>,</i> 3	(d) 0, -	- 3	
9.			lation	(a+b-2c)x ² + (2a			
	a) x = 1	b) x = -1		c) x = 2	d) x = -	2	
10.		-		D exceeds the ot			n is
	a) m = 10	b) m = 11		c) m = 9	d)	m = 12	

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	/dranda Enterprise						
11.	The values of x in the equation						
	$7(x+2p)^2 + 5p^2 = 3$	35xp	+ 117p² are				
	(a) (4p, -3p)	(b)	(4p, 3p)	(c)(-4p, 3p)	(d) (–4p, –3p)		
			6x	(2011)			
12.	The solutions of t	he eo	$\frac{6x}{r+1} + \frac{6t}{r+1}$	$\frac{x+1}{r} = 13$ are			
	(a) (2, 3)	(b)	(3, -2)	(c) (-2, -3)	(d) (2, -3)		
				— 1 1 1	1		
13.	The satisfying val	ues o	of x for the equation	$\operatorname{pn} \frac{1}{x+p+q} = \frac{1}{x} + \frac{1}{p}$	$r + \frac{1}{q}$ are		
	a) (p, q)	b)	(–p, –q)	c) (p, –p)	d) (-p, q)		
14.	The values of x fo	or the	equation x ² + 9x ·	+ 18 = 6 – 4x are			
	a) (1, 12)	b)	(-1, -12)	c) (1, -12)	d) (-1, 12)		
				B			
15.	The values of x so	atisfy	ing the equation				
	$\sqrt{(2x^2+5x-2)}$ –	$\sqrt{(2x^2)}$	$x^{2} + 5x - 9) = 1$ are		¢		
 	(a) (2, -9/2)	(b)	(4, -9)	(c) (2, 9/2)	(d) (-2, 9/2)		
 			6				
 16.	The solution of th	ne eq	uation $3x^2 - 17x + 2$	4 = 0 are	()		
	(a) (2,3)	(b)	$\left(2,2\frac{2}{3}\right)$	(c) $(3, 2\frac{2}{3})$	(d) $(3, \frac{2}{3})$		
 	The solution of the (a) (2,3) The equation $\frac{3(3x)}{a}$ a) (1,3)	$c^{2}+15$		r ² +96			
 17.	The equation	6	$\frac{2}{7} + 2x^2 + 9 = \frac{2}{7}$	$\frac{7}{7} + 6$ has got	the solution as		
 	a) (1,3)	b)	(1/2, -1)	c) (1, -1)	d) (2, -1)		
 18.	Solving equation						
 	(a) a, b	(b)	a	(c) b	(d) None		
 4.0		2					
 19.	Solving equation						
	(a) 9,6	(D)	9, 15	(C) 15, 6	(d) None		
 20	$\frac{1}{16}x + \frac{b}{2} - \frac{a}{1} + \frac{b}{2}$	<u>т</u> .	washe of the state	· · · · · · ·			
 20.	$\frac{1}{1} \frac{1}{b} \frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$	the	a^2 b/ a^2	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$(d) = b^2$		
	(u) a, p ² / a	(D)	u-, D/u-	(c) α ² , b ² /α	(d) a, b ²		
 21	Solving oquation	2.2	1/y + 16 = 0 + y = -2	roots as			
 21.	Solving equation (a) <u>+</u> 1		14x + 16 = 0 we get 2 and $\frac{8}{3}$	(c) 0	(d) Nono		
 		(0)	- and 3		(d) None		

	K. SHAH				CA FOUNDATION	- MATHEMATICS	
	dranda Enterprise						
 22.	Solving equation						
	(a) ±4	(b)	± 2	(c) $4, \frac{2}{3}$	(d) None		
23.				•	wing roots are obt	ained	
	(a) $\frac{a-b}{b-c}$, 1	(b)	(a-b) (c-a),1	(c) $\frac{b-c}{a-b}$, 1	(d) None		
			-				
24.	Solving equation	$n 7 \sqrt{\frac{x}{1-x}}$	$\frac{1-x}{x} = 15$	following root	s are obtained		
	64 1		1 1	40 1	1 64		
	(a) $\frac{64}{113}, \frac{1}{2}$	(b)	$\frac{1}{50}, \frac{1}{65}$	(c) $\frac{49}{50}, \frac{1}{65}$	(d) $\frac{1}{50}, \frac{64}{65}$		
25.			•	+6=0 and α >	β then the equation	on with roots (
	$(\alpha\beta + \alpha + \beta)$ an	$d(\alpha\beta - \alpha)$	$(\alpha - \beta)$ is				
	(a) x ² -12x+11	=0		(b) 2x ² - 6	5x+12=0		
	(c) x ² -12x+12	=0		(d) None	8		
26.	Solving x ³ +9x ²	-x-9=0	we get the fol		79		
	(a) ±1,-9	(b)	±1, ±9	(c) ±1, 9	(d) None		
				79	orise		
27.					eometrical progre		
	(a) ½, 1, 2	(b)	1, 2, 4	(c) ½ , -1,	, 2 (d) -1, 2,	- 4	
			V, d(d)				
28.	Solve x ³ - 6x ² + 5	5x+12=0	given that the	e product of th	e two roots is 12		
	(a) 1, 3, 4	(b)	-1,3,4	(c) 1 <i>,</i> 6, 2	(d) 1, -	5, -2	
				_			
			0	7			

All aller

HOMEWORK SOLUTIONS

1. The solution of the equation $(p + 2) (p - 3) + (p + 3)(p - 4) = p(2p - 5) = ?$
(p + 2)(p - 3) + (p + 3)(p - 4) = p(2p - 5)
$\Rightarrow (p^2 + 2p - 3p - 6) + (p^2 + 3p - 4p - 12) = 2p^2 - 5p$
$\Rightarrow 2p^2 - 2p - 18 = 2p^2 - 5p$
\Rightarrow 5p - 2p = 18
\Rightarrow 3p = 18 \Rightarrow p = 6
2. The equation $\frac{12x+1}{4} = \frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is true for?
4 5 3X - 1
 12x 1 15x 1 2x – 5 🛞
$\implies \frac{12x}{4} + \frac{1}{4} = \frac{15x}{5} - \frac{1}{5} + \frac{2x - 5}{3x - 1}$
2 1 2 1 2 x - 5
$\Rightarrow 3x + \frac{1}{4} = 3x - \frac{1}{5} + \frac{2x - 5}{3x - 1}$
1, 1, 2x – 5
 $\Rightarrow \frac{1}{4} + \frac{1}{5} = \frac{2x-5}{3x-1}$
$\Rightarrow \frac{9}{20} = \frac{2x-5}{3x-1}$
$\Rightarrow \frac{9}{20} = \frac{2x-5}{3x-1}$
Now, if x = 7, 9 = $\frac{2(7) - 5}{14 - 5} = \frac{14 - 5}{14 - 5} = \frac{9}{14 - 5}$
$\frac{1}{20} = \frac{1}{3(7) - 1} = \frac{1}{21 - 1} = \frac{1}{20}$
3. (d)
4. (c)
5. $\frac{xy}{x+y} = 20$; $\frac{yz}{y+z} = 40$; $\frac{zx}{z+x} = 24$
$x + y = 20^{\circ}, y + z = -20^{\circ}, z + x = 20^{\circ}$
Here, (x > y > z) ∴ We pick option (d) 30, 60, 120
also check, (30)(60) 30 + 60 = 180 90 = 20
30 + 60 - 90 - 20

av	cranaa Enterprise	
	$\frac{\text{(Ascending order)}}{60 + 120} = \frac{7200}{180} = 40$	
	$\frac{1}{60+120} = \frac{1}{180} = 40$	
6.	xy 110 yz 100 zx 60	
	$\frac{xy}{y-x} = 110$; $\frac{yz}{z-y} = 132$; $\frac{zx}{z+x} = \frac{60}{11}x$. ~ y ~ 2
	(Ascending order) .: 10, 11, 12	
	also, $\frac{(10)(11)}{11-10} = 110$; $\frac{(11)(12)}{12-11} = 132$	
	11 – 10 12 – 11	
7.	If the roots of the equation $2x^2 + 8x - m^2$	³ = 0 are equal, then value of m is:
	When the roots are equal b ² = 4ac	8
	Here, a = 2 ; b = 8 ; c = – m ³	
	$\therefore 64 = (4) (2) (-m^3)$	
	$\rightarrow \frac{64}{8} = -m^3$	/9
	- 8 III	E .ce
	∴ m = –2	Suprise
	$\Rightarrow -8 = -m^3$	enteri
	m=-2	
	, diana	
8.	If $2^{2x+3} - 3^2 \cdot x + 1 = 0$; x = ?	
	$\therefore m = -2$ $\Rightarrow -8 = -m^{3}$ m = -2 If $2^{2x+3} - 3^{2} \cdot x + 1 = 0$; $x = ?$ M-I $2^{2x} \cdot 2^{3} - 3^{2} \cdot 2^{x} + 1 = 0$	
	$2^{2x} \cdot 2^3 - 3^2 \cdot 2^x + 1 = 0$	Let 2 ^x = t
	$\Rightarrow 8x^{2x} - 9 \cdot 2^x + 1 = 0$	Now, $2^{x} = \frac{1}{8} = \frac{1}{2^{3}}$
		$\frac{1}{8} = \frac{1}{2^3}$
	$\Rightarrow 8t^2 - 9t + 1 = 0$	$2^{x} = 2^{-3}$
	$\Rightarrow \underline{8t^2 - 8t^2 - 1t + 1} = 0$	∴ x = -3
	$\Rightarrow 8t(t-1) - 1(t-1) = 0$	$2^{x} = 1 = 2^{\circ}$
	$\Rightarrow t = \frac{1}{8}; t = 1$	
	\rightarrow $1-\frac{1}{8}$, $1-1$	∴ x = 0

	a Veranaa Enterprise
	M–II
	Plug in option (d) $(0, -3)$
	Put x = 0, $2^{0+3} - 3^2 \cdot 2^0 + 1$
	= 8 - 9 + 1 = 0
	$x = -3 \ 2^{-6+3} - 3^2 \cdot 2^{-3} + 1$
	$\Rightarrow \frac{1}{8} - \frac{9}{8} + 1$
	-1 + 1 = 0
	9. (b)
	10. (d) $\alpha + \beta = 8, \alpha - \beta = 4$
	$2\alpha = 12, \alpha = 6, \beta = 2$
	$m = \alpha\beta = 12$
	11. (a)
	G S S S S S S S S S S S S S S S S S S S
	12. (d) 13. (b) 14. (b) Equation $x^2 + 13x + 12 = 0$
	S Enter
	13. (b)
	$\alpha\beta = 12, \alpha + \beta = -13$
	15. (a)
	16. (c) $\alpha\beta = 8, \alpha + \beta = 17$
	10. (c) $w p = 0, w + p = 17$
	17 (c)
	17. (c)
	18. (a) $\alpha + \beta = a + b$, $\alpha\beta = ab$
	10. (u) ~ · p ~ u · b, op ~ ub
	19. (b) $\alpha + \beta = 24$, $\alpha\beta = 135$
	10, (D) - P - , - P
_	20. (α)
	LU. (u)

J.K. SHAH 21. (b) $\alpha + \beta = \frac{14}{3}, \ \alpha\beta = \frac{16}{3},$ 22. (c) $\alpha + \beta = \frac{14}{3}, \ \alpha\beta = \frac{8}{3}$ 23. (a) Since, '1' is the roots in all 3 options Let $\beta = 1$. We know that, $\alpha\beta = \frac{c}{a}$ $(\alpha)(1) = \frac{a-b}{b-c}$: the other toot $\alpha = \frac{a - b}{b - c}$ 24. (a) $7\sqrt{\frac{x}{1-x}} + 8\sqrt{\frac{1-x}{x}} = 15$ M-I: Let, $\sqrt{\frac{x}{1-x}} = k$, then $\sqrt{\frac{1-x}{x}} = \frac{1}{k}$ $k \Rightarrow s 7k^{2} + 8 = 15k$ $7k^{2} - 15k + 8 = 0$ $7k^{2} - 7k - 8k + 8 = 0$ 7k(k - 1) - 8(k - 1) = 0 k = 1 - 4 $k = 1; k = \frac{8}{7}$ Now, $\sqrt{\frac{x}{1-x}} = 1$; $\sqrt{\frac{x}{1-x}} = \frac{8}{7}$ $\frac{x}{1-x} = 1;$ $\frac{x}{1-x} = \frac{64}{49}$ 49x = 64 - 64xx = 1 - x2x = 1 $x = \frac{1}{2}$ 113x = 64

$$\frac{64}{113} = x$$

25. (a) If α , β are the roots of $x^2 - 5x + 6 = 0$, $\alpha > \beta$ then equation with $(\alpha\beta + \alpha + \beta)$ and $(\alpha\beta - \alpha - \beta) = ?$
$x^2 - 5x + 6 = 0$, x = 2 and x = 3 [on factorization]
$\therefore \alpha = 3 \text{ and } \beta = 2 \ [\because \alpha > \beta]$
Now, $(\alpha\beta + \alpha + \beta) = [3 \times 2 + 3 + 2] = [6 + 5] = 11$
and $(\alpha\beta - \alpha - \beta) = [3 \times 2 - 3 - 2] = [6 - 5] = 1$
\therefore the equation (x ² – 5x + p)
$\Rightarrow x^2 - 12x + 11 = 0$
26. (a) Solving $x^3 + 9x^2 - x - 9 = 0$ we get; the foll roots.
3 0
Sol. We know that, if $\frac{a}{b} = \frac{c}{d}$, in $ax^3 + bx^2 + cx + d = 0$ then, we factorise,
$\underline{x^3 + 9}x^2 - \underline{x - 9} = 0$
$\Rightarrow x^{2}(x+9) - 1(x+9) = 0$
$\Rightarrow (x^2 - 1)(x + 9) = 0$
\Rightarrow x = ± 1; x = -9
5 roris
27. Solve x³ - 7x² + 14x - 8 = 0, roots are in G.P.
Ad a
Sol. Among the options, (b) has 1, 2, 4. a, b, c
$\sqrt{ac} = b \therefore 2 = \sqrt{1 \times 4}$
28. Solve $x^3 - 6x^2 + 5x + 12 = 0$, given the product of 2 roots is 12.
-d -12
We know that, $\alpha\beta\gamma = \frac{-d}{a} = \frac{-12}{1}$
Here, a = 1 ; b = -6 ; c = 5 ; d = 12
Only option (b) satisfies with −1, 3, 4 as − 1 × 3 × 4 = −12
Again, chk, sum of the roots,
-b -(-6)
$\alpha + \beta + \alpha = \frac{1}{2} + $
$\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(-6)}{1} = 6$
$\alpha + \beta + \gamma = \frac{-\alpha}{a} = \frac{-(-\alpha)}{1} = 6$ $4 + 3 - 1 = 7 - 1 = 6.$

_	av								
			S	ELF ASSES	SME	NT TEST	3	_	
				Equo	ation	s 1			
				13 Quest	ion, 13	Marks			
					. .				
	1.	If sum of three			fprodu	ict of num	bers in pair	s is 250, what	t is the
		sum of square	e of num						
		a) 250		b) 125	C) 375		d) 300	
	2	Find the value	-F (1 - 7 /	013 + 2/1 2/01	(1 20/		3		
	2.	Find the value	e of (1.34					4) 0 250	
		a) 2		b) 8	C) 2.258		d) 8.258	
	3.	Solve for X an	d V• 1 51	(+2/V-18	and 2	5(Y ± 1) -	7∨		
	5.	a) 0.5, 0.5	a 1. 1.57	b) 0.4, 0.4		(0.4, 0.5)		d) 0.5, 0.4	
		u) 0.5, 0.5		D) 0.4, 0.4	Ľ	, 0.4, 0.3		u) 0.5, 0.4	
	4.	If 3 chairs and	d 2 table	es cost Rs 12	000 ar	d 5 chairs	and 3 tab	les cost Rs	19000
	т.	then the cost							13000,
		a) Rs. 9000		b) Rs. 7000) Rs. 1000	0	d) Rs. 11000)
		.,				5	ise		
	5.	Find the value	e of K for	r which the sy	stem c	f equation	ns 2x + 2y =	= 5 and 3x +	Ky = 7
		has no solutio			20				<u> </u>
		a) 9	b)	5 1200	c) 7	d) 3	}	
			0	Ver					
	6.	Find the value	e of k for	which the sys	stem o	f equation	s 2x + ky =	1; 3x - y = 7	has a
		unique solutio	on.			2			
		a) k = - 2/3			b	$) \neq \frac{2}{3}$			
		c) $k \neq -\frac{2}{3}$			d) None of	the above		
	7.	Find the value	e of (1.72	$(29)^3 + 3(1.729)(9)^3$	0.542)+	$-(0.271)^3$			
		a) 2		b) 8	C) 2.271		d) 1.458	
	8.	A man has so	me hens	and cows. If t	the nu	mber of he	ads be 48	and number	of feet
		equals 140, th	ne numb	er of hens will	be:				
		a) 22		b) 23	C) 24		d) 26	

CA FOUNDATION - MATHEMATICS a Veranda Enterprise Ramesh bought a horse for Rs. X. He sold it at 0.9X, thereby registering 10% loss. 9. Had the horse been sold at Rs. 4500 more Ramesh would have make a profit of 12.5%. Find X. a) Rs. 20,000 b) Rs. 18,000 c) Rs. 200,000 d) Rs. 150,000 10. Given $x \in \{-3, -4, -5, -6\}$ and $9 \le 1 - 2x$, find the possible values of x. a) $\{-3, -4, -5, -6\}$ b) {-4, -5, -6} c) {-3, -5, -6} d) None of the above 11. Give the solution set for $3 - 2x \ge x - 32$, given that $x \in N$. a) $\{1, 2, 3, 4, 5\}$ b) {-3, -2, 1, 2, 3, 4, 5, 6, 7} c) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} d) None of the above 12. Dipti needs a minimum of 360 marks in four tests in a Statistics course to obtain an A grade. On her first three tests, she scored 88, 96, 79 marks. What should her score (X) be in the fourth test so that she can make an A grade? a) X > 95 c) X ≥ 97 d) None of the above b) X ≥ 95 13. Which of the following is the solution set for $|x + 2| \ge 5$? randa a) $\{x : x \in R, x < -7 \text{ or } x \ge 3\}$ b) $\{x : x \in R, x \le -7 \text{ or } x \ge 3\}$ c) $\{x : x \in R, x \le -7 \text{ or } x > 3\}$ d) None of the above

EXPLANATORY ANSWERS

1.	(A + B + C) = 25, (AB + BC + CA) = 250
	$(A^2 + B^2 + C^2) = (A + B + C)^2 - 2(AB + BC + CA) = 625 - 500 = 125$; Option B
2.	$(1.348)^3 + 3(1.348)(1.304) + (0.652)^3$
	$= (1.348)^3 + (0.652)^3 + 3(1.348)(0.652)(1.348 + 0.652)$
	= (1.348 + 0.652) ³ = 2 ³ = 8; Option B
3.	Option C (Using options).
4.	3C + 2T = 12000; 5C + 3T = 19000
	2C + T = 7000
	C + T = 5000
	2C + 2T = 10000. Option C
	<u>S</u>
5.	2/3 = 2/K. K = 3. Option D
	S Enteri
6.	$2/3 \neq k/-1$, Option C
	Lid Collie
7.	$(1.729)^3 + 3(1.729)(0.542) + (0.271)^3$
	$= (1.729)^3 + (0.271)^3 + 3(1.729)(0.271)(1.729 + 0.271)$
	$= (1.729 + 0.271)^3 = 23 = 8$
	Option B
8.	H + C = 48; 2H + 4C = 140; H = 26. Option D
9.	CP = X
	New SP = 0.9X + 4500
	Profit = 0.9X + 4500 - X = 4500 - 0.1X
	(4500 - 0.1X)/X = 0.125
	4500 - 0.1X = 0.125X
	0.225X = 4500
	X = 4500/0.225 = 20000; Option A

ID: SHAFF a krondo tritegrite 10. $9 \le 1 - 2x$ $x \le -4$ $x = (-4, -5, -6)$ Option B 11. $3 - 2x \ge x - 32$ $35 \ge 3x$ $x \le 11.67$ $x = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)$ Option D 12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ 0 Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	
10. $9 \le 1 - 2x$ $x \le -4$ $x = \{-4, -5, -6\}$ Option B 11. $3 - 2x \ge x - 32$ $35 \ge 3x$ $x \le 11.67$ $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D 12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	CLASSES
$x \le -4$ $x = \{-4, -5, -6\}$ Option B 11. 3 - 2x \ge x - 32 35 \ge 3x x \le 11.67 x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} Option D 12. 88 + 96 + 79 = 263 x \ge (360 - 263) = 97 Option C 13. (x + 2) \le - 5; x \le - 7 (x + 2) \ge 5; x \le 3 Option B Option B	
$x = \{-4, -5, -6\}$ Option B 11. 3 - 2x \ge x - 32 35 \ge 3x x \le 11.67 x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\} Option D 12. 88 + 96 + 79 = 263 x \ge (360 - 263) = 97 Option C 13. (x + 2) \le - 5; x \le - 7 (x + 2) \le 5; x \le 3 Option B C C C C C C C C C	
Option B 11. $3 - 2x \ge x - 32$ $35 \ge 3x$ $x \le 11.67$ $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D 12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	x ≤ - 4
11. $3 - 2x \ge x - 32$ $35 \ge 3x$ $x \le 11.67$ $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D 12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	$x = \{-4, -5, -6\}$
$35 \ge 3x$ $x \le 11.67$ $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D $12. 88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ Option C $13. (x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B 5666666	Option B
$35 \ge 3x$ $x \le 11.67$ $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D $12. 88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ Option C $13. (x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B 5666666	
$x \le 11.67$ $x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D 12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ 0 Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	11. $3 - 2x \ge x - 32$
$x = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$ Option D 12. 88 + 96 + 79 = 263 $x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B Option B	$35 \ge 3x$
Option D 12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (360 - 263) = 97 (37) (38)	x ≤ 11.67
12. $88 + 96 + 79 = 263$ $x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	x = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
$x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	Option D
$x \ge (360 - 263) = 97$ Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B	
Option C 13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B Sentence	12. 88 + 96 + 79 = 263
13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B Sentemotion	$x \ge (360 - 263) = 97$ (8)
13. $(x + 2) \le -5; x \le -7$ $(x + 2) \ge 5; x \ge 3$ Option B Sentemotion	Option C
$(x + 2) \ge 5; x \ge 3$ Option B	
$(x + 2) \ge 5; x \ge 3$ Option B	 13. $(x + 2) \le -5; x \le -7$
Option B	
	Option B
	 Senterr
	AQ EI
	 C Ver
Image: Constraint of the second sec	
Image: Constraint of the second se	
Image: Constraint of the second se	
Image: Constraint of the second se	
Image: Constraint of the second se	
Image: Constraint of the second of the se	
Image: Constraint of the second se	
Image: Constraint of the second se	

CA FOUNDATION - MATHEMATICS

SELF ASSESSMENT TEST 4 Equations 2

15 Question, 15 Marks

	1.	lf A	and B are the root	s of the equation 1	6x² -	8x + 1 = 0, the	n which of the following
		is t	rue?				
		α)	A, B are real		b) A	, B are real ar	nd A ≠ B
		c)	A, B are real and	A = B	d) A	and B, both c	are imaginary
	2.	lf №	1 and N are the roc	ots of the equation	2(A ²	+ B ²)X ² + 2(A +	B)x + 1 = 0, then which
		of t	the following is tru	e?			
		α)	M, N are real		b) M	1, N are Imagir	nary
		c)	M, N are Distinct		d) B	Both b) & c) ab	ove
	3.	lf c	one root of the eq	uation $4x^2 + 5x +$	K =	0 be reciproco	al of another root, but
		neg	gative in sign, then	what can be the v			
		α)	4	b) – 4	c) 2	.75	d) – 3.25
				/9	23	terr	
4	4.	lf t	he roots of the equ	uation 1/(x + 2) + 1	./(x +	3) = 2/5, are	equal in magnitude but
		opp	oosite in sign, then	the product of the	roots	s is:	
		α)	1	b) 2.5	c) – 1	13	d) – 6.5
				•			
!	5.	'A' I	meters of cloth cos	sts \$35. If this piec	e of c	loth would ho	id been 4 m longer and
		eac	ch meter costs \$ 1	less, the cost of th	e clo	th would had	been \$35. What can be
		the	value of A?				
		α)	8	b) 10	c) 12	2	d) 14
(6.	Fin	d the maximum va	lue of the expression	on x ²	– 4x + 7, for re	eal value of x.
		α)	3	b) 8	c) 9		d) Undeterminable
	7.	For	the given bi-quad	ratic equation: 4x ⁴	- 16x	$x^3 + 7x^2 + 16x +$	4 = 0, what is the value
		of	product of all poss	ible roots of the eq	Juatio	on?	
		α)	- 4	b) 4	c) –	16	d) 1

 al	aranda Enterprise								
8. For the given equation: $(x^2 + 2)^2 + 8x^2 - 6x(x^2 + 2) = 0$, what is the sum of the roots									
	of the equation?								
	a) 8 b) 6	c) – 6	d) 0						
9.	If one root of the equation $14x^2 + 5^3x + 5^3x^2$	+ K = 0 be reciprocal	of another root, find the						
	value of K.								
	a) 7 b) 14	c) 14/125	d) None of the above						
10.	For the given equation: $(x^2 + 2)^2 + 8x^2 -$	6x(x ² + 2) = 0, what is	the product of the roots						
	of the equation?								
	a) – 4 b) 4	c) 3	d) None of the above						
11.	Which of the following equation in var	iable X have two roo	ots, 2 and 4?						
	a) $X^2 - 6X - 8 = 0$	b) $X^2 + 6X - 8 = 0$)						
	c) $X^2 + 6X + 8 = 0$	d) $X^2 - 6X + 8 = 0$)						
12.	Two roots of a quadratic equation x^2 \cdot	+ x - 6 = 0 are A and	B respectively. If A > B,						
	then which of the following quadratic	equation will have re	oots – A and B?						
	a) $x^2 - 5x + 6 = 0$	b) x ² + 5x - 6 = 0							
	c) $x^2 + 5x + 6 = 0$	d) $x^2 - 5x - 6 = 0$							
13.	Which of the following is one of the fa	ctor of the equation	$x^4 - 19x^2 + 6x + 72 = 0?$						
	a) (x + 3) b) (x - 2)	c) (x – 4)	d) (x - 3)						
14.	Which of the following cubic equation	have factors (x - 2),	(2x + 3) and (x - 3)?						
	a) $2x^3 - 7x^2 - 9x + 18 = 0$	b) $x^3 - 7x^2 - 9x +$	18 = 0						
	c) $x^3 - 7x^2 + 9x + 18 = 0$	d) $2x^3 + 7x^2 - 9x$	+ 18 = 0						
15.	If the quadratic equations $x^2 + ax + b =$	$= 0 \text{ and } x^2 + bx + a = 0$	0 (a ≠ b) have a common						
	root, then:								
	a) $a + b = ab$ b) $a + b = a^2 + b^2$	b^2 c) $a^2 + b^2 = ab$	d) a + b + 1 = 0						

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

EXPLANATORY ANSWERS

	ANSWERS
1.	Discriminant (D) = 64 - 4*16*1 = 0. Roots are Real and Equal. Option C
2.	$D = 4(A + B)^2 - 4^*2(A^2 + B^2)^*1 = 4[A^2 + B^2 + 2AB - 2A^2 - 2B^2] = -4(A - B)^2 < 0$
	Thus M and N are imaginary and distinct. Option D
3.	Product of roots = K/4 = -1. K = - 4. Option B
4.	5(x + 2 + x + 3) = 2(x + 2) (x + 3)
	$10x + 25 = 2x^2 + 10x + 12$
	$2 \times 2 - 13 = 0$
	Product of roots = -13/2 = - 6.5
	Option D
5.	Cost per meter = 35/A
	(A + 4)(35/A - 1) = 35
	35 - A + 140/A - 4 = 35
	$(A + 4)(35/A - 1) = 35$ $35 - A + 140/A - 4 = 35$ $A^{2} + 4A - 140 = 0$ $A = 10$ Option B
	A = 10
	Option B
6.	$x^2 - 4x + 7$
	$= x^2 - 2^2 x + 2^2 + 3$
	$= (x - 2)^2 + 3$
	The expression is positive for any value of x> = 2
	Maximum value is undeterminable. Option D
7.	Product of roots = +e/a = 4/4 = 1. Option D
8.	$x^4 + 4 + 4x^2 + 8x^2 - 6x^3 - 12x = 0$
	$x^4 - 6x^3 + 12x^2 - 12x + 4 = 0$
	Sum of roots = $-b/a = -(-6)/1 = 6$
	Option B

J.K. SHAH
CLASSES
a Vơranda Enterprise

a l⁄	dranda Enterprise
9.	Product = 1 = K/14. K = 14. Option B
10.	$(x^2 + 2)^2 + 8x^2 - 6x(x^2 + 2) = 0$
	$x^4 + 4x^2 + 4 + 8x^2 - 6x^3 - 12x = 0$
	$x^4 - 6x^3 + 12x^2 - 12x + 4 = 0$
	Product of roots = 4/1 = 4
	Option B
11.	(X - 2) (X - 4) = 0
	X ² - 6X + 8 = 0; Option D
12.	$x^{2} + x - 6 = 0$
	(x - 2) (x + 3) = 0
	A = 2, B = - 3
	B = - 3 and - A = - 2
	Required equation is (x + 3) (x + 2) = 0
	$x^2 + 5x + 6 = 0$
	Option C
	Option C $F(x) = x^4 - 19x^2 + 6x + 72$
13.	$F(x) = x^4 - 19x^2 + 6x + 72$
	$F(3) = 3^4 - 19(3)^2 + 6^*3 + 72 = 81 - 171 + 18 + 72 = 0$
	(x - 3) is one of the factor. Option D
14.	(x - 2)(2x + 3)(x - 3) = 0
	$(2x^2 - x - 6)(x - 3) = 0$
	$2x^3 - 7x^2 - 9x + 18 = 0$
	Option A
15.	$k^{2}/(a^{2} - b^{2}) = k/(b - a) = 1/(b - a)$
	k = (a + b) or 1
	1 + a + b = 0
	Option D

TIME VALUE OF MONEY

Simple Interest

Simple interest is charged on the principal amount and hence it is same for every year.

A = Amount, P = principal, n = number of years, R = interest rate

$$SI = \frac{PTR}{100}$$

$$\mathbf{A} = \mathbf{P} + \mathbf{SI} = \mathbf{P} + \frac{PTR}{100} = P\left(1 + \frac{TR}{100}\right)$$

Notes:

- If rate of interest is known, then sum of money will double itself in 100/r years.
- If number of years is known, then sum of money will double itself @ 100/n %.
- A sum of money will become "n" times in $\frac{(n-1) \times 100}{p}$ years.

Example:

In how many years a sum of money @10% p.a. SI will become (a) double, (b) triple,

(c) N times.

	<i>u</i> , <u> </u>		1
(a) Double	(b) Triple	(c) N times	
$\frac{(2-1) \times 100}{10} = 10 \text{ years}$	$\frac{(3-1) \ge 100}{10} = 20 \text{ years}$	$\frac{(N-1) \times 100}{10} = 10(N-1) \text{ years}$	

• If the sum of money becomes "n₁" times in T₁ years and "n₂" times in T₂ years, then the ratio of their times is: $\frac{T_1}{T_2} = \frac{n_1 - 1}{n_2 - 1}$.

Compou	nd Interest
•	In case of compound interest, the interest is calculated on the amount of the
	succeeding years, i.e., principal keeps changing every year.
•	Here interest on interest is also earned, thus money grow faster when
	Compounding is done

If P is the principal, n = number of years for which interest is calculated and "i"
 (R/100) is the rate of interest, then, the amount A after n years will be given by:

A=P(1+i)ⁿ

 In case of depreciation by diminishing balance method (WDV), if C = Cost of the machinery, I = rate of depreciation per annum and n = effective life of the machinery, then the depreciated value D after n years is :

$$D = C (1 - i)$$

D is also known as the scrap value of the machinery.

• Compound Interest thus would be calculated as follows:

$$CI = A - P = P \left| \left(1 + i \right)^n - 1 \right|$$

• Depending upon the compounding style of interest rate, the effective formula for calculating Amount would be as follows:

Half Yearly or Semi Annually	Quarterly	Monthly	
$A = P\left(1 + \frac{i}{2}\right)^{2n}$	$A = P\left(1 + \frac{i}{4}\right)^{4n}$	$A = P\left(1 + \frac{i}{12}\right)^{12n}$	

-01

• When differential interest rates are charged $(i_1, i_2, i_3, \dots, i_n)$, then: $A = P(1+i_1)(1+i_2)(1+i_3)\dots(1+i_n)$

• Relationship between CI and SI

a) For the first year, CI = SI, i.e. for the first year difference is zero.

b) For two years, $CI - SI = Pi^2$

c) For three years, CI - SI = Pi²(i + 3)

Notes:

- A sum of money will double itself in approximately 72/r years (known as Rule 72), where r is the rate of interest per annum.
- 2. A sum of money will triple itself in approximately 114/r (known as Rule 114), where r is the rate of interest per annum.
- If a sum of money becomes "n" times in "t" years, then, it will become n^m times in "mt" years.

Example: If sum of money doubles itself in 3 years, then it will be 8 times (2³) in 3x3 = 9 years at CI.

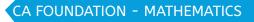
a relation	
Concept	of Effective Rate of Interest
1.	When the compounding is done more than once a year, then, the net annual
	rate of interest is found to be slightly higher than the given annual rate of
	interest.
2.	This new rate of interest is known as the effective rate of interest and the given
	annual rate is called the nominal rate of interest.
3.	Effective rate of interest is denoted by E and is given by the formula:
	$E = \left\{ \left(1 + i \right)^n - 1 \right\} \ge 100$
	Where "i" is rate of interest, converted monthly, quarterly, half yearly and n is
	the number of conversion period per annum.
4.	Effective rate of interest are particularly useful in making investment decisions
	when various options are given with differential interest rates.
5.	Amongst various investment options, we shall choose that investment option,
	where effective rate of interest is maximum.
Concept	of Present Value
Pres	sent Value is defined as the present worth of the money that would yield an
amo	ount A after n years at a specified rate of interest i.

CA FOUNDATION - MATHEMATICS

If
$$A = P(1+i)^n$$

 $\therefore P = PV = Principal = \frac{A}{(1+i)^n}$
 $or, PV = A(1+i)^{-n}$

Annuities


- Annuity is defined as a series of payments (usually equal) which are made at regular intervals of time (usually a year).
- The period for which the payment continues is called the status or the term of the annuity.

J.K. SHAH CLASSES a Vergndg Enterprise

- Unless otherwise stated, the first payment will fall due at the end of every year. This is known as "Ordinary Annuity".
- When the payment falls due at the beginning of every year, i.e., immediately, it is called "Immediate Annuity".
- When the status or term of the annuity is not fixed, i.e., the payment is to be continued for an indefinite period, these are known as "Perpetual Annuity or Perpetuity".
- Hence forth, we shall maintain the following notation throughout. The regular annual payment i.e., annuity = P, rate of interest = "i" and the period for which payment is made = n (status or term of the annuity).
- The amount of the ordinary annuity is given by:
- The amount of immediate annuity is obtained by multiplying amount obtained for ordinary annuity by (1 + i); hence the formula becomes: $A = \frac{P}{i} \{ (1+i)^n - 1 \} (1+i)$

 $A = \frac{P}{i} \left\{ \left(1+i\right)^n - 1 \right\}$

- Note:
 - When half yearly or quarterly or monthly payment is "P", in such a case change "i" to i/2 or i/4 or i/12 and change "n" to 2n or 4n or 12n respectively.
 - 2. When half yearly, quarterly or monthly rate of interest is "i", in such a case, change P to P/2, P/4 or P/12 and change n to 2n or 4n or 12n respectively.
- The present value of an annuity payable over a period of n years is defined as the sum of the present value of all the future payments.

• The present value of an ordinary annuity is represented by V and given as follows:

$$V = \frac{P}{i} \{1 - (1 + i)^{-n}\}$$

 If the term of the annuity is n years, then for evaluating the present value of the immediate annuity, first calculate the present value of the annuity for (n-1) years and then add to it the initial or first payment.

$$v = \frac{P}{i} \{ 1 - (1 + i)^{-n} \} (1 + i)$$

• Present value of the perpetual annuity is given by,

Ada Enterprist

CLASSWORK SECTION

 			CENSSION		
 SIM	PLE INTEREST				
1.	How much interes	t wil	l be earned on Rs.	4000 at 6% p.a. s	imple interest for 2 yrs?
	(a) 450	(b)	480	(c) 500	(d) 540
2.	A deposited 1,00,	000 i	n a bank for 2 yea	irs with the interes	t at 5.5% p.a. What will
	be the final value	of in	vestment?		
	(a) 1,00,000	(b)	1,11,000	(c) 1,20,000	(d) 1,30,000
3.	Find rate of intere	st if	the amount owed	after 6 months is 2	2100, borrowed amount
	being Rs. 2000.			$\textcircled{\begin{tabular}{c} \end{tabular}}$	
	(a) 10%	(b)	8%	(c) 9%	d 11%
4.	P = 5000, N = 1, I	= 30	0, R will be	/9	
	(a) 5%	(b)	4%	(c) 6%	(d) none
				9 prise	
5.	46875 was lent ou	ıt at	SI and at the end o	of 1 yr 8 months, to	otal amount was 50000.
	Find rate of int pe	r anr	num?	7 2.	
	(a) 2%	(b)	4%	(c) 6%	(d) 8%
	(\mathcal{O}	a Vei		
6.	Sum required to e	arn a	quarterly interest o	of 3600 at 18% p.a	ı. is
	(a) 50,000	(b)	60,000	(c) 80,000	(d) none
7.	In how much time	wou	uld SI on a certain	sum be 0.125 tim	nes the principal at 10%
	p.a.?				
	(a) 1 ¼ years	(b)	1.5 years	(c) 1 ¾ years	(d) 2 ¼ years
8.	A sum of 3402 am	noun	ts to 6804 on 20 y	rs. What sum will	amount to 5200 in 6 yrs
	at same rate?				
	(a) 3000	(b)	4000	(c) 5000	(d) 600
9.	30000 is invested	in t	wo parts : partly	at 10% p.a. and p	partly at 15% p.a. Total
	interest earned is	3300). How much is inv	vested at lower rat	te?
	(a) 20000	(b)	24000	(c) 26000	(d) 28000

		ASSES			•	CA FOL	JNDATION -	MATHEMATI	CS	
		eranda Enterprise								
		•		/ making a down						
			t at !	5% p.a. for 2 yrs. 1	Fotal amoun	nt paid	is 28200. F	ind cash pri	се	
		of the bike.								
		(a) 28000	(b)	26000	(c) 27000		(d) 25000			
			ount	s to 7400 in 3 yrs	and 8600 in	4 yrs. l	Find the su	m and rate	of	
_		interest								
		(a) 3800, 31.57%	Ď		(b) 3,000, i	25%				
		(c) 3,500, 20%			(d) none					
			ubles	itself in 20 yrs. In		years it		me 7 times		
		(a) 100	(b)	120	(c) 140		(d) none			
						®				
				0 for 8 yrs. After 3	-		more. Tota	l interest pa	ıid	
		at the end of 8 ye	ears i	s 3550. Find the ro	ate of interes	st.				
		(a) 4% p.a.	(b)	5% p.a.	(c) 6% p.a.	-9	(d) none			
				6		:				
	PAST	EXAM QUESTION	S		9.0	112				
				/9	ENTE					
	14.	₹ 8,000 becomes	₹ 10),000 in two years	s at simple i	interes	t. The amo	ount that w	vill	
		become ₹ 6,875 in		ears at the same r	ate of intere	est is:				
		(a) ₹4,850	(b)	₹ 5,000	(c) ₹ 5,500		(d) ₹ 5,27	5		
	15.	The rate of simple	e inte	rest on a sum of m	noney is 6% p	p.a. for	first 3 yea	rs, 8% p.a. f	or	
		the next five years	s and	l 10% p.a. for the p	period beyon	nd 8 yee	ars. If the s	imple intere	est	
		accrued by the su	m fo	r a period for 10 y	ears is ₹ 1,5	60. The	e sum is:			
		(a) ₹1,500	(b)	₹ 2,000	(c) ₹ 3,000		(d)₹5,000	0		
	16.	A sum of money d	loubl	es itself in 10 year	s. The numb	er of ye	ears it woul	ld treble itse	elf	
		is :								
		(a) 25 years	(b)	15 years	(c) 20 years	S	(d) none			

(d) ₹ 4,350

a Veranda Enterprise 17. If ₹ 1,000 be invested at interest rate of 5% and the interest be added to the principal every 10 years, then the number of years in which it will amount to ₹ 2,000 is: (b) $16\frac{1}{4}$ years (a) $16\frac{2}{3}$ years (d) $16\frac{1}{3}$ years (c) 16 years 18. Two equal sums of money were lent at simple interest at 11% p.a. for $3\frac{1}{2}$ years and $4\frac{1}{2}$ years respectively. If the difference in interests for two periods was ₹ 412.50, then each sum is: (a) ₹ 3,250 (b) ₹3,500 (c) ₹ 3,750 19. Find the numbers of years in which a sum doubles itself at the rate of 8% per annum. (a) $11\frac{1}{2}$ (b) $12\frac{1}{2}$

(d) $13\frac{1}{2}$ (c) $9\frac{1}{2}$

20. If a simple interest on a sum of money at 6% p.a. for 7 years is equal to twice of simple interest on another sum for 9 years at 5% p.a. The ratio will be (b) 7:15 (c) 15:7 (a) 2:15 (d) 1:7

21. If the simple interest on ₹ 1,400 for 3 years is less than the simple interest on ₹ 1,800 for the same period by ₹ 80, then the rate of interest is (a) 5.67% 6.67% (c) 7.20% (d) 5.00% (b)

The S.I. on a sum of money is $\frac{4}{9}$ of the principal and the no. of years is equal to the 22. rate of interest per annum. Find the rate of interest per annum? (a) 5% (b) 20/3% (c) 22/7% (d) 6%

23. Mr. X invests ₹ 90,500 in post office at 7.5% p.a. simple interest. While calculating the rate was wrongly taken as 5.7% p.a. The difference in amounts at maturity is ₹9,774. Find the period for which the sum was invested:

(a) 7 years 5.8 years (c) 6 years (d) 8 years (b)

<u>J.</u>]	K. SHAH			CA FO	OUNDATION -	MATHEMATICS
al	_ A S S E S ⁄dranda Enterprise					
24.	A sum of ₹ 44,000) is divided i	nto three part	s such that t	he correspor	nding interest
	earned after 2 ye	ears, 3 years	s and 6 years	may be equ	al. If the ra	tes of simple
	interest are 6% p.a	a., 8% p.a. a	nd 6% p.a. res	pectively, the	n the smalle	st part of the
	sum will be :					
	(a) ₹ 4,000	(b) ₹8,000) (c)	₹ 10,000	(d)₹12,00	00
25.	A person borrow					
	immediately lends	s to another	person at $6\frac{1}{4}$	%. Per annu	al for 2 years	s find his gain
	in the transaction					
	(a) ₹112.50	(b) ₹225	(c)	₹ 125	(d)₹107.5	50
26.	A man invests an	amount of ₹	15,860 in the	names of hi	s three sons	A, B and C in
	such a way that th	hey get the s	ame SI after 2	2, 3 and 4 yea	ars respective	ely. If the rate
	of interest is 5%, t	hen the ratio	o of amount in	vested in the	name of A,	B and C is
	(a) 6:4:3	(b) 3:4:0	6 (c)	30 : 12 : 5	d) none o (d	f these
					2	
COM	IPOUND INTEREST		62			
			2/9	5 rolls		
27.	Find amount for a	sum of 400	0 at 8% p.a. fo	or 5 yrs comp	ounded annı	ually?
	(a) 5877	(b) 6577	(c)	8577	(d) 5677	
28.	Find C–I for a sum	n of 8000 at	4% p.a. for 6 y	rs compound	led half year	ly?
	(a) 2146	(b) 2416	(c)	2164	(d) 2641	
29.	Find amount and	C-I for a s	sum of 6000 o	at 12% p.a.	for 3 years	compounded
	quarterly?					
	(a) 8554.5, 2554.	5	(b)	7554.5,1554	.5	
	(c) 9554.5, 3554.	5	(d)	6554.5,554.5	5	
30.	Find amount for a	sum of 100	00 at 6% p.a. f	for 2 years co	mpounded r	monthly?
	(a) 12171	(b) 11712	(c)	11271	(d) 12117	
31.	Find present value	of 10000 du	e in 2 yrs at 5%	p.a. compou	nd interest p	aid annually?

al	dranda Enterprise				
32.	Find present val	ue of a	20000 due in	3 yrs at 6% p.a. C-I	paid half yearly?
	(a) 16570	(b)	16500	(c) 16750	(d) 16075
33.	A machinery is d	lepreci	ated at 10%	p.a. for 3 yrs costing F	Rs. 50000.Find scrap value?
	(a) 36400	(b)	36450	(c) 36500	(d) 36550
34.	Find depreciatio	n if m	achinery wor	th 12000 is depreciate	ed at 6% p.a. for 4 yrs?
	(a) 2631.8	(b)	2613.8	(c) 2361.8	(d) 2316.8
35.	A machinery wo	orth 10	000 is depre	ciated at the rate of	10% p.a. for first 3 yrs. 8%
	p.a. for next 2 y	rs. Fin	d its value af	fter 5 yrs.	
	(a) 5170.25	(b)	7170.25	(c) 6170.25	(d) 8170.25
36.	An investment o	of 2000	0 sums on ir	nterest of 6% p.a. for f	first 4 yrs 5% p.a. for next 3
	yrs and 4% p.a.	for ne	xt 2 yrs. Find	value of investment	after 9 yrs where interest is
	compound annu	ıally			3
	(a) 31441.62	(b)	31614.62	(c) 31416.62	o (d) 31641.62
				19 rorit	
37.	Difference betwe	een C-	I and SI at 59	% p.a. for 2 yrs on a s	sum of 6000 is
	(a) 10	(b)	12	(c) 15	(d) 18
			120	100	
38.	Difference betwe	een Cl	and SI on 10	000 at 5% p.a. for 4 y	yrs is
	(a) 150	(b)	155	(c) 160	(d) 165
39.	A sum of money	1 at 5%	6 p.a. CI dout	ole in	
	(a) 14 yrs (appr	ox.)		(b) 16 yrs (appr	rox.)
	(c) 18 yrs (appr	ox.)		(d) 19 yrs (appr	rox.)
40.	In how many ye	ears a	sum of mon	ey trebles at 5% p.a.	. CI payable on half yearly
	basis				
	(a) 20 yrs 3 mo	nths		(b) 21 yrs 3 mo	onths
	(c) 22 yrs 3 mo	nths		(d) 24 yrs 3 mo	onths
41.	A sum at a cert	ain ra	te of interest	compounded annual	lly doubles in 5 yrs. In how
	many yrs will it	becom	ne 8 times		
	(a) 10	(b)	15	(c) 18	(d) 20

	R						
<u>J</u>	K. SHAH			CA	Foundation - Mathematics		
a	Veranda Enterprise						
PAS	ST EXAM QUESTION	IS					
42.	The difference be	etwee	n the simple	and compound inter	rest on a certain sum for 3		
	year at 5% p.a.	is ₹ 2	28.75. The co	mpound interest on	the sum for 2 years at 5%		
	p.a. is						
	(a) ₹3,175	(b)	₹ 3,075	(c) ₹ 3,275	(d) ₹ 2,975		
43.	In what time wil	ll ₹ 3,	,90,625 amoi	unt to ₹ 4,56,976 at	8% per annum, when the		
	interest is compo	ounde	d semi-annu	ally?			
	(a) 2 years	(b)	4 years	(c) 5 years	(d) 7 years		
44.	The annual birth	n and	death rates	per 1000 are 39.4	and 19.4 respectively. The		
	number of years	s in w	hich the pop	oulation will be dou	bled assuming there is no		
	immigration or e	migro	ition is:	P)		
	(a) 35 years	(b)	30 years	(c) 25 years	(d) none of these		
					/		
45.	A person deposi	ted ₹	5000 in a bo	ink. The deposit was	left to accumulate at 6%		
	compounded que	arterly	, for the first f	ive years and at 8% c	ompounded semi-annually		
	for the next eight years. The compound amount at the end of 13 years is:						
	(a) ₹12621.50	(b)	₹ 12613.10	(c) ₹ 13613.10	(d) none		
				- 40 E			
46.	A sum amount t	o₹1,	331 at a prin	cipal of ₹ 1,000 at 1	.0% compounded annually.		
	Find the time.	\mathcal{O}	2 Ver				
	(a) 3.31 years	(b)	4 years	(c) 3 years	(d) 2 years		
47.	Mr. X invests 'P'	amou	nt at simple	interest rate 10% ar	nd Mr. Y invests 'Q' amount		
	at compound int	erest	rate 5% com	oounded annually. A	t the end of two years both		
	get the same am	nount	of interest, tl	nen the relation betw	veen two amounts P and Q		
	is given by						
	410		410				
	(a) $P = \frac{41Q}{80}$	(b)	$P = \frac{41Q}{40}$				
	410		410				
	(c) $P = \frac{41Q}{100}$	(d)	$P = \frac{41Q}{100}$				
48.	A sum of money	comp	ounded annu	ally becomes ₹ 1,14	0 in two years and ₹ 1,710		
	in three years. F	ind th	e rate of inte	rest per annum.			
	(a) 30%	(b)	40%	(c) 50%	(d) 60%		

CA FOUNDATION - MATHEMATICS a Veranda Enterprise 49. A sum of money invested of compound interest doubles itself in four years. It becomes 32 times of itself at the same rate of compound interest in (a) 12 years (b) 16 years (c) 20 years (d) 24 years 50. A compound interest on a sum for 2 years is ₹ 30 more than the simple interest at the rate of 5% per annum then the sum is (a) ₹ 11,000 (b) ₹13,000 (c) ₹ 12,000 (d) ₹ 15,000 51. If compound interest on any sum at the rate of 5% for two years is ₹ 512.50 then the sum would be: (a) ₹ 3,000 (b) ₹4,000 (c) ₹ 5,000 (d) ₹ 6,000 52. If compound interest on a sum for 2 years at 4% per annum is ₹ 102, then the simple interest on the same sum for the same period at the same rate will be (a) ₹99 (c) ₹ 100 (b) ₹101 (d) ₹ 95 **EFFECTIVE RATE OF INTEREST** 53. Effective annual rate of interest compounding to a nominal rate of 6% p.a payable half yearly is (b) 6.08 (c) 6.09 (a) 6.07 (d) none 54. Effective rate of interest of 8% p.a. converted monthly is (a) 8% (c) 8.43% (d) 8.30% (b) 8.34% 55. Which is a better investment? (i) 9% p.a. compounded half yrly. (ii) 9.23% p.a. S.I. (c) both (d) none (a) (i) (b) (ii) ANNUITY (FUTURE VALUE) 56. The amount of annuity of 6,000 payable at the end of each 3 months for 4 years compounded Quarterly at 8% p.a. (a) 111836 (b) 110836 (c) 112836 (d) 113836

al	∕dra∩da Enterprise				
57.	The amount of	annuit	y of Rs. 2000	payable at the end	of each year for 5 years at
	8% p.a. is				
	(a) 11733.86	(b)	14502.6	(c) 21005.8	(d) 16721.31
58.	A company req	uires 20	0,00,000 at th	e end of 10 yrs to re	place one of its assets. It is
	decided to crea	te a sir	iking fund by i	nvesting a fixed amo	ount every year in securities
	which gives 109	% CI. Ye	arly investme	ent is	
	(a) 124590	(b)	125490	(c) 154290	(d) 145290
59.	A company issu	ued 10	% cumulative	debentures of Rs. 1	100 each, 5000 cumulative
	debentures are	to be	redeemed wit	th 10% of interest f	or 5 yrs. For this a Sinking
	Fund is created	and in	vested at 12%	o rate of C.I. Sum to b	pe transferred every year to
	sinking fund is			R)
	(a) 805500	(b)	126834.64	(c) 207382	(d) 126755
60.	The value of th	e amo	unt at the end	d of 12 years of an c	annuity of 1200 payable at
	the beginning c	of each	year for 12 yr	s at 8% p.a. C.I is	<i>P</i> .
	(a) 26879.32	(b)	3432.11	(c) 24594.35	(d) none
				Senterr	
61.	A machine cost	ting 5,2	20,000 with a	n estimated life of	25 years. A sinking fund is
	created to repl	ace it b	y new model	at 25% higher cost	after 25 years with a scrap
	value realizatio	on of 2!	5000. What a	mount should be set	t aside every year if sinking
	fund investmen	t at 3.!	5% C.I p.a.?		
	(a) 16000	(b)	16500	(c) 16050	(d) 16005
62.	Ratan aged 45	wishes	his wife Ratno	a to have 40 lacs at h	is death. His expectation of
	life is another 3	0 years	and he starts	making equal annua	al investments commencing
	now at 3% p.a.	, how r	nuch should h	e invest annually?	
	(a) 84077	(b)	81628	(c) 84450	(d) none
ANN	IUITY (PRESENT \	/ALUE)			
	A loan of 30,00	0 at th	e interest rate	of 6% compounded	annually is to be amortized
63.			the and of ag	ch year for 5 years	Find annual payment.
63.	by equal paym	ents at	the end of ed	en year for 5 years.	ina annaac payment.

J. CL	K. SHAH			CA F	OUNDATION - MATHEMATICS			
 a۷	dranda Enterprise							
64.	Present value of	f an a	nnuity which	pays 200 at the end	of each 3 months for 10			
	years, assuming	mone	ey to be wort	h 5% p.a. converted qu	larterly.			
	(a) 3809.20	(b)	3109.60	(c) 6265.38	(d) none			
65.	Pravin buys a ho	use p	aying Rs. 50,0	000 in cash and balanc	e in 20 installments of Rs.			
	8,000 each at th	ne end	l of each yea	r. If interest is at 16%	p.a., how much he should			
	have paid if had	purch	nased it cash	down.				
	(a) 85250	(b)	94730	(c) 97430	(d) 87589			
66.	P.V. of an annuit	ty of I	Rs. 80 made	at the end of each 6	months forever, if money			
	worth 4% p.a. is	comp	ounded sem	i-annually				
	(a) 2000	(b)	3000	(c) 4000	(d) 5000			
67.	A man purchase	d hous	se valued at 3	3,00,000 by making a p	ayment of 2,00,000 at the			
	time of purchase	e and	agreed to pay	y balance with interest	at 12% p.a. compounded			
	half yearly in 20 equal half yearly installments. If first installment is paid after 6							
	months from the	e date	of purchase	then amount of each i	nstallment is			
	(a) 8719	(b)	8679	(c) 7719	(d) 8769			
				Senterr				
68.	John wants to cr	reate o	a fund to don	ate 1800 every month	to a deprived family. Rate			
	of unit is 12% p.	a. Fin	d amount to	be deposited				
	(a) 360000	(b)	180000	(c) 90000	(d) none			
69.	A company borr	ows 1	0000 on con	dition to repay it with	C.I. at 5% p.a. by annual			
	installments of 3	1000 (each. The nur	mber of years by which	debt will be cleared is			
	(a) 14.2	(b)	10	(c) 12	(d) 17			
 70.	A person retires	at 60	years receivir	ng a pension of 14,400	a year paid in half yearly			
	installments for	the re	st of his life w	vith his life expectation	to be 13 years and interest			
	at 4% p.a. payal	ble ho	llf yearly. Wh	at single sum is equive	alent to his pension?			
	(a) 144000	(b)	144900	(c) 144600	(d) 144300			
71.	If discount rate i	s 7%	p.a., how mu	ch would you pay to re	eceive 500, growing at 5%			
	annually forever	?						
	(a) 25000	(b)	250000	(c) 2500	(d) none			

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

PAS	T YEARS QUESTION							
72.	A machine can be purchased for ₹50,00	0. Machine will contribute ₹12,000 per year						
	for the next five years. Assume borrowing cost is 10% per annum. Determine whether							
	machine should be purchased or not:							
	(a) Should be purchased	(b) Should not be purchased						
	(c) Can't say about purchase	(d) None of the above						
73.	A company considering proposal of pu	irchasing a machine either by, making full						
	payment of ₹4000 or by leasing it for fo	ur years at an annual rate of ₹1,250. Which						
	course of action is preferable, if the comp	any can borrow money at 14% compounded						
	annually?							
		[Given: (1.14) ⁴ = 1.68896]						
	(a) Leasing is preferable	(b) Should be Purchased						
	(c) No difference	(d) None of these						
74.	Vipul Purchases a car for ₹5,50,000. He gets a loan of ₹5,00,000 at 15% P.a. from a							
	bank and balance ₹50,000 he pays at the time of purchase. He has to pay the whole							
	amount of loan in 12 equal monthly instalments with interest starting from the end							
	of the first month. The money he has to pay at the end of every month is:							
		Given (1.0125) ¹² = 1.16075452]						
	(a) ₹45,130.43 (b) ₹45,230.43	(c) ₹ 45,330.43 (d) ₹ 45,430.43						
75.	A company establishes a sinking fund to	provide for the payment of ₹ 2,00,000 debt						
	maturing in 20 years. Contributions to t	he fund are to be made at the end of every						
	year. Find the amount of each annual d	eposit if Interest is 5% per annum.						
	(a) ₹6,142 (b) ₹6,049	(c) ₹ 6,052 (d) ₹ 6,159						
76.	A company may obtain a machine eithe	er by leasing it for 5 years (useful life) at an						
	annual rent of ₹2,000 or by purchasing	the machine for ₹8,100. If the company can						
	borrow money at 18% per annum, whic	h alternative is preferable?						
	(a) Leasing (b) Purchasing	(c) Can't say (d) None of these						
77.	A sinking fund is created for redeeming	debentures worth ₹5 lacs at the end of 25						
	years. How much provision needs to b	e made out of profits each year provided						
	sinking fund investments can earn inter	est at 4% p.a?						
	(a) ₹12,006 (b) ₹12,040	(c) ₹ 12,039 (d) ₹ 12,035						

J.K CA FOUNDATION - MATHEMATICS a Vergoda Enterprise 78. Find the present value of an annuity of ₹1,000 payable at the end of each year for 10 years. If rate of interest is 6% compounding per annum (Given $(1.06)^{-10} = 0.5584$): (a) ₹ 7,360 (b) ₹8,360 (c) ₹ 12,000 (d) None of these 79. The future value of an annuity of ₹ 5,000 is made annually for 8 years at interest rate of 9% compounded annually. [Given (1.09)⁸ = 1.99256] is ____ (a) ₹ 55,142.22 (b) ₹ 65,142.22 (c) ₹65,532.22 (d) ₹ 57,425.22 80. A person wants to lease out a machine costing ₹ 5,00,000 for a 10 year period. It has fixed a rental of ₹ 51, 272 per annum payable annually starting from the end of first year. Suppose rate of interest is 10% per annum compounded annually on which money can be invested. To whom this agreement is favourable? (a) Favour of lessee (b) Favour of lessor (c) Not for both (d) Can't be determined Anda Enterprise

HOMEWORK SECTION

1.	S.I on ₹ 3,500 fo	or 3 ye	ars at 12% pe	er annum is			
	(a) ₹ 1,200	(b)	₹ 1,260	(c) ₹2,260	(d)	none of these	
2.	P = 5,000, R = 1	.5, T =	4 ½ using I =	PRT/100, I will be			
	(a) ₹ 3,375	(b)	₹ 3,300	(c) ₹ 3,735	(d)	none of these	
3.	If P = 5,000, T =	1, =	₹ 300, R will b	be			
	(a) 5%	(b)	4%	(c) 6%	(d)	none of these	
4.	lf P = ₹ 4,500, A	. = ₹ 7,	200, than Sim	ple interest i.e. I w	vill be		
	(a) ₹ 2,000	(b)	₹ 3,000	(c) ₹ 2,500	(d)	₹ 2,700	
5.	P = ₹ 12,000, A	= ₹ 16	,500, T = 2 ½	years. Rate percer	nt per anr	num simple interes	t
	will be		C		.0.		
	(a) 15%	(b)	12%	(c) 10%	(d)	none of these	
				Senterr			
6	P = ₹ 10,000, I =	= ₹ 2,5	00, R = 12 ½%	6 SI. The number of	f years T v	vill be	
	(a) 1 ½ years	(b)	2 years	(c) 3 years	(d) r	one of these	
		\mathcal{O}	200.				
7.	P = ₹ 8,500, A =	₹ 10,2	200, R = 12 ½	% SI, t will be.			
	(a) 1 yr. 7 mth.	(b)	2 yrs.	(c) 1 ½ yr.	(d)	none of these	
8.	The sum require	ed to e	arn a monthly	/ interest of ₹ 1,200	ן 18% at 18%	per annum SI is	
	(a) ₹ 50,000		(b)₹60,000				
	(c) ₹80,000		(d) none of	these			
9.	A sum of mone	γ αποι	unt to ₹ 6,200	in 2 years and ₹ 7	,400 in 3 <u>y</u>	years. The principa	ι
	and rate of sim	ple inte	erest are				
	(a) ₹ 3,800, 31.	57%		(b)₹3,000, 2	20%		
	(c) ₹ 3,500, 15 ⁰	%		(d) none of t	hese		
10.	A sum of money	/ doubl	es itself in 10.	years at simple in	terest. The	e number of years i	t
	would triple itse	elf is					
			4	127			

J.J C L a V	ASSES cranda Enterprise				CA FOUND	ATION ·	- MATHEMATIC	S
	(a) 25 years.	(b)	15 years.	(c) 20 ye	ars (d)) non	e of these	
11.	lf P = ₹ 1,000, R	= 5% p	o.a, n = 4; W	hat is Amount	and C.I. is			
	(a) ₹ 1,215.50,	₹ 215.5	0	(b) ₹ :	1,125,₹125			
	(c) ₹2,115, ₹1	15		(d) nc	one of these			
12.	₹ 100 will beco	me afte	r 20 years a	t 5% p.a compo	ound interes	t amou	int of	
	(a) ₹250	(b)	₹ 205	(c) ₹ 265	.50 (d) non	e of these	
13.		te of in	terest corres	ponding to a n	ominal rate	3% p.o	a payable ha	lf
	yearly is							
	(a) 3.2% p.a	(b	3.25% p.a	(c) 3.022	5% p.a (d)) non	e of these	
14.		-						
				nd its ultimate	e scrap valu	e was	₹ 30,000. Th	е
			chine is					
	-							
	(c) 5 years (app	ox.)		(d) n	one of these			
4 -	16 4	2		5	,10			
15.		i = 2 ye	ars, R = 6% p	b.a compound i	nterest payo	ible ha	it-yearly, the	n
	· · ·		(b) # 005		/ _1)	oofthace	
	(u) < 888.48	70	(U) < 885 (U)	(C) 800	(a)	, non	e or these	
16	The population	of c +			by 20% of +4		ulation at th	0
10.					-			
		it yeur.				ici euse		11
		(h)	10 vears	(c) 17 vo	ars (ann) (d) non	e of these	
			10 years	(c, 11 ye		, 101		
17.	The difference b	etween	C.I and S.I c	on a certain sun	n of monev i	nvested	l for 3 vears a	ıt
	•			(c) ₹ 12.0)00 (d) ₹10),000	
		/		, -, - ,				
18.	The useful life o	of a ma	chine is estir	nated to be 10	years and c	ost₹1	0,000. Rate c	of
					<u> </u>			
	(a) ₹ 3,486.78						e of these	
				· ·				
	11. 12. 13. 14. 15. 15.	 11. If P = ₹ 1,000, R (a) ₹ 1,215.50, (c) ₹ 2,115, ₹ 1 12. ₹ 100 will become (a) ₹ 250 13. The effective rand yearly is (a) 3.2% p.a 14. A machine is dee of the machine effective life effective life of the machine effective life effective life of the machine effective life effective life effective life effective life effective life effe	(a) 25 years. (b) 11. If P = ₹ 1,000, R = 5% p (a) ₹ 1,215.50, ₹ 215.5 (c) ₹ 2,115, ₹ 115 12. ₹ 100 will become after (a) ₹ 250 (b) 13. The effective rate of im yearly is (a) 3.2% p.a (b) 14. A machine is depreciat of the machine was ₹ effective life of the mac (a) 4.5 years (appx.) (c) 5 years (appx.) 15. If A = ₹ 1,000, n = 2 year principal (P) is (a) ₹ 888.48 16. The population of a t beginning of that year. be 40% is (a) 7 years (b) 17. The difference between 6% p.a is ₹ 110.16. The (a) ₹ 3,000 (b) 18. The useful life of a man depreciationis 10% p.a	 (a) 25 years. (b) 15 years. 11. If P = ₹ 1,000, R = 5% p.a, n = 4; W (a) ₹ 1,215.50, ₹ 215.50 (c) ₹ 2,115, ₹ 115 12. ₹ 100 will become after 20 years a (a) ₹ 250 (b) ₹ 205 13. The effective rate of interest corress yearly is (a) 3.2% p.a (b) 3.25% p.a 14. A machine is depreciated at the rate of the machine was ₹ 1,00,000 a effective life of the machine is (a) 4.5 years (appx.) (c) 5 years (appx.) 15. If A = ₹ 1,000, n = 2 years, R = 6% p principal (P) is (a) ₹ 888.48 (b) ₹ 885 16. The population of a town increass beginning of that year. The number be 40% is (a) 7 years (b) 10 years 17. The difference between C.I and S.I co 6% p.a is ₹ 110.16. The sum is (a) ₹ 3,000 (b) ₹ 3,700 	 (a) 25 years. (b) 15 years. (c) 20 ye 11. If P = ₹ 1,000, R = 5% p.a, n = 4; What is Amount (a) ₹ 1,215.50, ₹ 215.50 (b) ₹ 1; (c) ₹ 2,115, ₹ 115 (d) no 12. ₹ 100 will become after 20 years at 5% p.a compression (a) ₹ 250 (b) ₹ 205 (c) ₹ 265 13. The effective rate of interest corresponding to a ne yearly is (a) 3.2% p.a (b) 3.25% p.a (c) 3.022 14. A machine is depreciated at the rate of 20% on reof the machine was ₹ 1,00,000 and its ultimate effective life of the machine is (a) 4.5 years (appx.) (b) 5. (c) 5 years (appx.) (d) ne 15. If A = ₹ 1,000, n = 2 years, R = 6% p.a compound i principal (P) is (a) ₹ 888.48 (b) ₹ 885 (c) 800 16. The population of a town increases every year beginning of that year. The number of years by which be 40% is (a) 7 years (b) 10 years (c) 17 years 17. The difference between C.I and S.I on a certain sum 6% p.a is ₹ 110.16. The sum is (a) ₹ 3,000 (b) ₹ 3,700 (c) ₹ 12,000 18. The useful life of a machine is estimated to be 100 depreciation is 10% p.a. The scrap value at the end 	 CLASSES a Warand Enterprise (a) 25 years. (b) 15 years. (c) 20 years (d 11. If P = ₹ 1,000, R = 5% p.a, n = 4; What is Amount and C.I. is (a) ₹ 1,215.50, ₹ 215.50 (b) ₹ 1,25, ₹ 125 (c) ₹ 2,115, ₹ 115 (d) none of these 12. ₹ 100 will become after 20 years at 5% p.a compound interess (a) ₹ 250 (b) ₹ 205 (c) ₹ 265.50 (d) 13. The effective rate of interest corresponding to a nominal rate yearly is (a) 3.2% p.a (b) 3.25% p.a (c) 3.0225% p.a (d) 14. A machine is depreciated at the rate of 20% on reducing bala of the machine was ₹ 1,00,000 and its ultimate scrap value effective life of the machine is (a) 4.5 years (appx.) (b) 5.4 years (app (c) 5 years (appx.)) (d) none of these 15. If A = ₹ 1,000, n = 2 years, R = 6% p.a compound interest payor principal (P) is (a) ₹ 888.48 (b) ₹ 885 (c) 800 (d) 16. The population of a town increases every year by 2% of the beginning of that year. The number of years by which the total is be 40% is (a) 7 years (b) 10 years (c) 17 years (app) (d) 17. The difference between C.I and S.I on a certain sum of money in 6% p.a is ₹ 110.16. The sum is (a) ₹ 3,000 (b) ₹ 3,700 (c) ₹ 12,000 (d) 18. The useful life of a machine is estimated to be 10 years and c depreciationis 10% p.a. The scrap value at the end of its life is 	CLASSES a Vidend Enterprise (a) 25 years. (b) 15 years. (c) 20 years (d) non 11. If $P = ₹1,000, R = 5\% p.a, n = 4$; What is Amount and C.I. is (a) ₹1,215.50, ₹215.50 (b) ₹1,125, ₹125 (c) ₹2,115, ₹115 (d) none of these 12. ₹100 will become after 20 years at 5% p.a compound interest amou (a) ₹250 (b) ₹205 (c) ₹265.50 (d) non 13. The effective rate of interest corresponding to a nominal rate 3% p.a. yearly is (a) 3.2% p.a (b) 3.25% p.a (c) 3.0225% p.a (d) non 14. A machine is depreciated at the rate of 20% on reducing balance. The of the machine was ₹1,00,000 and its ultimate scrap value was effective life of the machine is (a) 4.5 years (appx.) (b) 5.4 years (appx.) (c) 5 years (appx.) (d) none of these (d) none of these 15. If A = ₹1,000, n = 2 years, R = 6% p.a compound interest payable ha principal (P) is (a) a ₹888.48 (b) ₹ 885 (c) 800 (d) non 16. The population of a town increases every year by 2% of the pop beginning of that year. The number of years by which the total increases be 40% is (a) 7 years (b) 10 years (c) 17 years (app) (d) non 17. The difference between C.I and S.I on a certain sum of money invested 6% p.a is ₹110.16. The sum is (a) ₹3,000 (b) ₹	 (a) 25 years. (b) 15 years. (c) 20 years (d) none of these 11. If P = ₹ 1,000, R = 5% p.a, n = 4; What is Amount and C.I. is (a) ₹ 1,215.50, ₹ 215.50 (b) ₹ 1,125, ₹ 125 (c) ₹ 2,115, ₹ 115 (d) none of these 12. ₹ 100 will become after 20 years at 5% p.a compound interest amount of (a) ₹ 250 (b) ₹ 205 (c) ₹ 265.50 (d) none of these 13. The effective rate of interest corresponding to a nominal rate 3% p.a payable ha yearly is (a) 3.2% p.a (b) 3.25% p.a (c) 3.0225% p.a (d) none of these 14. A machine is depreciated at the rate of 20% on reducing balance. The original cos of the machine was ₹ 1,00,000 and its ultimate scrap value was ₹ 30,000. The effective life of the machine is (a) 4.5 years (appx.) (b) 5.4 years (appx.) (c) 5 years (appx.) (d) none of these 15. If A = ₹ 1,000, n = 2 years, R = 6% p.a compound interest payable half-yearly, the principal (P) is (a) ₹ 888.48 (b) ₹ 885 (c) 800 (d) none of these 16. The population of a town increases every year by 2% of the population at the beginning of that year. The number of years by which the total increase of populatio be 40% is (a) 7 years (b) 10 years (c) 17 years (app) (d) none of these 17. The difference between C.I and S.I on a certain sum of money invested for 3 years of % p.a is ₹ 110.16. The sum is (a) ₹ 3,000 (b) ₹ 3,700 (c) ₹ 12,000 (d) ₹ 10,000. Rate of % p.a. The scrap value at the end of its life is

	19.	The effective rate	e of i	nterest correspond	ling a nominal ra	te of 7% p.a convertible
		quarterly is				
		(a) 7%	(b)	7.5%	(c) 5%	(d) 7.18%
	20.	The C.I on ₹ 1600	0 for	1 ½ years at 10%	p.a payable half ·	-yearly is
		(a) ₹ 2,222	(b)	₹ 2,522	(c) ₹ 2,500	(d) none of these
	21.	The C.I on ₹ 4000	0 at	10% p.a for 1 year	when the interest	is payable quarterly is
		(a) ₹ 4,000	(b)	₹ 4,100	(c) ₹4,152.51	(d) none of these
	22.	The difference be	twee	n the S.I and the C	.I on ₹ 2,400 for 2	years at 5% p.a is
		(a) ₹ 5	(b)	₹10	(c) ₹ 16 🛞	(d) ₹ 6
	23.	The annual birth	and	death rates per	1,000 are 39.4 an	d 19.4 respectively. The
		number of years	in w	hich the populati	on will be double	ed assuming there is no
		immigration or er	migro	tion is		
		(a) 35 years.	(b)	30 years.	(c) 25 years	(d) none of these
				/9	Enterr	
	24.	The C.I on ₹ 4,000) for	6 months at 12%	p.a payable quarte	erly is
		(a) ₹ 243.60	(b)	₹ 240	(c) ₹ 243	(d) none of these
			\mathcal{O}	a Ver		
	25.	The present value	e of o	n annuity of ₹ 300	0 for 15 years at 4	4.5% p.a CI is
		(a) ₹23,809.41			(b)₹32,218.63	
		(c) ₹32,908.41			(d) none of these	
	26.	The amount of a	n ann	uity certain of ₹ 1!	50 for 12 years at	3.5% p.a C.I is
		(a) ₹ 2,190.28	(b)	₹ 1,290.28	(c) ₹ 2,180.28	(d) none of these
	27.	A loan of ₹ 10,00)0 is t	o be paid back in	30 equal instalme	nts. The amount of each
		installment to co	ver tl	ne principal and at	t 4% p.a Cl is	
		(a) ₹ 587.87	(b)	₹ 587	(c) ₹ 578.30	(d) none of these
	28.	A = ₹ 1,200 n = 1	2 yec	urs i = 0.08, V = ?		
				= $\frac{A}{i} \left[1 - \frac{1}{(1+i)^n} \right]$ value	ue of v will be	
		(a) ₹ 3,039		i [(1+i) ⁿ] ₹ 3,990	(c) ₹ 9930	(d) none of these
-			-			

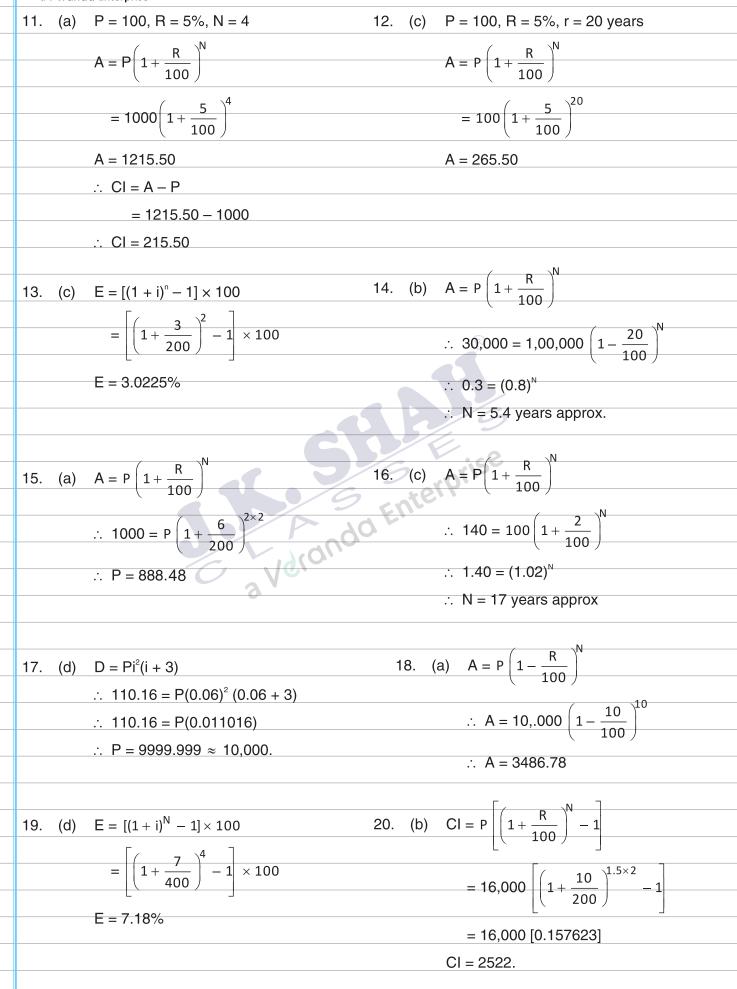
J.K. SHAH[®] C L A S S E S a Veranda Enterprise

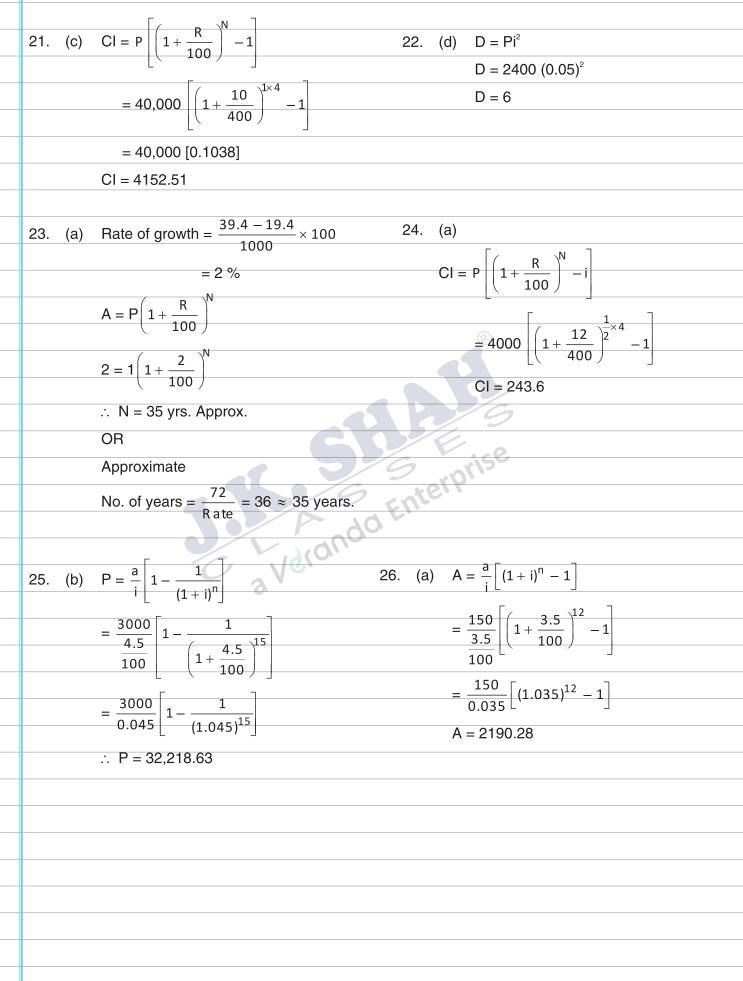
29.	p = ₹ 100 n = 10,	i = 5	% find the FV of a	nnuity	
	(a) ₹1,258	(b)	₹ 2,581	(c) ₹1,528	(d) none of these
30.	If the amount of	an ar	nuity after 25 yec	ars at 5% p.a C.I is	₹ 50,000 the annuity will
	be				
	(a) ₹1,406.90	(b)	₹ 1,047.62	(c) ₹ 1,146.90	(d) none of these
31.	Given annuity of	₹ 100	amounts to ₹ 31	37.12 at 4.5% p.a	C. I. The number of years
	will be				
	(a) 25 years (app	ox.)		(b) 20 years (app	x.)
	(c) 22 years			(d) none of these	2
				8	
32.					compound interest at 5%
	p.a by annual in:	stalln	nents of ₹ 1000 ec	ich. The number o	f years by which the debt
	will be clear is				2
	(a) 14.2 years	(b)	10 years	(c) 12 years	(d) none of these
				Storio	
33.					rs, the money was repaid
				ount of interest po	-
	(a) ₹ 2,100	(b)	₹ 2,170	(c) ₹ 2,000	(d) none of these
			3		
34.					C.I. at 5% p.a in annual
					debt to be paid off is
	(a) 10 years	(b)	12 years	(c) 11 years	(d) none of these
35.					nk which pays interest at
			•		lit one year after he has
			ment for the 12th		
	(a) ₹11,761.36	(D)	₹ 10,000	(c) ₹ 12,000	(d) none of these
26	The procent well) nor annum for	12 years at 404 p.c. C.
 36.		ie of		o per annum for	12 years at 4% p.a C.I.
	annually is	(h)	7 16 950	(c) ₹ 15 000	(d) none of these
	(a) ₹46,000	(0)	₹ 46,850	(c) ₹ 15,000	(d) none of these

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

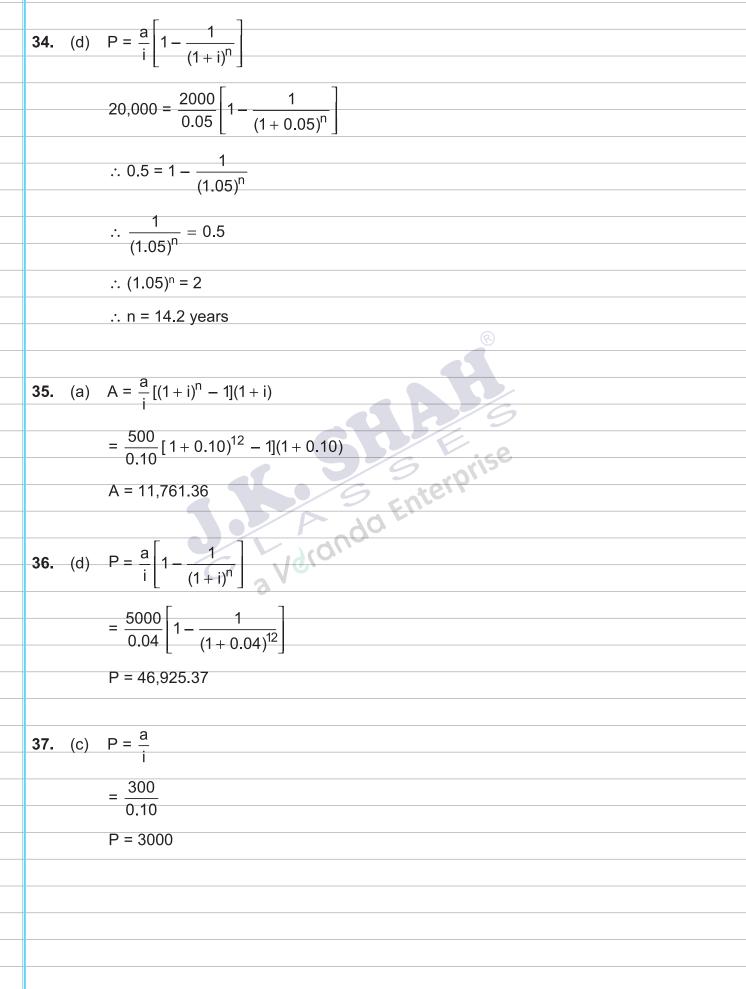
aı	ranaa Enterprise				
37.	A person desires	to cre	eate a fund to be ir	nvested at 10% CI	per annum to provide for
	a prize of ₹ 300 e	very	year. Using V = a/I	find V and V will	be
	(a) ₹ 2,000	(b)	₹ 2,500	(c) ₹ 3,000	(d) none of these
38.	A = ₹ 5,200, R = 5	5% p.	a., T = 6 years, P v	vill be	
	(a) ₹ 2,000	(b)	₹ 3,880	(c) ₹ 3,000	(d) none of these
39.	lf P = 1,000, n = 4	4 yea	rs., R = 5% p.a the	n C. I will be	
	(a) ₹215.50	(b)	₹ 210	(c) ₹ 220	(d) none of these
40.	The time in which	n a su	Im of money will b	e double at 5% p.	a C.I is
	(a) ₹ 10 years	(b)	12 years	(c) 14.2 years	(d) none of these
				®	
41.	lf A = ₹ 10,000, n	= 18	yrs., R = 4% p.a C.	I, P will be	
	(a) ₹ 4,000	(b)	₹ 4,900	(c) ₹ 4,500	(d) none of these
					2
42.	The time by whic	h a si	um of money woul	d treble it self at 8	8% p. a C. I is
	(a) 14.28 years	(b)	14 years	(c) 12 years	(d) none of these
			/9	Enterr	
43.	The present value	e of c	In annuity of ₹ 80	a years for 20 year	rs at 5% p.a is
	(a) ₹ 997 (appx.)	(b)	₹ 900	(c) ₹ 1,000	(d) none of these
		\mathcal{O}	ave		
44.	A person bought	a hoi		0 cash down and ₹	4,000 at the end of each
	year for 25 yrs. a	t 5%	p.a. C.I. The cash	down price is	
	(a) ₹75,000	(b)	₹ 76,000	(c) ₹ 76,392	(d) none of these.
 45.	A man purchased	d a ho	ouse valued at ₹ 3	,00,000.He paid 🕏	₹ 2,00,000 at the time of
	purchase and agr	eed to	o pay the balance v	vith interest at 12%	per annum compounded
	half yearly in 20	equo	Il half yearly insta	lments. If the first	instalment is paid after
	six months from	the d	ate of purchase th	en the amount of	each instalment is
	[Given log 10.6 =	1.02	53 and log 31.19	= 1.494]	
	(a) ₹8,719.66	(b)	₹ 8,769.21	(c) ₹ 7,893.13	(d) none of these.
 46.	The difference be	twee	n compound and s	imple interest at 5	% per annum for 4 years
	on ₹ 20,000 is ₹ _				
	(a) 250	(b)	277	(c) 300	(d) 310

	al	a Veranda Enterprise					
	47.	. The compound interest on half-yearly rests on ₹ 10,000 the rate for the first and					
		second years being 6% and for the third year 9% p.a. is ₹					
		(a) 2,200 (b) 2,287	(c) 2,285	(d) 2290			
	48.	The present value of ₹ 10,000 due in 2	years at 5% p.a. (compound interest when the			
		interest is paid on yearly basis is ₹					
		(a) 9,070 (b) 9,000	(c) 9,061	(d) None			
	49.	The present value of ₹ 10,000 due in 2	years at 5% p.a. (compound interest when the			
		interest is paid on half-yearly basis is	₹				
		(a) 9,070 (b) 9,069	(c) 9,059.50	(d) None			
	50.	Johnson left ₹ 1,00,000 with the direc		· · ·			
		that his minor sons Tom, Dick and H	arry aged 9, 12	and 15 years should each			
		receive equally after attaining the age	e 25 years. The r	ate of simple interest being			
		3.5%, how much each son receive afte					
		(a) 50,000 (b) 51,994	(c) 52,000	(d) 48332			
			19 ror				
	51.	In how many years will a sum of mone					
		(a) 15 years 3 months	(b) 14 years 2				
		(c) 14 years 3 months	(d) 15 years 2	months			
		3,1					
	52.	In how many years a sum of money tr	ebles at 5% p.a.	compound interest payable			
		on halfyearly basis?					
		(a) 18 years 7 months	(b) 18 years 6				
		(c) 18 years 8 months	(d) 22 years 3	3 months			
	F 2	A manaping dependent of 100/ - C'		ning of a year. The cost and			
	53.	A machine depreciates at 10% of its ve					
		scrap value realized at the time of sale being ₹ 23,240 and ₹ 9,000 respectively. For					
		how many years the machine was put		(d) 10 years			
		(a) 7 years (b) 8 years	(c) 9 years	(d) 10 years			
	54.	A machine worth ₹ 4,90,740 is depreci	iated at 15% on	its opening value each year			
	54.	When its value would reduce to ₹ 2,00					
		(a) 4 years 6 months	(b) 4 years 7 r	nonths			
		(c) 4 years 5 months		nonths approximately			
_							
		123	b				


55.	A r	nachine worth ₹ 4,90,740 is depreciat	ed at 15% of its opening value each year.				
	When its value would reduce by 90%?						
	(a)	11 years 6 months	(b) 11 years 7 months				
	(c)	11 years 8 months	(d) 14 years 2 months approximately				
			8				
			29				
		Andre averande	E ce				
			Supris				
 			Enteri				
		d					

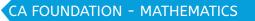

HOMEWORK SOLUTION

	1.	В			2.	A
		$I = \frac{3500 \times 3 \times 12}{100}$				
						$I = \frac{5000 \times 15 \times 4.5}{100} = 3375$
		= 1260				
_						
_	3.	С			4.	D
		$300 = \frac{5000 \mathrm{x} 1 \mathrm{x} \mathrm{r}}{100} = 6\%$				I = A – P = 7200 – 4500
		100				= 2700
						= 2700
	5.	А			6.	В
		I = A – P = 16,500 -12,000				$2500 \frac{10,000 \times 12.5 \times N}{100} = 2 \text{ years}$
						100 - 2 years
		= 4,500				
		$45,000 = \frac{12,000 \times R \times 2.5}{100} = 15\%$	•			2/9
		100		CY		
						a larise
_	7.	Α		16	8.	C
_		l = 10,200 - 8,500 = 1700			Er	$1200 = \frac{P(1)(18)}{100 \times 12} = 80,000$
_		85,00 × 12.5 × N		-00		100 × 12
		$1700 = \frac{85,00 \times 12.5 \times N}{100}$	<u> </u>	Idude		
		=1.6 years	3			
		= (1.6 x 12) = 19.2 month	1			
			·			
		=1 year 7 months				
	9.	A			10.	С
		After 3 years	= 7	7400		$R = \frac{(2-1)x100}{10} = 10\%$
		<u>2</u> years		<u>6200</u>		$N = \frac{(3-1)x 100}{10} = 20 \text{ years}$
		1 year	=	1200		$n = \frac{10}{10} = 20 \text{ years}$
		After 3 years	7400			
		(1200 x 3)	<u>3600</u>			
_		Principle	3800			
_		3800 x 1 x R				
		$12,00 = \frac{3800 \mathrm{x} \mathrm{1} \mathrm{x} \mathrm{R}}{100}$				
		R = 31.57%				
		11 - 01.07 /0				

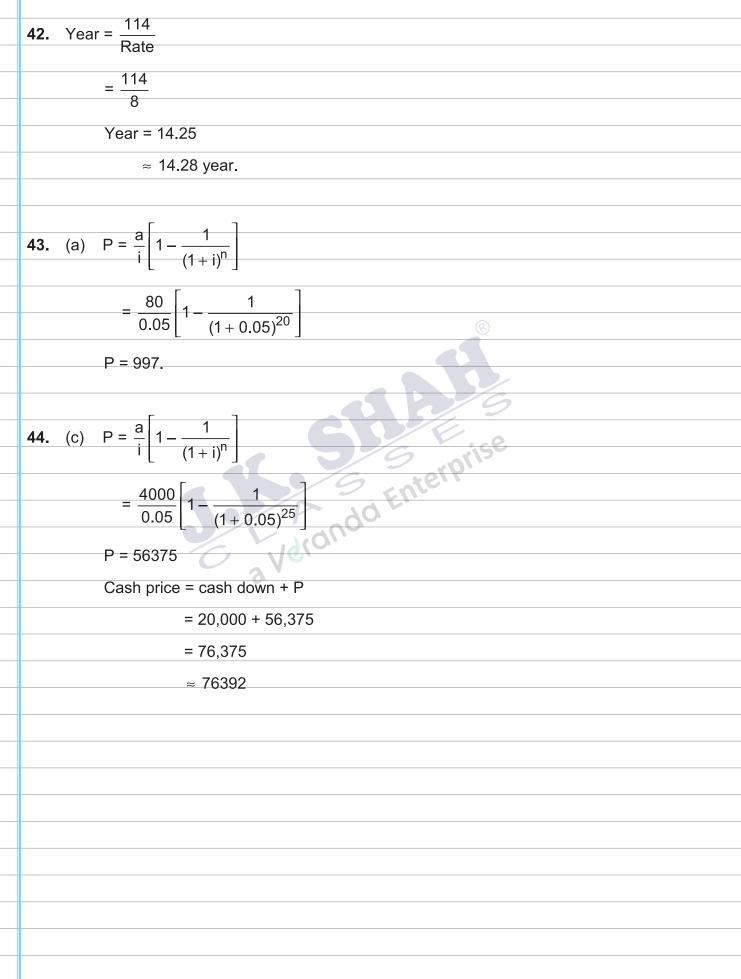


27. (c)
$$P = \frac{a}{i} \left[1 - \frac{1}{(1+1)^n} \right]$$

 $\therefore 10,000 = \frac{9}{0.04} \left[1 - \frac{1}{(1,04)^{30}} \right]$
 $\therefore 10,000 = 9(17.2920)$
 $\therefore a = 578.87$
28. (d) Value of $V = \frac{A}{i} \left[1 - \frac{1}{(1+1)^N} \right]$
Hence, $A = 1200$, $n = 12$ years, $i = 0.08$
 $V = \frac{1200}{0.08} \left[1 - \frac{1}{(1.08)^{12}} \right]$
 $V = 9043.29$
29. (a) $FV = \frac{a}{i} [(1+i)^n - 1]$
 $= \frac{100}{0.05} [(1+0.05)^{10} - 1]$
 $FV = 1258$
30. (b) $A = \frac{a}{i} [(1+i)^n - 1]$
 $50,000 = \frac{a}{0.06} [(1+0.05)^{25} - 1]$
 $\therefore 50,000 = \frac{a}{0.05} [2.3864]$
 $\therefore a = 1047.62$


31. (b)
$$A = \frac{a}{i} [(1 + i)^n - 1]$$

 $\therefore 3137.12 = \frac{100}{0.045} [(1 + 0.045)^n - 1]$
 $\therefore 1.4117 = (1.045)^n - 1$
 $\therefore n = 20$ years.
32. (a) $P = \frac{a}{i} \left[i - \frac{1}{(1 + i)^n} \right]$
 $\therefore 10,000 = \frac{1000}{0.05} \left[1 - \frac{1}{(1 + 0.05)^n} \right]$
 $\therefore 0.5 = 1 - \frac{1}{(1.05)^n}$
 $\therefore \frac{1}{(1.05)^n} = 0.5$
 $\therefore (1.05)^n = 2$
 $\therefore N = 14.2$ years
33. (b) $CI = P \left[\left(1 + \frac{R}{100} \right)^N - 1 \right]$
 $= 5120 \left[\left(1 + \frac{12.5}{100} \right)^3 - 1 \right]$
 $\therefore CI = 2170$



38. (b) $A = P\left(1 + \frac{R}{100}\right)^{N}$ $\therefore 5200 = P\left(1 + \frac{5}{100}\right)^6$ ∴ P = 3880. **39.** (a) $CI = P\left(1 + \frac{R}{100}\right)^N - 1$ $CI = 1000 \left[\left(1 + \frac{5}{100} \right)^4 - 1 \right]$ CI = 215.50 $\therefore 2 = 1\left(1 + \frac{5}{100}\right)^{N}$ **40.** (c) $A = P\left(1 + \frac{R}{100}\right)^{N}$ \therefore N = 14.2 year approved. **41.** (d) $A = P\left(1 + \frac{R}{100}\right)^{N}$ $\therefore 10,000 = P\left(1 + \frac{4}{100}\right)^{18}$ ∴ P = 4936.28

ur	anac	
 45.	(a)	P = 3,00,000 - 2,00,000
		P = 1,00,000
 		$P = a \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
 		$P = \frac{a}{i} \left[1 - \frac{1}{(1+i)^n} \right]$
 		$1 00 000 - a \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
		$1,00,000 = \frac{a}{\frac{12}{200}} \left[1 - \frac{1}{\left(1 + \frac{12}{200}\right)^{20}} \right]$
		$1,00,000 = \frac{a}{0.06} \left[1 - \frac{1}{(1.06)^{20}} \right]$
		∴ a = 8719.66
 46.	(d)	S.I. = $\frac{20,000 \times 5\% \times 4}{100}$ = 4000
	. ,	$C.I. = 20,000 \{(1.05)^4 - 1\} = 4310.125$
		D = 310.125
		G G G G G G G G G G G G G G G G G G G
 		Sterpit
 47.	(d)	$A = 10,000 (1.03)^4 (1.045)^2$
 		= 12,290
		$D = 310.125$ $A = 10,000 (1.03)^4 (1.045)^2$ $= 12,290$ $\therefore C.I. = 2290$
 48.	(d)	$A = p(1+i)^{N}$
 		$10,000 = P (1.05)^2$
 		= 9070
49.	(c)	$A = P(1+i)^{N}$
		$10,000 = P(1.025)^4$
 		= 9059.50
		142

al	/erando	a Enterprise
50.	(d)	Assuming simple interest
		Let the amount = x
		$\frac{x}{\left(1+\frac{3.5\times16}{100}\right)} + \frac{x}{\left(1+\frac{3.5\times13}{100}\right)} + \frac{x}{\left(1+\frac{3.5\times10}{100}\right)} = 1L$
		$\frac{x}{1.56} + \frac{x}{1.455} + \frac{x}{1.35} = 1L$
 		x(0.6410 + 0.6873 + 0.7407) = 1 L
		x(2.0690) = 1 L
		$x = \frac{100000}{2.0690} \qquad \qquad x = 48332$
 51.	(b)	2 = 1 (1.05) ^N
		For perfect answer taking log
		log2 = N log 1.05
		0.3010 = N(0.0212)
 		N = 14.2
 		Ginterpir
 52.	(c)	$A = P (1+i)^N$
	、 ,	N = 14.2 A = P $(1+i)^N$ 3 = 1 $(1.025)^N$ Trial and Error
		Trial and Error
		(c) 22 years 23 month
 53.	(c)	$A = P(1+i)^{N}$
		9000 = 23240 (0.9) ^N
		$0.3873 = (0.9)^{N}$
		N = 9 years [Trial and Error]
 54.	(d)	$A = P(1 - i)^{N}$
		2,00,000 = 490,740 (0.85) ^N
		$0.4075 = (0.85)^{N}$
		5 years 7 months [Trial and Error]

55. (d) 49074 = 490740 (0.85) ^N
$0.1 = (0.85)^{N}$
 N = 14 years 2 month
 [Trial and Error]
 (R)
 6/9
 Service Service Servic
9 orise
Senterr
Addr
 L d com
 210
144

	<u>J.</u>]	K. SHAH [®]			CA F	OUNDATION - MATHEMATI	CS				
	CL ab	_ A S S E S /dranda Ente									
				SELF ASSE	SSMENT TEST 6						
ANNUITIES											
	25 Question, 25 Marks										
	1. Find the amount of an annuity of Rs. 100 in 10 years allowing compound interest at										
		5%, given (1.05) ¹⁰ = 1.6289.									
		a) Rs. 1527.80			b) Rs. 1257.80						
		c) Rs. 1357.90			d) None of the	above					
	2.	Find the presen	t valı	ie of an anni	uity certain of Rs. 3	00 for 5 years reckoni	ng				
		-			n. Given (1.04) ⁵ = 1.2	-	-				
		a) Rs. 1335.78		-	b) Rs. 1353.87						
		c) Rs. 1533.98			d) None of the	above					
	3.	Gargi borrows R	s. 20	000 at 4% co	mpound interest an	d agrees to pay both t	he				
						s at the end of each ye					
					nts. Given $(1.04)^{10} = 2$						
		a) Rs. 2470	b)	Rs. 2570	c) Rs. 2740	e d) Rs. 2760					
					S interv.						
	4.	Find the amoun	t of a	n annuity of	Rs. 50 payable quai	terly for 15 years at 5	%,				
		compounded qu									
		a) Rs. 4422			c) Rs. 5544	d) Rs. 4433					
				0							
	5.	Find the present	value	of an annuity	of Rs. 50 payable au	arterly for 15 years at 5	%,				
		compound-ed q					-				
		a) Rs. 2000	b)	Rs. 2098	c) Rs. 2108	d) Rs. 2100					
_			•		· · ·	· · · · · · · · · · · · · · · · · · ·					
	6.	Find the value o	f perp	etuity of Rs. 1	05 a year at 5.25% p	er annum.					
		a) Rs. 2000	b)	Rs. 2098	c) Rs. 2108	d) Rs. 2100					
			,	_		· · · · · · · · · · · · · · · · · · ·					
	7.	A wagon is purc	hased	on instalmen	t basis, such that Rs	5000 is to be paid on t	he				
		• •				3000 each payable at t					
						est is charged at 5% p.					
					? Given (1.05) ⁻⁴ = 0.8						
		a) Rs. 16358	b)	Rs. 15638	c) Rs. 10638	d) Rs. 14500					
			~/		-, 20000						

a۷	a Veranda Enterprise										
8.	A government constructed housing flat costs Rs. 136000; 40% is to be paid at the										
	time of possession and the balance, reckoning compound interest of 9% p.a. is to										
	be paid in 12 equal annual instalments. Find the amount of each such instalment.										
	Given (1.09) ⁻¹² = 0.3558										
	a) Rs. 11000	b)	Rs. 12000	c) Rs. 11400	d) Rs. 12400						
9.	What sum will b	uy an	annuity of Rs. 10	00 payable half-y	early for 5 years, the rate						
	of interest being	8% p	.a. compounded h	alf-yearly? Given	$(1.04)^{-10} = 0.6756$						
	a) Rs. 8000	b)	Rs. 9000	c) Rs. 9110	d) Rs. 8110						
10.	Dipti borrowed R	5. 400	00 at 6% compour	nd interest promisir	ng to repay Rs. 9000 at the						
	end of each of th	e first	four years and to	pay the balance a	It the end of the fifth year.						
	Ascertain how m	uch sł	ne would pay as th		. Given (1.06) ⁻⁴ = 0.79206						
 	a) Rs. 8809	b)	Rs. 11789	c) Rs. 12897	d) Rs. 10589						
11.	· ·				80 at a fixed rate per cent						
 					ind the rate of interest.						
	a) 4%	b)	3.5%	c) 5%	d) 3%						
 			2/9	Ente							
12.					ives him a pension of Rs.						
	,				his life. If the expectation						
				· · ·	num payable half-yearly,						
	•		value of the pens								
 	a) Rs. 26,783	b)	Rs. 28,768	c) Rs. 26,893	d) Rs. 28,763						
10	A freehold estat		worth Da EO OO) If the second	ant of the property be De						
 13.				o. It the annual re	ent of the property be Rs.						
	2,000, find the ro		•	c) / 0/2	d) 5%						
	a) 3%	b)	3.5%	c) 4%	d) 5%						
 1/	A machine costs	a .co	mpany Rs 52000	and its effective	life is estimated to be 25						
 14.					e by a new model at the						
	<i>y y</i>		•	3	500 only. The price for the						
					e of the present one. Find						
 					s for the sinking fund, if it						
			p.a. compound. Gi		.						
	a) Rs. 1590	b)	Rs. 1650	c) Rs. 1602	d) Rs. 1592						
 	.,	- /		-,	·, ···· -···						

u ,										
15.	A man decides to deposit Rs. 10000 at the end of each year in a bank which pays									
	10% per annum compound interest. If the instalments are allowed to accumulate,									
	what will be total accumulation at the end of 9 years? Given (1.1) ⁹ = 2.2583									
	a) Rs. 124000 b) Rs. 125000 c) Rs. 125830 d) Rs. 124930									
16.	The annual rent of a perpetual annuity is Rs. 4000. Find its value, the interest being									
	compounded at 8% p.a.									
	a) Rs. 40000 b) Rs. 45000 c) Rs. 50000 d) None of the above									
17.	The value and annual rent of perpetuity are Rs. 12500 and Rs. 1000 respectively.									
	Find the rate of compound interest.									
	a) 7% b) 8% c) 10% d) None of the above									
	8									
18.	Find the value of a deferred perpetuity of Rs. 500 p.a. to commence 10 years hence									
	at 6% p.a. compound interest. Given (1.06) ¹⁰ = 1.791									
	a) Rs. 4653 b) Rs. 4563 c) Rs. 4356 d) Rs. 4365									
	G De Fice									
19.	A loan of Rs. 10,000 is to be repaid in 30 equal annual instalments of Rs. X. Find X,									
	if the CI charged is at the rate of 4% p.a. (Annuity is an annuity immediate). Given									
	$(1.04)^{30} = 3.2434$									
	a) Rs. 878.80 b) Rs. 758.40 c) Rs. 578.40 d) Rs. 598.80									
20.	A man buys a house for Rs. 60,000 on condition that he will pay Rs. 30000 cash									
	down and the balance in 10 equal annual instalments, the first to be paid one year									
	after the date of purchase. Calculate the amount of each instalment, compound									
	interest being computed at the rate of 5% p.a. Given (1.05) ⁻¹⁰ = 0.6139									
	a) Rs. 5883 b) Rs. 3885 c) Rs. 8583 d) Rs. 3588									
21.	The annual subscription for the membership of a club is Rs. 25 and a person may									
	become a life-member by paying Rs. 1000 in a lump sum. Find the rate per cent per									
	annum.									
	a) 2% b) 3% c) 2.5% d) 3.5%									
		_								

<u>J.</u>]	K. SHAH [®] CA FOUNDATION - MATHEMATICS
CL al	- A S S E S Adranda Enterprise
22.	An overdraft of Rs. 50,000 is to be paid back in equal instalments over a period of
	20 years. Find the value of the instalment, if interest is compounded annually at
	14% per annum. Given (1.14) ²⁰ = 13.74349
	a) Rs. 7549 b) Rs. 7561 c) Rs. 7571 d) Rs. 7539
23.	What is the value of an annuity at the end of 5 years, if Rs. 100 per month is
	deposited into an account earning interest 9% per year compounded monthly?
	Given log10075 = 4.003245055 and antilog 4.1947033 = 15656.81067
	a) Rs. 7542 b) Rs. 7892 c) Rs. 7598 d) Rs. 7498
24.	A man borrows Rs. 20,000 at interest rate 4% per annum compounded annually and
	agrees to pay both the principal and the interest in 10 equal annual instalments at
	the end of each year. Find the amount of these instalments. Given log104 = 2.0170
	and log6761 = 3.8300
	a) Rs. 2400 b) Rs. 2470 c) Rs. 2489 d) Rs. 2459
25.	Rs. 12,000 is invested at the end of each month in an account paying interest 6% per
	year compounded monthly. What is the amount of this annuity after 10th payment?
	Given (1.005) ¹⁰ = 1.0511
	a) Rs. 122000 b) Rs. 120680 c) Rs. 122980 d) Rs. 122640
	L Idiana

	ar	
		EXPLANATORY ANSWERS
_	1.	A = 100/0.05[(1.05) ¹⁰ - 1] = 2000(1.6289 - 1) = 1257.80, Option B
	2.	PV = 300/0.04[1-(1.04) ⁻⁵] = 7500[1 - 1/1.2167] = 1335.78. Option A
	3.	$20000 = P/0.04[1 - (1.04)^{-10}]$
		800 = P[1 - 1/1.4802]
		P = (800 * 1.4802)/0.4802 = 2470
		Option A
		®
	4.	Amount = 50/0.0125[(1.0125) ⁶⁰ - 1] = 4000(1.1028) = 4411. Option B
	5.	PV = 50/0.0125[1 - (1.0125) ⁻⁶⁰] = 4000(1.1028/2.1028) = 2098. Option B
	6.	Perpetuity PV = 105/5.25% = 2000. Option A
		9 Enteri
	7.	PV of instalment = 3000/0.05[1 - 0.82270] = 10638
		Cash down price = 5000 + 10638 = 15638. Option B
	8.	Loan amount = 136000 * .60 = 81600
		81600 = P/0.09 [1 - 0.3558]
		7344 = P(0.6442)
		P = 11400. Option C
	9.	PV = 1000/0.04[1 - 0.6756] = 25000(0.3244) = 8110. Option D
	10.	PV of 4 instalments = 9000/0.06[1 - 0.79206] = 31191
		PV of loan amount remaining to be paid = 40000 - 31191 = 8809
		FV of Rs. 8809 payable after 5 years = 8809(1.06) ⁵ = 11789
ĺ		Option B

a Veranda Enterprise

J.K. SH

- 11. $2000 = \frac{180}{r[1 (1+r)^n]} = \frac{180}{r[(1+r)^n 1]}{(1+r)^n} = \frac{3000}{(1+r)^n}$
 - $3000 = 180/r[(1+r)^{n} 1]$

 $3/2 = (1+r)^n$

- 3000 = 180/r[3/2 1]
- r = 180/3000[1/2] = 0.03

Interest rate = 3%

Option D

12. $PV = 1800/0.03[1 - (1.03)^{-20}] = 60000[1 - 0.55362] = 26783$. Option A

13. R/100 = 2000/50000 = 0.04. R = 4%. Option C

- 14. Amount required = 52000 * 1.25 2500 = 62500 $62500 = A/.035[(1.035)^{25} - 1] = A(39.0257)$
 - A = 62500/39.0257 = 1602. Option C
- 15. $FV = 10000/0.10 [(1.1)^9 1] = 100000[2.2583 1] = 125830$. Option C Enterpr

16. Value = 4000/0.08 = 50000. Option C

- 17. R/100 = 1000/12500 = 0.08. R = 8%. Option B
- 18. Value = 500/0.06 = 8333 PV of Value = 8333/(1.06)¹⁰ = 8333/1.791 = 4653. Option A
- 19. 10000 = X/0.04 [1 1/3.2434] = X(17.292)X = 10000/17.292 = 578.40. Option C
- 20. 30000 = X/0.05[1 0.6139] = X(7.722)X = 30000/7.722 = 3885. Option B
- 21. R/100 = 25/1000 = 0.025. R = 2.5%. Option C

22. 50000 = X/0.14[1 - 1/13.74349] = X(6.6231)X = 50000/6.6231 = 7549. Option A

23. Amount = $100/0.0075[(1.0075)^{60} - 1]$ $X = (1.0075)^{60}$ LogX = 60 log(1.0075) = 60[0.003245055] = 0.1947033 = Log 1.565681067X = 1.565681067Amount = 13333.33(1.565681067 - 1) = 7542. Option A 24. $20000 = P/0.04[1 - (1.04)^{-10}]$ Let X = (1.04)10Log X = 10 log(1.04) = 10(0.0170) = 0.170 = 4 - 3.83 = log 10000 - log 6761 = log1.4791 X = 1.479120000 = P/0.04[1 - 1/1.4791] = P(8.098)P = 20000/8.098 = 2470 **Option B** 25. Amount = 12000/0.005[(1.005)¹⁰ - 1] = 2400000(0.0511) = 122640. Option D Ada Enterprise

SELF ASSESSMENT TEST 7 INTEREST

24 Question, 24 Marks

1.	Mahesh lent Rs. 100000, partly at 12% and partly at 10% simple interest. After									
	three years	he got Rs.	31500 as t	otal simple	e interest.	How mu	uch did he	lend at the		
	12%?									
	a) 25000	b)	75000	c)	50000	d)	40000			
2.	At what ra	te will a si	um of mor	ney Rs. 205	000, becc	omes Rs.	410000 v	vith simple		
	interest in 2	20 years?								
	a) 5%	b)	6.67%	c)	5.5%	🕑 d)	7.14%			
3.	A sum of m	ioney amol	unts to Rs.	44700 in 1	4 years at	8.33%	simple inte	erest. When		
	will it doub	le itself at	the same I	rate?		9				
	a) 16 year	s b)	12 years	c)	11 years	d)	17 years			
					2 .01	150				
4.	A sum of R	s. 57000 is	lent out ir	two parts	A and B i	n such o	ı way that	interest on		
	A @ 8% pe	er annum s	imple inter	rest for 5 y	ears is eq	ual to tl	nat on B a	t 0.5% per		
	annum sim	-ple intere	st for 15 ye	ears. Find th	ne value o	of A.				
	a) 9000	b)	6000	c)	48000	d)	45000			
5.	In what tim	ie will Rs. 4	,500 amou	unt to 22,50	00 at 4% p	per annu	ım simple i	interest?		
	a) 50	b)	60	c)	110	d)	100			
6.	Mr. M takes	a loan of I	Rs. 525000	at 4% p.a.	Compour	nd Intere	st from Mr.	. J. He pays		
	Mr. J Rs. 25	0000 at th	e end of 1s	st year. Hov	v much sh	ould he	pay at the	end of the		
	2nd year in	order to cl	ear his due	es?						
	a) 300000	b)	300800	c)	307840	d)	370480			
7.	A person bo	ought a rob	ot under th	e following	scheme:	Down pc	iyment of F	Rs. 150,000		
	and the res	t amount o	it 8% per o	innum for 2	years. In	this way	ı, he paid F	Rs. 289,200		
	in total. Fin	d the actua	al price of	the robot. (Assume si	mple int	erest).			
	a) 270000	b)	300000	c)	280000	d)	275000			

J.K. SHAH [®]								
CLASSES								
a Veranda Enterprise								

av	anda Enterprise								
8.	Manohar B	haiya borr	ows Rs.	140,000 at	simple	interest fr	om the vi	llage co-	
	operative s	ociety banl	<. At the	end of 3 ye	ars, he c	again borre	ows Rs. 60),000 and	
	closes his a	ccount afte	er paying F	Rs. 92,300 a	s interest	: after 8 ye	ars from th	ne time he	
	made the fi	irst bor-rov	wing. Who	at is the sim	ple intere	est rate of	interest cl	harged by	
	the bank?								
	a) 6.5%	b)	5.5%	c)	5%	d)	7%		
9.	At R% per o		-	-		n Rs. X for	20 years is	s equal to	
	4/9 th of its								
	a) 4%	b)	5%	c)	4.5%	d)	6.5%		
10.	Rs. X lent o	ut at comp	ound inte	erest amoun	ts to Rs.	484000 in	2 years at	10% p.a.	
	Find X.					®			
	a) 400000	b)	410000	c)	390000	d)	380000		
			•• • • • •	-					
11.	A sum of mo	-							
	how many y	-						n interest?	
	a) 10	b)	8	c)	12	d)	1/		
4.2				- 9 	nl				
12.							•		
	years. In ho	w many ye	ars will th	ie ratio of th	ie princíp	at to the co	ompound i	nterest be	
	1:3?	L- \	3	\	0	. ۱۱	7 F		
	a) 6	b)	5	C)	8	d)	1.5		
10	Dc 1 25 004	O placed =1	COMPOSIT	d interest h	0000000	C 250000	in 2 years	@ D0/	
13.	Rs. 1,25,000	· · · · · · · · · · · · · · · · · · ·	· · ·					<u> </u>	
	annum com	•						000000?	
	a) 9 years	b)	10 years	C)	11 years	s (1)	7 years		
17	Rc M arous	tun to Par (30000 :) ure and	to Po O	5000 in 2 m		or appure	
14.	Rs. M grows	-			υ ιυ κs. δ!	2000 IU 3 À	л э ш к % р		
	compound i a) 6.25%	b)	6%		6.75%	۲۷	5.5%		
	uj 0.23%	(U	070	C)	0.13%	α)	70 و. ي		
1 ⊑		of monor	drowe his	to Pc 96/0	0 in 2 ··-	are and	oto Po 10	3680 10 2	
15.	An amount		· ·				μιο κς. 10		
	years on col a) Rs. 5100		Rs. 6100		m: Rs. 5800	<u>)0 4,</u>	Rs. 60000		
	uj 13. 510	00 b)	115. 0100	C)	113. 3000	ω α)	1.3. 00000		

	<u>J.</u>	K. SHAH				CA FO	UNDATION - N	MATHEMATICS
	al	dranda Enterprise						
	16.	The difference be	tweer	n Compound intere	est d	and simple inte	erest on a ce	rtain sum of
		money is Rs. 400	for fi	rst two years and	Rs.	1220 for first t	hree years. F	ind the sum,
		if the rate is same	e in b	oth the cases.				
		a) 6400	b)	8000	c)	12000	d) 9400	
	17.	The Compound In	teres	t @ R% per annun	n or	n a certain sum	of money Rs	s. X for 2 yrs.
		is Rs. 357 and the	Sim	ple Interest on the	san	ne sum of mon	ey Rs. X at th	ne same rate
		of in-terest is Rs.	350.	What is the value	e of I	R?		
		a) 4%	b)	5%	c)	4.5%	d) 5.5%	
	18.	The value of a res	sident	tial flat constructe	ed a	t a cost of Rs. 1	15,00,000 is	depreciating
				annum. Find its va				
		a) 12,42,150	b)	12,50,000		12,75,850		
				_ , ,			- • • •	
	19.	A money lender b	orro	ws a sum from ma	arke	t at 3% per an	num simple	interest and
_				person at 6% per				
				ofit of Rs. 618, the				-
		lender.						y the money
		a) Rs. 25,000		1/6		Rs. 20,000		
		c) Rs. 18,000			<u>d)</u>	Can't he deter	mined	
				- dna	- u,	Rs. 20,000 Can't be deter		
	20.	The simple intere	st on	a certain sum of r				annum is Re
	20.			the compound in				
		time?				St ut the sum		
					<u>لم</u>	Pc 2/07 20		
		a) Rs. 3507.80				Rs. 3407.20		
		c) Rs. 3207.20			a)	Rs. 3307.20		
	21	What would be t		interact		2- 10000 for t		C the works of
	21.			mpound interest				
			r the	first year, 6% for			10 /% TOT THE	e thira year?
		a) Rs. 1900.10			-	Rs. 1919.10		
		c) Rs. 1909.10			d)	Rs. 1809.10		
	22.	Rs. 4000 becomes			:α c	ertain rate of a	compound in	terest. What
		will be the sum a	t the	end of 12 years?				
		a) Rs. 7812.50				b) Rs. 7612.50)	
		c) Rs. 7712.50				d) Rs. 7512.50)	

23.	Simple interest	on a si	um for 3 years o	at any rate of interes	t is Rs. 225 while comp	ound
	interest on the	same s	sum at the san	ne rate for 2 years i	s Rs. 153. Find the sum	n and
	rate percent.					
	a) Rs. 1875, 40	%		b) Rs. 1875	, 5%	
	c) Rs. 1785, 40	%		d) Rs. 1785	, 5%	
24.	A man borrows	Rs. 60	00 at 10% con	npound rate of inter	est. At the end of each	year
	he pays back Rs	5. 2000). How much ar	mount should be po	y at the end of third ye	ar to
	clear all his due	es?				
	a) Rs. 3636	b)	Rs. 3663	c) Rs. 3366	d) None of the ab	ove
				Ē)	
-					/	
					9	
-			C			
-				19ri	E	
				S Enterpris		
				10 FIL		
			L.J.al	0-		
 -		$\overline{\mathbf{O}}$				
			0			
 -						
 -						
 _						
1						

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	EXPLANATORY ANSWERS
1.	X * 0.12 * 3 + (100000 - X) * 0.10 * 3 = 31500
	0.36X + 30000 - 0.30X = 31500
	0.06X = 1500
	X = 25000; Option A
2.	410000/205000 = 2; Doubled; Rate = 100/20 = 5%. Option A
3.	Time = 100/8.33 = 12 years. Option B
	®
4.	A * 0.08 * 5 = (57000 - A) * 0.005 * 15
	0.4A = 4275 - 0.075A
	A = 4275 / 0.475 = 9000; Option A
	G D F .ce
5.	22500 - 4500 = 18000 = 4500 * 0.04 * T T = 18000/180 = 100 years; Option D
	T = 18000/180 = 100 years; Option D
6.	525000 * 1.04 = 546000 - 250000 = 296000 × 1.04 = 307840. Option C
	31
7.	150000 + X(1.16) = 289200
	X = 120000; Actual price = 150000 + 120000 = 270000; Option A
8.	140000 * R/100 * 3 + 200000 * R/100 * 5 = 92300
	4200R + 10000R = 92300
	R = 6.5%; Option A
9.	X * R/100 * 20 = 4X (1 + 20R/100)/9
5.	9R/5 = 4 + 4R/5
	R = 4, Option A
10.	$484000 = X (1.1)^2$
	X = 484000/1.21 = 400000; Option A

al	dranda Enterprise
11.	Doubles = 5 years, Four times = 5 * 2 = 10 years. Option A
12.	Double 3 years
	1:3 means Sum now becomes 4 times.
	Four times 3*2 = 6 years; Option A
13.	Double 3 years
	Eight times = 3*3 = 9 years; Option A
14.	5000 = 80000 * R/100
	R = 5000/800 = 6.25%; Option A
15.	(103680 - 86400) = 17280 = Interest on 86400 for 1 years
	R = 17280 / 86400 * 100 = 20%
	P = 86400 / (1.2)2 = 60000
	Option D
16.	PII = 400
	PII = 400 900 PII (I/100 + 3) = 1220 900 I/100 = 0.05 900 I = 5% 900 P (25/100) (25/100) = 400
	I/100 = 0.05
	I = 5%
	P (25/100) (25/100) =400
	P = 400 * 4 * 4 = 6400
	Option A
17.	X * R/100 * R/100 = 7
	2X * R/100 = 350
	XR/100 = 175
	175 * R/100 = 7
	R = 4
	Option A
18.	Value = 1500000 (1 - 0.09) ² = 1242150.
	Option A

a V	ASSES Granda Enterprise
9.	3% pa CI is equivalent to (1.03)² – 1 = 6.09% pa SI
	Profit = 3.09% = 618
	100% = Sum borrowed = 618/3.09% = 20000. Option B
20.	P = 3120 / 24% = 13000
	$CI = 13000 [(1.12)^2 - 1] = 13000 * 0.2544 = 3307.20.$
	Option D
21.	CI = 10000 [(1.05)(1.06)(1.07) - 1] = 10000 * 0.19091 = 1909.10. Option C
22.	In 4 years amount increases by 1000/4000 * 100 = 25%
	In next 4 years 5000 shall become 5000 * 1.25 = 6250
	In next 4 years 6250 shall become 6250 * 1.25 = 7812.50
	Option A
23.	Simple interest for 1 year = 225/3 = 75
	Thus CI for 2 years = 75 + 75 + 75*R% = 153
	75 * R/100 = 3
	R = 300/75 = 4%
	P = 225/12% = 1875; Option A
	, diana
24.	Year 1 - 6000 * 1.10 = 6600 - 2000 = 4600
	Year 2 - 4600 * 1.1 = 5060 - 2000 = 3060
	Year 3 - 3060 * 1.1 = 3366
	Option C

•

•

CA FOUNDATION - MATHEMATICS

SEQUENCES AND SERIES (PROGRESSIONS)

PART A - THEORY


- A sequence is defined as an array of numbers in such a manner so that there is a similarity in a given array, which enables us to determine the term or terms preceding or succeeding to such an array.
- A sequence can be categorized into 3 parts:
 - a) Arithmetic Progression
 - b) Geometric Progression
 - c) Harmonic Progression

	Arithmetic Progression	Geometric Progression
 Definition	Series which increases or	Series which increases or
 -	decreases by a fixed quantity	decreases by a fixed proportion
First Term	а	а
 Constant	Common Difference = d	Common Ratio = r
Last Term	$l = t_n = a + (n-1)d$	$l = t_n = a \cdot r^{n-1}$
 Sum	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	$S_n = a \cdot \frac{1 - r^n}{1 - r} \text{when } r < 1$
	$S_n = \frac{n}{2} \left(a + l \right)$	$S_n = a \cdot \frac{r^n - 1}{r - 1}$ when $r > 1$
		, 1

If three numbers are in G.P., their Logarithms are always in A.P.

Infinite GP Series

$$a + ar + ar^2 + ar^3 + \dots \alpha = \frac{a}{1-r}$$
 given $|r| < 1$

Sum of Natural Numbers:

$$\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2 = \frac{n^2(n+1)^2}{4}$$

Harmonic Progression(H.P)

- Three numbers are in H.P, If their reciprocals are in A.P
- a,b,c are in H.P , if $\frac{1}{a} \frac{1}{b} \frac{1}{c}$ are in A.P.
- H.P fails when one of the terms of the A. P is Zero.

$$t_n$$
 of HP= $\frac{1}{t_n$ of the crresponding A.P

Concept of A.M , G.M and H.M

If a & b are any unequal real positive numbers then,

	70.			
	A.M(A)	G.M(G)	H.M(H)	
Definition	$\frac{a+b}{2}$	$+\sqrt{ab}$	$\frac{2ab}{a+b}$	
Relation	i) A >	G >	H	
	ii) $A imes H$	$= G^2$		

Things to remember
• The ratio of the sum of X number of A.Ms to the sum of Y number of A.Ms is always X : Y
Two numbers can have more than one A.M/G.M/H.M
A.Ms/G.Ms/ H.Ms are also the members of A.P/G.P/ H.P

			CLASSWORI	K SECTION	
ARI	THMETIC PROGRESSI	ON			
Cho	ose the most appi	ropric	ite option (a), (b), (c) or (d).	
1.	The nth element	of se	quence 5, 7, 9, 11	is	
	(a) 3n + 2	(b)	n + 4	(c) 2n + 3	(d) none of these
2.	lf -17, -13, -9, .	in	the progression th	ien t ₁₀ =	
	(a) 41	(b)	43	(c) 40	(d) 19
3.			gression –1, –3, –		
	(a) 27 th	(b)	29 th	(c) 39 th	(d) none of these
4.			ies 7 + 11 + 15 + .		
	(a) 116	(b)	190	(c) 119	(d) 125
		2 9	$, 6, \frac{15}{2} \dots$ is	G ise	
5.	The 10th term in	<u>, 2</u>	$\frac{1}{2}$ is	-rerollie	
_	() 22		33	33	(1) 22
	(a) 33	(b)	2	(c)2	(d) -33
6	If the ninth tarm	C.	AD is 20 than S		
6.			AP is 30 then S_{17}		E10 (d) 10E
	(a) 150	(D)	501	(c)	510 (d) 105
7.	The a th term of a	nΔP	is b and b th term is	s a. Then c th term o	f it is
1.	(a) $a + b + c$			(b) b + a - 2c	
	(c) $a + b + c/2$			(d) a + b - c	
8.	Third term of an	AP is	8 and the 17th te	rm is 51/2. The 23	rd term is
	(a) 37		33	(c) 41	(d) 31
9.	The n th term of th	he sei	ries whose sum to	n terms 3n ² + 2n is	5
	(a) 3n - 1	(b)	8n – 2	(c) 11n – 3	(d) none of these
10.	If 3 consecutive t	terms	of AP are K + 2, 4	K – 6 and K – 2 the	en k =
	(a) 1	(b)		(c) 3	(d) none of these
			161		

av	erana	d Enterprise				
11.	The	16th term of o	an AF	is 99 and commo	on difference is 8 th	nen S ₂₁ is:
	(a)	1230	(b)	1290	(c) 1239	(d) 1293
12.	The	sum of all ode	d nur	nbers between 10	0 and 200 is	
	(a)	6200	(b)	6500	(c) 7500	(d) 3750
13.	The	sum of all pos	sitive	integral multiples	s of 3 less than 100	0 is
	(a)	1584	(b)	1665	(c) 1683	(d) none of these
14.	The	sum of all nat	tural	numbers from 10	0 to 300 which are	exactly divisible by 4 or
	5 is					
	(a)	10200	(b)	15200	(c) 16200	(d) none of these
					®	
15.	The	sum of all nu	mber	s between 400 an	d 900 which are di	visible by 13 is
	(a)	22504	(b)	29405	(c) 25402	(d) 25350
					/9	
16.	The	4 arithmetic n	nean	s between – 2 and	1 23 are	
	(a)	3, 13, 8, 18			(b) 18, 3, 8, 13	
	(c)	3, 8, 13, 18		/9	(d) none of these	
17.	The	r th term of AP	is (3r	1)/6. The sum o	of first p terms of t	he series is
	(a)	n(3p + 1)		3V.	(b) (p/12) (3p + 1)	
	(c)	(p/12) (3p - 1)		-	(d) none of these	
18.	A su	um of Rs. 6240	is po	id off in 30 install	ments such that ea	ach installment is Rs. 10
	moi	re than the pre		-	e value of first inst	allment is
	(a)	Rs. 36	(b)	Rs. 30	(c) Rs. 60	(d) none of these
19.				rm of an AP are -	-4 and 146. The su	m of the terms is 7171.
		number of ter	ms			
	(a)	101	(b)	100	(c) 99	(d) none of these
		RS QUESTIONS				
20.	The	sum of all nat			100 and 1000 wh	ich are multiple of 5 is
	(a)	98450	(b)	96450	(c) 97450	(d) 95450

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

av	reranaa Enterprise					
21.	On 1st January	every	y year a person b	ouys national savi	ng certifica	ites of value
	exceeding that o	f his	last years purchas	se by Rs. 100. Afte	r 10 years	he finds that
	the total value o	f the	certificates purcha	ased by him is Rs.	54500. Find	the value of
	certificates purch	ased	by him in the first	year		
	(a) 6000	(b)	4000	(c) 5000	(d)	5500
22.	If in an AP, Tn rep	reser	nt nth term $t_7 : t_{10}$	= 5 : 7 then t ₈ : t ₁₁	=	
	(a) 13:16	(b)	17:23	(c) 14 : 17	(d) 15 : 19	
23.	If sum of 3 arithm	netic	means between 'a	' and 22 is 42 ther	'α' =	
	(a) 14	(b)	11	(c) 10	(d) 6	
24.	If each month Rs.	. 100	increases in any s	um then find out tl	ne total afte	er 10 months
	if the sum of first	mor	th is Rs. 2000.			
	(a) 24500	(b)	24000	(c) 50000	(d)	60000
				10/9		
25.	The 4th term of A	AP is	three times the firs	st term and the 7tl	n term exce	eds twice the
	third term by 1.	Find	the first term 'a' ar	nd common differe	nce 'd'.	
	(a) a = 3, d = 2		/9	(b) a = 4, d = 3		
	(c) a = 5, d = 4		P A	(d) a = 6, d = 5		
			Verandi			
GEO	METRIC PROGRESSIC	DN	ave.			
26.	The last term of	the se	eries 0.5, 1, 2, 4	. to 8 term is		
	(a) 64	(b)	128	(c) 512	(d) none of	f these
27.	Sum of three nur	nbers	s x, y, z are in a GP	is 39 and their pr	oduct is 729	9. The values
	of x, y, z are					
	(a) 3, 27, 9	(b)	9, 3, 27	(c) 3, 9, 27	(d) none of	f these
 28.	If x, y, z are in GP	, and	xyz = 27/8. The vo	alue of y is		
	(a) 3/2	(b)	2/3	(c) 2/5	(d) none of	f these
 29.	The value of thre	e nur	nbers in GP, so tha	t their sum is (57/2	2) and produ	uct is 729 are
	(a) 2, 9, 27			(b) 6, 9, 27/2		
	(c) 4, 16, 64/3			(d) none of these		

	.11	K SHAH [®]					
		ASSES Vanda Enterprise			CA FO	UNDATION -	- MATHEMATICS
_		A ball is dropped	d fror	n a height of 48 ı	n and rebounds t	wo third o	f the distance
				o fall and rebound			
		coming to rest					
		(a) 240 m	(b)	260 m	(c) 380 m	(d) none	
	31.	If a, b, c are in GP	?, a ^p =	$b^{q} = c^{r}$ then 1/p,	1/q, 1/r are in		
		(a) AP	(b)	GP	(c) HP	(d) none o	of these
	32.	If x, y, z are pth, a	qth a	nd rth terms of a (GP then the value	of x ^{q-r} y ^{r-p} z	z ^{p-q} is
		(a) 0	(b)	1	(c) -1	(d) none (of these
							2 2
	33.	Let A be the A.M o	and G	G_1 , G_2 be two GMs b	etween two positiv	ve numbers	s. Then $G_1^3 + G_2^3$
		is equal to			8		
_		(a) $2AG_1G_2$	(b)	AG_1G_2	(c) (AG ₁ G ₂)/2	(d) none	
					1		
_	34.	If the pth term of			2-		<u></u>
_		(a) 25	(b)	22	(c) 23	(d) none o	of these
_	25		1.11		9 0115		
_	35.	If the first term a				1/2 respect	lively and sum
_		of its n terms is e	quat	to 255/1. The value	of n is		
_		(a) 6	(b)	5	(c) 8	(d) none (ofthoso
_		(u) 0		3	(C) 8	(u) none (
_	36	If 'S' be the sum 'I	D' the	product and 'R' th	e sum of the recip	procals of n	terms in a GP
	50.	then 'P' is of		·			
		(a) Arithmetic me			(b) Geometric me	ean	
		(c) Harmonic me			(d) none of these		
	37.	The sum of 3 nur	nbers	s in A.P. is 15. If 1	, 4 and 19 added	to them re	espectively the
		results are in G.P.					
		(a) 26, 5, -16	(b)	2, 5, 8	(c) 5, 8, 2	(d) both (a) and (b)
	38.	Given x, y, z are ir	n GP,	$x^{p} = y^{q} = z^{\sigma} \operatorname{then} \frac{1}{p}$	$\frac{1}{\alpha}, \frac{1}{\alpha}$ are in		
				р_	ч О		
		(a) AP			(b) GP		
		(c) Both AP and	GP		(d) none of these		
				164			

a	dranda Enterprise				
39.	If $x = a + a/r + a$	/r ² + .	∞, y = b − b/r +	$b/r^2 - \ldots \infty$; z = 0	$c + c / r^2 + c / r^4 + \infty$,
	then value of (xy	/)/z-((ab)/c is		
	(a) 0	(b)	1	(c) -1	(d) none of these
40.	The value of S =	2/3 +	5/9 + 2/27 + 5/81	+ to infinite t	erms is
	(a) 11/8	(b)	8/11	(c) 3/11	(d) none of these
 41.	The third term of	f GP is	2, the product of	first five term is	
	(a) 2 ⁵	(b)	2 ³	(c) 5 ³	(d) none of these
 PAST	YEARS QUESTIONS				
 		a ⁿ⁺¹	+b ⁿ⁺¹		
 42.	Find n such that		—— may be th + b ⁿ	e geometric mean	between a and b
	(-) 1/2			(-) (1)	
	(a) 1/2	(b)	1	(c) -1/2	(d) 0
 1.2	If the first terms	of a CI) avgaads the sace	nd torm by 2 and	the cum to infinity is EQ:
 45.	the series is		exceeds the seco		the sum to infinity is 50;
	the series is		19	- atern.	
	(a) 10, 8, $\frac{32}{5}$.			(b) 10, 8, $\frac{5}{2}$,	
	5		L'i'dua	2	
 	(c) $10, \frac{10}{3}, \frac{10}{9}, \frac{10}{9}$	\mathcal{O}		(d) none	
	3 9		-0-		
44.	In a GP if the (p +	+ q)th	term is m and (p -	- q) th term is n ther	n pth term is
	(a) mn	(b)	√mn	(c) m ²	(d) n²
					1 1
45.	If G be geometri	ic mea	in between a and	b then the value	of $\frac{1}{G^2 - a^2} + \frac{1}{G^2 - b^2}$ is
	equal to				
	(a) G ²	(b)	3G ²	(c) 1/G ²	(d) 2/G ²
46.			3, 243 ^{1/6} , 243 ^{1/36} , .		
	(a) 1024	(b)	27	(c) 729	(d) 246
 , 7			2 3 n.		
 47.	Geometric mean	ot p, p	$p^{2}, p^{3}, \dots p^{n}$ be $p^{\frac{n}{2}}$	$\frac{(n+1)}{2}$	(d) none of these
	(u) p ^m	(D)	p ²	(C) M	(d) none of these
			–		

J.K. SHAH®
CLASSES
a Veranda Enterprise

	d٧	eranda Enterprise			
	48.	A GP (Geometric Progress	ion) consists of 2r	n terms. If the sum	n of the terms occupying
		the odd places is ${\rm S_1}$ and t	that of the terms	in even places is S	S ₂ . The common ratio of
		the progression is			
		(a) n (b) 25	S ₁ (c) $\frac{S_2}{S_1}$	(d) $\frac{S_1}{S_2}$
				J 1	J 2
	SPEC	IAL SERIES			
	49.	The sum of 'n' term of the	e series 1x4 + 3x7	′ + 5×10 +	
		(a) $\frac{n}{2}[5n^2 + 4n - 1]$		(b) $\frac{n}{2}[4n^2 + 5n]$	- 1]
		2		Ζ	
		(c) $\frac{n}{2}[4n^2 + 5n + 1]$		(d) None	
	50.	7+77+777+ n t	terms is equal to	R	
	•				
_		(a) $\frac{7}{9} [10^{n+1} - 10] - \frac{7n}{9}$		(b) $\frac{7}{9}[10^{n+1} - 1]$	$[0] + \frac{7n}{2}$
_		··· 9 · · · 9		9 ¹	- 9
_		(c) $\frac{7}{81} [10^{n+1} - 10] - \frac{7n}{9}$		(d) $\frac{7}{-}$ [10 ⁿ⁺¹ - 1	$10] + \frac{7n}{2}$
_		, ₈₁ ₉		(b) $\frac{7}{9} [10^{n+1} - 1]$ (d) $\frac{7}{81} [10^{n+1} - 1]$	<u>-</u> 9
	51.	$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots n t$	erms is equal to	- rerpi.	
_	51.			Eur	
		(a) $\frac{n}{2n+1}$ (b) $\frac{n}{n+1}$		c) $\frac{1}{n+1}$	(d) None
_		(U) 2n+1 (D) n+1	- <u>19</u> (0, (C <i>j n</i> +1	
_	F 2	Sum of 'n' tarms whose t	$ic n^2 + 2^n$		
	52.	Sum of 'n' terms whose t	n IS II⁻ + ∠''		
		(n) n(n+1)(2n+1) + 2(2n)	1) /	b) $\frac{(n+1)(2n+1)}{6}$ + 2	$2(2^n 1)$
		(a) $\frac{n(n+1)(2n+1)}{6} + 2(2^n - 2)$	1) (D) $\frac{1}{6}$ + 2	2(2 - 1)
		$n(n+1)^2$,		
		(c) $\frac{n(n+1)^2}{6} + 2(2^n - 1)$	(d) None	
		DBAG			
	53.	If 10 times the 10th term	n of an A.P. is equ	ual to 15 times th	ne 15th term, then 25th
		term of the A.P. is			
		a) 1 b)) 25 c	c) O	d) -25
	54.	If the sum of p terms of a	n AP is same as tl	he sum of its q ter	ms, then the sum of the
		first (p + q) terms is:			
		a) 0 b) p	+ q	c) p – q	d) None of the above
			166		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

al	dra∩da Enterprise						
55.	If S_1 , S_2 , S_3 be t	he sum	s of n term	s of three	AP and th	e first term of e	each AP being
	1 and the respe	ective co	ommon diffe	erence are	1, 2, 3; th	en $S_1 + S_3 = ?$	
	a) S ₂	b)	3S ₂	c)	0.5S ₂	d) 25 ₂	
56.	An AP consists	of n ter	ms. If the su	um of its f	irst three t	terms is x and t	he sum of the
	last three term	s is y th	en the sum	of all the	terms of t		
	(a) $\frac{n}{6}(xy)$	(b)	$\frac{n}{6}(x+y)$	(c)	n(x+y)	(d) $\frac{n(x-y)}{6}$	
57.	300 trees are	planted	l in a regul	ar patterr	n in rows	in the shape o	f an isosceles
	triangle, the nu	Imbers	in the succes	ssive rows	diminishin	g by one from t	he base to the
	apex. How man	ny trees	are there ir	n the row,	which forn	ns the base of t	he triangle
	a) 30	b)	21	c)	27	d) 24	
58.	The first and th	e last t	erm of an A	P are "a" c	and "1" res	pectively. The s	um of n th term
	from the begin	ning an	d the n th ter	m from th	e end is:		
	a) a + 1	b)	a - 1	c)	a + 31	🥑 d) 2a + 1	
						e.e.	
59.	If the sums of I	n, 2n ar	nd 3n terms	of an AP	be S_1, S_2 a	nd S ₃ respective	ely, then show
	that $S_3 = ?$			6	nterr		
	a) $3(S_2 - S_1)$	b)	$(S_2 - S_1)$	C)	$2(S_2 - S_1)$	d) 3(S ₂ +	S ₁)
				200			
60.	If S _n be the sun	n of n co	onsecutive t	erms of a	n AP, then	the value of	
	$S_{n+3} - 3S_{n+2} + 35$	$S_{n+1} - S_n$	is:				
	a) 0	b)	1	c)	2	d) 3	
61.	The sum of firs		ns of two AP	are in the	e ratio (7n	+ 2) : (n + 4). Fir	nd the ratio of
	their 5th terms						
	a) 1:5	b)	5:1	c)	2:3	d) 3:2	
62.	31³ + 32³ + 33³	+ +					
	a) 2010000	b)	3025000	c)	2870000	d) 14094	00
63.	The common ro				f a G.P. are	e 3, 486 and 72	8 respectively.
	The first term o	-					
	a) 4	b)	6	c)	8	d) 2	

T 1										
	ASSES					CA FO	UNDAT	ION - M	ATHEMAT	TICS
 	/dranda Enterprise	101			·				·	1.1
 64.	When a certain					-				-
	of three-fifth t									t of
 	100 cm, how fo					-			n time ?	
 	a) 397 cm	b)	400 cm	C	c) 450 c	:m	d) 4	460 cm		
 65.	lf a, b, x, y, z a	re posit	ive number:	s such th	at a, x,	, b are in	AΡ; α	, y, b ar	e in GP o	and
	(a + b)z = 2ab,	then x,	y, z are in:							
	a. Arithmetic	Progres	sion	t). Geom	netric Pro	ogressi	ion		
	c. Harmonic F	rogress	sion	с	I. None	e of the a	bove			
66.	If S_1 , S_2 , S_3 be r	espectiv	vely the sun	n of n, 2r	n and 3r	n terms o	of a Gl	P, then		
	$S_{1}(S_{3} - S_{2}) - (S_{2})$	$_{2} - S_{1}^{2}$	is:							
	a) n	b)	2n	C	:) 3n	R	d) 0)		
67.	If "a" be the firs	st term,	, "b" the nth	term an	d "p" th	ne produc	et of th	he first r	n terms o	ofa
	GP, then which	of the f	following is	true?		19	2			
	a) p = ab			- t	o) p = (c	ab) ⁿ				
	c) $p^2 = (ab)^n$			5/	1) None	e of the a	lbove			
				79	nte	K				
 68.	The sum of 1st	six tern	ns of a G.P. i	s 9 times	s the sur	m of the	first th	nree terr	ms. Find	the
	common ratio.		V.10							
	a. 2	0	b. 3		. 4		d. 8	}		
 								· 		
 69.	The sum of the	e first t	three terms	of a G.I	. is to	the sum	of th	e first s	ix terms	as
 	125:152. Find t						_			
 	a. 0.40	b.	0.50		. 0.75		d. 0	0.60		
 70.	The first, tenth	and tw	ventv-eighth	term of	an AP (are three	succe	ssive ter	rms of a	GP.
 • • •	Find the comm									
 	is 210, find its								10 01 0112	
 	a. 2, 2	b.		(. 3, 2		d	- 7 2		
 	u. <i>L</i> , <i>L</i>		<i>L</i> , J				u.	5, 2		
 71	An air pump us	ad to a					-tonth	oftho	air at str	oko
 71.										
 	each stroke. Fir									oke.
 	a) 0.54899	b)	0.54999		2) 0.590	J49	a) u	0.60099		

J.]	K. SHAH	CA FOUNDATION - MATHEMATICS
 a V	dranda Enterprise	
 70	b+c $c+a$ $a+b$	
 12.	If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in AP, then $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are i	n :
 	a. Harmonic Progression	c. Geometric Progression
 	b. Arithmetic Progression	d. None of the above
 70		
(3.	If a^2 , b^2 , c^2 are in AP, the $\frac{a}{b+c}$, $\frac{a}{c+a}$, $\frac{a}{a+b}$ are i	
 	a. Geometric Progression	c. Both a) and b) above
 	b. Arithmetic Progression	d. None of the above
 	111	
74.	If a, b, c are in AP, then $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{c}+\sqrt{a}}, \frac{1}{\sqrt{a}+\sqrt{b}}$	are in:
	a. Geometric Progression	c. Arithmetic Progression
	c. None of the above	d. Harmonic Progression
75.	If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in AP, then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$	$\frac{1}{c}$ are in :
	a. Harmonic Progression	c. Arithmetic Progression
	b. Geometric Progression	d. None of the above
		Enteri
76.	Evaluate the following:	
	(i) $0.\overline{4}$ (ii) $0.\overline{42}$	(iii) 0.423 (iv)0.42
	(v) $0.4\overline{23}$ (vi) $0.42\overline{3}$	(vii) 7.42
77.	The ratio of the sum of x AM to y AM bet	ween two numbers is:
	a) $x : y$ b) $x^2 : y^2$	c) 1:1 d) None of the above
78.	If a, b, c are in GP and x, y be the arithmet	ic means between a, b and b, c respectively,
	then which of the following/s is/are true?	1 1 2
	(a) $\frac{a}{x} + \frac{c}{y} = 2$	(b) $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$
	(c) Both a) and b) above	(d) Neither a) nor b) is true

CA FOUNDATION - MATHEMATICS

HOMEWORK SECTION

1.	The nth element	of the	e sequence 1, 3, 5	, 7,is		
	(a) n	(b)	2n – 1	(c) 2n +1	(d)	none of these
2.	The nth element	of the	e sequence -1, 2,	-4, 8 is		
	(a) (−1) ⁿ 2 ^{n−1}	(b)	2 ⁿ⁻¹	(c) 2 ⁿ	(d) r	none of these
3.	$\sum_{i=4}^7 \sqrt{2i-1}$ can r	ne writ	tten as			
	(a) $\sqrt{7} + \sqrt{9} + \sqrt{9}$			(b) $2\sqrt{7} + \sqrt{9} + 2$	$\sqrt{11}$	$+ 2\sqrt{132}$
	(c) $2\sqrt{7} + \sqrt{9} +$	$2\sqrt{11}$	$+ 2\sqrt{132}$	(d) None of these		
				®		
4.				25,can be wr	itten	as
	(a) $\sum_{k=1}^{\infty} (-5)^k$	(b) 2	$\sum_{k=1}^{\infty} (5)^k$	(c) $\sum_{k=1}^{\infty} -5^k$	(d) I	None of these
				2/9	7	
5.	The first three te	erms o	f sequence when i	oth term t_n is $n^2 - 2$	2n are	9
	(a) -1, 0, 3	(b)	1, 0, 2	(c) -1, 0, -3	(d) r	none of these
			19	Enteri		
6.	Which term of th	ne pro	gression -1, -3, -			
	(a) 21 st	(b)	20 th	(c) 19 th	(d)	none of these
			- 2 V C			
7.	The value of x si	uch th	at 8x + 4, 6x - 2, 1	2x + 7 will form ar	AP is	5
	(a) 15	(b)	2	(c) 15/2	(d)	none of the these
8.	The m th term of	an A.	P. is n and n th term	n is m. The rth tern	n of it	: is
	(a) m + n +r	(b)	n + m – 2r	(c) m + n + r/2	(d)	m + n – r
				$-0^{2} + 0^{1} + 0 +$		
9.						ill amount to 155 is
	(a) 30	(b)	31	(c) 32	(d)	(a) and (b) both
10.				n terms is 5n ² + 2r		
	(a) 3n - 10	(b)	10n – 2	(c) 10n – 3	(d) r	none of these
11.	The 20 th term of		rogression 1, 4, 7,	10is		
	(a) 58	(b)	52	(c) 50	(d)	none of these

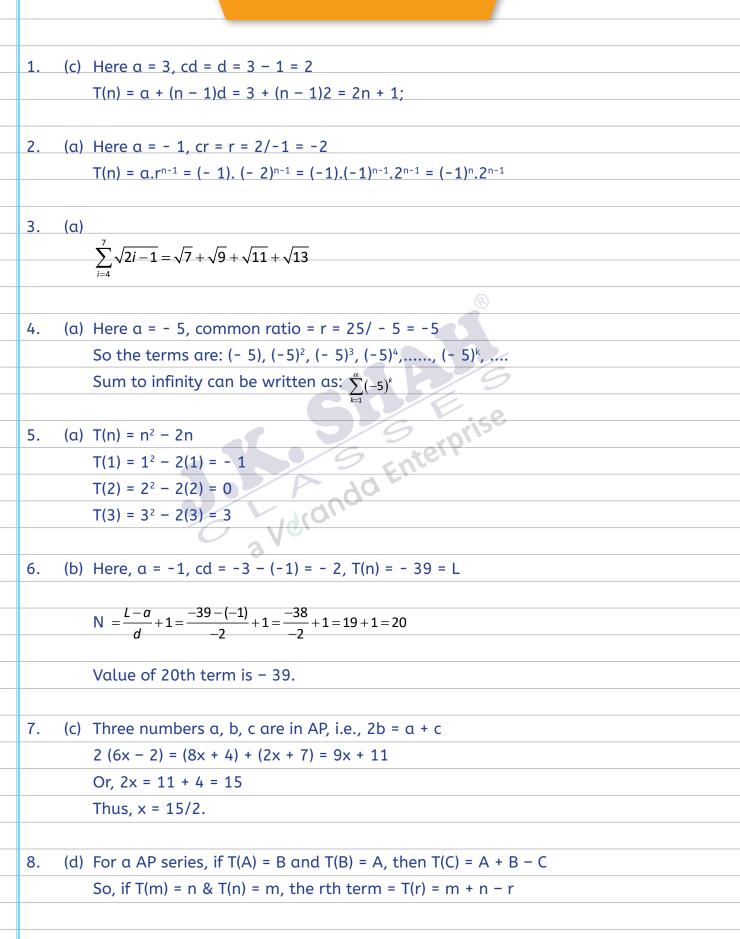
av	eranaa Enterpris	se					
12.	The last te	erm of th	ne se	ries 5, 7, 9, to	21 terms is		
	(a) 44		(b)	43	(c) 45	(d)	none of these
13.	The last te	erm of th	ne A.	P. 0.6, 1.2, 1.8,	to 13 terms is		
	(a) 8.7		(b)		(c) 7.7	(d)	none of these
14.	The sum o	of the ser	ries 9), 5, 1, to 100 te	erms is		
	(a) -18,9	00	(b)	18,900	(c) 19,900	(d)	none of these
15.	The two a	rithmeti	c me	ans between –6 a	nd 14 is		
	(a) 2/3, 1	/3	(b)	$2/3, 7\frac{1}{3}$	(c) -2/3, $-7\frac{1}{3}$	(d) N	lone of these
 16.	The sum o	of three i	nteg	ers in AP is 15 and	their product is	80. Th	e integers are
	(a) 2, 8, 5		(b)	8, 2, 5	(c) 2, 5, 8	(d)	8, 5, 3
17.	The sum o	of n term	s of	an AP is 3n² + 5n.	The series is	2	
	(a) 8, 14,	20, 26		61	(b) 8, 22, 42, 68	2	
	(c) 22,68	, 114,			(d) none of these	e	
				/9	Enteri		
18.	The numb	er of nu	mber	s between 74 and	25,556 divisible	by 5 is	;
	(a) 5,090		(b)	5,097	(c) 5,095	(d)	none of these
				3 V ~			
19.	The pth te	rm of ar	n AP	is (3p – 1)/6. The s			of the AP is
	(a) n (3n +				(b) n/12 (3n + 1	.)	
	(c) n/12 (3n – 1)			(d) none of these	е	
20.		netic me		etween 33 and 77			
	(a) 50		(b)	45	(c) 55	(d) n	one of these
21.			nean	s between -2 and			
	(a) 3, 13,				(b) 18, 3, 8, 13		
	(c) 3, 8, 1	3,18			(d) none of these	e	
22.							ns and the first ten
		equal in		gnitude but opposi			
	(a) $6\frac{4}{11}$		(b)	6	(c) 4/11	(d)	none of these

 al	/drand	a Enterprise					
23.	The	sum of a cer	tain	number of terms	of an AP series -8	3, -6,	, –4, is 52. The
	nur	nber of terms i	is				
	(a)	12	(b)	13	(c) 11	(d)	none of these
24.	The	first and the lo	ast te	erm of an AP are -	4 and 146. The su	m of	the terms is 7171.
	The	number of ter	rms is	5			
	α)	101	(b)	100	(c) 99	(d)	none of these
25.	The	sum of the se	ries 3	31/2 + 7 + 101/2 + 14	+ to 17 terms is	S	
	(a)	530	(b)	535	(c) 535 ¹ ⁄ ₂	(d)	none of these
26.	The	e 7 th term of th	ne ser	ries 6, 12, 24,	is		
	(a)	384	(b)	834	(c) 438 🛞	(d)	none of these
27.	t ₈ o	f the series 6,	12, 2	4, is			
	(a)	786	(b)	768	(c) 867 9	(d)	none of these
				6	V		
28.	t ₁₂ (of the series -:	128,	64, −32, …is	9 rorise		
	(a)	- 1/16	(b)	16 9	(c) 1/16	(d)	none of these
29.	The	4th term of th	ne se	ries 0.04, 0.2, 1,	. is		
	(a)	0.5	(b)	1/2	(c) 5	(d)	none of these
				-			
30.	The	last term of t	he se	ries 1, 2, 4, to 1	0 terms is		
	(a)	512	(b)	256	(c) 1024	(d)	none of these
31.	The	last term of t	he se	ries 1, -3, 9, -27 u	up to 7 terms is		
	(a)	297	(b)	729	(c) 927	(d)	none of these
32.	The	last term of t	he se	ries x ² , x, 1, to	31 terms is		
	(a)	X ²⁸	(b)	1/x	(c) 1/x ²⁸	(d)	none of these
33.	The	sum of the se	ries -	-2, 6, -18, to 7	terms is		
	(a)	-1094	(b)	1094	(c) - 1049	(d)	none of these

äl	veranda Enterprise				
34.	The sum of the s	series 243, 81, 27, to	o 8 terms is		
	(a) 364	(b) $364\frac{13}{30}$	(c) $364\frac{1}{9}$	(d) I	None of these
35.	The sum of the s	series $\frac{1}{\sqrt{3}}$ + 1 $\frac{3}{\sqrt{3}}$ + (b) 9841	to 18 terms	is	
	(a) $\frac{9841(1+\sqrt{3})}{\sqrt{3}}$	(b) 9841	(c) $\frac{9841}{\sqrt{3}}$	(d) I	None of these
	v ~				
36.	The second term	of a G P is 24 and the	fifth term is 81. Th	ie seri	es is
	(a) 16, 36, 24, 5	54,	(b) 24, 36, 53,	•	
	(c) 16, 24, 36, 5	54,	(d) none of these	2	
 37.	The sum of 3 nu	mbers of a G P is 39 an	d their product is 7	729. T	he numbers are
	(a) 3, 27, 9	(b) 9, 3, 27	(c) 3 <i>,</i> 9, 27	(d)	none of these
			8		
 38.	In a G. P, the pro	oduct of the first three t	erms 27/8. The mi	ddle t	erm is
	(a) 3/2	(b) 2/3	(c) 2/5	(d)	none of these
			0/9	2	
39.	If you save 1 pais	se today, 2 paise the ne	xt day 4 paise the s	succee	eding day and so on,
	then your total s	savings in two weeks w	ill be		
	(a) ₹163	(b) ₹ 183	(c) ₹ 163.83	(d)	none of these
			0		
40.	Sum of n terms of	of the series 4 + 44 + 4	44 + is		
	(a) 4/9 { 10/9 (1	.0 ⁿ -1) -n }	(b) 10/9 (10 ⁿ -1) –n	
	(c) 4/9 (10 ⁿ -1)	-n	(d) none of these	5	
41.	Sum of n terms of	of the series 0.1 + 0.11	+ 0.111 + is		
	(a) (1/9) {n - (1	- (0.1) ⁿ)}	(b) (1/9) {n - (1-	(0.1) ⁿ)	/9}
 	(c) n- 1 - (0.1) ⁿ /	/9	(d) none of these	9	
42.	The sum of the fi	irst 20 terms of a G. P is	s 244 times the sur	n of it	s first 10 terms. The
	common ratio is				
	(a) ±√3	(b) ± 3	(c) √3	(d)	None of these
43.	Sum of the series	s 1 + 3 + 9 + 27 +is 3	64. The number of	terms	s is
	(a) 5	(b) 6	(c) 11	(d)	none of these

al	eranda Enterprise							
44.	The product of	of 3 numb	ers in G P	is 729 and the	sum of s	quares is	s 819. The number	S
	are							
	(a) 9, 3, 27	(b)	27, 3, 9	(c) 3 <i>,</i>	9, 27	(d)	none of these	
45.	The sum of t	he series 1	L + 2 + 4 +	8 + to n ter	m			
	(a) 2 ⁿ −1	(b)	2n – 1	(c) 1/	2 ⁿ - 1	(d)	none of these	
46.	The sum of t	he infinite	GP 14, - 2	2, + 2/7, - 2/4	9, + is	;		
	(a) $4\frac{1}{12}$	(b)	$12\frac{1}{4}$	(c) 12		(d) N	lone of these	
47.	The sum of t	he infinite	GP 14, - 2	2, + 2/7, - 2/4	9, + is			
	(a) $4\frac{1}{12}$	(b)	$12\frac{1}{4}$	(c) 12		(d)	none of these	
					P	9		
48.	The sum of t	he infinite	G. P. 1 - 1	/3 + 1/9 - 1/	27 + is			
	(a) 0.33	(b)	0.57	(c) 0.	75	(d)	none of these	
						9		
49.	The number	of terms t	o be taker			· will be a	8191 is	
	(a) 10	(b)	13	(c) 12	ror	(d)	none of these	
			\mathbb{R}^{2}	19 EN	(E.			
50.	Four geomet		between 4					
 	(a) 12, 36, 1	· /	192		2, 24, 108			
	(c) 10, 36, 1	08, 320	3	(d) no	one of the	ese		
 51.					5, 15 are	added to	o them respectively	,
	they form a (C · I	
	(a) 5,7,9	(b)	9, 5, 7	(c) 7,	5,9	(d)	none of these	
 F 2		. 1/2 . 1	102 . 4 102					
52.	The sum of 1 $(x) = 2/2$			•				
	(a) 2/3	(D)	3/2	(c) 4/	5	(d)	none of these	
F 2			novice 4	2/2 . //0 .	:-			
53.	The sum of					(.1)	none of the	
	(a) 1/3	(b)	3	(c) 2	13	(d)	none of these	
E/		o first to	o tormo of		nd the st	in to inf	inity of the covies :	
 54.				u u.r. 15 5/3 (ind the st	ann to In f i	inity of the series is	5
 	3. The comm (a) 1/2				2/2	(പ)	(b) $(c) $ $bc+b$	
 	(a) 1/3	(D)	2/3	(c) –	2/3	(d)	(b) & (c) both	

	J. CL	ASSES			•	CA FOUNDA	tion - Mathei	MATICS
_		dranda Enterprise						
	55.			and x, y, z are ir				
		(a) 0	(b)	-1	(c) 1	(d) r	none of these	
_								
_	56.			pers in G.P. is 70.			nultiplied eac	h by 4
		and the mean l	by 5, th	e products are ir	n AP. The num	bers are		
		(a) 12, 18, 40			(b) 10, 20,	40		
		(c) 40, 20, 10			(d) (b) & (c	:) both		
	57.	The sum of 3 nu	umbers	in A.P. is 15. If 1,	4 and 19 be	added to th	em respective	ly, the
		results are is G	. P. The	numbers are				
_		(a) 26, 5, -16	(b)	2, 5, 8	(c) 5, 8, 2	(d)	(a) & (b) both	
	58.	Given x, y, z are	e in G.P.	and $x^p = y^q = z^\sigma$,	then 1/p , 1/	q, 1/s are in		
		(a) A.P.			(b) G.P.			
		(c) Both A.P. a	nd G.P.		(d) none of	these		
						19		
	59.	If the terms 2x,	(x+10)	and (3x+2) be in	A.P., the valu	ie of x is		
		(a) 7	(b)	10	(c) 6	(d)	none of thes	se
				5/9	2 ENTE			
	60.	If A be the A.M.		positive unequa		and y and G	6 be their G. M	l, then
		(a) A < G	(b)	A>G	(c) $A \ge G$	(d) $A \leq G$	
				3				
	61.	The A.M. of two	o positiv	ve numbers is 40	and their G.	M. is 24. The	e numbers are	9
		(a) (72, 8)	(b)	(70, 10)	(c) (60, 20)	(d)	none of thes	se
	62.			.P. and their sum		+ be added t	o them respec	ctively,
				?. The numbers a				
		(a) 2, 6, 7	(b)	4, 6, 5	(c) 3, 5, 7	(d)	none of the	se
	63.			ers in G. P. is 60	and the A.M.	. of the first	and the last	is 18.
		The numbers a					(1)	
		(a) 4, 8, 16, 32	(b)	4, 16, 8, 32	(c) 16, 8, 4	+, 20	(d) none of t	hese
	64.			l off in 30 instalr) more
		•		stallment. The v				
		(a) ₹36	(b)	₹ 30	(c) ₹ 60	(d)	none of the	se


al	dranda Enterprise						
65.	The sum of 1.0)3 + (1.0	3) ² + (1.03) ³	+ to n terms is	5		
	(a) 103 {(1.03)	ⁿ - 1}		(b) 103/3 {(:	1.03) ⁿ - 1}		
	(c) (1.03) ⁿ −1			(d) none of	these		
66.	lf x, y, z are in	A.P. and	x, y, (z + 1) ar	e in G.P. then			
	(a) $(x - z)^2 = 4z$	×		(b) z ² = (x -	у)		
	(c) z = x - y			(d) none of	these		
67.	The numbers x	, 8, y are	in G.P. and th	e numbers x, y, –	8 are in A.P.	. The value of x and	d
	y are						
	(a) (-8, -8)	(b)	(16, 4)	(c) (8, 8)	(d) (d	a) & (b) both	
68.	The nth term c	of the se	ries 16, 8, 4,	in 1/2 ¹⁷ . The vo	alue of n is		
	(a) 20	(b)	21	(c) 22	(d) n	one of these	
69.				irst terms is 1 ar	nd the comr	mon ratio is 1/2 , i	S
	equal to $1\frac{127}{128}$.	The val	ue of n is				
	(a) 7	(b)	8	(c) 6	(d) n	one of these	
				(c) 6 Enterp			
70.	t ₄ = x, t ₁₀ = y a			Then			
	(a) x ² = yz	(b)	z² = xy	(c) $y^2 = zx$	(d)	none of these	
			- 2 V U				
71.	If x, y, z are in	G.P., the	n				
	(a) $y^2 = xz$			(b) y (z² + x²	z^{2}) = x (z^{2} +	y²)	
	(c) 2y = x+z			(d) none of t	these		
72.	The sum of all	odd nur	mbers betwee	n 200 and 300 is			
	(a) 11,600	(b)	12,490	(c) 12,500	(d)	24,750	
73.	The sum of all	natural	numbers betv	veen 500 and 10	00 which ar	re divisible by 13, i	S
	(a) 28,405	(b)	24,805	(c) 28,540	(d)	none of these	
74.	If unity is adde	ed to th	e sum of any	number of terms	s of the A.F	2. 3, 5, 7, 9, th	e
	resulting sum i	is					
	(a) 'a' perfect	cube		(b) 'a' perfea	ct square		
	(c) 'a' number			(d) none of t	these		

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	75.		natural num	nbers from 1	00 to 300 whic	h are exactly divisible by 4 or	
		5 is					
		(a) 10,200 (b)	15,200		(c) 16,200	(d) none of these	
	76.	The sum of all n	atural num	bers from 10	0 to 300 which	are exactly divisible by 4 and	
		5 is					
		(a) 2,200	(b) 2,0	00	(c) 2,220	(d) none of these	
	77.	A person pays ₹	5 975 by mo	onthly instal	ment each less	s then the former by ₹ 5. The	
		first instalment	is ₹ 100. Th	e time by wh	nich the entire	amount will be paid is	
		(a) 10 months (b) 15 mont	hs	(c) 14 month	s (d) none of these	
	78.	A person saved	₹ 16,500 in	ten years. In	each year afte	rthe first year he saved ₹ 100	
						of money he saved in the 1st	
		year was					
		(a) ₹ 1000	(b) ₹15	500	(c) ₹ 1200	(d) none of these	
_			(10) (11)				
_	79	At 10% (L p.g.	a sum of m	nonev accum	ulate to ₹ 962	5 in 5 years. The sum invested	
	13.	initially is	a sum or m		eluce to C 502.	s in 5 years. The sam invested	
_		(a) ₹ 5976.37	(b) ₹ 59	70	(c) ₹ 5975	(d) ₹5370.96	
_		(0, 10010101					
_	80.	The population	of a country	was 55 cro	res in 2005 and	d is growing at 2% p.a C.I. the	
_	00.		0.				
_		population is th			(c) 67.00	(d) none of these	
_		(a) 57.05	(b) 60.0	05	(C) 67.00	(a) none of these	
_							
_							
_							
_							
_							
_							
_							

HOMEWORK SOLUTIONS

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

 aveiu	ndd Enterprise
9. (d) A = 10, D = 29/3 - 10 = - 1/3, S(n) = 155
	$155 = \frac{n}{2} \left[2A + (n-1)D \right] = \frac{n}{2} \left[20 - \frac{n-1}{3} \right] = \frac{n}{6} \left[61 - n \right]$
	$Or,930 = n(61-n); \therefore n^2 - 61n + 930 = 0, (n-30)(n-31) = 0$
	n = 30 or 31.
10. (c) $S(n) = 5n^2 + 2n$
	S(1) = T(1) = 5 + 2 = 7 = A
	S(2) = 20 + 4 = 24 = T(1) + T(2). $T(2) = 24 - 7 = 17$
	CD = D = T(2) - T(1) = 17 - 7 = 10
 	T(n) = A + (n - 1)D = 7 + (n - 1)10 = 10n - 3
 11. (a	A = 1, CD = 4 - 1 = 3, T(20) = A + 19D = 1 + 19(3) = 58.
 12. (c) A = 5, D = 7 - 5 = 2, T(21) = A + 20D = 5 + 40 = 45.
 13. (b) A = 0.6, D = 1.2 - 0.6 = 0.6, T(13) = A + 12D = 0.6 + 7.2 = 7.8.
 14. (a	A = 9, D = 5 - 9 = -4, S(100) = 100/2[18 - 99(4)] = 50[-378] = -18900.
 4.5 //	
 15. (b) $A = -6$, $T(4) = 14 = A + 3D$. Thus $D = 20/3$
	The two AM are (-6 + 20/3) = 2/3 and (2/3 + 20/3) = 22/3 = 7 1/3
 16. (c) or (d)
) or (d) ption selection shall also help. Both (c) and (d) sum up to 15 and product is 80 and
 	so are in AP. Both options are correct.
	so are in Ar. Dour options are correct.
 0	r, one can take numbers (A – D), A, (A + D), and solve the following to equations to
 	nd the value of A and D.
 (1) [A + D + A + A - D] = 15
 · · · ·) $(A - D).A.(A + D) = 80$
0	n solving one shall get numbers, 2-5-8 or 8-5-2.
 1	

* */	
CLA	SHAH SSES
 a Veran	da Enterprise
 17. (a)	$S(n) = 3n^2 + 5n$
 	S(1) = T(1) = 3 + 5 = 8
	S(2) = 12 + 10 = 22 = T(1) + T(2), T(2) = 22 - 8 = 14
	CD = D = T(2) - T(1) = 14 - 8 = 6
	The AP series is: 8, 14, 20, 26,
18. (b)	A= 75, L = 25555, D = 5
	$N = \frac{L-A}{D} + 1 = \frac{25555 - 75}{5} + 1 = \frac{25480}{5} + 1 = 5097$
	D 5 5
19. (b)	T(p) = 1/6 [3p - 1]
	$S(n) = \sum_{n=1}^{n} T_{p} = \frac{1}{6} \left[3\sum_{n=1}^{\infty} n - n \right] = \frac{1}{6} \left[\frac{3n(n+1)}{2} - n \right] = \frac{1}{12} \left[3n^{2} + n \right] = \frac{n}{12} (3n+1)$
 (c)	AM between 33 and 77 = (33 + 77)/2 = 110/2 = 55.
21. (c)	A = - 2, T(6) = 23 = A + 5D, D = 25/5 = 5
	The 4 AM between -2 and 23 are:
	(-2 + 5) = 3; (3 + 5) = 8; (8 + 5) = 13; (13 + 5) = 18;
	(-2+3)=3, (3+3)=8, (8+3)=13, (13+3)=18, A = 14 S(5) = - S(10)
(a)	A = 14
	S(5) = -S(10)
	$\frac{5}{2}[28+4D] = -\frac{10}{2}[28+9D]$
	140 + 20D = -280 - 90D
 	110D = -420; D = -42/11
	T(3) = A + 2D = 14 - 84/11 = 70/11 = 64/11.
23. (b)	A = - 8, D = - 6 + 8 = 2, L = S(N) = 52
	Ν
 	$52 = \frac{N}{2} \left[-16 + (N-1)2 \right]$
	104 = N(2N - 18)
	52 = N(N - 9)
	Or, N ² - 9N - 52 = 0
	Or, (N - 13)(N + 4) = 0
	N = 13;

J.K. SHA CA FOUNDATION - MATHEMATICS a Veranda Enterprise 24. (a) 7171 = N/2(-4 + 146) = 71NN = 7171 / 71 = 101.25. (c) A = 3.5, D = 7 - 3.5 = 3.5 S(17) = 17/2[7 + 16(3.5)] = 535.5.26. (a) A = 6, R = 12/6 = 2. $T_7 = A$. $R^6 = 6(2)^6 = 384$. 27. (b) A = 6, R = 12/6 = 2. $T_8 = A.R^7 = 6(2)^7 = 768$. 28. (c) A = - 128, R = 64/-128 = - 1/2

$$T_{12} = A.R^{11} = (-128).(-1/2)^{11} = 2^7/2^{11} = 1/2^4 = 1/16.$$

29. (c) A = 0.04, R = 0.2/0.04 = 5.
$$T_4 = A.R^3 = 0.04(5)^3 = 5$$
.

30. (a)
$$A = 1$$
, $R = 2/1 = 2$, $T_{10} = A \cdot R^9 = 1 \cdot (2)^9 = 512$.

31. (b) A = 1, R =
$$-3/1 = -3$$
. T₇ = A.R⁶ = (1).(-3)⁶ = 729.

32. (c)
$$A = x^2$$
, $R = x/x^2 = 1/x$, $T_{31} = A \cdot R^{30} = x^2(1/x)^{30} = 1/x^{28}$.
33. (a) $A = -2$, $R = 6/-2 = -3$

$$S_7 = (-2) \left[\frac{1 - (-3)^7}{1 - (-3)} \right] = \frac{-2}{4} (1 + 3^7) = -1094$$

$$S_{8} = (243) \left[\frac{1 - \frac{1}{3^{8}}}{1 - \frac{1}{3}} \right] = 3^{5} \left[\frac{3^{8} - 1}{3^{8}} \cdot \frac{3}{2} \right] = \frac{3^{8} - 1}{18} = \frac{6560}{18} = \frac{3280}{9} = 364 \frac{4}{9}$$

35. (d) A = $1/\sqrt{3}$, R = $1/A = \sqrt{3}$

$$-S_{18} = \left(\frac{1}{\sqrt{3}}\right) \left[\frac{\left(\sqrt{3}\right)^{18} - 1}{\sqrt{3} - 1}\right] = \left(\frac{1}{\sqrt{3}}\right) \left[\frac{19682}{\sqrt{3} - 1}\right] \frac{\left(\sqrt{3} + 1\right)}{\left(\sqrt{3} + 1\right)} = \frac{(9841)\left(\sqrt{3} + 1\right)}{\sqrt{3}}$$

J.K. SHAH CLASSES a Veranda Enterprise	CA FOUNDATION - MATHEMATICS
(c) $T_2 = A.R = 24$; $T_5 = A.R^4 = 81$	
$R^3 = T_5/T2 = 81/24 = (27/8) = (3/2)^3$	
R = 3/2	
A = 24/R = 24/1.5 = 16	
Series: 16, 24, 36, 54, 81,	
37. (d) Options can be used.	
a) 3, 27, 9 are not in GP. Rejected	
b) 9, 3, 27 are not in GP, rejected	

c) 3, 9, 27 are in GP. Sum = 39, Product = 729

But again, for 27, 9, 3, which are also in GP, same Sum = 39 and Product =

729 exists.

We thus have 2 set of answer: (3 - 9 - 27) & (27 - 9 - 3).

38. (a) Product of three numbers in GP = 27/8. Let the middle term is A.

 $A^3 = 27/8 = (3/2)^3$

A = 3/2.

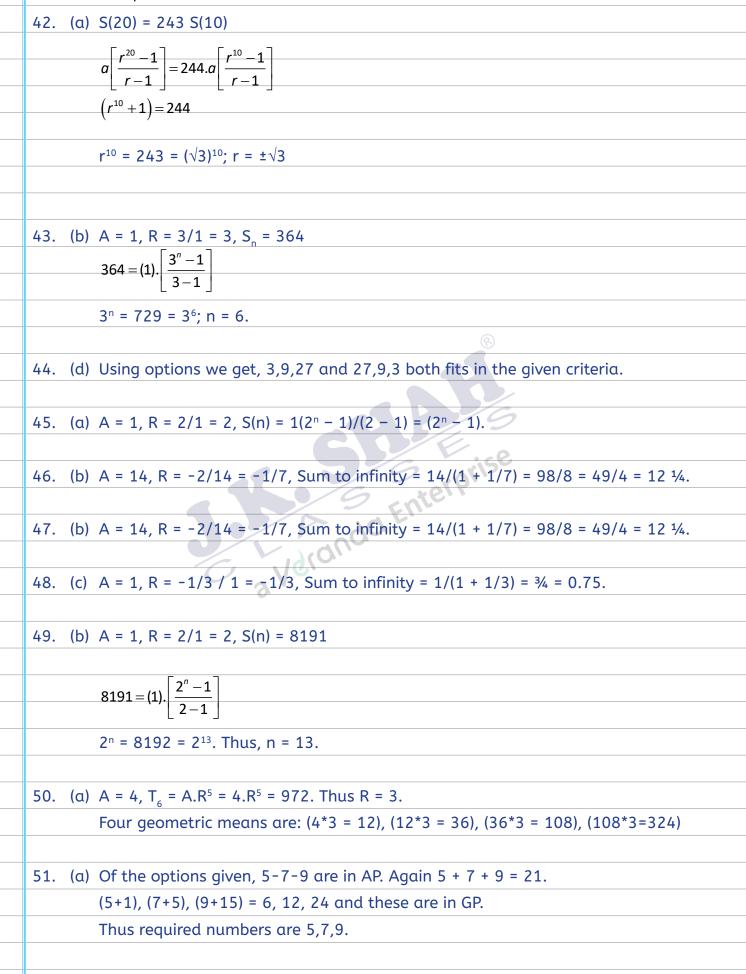
39. (c) A = 1, R = 2/1 = 2, N = 14

 $S_{14} = (1) \left[\frac{2^{14} - 1}{2 - 1} \right] = 16383 = Rs.163.83$ S(3) = 4 + 44

40. (a) S(3) = 4 + 44 + 444 = 492

Putting n= 3 in the options, the option which gives result 492 is the correct option.

(a) 4/9 [10/9(1000 - 1) - 3] = 492


41. (b) S(3) = 0.1 + 0.11 + 0.111 = 0.321

Putting n= 3 in the options, the option which gives result 0.321 is the correct option.

(a)
$$1/9{3 - (1 - (0.1)^3)} = 0.222$$

(b)
$$1/9{3 - (1 - (0.1)^3)/9} = 0.321$$

J.K. SHAH CLASSES
 a Veranda Enterprise
 52. (b) A = 1, R = $1/3$, S(∞) = $1/(1 - 1/3) = 3/2$.
 53. (b) A = 1, R = 2/3, S(∞) = 1/(1 - 2/3) = 3.
 54. (d) $A + AR = A(1 + R) = 5/3$
 A/(1 - R) = 3
 $(1 + R)(1 - R) = (1 - R^2) = 5/9$
$R^2 = 4/9 = (2/3)^2$
R = ± 2/3
 55. (c) AP: p(2), q(3), r(4)
 GP: x(2), y(4), z(8)
 $x^{q-r}.y^{r-p}.z^{p-q} = 2^{-1}.4^2.8^{-1} = 16/16 = 1$
 8
56. (d) 10, 20, 40 are in GP. 40, 100, 160 are in AP. Option B fits in
Again, 40, 20, 10 are also in GP. 160, 100, 40 are also in AP. Option C also
fits in.
57. (b) 2, 5, 8 are in AP and sum is 15. (2 + 1), (5 + 4), (8 + 19) = 3, 9, 27 are in GP
Again, 8, 5, 2 are also in AP. (8 + 1), (5 + 4), (2 + 19) = 9, 9, 21 are not in GP
Ad h
58. (a) x, y, z are in GP. $y^2 = xz$ $x^p = y^q = z^r = k$
$x^p = y^q = z^r = k$
$k^{2/q} = k^{1/p} \cdot k^{1/r}$
2/q = 1/p + 1/r
Thus, 1/p, 1/q, 1/r are in AP
59. (c) $2(x + 10) = 2x + 3x + 2$
2x + 20 = 5x + 2
x = 18/3 = 6;
60. (b) For unequal quantities, AM > GM.
61. (a) A = 40, G = 24, $A^2 - G^2 = 40^2 - 24^2 = 1024$
$X = A + \sqrt{(A^2 - G^2)} = 40 + 32 = 72$
$Y = A - \sqrt{(A^2 - G^2)} = 40 - 32 = 8$
 62. (d) 3, 5, 7 are in AP, and sum = 15.
(3 + 8), (5 + 6), (7 + 4) = 11, 11, 11. But this is not in GP.

_		
J. CL		SHAH SSES
 		da Enterprise
 63.	(d)	4, 8, 16, 32 are in GP. Sum = 4 + 8 + 16 + 32 = 60
 		AM of 4 and 32 = 36/2 = 18
 		But again, 32, 16, 8, 4 are also in GP and fits in the criteria.
 64.	(d)	A = A, D = 10, N = 30, S(30) = 6240
 		6240 = 30/2 [2A + 290]
		416 = 2A + 290
		A = 63;
 65.	(b)	Series is: (1.03) ¹ , (1.03) ² , (1.03) ³ ,
		A = 1.03, R = 1.03
		$S_n = (1.03) [(1.03)^n - 1]/(1.03 - 1) = 103/3 [1.03^n - 1]$
		8
66.	(a)	$2y = (x + z)$ and $y^2 = x(z + 1)$
		$(x+z)^2/4 = x(z + 1)$
		$x^{2} + z^{2} + 2xz = 4xz + 4x$
		$x^2 + z^2 - 2xz = 4x$
		$x^{2} + z^{2} - 2xz = 4x$ $(x - z)^{2} = 4x$ Sentember 20 - (x - 8)
		Senteri
67.	(b)	xy = 64; 2y = (x - 8)
		(2y + 8)y = 64
		$xy = 64; 2y = (x - 8)$ $(2y + 8)y = 64$ $2y^{2} + 8y - 64 = 0$
		$y^2 + 4y - 32 = 0$
		(y + 8) (y - 4) = 0
		y = 4, -8
		x = 64/4 = 16, 64/-8 = -8
		(x, y) = (16, 4), (-8, -8)
		But, -8, -8, -8 is not in AP.
 68.	(c)	A = 16, R = 8/16 = $\frac{1}{2}$, T _n = $\frac{1}{2}$ 17 = 16(1/2) ⁿ⁻¹ = 2 ⁵⁻ⁿ
		5 – n = - 17
		22 = n

69. (b) A = 1, CR = $\frac{1}{2}$, S _n = 1 127/128
$\begin{bmatrix} 1 & (1)^n \end{bmatrix}$
$\frac{\frac{255}{128}}{1}=(1)\cdot \frac{1-\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}} = \frac{2^n-1}{2^n}\cdot \frac{2}{1} = \frac{2^n-1}{2^{n-1}}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$256 - 1 2^8 - 1 2^n - 1$
$\frac{256-1}{128} = \frac{2^8-1}{2^7} = \frac{2^n-1}{2^{n-1}}$
n = 8
70. (c) T ₄ , T ₁₀ , T ₁₆ of a GP are also in GP
$Y^2 = X.Z$
71. (a) If X, Y, Z are in GP, Y ² = XZ.
72. (c) A = 201, L = 299, D = 2, N = (299-201)/2 + 1 = 50
Sum = 50/2(201 + 299) = 12500
<u>SPE</u>
73. (a) A = 507, D = 13, L = 988, N = (988 - 507)/13 + 1 = 38
Sum = 38/2 [507 + 988] = 28405
da -
74. (b) We know, $1 + 3 + 5 + 7 + \dots$ nth term = n^2
Thus, when 1 is added to the sum of (3, 5, 7,), the resulting term is a perfect
square.
75. (c) Divisible by 4
A = 100, D = 4, L = 300, N = (300 - 100)/4 + 1 = 51
Sum = 51/2 (100 + 300) = 10200
Divisible by 5
A = 100, D = 5, L = 300, N = (300 - 100)/5 + 1 = 41
Sum = 41/2 [100 + 300] = 8200
Divisible by both 4 and 5, i.e. 20
A = 100, D = 20, L = 300, N = (300 - 100)/20 + 1 = 11
Sum = 11/2(100 + 300) = 2200
Required sum = 10200 + 8200 - 2200 = 16200.

J.K. SHAH	
CLASSES a Veranda Enterprise	CA FOUNDATION - MATHEMATICS
76. (a) Divisible by both 4 and 5, i.e. 20	
A = 100, D = 20, L = 300, N = (300 - 100)/2	20 + 1 = 11
Sum = 11/2(100 + 300) = 2200	
77. (b) A = 100, D = - 5. Sn = 975	
975 = n/2 [200 - (n - 1)5]	
1950 = n(205 - 5n)	
390 = n(41 - n)	
N2 - 41N + 390 = 0	
(N - 26)(N - 15) = 0	
N = 15	
78. (c) A = A, D = 100, N = 10, Sum = 16500	®
16500 = 10/2 [2A + 900]	
A = 1200.	
	29
79. (a) Sum invested = 9625 (10/11) ⁵ = 5976.37.	Fice
	terprise
80. (d) P(2015) = 55 (1.02) ¹⁰ = 67.05 Crores	terr
, varana	
187	

MIXED BAG (HOMEWORK)

1.	If the p th term	of an A	A.P. is q and th	e q th term is p the	value of the (p + q) th term	
	is					
	(a) 0	(b)	1	(c) -1	(d) None	
2.	If S_1 , S_2 , S_3 be	the res	pectively the su	ım of terms of n, 2	n, 3n an A.P. the value of S_3	
	$\div(S_2 - S_1)$ is give	en by	·			
	(a) 1	(b)		(c) 3	(d) None	
3.	The sum of n te	rms of t	wo A.P.s are in	the ratio of (7n-5)/	(5n+17) . Then the	
	term of the two	series	are equal.			
	(a) 12	(b)	6	(c) 3	(d) None	
1						
4.	If a, b, c are in ,	A.P. the	n the value of	$(a^3 + 4b^3 + c^3)/[b(a^2)]$	+ c ²)] is	
	(a) 1	(b)		(c) 3	🥑 (d) None	
			C		0	
5.	If a, b, c are in ,	A.P. the	n the value of	(a ² + 4ac + c ²)/(ab	+ bc + ca) is	
	(a) 1	(b)		(c) 3	(d) None	
				70 51		
6.	The Pth term o	f an A.	P. is 1/g and th	e gth term is 1/p.	The sum of the pq terms is	;
		$\overline{0}$				
	(a) $\frac{1}{2}(pq+1)$	(b)	$\frac{1}{2}(pq-1)$	(c) pg+1	(d) pq-1	
		, - /	2		· · · · · ·	
7.	The sum of p te	rms of o	an A.P. is a and	the sum of a terms	is p. The sum of p + q terms	;
	is	_	1	1		
	(a) – (p + q)	(b)	p + q	(c) (p – q) ²	(d) $p^2 - q^2$	
-	····	\ <i>i</i>	1 1	··· ··· ··· ···	··· r 7	
8.	If S., S., S. be t	he sum	ns of n terms of	f three A.P.s the fir	st term of each being unity	,
- •					+ S_3) / S_2 is	
	(a) 1	(b)	2	(c) -1	(d) None	
		()	_	(0, 1		
9.	2 ⁴ⁿ -1 is divisib	le by				
5.	(a) 15	(b)	4	(c) 6	(d) 64	
	(0, 1)		- r		(4) 07	
_						

-		0			
	LASSES		C/	FOUNDATION - MATHEMATIO	CS
-	a Veranda Enterprise				
10	. 3 ⁿ -2n-1 is di	ivisible by			
	(a) 15	(b) 4	(c) 6	(d) 64	
11	. The least val	ue of n for which t	the sum of n terms of	the series $1 + 3 + 3^2 + \dots$	is
	greater than	7000 is			
	(a) 9	(b) 10	(c) 8	(d) 7	
12	. If 'S' be the s	um, 'P' the produc	t and 'R' the sum of th	e reciprocals of n terms in	α
	G.P. then 'P' is	s the of S	ⁿ and R ⁻ⁿ .		
	(a) Arithmeti	c Mean	(b) Geometric	Mean	
	(c) Harmonic	Mean	(d) None		
13	. If 1+a+a ² +	$\dots \infty = x$ and $1+b+b$	∞^{2} +∞= y then 1 + o	$ab + a^2b^2 + \dots \infty$ is given l	су
	•				
	(a) (xy)/(x+y-	1)	(b) (xy)/(x-y-	1)	
	(c) (xy)/(x+y+	1)	(d) None	9	
			GD/E	.0	
14	. If a, b, c are i	n G.P. then the valu	ue of $a(b^2 + c^2) - c(a^2 + b^2)$) is	
	(a) 0	(b) 1	9 (c) -1	(d) None	
		P	> da Fr		
15	. If α, b, x, y, z	are positive numbe	ers such that a, x, b are	in A.P. and a, y, b are in G	.P.
	and z=(2ab)/(a+b) then	<i>⁰</i>		
	(a) x, y, z are		(b) $x \ge y \ge z$		
	(c) both		(d) None		
16	. If a, b-a, c-a	are in G.P. and a=1	b/3=c/5 then a, b, c are	e in	
	(a) A.P.	(b) G.P.	(c) H.P.	(d) None	
17	. If S ₁ ,S ₂ ,S ₃ ,	S _n are the sum	s of infinite G.P.s whose	e first terms are 1, 2, 3	.n
				1) then the value of S ₁ ,S ₂ ,S	
	S _n is			1 2	-
	(a) (n/2) (n+3	3)	(b) (n/2) (n+2)		
	(c) (n/2)(n+1		(d) n2 /2		
_					

MIXED BAG (HOMEWORK SOLUTION)

1.	(a)	T(1) = 2, T(2) = 1; A = 2, D = -1. T(3) = A + 2D = 2 - 2 = 0
		Similarly, (p + q) th term in this case = 0.
2.	(c)	Let n = 1. The three terms of AP = 100, 200, 300
		S1 = 100, S2 = 100 + 200 = 300; S3 = 100+200+300 = 600
		S3 / (S2 - S1) = 600/200 = 3;
3.	(b)	Sum of n terms of two AP are in the ratio (7n - 5)/(5n + 17)
		Equate ratio to 1, we get 7n - 5 = 5n + 17; n = 11
		Required term is $(11 - 1)/2 + 1 = 6^{th}$ term
		(n-1)®
		$\frac{S_{n1}}{S_{n2}} = \frac{\frac{n}{2} \left[2A_1 + (n-1)D_1 \right]}{\frac{n}{2} \left[2A_2 + (n-1)D_2 \right]} = \frac{A_1 + \left(\frac{n-1}{2}\right)D_1}{A_2 + \left(\frac{n-1}{2}\right)D_2}$
		$S_{n2} - \frac{n}{2} [2A_2 + (n-1)D_2] - A_2 + (\frac{n-1}{2})D_2$
4.	(b)	A, B, C are in AP. Let the numbers be 1, 2, 3
		$(A^3 + 4B^3 + C^3) = (1 + 12 + 27) = 40$
		$B(A^2 + C^2) = 2(1 + 9) = 20$
		Required values = 40/20 = 2;
		$(A^3 + 4B^3 + C^3) = (1 + 12 + 27) = 40$ B(A ² + C ²) = 2(1 + 9) = 20 Required values = 40/20 = 2;
5.	(b)	A, B, C are in AP. Let the numbers be 1, 2, 3
		$(A^2 + 4AC + C^2) = (1 + 12 + 9) = 22$
		(AB + BC + CA) = (2 + 6 + 3) = 11
		Required value = 22/11 = 2;
6.	(a)	T2 = 1/3, T3 = 1/2.
		D = ¹ / ₂ - 1/3 = 1/6, A = 1/3 - 1/6 = 1/6
		(P.Q) = 6
		$S_6 = 6/2 (2/6 + 5/6) = 7/2$
		Option (a): (PQ + 1)/2 = 7/2

	SHAH CA FOUNDATION - MATHEMATICS
a Vera	nda Enterprise
7. (a) S1 = 3, S3 = 1 (P = 1, Q = 3)
	A = 3
	A + A + D + A + 2D = 1; 3A + 3D = 1; D = -8/3
	S4 = 4/2 [6 - 8] = -4
	Option (a) = $-(P + Q) = -4;$
8. (b) S1 = 1 + 2 + 3 + + n = 6 [Assuming n = 3)
	S2 = 1 + 3 + 5 + = 9 (Assuming n = 3)
	S3 = 1 + 4 + 7 + = 12 (Assuming n = 3)
	(S1 + S3)/S2 = 18/9 = 2
9. (a) 2 ⁴ⁿ – 1 is divisible by:
	Let n = 1, Number = 16 – 1 = 15 (15 = 3 * 5)
	Let n = 2, Number = 256 – 1 = 255 (127 = 3 * 5 * 17)
	Common factors are 3*5 = 15;
10. (b	3 ⁿ – 2n – 1 is divisible by:
	When n = 1, Expression = $(3 - 2 - 1) = 0$
	When n = 2, Expression = $(9 - 4 - 1) = 4$
	When n = 3, Expression = (27 - 6 - 1) = 20 HCF of 4 and 20 is 4;
	C Vela
11. (a) Series is: 1, 3 ¹ , 3 ² , 3 ³ ,
	$A = 1, R = 3; Sn = 1 [3^{n} - 1]/(3 - 1) > 7000$
	3 ⁿ > 14001
	3° = 19683, which is just greater than 14001
	The least value of n is 9.
12 (h) Let n = 3. GP terms are 1, 2, 4
12. (0	S = Sum = 1+2+4 = 7
	P = Product = 1.2.4 = 8
	R = Sum of reciprocals = $1 + \frac{1}{2} + \frac{1}{4} = \frac{7}{4}$
	Now, $S^3 \cdot R^{-3} = 7^3 \cdot 4^3 / 7^3 = 4^3 = 64 = 8^2 = P^2$
	Now, S^{3} . $R^{3} = 7^{3} \cdot 4^{3} / 7^{3} = 4^{3} = 64^{2} = 8^{2} = 9^{2}$ P is GM between S ⁿ and R ⁻ⁿ
	E IS GOVERNAERT A THILLA

	27	CU A U [®]	
		SSES	CA FOUNDATION - MATHEMATICS
 		da Enterprise	
13.	(a)	X = 1/(1 - a); X - aX = 1; a = (X - 1)/X	
		Y = 1/(1 - b); Y - bY = 1; b = (Y - 1)/Y	
		Required Sum = $1/(1 - ab) = XY/(XY - XY + X + Y)$	Y - 1) = XY/(X + Y - 1);
14.	(a)	A, B, C are in GP. Let A = 1, B = 2, C = 4	
		$A(B^2 + C^2) - C(A^2 + B^2) = 1(4 + 16) - 4(1 + 4) = 20$	0 - 20 = 0;
15.	(a)	Let A = 2, B = 18, X = 10, Y = 6, Z = $(2*2*18)/(2$	+18) = 3.6
		X, Y, Z = 10, 6, 3.6 are in GP	
		And X > Y > Z. (Equality shall not hold true)	
16.	(a)	A = B/3 = C/5 = K	
		A = K, B = 3K, C = 5K	8
		A, (B - A), (C - A) are in GP; K, 2K, 4K are in GP	and that's true
		A, B, C = K, 3K, 5K are in AP.	
			<i>79</i>
17.	(c)	$S1 = 1/(1 - \frac{1}{2}) = 2$	· · · ·
		S2 = 2/(1 - 1/3) = 3	orise
		Sn = (n + 1)	

S1 + S2 + ... Sn = 2 + 3 + ... + (n + 1) = n(n+1)/2;

SELF ASSESSMENT TEST 10 ARITHMETIC PROGRESSION

18 Question, 18 Marks

	1.	The	e sum of three	num	bers in A.P. is 33 c	and	their product i	s 1	155. Find the second
		ter	m of the series	•					
		α)	5	b)	7	c)	9	d)	11
	2.	The	e sum of 8 th and	d 18t	h terms of an A.P.	is :	144. Find the su	m	of the first 25 terms.
		α)	1000	b)	1500	c)	1800	d)	2500
	3.	The	e sum of 16 th a	ind 2	6 th terms of an A.F	P. is	200 and that	of 1	18 th and 28 th terms is
		600	D. Find the 22n	d ter	m.				
		a)	50	b)	200	c)	125	d)	175
							29		
	4.	lf tl	hree prime nun	nbers	in AP are such the	ıt tl	nat their sum is	39,	then the smallest of
		the	prime number	r is:		4	2 roris		
		a)	3	b)	7 9	c)	13	d)	Data Insufficient
					40) .			
	5.			numb	pers in AP is 24 and	l th	eir product is 44	40.	Find the second term
			the series.		3				
		a)	5	b)	8	c)	11	d)	16
	6.				' term of an AP is a				
		a)	253	b)	263	c)	273	d)	293
_	7.			d 5™ t	erm of an AP is 2 c	and	that of 4th and	l 8t	h term is 10. Find the
_			d term.						
_		α)	2	b)	- 3	C)	- 5	d)	None of the above
_					and the second second second	- 11		-1	
_	8.				numbers betweer				
_		a)	2114	b)	2107	C)	2100	d)	None of the above
_	0	1.6.1							
	9.				sum of the AP: 15			-11	222
		a)	217.5	b)	218	C)	232.5	d)	233

		 ®					
<u>J.</u>	K .	SHAH [®]				CA F	FOUNDATION - MATHEMATICS
a	/dranc	a Enterprise					
10.	The	interior angle	es of	a polygoi	n are in A	P. The smalle	est angle is 120° and the
	con	nmon differ-er	nce is	5°. Find th	ne number	of sides of the	e polygon.
	a)	9	b)	16	c) Can't b	e determined	d) None of the above
11.	The	sum of 4th ar	nd 7t	h term of o	an AP is 50	5 and that of	5 th and 8 th term is 68. Find
	the	6th term.					
	α)	25	b)	28	c)	31	d) 37
12.	Bal	ls are arrange	d in r	ows to for	m an equi	lateral triangl	le. The first row consists of
	one	e ball, the seco	nd ro	w of two l	balls and s	so on. If 669 n	more balls are added, then
	all	the balls can l	be ar	ranged in	the shape	of a square a	and each of the sides than
	con	itain 8 balls les	ss tho	ın each sid	le of the tr	iangle did. De	etermine the initial number
	of t	balls.				B	
	a)	1540	b)	1210	c)	2878	d) 2209
13.	The	e ratio between	the s	sum of n te	erms of tw	o arithmetic p	progressions is (7n + 1) : (4n
	+ 2	7). The ratio of	⁻ theii	r 11 th term			<u>e</u>
	a)	124:105	b)	136 : 117	c)	148 : 111	d) None of the above
					19	enteri	
14.	Fin	d the sum of t	he fo	llowing se	ries till n t	erms: $1 + 5 + 1$	$12 + 22 + 35 + \dots + t_n$.
		1	2	n	01,	$-n^2$	<i>n</i> ³
	α)	$\frac{1}{2}(n+1)$	b)	$\frac{n}{2}(n+1)$	c)	$\frac{n}{2}(n+1)$	d) $\frac{n^3}{2}(n+1)$
15.	The	sum of 4 th and	d 8 th 1	terms of a	n A.P. is 24	and the sum	of the 6th and 10th terms
	is 3	4. What is the	com	mon differe	ence of the	e A.P.?	
	a)	1.5	b)	2.5	c)	3.5	d) 5.5
16.	The	e first and the l	ast te	erms of an	A.P. are A	and L respect	tively. The sum of nth term
	fror	m the beginnin	g and	d nth term	from the	end is:	
	a)	A + 2L	b)	A + 3L	c)	A + L	d) 2A + L
17.	The	sum of three	term	s of an A.	P. is 21 ar	nd the produc	t of the first and the third
	terr	ms exceeds the	e seco	ond term b	y 6, find tł	nree terms.	
	a)	1, 7, 13	b)	7, 13, 19	c)	1, 5, 9	d) None of the above

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

first 20 terms		ine mot term, tr		n difference and th	
a) 740	b) 742	c) 7	/. 1	d) 743	
u) 740	0) 142	C) 17	41	u) 145	
			6		
			R	7	
				6	
				<i></i>	
		5%		e	
		S S S	*6101.		
		En			
		<u>d</u> d <u>d</u>			
		rana			
	3				

	EXPLANATORY
	ANSWERS
1	Sum = 22 = 20, 0 = 11
1.	Sum = $33 = 3A; A = 11$
	Numbers are: (11 – D), 11, (11 + D) Option D
2.	A + 7D + A + 17A = 144
<u> </u>	2A + 24D = 144
	S(25) = 25/2[2A + 24D] = 25/2(144) = 1800
	Option C
3.	A + 15D + A + 25D = 200; 2A + 40D = 200; A + 20D = 100
	A + 17D + A + 27D = 600; 2A + 44D = 600; A + 22D = 300
	D = 100, A = - 1900
	T22 = A + 21D = - 1900 + 2100 = 200
	Option B
	S s rorise
4.	3A = 39, A = 13
	Numbers are (13 – D), 13, (13 + D)
	Two seta are possible: (3, 13, 23) and (7, 13, 19)
	Option D
5.	3A = 24, A = 8
	Numbers are (8 – D), 8, (8 + D)
	Second term of the series is 8. Option B
6.	A + 3D + A + 9D = 42; 2A + 12D = 42
	S(13) = 13/2[2A + 12D] = 13/2(42) = 273
	Option C
7.	A + 2D + A + 4D = 2; 2A + 6D = 2; A + 3D = 1
	A + 3D + A + 7D = 10; 2A + 10D = 10; A + 5D = 5
	D = 2, A = -5
	T(2) = A + D = -5 + 2 = -3
	Option B

J.K. SHAH [®]
CLASSES
a Vơranda Enterprise

al	dranda Enterprise
8.	A = 105, L = 196, D = 7
	N = (196 - 105)/7 + 1 = 14
	S(14) = 14/2[105 + 196] = 2107
	Option B
9.	A = 15, D = - 0.5, L = 0.5
	N = (0.5 - 15)/-0.5 + 1 = 30
	S(30) = 30/2 [15 + 0.5] = 232.5
	S(31) = 31/2 [15 + 0] = 232.5
	Option C
10.	Sum = (2N - 4)*90 = N/2[240 + (N - 1)5]; N = 9
	Sum of interior angles of N sided polygon is (2N – 4)*90°
	Option A
11.	A + 3D + A + 6D = 56; 2A + 9D = 56
	A + 4D + A + 7D = 68; 2A + 11D = 68
	D = 6, A = 1
	D = 6, A = 1 T(6) = A + 5D = 1 + 30 = 31 Option C
	Option C
12.	Total number of balls inside the triangle = 1 + 2 + 3 + + N = N(N + 1)/2
	Number of balls in each side of the square = $(N - 8)$
	Thus, $(N - 8)^2 = N(N + 1)/2 + 669$; N = 55
	Initial number of balls = 55*56/2 = 1540
	Option A
13.	$N/2[2A_1 + (N - 1)D_1] / N/2[2A_2 + (N - 1)D_2] = [A_1 + (N - 1)D_1/2] / [A_2 + (N - 1)D_2/2]$
	Putting $(N - 1)/2 = 10$; we get N = 21
	If we put N = 21, we get, [A1 + 10D1] / [A2 + 10D2] which becomes the ratio of their
	11th term.
	Ratio = (7*21 + 1) : (4*21 + 27) = 148 : 111
	Option C

J.K.	SHAH [®]
CLA	SSES

a Veranda Enterprise

	a V	Veranda Enterprise						
	14.	T1 + T2 + T3 = 1 + 5 + 12 = 18						
		Put n = 3, in the options.						
		a) $\frac{1}{2}(n + 1) = 2$						
		b) $n/2(n + 1) = 6$						
		c) $n^2/2(n+1) = 18 - Option C$						
	15.	A + 3D + A + 7D = 24; 2A + 10D = 24						
		A + 5D + A + 9D = 34; 2A + 14D = 34						
		4D = 10; D = 2.5						
		Option B						
	16.	Nth term from the beginning is the last term = L						
		Nth term from the end is the first term = A						
		Thus, Sum = A + L						
		Option C						
	17.	3A = 21; A = 7						
		Now if numbers are 1, 7, 13 (as given in option A), we get:						
		Product of first and third term = 1 * 13 = 13, which is 6 more than the second term,						
		i.e. 6						
		The three terms are either 1, 7, 13 or 13, 7, 1						
		Option A						
	18.	A + 2D = 7						
		A + 6D = 3*7 + 2 = 23						
		4D = 16; D = 4; A = - 1; S(20) = 20/2[-2 + 19*4] = 740						
		A + D + S(20) = -1 + 4 + 740 = 743						
		Option D						
_								

SELF ASSESSMENT TEST 11 GEOMETRIC PROGRESSION

17 Question, 17 Marks

1.	The 9th term	of a G.P. is 27 times	the 6th term. What	is the first term of t	he G.P. if
	the 4 th term i	s 27?			
	a) 1	b) 2	c) 3	d) 4	
2.	The third ter	rm of a G.P. is the so	quare of its first te	rm. If the second to	erm is 8,
	determine th	e 6 th term.			
	a) 32	b) 128	c) 64	d) 1024	
3.	In a G.P., the	ratio of the second an	d the fourth terms is	s 1 : 4 and the sum o	f the first
	and the four	th terms is 108. What	is the value of the t	third term?	
	a) 42	b) 44	c) 48	d) 52	
				9	
4.	lf (x + 9), (x -	6) and 4 are in G.P., t	then find the value o	of x.	
	a) - 16	b) – 4	c) 4	d) 16	
			Senter		
5.	How many te	erms of the GP 3, 3/2,	3/4 are needed t	o give the sum 3069	/512?
	a) 9	b) 10	c) 11	d) 12	
6.	How many te	erms of the GP $\sqrt{3}$, 3, 3	3√3, add up to 39) + 13√3?	
	a) 3	b) 4	c) 6	d) 5	
7.	The third terr	m of a GP is the squar	e of its 1st term. If t	he 2nd term is 27, d	etermine
	the 16 th term	l.			
	a) 3 ¹⁵	b) 3 ¹⁷	c) 3 ²²	d) None of the	e above
8.	If A, B, C are	real and 5, A, B, C, 40	05 are in GP, find A.		
	a) 45	b) 135	c) ± 15	d) None of the	e above
9.	Four number	s form a GP in which	the product of the e	extreme terms is 256	and the
	sum of the m	niddle terms is 40. Fin	d the sum of the fou	ur terms of the series	5.
	a) 32	b) 170	c) 160	d) 180	

	<u>J.</u>	K. SHAH	CA FOUNDATION - MATHEMATIC	S
	a	L A S S E S Veranda Enterprise		
	10.	The second, the first and the third term	of an AP whose common difference is not	n
		zero, form a GP in that order. Find its con	nmon ratio.	
		a) 2 b) - 2	c) 1 d) - 1	
	11.	The number of bacteria in certain cult	ure doubles every hour. If there were 2	5
		bacteria present originally, how many b	bacteria will be present at the end of 6 ^t	th
		hour?		
		a) 800 b) 1600	c) 25(2) ⁶ d) 2 (25) ⁶	
	12.	Mr. Shyam Das is entitled to receive an o	annual payment from his employer, whic	h
		for each year is less by 1/10th of what	t it was for the previous year. If the firs	t
		payment is Rs. 10,000; what is the maxir	num amount he can receive, however long	g
		he may live?	8	
		a) Rs. 80,000 b) Rs. 100,000	c) Rs. 90,000 d) Rs. 110,500	
	13.	If $x = 1 + a + a^2 + a^3 + a^4 + \dots \infty$ and y	$b^{2} = 1 + b + b^{2} + b^{3} + b^{4} + \dots \infty$, then what i	S
		the value of ?	E:ce	
		$1 + ab + a^2b^2 + a^3b^3 + \dots \infty$?	Spriss	
		a) $\frac{xy}{x+y-1}$ b) $\frac{x}{y(x+y)}$	c) $\frac{xy}{(x+y+1)}$ d) None of the above	
	14.		ounds 4/5 th of the height from which it ha	
		<u>0</u>	avels before coming to rest, if it is gently	у
		dropped from a height of 600 metres.		
		a) 3600 m b) 5400 m	c) 7200 m d) None of the above	
	4 5			
_	15.			
_		a) Geometric Progression	b) Arithmetic Progression	
_		c) Both a) and b) above	d) None of the above	
_	16.	If a b c d are in Geometric Progression	then $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ are in:	
_	10.	If a, b, c, d are in Geometric Progression, a) Harmonic Progression	b) Arithmetic Progression	
_			d) All of the above	
		c) Geometric Progression		
_	17.	If p, q, r are in AP, q, r, s are in GP and r,	stare in HP then prtare in:	
-	±1.	a) Arithmetic Progression	b) Geometric Progression	
_		c) Harmonic Progression	d) None of the above	
		e, mannenne rogression		

_	al	Zeranaa Enterprise
		EXPLANATORY ANSWERS
	1.	AR ⁸ = 27.AR ⁵ ; AR ³ = 27
		R ³ = 27; Thus A = 1
		Option A
	2.	$AR^2 = A^2; R^2 = A$
		AR = 8; R ³ = 8; R = 2; A = 4
		$T6 = AR^5 = 4^2 + 2^5 = 128$
		Option B
		8
	3.	AR/AR ³ = ¹ / ₄ ; R ² = 4; R = 2
		A + AR ³ = 108
		A (1 + 8) = 108; A = 12
		$T3 = AR^2 = 12^2 = 48$
		Option C
		SENTEN
	4.	$(x - 6)^2 = 4(x + 9); x^2 - 16x = 0; x = 16; Option D$
		, diana
	5.	A = 3, R = 1/2
		$3069/512 = 3 \left[1 - (1/2)^n\right]/(1 - \frac{1}{2})$
		$1023/512 = (2^{n} - 1)/2^{n-1}$
		Putting n = 10, we get the required answer. Option B
	6.	$A = \sqrt{3}, R = \sqrt{3}$
		$39 + 13\sqrt{3} = \sqrt{3} \left[(\sqrt{3})^n - 1 \right] / (\sqrt{3} - 1)$
		$78 + 26\sqrt{3} = \sqrt{3} [(\sqrt{3})^n - 1](\sqrt{3} + 1)$
		Putting n = 6, in RHS, we get = $26\sqrt{3}(\sqrt{3} + 1) = 78 + 26\sqrt{3}$
		Option C
	7.	$AR^2 = A^2, R^2 = A$
		AR = 27; R ³ = 27; R = 3; A = 9
		$T(16) = AR^{15} = 9.3^{15} = 3^{17}$
		Option B

J.K. SHAH [®]
CLASSES
a Vergoda Enterprise

	a۷	dranda Enterprise
	8.	B ² = 405*5 = 2025; B = ± 45
		A ² = 45 * 5 = 225, A = ± 15
		Option C
	9.	$A.AR^3 = A^2R^3 = 256 = 2^2.4^3$
		AR + AR ² = 40; AR(1 + R) = 40, assumption fits in
		$S(4) = A(1 + R + R^2 + R^3) = 2(1 + 4 + 16 + 64) = 2*85 = 170$
		Option B
	10.	A, (A - D), (A + D) are in GP
		$(A - D)^2 = A(A + D)$
		$A^2 + D^2 - 2AD = A^2 + AD$
		3AD = D ²
		D = 3A
		Terms are, A , -2A, 4A are in GP
		Common ratio = -2A/A = - 2
		Option B
		S source
_	11.	T(6) = 25(2) ⁵ = 800. Option A
		Add Fr
Ĩ	12.	Series is: 10000, 9000, 8100, O
		A = 10000, R = 9/10, S = 10000/(1 - 9/10) = 100,000
		Option B
	13.	$X = 1/(1 - \alpha); X - \alpha X = 1; \alpha = (X - 1)/X$
		Y = 1/(1 - b); Y - bY = 1; b = (Y - 1)/Y
		Required Sum = 1/(1 - ab) = XY/(XY - XY + X + Y - 1) = XY/(X + Y - 1)
		Option A
	14.	Distance covered = $H(1 + R)/(1 - R) = 600 (1+4/5)/(1-4/5) = 600*9 = 5400.$
		Option B

	a۷	dranda Enterprise
	15.	A = 1, B = 2, C = 4, D = 8
		$(A^2 + B^2) = 5$
		$(B^2 + C^2) = 20$
		$(C^2 + D^2) = 80$
_		5, 20, 80 are in GP
		Option A
	16.	A = 1, B = 2, C = 4, D = 8
		1/(A+B) = 1/3
		1(B+C) = 1/6
		1/(C+D) = 1/12
		1/3, (1/2*1/3), (1/4*1/3) are in GP
		Option C
	17.	AP: 1, 2, 3
		GP: 2, 3, 4.5
		GP: 2, 3, 4.5 HP: 3, 4.5, 9 1, 3, 9 are in GP Option B
		1, 3, 9 are in GP
		Option B
		, idian,
		ave
		203