

Foundation \rightarrow Intermediate \rightarrow Final CA 7

FOUNDATION

CA

STATISTICS

Head Office

Shraddha, 4th Floor, Old Nagardas Road, Near Chinai College, Andheri (E), Mumbai - 400 069.

() +91 - 73044 54689

🔟 f /officialjksc 💮 jkshahclasses.com

STATISTICAL DESCRIPTION OF DATA (Introduction to Statistics)

Introduction:

The word	"STATISTICS"	has its	origin	from	the	follov	vina:
	31/(11)1103	Thas its	ongin		CITC.	101101	virig.

- Latin STATUS
- German STATISTIK
- French STATISTIQUE
- Italian STATISTA

Statistics in India

- Kautilya recorded birth and death in Arthashastra during Chandragupta Maurya's regime.
- Abul Fazal, during Akbar's regime, recorded agriculture in the book Ain-i-Akbari.

"STATISTICS" DEFINED

	★
IN SINGULAR SENSE	IN PLURAL SENSE
It is defined as the scientific method	By Statistics, we mean aggregate
of collecting, presenting, analyzing	of facts which are known as
the data and drawing inference from	"DATA" (Singular Datum).
the same.	

Features of Statistics:

- a) Statistics deals with masses and not individuals.
- b) Statistics deals with quantitative data . Qualitative data are also to be expressed in quantitative terms.

c) It is aggregate of facts (plural sense).

- d) It refers to scientific methods of analyzing data.(Singular Sense)
- e) It is science as well as an art.
- f) Data are affected by multiplicity of causes.
- g) Data should be collected in a systematic manner and for a pre-determined purpose.
- h) Data should be comparable.
- i) All Statistics are Numerical Statements but all Numerical Statements are not statistics

	Ð	Ν
Ĵ		9

APP	LICATION OF ST	AIISTICS
Stat	istics is used in	
a)	Mathematics	
b)	Economics	S S rorise
		Senten
c)	Accountancy	Add to
d)	Auditing	
e)	Business and i	industry
f)	Social Science	

- g) Medical Sciences & Biology
- h) Different Statistical techniques used in Business, Economics and Industry.
- i) Management.

LIM	ITATIONS OF STATISTICS
i.	Statistics does not study qualitative phenomenon directly.
ii.	Statistics does not study individuals.
iii.	Statistical laws are not exact.
iv.	Statistical data are liable to be misused.
v.	Statistics results are true on the average sense only. They are not exact
FEW	V TERMS COMMONLY USED IN STATISTICS.
i.	Data : It is a collection of observations, expressed in numerical figures, obtained by
	measuring or counting.
ii.	Population : It is used to denote the totality of the set of objects under considering.
iii.	Sample : A sample is a selected no. of individuals each of which is a member of
	the population. It is examined with a view to assessing the characteristics of the
	population.
iv.	Characteristic : A quality possessed by an individual person, object or item of a
	population is called a characteristic e.g. Height, age, nationality, etc.
٧.	Variable & Attribute : Measurable characteristics which are expressed numerically
	in terms of some units are called as variables or variates e.g. age, height, income,
	etc. Non-measurable characteristics is a qualitative characteristic which is called as
	attribute e.g. sex, marital status, employment status, etc.
vi.	Continuous & Discrete Variable : A variable which can assume for its value any real
	quantity within a specified interval is a continuous variable e.g height, weight etc
	and the variables which can assume only whole numbers are discrete variables
	eg : number of members in the family, no of accidents etc.

all second

CLASSWORK SECTION

Dal	atodd					
Relo		MCQ S:				
 1.	vvrii ~	Chotictics :	c derived frame		ue:	
	a)	Statistics I	s derived from	the Fren	ich word Statistik.	
	b)	Statistics I	s derived from	the Itali	an word "Statista".	
	C)	Statistics I	s derived from	the Latii	n word "Statistique".	
	d)	None of th	iese			
 2	The		the to wood to			
۷.	ine	wora statis	tics is used in _	S	senses, namely ana	
	a)	two, singu	lar, plural	D)	two, simple, complicated	
 	C)	two, single	e, combined	d)	none of the above	
3.	The	word stati	stics refers eith	er	information or to a method of dealing	
	with	ni	nformation.	6	92:	
	a)	absolute,	actual	b)	quantitative, qualitative	
	c)	real, actua	al	d)	none of the above	
					10 -	
4.	Dat	a can be ob	tained through	a statis	tical	
	a) s	urvey b) data	c) me	ethods d) none of the above	
5.	Stat	istics is con	sidered with:			
	a)	Qualitativ	e information	b)	Quantitative information	
	c)	Both a) ar	nd b)	d)	Either a) or b)	
6.	In th	ne developr	nent of statistic	al meth	nods, the greatest contribution is that of:	
	a)	Economist	S	b)	Mathematician	
	c)	Scientist		d)	Businessmen	
7	Stat	istics is any	lied in			
 1.		Commore		b)	Rusiness Management	
	a)	Commerce	a maustry	(U	All of the show	
	C)	ECONOMICS		a)	All of the above	

8.	Stat	tistics can:		
	a)	prove anything		
	b)	disprove anything		
	c)	neither prove nor disprove anythi	ng, is j	ust a tool
	d)	none of the above		
9.	Stat	istics can best be considered as:		
	α)	an art	b)	science
	c)	both art as well as science	d)	neither art not science
10.	Whi	ch of the following would you rego	ırd as	discrete variable:
	α)	height	b)	weight
	c)	number of persons in a family	d)	wages paid to workers
11.	The	distribution of wage is an example	e of the	e frequency distribution of
	α)	a discrete variable	b)	an attribute
	c)	a continuous variable	d)	either a) or c) above
			79	2 rprise
12.	An c	attribute is:	2 61	nteri
	α)	A measurable characteristics	b)	A quantitative characteristics
	c)	A qualitative characteristic	d)	All of the above
		ave		
13.	Ann	ual income of a person is:		
	α)	An attribute	b)	A continuous variable
	c)	A discrete variable	d)	Either b) or c)
14.	Heig	ght of α person is:		
	a)	An attribute	b)	A continuous variable
	c)	A discrete variable	d)	Either b) or c)
15.	Nati	ionality of a student is:		
	α)	A continuous variable	b)	An attribute
	c)	A discrete variable	d)	None of the above

- ♦ A STATISTICAL ENQUIRY PASSES THROUGH THE FOLLOWING PHASES :
 - 1. COLLECTION OF DATA
 - 2. SCRUTINY OF DATA
 - 3. CLASSIFICATION OF DATA
 - 4. PRESENTATION OF DATA

. COLLECTION OF DATA (DATUM IN SINGULAR)

Data : Data are aggregate of facts i.e. Quantitative information about characteristic	
under study.	

Types of Data

These data are collected for a specific purpose directly

from the field of enquiry.

These are original in nature

Cara		
Second	arv	DATA
JUUTIU		ναία

	1.	Secon	dary Data are numerical
	70	inforn	nation which have been
10	2	previo	ously collected as primary data
- 0	0-	by sor	ne agency for a specific purpose
000	-	but a	re now complied from that
		source	e for use in α different
		conne	ction. Sources of Secondary
		Data.	
		i.	Publications of Central and
			State Governments, of Foreign
			Governments, and
			international bodies like ILO,
			UNO, UNESCO, WHO, etc.
		ii.	Publications of various
			Chambers of Commerce, Trade
			Associations, Co-operative
			Societies, etc.

Methods of Collecting Primary Data

phone. It is less consistent compared to the other two methods. Amount of non -response is maximum under this method.

2. SCRUTINY OF DATA

It means checking the data for accuracy & consistency. Intelligence, patience & experience is used by scrutinizing the data.

3. CLASSIFICATION OF DATA

Definitions : When the items / individuals are classified, according to some common non-measurable characteristics processed by them, they are said to form a statistical class, and when they are classified according to some common measureable characteristics processed by them, they are said to form a statistical group.

Types of Classifications

↓ I	ł	19	•
Geographical (or)	Chronological (or)	Qualitative (or)	Quantitative(or)
Spatial	Temporal or	Ordinal	Cardinal
i.e. Areawise	Time Series i.e.	cnteir	
	on the basis of time		

Related MCQ's:

16. A statistical survey may either be _____ purpose or _____ purpose survey.

- a) general, specific
- b) general, without
- c) all, individual
- d) none of the above

17. Data are generally obtained from:

- a) primary sources
- b) secondary sources
- c) both primary and secondary sources
- d) neither from primary nor from secondary sources

- 18. Data originally collected for an investigation are known as:
 - a) primary data
 - b) secondary data
 - c) both primary and secondary data
 - d) none of the above

19. Secondary data:

- should never be used a)
- should be used after careful scrutiny b)
- no scrutiny is required while using it c)
- d) while scrutinizing the only thing to see is who collected it

20. Primary data are:

- a) always more reliable compared to secondary data
- b) less reliable compared to secondary data
- depends upon the care with which data have been collected c)
- depends upon the agency collecting the data d)

21. The quickest method to collect primary data is: a) Personal Interview tauqa

- Indirect Interview b)
- Mailed Questionnaire Method c)
- d) **Telephonic Interview**

22. In Indirect Oral Investigation:

- Data is not capable of numerical expression α)
- Not possible or desirable to approach informant directly b)
- Data is collected from the books c)
- None of the above d)
- 23. Some important sources of secondary data are:
 - a) International & Government sources
 - b) International and Primary sources
 - Private and Primary sources c)
 - d) Government sources

24.	The	data obtained by the inter	net are:	:
	α)	Primary data		
	b)	Secondary data		
	c)	Both a) and b)		
	d)	Neither a) nor b)		
25.	Whi	ch method of collection of	data co	overs the widest area?
	α)	Direct interview method.		
	b)	Mailed questionnaire met	hod.	
	c)	Telephone interview meth	od.	
	d)	both (b) & (c)		
26.	In c	ase of a rail accident, the a	ıppropri	iate method of data collection is by :
	α)	Direct interview		
	b)	Personal interview		
	c)	Indirect interview		1/9
	d)	All of the above	6	
				Supplie
27.	The	best method to collect dat	ta, in ca	ise of a natural calamity, is :
	α)	Personal interview		30 -
	b)	Questionnaire method	<u>(</u> 0(')	
	c)	Indirect interview		
	d)	Direct observation method	d	
28.	Clas	ssification is the	_ step in	n tabulation.
	α)	first	b)	second
	c)	last	d)	none of the above
29.	Whe	en data are observed		the type of classification is known as
	chro	onological classification.		
	α)	for some hours		
	b)	over a period of time		
	c)	seriously		
	d)	none of the above		

J.K. SHAH C L A S S E S a Veranda Enterprise

30.		classification refers to the classification of data according to some
	cha	racteristics that can be measured.
	α)	qualitative
	b)	subjective
	c)	quantitative
	d)	all of the above
31.	Cla	ssification is the process of arranging data in:
	a)	different columns
	b)	different rows
	c)	grouping of related facts in different classes
	d)	different columns and rows
		®
32.	ln c	hronological classification data are classified on the basis of:
	α)	attributes
	b)	class interval
	c)	locations
	d)	time 99 ronse
		S Enteri
33.	Geo	graphical classification means classifications of data according to:
	a)	time
	b)	location
	c)	attributes
	d)	class intervals
34.	The	primary rules that should be observed in classification:
	Ι.	As far as possible, the class should be of equal width.
	11.	The classes should be exhaustive.
	.	The classes should be un-ambiguously defined.
		a) Only I and II
		b) Only II and III
		c) Only I and III
		d) All I, II and III

Presentation of Data

4. Box-head: The entire upper part of the table is known as box-head.

Other Parts :

5. Title: Every Table must be given a suitable title, which usually appears at the top of the table (below the table number or next to the table number). A title is meant to describe in brief and concise form the contents of the table and should be self-explanatory.

Veranda Enterpris

- 6. Table Number :
- 7. Head Note :
- 8. Foot Note :
- 9. Source Note

Title

[Head Note or Prefatory Note (if any)]

		Lincor		Theracory		any/1		
	Stub			Captions				
	Heading							
	+	Sub-H	leads		Sub-Heads		Total	
							Total	
		Column	Column	Column	Column	Column		
		Head	Head	Head	Head	Head		
						®		
						6		
				Body				
				-//		ise		
				9	nterr			
				90,				
			Vid C					
			av					
	Total							
	Total							
Foot Note :								
Source Note	:							

Туре	es of T	abulatio					
			Ту	/pes of Tabulat	ion		
						•	
		Simp	le			Complex	
 	Sim	ple Tabulation:In	this type the	e number or	measu	arement of the items are placed	
	belo	ow the headings	s showing the	e characterist	ics.		
	Con	plex Tabulation :	In this type	each numer	ical fig	gure in the table is the value of	
	the	measurement h	aving the cho	aracteristics s	shown	both by the column and the row	
	hea	dings.					
						8	
Relo	ated	MCQ's					
 35.	The	most accurate	mode of date	a presentatio	n is :		
	a)	Diagrammatic	method		b)	Tabular	
	c)	Textual preser	ntation	\mathbf{G}	d)	None of the above.	
				2/9	2	prise	
36.	Whe	en the accuracy i	n presentatio	n is more imp	ortant	than the method of presentation	
	it is	done through:	P	~ 90 .			
	a)	Textual		01,	b)	Diagrammatic	
	c)	Tabular	2		d)	Either b) or c)	
 37.	In to	abulation sourc	e of the data	, if any, is sh	own in	the :	
	a) S	ource note			b)	body	
	c) s	tub			d)	caption	
38.	A to	able is a system	atical arrang	ement of sta	tistical	l data in	
	a)	boarders and	boundaries		b)	lanes and pillars	
	c)	columns and r	OWS		d)	all of the above	
 2.0					•		
 39.	The	unit of measure	ement in tabi	ulation is sho	own in		
	a) b	oox nead	b) body	c) caption		d) stub.	
				4.5			

	40.	For tabulation, 'c	aption' is :			
		a) the lower po	art of the table.			
		b) the main pa	rt of the table.			
		c) the upper p	art of the table.			
		d) the upper p	art of a table that	describes the colu	mn and sub-column.	
	41.	The entire upper	part of a table is I	known as :		
		a) caption	b) stub	c) box head	d) body.	
	42.	'Stub' of a table i	is the			
		a) right part of	f the table describ	ing the columns.		
		b) left part of	the table describir	ng the columns.		
		c) right part of	f the table describ	ing the rows	B	
		d) left part of	the table describir	ng the rows.		
_					6	
	43.	The heading of a	row in a statistica	il table is known as		
		a) stub	b) caption	c) title	d) foot note	
				tere tere		
	44.	a) Toytug	of presentation of	b) Tabular		
		a) Textuat		d) Poth b) and	c) abovo	
_		c) Diagrammatic	C Velo			
	45	In tabulation, so	urce of data if any	, is shown in the:		
	43.	a) Stub	b) Body	c) Caption	d) Footnote	
		4, 500	5, Dody			
	46.	A table has	parts.			
_		a) Two	b) Three	c) Four	d) Five	
_	47.	The column head	lings of a table are	e known as:		
		a) Body	b) Stub	c) Box head	d) Caption	
	Diag	rammatic Represent	ation of Data			
	Diag 1.	rammatic Represent Diagrammatic Re	ation of Data presentation are r	mainly done by cho	rts (or graphs) and figures.	
	Diag 1.	rammatic Represent Diagrammatic Re	ation of Data presentation are r	mainly done by cho	rts (or graphs) and figures.	

J.K. SHAH CLASSES a Veranda Enterprise

2.	A chart or graph is inferior to a table	or numbers as a method of presenting
	data, since one can get only approximate	e idea from it, but its advantage is that it
	emphasizes certain facts and relations m	ore than numbers do.
	·	
Adva	antages :	
1.	It is more attractive and informative to a	n ordinary person.
2.	A complex problem can sometimes be clc	rified easily by a diagram.
3.	It reveals the hidden facts which are not a	apparent from the tabular presentation.
4.	Two or more sets of values can be compo	red very easily from a diagram.
		8
5.	It shows the relation of the parts to the v	vhole.
	Types of Dia	igrams
	+	79 T
With	nout Frequency	With Frequency (Frequency Curves)
		S orise
	1. Line Chart or Line Graph or Line	1. Histogram or Area Diagram
	Diagram or Historigram Chart (one	(Two dimensional)
	dimensional)	
	2. Bar Diagram or Bar Chart	2. Frequency Polygon
	(one dimensional)	(Two dimensional)
	3. Pie Chart	3. Frequency Curve
	(Two dimensional)	(Two dimensional)
	-	4. Cumulative Frequency Polygon or
		Ogive (Two dimensional)
	Each of the Diagram is described below:	
1.1.		

Line Diagram :

It is used for time related data (Time series).

When there is wide range of fluctuations, logarithmic or ratio charts are used.

Multiple Line Chart :

It is used for representing 2 or more related series expressed in same units.

Multiple Axis Chart :

Multiple Axis Chart is used for representing two or more related series expressed in different units.

Semi-Logarithmic Graph or Ratio Chart :

Semi-Logarithmic Graph or Ratio Chart is a line diagram drawn on a special type of graph paper which shows the natural scale in the horizontal direction and the logarithmic or ratio scale in the vertical direction. The semi-log graph is used where ratios of change are more important than absolute amounts of change.

1-	22	-	\mathbf{N}	
1 9	~	1	$ \rangle$	
	-	-	1)	
		Lõ	/	

Bar Diagram

1. Vertical Bar Chart (or Colum Chart) :

This is generally used to represent a time series data or a data which is classified by the values of the variable. (Measurable characteristics).

2. Horizontal Bar Chart :

This is used to represent data classified by attributes or data varying over space.

Enterpr

(i.e. non-measurable characteristics).

3. Grouped or Multiple or Compound Bar Chart):

These are used to compare related series.

4. Component /Sub divided Bar Chart:

These are used for representing the data divided into different components

5. Percentage Bars :

Percentage Bars are particularly useful in statistical work which requires the portrayal of relative changes.

6. Deviation Bars

Deviation Bars are popularly used for representing net quantities – excess or deficit i.e. net profit, net loss, net exports or imports, etc. Such bars can have both positive and negative values. Positive values are shown above the base line and negative values below it.

7. Broken Bars

In certain series there may be wide variations in values – some value may be very small and others very large. In order to gain space for the smaller bars of the series, larger bars may be broken.

PIE CHART / PIE DIAGRAM / CIRCLED DIAGRAM

This is a very useful diagram to represent data which are divided into a number of categories. The diagram consists of a circle divided into a number of sectors whose areas are proportional to the values they represent. Again the areas of the sectors are proportional to their angles at the centre. Therefore, ultimately the angles of the different sectors are proportional to the values of different components. The total value is represented by the full circle. Comparison among the various components or between a part and the whole of data can be made easily by this diagram.

Example :

Draw a pie chart to represent the following data on the proposed outlay during a Five-year Plan of a Government : Items ₹ (in crores)

Items	₹ (in crores)
Agriculture	12,000
Industry & Minerals	9,000
Irrigation & Power	6,000
Education	8,000
Communication	5,000

Calculations for the angles of the pie chart

Items	Outlay (in crores ₹)	Angles (in egrees)
Agriculture	12,000	108
Industry & Minerals	9,000	81
Irrigation & Power	6,000	54
- Education	8,000	72
Communication	5,000	45
Total	40,000	360

1. Histogram or Area Diagram

- i) It consists of a set of adjoining vertical rectangles whose widths represent the class intervals and the heights represent the corresponding frequencies (for equal class width) and frequency densities (for unequal class width).
 Boundaries are plotted along the horizontal axis and the frequencies (or frequency densities) are plotted along the vertical axis
- ii) The area of each rectangle is proportional to the frequency of the corresponding class.
- iii). Mode is calculated graphically from Histogram.
- iv) It helps us to get an idea about the frequency curve and frequency polygon.
- v) Comparison among the frequencies can be made for different class intervals.

Example

The monthly profits in rupees of 100 shops are distributed as follows:

			1				1
Profits per Shop	0-100	100-200	200-300	300-400	400-500	500-600	
 No. of Shops	12	18	27	20	17	6	

Draw the histogram to the data and hence find the modal value.

In the histogram, the top right corner of the highest rectangle is joined by a straight line to the top right corner of the preceding rectangle. Similarly, top left corner of the highest rectangle is joined to the top left corner of the following rectangle. From the point of intersection of these two lines a perpendicular is drawn on the horizontal axis. The foot of the perpendicular indicates the Mode. This is read from the horizontal scale and the modal value is found to be 256 (in ₹) approximately.

2. Frequency Polygon and Frequency Curve

- i) In this method, the frequency of each class is plotted against the mid-value of the corresponding class. The points thus obtained are joined successively by straight lines. The polygon is then completed by joining two end-points to the mid-values of two empty classes assumed in either side of the frequency distribution.
- ii) Frequency polygon can be obtained from the histogram by joining the successive
 mid-points of the top of the rectangles which constitute the histogram and the
 polygon is completed in the same manner as before.

- iii) If in a frequency distribution the widths of the classes are reduced, then the number of classes will increase. As a result the vertices of a frequency polygon will come very close to each other. In that case, if we join the points by smooth free hand line instead of straight lines, a smooth curve is obtained which is known as a Frequency Curve.
- iv) Frequency Curve is a limiting curve case of frequency polygon.
- 3. Cumulative Frequency Polygon / Ogive Curve
 - 1. It is a graphical representation of cumulative frequency distribution.
 - 2. Median and all other partition values are calculated from ogives.
 - 3. There are two types of ogives (i) Less Than Ogive (ii) More Than Ogive.
 - 4. IN LESS THAN OGIVE LESS THAN CUMULATIVE FREQUENCIES ARE USED.
 AND IN CASE OF MORE THAN OGIVE, MORE THAN CUMULATIVE FREQUENCIES
 ARE USED AND THE OGIVE CURVE LOOKS LIKE ELONGATED "S". THESE ARE ALSO
 KNOWN AS "S" CURVE.

Example

Draw the cumulative frequency diagram (both more-than and less-than ogive) of the following frequency distribution and locate graphically the Median:

Marks-Group	0-10	10-20	20-30	30-40	40-50	50-60	60-70	Total
No. of Students	4	8	11	15	12	6	3	59

Calculation for Cumulative Frequencies

Class Boundary	Cumulative Frequency		
	Less than	More than	
0	0	59	
10	4	55	
20	12	47	
30	23	36	
40	38	21	
50	50	9	
60	56	3	
70	59	0	

	Λουσο	otrical C		
	Asymm			
	↓ ↓			
Р	ositively Skewed		Negative	ely Skewed
(Mean	> Median > Mode)		(Mean < Me	dian < Mode)
(i) Frequency curve as a longer		(i) Frequency	curve as a longer
	tail to the right		tail to the L	eft
			8	
	M _o M _e M		M	Me Mo
P	ositive Skewness		Negativ	ve Skewness
			E ise	
/ 0 1		,00		
48. II	n a two-almensional alagram:			
) only haight is considered			
a) only height is considered			
a b	 only height is considered only width is considered both height and width is considered 	ered		
a b c d	 only height is considered only width is considered both height and width is considered height, width and thickness are 	ered conside	ered	
a b c d	 only height is considered only width is considered both height and width is considered height, width and thickness are 	ered conside	ered	
a b c d 49. G	 only height is considered only width is considered both height and width is considered height, width and thickness are 	ered conside	ered	
49. G	 only height is considered only width is considered both height and width is considered height, width and thickness are araph is a : Line diagram 	ered conside b)	ered Bar diagram	
49. C	 only height is considered only width is considered both height and width is considered height, width and thickness are height is a : Line diagram Pie diagram 	ered conside b) d)	ered Bar diagram Pictogram.	
49. G c 50. T	 only height is considered only width is considered both height and width is consided height, width and thickness are height is a : Line diagram Pie diagram he chart that uses logarithm of the 	ered conside b) d) variab	ered Bar diagram Pictogram. .e is known as :	
49. G 50. T	 only height is considered only width is considered both height and width is considered height, width and thickness are height is a : Line diagram Pie diagram he chart that uses logarithm of the Multiple line chart 	ered conside b) d) variab	ered Bar diagram Pictogram. Le is known as : Ratio chart	

51.	. Multiple axis line chart is considered when								
	α)	the units of the variables are diffe	erent.						
	b)	there is more than one time series							
	c)	c) both a) and b) above							
	d)	either a) or b) above							
52.	The	graphical representation of a cum	ulative	e frequency distribution is called					
	α)	histogram	b)	ogive					
	c)	both a) and b) above	d)	none of the above					
53.	Ogiv	ve is α							
	α)	line diagram	b)	bar diagram					
	c)	both a) and b) above	d)	none of these					
54.	The	most common form of diagramm	natic r	epresentation of a grouped frequency					
	dist	ribution is :		29					
	α)	ogive	b)	histogram					
	c)	frequency polygon	d)	none of the above					
			2 5	nterr					
55.	Frec	juency density is used in the constr	uction	of					
	α)	histogram	b)	frequency polygon					
	c)	ogive	d)	none of the above					
56.	Whe	en the width of all classes is same,	freque	ency polygon has not the same area as					
	the	Histogram :							
	a)	true	b)	false					
	c)	both a) and b) above	d)	none of the above					
57.	Diag	grammatic representation of the cu	ımulat	ive frequency distribution is :					
	a)	frequency polygon	b)	ogive					
	c)	histogram	d)	none of the above					
58.	A co	omparison among the class frequer	ncies is	s possible in					
	α)	ogive	b)	histogram					
	c)	frequency polygon	d)	either b) or c) above					

_					
	59.	Mod	e is found graphically by :		
		α)	frequency polygon	b)	ogive
		c)	histogram	d)	none of the above
	60.	Freq	uency curve is a limiting form of		
		α)	frequency polygon	b)	histogram
		c)	either a) or b) above	d)	both a) and b) above
	61.	The	breadth of the rectangle is equal t	o the l	ength of the class-interval in
		a)	ogive	b)	histogram
		c)	both a) and b) above	d)	none of these.
	62.	Cons	secutive rectangles in a Histogram	have r	no space in between them.
		α)	true	b)	false
		c)	both a) and b) above	d)	none of the above
				5	29
	63.	Med	ian of a distribution can be obtain	ed fror	n
		α)	histogram	b)	frequency polygon
		c)	Ogives	d)	none of the above
				0	
	64.	The	curve obtained by joining the points,	whose	x-coordinates are the upper limits of the
		clas	s-intervals and y-coordinates are co	rrespo	nding cumulative frequencies is called
		α)	ogive	b)	frequency polygon
		c)	histogram	d)	frequency curve
	65.	The	purpose served by diagrams and c	harts i	s:
		α)	To avoid tabulation	b)	To avoid textual form
		c)	Simple presentation of data	d)	All of the above
	66.	Less	than type and more than type og	ives m	eet at a point known as:
		a)	Mean b) Median	c) Mo	de d) Quartile
	67.	lf w	e plot less than and more than	type fi	requency distribution, then the graph
		plot	ted is:		
		α)	Frequency Curve	b)	Histogram
		c)	Ogive	d)	None of these

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

68.	From which graphical representation, we can calculate partition values?						
	α)	Lorenz Curv	e	b)	Ogive Curve		
	c)	Histogram		d)	None of these		
69.	Whe	n the two cu	rves of ogive i	ntersect, the	e point of intersect	ion provides:	
	α)	First Quartil	e	b)	Third Quartile		
	c)	Second Qua	ırtile	d)	None of these		
70.	Divio	ded bar char	t is good for:				
	α)	Comparing	various compo	onents of a v	rariable		
	b)	Relating the	e different com	ponents to	the variable		
	c)	Both a) and	b) above				
	d)	Neither a) n	or b) above		R		
71.	In o	rder to comp	are two or mo	re related s	eries, we consider:		
	α)	Multiple Ba	r Chart	b)	Grouped Bar C	hart	
	c)	Both a) and	b)	d)	None of them		
					Suprise		
72.	An c	area diagram	is:	19	Enterr		
	α)	Ogive		b	Histogram		
	c)	Frequency P	olygon	(d)	None of these		
			2 3 V				
73.	Whi	ch of the foll	owing is a two	dimension	al figure?		
	α)	Line Diagrar	n	b)	Pie Diagram		
	c)	Squares		d)	Both b & C		
74.	Arra	nge the dime	ensions of Bar	Diagram, Cu	ube Diagram, Pie I	Diagram in sequence.	
	a) 1	, 3, 2 b)	2, 1, 3	c) 2, 3, 1	d) 3, 2, 1	L	
75.	The	most appro	priate diagra	m to repres	ent the data rel	ating to the monthly	
	expe	enditure on d	ifferent items	by a family	s:		
	α)	Pie Diagram	1	b)	Line Diagram		
	c)	Histogram		d)	Frequency Poly	rgon	

FREQUENCY DISTRIBUTION

- Tabular representation of statistical data is usually made in ascending order of magnitude relating to measurable characteristics according to individual value or group of values.
- 2. There are two types of frequency distribution
 - i. For discrete variable it is known as simple or ungrouped or discrete frequency distribution.
 - ii. For continuous random variable it is known as continuous or grouped frequency distribution.

3. SOME IMPORTANT TERMS

- i) Frequency: (Tally Mark)
 Frequency of a value of variable is the number of times it occurs in a given series of observations. A Tally Mark (/) is put against the value when it occurs in the raw data. Having occurred four times, the fifth occurrence is represented by putting a Cross Tally Mark (\) on the first four tally marks.
- Range: Range of a given data is the difference between the largest measure and the smallest measure in a given set of observations.
- iii) Class Interval (or class) : A large number of observations having wide range, is usually classified into number of groups. Each of these groups is known as a class.
- iv) Class frequency, Total Frequency : The number of observations which is class contains, is known as its class frequency. The total number of observations in the frequency distribution is known as 'Total Frequency'.
- v) Class Limit : The two ends of a class interval are known as class limits of that class. The smaller of the two ends is called LOWER Class Limits and the greater is called Upper Class Limit. These classification are called non-overlapping or mutually inclusive classification.
- vi) Class Boundaries : When we consider a continuous variable, the observation are recorded nearest to a certain unit. For example, let us consider the distribution of weight of a group of persons. If we measure the weight nearest to the pound, then a class interval like (100-109) will include all the observations between

99.5 lb to 109.5 lb. Similarly, all the observations between 109.5 lb to 119.5 lb will be included in the class interval (110- 119). For the class interval (100-109), 99.5 is the lower class-boundary and 109.5 is the upper class boundary. For the class (110-119), the lower and upper class boundary respectively 109.5 and 119.5. These classifications are called overlapping or mutually exclusive classification.

Class boundaries can be calculated from the class limits by the following rule:

Lower Class boundary = Lower Class limit - $\frac{1}{2}$ d;

Upper Class boundary = Upper Class limit + $\frac{1}{2}$ d;

where, d is the common difference between the upper limit of a class and the lower limit of the next class. d/2 is called the Correction Factor

vii) Mid-value (or class mark or mid point or class point) ;

Mid-value is the mid-Point of the class interval and is given by Class Mark= <u>UCL+ LCL</u> <u>UCB+ LCB</u>

viii) Width or Size : This is the length of a class and is obtained by the difference between the upper and lower class boundaries of that class.

Class width / size = Difference between 2 successive LCL's / UCL's

- = Difference between 2 successive LCB's / UCB's
- = Difference between 2 successive mid values if all the class are of the same width.
- = Difference between UCB and LCB
- Note : Class width ≠ UCL-LCL

ix) Frequency Density: This is defined as the frequency per unit width of the class.

Frequency Density = Class frequency Class width

It measures the concentration of the frequency of different classes.

	x) Relative Frequency: This is the ratio of the class frequency to the total frequency,						
	i.e. Relative frequency = Class frequency						
		Total Frequency					
	•	Relative Frequency of any class lies between 0 and 1					
	xi) Percentage Frequency:						
	Tota	Frequency x100 = or Relative frequency	x 100				
_	1 Thora is	COMULATIVE FREQUENCY	UISTRIBUTION				
	1. There is Distribut	ion where the frequencies are cumu	lated				
	2 This dist	ribution is prepared from the group	ed frequency distribution by taking the				
	end valu	es (ie. class boundaries and not class	ss limits)				
	3. Number	of observation less than or equal to	the class boundaries are called "Less-				
	Than" Ty	pe Cumulative Frequency Distributic	on.				
	4. Number	of observation greater than or equal	to class boundaries are called " More-				
	Than" Ty	pe Cumulative Frequency Distributic	on.				
	5. It can be	made both for discrete series i.e. u	ngrouped data as well as for grouped				
	data.	/9 6	nterr				
		Ad h					
	Example 2 :	, d(d)					
	From the follo	wing frequency distribution construc	t the cumulative frequency distribution:				
	Weights of 60	students in a class					
_		Weights of 60 student	s in a class				
			_				
		Weight (kg)	Frequency				
_		30-34	3				
		35-39	5				
		40-44	12				
_		45-49	18				
		50-54	14				
		55-59	6				
		60-64	2				
		Total	60				

Cumulative Frequency Distribution of weights of 60 students

Class Boundaries	Cumulative	Cumulative Frequency	
(Weight in kg)			
_	Less Than	More Than	
29.5	0	60	
34.5	3	57	
39.5	8	52	
44.5	20	40	
49.5	38	22	
54.5	52	8	
59.5	58	2	
 64.5	60	0	

Otherwise

Cumulative Frequency Distribution of weights of 60 students

9/9 rorist							
Class Bound	aries	Cumulative Frequency					
(Weight in	<g)< td=""><td colspan="3"></td></g)<>						
		Less Than	More Than				
30-34		3	60				
35-39		8	57				
40-44		20	52				
45-49		38	40				
50-54		52	22				
55-59		58	8				
60-64		60	2				

Here the less than cumulative frequency of the second class is 8. This implies that there are 8 students whose weights are less than 39.5 kg (the upper boundary of that class). The more than cumulative frequency of the second class is 57, i.e. there are 57 students whose weights are more than 34.5 kg(the lower boundary of that class).

Note: By Cumulative Frequency we usually mean less than type.

J.K. SHAH C L A S S E S a Veranda Enterprise

Exan	nple 3 :					
(a)		Marks	CF (Less than)	C.I Fre	quency	
	Less	s than 20	5	10-20	5	
	Less	s than 30	18	20-30	13	
	Less	s than 40	30	30-40	12	
	Less	s than 50	35	40-50	5	
					N= 35 = □f	
(b)		Marks	C.I	CF (more than)	Frequency	
		More than 20	20-30	35	17	
		More than 30	30-40	18	8	
		More than 40	40-50	10	7	
		More than 50	50-60	3	3	
				CF 9	35	
Relc	ated MCQ's	5	69	E.e.		
76.	The num	ber of observatio	ns corresponding t	o a particular cla	ss is known the	
	of that cl	lass.	/9	nterr		
	a) freq	uency	b) weig	jht		
	c) pow	/er	d) both	n c) and a) above		
		0				
77.	the mid-	point of a class i	s obtained by:			
	a) add	ing upper and lo	wer limits			
	b) by d	lividing the differ	ence of upper and	lower limits by 2		
	c) by c	adding upper and	l lower limits and	dividing it by 2		
	d) by d	leducting upper l	imit from the lowe	er limit		
78.	The Frequ	uency distributio	n of a continuous	variable is known	as :	
	a) grou	uped frequency d	istribution			
	b) sim	ple frequency dis	tribution			
	c) eith	er a) or b) above				
	d) both	n a) and b) above	2			

79.	9. (Class frequency) / (Width of the class) is defined as:							
	α)	Frequency density	b)	Frequency distribution				
	c)	Both a) and b) above	d)	None of the above				
80.	Tall	y marks determines						
	α)	class width	b)	class boundary				
	c)	class limit	d)	class frequency.				
81.	Mut	ually inclusive classification is usually me	eant fo	pr				
	α)	a discrete variable	b)	an attribute				
	c)	a continuous variable	d)	none of the above				
82.	For	determining the class frequency it is nece	ssary t	that these classes are:				
	α)	Mutually exclusive	b)	Not mutually exclusive				
	c)	Independent	d)	None of these				
				7 <i>9</i>				
83.	Mut	ually exclusive classification usually mea	int for					
	α)	an attribute	b)	a continuous variable				
	c)	a discrete variable	d)	any of the above				
84.	The	number of types of cumulative frequency	/ is :					
	a) o	ne b) two c) three	d) fou	ır				
85.	The	lower class boundary is :						
	α)	an upper limit to Lower Class Limit						
	b)	a Lower limit to Lower Class Limit						
	c)	both a) and b) above						
	d)	none of the above						
86.	Relo	ative frequency for a particular class						
	α)	lies between 0 and 1.						
	b)	lies between – 1 and 0.						
	c)	lies between 0 and 1, both inclusive.						
	d)	lies between – 1 to 1.						

87.	In t	he construction of a frequency dis	stributi	ion, it is generally preferable to have
	clas	ses of		
	α)	equal width	b)	unequal width
	c)	maximum width	d)	none of these.
88.	Whe	en one end of a class is not specifie	d, the	class is called.
	α)	closed-end class	b)	open-end class
	c)	both a) and b) above	d)	neither a) nor b) above
89.	Whe	en all classes have equal width, th	e heig	hts of the rectangles in Histogram will
	be r	numerically equal to the		
	a)	class frequencies	b)	class boundaries
	c)	both a) and b0 above	d)	none of the above
90.	The	lower extreme point of a class is c	alled :	
	α)	lower class limit.	b)	lower class boundary
	c)	both a) and b) above	d)	none of the above
			20	2 rpris
91.	Mos	t extreme values which would ever	⁻ be inc	cluded in a class interval are called:
	a)	Class Interval	b)	Class Limits
	c)	Class Boundaries	d)	None of the above
		315		
92.	Frec	quency Density corresponding to a d	class ir	nterval is the ratio of:
	a)	Class Frequency to the Total Frequ	uency	
	b)	Class Frequency to the Class Leng	th	
	c)	Class Length to the Class Frequen	сy	
	d)	Class Frequency to the Cumulativ	e Freq	uency
93.	The	upper class boundary is:		
	a)	An upper limit to the upper class	limit	
	b)	A lower limit to the lower class li	mit	
	c)	Both a) and b) above		
	d)	None of the above		

BES

	94.	Mic	d values	s are als	o knowi	n as:							
		α)	Lowe	r limit			b)	Up	per limit				
		c)	Class	mark			(b	No	ne				
_		C/	01000				,						
_	95	Lor	ath of	a class i	ic								
_	55.		The d	lifforonce	o hotwo	on tha l	ICP and		that clar				
_		u)								>>			
		D)	Ine d	lifference	e betwe	en the L	ICL and	LCL of t	nat clas	S			
		C)	Eithei	r a) or b)								
		d)	Both	a) and t	o)								
	96.	For	r a parti	icular cl	ass bou	ndary, t	he less t	han cur	mulative	freque	ncy and	more th	an
		cur	nulativ	e freque	ncy add	up to							
		α)	Total	Frequer	าсу		b)	509	% of the	total Fi	requency	/	
		c)	Eithei	r a) or b)		d)	No	ne				
				-	-								
_						The	orv Ar	swers	, //	5			
_													
_		Ī	1	b	21	d	41	C	61	b	81	а	
_			2	a	22	b	42	d	62	a	82	a	
_			3	b	23	a	43	a	63	С	83	b	
			4	а	24	b	44	b	64	а	84	b	
		[5	С	25	d	45	d	65	d	85	b	
		[6	b	26	С	46	d	66	b	86	С	
			7	d	27	а	47	d	67	С	87	а	
		ļ	8	С	28	а	48	С	68	b	88	b	
			9	С	29	b	49	а	69	С	89	а	
			10	C	30	С	50	b	70	C	90	b	
_			11	C	31	C	51	a	71	С	91	C	
_			12	C	32	d	52	b	72	b	92	b	
_			13	D	33	D	53	a b	73	a	93	a	
_			14	b	25 25	u b	55		74	d	94	C	
		[16	u e	35		56	a h	75	a a	95	a	
			17		30	a	57	h	70		50	a	
		-	18	a	38	<u>с</u>	58	d b	78	a			
			19	b	39	a	59	C	79	a			
			20	a	40	d	60	a	80	d			
_			-		-						1		ļ

Numerical Problems

In 1995, out of the 2,000 students in a college; 1,400 were for graduation and the rest of Post-Graduation (PG). Out of 1,400 Graduate students 100 were girls, in all there were 600 girls in the college. In 2000, number of graduate students increased to 1,700 out of which 250 were girls, but the number of PG students fall to 500 of which only 50 were boys. In 2005, out of 800 girls 650 were for graduation, whereas the total number of graduates was 2,200. The number of boys and girls in PG classes were equal.

97. Present the above information in tabular form.

- 98. Calculate the percentage increase in the number of graduate students in 2005 as compared to 1995.
- 99. Out of 1000 persons, 25% were industrial workers and the rest were agricultural
workers. 300 persons enjoyed world cup matches on TV. 30% of the people who
had not watched world cup matches were industrial workers. What is the number
of agricultural workers who had enjoyed world cup matches on TV?
a) 230
b) 240
c) 250
d) 260

100. The class marks of a distribution are: 26, 31, 36, 41, 46, 51, 56, 61, 66, 71. Find the true class limits.

 101. When the class intervals are 10 - 19, 20 - 29, 30 - 39, Upper class boundaries

 (UCB) and the Upper class limits (UCL) of the 2nd class interval are:

 a) 29, 29
 b) 20, 29
 c) 29.5, 29.5
 d) 29.5, 29

 102. The class mark of the Class Intervals: 10 - 20, 20 - 30, 30 - 40, are:

 a) 15, 25, 35
 b) 14.5, 24.5, 34.5

 c) 30, 50, 70
 d) None of the above

 103. From the following data find the number of class intervals, if class length is given as 5:

 73, 72, 65, 41, 54, 80, 50, 46, 49, 53

 a) 5
 b) 6
 c) 7
 d) 8

.1	K CHAH										
C								a four	NDATION :	STATISTICS	
a 10	Veranda Enterprise	od by 30	stude	onts ir		iss to	st out	of 50	marks a	uccording t	0
10	their roll numbers	are: 41	25 33	2 12	21 10	2 2 Q	10 21	12 1	10 17	12 10 1	.0 7
	12 17 17 41 41	10 / 1	23, 33	2, 12, 21	22, 13	1 2'	15, 21,		, 13, 11,	12, 13, 1 naed in th	,
	form of a froquon	, 13, 41,	55, 12	2, 21, with		, <u>1</u> , <u>2</u> .	0 11_	20 21		-40 41-5	0
	then the frequenci	os of tho			torval	s aro:	.0, 11-	20, 21	-30, 31	-40, 41-5	0
		es or the			tervui	.s ure	b) 3	1/1 5	//_		
	c) / 13 / 5 /						d) No	17, 5,	the abov		
	с, ч, 13, ч, 3, ч						u) NO				
10	5. The number of acc	idents fo	r seve	ral da	vs in i	a loco	ility is a	iven b	elow:		
	No. of accidents	:)	1	2	3	4	5	6		
	Frequency	•	- 15	19	22	31	9	3	2		
	What is the number	er of case	s whe	 n 3 or	 Less	accide	ent occu	urred?			
	a) 56	b) 6			c) 68		R	d) 87	,		
	,				-,						
106	5. The following date	a relate t	o the i	incom	es of 8	36 pe	rsons :				
	Income (in ₹):	500-99	99	1000-	-1499	150	0-1999	2000	-2499		
	No. of persons:	15		2	8		36	7	,		
	What is the percer	ntage of p	person	is earr	ning m	ore t	nan₹1	499?			
	a) 50	b) 45		70	c) 40	re		d) 60)		
			P	2	OF						
10	7. Find the number o	f observe	itions	betwe	en 25	0 and	l 300 fr	om th	e followi	ng data :	
	Value More than:	More t	han	More	than	Mor	e than	More	than		
		200		250)	3	00	3	50		
	No. of observation	n: 56		38			15		C		
	a) 56	b) 23			c) 15			d) 8			
108	8. Cost of sugar in a	month u	nder t	he he	ads ro	ıw mo	aterials,	laboι	ur, direct	productio	n
	and others were 1	2, 20, 35	and a	23 uni	its res	pectiv	vely. The	e diffe	rence be	tween the	ir
	central angles for	the large	est an	d smo	allest	comp	onents	of the	cost of	sugar is (i	in
	degrees):										
	a) 48	b) 56			c) 72			d) 92			
1											

109	. Sales of X Lt	d for 4	months is g	given below:			
	Month	:	Jan	Feb	Mar	April	
	Sales (₹)	:	10,000	15,000	18,000	9,000	
	The above d	ata rep	presents:				
	a) Discrete S	eries			b) C	ontinuous Series	
	c) Individual	Series			d) N	lone of the above	

Fill in the following Frequency Distribution Table

	ï	1		1	r	1	1	1	1
Class	Class	Class	Class	Mid	Width	Fre	Relative	Percentage	
Interval	Frequency	Limits	Bound	Value	of the	quency	Frequency	Frequency	
			aries		Class	Density			
1 - 5	9								
6 - 10	8								
 11 - 15	9								
16 - 20	12								
21 - 25	31								
26 - 30	20								
 31 - 35	11								
Total	100		<u> </u>						

HOMEWORK SECTION

1.	The quickest met	hod to collect pr	imary data is:			
	(a) Personal inte	erview	(b) Indi	irect interview		
	(c) Mailed Quest	tionnaire Method	(d) Tele	ephonic interview		
2.	Which of the foll	owing statement	is true?			
	(a) Statistics is d	lerived from the l	French word 'Sto	atistik'		
	(b) Statistic is de	erived from the It	alian word 'Sta [.]	tista'.		
	(c) Statistics is d	lerived from the l	Latin word 'Stat	istique'.		
	(d) None of these	e				
				8		
3.	The following da	ta relates to the	incomes of 90 p	persons:		
						1
	Income in ₹ :	1500-1999	2000-2499	2500-2999	3000-3499	
	No. of Persons:	13	32	20	25	
			79	rpris		
	What is the perce	entage of person	s earning more	than ₹ 2,500?		
	(a) 45	(b) 50	(c) 52	(d) 55		
			0///			
4.	In tabulation, so	urce of data, if a	ny, is shown in t	the:		
	(a) Stub	(b) Body	(c) Capti	on (d) Foo	otnote	
5.	Divided bar char	t is good for:				
	(a) Comparing v	arious componer	nts of a variable	۱ 		
	(b) Relating the	different compor	ients to the who	ole		
	(c) (a) and (b)					
	(d) (a) or (b)					
		<u> </u>				
6.	Relative frequence	cy for a particulo	ir class lies betw	veen:		
	(a) 0 and 1		(b) 0 a	nd 1, both inclusiv	/e	
	(c) -1 and 0		(a) -1	ana 1		

7. Find the number of observations between 350 and 400 from the following data:

	Value:	More than 200	More than 35	50 More than 400	More than 450	
	No. of	48	25	12	0	
	observations:					
	(a) 13	(b) 15	(c) 17	((d) 19	
8.	When the width	of all classes is s	ame, frequenc	y polygon has not [.]	the same area as	
	the Histogram:					
	(a) False	(b) True	(c) Bot	h (d	d) None	
9.	The graphical rep	presentation of a	cumulative fr	requency distributio	on is called:	
	(a) Histogram	(b) Ogive	(c) Bot	h 🕟 (d	d) None	
10.	A table has	_ parts.				
	(a) Four	(b) Two	(c) Five	9 9 10	d) None	
			502	V.e		
11.	Cost of sugar in	a month under t	he heads raw	materials, labour,	direct production	
	and others were	12, 20, 35 and 23	3 units respect	ively. What is the di	ifference between	
	the central angle	es for the largest	and smallest	components of the	e cost of sugar?	
	(a) 72°	(b) 48°	(c) 56°	(0	d) 92°	
		210				
12.	Frequency densit	cy corresponding	to a class inte	erval is the ratio of	•	
	(a) Class Freque	ncy to the Total I	Frequency			
	(b) Class Freque	ncy to the Class	Length			
	(c) Class Length	to the Class Free	quency			
	(d) Class Freque	ncy to the Cumul	ative Frequen.	cy		
4.2				• •		
13.	In order to comp	are two or more	related series	, we consider:		
	(a) Multiple Bar	Chart	(D) G	roupea Bar Chart		
	(c) (d) or (b)		(d) (d	l) and (b)		
11		· :				
14.	An area alagram	1 IS:	(6)	aivo		
	(a) HISTOGRAM	lygon	(D) (D)	give		
	(c) Frequency PC	otygon	(a) N	one of these		

J.K. SHAH C L A S S E S a Veranda Enterprise

15.	Most extreme values which would ever t	oe in	cluded in a class interval are called:
	(a) Class Interval	(b)	Class Limits
	(c) Class Boundaries	(d)	None of these
16.	In 2000, out total of 1,750 workers of fac	tory	, 1,200 were members of a trade union.
	The number of women employed was 2	00 c	of which 175 did not belong to a trade
	union. In 2004, there were 1,800 emplo	yees	s who belong to a trade union and 50
	who did not belong to trade union. Of a	ll th	e employees in 2004, 300 were women
	of whom only 8 did not belong to the tro	ade I	union. On the basis of this information,
	the ratio of female members of the trad	e un	ion in 2000 and 2004 is:
	(a) 292:25	(b)	8:175
	(c) 175:8	(d)	25:292
			8
17.	The lower class boundary is:		
	(a) An upper limit to Lower Class Limit	(b)	A lower limit to Lower Class Limit
	(c) Both (a) & (b)	(d)	None of these
			E.e.
18.	The distribution of profits of a company	follo	ows:
	(a) J-shaped frequency curve	(b)	U-shaped frequency curve
	(c) Bell – shaped frequency curve	(d)	Any of these
	, idrain		
19.	Out of 1000 persons, 25 per cent we	ere i	ndustrial workers and the rest were
	agricultural workers. 300 persons enjoye	ed w	orld cup matches on T.V. 30 per cent of
	the people who had not watched world	cup	matches were industrial workers. What
	is the number of agricultural workers wh	no h	ad enjoyed world cup matches on TV?
	(a) 230 (b) 250	(c) 2	240 (d) 260
20.	Median of a distribution can be obtained	l fro	m:
	(a) Histogram	(b)	Frequency Polygon
	(c) Less than type Ogives	(d)	None of these
21.	In indirect oral investigation:		
	(a) Data is not capable of numerical exp	oress	sion
	(b) Not possible or desirable to approac	h inf	formant directly
	(c) Data is collected from the books		
	(d) None of these		

J.1	K. SHAH [®]		CA FOUNDATION STATISTICS	
C L a l	ASSES Adranda Enterprise			
22.	Circular diagram are always:			
	(a) One-dimensional	(b)	Two-dimensional	
	(c) Three-dimensional	(d)	Cartograms	
			U	
23.	The column headings of a table are know	wn d	15:	
	(a) Body (b) Stub	(c) I	Box-head (d) Caption	
			· · · · · · · · · · · · · · · · · · ·	
24.	Some important sources of secondary do	ata	are	
	(a) International and Government source	es		
	(b) International and primary sources			
	(c) Private and primary sources			
	(d) Government sources			
			®	
25.	From the following data find the number	cla	ss intervals if class length is given as 5.	
	73, 72, 65, 41, 54, 80, 50, 46, 49, 53.			
	(a) 6 (b) 5		(c) 7 (d) 8	
			E.e.	
26.	The most appropriate diagram to repr	rese	nt the data relating to the monthly	
	expenditure on different items by a famil	ly is	nterr	
	(a) Histogram	(b)	Pie-diagram	
	(c) Frequency polygon	(d)	Line graph	
27.	Which of the following is statistical data	?		
	(a) Ram is 50 years old			
	(b) Height of Ram is 5 ⁶ , and of Shyam	anc	l Hari is 5´3´´ and 5´4´´ respectively	
	(c) Height of Ram is 5´6´´ and weight is 9	90 k	g	
	(d) Sale of A was more than B and C			
28.	Sales of XYZ Ltd. for 4 months is:			
	Months		Sales	
	Jan.		10000	
	Feb.		15000	
	May		18000	
	Apr.		9000	
_	The above data represents:			
	(a) Discrete (b) Continuous	(c) l	ndividual (d) None of these	

<u>J.</u>	K. SHAH			CA FOL	JNDATION STATISTICS
a	Veranda Enterprise				
29.	Mid values are o	also called			
	(a) Lower limit	(b) Upper lin	nit	(c) Class mark	(d) None
30.	Which of the fol	lowing is not a two-	-dimensi	onal figure?	
	(a) Line Diagrar	 n	(b)	Pie Diagram	
	(c) Square Diag	ıram	(d)	Rectangle Diagra	ım
_					
31.	Less than type o	and more than type	gives me	et at a point know	wn as:
_	(a) Mean	(b) Median	(c) I	Mode	(d) None
32.	Arrange the dim	nensions of Bar diag	ram, Cub	oe diagram, Pie dia	agram in sequence.
	(a) 1, 3, 2	(b) 2, 1, 3	(c) 2	2, 3, 1	(d) 3, 2, 1
-				®	
33.	With the help of	f histogram one can	find.		
	(a) Mean	(b) Median	(c) I	Mode	(d) First Quartile
				29	
34.	Nationality of a	person is:		Vice	
	(a) Discrete var	iable	(b)	An attribute	
	(c) Continuous	variable	9 (d)	None	
			90.		
35.	If we plot less	than and more tha	in type f	frequency distribu	tion, then the graph
_	plotted is				
	(a) Histogram		(b)	Frequency Curve	
	(c) Ogive		(d)	None of these	
36	The primary rule	es that should be ob	served i	n classification	
	(i) As far as po	ssible, the class sho	uld be o	f equal width	
	(ii) The classes	should be exhaustiv	e		
_	(iii) The classes	should be unambigu	lously de	efined	
	Then which of t	he following is corre	ct.		
	(a) only (i) and	(ii)	(b)	only (ii) and (iii)	
	(c) only (i) and	(iii)	(d)	all (i), (ii) and (iii))
37.	Using Ogive Cur	ve, we can determin	е		
	(a) Median		(b)	Quartile	

(d) None

(c) Both (a) and (b)

38.	Mode can be obtained fro	m							
	(a) Frequency polygon		(b)	Histogram					
	(c) Ogive		(d)	All of the al	oove				
39.	The data obtained by the	internet	are						
	(a) Primary data		(b)	Secondary c	lata				
	(c) Both (a) and (b)		(d)	None of the	se				
 40.	The statistical measure c	omputed	from the	sample obse	rvations alo	ne have bee	en		
	termed as								
	(a) estimate (b) par	ameter	(c) s	tatistic	(d) attribu	ite			
 41.	When the two curves of o	give inter	sect, the p	ect, the point of intersection provides:					
	(a) First Quartile		(b)	Second Qua	rtile				
	(c) Third Quartile		(d)	Mode					
			5/2	2					
 42.	The Choronological classi	f data are	e classified or	the basis of	f:				
	(a) Attributes (b) Are	α	(c) T	ïme	(d) Class II	nterval			
 			96	nter					
 43.	Arrange the following	dimensior	n wise: p	oie-diagram,	bar-diagrar	m and cub	oic		
	diagram.	<u> 1900</u>							
	(a) 1, 2, 3 (b) 3, 1	, 2	(c) 3	3, 2, 1	(d) 2, 1, 3				
 		201 11	<u> </u>						
 44.	The frequency of class 20	-30 in the	e followin	g data is:	0.40	0.50	1		
 	Class	0-10	12	0-30	0-40	0-50			
 		5	15	20	54	50			
 	(a) 5 (b) 28		(C) 1	15	(d) 13				
 	The Compliant means and a								
 45.	Ine Graphical representa	tion by wi	nich meaid	an is calculat	ea is callea				
 	(d) Ogive Curve		(D)	Frequency C	urve				
 	(c) Line diagram		(d)	Histogram					
 10	Transa subtable and 12.1			a and cool and		2			
46.	From which graphical rep	resentatio	on, we car	o calculate p	artition value	es?			
	(a) Lorenz curve		(b)	None of the	about-				
 	(c) Histogram		(a)	wone of the	above				

47.	The data given be	elow refers to	the marks g	ained by a gr	oup of stude	ents:				
	Marks	Below 10	Below 20	Below 30	Below 40	Below 50				
	No. of Students	15	38	65	84	100				
			•	•		•				
	Then the no. of st	udents gettir	ng marks mo	re than 30 wo	ould be					
	(a) 50	(b) 53	(c)	35	(d)	62				
48.	What is a exclusiv	ve series?								
	(a) In which both	upper and la	ower limit ar	e not included	d in class fre	quency.				
	(b) In which lowe	er limit is not	included in c	lass frequenc	у					
	(c) In which uppe	er limit is not	included in c	lass frequenc	:V					
	(d) None of the a	bove		•	<u> </u>					
				B)					
49.	. A pie diagram is used to represent the following data:									
	Source of Income: Customs Excise Income Tax Wealth Tax									
	Amount in Crore	s 120	180) 2	240	180				
	Angle in the pie c	liagram corre	sponding to	income tax is						
	(a) 120°	(b) 240°		180°	(d)	None				
			P 20							
50.	Difference betwee	en the maxim	um and mini	mum value o	f a given dat	ta is called				
	(a) Width	(b) Size	(c)	Range	(d)	Class				
51.	If class interval is	10 - 14, 15	- 19, 20 - 24	, then the fir	st class is					
	(a) 10 - 15	(b) 9.5 – 14	.5 (c)	10.5 - 15.5	(d)	9 - 15				
52.	Difference betwee	en the upper	and lower bo	oundary of a (class is calle	d				
	(a) Class interval		(b) Mid value						
	(c) Class bounda	ry	(d) Frequency						
	(u,)									
53.	There were 200	employees ir	n an office i	n which 150	were marrie	ed. Total ma	le			
	employees were	160 out of v	which 120 w	ere married.	What was	the number	of			
	female unmarried employees?									
	(a) 30	(b) 10	(c)	40	(d)	50				

54.	"The less than Ogive" is a:		
	(a) U-Shaped Curve	(b)	J-Shaped Curve
	(c) S-Shaped	(d)	Bell Shaped Curve
55.	To draw Histogram, the frequency distri	butio	on should be:
	(a) Inclusive type	(b)	Exclusive type
	(c) Inclusive and Exclusive type	(d)	None of these
56.	The most appropriate diagram to repre	esent	the five – year plan outlay of India in
	different economic sectors is:		
	(a) Pie diagram	(b)	Histogram
	(c) Line-Graph	(d)	Frequency Polygon
			®
57.	If the fluctuations in the observed value	e are	e very small as compared to the size of
	the item, it is presented by:		
	(a) Z chart	(b)	Ogive curve
	(c) False base line	(d)	Control chart
			suprise
58.	For constructing a histogram, the class	-inte	ervals of a frequency distribution must
	be	0,	
	(a) equal	(b)	unequal
	(c) equal or unequal	(d)	none of these
59.	100 persons are classified into male / fe	male	e and graduate / non-graduate classes.
	This data classification is:		
	(a) Cardinal data	(b)	Ordinal data
	(c) Spatial Series data	(d)	Temporal data
60.	If we draw a perpendicular on x-axis f	rom	the point of inter-section of both less
	than' and 'more than' frequency curves	we v	vill get the value of
	(a) mode	(b)	median
	(c) arithmetic mean	(d)	third quartile
61.	Histogram is used for the presentation	of th	e following type of series
	(a) Time series	(b)	Continuous frequency distribution
	(c) Discrete frequency distribution	(d)	Individual observation

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

e class intervals o called Frequency Polyg Histogram e number of obse alue o. of observations 46 (t e number of car o o. of accidents: requency: nat will be the nu 32	and y co on ervations More 5: 0) 35 accident. 0 12 .mber of	ordinates s betwee than 10 76 s in sever 1 9	s are the (b) (d) n 150 an 0 More (c) 2 ral days i 2 11	correspo Frequence Ogive d 200 ba than 150 63 8 8 in a local 3	ity are o	umulativ the follov re than 200 28 (d) 2: given bel	wing c	luencies data is e than 250 05
called Frequency Polyg Histogram e number of obse alue 0. of observations 46 (t e number of car of o. of accidents: requency: hat will be the nu 32	on ervations More 5: 0) 35 accident: 0 12 .mber of	s betwee than 10 76 s in sever 1 9	(b) (d) n 150 an 0 More (c) 2 ral days i 2 11	Frequence Ogive Ind 200 base than 150 63 28 in a local 3	sed on Mor	the follow re than 200 28 (d) 23 given bel	wing of Mor	data is re than 250 05
Frequency Polyg Histogram e number of obse alue b. of observations 46 (the e number of car of b. of accidents: requency: hat will be the nu 32	on ervations More 5: 0) 35 accident: 0 12 .mber of	s betwee than 10 76 s in seven 1 9	(b) (d) n 150 an 0 More (c) 2 ral days i 2 11	Frequence Ogive d 200 ba than 150 63 28 in a local 3	sed on Mor	the follow re than 200 28 (d) 23 given bel	wing of Mor	data is e than 250 05
Histogram e number of obse alue o. of observations 46 (t e number of car of o. of accidents: requency: hat will be the nu 32	ervations More S: D) 35 accident: 0 12 .mber of	s betwee than 10 76 s in seven 1 9	(d) n 150 an 0 More (c) 2 ral days i 2 11	Ogive d 200 ba than 150 63 28 in a local 3	sed on Mor	the follow re than 200 28 (d) 23 given bel	wing of Mor	data is 'e than 250 05
e number of obse alue o. of observations 46 (t e number of car o o. of accidents: requency: nat will be the nu 32	more More More 5: 0) 35 accident: 0 12 mber of	s betwee than 10 76 s in seven 1 9	n 150 an 0 More (c) 2 ral days i 2 11	id 200 ba than 150 63 28 in a local 3	ity are o	the follow re than 200 28 (d) 23 given bel	wing of Mor	data is e than 250 05
e number of obse alue o. of observations 46 (t e number of car o o. of accidents: equency: hat will be the nu 32	more More More () 35 () 35 () 12 () mber of	s betwee than 10 76 s in seven 1 9	n 150 an 0 More (c) 2 ral days i 2 11	id 200 ba than 150 63 28 in a local 3	ity are o	the follow re than 200 28 (d) 23 given bel	Mor	data is e than 250 05
alue o. of observations 46 (k e number of car c o. of accidents: requency: hat will be the nu 32	More More 5: 0) 35 accident: 0 12 mber of	than 10 76 s in seven 1 9	0 More (c) 2 ral days i 2 11	than 150 63 28 in a local 3	Mor ity are	re than 200 28 (d) 23 given bel	Mor 2 3	e than 250 05
o. of observations 46 (k e number of car c o. of accidents: requency: nat will be the nu 32	5: c) 35 accident: 0 12 mber of	76 s in sever 1 9	(c) 2 ral days i 2 11	63 28 in a local 3	ity are o	200 28 (d) 23 given bel	3	250 05
o. of observations 46 (t e number of car c o. of accidents: requency: nat will be the nu 32	5: accident: 0 12 mber of	76 s in sever 1 9	(c) 2 ral days i 2 11	63 28 in a local 3	ity are	28 (d) 23 given bel	3	05
46 (b e number of car c o. of accidents: requency: nat will be the nu 32	o) 35 accident 0 12 mber of	s in seve 1 9	(c) 2 ral days i 2 11	in a local	ity are	(d) 23 given bel	3	
e number of car c o. of accidents: requency: nat will be the nu 32	accident 0 12 .mber of	s in sever 1 9	ral days i 2 11	in a local 3	ity are	given bel		
e number of car c o. of accidents: requency: nat will be the nu 32	accident: 0 12 mber of	s in sever 1 9	ral days i 2 11	in a local 3	ity are o	given bel		
o. of accidents: requency: nat will be the nu 32	0 12 mber of	1 9	2	3	,		ow:	
requency: nat will be the nu 32	12 mber of	9	11		4	5	6	7
nat will be the nu 32	mber of			13	8	9	6	3
32		^r cases w	hen 4 or	more acc	idents	occurred	?	
	(b) 4	+1	(c) 2	6	. e .	(d) 18	8	
			/9	201	150			
e most common	form of	f diagran	nmatic re	epresento	ition of	a group	ed fre	equency
tribution is:			90 -					
Histogram	(b) C	Ogive	(c) B	Both		(d) N	one	
C	2							
assification is of _	kin	ds.						
Two	(b) T	hree	(c) C	Dne		(d) Fo	our	
e chart that uses	logarith	nm of vai	riable is k	known as	•			
Ratio chart			(b)	Line chai	rt			
Multiple line cho	art		(d)	Compone	ent line	chart		
				•				
d the number of	observo	ation bet	ween 25	0 and 300) from t	the follow	wing c	lata:
alue more than		200	250	30	00	500		
		56	38	1	5	0		
o. of observation	No. of observation 56 38 15 0						1	
	Histogram ssification is of Two e chart that uses Ratio chart Multiple line cho d the number of lue more than	Histogram (b) C ssification is ofkin Two (b) T e chart that uses logarith Ratio chart Multiple line chart d the number of observe lue more than	Histogram(b) Ogivessification is of kinds.Two(b) Threee chart that uses logarithm of varRatio chartMultiple line chartd the number of observation betlue more than200b of observation56	Histogram(b) Ogive(c) Essification is ofkinds.Two(b) Three(c) Ce chart that uses logarithm of variable is IRatio chart(b)Multiple line chart(d)d the number of observation between 25lue more than20025038	Histogram (b) Ogive (c) Both ssification is ofkinds. kinds. Two (b) Three (c) One e chart that uses logarithm of variable is known as Ratio chart (b) Line chart Multiple line chart (d) Compone d the number of observation between 250 and 300 lue more than 200 250 30 of observation 56 38 1	Histogram (b) Ogive (c) Both ssification is ofkinds. kinds. Two (b) Three (c) One e chart that uses logarithm of variable is known as: kinds. Ratio chart (b) Line chart Multiple line chart (d) Component line d the number of observation between 250 and 300 from the lue more than 200 250 300 a of observation 56	Histogram (b) Ogive (c) Both (d) National Structure ssification is ofkinds. kinds. Two (b) Three (c) One (d) Forestination (d) Component line chart Action chart (b) Line chart (b) Line chart Multiple line chart (d) Component line chart d the number of observation between 250 and 300 from the follow lue more than 200 250 300 500 a of observation 56 38 15 0	Histogram (b) Ogive (c) Both (d) None ssification is of kinds.

J.K. SHAH C L A S S E S a Veranda Enterprise

69.	Data collected on religion from the cens	us re	eports are:					
	(a) Primary data	(b)	Secondary data					
	(c) Sample data	(d)	(a) or (b)					
70.	In collection of data which of the follow	ing c	are interview methods:					
	(a) Personal interview method	(b)	Telephone interview method					
	(c) Published data	(d)	(a) and (b)					
71.	Profits made by XYZ bank is different year	ars r	efer to :					
	(a) An attribute	(b)	A discrete variable					
	(c) A continuous variable	(d)	None of these					
72.	Mode of presenting data		®					
	(a) Textual presentation	(b)	Tabulation					
	(c) Oral presentation	(d)	(a) and (b)					
		5	29					
73.	If the data represent costs spent on cond	uctir	ng an examination under various heads,					
	then the most suitable diagram will be:		ronse					
	(a) Pie diagram	(b)	Frequency diagram					
	(c) Bar diagram	(d)	Multiple bar diagram					
	id come							
74.	The point of intersection of less than og	ive a	nd greater than ogive curve gives us:					
	(a) Mean	(b)	Mode					
	(c) Median	(d)	None of the above					
75.	'Stub' of a table is the							
	(a) Left part of the table describing the	colu	mns					
	(b) Right part of the table describing the	e col	umns					
	(c) Right part of the table describing the	e rov	vs					
	(d) Left part of the table describing the	rows	S					
76.	Frequency density is used in the construct	ction	of					
	(a) Histogram when the classes are of u	nequ	ual width					
	(b) Ogive							
	(c) Frequency polygon							
	(d) None							

77. Divided bar chart is considered for

	(a) Comparing different components of a variable								
	(b) The relation of different components to the table								
	(c) (a) or (b)								
	(d) (a) and (b)								
78.	8. The following frequency distribution:								
	X	12	17		24	36	45		
	F	2	5		3	8	9		
	is classified as	5							
	(a) Continuou	s distribution		(b)	Discrete di	stribution			
	(c) Cumulativ	e frequency d	istribution	(d)	None of th	e above			
					C)			
79.	Histogram is u	useful to deter	mine graphic	ally	the value o	of			
	(a) Arithmetic mean (b) Median								
	(c) Mode			(d)	None of th	e above			
			6			.e.			
80.	Data are said t	to bei	f the investig	ator	himself is re	esponsible for	the collection		
	of the data.		9	C	nterr				
	(a) Primary data								
	(b) Secondary data								
	(c) Mixed of primary and secondary data								
	(d) None of the above								
81.	A suitable gra	ph for represe	enting the po	rtior	ning of tota	l into sub par	ts in statistics		
	is:								
	(a) A Pie char	t (b) A pict	ograph	(c) A	An ogive	(d) His	togram		
82.	The number o	f times a part	icular items o	occu	rs in a class	interval is co	Illed its:		
	(a) Mean			(b)	Frequency				
	(c) Cumulativ	e frequency		(d)	None of th	e above			
83.	An ogive is a g	graphical repr	esentation of	:					
	(a) Cumulativ	e frequency d	istribution	(b)	A frequenc	y distribution			
	(c) Ungrouped	d data		(d)	None of th	e above			

84.

	Class	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	
	Frequency	4	6	20	8	3	
	For the class	20 – 30. Cum	ulative freque	ncy is:			
	(a) 10	(b)	26	(c) 30	(d)	41	
85.	Which of the	following gra	ph is suitable	for cumulative	e frequency dis	stribution?	
	(a) Ogive	(b)	Histogram	(c) G.M.	(d) /	A.M.	
86.	Histogram co	ın be shown a	S				
	(a) Ellipse	(b)	Rectangle	(c) Hyperl	oola (d)	Circle	
					8		
				5/-	9		
				G	ise		
			16	-terpi	•		
				Enc			
		6	Vere				
		0	<u>}</u>				
			54				

HOMEWORK SOLUTION

- (d) Telephonic interview method is considered as the quickest method to collect primary data as the relevant information can be gathered by the researcher himself by contacting the interviewer over the phone without any time log.
- (b) According to the History of Statistics we can see that one school of thought is of the view that statistics is derived from the Italian word 'Statist'.
- 3. (b) No. of persons earning more than \gtrless 2500 = 20 + 25 = 45
 - \therefore The percentage of persons earning more than

₹ 2,500 = <u>45</u> <u>90</u> × 100 = 50%

- 4. (d) The source of data, if any, in any kind to tabulation is shown in the footnote.
- 5. (c) Divided Bar Chart is good for both the things i.e. for comparing different components of a variable as well as the relating of the different components to the whole.
- 6. (b) Relative frequency of a class interval is defined as the ratio of the class frequency to the total frequency. Therefore, Relative frequency for a particular class lies between 0 and 1 both inclusive.
- 7. (a) The number of observation which are more than 350 in inclusive of those observation which are more than 400 and 450.

∴ Deducting those number of observations which are more than 400 and 450 from the number of observations which are 350, we will get the number of observations lying between 350 and 400.

So, the number of observations lying between 350 and 400 = 25 - 12 - 0 = 13

 (a) When the width of all classes is same frequency, polygon has the same area as the histogram. **J.K. SHAH** C L A S S E S a Veranda Enterprise

9.	(b) The graphical representation of a cumulative frequency distribution is called
	Ogive. i.e. by plotting the cumulative frequency against the respective class
	boundary, we get olives which can be less than type ogive are these than type olives
	depending upon the type of cumulative frequency distribution.
10.	(c) A table has four parts namely.
	(i) Stub
	(ii) Caption
	(iii) Body
	(iv) Box head
11.	(d) Total components of the cost of sugar
	= (12 + 20 + 35 + 23) units
	= 90 units
	Largest component of cost of sugar
	= 35 units
	12
	i.e. $\frac{12}{90} \times 360^\circ = 140$
	Smallest component of cost of sugar
	= 12 units
	12
	i.e. $\frac{12}{90} \times 360^\circ = 48^\circ$
	\therefore Difference between the central angles for the largest and smallest components
	of the cost of sugar
	$= 140^{\circ} - 48^{\circ} = 92^{\circ}$
12.	(b) Frequency density of a class interval is defined as the ratio of the frequency of
	that class interval to the corresponding class length.
13.	(c) Multiple Bar Chart also known as Grouped Bar Chart is one dimensional diagram
	in which two or more bars adjoining each other are constructed to represent the
	values of different variables or the values of various components of the same
	variable.
	Multiple Bar Chart or Grouped Bar Chart is considered to compare two or more
	related series.

J.K. SHAH CLASSES a Veranda Enterprise

- 14. (a) Histogram is a graph that represents the class frequencies in a frequency distribution by vertical adjacent rectangles. A Histogram is two-dimensional, i.e. a histogram comprises of both length as well as the width. As the Product of length and width indicates the area. Therefore Histogram is referred to as an Area Diagram. Its area represents the total frequency as distributed through the classes.
- 15. (c) Most extreme values which would be ever included in a class-interval are called as class boundaries, also referred to as actual class limit, are defined as the limits up to which the two limits, (actual) of each class may be extended to fill up the gap that exist between the classes.

16. (d) Title: Sex distribution of Trade Union and Non-union members.

					B	
Year		2000			2004	
Category	Male	Female	Total	Male	Female	Total
Member	1175	25	1200	1508	292	1800
Non-member	375	175	550	42	8	50
Total	1550	200	1750	1550	300	185

Required ratio of female members of the trade union is 2000 : 2004 = 25 : 292.

17. (b) Lower class Boundary

Lower class limit $\frac{1}{2}$ (upper class limit to the class – lower class limit to the succeeding class). Therefore, lower class boundary is a lower limit to lower class limit.

J.K. SHAH C L A S S E S a Veranda Enterprise

18. (c) The bell-shaped curve looks like a bell. On a bell-shape curve, the frequency,
starting from a rather low value, gradually reaches the maximum value, somewhere
near the central part and then gradually decreases to reach is lowest value at the
other extremity. Similar is the case of profits of a company. It rises till the resources
are fully utilized and if the resources are still utilized then due to over-utilization of
resources, the profits start declining. This can be clearly depicted through the data
given below:

Year	Profits (` in lacs)	
2004	10	
2005	12	
2006	15	
2007	13	
2008	9	
_ω 15		3

Profits (₹ in lac

13

12

10

9

0

2004

Years —

Category	T.V.	NTV	Total
Agricultural workers	260	490	750
Industrial workers	40	210	250
Total	300	700	1000

2005 2006 2007 2008

Therefore, number of agricultural workers who had enjoyed world cup matches on T.V. = 260.

20. (c) Ogives are considered for obtaining quartiles graphically. If a perpendicular is drawn from the point of intersection of the two o-gives, i.e. less than type ogive and more than type give, on the horizontal axis, then x-value of this point gives us the value of median, the second or middle quartile.

A S S E S a Verondo Enterprise

J.K. SHA

- (b) Indirect oral investigation is a method in which a third person is contacted who
 is expected to know the necessary details about the persons for whom the enquiry
 is meant. This method is suitable when it is not possible or deliverable to approach
 informant directly.
- 22. (b) Circular diagram is a Two-dimensions diagram in which a circle is prepared and the radius of circle is determined on the basis of minimum square root value of the variable. Two-dimensional diagram is a diagram which is prepared on the basis of two dimension i.e. length and width.
- 23. (d) Each column is given a heading to explain what the figures in the columns represent. These column headings of a table are known as caption.
- 24. (a) The Government source like Indian trade journal weekly, reserve Bank of Indian Bulletin - monthly, etc and International sources like WHO, World Bank, IMF, etc are some of the important sources of secondary data.
- 25. (d) We have, Range = Maximum value Minimum value = 80 41 = 39 Class length = 5

No. of class Intervals × class lengths Range

 \Rightarrow No. of class Intervals × 5 \approx 39

 \implies No. of class Intervals = $\frac{39}{5}$

(We always take the next integer as the no. of class intervals so as to include both the minimum and maximum values).

- 26. (b) Pie diagram
- 27. (b) Option (b) represents statistical data which can be understood by referring the definition of statistics keeping note of the following points.
 - 1. Statistics are aggregate of facts. A single figure cannot be called as statistics because it cannot be compared to draw any conclusion out of it.
 - 2. All statistical facts are expressed in numbers. Qualitative expressions like young, old, etc do not constitute statistics.
 - Statistics should be placed in relation to each other so as to facilitate comparison.
 For this purpose, the data must be homogenous and not heterogenous. e.g.
 height and weight are heterogenous in character.

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

c) Given data represents unclassified and ungrouped data. Therefore, the given
series is an individual series.
c) Mid-values are also called class mark.
Lower class limit + Upper class limit
Class Mark =2
a) Line Diagram.
b) By plotting cumulative frequency against the respective class boundary, we
get Ogives. There are two type of ogives:
i) Less than type ogive.
ii) More than type ogive.
Olives may be considered for obtaining quartiles graphically. If a perpendicular is
drawn from the point of intersection of two ogives on the horizontal axis, then
then the x-value of this point gives us the value of median, the second or middle
quartile.
Therefore, the meeting point of less than type ogive and more than type ogive is
<nown 'median'.<="" as="" th=""></nown>
a) Bar diagram is one dimensional.
Cube diagram has 3 dimensions viz. length, breadth and height and hence is three-
dimensional.
Pie-diagram is two-dimensional.
Therefore, if we arrange it in sequence, we get:
3ar diagram, cube-diagram and Pie diagram i.e. 1, 3, 2.
c) Histogram is used to find Mode. [Self Explanatory]
b) A qualitative characteristic is known as an attribute.
so the nationality of a person is an attribute as it is a qualitative characteristic.
(c) If we plot less than and more than type frequency distribution, then the graph
olotted is Ogive
Daive are of two types - Less than type only and more than type only [solf-
explanatory]

J.K. SHAH C L A S S E S a Veranda Enterprise

al	/drando	a Enterprise					
36.	(d)	Requisites of a good classification are:					
	1.	It should be exhaustive					
	2.	It should be mutually exclusive					
	3.	It should be unambiguous					
	4.	It should be stable and flexible					
	5.	It should be homogeneous					
	6.	It should be a revealing classification					
37.	(c)	Olives are considered for obtaining quartiles graphically. If a perpendicular is					
	drawn from point of intersection of two Olives on horizontal axis, then x-value of						
	this	point gives us the value of median (2nd or middle quartile).					
38.	(b)	Mode can be obtained from histogram.					
39.	(b)	Secondary data					
40.	(c)	Statistic					
		S S rorise					
41.	(b)	We know, that the two curves viz. Less than Ogive & More than Ogive intersect					
	at a	point called Median or we can say Second Quartile.					
		L'idiane					
42.	(c)	Chronological Classification data are classified on the basis of 'Time'.					
43.	(d)	Pie-Diagram: Two Dimensional Diagram (2)					
	The	se Diagrams are also called as "Area-Diagrams".					
	Use	d when different segments or components of values are also to be presented.					
	Bar	-Diagram: One Dimensional Diagram (1) means such diagrams where only one					
	dim	ensional measurement i.e. height is used. There is no importance of width or					
	thic	kness in these diagrams. The heights of bars are taken on the basis of values.					

Cubic-Diagram: Three Dimensional Diagram (3) are those in which three dimensions viz length, breadth & height are taken into account used when these is wide range of data and three different but inter-related features of data are to be represented simultaneously.

44.	(c)				
	Class	Cumulative Fre	eq.	Frequency	
	0-10	5		5	
	10-20	13		13 - 5 = 8	
	20-30	28		28 - 13 = 15	
	30-40	34		34 - 28 = 6	
	40-50	38		38 - 34 = 4	
45.	(a) The median is calcula	ted by Ogive Curve			
46.	(b) We can calculate part	tition values with the	e help o	f O'Give Curve for graphical	
	representation.				
47.	(c) Converting the given	n "Less than" type	frequer	ncy distribution to Normal	
	frequency distribution:				
	Class Interval	(f) frequency		9	
	0 - 10	15	E.	e P.	
	10 - 20	23	"YO'	5	
	20 - 30	27	5. ,		
	30 - 40	19			
	40 - 50	16			
	Hence,	Vo.			
	The no. of students getting	marks more than 30) is 19 +	16 = 35.	
48.	(c) In exclusive series, up	per limit is not includ	ed in cl	ass frequency.	
	Revenue of Income to	٦X			
49.	Angle = Total Revenue				
	240	240	4.2.0		
	$= \frac{120 + 180 + 240 + 180}{120 + 180} \times 36$	$0 = \frac{1}{720} \times 360 =$	120		
50.	(c) Difference between th	e maximum and min	imum v	alue of given data is called	,
	Range.				
-					

a Vergoda Enterprise

J.K. SH/

- 51. (b) Class intervals is 10 14, 15 19, 20 24
 - D = 15 14 = 1
 - $\frac{D}{2} = \frac{1}{2} = 0.5$

First class is (10 - 0.5) - (14 + 0.5)

- = 9.5 14.5
- The difference between the upper and lower boundary of class is called class 52. (a) interval (class width).
- 53. (b) Total Employees in the office = 200
 - No. of Employees who are married = 150
 - No. of Employees who are unmarried = 200 150 = 50
 - No. of Total male Employees = 160
 - No. of Married male Employees = 120
 - No. of unmarried male Employees = 160 120 = 40
 - No. of females who are unmarried = 50 40 = 10
- "The less than Ogive" is a s-shaped. 54. (c)
- 55. (b) To Draw Histogram, the frequency distribution should be exclusive type.
- 56. (a) Pie diagram
- 57. (c) If the fluctuations in the observed value are very small as compared to the size of the item, it is present by false base line.
- 58. (a) For constructing a histogram, the class-intervals of a frequency distribution must be equal.
- 59. (b) Original data
- 60. (b) If we draw a perpendicular on x-axis from the point of intersection of both 'less than' and 'more than' frequency curve. We will get the value of 'Median'.

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

	61.	(b) Histogram is used for the presentation to the continuous frequency distribution											
		of the series.											
	62.	(d) Curve obtained by joining the points whose x co-ordinate are the upper limits of the class intervals and y co-ordinates are the corresponding cumulative frequencies											
		the class intervals and y co-ordinates are the corresponding cumulative frequencies is called 'o' give.											
		is called 'o' give.											
		(b)											
	63.	(b)											
		C.I. Frequency 100 - 150 76 - 63 = 13											
		100 - 1	50		76	5 - 63 =	13						
		150 – 2	00		63	8 - 28 = 2	35						
		200 – 2	50		28	3 - 05 =	23						
		250 - 3	00			(05						
		The no. of observat	ion b/w	150 an	d 200 is	35.	5						
	64.	(c)				5	79						
		-r											
		No. of Accident	0	1	2	3	4	5	6	7	-		
		Frequency	12	9	11	13	8	9	6	3			
		No. of Cases when	4 or mo	re Accid	ents occ	urred							
		= 8 + 9 + 6 + 3 = 20	5	0									
			3	V									
	65.	(a) The most com	mon for	m of die	agramm	atic repro	esentatio	on of a g	group fr	equency	/		
		distribution is Histo	ogram.										
	66.	(a) Classification	is of fou	r kind.									
	67	(a) The chart that		a a vit la na	ofugric	able ie ku		Datia Ch	aut				
	07.	(d) The chart that	. uses to	gantiin			iown us		iurt.				
	68	(b)											
	00.					Fre	quency						
		200 -	250			56 -	38 = 18						
		250 -	300			38 -	15 = 23						
		300 -	350			15 -	- 0 = 15						
_		350 -	400			0 -	- 0 = 0						
	No. d	of observation b/w	250 and	350 = 2									
					C 1								

69. (b) Data collected on religion from the census reports are secondary data.

70. (d) Personal interview method and telephone interview method are the interview method.

71. (c) Profit made by XYZ Bank is different years refer to a continuous variable.

- 72. (d) Mode of presentation data are textual presentation and tabulation.
- 73. (a) If the data represent cost spent on conducting an examination under various heads then the most suitable diagram will be Pie diagram.
- 74. (c) The point of intersection of less than Ogive and greater than Ogive curve gives us Median.
- 75. (d) 'Stub' of a table is the left part of the table describing the rows.

76. (a) Frequency density is used in the construction of Histogram.

- 77. (d) Divided Bar Chart is considered for comparing different components of a variable and the relation of different components to the table.
- 78. (b) Discrete distribution

79. (c) Histogram is useful to determine graphically the value of 'mode'.

- 80. (a) Data are said to be Primary data if the Investigator himself is responsible for the collection of the data.
- 81. (a) A suitable graph for representating the portioning of total into sub parts in statistics is a Pie chart.
- 82. (b) The number of times a particular items occurs in a Class Interval is called its Frequency.

83. (a) An Ogive is a graphical representation of cumulative frequency distribution.

84. (c)		1		_
	C.I.	F	C.F.	
	0 - 10	4	4	
	10 - 20	6	10	
	20 - 30	20	30	
	30 - 40	8	38	
	40 - 50	3		
Cui	mulative frequency of Clo	ass Interval '20 – 30' is 30.		
35. (a)	Ogive is graph suitable	e for cumulative frequency d	istribution.	
36. (b)	Histogram can be shov	vn as Rectangle.		
			9	
		GO/4	0	
			56	
		G serv		
		Ente		
		Pado		
	2			

SELF ASSESSMENT TEST 1 25 Marks

1.	The meaning	of STATISTICS in	n plural sense is:
----	-------------	------------------	--------------------

- a) A set of numerical figures, related to any country
- b) A set of artificial figures, related to any city
- c) A set of numerical figures, related to any sphere of enquiry
- d) A set of artificial figures, related to any sphere of enquiry

2. Which of the following best describes a frequency table of a variable?

- a) A two-way classification table.
- b) A table of frequency.
- A one way classification table based on a variable, classified into class intervals with the cor-responding class frequency.
- d) A two-way classification table with frequencies.

3. The reason of mistakes in collection of primary data is because of:

a) Carelessness of investigators	b) Carelessness of informants	
c) Biasness of investigators	d) All of the above	
, diame		

4. The method of presenting the classified data is:

α)	Tabulation	b)	Diagrammatic presentation
c)	Graphic presentation	d)	All of the above

5. If information is to be collected from educated people in a large area, suitable method shall be:

a) Censusb) Direct personal investigationc) Questionnaired) Through correspondents

6. As the numbers of observations and classes increase, the shape of a frequency polygon:

- a) tends to become increasingly smooth
- b) tends to become jagged
- c) stays the same
- d) varies only if data become more reliable

	7.	Whi	hich one of the following statement is not CORRECT?										
		α)	 Indirect oral investigation brings in bias of investigator Questionnaires through investigators is a suitable method in case of extensive 										
		b)	Questionnaires through investigators is a suitable method in case of extensive enquiries										
			nquiries Pre-testing of questionnaires is essential for a good questionnaires										
		c)	re-testing of questionnaires is essential for a good questionnaires										
		d)	None of the above										
	8.	Basi	is of classification of data under chronol	ogical	classification shall be:								
		α)	According to place	b)	According to quality								
		c)	Magnitude of classes	d)	None of the above								
	9.	Pub	lication of data by the Department of Ec	onomi	ics and Statistics are called:								
		α)	Departmental data	Internal data									
		c)	Secondary data d) Primary data										
	10.	Cha	irts and graphs are the presentation of numerical facts by means of:										
		α)	Symbols b) Points and Lines										
		c)	Area and other Geometrical forms	d)	All of the above								
				nte									
	11.	The	diagrams for the preparation of which I	both l	ength and width are considered,								
		are	e called:										
		a)	Sub-divided bar diagram b) Multi bar diagram										
		c)	Percentage sub-divided diagram	d)	Two-dimensional diagram								
	12.	Con	tinuous data are differentiated from disc	rete d	ata in that:								
		a)	Discrete data can take on any real num	ber									
		b)	Continuous data take on only whole nu	mbers	5								
		c)	Continuous data classes may be represe	ented	by fractions								
		d)	Discrete data classes are represented by	y fract	tions								
	13.	Clas	s width is measured as:										
		a)	Half of the sum of lower and upper lim	its									
		b)	Half of the difference between upper ar	nd low	ver limits								
		c)	The difference between upper and lowe	r bou	ndaries								
		d)	The sum of the upper and lower limits										
-													

			-										
14.	Class-mark is obtained:												
	α)	a) By multiplying the upper and lower limits											
	b)	By deducting lower limit from the upper limit											
	c)	By											
	d)	By											
15.	Whe	en th											
	α)	Cor	ivex	curve	cave curve								
	c)	A st	traig	ht lin	e from	left bo	ottom	to righ	t top				
	d)	A st	traig	ht lin	e from	left to	p to ri	ght bo	ttom				
16.	Witl	n the	help	p of h	istogra	m we	can pr	epare:					
	α)	Fre	quen	су ро	lygon				b)	Frequency curve			
	c)	Fre	quen	icy dis	stributio	on			d)	All of the above			
17.	Non	-din	nensi	ional	diagrar	ms are	e also I	known	as:	79			
	a) Cubes b) Spheres c) Pictograms d) All of the above												
							P	29	2	prise			
18.	The	head	dings	s of th	e rows	given	in the	first co	olumn	of a table are called:			
	a) C	aptic	ons		b) Su	ıb-titl	es	c) St	ubs	d) Prefatory notes			
						Lid	<u>(0, ,</u>						
19.	Ogiv	ves fo	or m	ore th	ian typ	e and	less th	nan typ	e dist	ribution intersect at:			
	α)	Мо	de		b) Qı	lartile		c) Me	ean	d) Medium			
20.	The	follo	owing	g freq	uency o	distrib	ution i	s classi	fied a	S:			
	X:	0	1	2	3	4	5	6					
	F:	2	5	8	10	19	16	13					
	α)	Cur	nula	tive fi	requend	cy dist	ributio	n	b)	Continuous distribution			
	c)	Dise	crete	distr	ibution				d)	Median			
21.	The	he following series is of the type of:											
	Yea	r		Ρορι	ulation	lation in city A							
	201	0			29,0	0,000							
	201	1			31,2	5,000							
	201	2			35,0	0,000							
	201	3			37,2	0,000							

a۷	Veranda Enterprise											
	α)	Individu	ıal Se	ries			b)	Discrete Series				
	c)	Geogra	phical	. Ser	ies			d)	Time	e Series		
22.	The	followin	g dist	ribut	tion is of	which	type:					
	Vale	es (less th	nan)		20	25	30	35	40	45	50	
	Freq	uency			5	10	15	20	25	30	45	
	a)	Discrete	e type					b)	Inclu	usive clo	ass type	
	c)	Exclusiv	ve clas	ss ty	pe			d)	Non	e of the	e above	
23.	Find	the valu	le of F	F fro	m the fol	llowin	g distri	bution:				
	X	Fre	equen	су	Cum	nulativ	/e Frequ	lency				
	3		5			5						
	6		7			12			B			
	8		6			F			251			
	12		3			21						
	a)	12		b)	18		c)	21		d) 2	24	
									/	e		
24.	The	given his	togra	m sh	ows a fre	equend	cy distri	bution	ofma	rks obto	ained by 56 stude	nts
	in statistics. Find the number of students sec								marks	betwe	en 70 and 100.	
							90,					
		1.5	1.5		Vid	(0)						
					3							
		1.0 1.	0 1.0)								
		0.5 0.5		0.5	5							
					0.2	7						
		0 10 20	30 40	50 60	70 80 90 10	00						
	a) 7	2		b)	4		c)	6		d) 8	3	
25.	Stuc	ly the fo	llowir	ng d	ata. If do	ata is	presen	ted on	a pie	-chart.	Find the differen	nce
	betv	veen cen	tral a	ingle	e of C and	d E.						
	City				Α	В	С	D	E			
	Ρορι	ulation (i	in Cr)		10	6	1	0.5	0.5			
	a) 7	20°		b)	10°		c)	120°		d) 1	100°	

EXPLANATORY ANSWERS

- 1. In plural sense, statistics means a set of numerical figures, related to any sphere of enquiry. Option C
- 2. A frequency table of a variable is a one way classification table based on a variable, classified into class intervals with the corresponding class frequency. Option C
- 3. Mistakes in collection of primary data can be due to error by the investigators and informants both. Option D
- 4. Classified data can be presented by means of any graphs or tables or diagrams. Option D
- Questionnaire is the best method to collected data from large educated population with least cost and in minimum time. Option C
- 6. As the number of observations and class increase, the frequency polygon tends to becomes flat or starts smoothening. Option A
- 7. All the three statements are correct. None of them is NOT CORRECT, Option D
- 8. Chronological classification is based on time frame or time series. Option D
- 9. Publication of data by the Department of Economics and Statistics are secondary in nature. Option C
- 10. Both charts and graphs use symbols, points, lines, area, and geometric forms. Option D
- 11. Two-dimensional diagrams use both length and width of the data. Option D
- 12. In continuous data classes may be represented by fractions but not in discrete data classes. Option C

- 13. Class width or length of a class interval is the difference between upper and lower boundaries of the class. Option C
- 14. Class-mark or mid-point of a class is obtained by dividing the total of upper and lower limit by 2. Option C
- 15. An increasing graph at a constant rate is shown by a upward sloping straight line from left to right on a graph paper. Option C
- 16. With the help of histograms, one can draw a frequency curve, frequency polygon and even a frequency distribution. Option D
- 17. Pictograms are the non-dimensional diagrams. Option C
- 18. The heading of the rows given in the first column are mentioned in stub of a table.Option C
- 19. The intersecting point of the more than type and less than type Ogives gives Median of the distribution. Option D
- 20. The given distribution is for discrete data. Option C
- 21. The given series is time based. It is a time series data. Option D
- 22. The given distribution is a cumulative frequency distribution for exclusive type class.Option C
- 23. F = 12 + 6 = 18. Option B
- 24. Total frequency = 56. Total frequency on graph = 0.5 + 1 + 1.5 + 1 + 0.5 + 0.2 + 0.2 = 5.6. Thus 0.1 points on graph represents 1 unit of frequency. Students securing marks between 70 and 100 = 0.2 + 0.2 + 0.2 = 0.6 points of graph = 6 students. Option C
- 25. Total population = 10 + 6 + 1 + 0.5 + 0.5 = 18 representing 360° on the pie chart. Difference be-tween C and E = 1 - 0.5 = 0.5 Cr = 0.5 * 360°/18 = 10° Option B

MEASURES OF CENTRAL TENDENCY (Averages of First Order)

INTRODUCTION: Central tendency is defined as the tendency of the data to concentrate towards the central • or middle most region of the distribution. In other words, Central Tendency indicates average. • Any average is a representative value of the entire distribution value • Average discovers uniformity in variability. • The tendency of the variables to accumulate at the center of the distribution (data) is • known as measures of central tendency. Measures are popularly also known as averages. • Average Mathematical Avg. Positional Avg. A. M G. M H. M Median Mode The criteria for Ideal Measures of Central Tendency 1. It should be simple to understand. (Mean, Median & Mode are easy to compute)

- 2. It should be based on all the observations. (AM,GM,HM are based on all the observations)
- 3. It should be rigidly defined (except Mode).

It should not be affected by extreme values (Median & Mode are not affected by 4. extreme values. 5. It should have sampling stability or it should not be affected by sampling fluctuations. (A.M, G.M, H.M. not affected). 6. It should be capable of further algebraic treatment. (AM,GM,HM) **ARITHMETIC MEAN** • It is the best measure of central tendency and most commonly used measure The only drawback of this measure is that it gets highly affected by presence of extreme ٠ values in the distribution. • Calculation of AM For Simple series: A.M. $= \frac{1}{x} = \sum \frac{x}{x}$ 1. 2. For simple frequency distribution : Let $x_1, x_2, x_3, \dots, x_n$ be a series, occuring with frequency $f_1, f_2, f_3, \dots, f_n$ respectively, then A.M. = $\frac{-1}{x} = \frac{\sum fx}{N} = \frac{\sum fx}{\sum f} = \frac{f_1x_1 + f_2x_2 + \dots + f_nx_n}{f_1 + f_2 + \dots + f_n}$; N = Total Frequency 3. For Grouped Frequency Distribution: **Direct Method** a) A.M. = $\frac{-}{x} = \frac{\sum fx}{N} = \frac{\sum fx}{\sum f} = \frac{f_1x_1 + f_2x_2 + \dots + f_nx_n}{f + f_1 + \dots + f_n}$ Where, x = mid - values or class marks

b) Method of Assumed Mean using Step Deviation (By changing of origin and scale)

$$A \cdot M = \overline{x} = A + \left(\frac{\sum fd}{\sum f}\right) \cdot i \qquad \bullet \ d = \frac{x \cdot a}{i}$$

Where,

X = mid-values or original values if it is a discreet series

a = Assumed Mean i.e., a value arbitrarily chosen from mid-values or any other

values

I = class width or any arbitrary value

PROPERTIES

1. If all values of the variable are constant, then AM is constant.

2.
$$\frac{1}{x} = \frac{\sum x}{n}$$
; Thus, Sum of the observations = (no. of observations) x (average).

3. Sum of deviations of values from their arithmetic mean is always zero.

- 4. When the values of x are equi-distant, then AM = First value + Last value
- If the frequencies of variable increases or decreases by the same proportion, the value of AM will remain unaltered.

2

6. Weighted AM of first "n" natural numbers, when the values are equal to their corresponding weights, will be given by $\frac{1}{x} = \frac{2n+1}{3}$

7. Sum of squares of deviation is minimum when the deviation is taken from AM.

8. AM is dependent on the change of origin and scale.

If Y = $a \pm bx$,

then, $\overline{Y} = a \pm b\overline{x}$

9. Formula for calculating Combined Mean is given by: $\overline{x_c} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$

Where,

 \overline{x}_1 = mean of the first group

 \overline{x}_2 = mean of the second group

 n_1 = number of samples in the first group

 $n_2 =$ number of samples in the second group

GEOMETRIC MEAN (GM)

1.	Let $x_1, x_2, x_3, \dots, x_n$ be a simple series, then G.M. = $\sqrt[n]{x_1, x_2, x_3, \dots, x_n}$ (n th root of the product)
	·
2.	Let $x_1, x_2, x_3, \dots, x_n$ be a series, occuring with frequency $f_1, f_2, f_3, \dots, f_n$ respectively, then
	G.M. = $\sqrt[n]{x_1^{j_1} \cdot x_2^{j_2} \cdot x_3^{j_3} \cdot \dots \cdot x_n^{j_n}}$
3.	$(G.M)^n$ = Product of the observation
4.	It is capable of further algebraic treatment.
5.	It is less affected by sampling fluctuations compare to mode and median.
6.	It is less affected by extreme values compare to AM.
7.	GM cannot be calculated if any variable assumes value 0 or negative value.
	Sorprise
8.	GM is particularly useful in cases where we have to find out average rates or ratios of
	quantities which are changing at a cumulative rate, i.e., the change is related to the
	immediate preceding data. For example, average rate of depreciation by WDV method or
	average rate of growth of population.
9.	GM is extensively used in the construction of index numbers.
10.	GM is the most difficult average to calculate and understand because it involves the
	knowledge of logarithms.
11.	Logarithm of GM of "n" observations is equal to the AM of the logarithm of these "n"
	observations.
12.	GM is based on all observations
13.	If all the observations assumed by a variable constant, say K, then the GM of the
	observations is also K

14. GM of the product of two variables is the product of their GM's i.e.,

 if
$$z = xy$$
,

 then GM of $z = (GM of x) . (GM of y)$

 15. GM of the ratio of two variables is the ratio of GM's of two variables i.e.,

 if $z = x/y$

 then GM of $\overline{z} = \frac{GM of x}{GM of y}$.

 16. Combined GM: $G_{12} = [G_1^{n_1} G_2^{n_1}]^{x \cdot n_1} \therefore \log G_{12} = \frac{n_1 \log G_1 + n_2 \log G_2}{n_1 + n_2}$

 16. Combined GM: $G_{12} = [G_1^{n_1} G_2^{n_1}]^{x \cdot n_1} \therefore \log G_{12} = \frac{n_1 \log G_1 + n_2 \log G_2}{n_1 + n_2}$

 17. Let $x_1, x_2, x_3, \dots, x_p$ be a simple series, then II.M. =

 $n_1 + \frac{1}{x} + \frac{1}{x}$

RULE FOR USING AM AND HM

then
i. Use HM when 'a' is constant
ii. Use AM when 'b' is constant
For eg,
Avg. speed = ?Distance = same (given)
Use H. M we know that Speed $=\frac{\text{Distance}}{\text{Time}}$
Avg. speed = ?Time = same (given)
Use A. M
8
RELATION BETWEEN AM, GM & HM
1. If the values are equal,
AM = GM = HM.
2. If the values are distinct,
AM > GM > HM.
3. $G^2 = A.M \times H.M.$
$G = \sqrt{A.M. \times H.M.}$
MEDIAN:

- Median is defined as the positional average and is regarded as the second best average after arithmetic mean.
- Median is suitable when there is a wide range of variation in data or distribution pattern is to be studied at a varying level.
- 3. Median is suitable for qualitative data.
- 4. Median is suitable for distributions with open ends.
- 5. Median can be located graphically using Cumulative Frequency Polygon or Ogives.

- The absolute sum of deviations is minimum when the deviations are taken from Median, and this property of Median is known as "Minimal Property".
- 7. Median is dependent on change of Origin & Scale.
 - If $Y = a \pm bx$
 - Then, Me (Y) = $a \pm bMe(x)$

Calculation

	For Simple Series							
Median =	Aedian = value corresponding to $(n + 1)/2$ th term in the distribution							
Note 1:	Arrange the data in the ascending or descending order							
	®							
Note 2:	If the value of (n+1)/2th term is a fraction then the average of the values within which							
	it is lying is the median.							
Note 3:	If n is odd median = simply the middle most value and if n is even median = average							
	of 2 mid values							
	Senten							
	For Simple Frequency Distribution:							
Median =	value corresponding to the (N+1)/2th Term in the 'less than' type Cumulative							
	Frequency column where,							
N =	Total Frequency							
	For Grouped Frequency Distribution:							
	$\left[\begin{array}{c} N \end{array} \right]$							
	Modion $-L + \frac{2}{2} - F$							
	$I_1 = I_1 + \frac{1}{f_m} I_2$							
I ₁ =	Lower boundary of the median class i.e., the class where Cumulative Frequency N/2							
	falls							
N =	Total frequency							
F =	Cumulative frequency of the pre-median class.							
f _m =	Frequency of the median class							
i =	Width of the median class							

	MOD	DE la
	1.	Mode is that value of the distribution which occurs with highest frequency.
	2.	Mode is a crude method of finding out average and it provides only a Bird's Eye view of
		the distribution.
	3.	It is the most unstable average and the quickest method of finding out the average where
		we need to find out the most common value of the distribution
	4.	It is not affected by extreme values but it is more affected by sampling fluctuations
		compare to AM, GM, HM.
	5.	In case when distribution is Multimodal, mode is ill-defined
	6.	Mode is dependent on the change of origin and scale
	7.	If $y = a \pm bx$ then, Mo(y) = $a \pm b$ Mo(x)
		Scottse
	8.	Mode can be located graphically using Histogram or Area Diagram or Frequency
		Diagram.
	9.	Mode does not take into account all of the observations.
	10.	When the classes are of unequal width, we consider frequency densities instead of class
		frequency to locate mode,
		where frequency density = <u>Class Frequency</u>
		Width of the Class
	Calcu	ulation of Mode for Simple Series:
	1.	For simple series, there is no mode as all values occur with frequency $= 1$, i.e., same
		frequency.
	2.	For simple frequency distribution Mode can be calculated by mere inspection. The variable
		occurring with the highest frequency is the mode of the distribution. A distribution can be
		uni-modal or bi-modal, but not multi-modal.
1		

- o If only one value of variable occurs with the highest frequency, then there is only one mode.
- o If two values of variable occurs with the same highest frequency, then there are two modes.
- o If all values of variable occurs with same frequency, then there is no mode.
- o If more than two values of variable occurs with same highest frequency, then also there is no mode.

Calculation of Mode for Grouped Frequency Distribution:

$$Mode = l_1 + \left(\frac{f_m - f_1}{2f_m - f_1 - f_2}\right) i$$

- L_1 = Lower boundary of the modal class i.e., the class with highest frequency.
- f_m = Frequency of the modal class
- $f_1 = Frequency of the pre-modal class$
- $f_2 = Frequency of the post-modal class$
 - = Class width

i

CONCEPT OF SYMMETRICAL & ASYMMETRICAL DISTRIBUTION:

- 1. When in a distribution all the measures of central tendencies are equal, the distribution is said to be symmetrical.
- 2. For symmetrical distribution; Mean = Median = Mode.
- 3. Any deviation from this symmetry makes the distribution asymmetrical or skewed.
- 4. For moderately skewed distribution: Mean Mode = 3(Mean Median)

OTHER PARTITION VALUES (FRACTILES)

Partition values divides distribution in equal parts.

QUARTILES

•

o There are 3 quartiles (Q_1 , Q_2 , Q_3), which divides the distribution in 4 equal parts representing 25%, 50% and 75% of the data respectively.

- o Q_2 is nothing but the median of the data.
- o For symmetrical data, Q_2 is simple average of the extreme quartiles Q_1 (lower quartile) and Q_3 (upper quartile).

DECILES

- o There are 9 deciles (D₁, D₂,, D₉), which divides the distribution in 10 equal parts representing 10%, 20% 90% of the data respectively.
- o D_{s} is nothing but the median of the data.

• PERCENTILES

- o There are 99 percentiles (P_1 , P_2 ,, P_{99}), which divides the distribution in 100 equal parts representing 1%, 2% 99% of the data respectively.
- o P₅₀ is nothing but the median of the data

• NOTE

- o All partition values are dependent on the change of Origin and Scale.
- All partition values can be calculated graphically through Cumulative Frequency
 Polygon or ogives.

Calculation of Partition Values

	Type of Series	Quartiles	Deciles	Percentiles				
	Simple Series	$\mathbf{O}_{i} = \mathbf{i} \left(\frac{\mathbf{n}+1}{\mathbf{n}} \right)$	$D = i \left(\frac{n+1}{n} \right)$	$P_i = i\left(\frac{n+1}{2}\right)$				
			$D_i = 1$ 10	100				
		<i>i</i> = 1,2,3	<i>i</i> = 1,2,3,,9	<i>i</i> = 1,2,3,,99				
	Simple	$Q_i = value \text{ correspo-}$	$D_i = value$ correspo-	$P_i = value$ correspo-				
	Frequency Dist	-nding to CF; i $\left(\frac{N+1}{N}\right)$	-nding to CF; i $\left(\frac{N+1}{N}\right)$	-nding to CF; i $\left(\frac{N+1}{100}\right)$				
	Group	(iN)	$\left(\frac{iN}{I}-f\right)$	$\left(iN \right)$				
	Frequency Dist	$Q_i = l_1 + \left \frac{-f}{4} \right l_i$	$D_i = l_1 + \left \frac{10}{f} \right i$	$P_i = l_1 + \left \frac{\overline{100} - f}{100} \right i$				
		$\int f_q \int f_q$						

Anda Enterpris

and the second

CLASSWORK SECTION

AIRH	HTEMATIC MEAN								
1.	. Find the arithmetic mean of the numbers 3, 5, 7, 9, 47.								
	a) 24	b) 25	c) 27	d) 31					
2.	Mean of 0, 3, 5, 6,	7, 9, 12, 0, 2 is:							
	a) 4.89	b) 5.7	c) 5.6	d) 6.5					
3.	Find the arithmetic	mean of the natur	al numbers from 1,	2, 3,, n.					
	a) n	b) (n + 1)	c) (n + 1)/2 💦	d) None of the above					
4.	If the AM of 3, 5, x	, 12, 17 be 9, find t	he value of x.						
	a) 5	b) 6	c) 7	d) 8					
		6							
5.	The arithmetic med	an of 8, 1, 6 with w	eights 3, 2, 5 respec	tively is:					
	a) 5	b) 5.6	c) 6	d) 4.6					
		P	0						
6.	If a variable assum	es the values 1, 2, 3	, 4, 5 with frequencie	es 1, 2, 3, 4, 5 respectively,					
	find its arithmetic	mean.							
	a) 4.5	b) 4	c) 5	d) 3.67					
7.	If there are two gro	oups containing 30	and 20 observation	and having 50 and 60 as					
	arithmetic means,	then the combined	arithmetic mean is:						
	a) 52	b) 54	c) 55	d) 56					
8.	The average weigh	t of students in a c	lass of 35 students	is 40 kg. If the weight of					
	the teacher be incl	uded, the average r	ises by (1/2) kg; the	weight of the teacher is :					
	(a) 40.5 kg	(b) 50 kg	(c) 41 kg	(d) 58 kg					
9.	The average salary	ı of a group of unsk	illed workers is ₹ 10),000 and that of a group					
	of skilled workers	is ₹ 15,000. If the c	ombined salary is ₹	12,000, then what is the					
	percentage of skill	ed workers?							
	(a) 40%	(b) 50%	(c) 60%	(d) none of these					

10.	If the relationship between two variables u and v are given by $2u + v + 7 = 0$, and if							
	AM of u is	10, then the AM of v is:						
	a) 17	b) –17	c) 27	d) – 27				
GEO	METRIC MEAI	N						
11.	Find the Ge	eometric mean of : 8, 4, 2.	,					
	a) 2	b) 4	c) 8	d) None of the above				
12.	Find the G	M of the following: 3, -2,	4, 0, 5.					
	α) 2	b) 3	c) 1	d) cannot be determined				
13.	If GM of x i	s 10 and GM of y is 15, th	en the GM of x	y is:®				
	a) 150	b) Log 10 x Log	15					
	c) Log 150	d) None of thes	e					
				<u> </u>				
14.	The interes	st paid on the same sum yi	ielding 3%, 4%	, and 5% compound interest for				
	3 consecut	ive year respectively. Wha	t is the averag	e yield percent on the total sum				
	invested.		Senter					
	(a) 3.83%	b) 4.83%	c) 2.83%	d) 3.99%				
15.	What is th	e GM for the numbers 8, 2	4 and 40?					
	(a) 24	(b) 12	(c) 8 x $\sqrt[3]{15}$	(d) 10				
HAR	MONIC MEAN	1						
16.	The harmo	nic mean for the numbers	2, 3, 5 is					
	(a) 2.00	(b) 3.33	(c) 2.90	(d) −√30				
17.	What is th	e HM of 1,1/2, 1/3,	1/n?	$p(p \pm 1)$				
	(a) n	(b) 2n	(c) (<u>n+1</u>)	(d) $\frac{1}{2}$				
18.	An aeropla	ane flies from A to B at th	e rate of 500 k	m/hour and comes back from B				
	to A at the	rate of 700 km/hour. The	average speed	d of the aeroplane is				
	(a) 600 k	m. per hour	(b) 583.33 km. per hour					
	(c) 100 √	35km. per hour	(d) 620 km. per hour.					

J.K. SHAH
CLASSES
a Vergoda Enterprise

19.	. If there are two groups with 75 and 65 as harmonic means and containing 15 and									
	13 observation then the combined HM is given by									
	(a) 65	(b) 70	.36			(c) 70)	(d) 71.		
СОМ	IBINED PROPERTIES OF	AM, GM	I AND H	IM						
20.	. If the AM and HM for two numbers are 5 and 3.2 respectively then the GM will be									
	(a) 16.00	(b) 4.1	10			(c) 4.	05	(d) 4.00.		
21.	If the AM and GM fo	or 10 o	bserva	tions o	are bot	:h 15,	then t	the value of HM is		
	(a) Less than 15		(b) Mc	ore tha	ın 15					
	(c) 15		(d) Ca	n not l	be det	ermine	ed			
							R			
22.	If the AM and GM fo	or two n	umber	rs are 6	5.50 ar	nd 6 re	specti	ively then the two number	rs	
	(a) 6 and 7	(b) 9	and 4		(c) 10	and 3	3	(d) 8 and 5.		
							/	3		
MED	IAN			6		K		0.		
					70	7	oris			
23.	Find the median of	the fol	lowing	numb	ers: 2	5, 8,	4, 9, 6	5, 7.		
	a) 9	b) 6	~P		c) 8	~		d) None of the above		
			120	0///						
24.	Find the median of	the fol	lowing	numb	ers: 5	8, 6,	9, 11,	4.		
	α) 6	b) 7			c) 8			d) None of the above		
25.	Calculate median f	or the f	ollowi	ng dat	:a					
	No. of students	6	4	16	7	8	2			
	Marks	20	9	25	50	40	80			
	a) 20	b) 25			c) 35			d) 28		
26.	Two variables x an	d y are	given	by y =	2x - 3	3. If th	ne meo	dian of x is 20, what is th	е	
	median of y?									
 	a) 20	b) 37			c) 40			d) 35		

PAR	ΓΙΤΙΟΝ	VALU	JE
-----	--------	------	----

27. What is the value of the first quartile for observations 15, 18, 10, 20, 23, 28, 12, 16?											
	(a) 17	(b) 16		(c) 12.7	5	(d) 12					
28.	The third decile for the numbers 15, 10, 20, 25, 18, 11, 9, 12 is										
	(a) 13	(b) 10.	.70	(c) 11		(d) 11.50					
MOE	MODE										
29.	. The mode of the following observations is: 4, 3, 2, 5, 3, 4, 5, 3, 7, 3, 2, 6										
	a) 2	b) 3		c) 4		d) 6					
					B						
30.	If x and y are re	elated by x-	y-10 = 0 an	d mode o	f x is know	n to be 23, the	en the mode				
	of y is										
	(a) 20	(b) 13		(c) 3	<u>)</u>	(d) 23.					
			6		V.c						
CON	IBINED PROPERTIE	ES OF AM, MEI		DDE 9	roris						
				² cn ¹	en						
31.	If arithmetic m	iean is 26.8,	median is 2	27.9, ther	n what is th	ne value of mo	ode?				
	a) 29 b) 30.1 c) 31.1 d) 29.9										
		0									
32.	If the Mean and	d Mode of a	certain set o	of numbe	rs be 60.4 (and 50.2 resp	ectively, find				
	approximately	the value o	f the Media	n.							
	a) 55	b) 56		c) 57		d) 58					
MISC	CELLANEOUS SUM										
33.	What is the va	lue of mean	and media	n for the	following	data:					
	Marks:	5-14	15-24	25-34	35-4	4 45-54	55-64				
	No. of	10	18	32	26	14	10				
	Students:										
	(a) 30 and 28	3		(b) 2	9 and 30						
	(c) 33.68 and	d 32.94		(d) 3	4.21 and 3	33.18					
	27. 28. 30. 29. 30. 30. 30. 31. 31. 31. 32. 33.	 27. What is the val (a) 17 28. The third decile (a) 13 MODE 29. The mode of the a) 2 30. If x and y are re of y is (a) 20 30. If x and y are re a of y is (a) 20 COMBINED PROPERTIE 31. If arithmetic main a) 29 32. If the Mean and approximately a) 55 MISCELLANEOUS SUM 33. What is the val Marks: 33. What is the val (a) 30 and 28 (b) 30 and 28 (c) 33.68 and 	27. What is the value of the first (a) 17 (b) 16 28. The third decile for the nur (a) 13 (b) 10. MODE 29. The mode of the following a) 2 b) 3 30. If x and y are related by x-y of y is (a) 20 (b) 13 COMBINED PROPERTIES OF AM, MEI 31. If arithmetic mean is 26.8, a) 29 b) 30. 32. If the Mean and Mode of a approximately the value of a) 55 b) 56 MISCELLANEOUS SUM 33. What is the value of mean Marks: $5-14$ No. of 10 Students: (a) 30 and 28 (c) 33.68 and 32.94	 27. What is the value of the first quartile for (a) 17 (b) 16 28. The third decile for the numbers 15, 11 (a) 13 (b) 10.70 MODE 29. The mode of the following observation a) 2 b) 3 30. If x and y are related by x-y-10 = 0 an of y is (a) 20 (b) 13 COMBINED PROPERTIES OF AM, MEDIAN AND MO 31. If arithmetic mean is 26.8, median is 2 a) 29 b) 30.1 32. If the Mean and Mode of a certain set of approximately the value of the Median a) 55 b) 56 MISCELLANEOUS SUM 33. What is the value of mean and media Marks: 5-14 15-24 No. of 10 18 Students: 1 (a) 30 and 28 (c) 33.68 and 32.94 	27. What is the value of the first quartile for observer (a) 17 (b) 16 (c) 12.7 (a) 17 (b) 16 (c) 12.7 28. The third decile for the numbers 15, 10, 20, 25, (a) 13 (b) 10.70 (c) 11 MODE (a) 13 (b) 10.70 (c) 11 MODE (b) 10.70 (c) 11 (c) 11 MODE (a) 2 (b) 3 (c) 4 30. If x and y are related by x-y-10 = 0 and mode or of y is (a) 20 (b) 13 (c) 3 (a) 20 (b) 13 (c) 3 (c) 3 COMBINED PROPERTIES OF AM, MEDIAN AND MODE 31. If arithmetic mean is 26.8, median is 27.9, ther a) 29 (c) 30.1 (c) 31.1 32. If the Mean and Mode of a certain set of number approximately the value of the Median. (c) 57 MISCELLANEOUS SUM 33. What is the value of mean and median for the Marks: 5-14 33. What is the value of mean and median for the Marks: 5-14 15-24 25-34 No. of 10 18 32 (a) 30 and 28 (b) 2 (c) 33.68 and 32.94 (d) 3	27. What is the value of the first quartile for observations 15, (a) 17 (b) 16 (c) 12.75 28. The third decile for the numbers 15, 10, 20, 25, 18, 11, 9, (a) 13 (b) 10.70 (c) 11 MODE 29. The mode of the following observations is: 4, 3, 2, 5, 3, 4, (a) 2 b) 3 c) 4 30. If x and y are related by x-y-10 = 0 and mode of x is known of y is (a) 20 (b) 13 (c) 3 COMBINED PROPERTIES OF AM, MEDIAN AND MODE 31. If arithmetic mean is 26.8, median is 27.9, then what is the (a) 29 b) 30.1 c) 31.1 32. If the Mean and Mode of a certain set of numbers be 60.4 of approximately the value of the Median. (a) 55 b) 56 c) 57 MISCELLANEOUS SUM 33. What is the value of mean and median for the following of Marks: $5-14$ $15-24$ $25-34$ $35-4$ No. of 10 18 32 26 Students: 1 2 2 20 (a) 30 and 28 (b) 29 and 30 (c) 33.68 and 32.94 (d) 34.21 and 32	27. What is the value of the first quartile for observations 15, 18, 10, 20, 23 (a) 17 (b) 16 (c) 12.75 (d) 12 28. The third decile for the numbers 15, 10, 20, 25, 18, 11, 9, 12 is (a) 13 (b) 10.70 (c) 11 (d) 11.50 MODE	27. What is the value of the first quartile for observations 15, 18, 10, 20, 23, 28, 12, 167 (a) 17 (b) 16 (c) 12.75 (d) 12 28. The third decile for the numbers 15, 10, 20, 25, 18, 11, 9, 12 is (a) 13 (b) 10.70 (c) 11 (d) 11.50 MODE 29. The mode of the following observations is: 4, 3, 2, 5, 3, 4, 5, 3, 7, 3, 2, 6 (a) 2 b) 3 c) 4 d) 6 (a) 2 b) 3 c) 4 d) 6 30. If x and y are related by x-y-10 = 0 and mode of x is known to be 23, then the mode of y is (a) 20 (b) 13 (c) 3 (d) 23. COMBINED PROPERTIES OF AM, MEDIAN AND MODE 31. If arithmetic mean is 26.8, median is 27.9, then what is the value of mode? a) 29 b) 30.1 c) 31.1 d) 29.9 32. If the Mean and Mode of a certain set of numbers be 60.4 and 50.2 respectively, find approximately the value of the Median. a) 25 b) 56 c) 57 d) 58 MISCELLANEOUS SUM 33. What is the value of mean and median for the following data: (a) 30 and 28 (b) 29 and 30 (c) 33.68 and 32.94 (a) 30 and 28 <t< th=""></t<>			

34	The mean and	l mode foi	the foll	owing	freque	ncv d	istribi	Ition					
	Class	350-36	9 370)-389	390-	409	410-	-429	430-	-449	45	50-469	
	interval :												
	Frequency:	15		27	3	1	1	9	1	3		6	
	are				1				1				1
	(a) 400 and	390			(b)	400.	.58 an	nd 39	0				
	(c) 400.58 a	nd 394.50)		(d)	400	and 3	94.					
35.	The third qua	rtile and 6	5th perc	centile f	for the	follo	wing	data	are				
	Profits in '000	D : less t	han 10	10-	19	20-	29	30-	-39	40-4	49	50-59	
	No. of firms:		5	18	3	38	3	2	0	9		2	
	(a) ₹33,500	and ₹ 29,	184			(b) ₹	33,00)0 an	id ₹ 28	8,680			
	(c) ₹33,600	and ₹ 29,	000			(d) ₹	33,25	50 an	id ₹ 29	9,250	•		
36.	Following is a	n incompl	ete distr	ribution	havin	g mo	dal m	ark o	ıs 44				1
	Marks :	0-20		20-40		40-6	0	60	0-80		80	-100	
	No. of	5	1	18	79	?	110		12			5	
	students :			<u>/ </u>	2 4	re							
	What would b	be the med	an mark	s?	0 -								
	(i) 45	(ii) -	46	(01,-	(iii) 47	7		(iv) 48				
			310										
37.	For the follow	ving incom	nplete d	istribut	ion of	mark	s of 1	100 p	oupils,	med	ian	mark is	5
	known to be 3	32.											
	Marks:	0-	-10 1	10-20	20-	30	30-4	40	40-	50	5	0-60	
	No. of Studer		.0	-	2	2	30)	-			10	
	what is the m	iean mark	<u>{</u>		(-) 24	1 20		(-1)		0			
	(a) 32	(D)	31		(C) 31	1.30		(d)) 31.5	0			
		тс											
INE													
38	Magsures of c	ontral ton	doncy fo	or a aive	on sot	ofob	sorva	tions	mode	uros			
50.	(a) The scat	terness of	the obs	ervatio	ns		Servu	0015	meus	uies			
	(h) The cent	ral locatio	n of the	ohserv	ations								
	(c) Both (a)	and (h)		203610									
	(d) None of t	these											

39.	While	e compu	ting the AM fro	m a grouped frequer	ncy distribution, we assume that
	(a)	The clas	ses are of equa	ıl length	
	(b)	The clas	ses have equal	frequency	
	(c)	All the v	values of a clas	s are equal to the m	id-value of that class
	(d)	None of	these.		
40.	Whic	h of the	following state	ments is wrong?	
	(a)	Mean is	rigidly defined		
	(b)	Mean is	not affected du	le to extreme values	•
	(c)	Mean ho	as some mathe	matical properties	
	(d)	All these	9		
41.	Whic	h of the	following state	ments is true?	®
	(a)	Usually	mean is the be	st measure of centra	l tendency
	(b)	Usually	median is the t	pest measure of cent	ral tendency
	(c)	Usually	mode is the be	st measure of centra	l tendency
	(d)	Normall	y, GM is the be	st measure of centra	l tendency
				79	rprise
42.	For c	pen-enc	d classification,	which of the follow	ing is the best measure of central
	tende	ency?		10 da	
	(a) A	M	(b) GM	(c) Median	(d) Mode
				19	
43.	The p	presence	of extreme obs	servations does not a	lffect
	(a) A	М	(b) Median	(c) Mode	(d) (b) and (c) both
44.	In ca	se of an	even number o	f observations which	of the following is median?
	(a)	Any of t	he two middle-	most value	
	(b)	The sim	ole average of	these two middle val	lues
	(c)	The weig	ghted average (of these two middle	values
	(d)	Any of t	hese		
				6	
45.	The r	nost con	nmonly used m	easure of central ter	
	(a) A	M	(b) Median	(c) Mode	(a) Both GM and HM.
10	1.671.1	h a	the falles '	e med untrust d. C	
46.	vvnic	n one of	the following i	s not uniquely define	
	(a) M	iean	(D) Mealan	(c) Mode	(d) All of these measures

_						
	47.	Which of the	e following med	sure of the central	tendency is difficult to	o compute?
		(a) Mean	(b) Median	(c) Mode	(d) GM	
	48.	Which meas	ure(s) of central	tendency is(are) cor	sidered for finding the	average rates?
		(a) AM	(b) GM	(c) HM	(d) Both (b) and	(c)
	49.	For a moder	rately skewed d	istribution, which o	f he following relation	ship holds?
		(a) Mean -	- Mode = 3 (Med	an – Median)		
		(b) Mediar	n – Mode = 3 (M	ean – Median)		
		(c) Mean -	- Median = 3 (M	ean – Mode)		
		(d) Mean -	- Median = 3 (M	edian – Mode)		
	50.	Weighted av	verages are con	sidered when	B	
		(a) The da	ta are not class	ified		
		(b) The da	ta are put in th	e form of grouped t	frequency distribution	
		(c) All the	observations a	re not of equal imp	oortance 🥑	
		(d) Both (c	1) and (c).	69	V.ce	
				5/9	roris	
	51.	Which of the	e following resu	Ilts hold for a set o	f distinct positive obse	ervations?
		(a) $AM \ge G$	iM ≥ HM	(b) $HM \ge GM \ge A$	M	
		(c) AM > G	iM > HM	(d) GM > AM > H	Μ	
			2	N -		
	52.	When a firn	n registers both	profits and losses	s, which of the followi	ng measure of
		central tend	lency cannot be	considered?		
		(a) AM	(b) GM	(c) Mec	lian (d) Mode	
		0		• • • •	<u> </u>	
	53.	Quartiles ar	e the values div	viding a given set o	f observations into	
		(a) Two eque	al parts	(b) Four equal parts	5	
		(c) Five equo	al parts	d) None of these		
	54.	Quartiles co	in be determine	d graphically using		
		(a) Histogra	m	(b) Frequency Polyg	on	
		(c) Ogive		d) Pie chart.		
	55.	Which of the	e tollowing med	isure(s) possesses (possess) mathematica	l properties?
		(a) AM	(b) GM	(c) HM	(d) All of	these

J.K.	S	H	A	H®
CLA	S	S	Е	S
a Veran	da I	Ente	rpris	е

56.	Which of the follo	wing measure(s) sa	tisfies (satisfy) a liı	near relationship between
	two variables?			
	(a) Mean	(b) Median	(c) Mode	(d) All of these
57.	Which of the follow	wing measures of ce	entral tendency is b	based on only fifty percent
	of the central valu	es?		
	(a) Mean	(b) Median	(c) Mode	(d) Both (a) and (b)
58.	In the formula, Mo	$de = L_1 + (d_1 \times c)/(d_1 \times c)$	$d_1 + d_2$), d_1 is the c	difference of frequencies in
	the modal class &	the clo	ass.	
	(a) preceding	(b) following	(c) both	(d) none
59.	In the formula, Mo	de = $L_1 + (d_1 \times c) / (d_1$	+ d_2), d_2 is the diffe	erence of frequencies in the
	modal class & the	class.		
	(a) preceding	(b) succeeding	(c) both	(d) none
				3
60.	of a set	of observations is a	lefined to be their	sum, divided by the no. of
	observations.		S "10"	
	(a) H.M	(b) G.M	(c) A.M	(d) none
			Jar	
61.	The sum of the so	quares of deviation	s of a set of obser	rvations has the smallest
	value, when the de	eviations are taken f	from their	
	(a) A.M	(b) H.M	(c) G.M	(d) none
62.	is equal to t	he value correspon	ding to cumulative	frequency 3 (N + 1)/4 from
	simple frequency o	listribution		
	(a) Median	(b) 1 st quartile	(c) 3 rd quartile	(d) 1 st decile
63.	is equal to	the value correspo	onding to cumulati	ve frequency k (N + 1)/10
	from simple freque	ency distribution		
	(a) Median	(b) k th decile		
	(c) k th percentile	(d) none		
64.	For 899, 999, 391,	384, 590, 480, 485	, 760, 111, 240	
	Rank of median is			
	(a) 2.75	(b) 5.5	(c) 8.25	(d) none

65.	The deviations f	rom median are	if negat	ive signs are ignor	ed as compared	
	to other measu	res of central tendency	Ι.			
	(a) minimum	(b) maximum	(c) same	(d) none		
66.	The average dis	scovers				
	(a) uniformity ir	n variability	(b) variabil	ity in uniformity o	of distribution	
	(c) both		(d) none			
 				®		
 				/9		
		5		rise		
			-*e	01.		
			Enro			
 			30			
		C Vela				
		3				

	ANSWER	s - sums		ANSWE				
Q. No.	Ans	Q. No.	Ans	Q. No.	Ans	Q. No.	Ans	
1	b	21	с	41	α	61	α	
2	α	22	b	42	с	62	с	
3	с	23	b	43	d	63	b	
4	d	24	b	44	b	64	b	
 5	b	25	b	45	α	65	α	<u> </u>
 6	d	26	b	46	с	66	α	<u> </u>
 7	b	27	с	47	d			
 8	d	28	b	48	d			
 9	α	29	b	49	α			
10	d	30	b	50	с			<u> </u>
11	b	31	b	51	с			<u> </u>
12	d	32	С	52	b			<u> </u>
13	α	33	С	53	b			
14	d	34	С	54	С			
15	С	35	α	55	d			
16	С	36	d	56	d			
17	С	37	С	57	b			
18	b	38	b	58	α			
19	С	39	С	59	b			
20	d	40	b	60	с			
	(6	•		•		•

HOMEWORK SECTION

1.	If x and y are re	lated by	x – y –	10 = 0	and r	node of	x is known	to be 23,	then the	
	mode of y is									
	(a) 20	(b) 13	3		(c)	3	(d) 23	3		
2.	A man travels a	t a speed	of 20	km/hr c	and th	en retur	ms at a spee	ed of 30 k	m/hr. His	
	average speed o	of the who	ole jour	rney is:						
	(a) 25 km/hr		(b)	24.5 k	m/hr					
	(c) 24 km/hr		(d)	none			®			
3.	The median of t	he data 1	3, 8, 1	1, 6, 4,	15, 2,	18, is				
	(a) 5	(b) 8			(c)	11	9 (d) 9.	5		
				6						
4.	The sum of the	squares	of dev	riations	of a	set of c	observations	has the	smallest	
	value, when the	deviation	ns are t	taken fr	om th	eir				
	(a) A.M.	(b) H	.M. P	>	(c)	G.M.	(d) N	one		
			100	0						
5.	Which of the fol	lowing re	sult ho	ld for a	set o	f distinc	t positive ob	servatior	ns?	
	(a) $A.M. \ge G.M.$	≥ H.M.								
	(b) G.M. > A.M.	. > H.M.								
	(c) $G.M. \ge A.M.$	≥ H.M.								
	(d) A.M. > G.M.	. > H.M.								
6.	If the A.M. and I	H.M. for t	wo nu	mbers o	ire 5 c	ind 3.2	respectively	then the	G.M. will	
	be									
	(a) 4.05	(b) 16	5		(c)	4	(d) 4.	10		
7.	An aeroplane fli	es from A	A to B o	at the ro	ate of	500 km	hr and con	nes back	from B to	
	A at the rate of	700 km/ł	nr. The	average	e spee	d of the	aeroplane i	s:		
	(a) 600 km/hr			(b)	583.3	3 km/hi	ſ			
	(c) $100\sqrt{35}$ km	/hr		(d)	620 k	m/hr				

	•••••••							
8.	For	a moderately sk	ewed distrib	oution,	which	of the fo	llowing relationship holds?	
	(a)	Mean – Mediar	n = 3 (Mean	– Mode	e)			
	(b)	Median – Mode	e = 3 (Mean	– Medi	an)			
	(c)	Mean – Mode =	= 3 (Mean –	Mediar	ı)			
	(d)	Mean – Mediar	n = 3 (Mean	– Mode	<u>)</u>			
9.		_ & are ca	lled ratio av	/erages	•			
	(a)	H.M. & G.M.		(b)	H.M.	& A.M.		
	(c)	A.M. & G.M.		(d)	None			
10.	Extr	eme values have	e effec	t on m	ode.			
	(a)	High		(b)	Low			
	(c)	No		(d)	None	of these	8	
11.	The	mean salary for	a group of	40 fem	ale wa	orkers is ₹	5200 per month and that for	
	a gr	oup of 60 male	workers is ₹	ן 6800	ber mo	onth. Who	at is the combined salary?	
	(a)	₹ 6160		(b)	₹ 628	0	ce.	
	(c)	₹ 6890		(d)	₹ 692	0		
			<u></u>	19	2 61	nteri		
12.	lf th	ere are two gro	ups with 75	and 6!	5 as ho	armonic r	neans and containing 15 and	
	13 0	observations, the	en the comb	ined H.	.M. is g	given by:		
	(a)	70 (t	o) 80		(c)	70.35	(d) 69.48	
13.	The	G.M. of 4, 6 and	8 is:					
	(a)	4.77 (k	o) 5.32		(c)	6.14	(d) 5.77	
14.	G.M	. is a better mea	isure than o	thers w	vhen			
	(a)	ratios and perc	entages are	given				
	(b)	interval of scal	e is given					
	(c)	Both (a) and (b)					
	(d)	Either (a) or (b)						
		×	x x					
15.	The	median of x, $\frac{x}{2}$,	$\frac{1}{3}, \frac{1}{5}$ is 10. F	Find w	here x	> 0		
	(a)	24 (k	o) 32		(c)	8	(d) 16	

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

	16.	The average sa	lary of	50 men wo	as ₹ 80 but	it was four	nd that salary of 2 of them	
		were ₹ 46 and ₹	t 28 wh	ich was wr	ongly taken	as₹64 an	d ₹ 82. The revised average	
		salary is:						
		(a) ₹80	(b)	₹ 78.56	(c)	₹85.26	(d) ₹ 82.92	
	17.	If A be the A.M.	oftwo	positive un	iequal quan	tities X and	Y and G be their G.M. then:	
		(a) A < G			(b)	A > G		
		(c) $A \leq G$			(d)	$A \geq G$		
	18.	When mean is 3	3.57 an	d mode is a	2.13 then th	e value of	median is	
		(a) 3.09			(b)	5.01		
		(c) 4.01			(d)	None of th	iese	
	19.	The harmonic n	nean of	1, 1/2, 1/3	3 1/n is			
		(a) 1/(n + 1)			(b)	2/(n + 1)	/	
		(c) (n + 1)/2			(d)	1/(n - 1)	3	
					50		0	
	20.	The mean weig	ht of 1	5 students	is 110 kg.	The mean	weight of 5 of them is 100	
		kg and of anot	her five	students i	s 125 kg. th	en the me	an weight of the remaining	
		students is:			- 40 r	-		
		(a) 120	V	V de	(b)	105		
		(c) 115	\mathcal{O}	2 Vei	(d)	none of th	ese	
	21.	In a class of 11	studer	nts, 3 stude	ents were fo	ailed in a te	est. 8 students who passed	
		secured 10, 11	, 20, 1	5, 12, 14,	26 and 24	marks resp	pectively. What will be the	
		median marks o	of the s	tudents:				
		(a) 12	(b)	15	(c)	13	(d) 13.5	
	22.	A lady travel a	t a spee	ed of 20 kr	n/h and ret	urned at qu	licker speed. If her average	
		speed of the wh	nole jou	rney is 24	km/hr, find	the speed o	of return journey (in km/h)	
		(a) 25	(b)	30	(c)	35	(d) 38	
	23.	Let the mean o	f the va	riable 'x' b	e 50 <i>,</i> then t	he mean of	u = 10 + 5x will be :	
		(a) 250	(b)	260	(c)	265	(d) 273	
_								

24.	If the difference between mean and Mode is 63, then the difference between Mean										
	and	l Medium will	be								
	(a)	63	(b)	31.5	(c)	21 (d)	None of the above				
25.	lfth	e Arithmetic r	nean	between two nu	mbers	is 64 and the Geor	netric mean between				
	the	m is 16. The H	larmo	onic Mean betwe	en the	m is					
	(a)	64	(b)	4	(c)	16 (d)	40				
26.	The	average of 5	quan	tities is 6 and th	e avera	age of 3 is 8 what	is the average of the				
	rem	aining two.									
	(a)	4	(b)	5	(c)	3 (d)	3.5				
27.	The	median of fo	llowir	ng numbers, whi	ch are	given is ascending	order is 25. Find the				
	valı	ue of X.									
	11,	13, 15, 19,	(x + 2), (x + 4), 30, 3	5, 39,	46					
	(a)	21	(b)	20	(c)	15 (d)	30				
				6		V.ce.					
28.	The	average age	of a g	roup of 10 stude	ents wo	as 20 years. The av	verage age increased				
	two	years when t	wo ne	ew students join	ed the	group. What is the	e average age of two				
	new	v students wh	o join	ed the group?	0 -						
	(a)	22 years		L'and	(b)	30 years					
	(c)	20 years	0	3	(d)	32 years					
29.	Geo	metric Mean	of thr	ee observations	40, 50	and X is 10. The	value of X is				
	(a)	2			(b)	4					
	(c)	1/2			(d)	None of the abov	/e				
30.	The	mean of first	three	e term is 14 and	mean	of next two terms	is 18. Then mean of				
	all	five term is:									
	(a)	14.5	(b)	15	(c)	14 (d)	15.6				
31.	The	mean salary	of a	group of 50 per	sons is	₹ 5850. Later on	it is discovered that				
	the	salary of one	e emp	loyee has been	wrong	ly taken as ₹ 800	0 instead of ₹ 7800.				
	The	corrected me	an so	ılary is							
	(a)	₹ 5854			(b)	₹ 5846					
	(c)	₹ 5650			(d)	None of the abov	/e				

al	⁄drando	a Enterprise						
32.	lf th	e mode of a d	ata i	s 18 and mean i	is 24, t	hen median is		
	(a)	18	(b)	24	(c)	22	(d) 21	_
								_
33.	The	point of inters	sectio	on of the "less th	nan" ar	nd "more than"	' ogives correspond to	
	(a)	Mean			(b)	Mode		-
	(c)	Median			(d)	10th Percenti	le	_
								_
34.	Am	an travels fro	m Ag	gra to Gwalior o	at an c	average speed	of 30 km per hour and	-
	bac	< at an averag	e spe	eed of 60 km pe	r hour.	What is his av	verage speed?	_
	(a)	38 km per ho	our		(b)	40 km per ho	ur	_
	(c)	45 km per ho	our		(d)	35 km per ho	ur	_
35.	Whi	ch of the foll	owin	ig measures of	centro	al tendency co	annot be calculated by	-
	grap	phical method	?					-
	(a)	Mean			(b)	Mode		_
	(c)	Median			(d)	Quartile 🥥)	_
				6		E.e		_
36.	Geo	metric mean c	of 8, 4	4, 2 is	70	2 roris		
	(a)	4	(b)	2	(c)	8	(d) none of these	
					0			
37.	The	average age o	of 15	students of a clo	ass is 1	5 years. Out o	f them, the average age	-
	of 5	students is 14	year	rs and that of th	e othe	r 9 students is	16 years. The age of the	
	15tł	n student is:						
	(a)	11 years			(b)	14 years		
	(c)	15 years			(d)	None of these	2	-
								-
38.	Ave	rages whose v	alue	can be determir	ned gro	aphically?		-
	(a)	Mode, Media	n		(b)	Mean, Mode		-
	(c)	Mean, Media	n		(d)	None of the a	lbove	-
								-
39.	Whi	ch of the follo	wing	statements is t	rue?			-
	(a)	Median is bas	sed o	on all the observ	vations			-
	(b)	The mode is t	the n	nid value				
	(c)	The median is	s the	second quartile	9			
	(d)	The mode is t	the fi	fth decile				-

J.K. SHAH

40. The mean of the following data is 6. Find the value of 'P'

		×	2		4		6	10	P + 5	
		f	3		2		3	1	2	
	(a)	4	(b)	6		(c)	8	(d) 7		
41.	The	third decil	le for the	num	bers 15, 10, 2	0, 2	25, 18, 11,	9, 12, is :		
	(a)	13	(b)	10.7	0	(c)	11	(d) 11.50		
42.	A ro	indom var	iable X h	ias ui	niform distrib	utio	n on the ir	nterval (-3, 7)	. The mean of	
	the	distributio	on is:							
	(a)	2	(b)	4		(c)	5	(d) 6		
							G			
43.	lf th	ne arithme	etic meai	n of t	two numbers	is :	10 and the	e geometric n	nean of these	
	num	bers is 8,	then the	harm	nonic mean is:					
	(a)	9	(b)	8.9		(c)	6.4	乞 (d) None	of these	
					6			0		
44.	The	harmonic	mean H	of t	wo numbers i	s 4	and their	arithmetic me	ean A and the	
	geo	metric me	an G sati	sfy th	ne equation 24	4 +	G² = 27, th	en the numbe	ers are	
	(a)	(1, 3)	(b)	(9, 5	1 P 20	(c)	(6, 3)	(d) (12, 7)		
					id (dire					
45.	Qua	rtiles can	be deter	mined	d graphically (usin	ig:			
	(a)	Histograr	m		(b)	Frequency	/ polygon		
	(c)	Ogive cu	rve		(d)	Pie chart			
46.	In a	class of 5	50 studer	nts, 1	0 have failed	anc	l their aver	age marks in	2.5. The total	
	mar	ks secured	l by the e	ntire	class were 28	1. T	he average	e marks who h	ave passed is:	
	(a)	5.32			(b)	7.25			
	(c)	6.40			(d)	None of t	he above		
47.	lf th	e mean of	two nun	nbers	is 30 and geo	met	tric mean is	s 24 then wha	t will be these	
	two	numbers?								
	(a)	36 and 2	4		(b)	30 and 30)		
	(c)	48 and 1	2		(d)	None of t	hese		

a Veranda Enterprise 48. For moderately skewed distribution of marks in commerce for a group of 200 students the mean marks and mode marks were found to be 55.60 and 46. What is the median marks? None of these (a) 55.5 (b) 60.5 (c) 52.4 (d) 49. Mean for the data 6, 4, 1, 6, 5, 10, 3 is 5 when each observation added by 2, what is mean of the data (a) 5 (b) 6 (c) 7 (d) 10 50. The average of 10 observations is 14.4. If the average of first 4 observations is 16.5. The average of remaining 6 observations is: (a) 13.6 (b) 13.0 (c) 13.2 (d) 12.5 51. The ordering of a particular design of a cloth show room, a _____ size be more appropriate (c) mode (a) median (d) all of these (b) mean 52. The rates of returns from three different shares are 100%, 200% and 400% respectively. The average rate of return will be : 1000(0) 350% (b) 233.33% 300% (a) 200% (d) If geometric mean is 6 and arithmetic mean is 6.5, then harmonic mean will be: 53. 6² 6 (a) (b) 6.5² 6.5 6 None of the above (c) (d) 65 54. A company's past 10 years average earning is ₹ 40 crores. To have the same average earning for 11 years including these 10 years, how much earning must be made by the company in the eleventh year? ₹ $\frac{40 \times 10}{11}$ crores (a) ₹ 40 crores (b) More than ₹ 40 crores (d) None of these (c) 55. A person purchases 5 rupees worth of eggs from 100 different markets. You are to find the average number of eggs per rupee purchased from all the markets taken together. The suitable average in this case is: (a) A.M. G.M. (d) None of the above (b) (c) H.M.

56.		is the recip	rocal	of the AM of th	ie recip	rocal	of observations.
	(a)	НМ			(b)	GM	
	(c)	Both (a) and	(b)		(d)	None	of the above
57.	lf th	ne mean value	e of s	even numbers 7	, 9, 12	, X, 4,	11 and 5 is 9, then the missing
	nun	nber X will be:					
	(a)	13	(b)	14	(c)	15	(d) 8
58.	Wh	en all observa	tions	occur with equa	al frequ	lency -	does not exist.
	(a)	median			(b)	mode	2
	(c)	mean			(d)	None	of the above
59.	lf th	ne variables x	and z	z are so related	that z	= ax +	b for each x = x_1 where a and b
	are	constant, the	1 Z =	= ax + b			
	(a)	True			(b)	false	
	(c)	both			(d)	none	79
				6		F	
60.	lf e	ach item is red	uced	by 15 A.M. is	29	2	orise
	(a)	reduced by 1	5	0/9	(b)	increa	ased by 15
	(c)	reduced by 1	0		(d)	none	
				L'acom			
61.	For	899, 999, 391	, 384	, 590, 480, 485	, 760, 3	111, 2	40 Rank of median is
	(a)	2.75		(b) 5.5	(c)	8.25	(d) none
62.	The	average of a s	series	of overlapping	averag	es, ea	ch of which is based on a certain
	nun	nber of item w	vithin	a series is know	as		
	(a)	Moving avera	age			(b)	Weighted average
	(c)	Simple avera	ige			(d)	None
63.	The	median of the	e dat	a 5, 6, 7, 7, 8, 9	, 10, 1	1, 11,	12, 15, 18 and 19 is
	(a)	10.5	(b)	10	(c)	11	(d) 11.5
64.	The	mean of 20 it	ems o	of a data is 5 and	d if eac	h item	is multiplied by 3, then the new
	me	an will be					
	(a)	5	(b)	10	(c)	15	(d) 20

									_
	ASSES						CA	FOUNDATION STATISTICS	
a	dranda Enterprise								
 65.	The Geometric	mean o	f 3, 6, 2	4 and 48 is	S				
 	(a) 8	(b)	12		(c)	24		(d) 6	
 66.	The Algebraic	sum of t	he devic	ition of a s	set o	f valu	es from	their arithmetic mean is	
 	(a) > 0	(b)	= 0		(c)	< 0		(d) None of the above	
 67.	Which one of t	he follo	wing is r	iot a centr	al te	ndenc	y?		
	(a) Mean Dev	/iation				(b)	Arithm	netic mean	
	(c) Median					(d)	Mode		
 68.	If total frequer	ncies of t	hree ser	ies are 50,	60 0	and 90	and the	eir means are 12, 15 and	
	20 respectively	y, then th	ne mean	of their co	omp	osite s	eries is		
	(a) 16	(b)	15.5		(c)	16.5	B	(d) 14.5	
69.	If in a modera	tely skev	ved dist	ribution th	ie vo	llues c	of mode	and mean are 32.1 and	
	35.4 respective	ely, then	the valu	le of the n	nedio	an is	9		
	(a) 34.3	(b)	33.3		(c)	34	·e	(d) 33	
					9	2 *	0115		
				19	CI	nter			
					7				
				000					
		\mathcal{O}	aV						
				00					

ANSWER

									_
	1	b	21	α	41	b	61	b	
	2	С	22	b	42	α	62	α	
	3	d	23	b	43	С	63	b	
	4	α	24	С	44	С	64	С	
_	5	d	25	b	45	С	65	b	
-	6	С	26	С	46	С	66	b	
	7	b	27	α	47	С	67	α	
_	8	С	28	d	48	С	68	С	
	9	α	29	С	49	С	69	α	
_	10	С	30	d	50	b			
_	11	α	31	b	51	С			
	12	α	32	С	52	С			
_	13	d	33	С	53	α			
	14	α	34	b	54	α			
	15	α	35	α	55	С			
	16	b	36	α	56	α			
	17	b	37	α	57	С			
	18	α	38	α	58	b			
	19	b	39	С	59	α			
	20	b	40	d	60	α			
				0					

HOMEWORK SOLUTION

1.	(b)	X - Y - 10 = 0
		Mode(X) - Mode(Y) - 10 = 0
		Mode(y) = Mode(X) - 10 = 23 - 10 = 13
2.	(c)	Average speed is the HM of 20 and 30.
		AS = (2*20*30)/(20+30) = 1200/50 = 24
3.	(d)	Arranging the given data in ascending order: 2, 4, 6, 8, 11, 13, 15, 18
		Median is the value of (8 + 1)/2 = 4.5 th item = ½(4 th item + 5 th item) = ½(8+11)
		= 9.5
4.	(a)	The sum of Squares of deviations is least, when it is taken from its AM.
5.	(d)	For set of distinct positive observations: AM > GM > HM
		Senteri
6.	(c)	GM ² = AM * HM = 5 * 3.2 = 16
		GM = 4
7.	(b)	Average Speed is the HM of 500 and 700 = (2*500*700)/(500+700) =
		700000/1200 = 583.33
8.	(c)	For a moderately skewed distribution: Mean - Mode = 3(Mean - Median)
9.	(a)	HM and GM are known as ratio averages.
10.	(c)	Extreme values have NO effect on mode.
11.	(a)	Combined average salary = (40*5200 + 60*6800)/(40 + 60) = 616000/100 =
		6160.
12.	(a)	Combined AM = (15*1/75 + 13*1/65)/(15+13) = 0.4/28
		Combined HM = 28/0.4 = 70.

13.	(d)	(Find the cube of the options, the option which gives 192 is the answer)
		GM ³ = 4*6*8 = 192
		GM = 5.77
14.	(a)	GM is the better measure than others when ratios and percentages are given.
15.	(a)	Median = ½ (x/2 + x/3) = 5x/12 = 10. Thus, x = 24.
16.	(b)	Correct Total = (50 * 80) + 46 + 28 - 64 - 82 = 3928
		Correct Mean = 3298 / 50 = 78.56
17.	(b)	For two unequal quantities: A > G
		8
18.	(a)	Mean – Mode = 3 (Mean – Median)
		3Median = 2 Mean + Mode = 2*3.57 + 2.13 = 9.27
		Median = 9.27/3 = 3.09
		S S S S S S S S S S S S S S S S S S S
19.	(b)	HM = n / (1/1 + 1/1/2 + 1/1/3 + + 1/1/n) = n/(1 + 2 + 3 + + n) = 2/(n+1)
		S Enter
20.	(b)	Mean of remaining 5 = 1/5 [15*110 - 5*100 - 5*125] = 1/5*525 = 105.
		C Vidrai.
21	(a)	Arranging the marks in ascending order: A B C 10 11 12 14 15 20 24 26
		Median is the marks of (11 + 1)/2 = 6th student from any corner = 12
 22.	(b)	24 = 2*20*S / (20 + S)
		480 + 24S = 40S
		16S = 480
		S = 480/16 = 30
 	(1.)	
23.	(b)	Mean (U) = $10 + 5$.Mean(X) = $10 + 5^{5}0 = 260$
21	()	Maxin = Mada = (2 - 2)(Maxin = Mading)
 24.	(C)	Mean - Mode = 63 = 3(Mean - Mealan)
		(Mean - Mean) = 03/3 = 21

J.K. SHAH [®]
CLASSES
a Vergodg Enterprise

	av	erunuc	
	25.	(b)	$GM^2 = AM * HM$
			16 ² = 64 * HM
			HM = 256/64 = 4
	26.	(c)	Average of remaining 2 = ½ [5*6 - 3*8] = ½ [30 - 24] = 6/2 = 3
	27.	(a)	11, 13, 15, 19, (x + 4), 30, 35, 39, 46
			Median is the 5 th value
			$Rank = \frac{N+1}{2} = \frac{10}{5} 5^{th}$
			2 5
			x+ 4= 25
			x = 25 - 4
			= 21
	28.	(d)	Average age of two new person = ½ [12*22 - 10*20] = ½ (264 - 200) = 32
	29.	(c)	103 = 40 * 50 * X
			X = 1000/2000 = ½
			S Entern
	30.	(d)	Mean = 1/5 [3*14 + 2*18] = 1/5(42 + 36) = 78/5 = 15.6
			L'idiane
	31.	(b)	Correct Mean = 1/50 [50*5850 - 8000 + 7800] = 1/50 [292300] = 5846
	32.	(c)	Mean – Mode = 3(Mean – Median)
			3Median = 2Mean + Mode = 2*24 + 18 = 66
			Median = 66/6 = 22.
	33.	(c)	The point of intersection of the "less than" and "more than" Ogives correspond
			to the Median of the distribution.
	34.	(b)	Average Speed = (2*30*60)/(30+60) = 3600/90 = 40
	35.	(a)	Mean cannot be calculated graphically.
	36.	(a)	$GM^3 = 8 * 4 * 2 = 64 = 4^3$
			GM = 4.
-			

a ,	Clana	
37.	(a)	The age of 15 th student = 15*15 - 5*14 - 9*16 = 225 - 70 - 144 = 11
38.	(a)	Graphically Median and Mode of a distribution can be calculated.
39.	(c)	Median is not based on all observations. Mode is the most popular value and
		not the mid-value. Median is the second quartile.
40.	(d)	$\sum fx = 2^{3} + 4^{2} + 6^{3} + 10^{1} + (p+5)^{2} = 6+8+18+10+2P+10 = 2P + 52$
		$\sum f = 3 + 2 + 3 + 1 + 2 = 11$
		6 = (2P + 52)/11
		66 = 2P + 52
		2P = 14
		P = 7.
41.	(b)	Ascending order: 9, 10, 11, 12, 15, 18, 20, 25
		3^{rd} Decile = $3(8 + 1)/10 = 2.7^{th}$ element = 2^{nd} element + 0.7 ($3^{rd} - 2^{nd}$) = 10 +
		0.7(11 - 10) = 10.7
		S S rorise
42.	(a)	Mean = $(-3 + 7)/2 = 4/2 = 2$.
		Addr
43.	(c)	8 ² = 10 * HM
		HM = 64/10 = 6.4.
44.	(c)	2A + G ² = 2A + A*H = 2A + 4A = 6A = 27. A = 27/6 = 4.5
		G ² = 4 * 4.5 = 18
		First number = 4.5 + $\sqrt{(4.5^2 - 18)}$ = 4.5 + 1.5 = 6
		Second number = $4.5 - \sqrt{(4.5^2 - 18)} = 4.5 - 1.5 = 3$
45.	(c)	Quartiles are calculated graphically using Ogives.
46.	(c)	Average marks of students who have passed = 1/40[281 - 10*2.5] = 1/40(256)
		= 6.4.
47.	(c)	$X = 30 + \sqrt{(30^2 - 24^2)} = 30 + 18 = 48$
		Y = 30 - 18 = 12

-		
		CA FOUNDATION STATISTICS
 ak	/drando	
 48.	(C)	$3Median = 2Mean + Mode = 2^{55.60} + 46 = 157.2$
 		Median = $157.2/3 = 52.4$
 	()	
 49.	(C)	New Mean = 5 + 2 = 7.
 50	(1.)	
 50.	(D)	Average of remaining $6 = 1/6 [10^{14.4} - 4^{16.5}] = 1/6[144 - 66] = 78/6 = 13.$
 54	()	
 51.	(C)	Mode is an appropriate average for a cloth show room, which shall want to
 		order that particular design, which sells more.
 5.2	()	
 52.	(C)	Average rate = GM of rates
 		$=\sqrt{100 \times 200 \times 400}$
 		$=\sqrt{8} \times 1000000$
 		$= \sqrt{0} \times \sqrt{10^{3}}$ $= (2^{3})^{\frac{1}{2}} = (10^{5})^{\frac{1}{2}}$
		- 2 × 100
 		- 2 x 100
 		- 200 %
 52	(a)	62 - 6 5 * 4
 55.	(u)	$H = \frac{36}{6} = \frac{62}{6} = \frac{62}{6} = \frac{62}{6}$
 54	(a)	Earning in the 11^{th} year = 40 crores (to maintain the gyerage of last 10 years)
 54.	(u)	Laming in the 11 year - 40 crores. (to maintain the average of tast 10 years)
 55	(n)	AM is to be used to find average rate at which eags are to be purchased
 55.	(0)	Annis to be used to find average rate at which eggs are to be parenased.
 56.	(a)	HM is the reciprocal of the AM of the reciprocal of observations.
 	(~)	
 57.	(c)	(7 + 9 + 12 + X + 4 + 11 + 5) = 7*9 = 63
 	(-/	48 + X = 63
 		X = 63 - 48 = 15.
 58.	(b)	When all observations occur with equal frequency, we can't calculate its Mode.
59.	(a)	If Z = aX + b, Mean(Z) = a. Mean(X) + b
 	,	(As Mean is dependent on both change of scale and change of origin)

J	J.K	. 5	CA FOUNDATION STATISTICS
	a Vơr	ando	a Enterprise
6	0. (α)	If each item is reduced by 15, AM also reduced by 15.
			N+1 9+1 10
6	1. (b)	Rank of Median = $\frac{1}{2}$ = $\frac{1}{2}$ = $\frac{1}{2}$ = 5th
			Rank of Median is 5
6	2. (a)	Average of a series of overlapping averages, each of which is based on a
			certain number of item within a series is known as Moving Averages.
6	3. (b)	5 6 7 7 8 9 10 11 11 12 15 18 19
			$m = \frac{N+1}{2} = \frac{14}{7} = 7^{th}$
			2 2 value
			Median = 10
			®
6	4. (c)	New mean = 5 * 3 = 15
6	5. (b)	G ⁴ = 3 * 6 * 24 * 48 = 20736 = 12 ⁴
			G = 12.
			Sterpins
6	6. (b)	The algebraic sum of the deviation of a set of values from their AM is always
			zero.
	- /		
6	(. (a)	Mean Deviation is a measure of dispersion.
	0 /	-)	$M_{2} = - (50 \pm 12 + 60 \pm 15 + 00 \pm 20) / (50 \pm 60 \pm 00) = (600 \pm 000 \pm 1000) / 200 =$
0	8. (C)	Mean = (50 12 + 60 15 + 90 20) / (50+60+90) = (600+900+1800) / 200 =
_			3300/200 = 18.5
6	<u>م</u> (a)	3Modian - 2 Moan + Modo - $2*25.4 + 32.1 - 70.8 + 32.1 - 102.9$
0	5. (u)	Median = 102.9/3 = 34.3
-			Healan = 102.373 = 34.3
_			
_			
_			
_			
_			
_			

SELF ASSESSMENT TEST 2 30 Marks

1.	What is the major as	sumption we ma	ke when computi	ng a mean from grouped	
	data?				
	a) No value occurs m	ore than once			
	b) Each class contain	s exactly the sam	e number of value	25	
	c) All values are disc	rete			
	d) Every value in a cl	ass is equal to the	e mid-point		
2.	Median is:				
	a) 50 th percentile	b) 2 nd quartile	c) 5 th decile	d) All of the above	
			8		
3.	Suitable average for f	inding out the me	an size of sale of s	shoes shall be:	
	a) Arithmetic mean	b) Median	c) Mode	d) None of the above	
				2	
4.	A cyclist goes from a	place to another	and returns by th	ne same route. He pedals	
	his way uni-formly wi	th speed U while g	going and with spe	eed V while returning. The	
	average speed of his j	ourney is:	Enteri		
	a) (U + V)/2	b) 2/(U + V)	c) 2UV/(U + V)	d) None of the above	
		L'Idcollie			
5.	The mean of the value	e 1, 2, 3,, 120 v	vith respective free	quencies F, 2F, 3F,, 120F	
	is equal to:				
	a) (60 + 1) ²	b) (240 + 1)/6	c) 60	d) 241/3	
6.	If the median of four r	numbers: 3, 4, 8 a	nd X is 5, then wh	at is the value of X?	
	a) 11	b) 5	c) 10	d) 6	
7.	Find two positive num	bers A and B, the	AM of which is 5 of	and the GM is 4.	
	a) 2,8	b) 8, 2	c) 6, 4	d) (a) and (b) both	

- Which of the following statement is not CORRECT? 8.
 - In a negatively skewed distribution, the value of mode is greater than the a) arithmetic mean.
 - The subtraction of a constant from each item in the data to be averaged, b) changes the average.
 - Geometric mean is square root of the product of all observations. c)
 - d) The division of a constant from each item in the data to be averaged, changes the average.
- Which measure of central tendency is not affected by the extreme values? 9.
 - Arithmetic Mean and Median a)
 - Median and Mode b)
 - Mode and Arithmetic Mean c)
 - Geometric Mean and Harmonic Mean d)
- 10. Of the various measure of central tendency, which of the following can be used Veranda Enterprise when measurement are on an ordinal scale?
 - Arithmetic Mean and Median a)
 - b) Mode and Arithmetic Mean
 - Median and Mode c)
 - d) All of the above
- 11. The mean of 15 observations is 15. If the two numbers 18 and 22 are excluded, then the mean of the remaining numbers is:
 - a) 10.53 b) 12.49 c) 14.23 d) 15.49
- 12. While dividing each entry in a data by a non-zero number A, the arithmetic mean

of the new data:

- b) Increased a) Does not change
- Is diminished by A c) Is divided by A d)
- 13. If arithmetic mean of two items is 16 and their harmonic mean is 9. Find their geometric mean.
- a) 10 b) 12 c) 14 d) 16

J.K. SHAH CLASSES a Veranda Enterprise

	·····			
14.	Find the median of 33,	86, 68, 80, 48, 70), 64.	
	α) 80	b) 68	c) 70	d) 48
15.	The mean monthly sal	ary of all employ	ees in a company	is Rs. 25,000. The mean
	salaries of male and fe	emale employees	are Rs. 27,000 and	l Rs. 17,000 respectively,
	the percentage of male	es employed by th	e company is:	
	a) 80%	b) 20%	c) 30%	d) 70%
16.	The AM of 7, (x - 2), 10), (x + 3) is 9. Find	х.	
	α) 8	b) 9	c) 7	d) None of the above
17.	Calculate the geometr	ic mean of 3, 6, 24	4, 48.	
	α) 6	b) 12	c) 24 🛞	d) None of the above
18.	Find the GM of 4, 6, 9	with weight 1, 2, 1	respectively.	
	α) 6	b) 12	c) 24	d) None of the above
		6	V V.ce.	
19.	If the GM of A, 4, 8 be	6, find the value o	of A. orise	
	a) 6.75	b) 12.25	c) 24.35	d) None of the above
20.	The means of two sai	mples of sizes 50	and 100 respecti	vely are 54.1 and 50.3.
	Obtain the mean of the	e sample of size 15	50 obtained by com	bining the two samples.
	a) 50.47	b) 51.57	c) 52.37	d) 54.48
21.	Find the Harmonic Med	an of the following	g numbers: 1. ½, 1	/3, ¼.
	a) 0.4	b) 0.5	c) 0.25	d) None of the above
22.	Find the Mode of the fo	ollowing numbers:	7, 4, 3, 5, 6, 3, 3,	2, 4, 3, 4, 3, 3, 4, 4, 3, 2,
	2, 4, 3, 5, 4, 3, 4, 3, 1,	2, 3.		
	α) 4	b) 3	c) 2	d) None of the above
23.	Find the median of 88,	72, 33, 29, 70, 86	5, 54, 91, 61, 57.	
	α) 65	b) 66	c) 65.5	d) None of the above

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

24.	In a moderately symm	netric distribution	the mode and mea	an are 12.30 and 18.48
	respectively. Find the n	nedian.		
	a) 16	b) 16.42	c) 16.24	d) None of the above
25.	The average weight of	A, B, C is 45 Kg. If t	he average weight	of A and B be 40 Kg and
	that of B and C be 43	Kg, then the weigh	t of B is:	
	a) 15 Kg	b) 20 Kg	c) 25 Kg	d) 31 Kg
26.	The average attendant	ce of a school for	the first 3 days of	the week is 325 and for
	the first 4 days of the	week it is 320. The	students present o	on the fourth day were:
	a) 305	b) 310	c) 315	d) 325
27.	The AM calculated from	m the following fr	equency distributio	n is known to be 67.45.
	Find the value of F.			
	Class Interval 60	63-65	66-68	59-71 72-74
	Frequency 15	5 54	F 98	31 24
	a) 120	b) 126	c) 134	d) None of the above
			S rorise	
28.	The median of the follo	wing incomplete fr	equency distributio	n is 4. Find the frequency
	when X = 8.			
	X: 1 2 3	4 5 6	7 8	
	CF: 2 3 4	5 6 7	8 ?	
	a) 1	b) 2	c) 3	d) 4
29.	Calculate the mode of	the following freq	uency distribution:	
	Class Interval	Frequency		
	0 - 6	13		
	6 - 12	25		
	12 - 18	57		
	18 - 24	79		
	24 - 30	105		
	30 - 36	79		
	36 - 42	57		
	42 - 48	25		
	48 - 54	13		
	a) 27	b) 28	c) 29	d) 31

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

30.	The algebr	raic sum of	the deviatio	ns of 50 ob	servatior	ns mea	sured fro	m 90 is	5 - 110	•
	Find the A	M of the ob	servations.							
	a) 90		b) 110	c) 8	38.7		d) 87.8			
						®				
					5/	9				
				5		:50				
 					2 10	1.2				
				94	nte					
				- 90						
		- 6	- Vou	0.						

EXPLANATORY ANSWERS

- 1. While calculating mean from the group distribution, it is assumed that every value in a class is equal to the mid-point of that class. Option D
- 2. Median = 50th percentile = 2nd quartile = 5th decile. Option D
- 3. Mode is the suitable average to find the mean sale of shoes. Option C
- 4. Average speed is the HM between U and V = 2/(1/U + 1/V) = 2UV/(U + V). Option C
- 5. $\Sigma FX = (1*F) + (2*2F) + \dots + (120*120F) = F(120)(120 + 1)(240 + 1)/6$
 - $\Sigma F = F + 2F + 3F + \dots + 120F = F(120)(120 + 1)/2$
 - Mean = $\sum FX / \sum F = (240 + 1)/3 = 241/3$
 - Option D
- 6. Median of 4 numbers is 5. The sum of the central 2 values = 5*2 = 10
 If we consider 4 and 8 as the middle two numbers, its total is not 10.
 Thus 4 + X = 10. X = 6. Option D
- 7. $A = AM + \sqrt{(AM^2 GM^2)} = 5 + \sqrt{(25 16)} = 8$ $B = AM - \sqrt{(AM^2 - GM^2)} = 5 - \sqrt{(25 - 16)} = 2$

Both option A and option B are correct. Thus, correct answer is Option D

- 8. Geometric mean is the nth root of the product of n observations given in the data set. Option C
- Both Median and Mode are not affected by the presence of the extreme values.
 Option B

10. Arithmetic mean is only possible for cardinal scale. For ordinal scale all partition and positional values are possible. Option C

11. Mean of remaining = (15*15 - 18 - 22)/13 = 14.23. Option C

a Veranda Enterprise 12. The AM of the new data is also get divided by A. Option C 13. GM² = AM * HM = 16 * 9 = 144. GM = 12. Option B 14. After arranging: 33, 48, 64, 68, 70, 80, 86. Median is $(7 + 1)/2 = 4^{\text{th}}$ item from any end = 68. Option B 15. 25000(M + F) = 27000M + 17000F 2000M = 8000F; M:F = 4:1. Percentage of males employed = 4/5 * 100 = 80%. Option A 16. 9*4 = 7 + x - 2 + 10 + x + 3 = 2x + 18; 2x = 18. x = 9. Option B 17. 3*6*24*48 = 34.28. GM = $(3^4.2^8)^{1/4} = 3*2^2 = 12$. Option B 18. GM = $\sqrt[4]{4^{1}.6^{2}.9^{1}}$ = $\sqrt[4]{1296}$ = 6. Option A 19. 6³=Ax4x8; A = 216/32 = 6.75. Option A 20. Combined Mean = [(54.1*50) + (50.3*100)]/150 = (2705 + 5030)/150 = 51.57. **Option B** 21. HM = 4/(1 + 2 + 3 + 4) = 4/10 = 0.40. Option A 22. On observation, value 3 occur maximum number of times. Mode = 3. Option B 23. After arranging: 29, 33, 54, 57, 61, 70, 72, 86, 88, 91. Median is ½ (5th + 6th value) $= \frac{1}{2}(61 + 70) = \frac{1}{2}(131) = 65.5$. Option C 24. 3(Mean - Median) = (Mean - Mode)3(18.48 - Median) = (18.48 - 12.30) = 6.18Median = 18.48 - 2.06 = 16.42. Option B

915+3456+67F+5670+1752

J.K. SHAH

al	deranda Enterprise
25.	A+B+C = 45*3 = 135
	$A+B = 40^{2} = 80$
	B+C = 43*2 = 86
	B = (A+B) + (B+C) - (A+B+C) = 80 + 86 - 135 = 31. Option D
26.	Attendance of 4th day = (320 * 4) - (325 * 3) = 1280 - 975 = 305. Option A
27.	$\Sigma FX = (15*61) + (54*64) + (F*67) + (81*70) + (24*73) = 915+3456+67F+5670$
	= 11793+67F
	$\Sigma F = 15 + 54 + F + 81 + 24 = 174 + F$
	67.45 = (11793 + 67F)/(174 + F)
	11736.3 + 67.45F = 11793 + 67F
	0.45F = 56.7
	F = 126. Option B
28.	First prepare frequency column from CF column by subtracting values
	Option Method
	A) Missing frequency = 1
	put missing frequency = 1 & apply Median Formula = (N+1)/2 th Term
	Answer Matches with given data M = 4 O
	Hence Option A
29.	Mode = 24 + (105 - 79)/(210 - 79 - 79) * 6 = 24 + 156/52 = 27. Option A
30.	Mean = 90 - 110/50 = 90 - 2.2 = 87.8. Option D

3

MEASURES OF DISPERSION

(Average of Second Order)

THEORY	
Introduction:	
• Dispersion is defined as deviation or scattering of values from their central values i.e,	
average (Mean, Median or Mode but preferably Mean or Median)	
Dispersion discovers variability in uniformity.	
In other words, dispersion measures the degree or extent to which the values of a	
variable deviate from its average	
Dispersion indicates the degree of heterogeneity among observation and as	
heterogeneity increases dispersion increases	
9 Entern	
 If all values are equal then any measure of dispersion is always zero 	
L'idram's	
All measures of dispersion are positive	
All measures of dispersions are independent of the change of origin but dependent on the	
change of scale	
All pre requisites of a good measure of central tendency are equally applicable for good	
measure of dispersion	
TWO DISTRIBUTIONS MAY HAVE;	
i. Same central tendency and same dispersion	
ii. Different central tendency but same dispersion	
iii. Same central tendency but different dispersion	
iv. Different central tendency and different dispersion	

Types of Measures of Dispersion

There are two types of measures of dispersion,

 Absolute Measure	Relative Measure	
a. These measures of dispersion will have	a. These are usually expressed as ratios	
 the same units as those of the variables	or percentages and hence unit free	
 b. Absolute measures are related to the	b. Relative measures are used	-
 distribution itself.	i) to compare variability between	
	two or more series.	
	ii) To check the relative accuracy of	
	the data	

MEASURES OF DISPERSION (AVERAGE OF SECOND ORDER)

A good measure of dispersion should obey conditions similar to those for a satisfactory

average and are as follows :

- It should be rigidly defined. i.
- It should be readily comprehensible. ii.
- iii.
- iv. It should be fairly easily calculated.
- It should affected as little as possible by fluctuations of sampling; ٧.
- It should readily lend itself to algebraic treatment and vi.
- It should be east affected by the presence by extreme values vii.

Quartile Deviation or Semi-inter guartile Range:

- QD is defined as the half of the range between the guartiles •
- It is based on the upper and the lower Quartile and covers 50% of the observations. •
- It does not depend on all observations •
- For distributions with the Open Ends Q.D is the best and only measure of dispersion. •
- QD is independent of the change of Origin but dependent on the change of Scale. •
- If $y=a\pm bx$ • $QD(y) = |b| \times QD(x)$
- Quartile Deviation (QD) = $\frac{Q_3 Q_1}{2}$, Where Q3 is the upper quartile and Q1 is the lower • quartile.
- •
- •
- quartile. Co-efficient of QD(Relative Measure) = $\frac{QD}{Median} \times 100 = \frac{2}{Q_2} \times 100 = \frac{Q_3 Q_1}{2Q_2} \times 100$ For symmetrical distribution; $Q_2 = \frac{Q_1 + Q_3}{2}$, i.e., median is the average of two extreme quartiles. Thus coefficient of QD for symmetrical distribution = $\frac{Q_3 Q_1}{2} \times 100 = \frac{Q_3 Q_1}{Q_3 + Q_1} \times 100$

Mean Deviation / Mean Absolute Deviation

- It is based on all observations and hence it provides much better dispersion than • **Range and Quartile Deviation**
- Mean deviation of a set of values of a variable is defined as the AM of the Absolute • Deviation taken about Mean, Median or Mode.(Preferably AM or Median)
- Absolute Deviation implies Deviation without any regard to sign •
- If nothing is specified Mean Deviation will imply Deviation about AM only. •

- Since sum of Deviations is least when Deviations are taken about Median hence MD . about Median will have the least value.
 - MD is the independent of the change of origin but dependent on the change of scale •
 - If $y=a\pm bx$ •

 $MD(y) = |b| \times MD(x)$

• Formula to calculate Mean Deviation:

Simple Series	Simple / Grouped
	Frequency Distribution
$MD = \frac{\sum x - x }{n}$	$MD = \frac{\sum f x - x }{\sum f}$
$MD = \frac{\sum \mathbf{x} - M }{n}$	$MD = \frac{\sum f \mathbf{x} - M }{\sum f}$

Where n = number of observation

 $\Sigma f = N = Total frequency$

 $\overline{\mathbf{x}} = \mathbf{A}.\mathbf{M}$

M = Median

X=Either actual values of the variables or mid values if it a group frequency distributions

MD Mean/Median x 100 Coefficient of MD(Relative Measure) = 0

Standard Deviation

- It is the best measure and the most commonly used Measure of Dispersion. •
- It takes into consideration the magnitude of all the observations and gives the • minimum value of dispersion possible.
- SD has all the pre-requisites of a good measure of dispersion, except the fact • that it gets unduly affected by the presence of extreme values,
- It is also known as Root Mean Square Deviation about mean. •

- It is denoted by σ
- $SD^2 = Variance = \sigma^2$ •
- If all observations are equal variance =SD=0 •
- SD is the independent of the change of origin but dependent on the change of scale •
- If $y=a\pm bx$ •
 - $SD(y)=|b| \times SD(x)$

 $V(y)=b^2 \times v(x)$

Definition of SD:

- SD of a set of values of a variable is defined as the positive Square Root of the AM of the Square of Deviations of the values from their AM
- Thus, SD is also known as Root Mean Square Deviations (RMSD) •

Calculation of SD

J	ation of SD	395 rorise
		G sterr
	Simple Series(Without	Simple /Grouped Frequency
_	Frequency)	Distribution
	$i) \sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$	i) $\sigma = \sqrt{\frac{\sum f(x-\overline{x})^2}{\sum f}}$
	$ii)\boldsymbol{\sigma} = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$	ii) $\sigma = \sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$
	iii) $\sigma_x = \sqrt{\frac{\sum d^2}{n} - \left(\frac{\sum d}{n}\right)^2} \times i$	iii) $\sigma_x = \sqrt{\frac{\sum \mathrm{fd}^2}{\sum \mathrm{f}} - \left(\frac{\sum \mathrm{fd}}{\sum \mathrm{f}}\right)^2} \times i$

Where, $d = \frac{x - A}{i}$, •

x= mid-values if it is a grouped frequency distribution or original values if it is a discrete series

A = Assumed Mean i.e., a value arbitrarily chosen from mid-values or any other value.

i = class width or any arbitrary value

a Vergoda Enterprise

Note1 : Use form i) when you find that \overline{x} is whole number	
---	--

Note2: Use form ii) when the value of the variable x are small

Note3 : Use Form iii) when you find that the values of x are large \overline{x} is not a whole number(usually to be used for grouped frequency distribution)

USEFUL RESULTS:

•

- SD of two numbers is the half of their absolute difference(Range), i.e., if numbers are a and • b, then SD = $\frac{a-b}{2}$
- Variance of first "n" natural numbers (1, 2, 3,, n) is $\frac{n^2 1}{12}$ •

Sum of the squares of observations $\sum x^2 = n(\sigma^2 + \overline{x}^2)$ •

Formula for combined or composite or pooled S.D. of two groups

	Group I	Group II	
 Numbers	n,	n ₂	
Mean	$\overline{x_1}$	$\overline{x_2}$	
 Standard Deviation	$\sigma_{_{1}}$	σ_2	

• Step 1 – Find Combined Mean:
$$-\frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$$

• Step 2 – Find Deviations:
$$d_1 = \overline{x_1} - \overline{x}$$
 $d_2 = \overline{x_2} - \overline{x}$

Step 3 – Use Formula:
$$\sigma^2 = \frac{n_1 \sigma_1^2 + n_2 \sigma_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}$$

• Coefficient of Variation (C.V)(Relative Measure) =
$$\frac{SD}{Mean} \times 100 = \frac{\sigma}{x} \times 100$$

- C.V is the best relative measure of dispersion
- C.V is used to compare variability or consistency between 2 or more series •
- More C.V implies more variability indicating thereby less stability or consistency and vice • versa.
- Regarding choice of an item always choose that item which has less C.V, because the item with lower C.V is more stable.

Aller .

CLASSWORK SECTION

RAN	IGE						
1.	What is the coeffi	cient of range	for the follo	wing wages o	of 8 workers	s?	
	₹80,₹65,₹90,₹	60, ₹ 75, ₹ 70	,₹72,₹85.				
	(a) ₹30	(b) ₹20	(c)	30	(d) 20		
2.	If R_x and R_y deno	te ranges of x	and y resp	ectively whe	re x and y	are related I	by
	3x+2y+10=0,						
	what would be th	e relation betw	veen x and y	y?			
	(a) $R_x = R_y$	(b) 2 R _x = 3	R _y (c)	3 R _x = 2 R _y	(d) R _,	= 2 R _y	
3.	What is the coeffi	cient of range	for the follo	wing distribu	tion?		1
	Class Interval :	10-19	20-29	30-39	9 40-49	50-59	
	Frequency:	11	25	16	7	3	
			2/9	2 rolls			
	(a) 22	(b) 50	9 (c)	72.46	(d) 75	.82	
		P	<u> </u>				
4.	If the range of x is	s 2, what woul	d be the ran	ige of $-3x + 5$	0?		
	(a) 2	(b) 6	(c)	-6	(d) 44	4	
QUA	RTILE DEVIATION						
5.	The quartiles of a	variable are 4	5, 52 and 6	5 respectively	y. Its quartil	le deviation is	5
	(a) 10	(b) 20	(c)	25	(d) 8.3	30.'	
6.	If x and y are rela	ated as 3x+4y	= 20 and th	e quartile de	viation of x	is 12, then the	ne
	quartile deviation	n of y is					
	(a) 16	(b) 14	(c)	10	(d) 9		
7.	Quartile Deviation	n for the data	1, 3, 4, 5, 6,	6, 10 is			
	(a) 3	(b) 1	(c)	6	(d) 1.	5	

J.K. SHAH C L A S S E S a Veranda Enterprise

8.	The value of appropriate measure of dispersion for the following distribution of							
	daily Wages							
	Wages (₹):	Below 30	30-39	40-49	50-59	60-79	Above 80	
	No. of workers	5	7	18	32	28	10	
	is given by							
	(a) ₹11.03	(b) ₹10	.50	(c) 11.6	58 (d)₹11.68.		
MEA	N DEVIATION							
9.	What is the value	of mean	deviation ab	out mean	for the foll	owing nur	mbers?	
	5, 8, 6, 3, 4.							
	(a) 5.20	(b) 7.20		(c) 1.44	+ B (d) 2.23		
10.	The coefficient of	mean dev	iation about	t mean for	the first 9	natural ni	umbers is	
	(a) 200/9	(b) 80		(c) 400	19 9	(d) 50.		
			6		e			
11.	If the relation bet	ween x ar	id y is 5y-3	x = 10 and	the mean	deviation	about mean	
	for x is 12, then the	he mean d	eviation of <u>s</u>	y about me	an is			
	(a) 7.20	(b) 6.80	Pa	(c) 20		(d) 18.8	80.	
			id (dire					
12.	If two variables >	x and y a	re related b	y 2x + 3y	-7 =0 and	l the mea	n and mean	
	deviation about r	nean of x	are 1 and 0	.3 respectiv	vely, then t	he coeffic	ient of mean	
	deviation of y abo	out its mee	ın is					
	(a) -5	(b) 12		(c) 50		(d) 4.		
13.	The mean deviati	ion about	mode for th	ne numbers	5 4/11, 6/1	L1, 8/11,	9/11, 12/11,	
	8/11 is							
	(a) 1/6	(b) 1/1:		(c) 6/1:	1	(d) 5/1	1.	
14.	What is the mean	deviation	about mea	n for the fo	ollowing di	stribution	?	
	Variable:	5	10	15	20	25	30	
	Frequency:	3	4	6	5	3	2	
	(a) 6.00	(b) 5.93		(c) 6.07	7	(d) 7.20		

J.K. SHAH C L A S S E S a Veranda Enterprise

	15.	What is the	mean	devi	ation a	ıbout me	dian 1	for the	foll	owing d	ata?		
		X	3		5	7		9		11	13	15]
		F	2		8	9		16		14	7	4	
		(a) 2.50		(b)	2.46		(c)	2.43		(d) 2.37		
	16.	What is the	e coeffic	ient	of me	an deviat	tion f	or the	follo	owing di	stribution	of heights?	?
		Take deviat	ion fror	n Al	м.								_
		Height in i	nches:			60-62	63	-65	6	6-68	69-71	72-74	
		No. of stuc	lents:			5	2	2		28	17	3	
		(a) 2.30		(b)	3.45		(c)	3.8	2	(d) 2.48		
	17.	The mean c	leviatio	n of	weigh	ts about	medi	an for	the	followin	g data:		-
		Weight (lb)):	13	1-140	141-15	0 15	1-160) 16	51 0 170	171-180	181-190	
		No. of pers	sons :		3	8		13		15	6	5	
		Is given by											
		(a) 10.97		(b)	8.23		(c)	9.6	3	9 (d) 11.45.		
						6							
								5		150			
	STAN	NDARD DEVIAT				/2	> <	nte					
	18.	What is the	e stando	ard	deviati	on of 5, 5	5, 9, 9	, 9, 10), 5,	10, 10?			
		(a) √14	Ľ	(b)	<u>√42</u>	200	(c)	4.5	0	(d) 8		
			(\mathcal{I}	3	C.							
	19.	If the mean	and SE) of	x are a	and b re	espect	ively,	then	the SD	of <u>(x-a)</u> is		
		(a) -1		(b)	1		(c)	ab		(d	b) α/b.		
	20.	What is the	coeffic	ient	of vari	ation of	the fo	llowir	ig ni	umbers?			
		53, 52, 61,	60, 64.						_				
		(a) 8.09		(b)	18.08		(c)	20.	23	(d) 20.45		
	21.	If the SD of	x is 3, \	wha	t is the	variance	e of (5	-2x)?					
		(a) 36		(b)	6		(c)	1		(d) 9		
	22.	If x and y a	re relat	ed b	oy 2x+3	y+4 = 0 d	and S	D of x	is 6.	then SD) of y is		
		(a) 22		(b)	4	.	(c)	√5	,	(d)9		
_							• - •				-		
-													

CA FOUNDATION STATISTICS a Veranda Enterprise 23. If the SD of the 1st n natural numbers is 2, then the value of n must be (a) 2 (b) 7 (c) 6 (d) 5 24. If x and y are related by y = 2x + 5 and the SD and AM of x are known to be 5 and 10 respectively, then the coefficient of variation of y is (a) 25 (b) 30 (c) 40 (d) 20 25. The mean and SD for a, b and 2 are 3 and $\frac{2}{\sqrt{3}}$ respectively, The value of ab would be (a) 5 (b) 6 (d) 3 11 (c) 26. What is the standard deviation from the following data relating to the age distribution of200 persons? Age (year) : 20 30 40 50 60 70 80 No. of people: 13 28 31 46 39 23 20 (a) 15.29 18.00 (d) 17.52 (b) 16.87 (c) 27. What is the coefficient of variation for the following distribution of wages? 50 - 60 Daily Wages (₹): 30 - 40 40 - 50 60 - 70 70 - 80 80 - 90 No. of workers 17 28 21 13 15 6 10 (a) ₹ 14.73 (b) 14.73 (c) 26.93 (d) 20.82 28. Which of the following companies A and B is more consistent so far as the payment of dividend is concerned ? Dividend paid by A : 5 9 6 12 15 10 8 10 7 15 Dividend paid by B : 4 8 18 9 6 6 (a) A (b) B (c) Both (a) and (b) (d) Neither (a) nor (b) COMBINED STANDARD DEVIATION 29. If two samples of sizes 30 and 20 have means as 55 and 60 and variances as 16 and 25 respectively, then what would be the SD of the combined sample of size 50? (a) 5.00 (d) 5.35 (b) 5.06 (c) 5.23

CORRECTION IN STANDARD DEVIATION

30. The mean and SD of a sample of 100 observations were calculated as 40 and 5.1 respectively by a CA student who took one of the observations as 50 instead of 40 by mistake. The correct value of SD would be

(a) 4.90 (b) 5.00 (c) 4.88 4.85. (d)

THEORETICAL ASPECTS

- 31. Which of the following statements is correct?
 - Two distributions may have identical measures of central tendency and (a) dispersion.
 - (b) Two distributions may have the identical measures of central tendency but different measures of dispersion.
 - (c) Two distributions may have the different measures of central tendency but identical measures of dispersion.
 - (d) All the statements (a), (b) and (c).

32. Dispersion measures

- Enterprise The scatterness of a set of observations (a)
- The concentration of a set of observations (b)
- (c) Both (a) and (b)
- (d) Neither (a) and (b).

33. When it comes to comparing two or more distributions we consider

(a) Absolute measures of dispersion	(b) Relative measures of dispersion
(c) Both (a) and (b)	(d) Either (a) or (b).

34.	Which one is easier to compute?		
	(a) Relative measures of dispersion	(b)	Absolute measures of dispersion
	(c) Both (a) and (b)	(d)	Range

35.	5. Which one is an absolute measure of dispersion?							
	(a) Range	(b)	Mean Deviation					
	(c) Standard Deviation	(d)	All these measures					

36.	. Which measure of dispersion is most usefull?							
	(a) Standard deviation	(b)	Quartile deviation					
	(c) Mean deviation	(d)	Range					
37.	Which measures of dispersions is not affect	ed by	y the presence of extreme observations?					
	(a) Range	(b)	Mean deviation					
	(c) Standard deviation	(d)	Quartile deviation					
38.	Which measure of dispersion is based on	the	absolute deviations only?					
	(a) Standard deviation	(b)	Mean deviation					
	(c) Quartile deviation	(d)	Range					
39.	Which measure is based on only the cent	ral f	ifty percent of the observations?					
	(a) Standard deviation	(b)	Quartile deviation					
	(c) Mean deviation	(d)	All these measures					
			2/9					
40.	Which measure of dispersion is based on	all t	he observations?					
	(a) Mean deviation	(b)	Standard deviation					
	(c) Quartile deviation	(d)	(a) and (b) but not (c)					
		7						
41.	The appropriate measure of dispersion for	or op	en-end classification is					
	(a) Standard deviation	(b)	Mean deviation					
	(c) Quartile deviation	(d)	All these measures.					
42.	The most commonly used measure of dis	pers	ion is					
	(a) Range	(b)	Standard deviation					
	(c) Coefficient of variation	(d)	Quartile deviation.					
43.	Which measure of dispersion has some d	esirc	Ible mathematical properties?					
	(a) Standard deviation	(b)	Mean deviation					
	(c) Quartile deviation	(d)	All these measures					
44.	If the profits of a company remains the	e sar	ne for the last ten months, then the					
	standard deviation of profits for these te	n mo	onths would be ?					
	(a) Positive (b) Negative	(c)	Zero (d) (a) or (c)					

45.	Which measure of dispersion is considered for finding a pooled measure of dispersion						
	after combining several groups?						
	(a) Mean deviation	(b)	Standard deviation				
	(c) Quartile deviation	(d)	Any of these				
46.	A shift of origin has no impact on						
	(a) Range	(b)	Mean deviation				
	(c) Standard deviation	(d)	All these and quartile deviation.				
47.	The range of 15, 12, 10, 9, 17, 20 is						
	(a) 5 (b) 12	(c)	13 (d) 11.				
48.	The standard deviation of 10, 16, 10, 16	, 10,	10, 16, 16 is				
	(a) 4 (b) 6	(c)	3 (d) 0.				
49.	For any two numbers SD is always		29				
	(a) Twice the range	(b)	Half of the range				
	(c) Square of the range	(d)	None of these.				
		Ę	iter.				
50.	If all the observations are increased by 1	.0, tł	nen				
	(a) SD would be increased by 10						
	(b) Mean deviation would be increased b	oy 10					
	(c) Quartile deviation would be increase	ed by	10				
	(d) All these three remain unchanged.						
51.	If all the observations are multiplied by	2, th	en				
	(a) New SD would be also multiplied by	2					
	(b) New SD would be half of the previou	is SD					
	(c) New SD would be increased by 2						
	(d) New SD would be decreased by 2.						
	"D I I I C D I I I C T I	<u> </u>					
52.	KOOT -Mean Square Deviation from Mea	in" is					
	(a) Standard deviation	(b)	Quartile deviation				
	(C) DOTN	(a)	none				

Q. No. 1	ANSWER						
Q. No. 1		S - SUMS		ANSWE	RS - THE	ORITICAL AS	SPECTS
1	Ans	Q. No.	Ans	Q. No.	Ans	Q. No.	Ans
	d	21	α	31	d	51	α
2	С	22	b	32	α	52	α
3	С	23	b	33	b	53	b
4	b	24	С	34	d	54	α
5	۵	25	С	35	d		
6	d	26	b	36	α		
7	d	27	b	37	d		
8	۵	28	α	38	b		
9	с	29	b	39	b		
10	с	30	b	40	d		
11	α			41	С		
12	b			42	b		
13	α			43	α		
14	с			44	С		
15	d			45	b		
16	b			46	d		
17	α			47	d		
18	b			48	С		
19	b			49	b		
20	α			50	d		

HOMEWORK SECTION

1.	A student obtain	ned tr	ne mean a	and sto	indard	deviation	n of 100 observation	s as 40
	and 5.1 respectiv	vely. I	t was late	er disco	overed	that he h	ad wrongly copied a	own an
	observation as 5	0 inst	ead of 40.	. The co	orrect s	standard	deviation is:	
	(a) 5	(b)	6		(C)	3	(d) 7	
2	For a Symmetric	al dic	tribution	quarti		ation and	the standard doviat	tion are
۷.	rolated by	ut uis	unbution,	quarti	te devi			
	$\frac{1}{(a)} = \frac{1}{(a)} = \frac{1}{(a)}$	D		(b)			2	
	(a) 3 a = 2			(d)	4 Q.D.	- 3 3.D.		
	(C) 2 Q.D 5 3	5.D.		(u)	5 Q.D.	23.D.		
2	If two camples of	fcizoc	20 and 20	0 have	mogne		d 60 and variances as	16 and
5.	25 respectively, t	hop u	bat would	d ho th		us 55 un	a ou ana variances as	02
	(a) E 22	.nen w		a be th	le S.D.			0:
	(u) 5.55	(D)	5.17	10		5.00	(u) 5	
,	If two wariables			ated b		2	O and the mean an	d 100 0 0 0
4.	If two variables		y dre ret		y zx +	3y - 7 =	ban the se officient of	a mean
	deviation about	mean			.s resp	ectivety, t		
			iean is		(a)	1 0		
	(a) -5	(D)	4		(C)	12	(a) 50	
-	Manager of diag					4400		
5.	Measures of alsp	ersior	are calle	a aver	age or	the c	order.	
	(d) 1st	(D)	Zna		(C)	3ra	(a) none	
				•				•
6.	In a set of 100 o	bservo	ations, tak	king as	sumea	mean as	4, the sum of the dev	
	is –11 cm, and th	ne sun	n of the sq	juares d	of these	e deviatio	ons is 257 cm². The co	efficient
	of variation is						())	
	(a) 41.13%	(b)	42.13%		(C)	40.13%	(d) none	
7		form		optrol	tondor	au diana	rion and skowness	
(.	(a) Median				tenden	icy, disper	SIOH UHU SKEWHESS:	
	(a) Median		(D)	Decile				
	(C) Percentiles		(a)	Quart	lites			

J.K. SHAH C L A S S E S a Veranda Enterprise

	8.	Which of the followin	g companies	A or B is n	nore cons	sistent s	so far as th	e payment	
		of dividend is concerned?							
		Dividend paid by A : 5	5 9 6	12	15 10	0 8	10		
		Dividend paid by B : 4	87	15	18 9	6	6		
		(a) A	(b) B						
		(c) Both A & B	(d) N	leither A no	or B				
	9.	What is the coefficien	t of range for	the follow	ving distr	ibution	•		
		Class Interval	10-19	20-29	30	-39	40-49	50-59	
		Frequency	11	25	1	16	7	3	
		(a) 22 (b)	50	(c) 7	75.82	(d	l) 72.46		
	10.	A sample of 35 observed	rvations has	the mean	80 and S	.D. as 4	. A second	sample of	
		65 observations from	the same po	pulation h	as mean	70 and	S.D. 3. The	S.D. of the	
		combined sample is:							
		(a) 5.85 (b)	5.58	(c)	10.23	90	l) None of t	hese	
	11.	If x and y are related	as 3x - 4y =	20 and the	quartile	deviati	on of x is 1	2, then the	
		quartile deviation of	y is :	9 61	nte''				
		(a) 14 (b)	15	O (c)	16	(d	l) 9		
			V d(C						
	12.	The best measure of a	dispersion is :						
		(a) Q.D. (B)	M.D.	(c)	Range	(d	l) S.D.		
							v — a		
	13.	If the mean and S.D.	of x and a an	d b respect	ively, the	en the S	.D. of $\frac{h}{b}$	is :	
		(a) a/b (b)	-1	(c)	1	(c	l) ab		
	14.	Suppose a population	n A has 100 c	bservation	s 101, 10	02, 103,	200 ar	nd another	
		population B has 100	observation	s 151, 152,	153,	. 250. ľ	f V_{A} and V_{B}	represents	
		the variance of the tw	vo populatior	ns respectiv	ely, then	$\rm V_{_{A}}$ / $\rm V_{_{B}}$	=		
		(a) 9/4 (b)	1	(c)	4/9	(c	l) 2/3		
	15.	The mean and S.D. fo	r group of 10	0 observat	ons are 6	65 and 7	7.03 respec	tively. If 60	
		of these observations	have mean a	and S.D. as	70 and 3	8 respec	tively, what	is the S.D.	
		for the group compris	ing 40 observ	vations?					
		(a) 2.03 (b)	4.03	(c)	8.03	(d	l) 9.33		
- T	-								

J.K. SHAH [®]
CLASSES
a Veranda Enterprise

	16.	The	quartile d	eviation	for th	ne data is:				
			×	2		3	4	5	6	
			f	3		4	8	4	1	
		(a)	1/4	(b)	1/2		(c) 0.875	(d) 1		
	17.	If X	and Y are	two inde	pend	ent random v	variables then	v(x + y) is:		
		(a)	v(x) + v(y)		(b) v	(x) + v(y) - 2v(>	к, у)		
		(c)	v(x) + v(y) + 2v(x, j	y)	(d) v	(x) – v(y)			
								v	- 50	
	18.	Med	in and S.D	. of x is 5	0 and	d 5 respective	ely. Find mean	and S.D. of $\hat{-}$	5.	
		(a)	(1, 0)			(b) ((D, 1)			
		(c)	(1, 1)			(d) ((D, -1)			
								3		
	19.	Med	in and S.D	. of a giv	en se	t of observat	ions is 1,500 a	nd 400 respec	ctively. If there	
		is ar	n incremer	nt of 100	in the	e first year ar	nd each observ	ation is hiked	by 20% in 2nd	
		yeai	rs, then fin	id new m	iean d	and S.D.		9		
		(a)	1920, 48	0		(b) 1	920, 580	e		
		(c)	1600, 48	0		(d) 1	600, 400			
						19	Enteri			
	20.	If 5	is subtract	ed from	each	observation a	of some certain	item then its	co-efficient of	-
		vari	ation is 10	% and if	5 is a	idded to each	item then its o	coefficient of v	ariation is 6%.	•
		Find	l original c	oefficien	t of v	ariation.				
		(a)	8%			(b) 7	.5%			
		(c)	4%			(d) n	one of these			
	21.	Inte	r Quartile	Range is		of Quartile	e Deviation.			
		(a)	Half			(b) D	ouble			
		(c)	Triple			(d) E	qual			
	22.	The	sum of sq	uares of	devid	ition from me	ean of 10 obse	rvations is 250). Mean of the	
		dato	a is 10. Fín	a the co	-ettic	ient of variat				
_		(a)	10%			(b) 2	5%			
		(C)	50%			(d) 0	%			

23. If L_1 = highest observation and L2 = smallest observation, then Coefficient of Range (a) $\frac{L_1 \times L_2}{L_1 / L_2} \times 100$ (b) $\frac{L_1 - L_2}{L_1 + L_2} \times 100$ (c) $\frac{L_1 + L_2}{L_1 - L_2} \times 100$ (d) $\frac{L_1 / L_2}{L_1 \times L_2} \times 100$ 24. The equation of a line is 5x + 2y = 17. Mean deviation of y about mean is 5. Calculate mean deviation of x about mean

- (a) -2 (b) 2 (c) -4 (d) none
- 25. If variance of x is 5, then find the variance of (2 3x)

 (a) 10
 (b) 45
 (c) 5
 (d) -13
- 26. The variance of data : 3, 4, 5, 8 is

 (a) 4.5
 (b) 3.5

 (c) 5.5
 (d) 6.5
- 27. Given the observations: 4, 9, 11, 14, 37. The Mean deviation about the median is (a) 11 (b) 8.5 (c) 7.6 (d) 7.45
- 28. If all observations in a distribution are increased by 6, then the variance of the series will be _____.
 - (a) Increased(b) Decreased(c) Unchanged(d) None of these
- 29. The standard deviation of the weights (in kg) of the students of a class of 50 students
 was calculated to be 4.5 kg. Later on it was found that due to some fault in weighing
 machine, the weight of each student was under measured by 0.5 kg. The correct
 standard deviation of the weight will be:
 - (a) Less than 4.5
 (b) Greater than 4.5
 (c) Equal to 4.5
 (d) Can not be determined
- 30. For Normal distribution he relation between quartile deviation (Q.D.) and standard deviation (S.D.) is
 - (a)
 Q.D. > S.D.
 (b)
 Q.D. < S.D.</td>

 (c)
 Q.D. = S.D.
 (d)
 None of the above

	ASSES					CA FOUNDATIC	ON STATISTICS	
 31.	If standard devic	ution of first 'n	' natural	numb	ers is 2 tł	nen value of 'n'	' is	
 	(a) 10	(b) 7		(c)	6	(d) 5		
				. ,				
32.	The standard dev	viation is inde	pendent	of cha	nge of			
	(a) Scale		(b)	Origir	1			
	(c) Both origin	and scale	(d)	None	of these			
33	In a normal dist	ribution, the r	elations	hip bet	tween the	three most co	ommonly used	
	measures of disp	persion are:						
	(a) Standard D	eviation > Me	an Devia	tion >	Quartile [Deviation		
	(b) Mean Devia	tion > Standa	rd Devia	tion >	Quartile [Deviation		
	(c) Standard D	eviation > Qua	artile Dev	viation	> Mean [Deviation		
	(d) Quartile De	viation > Mea	n Deviati	ion > S	tandard [Deviation		
34.	If Standard devic	ation of x is σ ,	then Sta	ndard	deviation	of $\frac{ax + b}{c}$, when	re a, b and c (c	
	± 0) are arbitrary	y constants, w	vill be		a	9		
 	(a) σ	(b) <u>dort</u>	<u>,</u> <u> </u>	(c)	<u>-</u> .σ c	(d)		
				9	rerer v			
 35.	Which of the follo	owing measur	es of disp	persion	is used fo	or calculating t	he consistency	
	between two ser	ies?		0				
 	(a) Quartile de	viation		(b)	Standard	d deviation		
	(c) Coefficient o	or variation		(d)	None of	the above		
 26	If sum of square	s of the value	2200	n - 2	0 and sta	ndard doviatio	n = 7 find out	
50.	the mean		5 - 5590,	, 11 – 51			in – 7, ma out	
 	(a) 113	(b) 210	1	(c)	8	(d) None	of these	
	(0) 110	(0) 210		(0)	.			
 37.	If the mean of a	ı frequency di	stributio	n is 10)0 and co	efficient of va	riation is 45%	
	then standard de	eviation is:						
	(a) 45	(b) 0.45		(c)	4.5	(d) 450		
38.	Find at the varia	nce given that	t the Arit	hmetio	: Mean = ((8 + 4)/2		
	(a) 2	(b) 6		(c)	1	(d) 4		
39.	Coefficient of me	an deviation	about me	ean fo	r the first	9 natural num	bers is	
	(a) 200/9	(b) 80		(c)	400/9	(d) 50		

J.K. SHAH CLASSES a Veranda Enterprise

40.	lf m	ean = 5, Stanc	lard o	deviation = 2.6, m	ediar	n = 5 and qua	rtile deviation = 1.5, then
	the	coefficient of o	quart	ile deviation equa	als		
	(a)	35	(b)	39	(c)	30	(d) 32
41.	Who	at will be the ן	orobo	able value of mea	n dev	viation? Whe	$n Q_3 = 40 and Q_1 = 15.$
	(a)	17.50	(b)	18.75	(c)	15.00	(d) None of the above
42.	The	formula for ro	ange	of middle 50% ite	ms o	f a series is:	
	(a)	Q ₃ - Q ₁	(b)	Q ₃ - Q ₂	(c)	Q ₂ - Q ₁	(d) $\frac{Q_3 - Q_1}{2}$
							2
43.	lf tł	ne first quartil	e is	142 and semi-int	er qu	ıartile range	is 18, then the value of
	med	dian is:					
	(a)	151	(b)	160	(c)	178 🕟	(d) None of these
44.	The	quartile devic	ition	is:			/
	(a)	2/3 of S.D.					2
	(b)	4/5 of S.D.		6		E	
	(c)	5/6 of S.D.			9	2 rolls	
	(d)	None of thes	e	/9	51	nterr	
					3	-	
45.	The	standard devi	atior	n of a variable x is	knov	vn to be 10.	The standard deviation of
	50 ·	+ 5x is	\mathcal{O}	210.			
	(a)	50	(b)	100	(c)	10	(d) 500
46.	Coe	fficient f quart	ile d	eviation is equal t	0		
	(a)	Quartile devi	iatior	n × 100/median			
	(b)	Quartile devi	atior	n × 100/mean			
	(c)	Quartile devi	iatior	n × 100/mode			
	(d)	none					
47.	lf al	l the observat	ions	are increased by !	5, the	n	
	(a)	S.D. would b	e inci	reased by 5			
	(b)	Mean deviati	on w	ould be increased	by 5		
	(c)	Quartile devi	atior	n would be increas	sed b	y 5	
	(d)	All the three	wou	ld not be increase	d by	5	

J.K. SHAH C L A S S E S a Veranda Enterprise

48.	Who	It is value of	mear	n deviation about r	near	from the n	umber 5, 8, 6, 3 and 4?	
	(a)	5.20	(b)	7.20	(c)	1.44	(d) 2.23	
49.	For	the observati	on of	6, 4, 1, 6, 5, 10, 4	, 8 tł	ne range is:		
	(a)	10	(b)	9	(c)	8	(d) None	
50.	lf a s	variance of a	rand	om variable 'x' is 2	23, tł	nen what is	variance of y= 2x + 10?	
	(a)	56	(b)	33	(c)	46	(d) 92	
51.	lf va	riance = 148.	6 and	d \bar{x} , =40 then the c	oeffi	cient of vari	ation is:	
	(a)	37.15						
	(b)	30.48						
	(c)	33.75				B		
	(d)	None of the o	lbove					
							2	
52.	The	SD of first n r	natur	al number is			2	
		2		6		V.c	0	
	(a)	$\sqrt{\frac{n^2 - 1}{12}}$			9	s tolla		
				0/9	5	iteri		
	(b)	$\sqrt{\frac{n(n+1)}{12}}$		0	3			
		$\frac{1}{n(n-1)}$	4					
	(c)	$\sqrt{\frac{11(11-1)}{6}}$		3				
	(d)	None of the	se					
53.	lf m	ean and coe	fficie	nt of variation of	the	marks of 1	10 students is 20 and 80	
	resp	ectively. Wha	t will	be variance of the	em?			
	(a)	256	(b)	16	(c)	25	(d) None of these	
54.	lf sa	me amount is	s add	ed to or subtracted	d froi	n all the va	lues of an individual series	
	ther	the standard	d dev	iation and varianc	e bo	h shall be _		
	(a)	changed						
	(b)	unchanged						
	(c)	same						
	(d)	none of thes	e					

J.K. SHAH C L A S S E S a Veranda Enterprise

55.	lf ar	ithmetic mea	in and	d coefficient	of variation	n of x ar	e 10 and 40, resp	ectively then	
	the	variance of y	= -1!	5 + $\frac{3x}{2}$ will b	be:				
	(a)	64	(b)	81 2	(c)	49	(d) 36		
56.	Mea	n deviation is	s the	least when c	leviations a	are takei	n from		
	(a)	Mean	(b)	Median	(c)	Mode	(d) Harmor	nic mean	
	(0	- 0.)							
57.	$-(Q_3)$	$\frac{Q_1}{Q_1}$ is know	vn as						
	(a)	Coefficient o	of Ran	ige					
	(b)	Coefficient o	of Q.D	•					
	(c)	Coefficient o	of S.D.						
	(d)	Coefficient o	of M.D).			®		
58.	lf th	e S.D. of the	1st n	natural nos.	is √ <u>30</u> . The	en the vo	alue of n is		
	(a)	19	(b)	20	(c)	21	🥑 (d) None		
59.	lf th	e range of a	ı set o	of values 65	and maxi	mum va	lue in the set is	83, then the	
	mini	imum value i	n the	set is	9 61	ite.			
	(a)	74	(b)	9	0 (c)	18	(d) None of	the above	
			4	V,00					
60.	lf th	e variance of	5,7,	9 and 11 is	4, then the	coefficie	ent of variation is	•	
	(a)	15	(b)	25	(c)	17	(d) 19		
61.	Star	ndard Deviation	onfor	the marks ob	otained by c	a student	t in monthly test in	mathematic	
	(out	of 50) as 30	, 35, 2	25, 20, 15 is					
	(a)	25	(b)	√50	(c)	√30	(d) 50		
62.	If th	e standard d	eviati	on for the m	arks obtair	ned by a	student in month	ily test is 36,	
	ther	the variance	eis	(1) 0 4			())		
	(a) (6		(b) 36	(C)	1296	(d) None of	the above	

ANSWER

				·		,		7
1	α	21	b	41	с	61	b	
2	d	22	с	42	α	62	с	
3	с	23	b	43	b			
4	с	24	b	44	α]
5	b	25	b	45	α			
6	α	26	b	46	α			
7	d	27	с	47	d			
8	α	28	С	48	С			
9	d	29	С	49	b			
10	α	30	b	50	d			
11	d	31	b	51	b			
12	d	32	b	52	α			
13	С	33	α	53	α			
14	b	34	d	54	b			
15	b	35	С	55	d			
16	d	36	С	56	b			
17	α	37	α	57	b			
18	b	38	d	58	α			
19	α	39	С	59	С]
20	b	40	С	60	b]
		0	Agr.					-

HOMEWORK SOLUTION

1.	(a)	Correct $\sum x = (100 * 40) - 50 + 40 = 3990$
		Correct $\sum x^2 = 100[(5.1)^2 + (40)^2] - 50^2 + 40^2 = 161701$
		Correct SD ² = 161701/100 - (3990/100) ² = 25
		Correct SD = 5
2.	(d)	For a moderately skewed distribution: SD = 1.5 times the QD.
3.	(c)	Combined Mean = (30*55 + 20*60)/(30+20) = 57
		D1 = 55 - 57 = -2
		D2 = 60 - 57 = 3
		Combined $SD^2 = [30(16 + 4) + 20(25 + 9)]/50 = 1280/50 = 25.6$
		Combined SD = $\sqrt{25.6} = 5.06$
4.	(c)	Mean(y) = [7 - 2(1)]/3 = 5/3
		MD (y) = $2(0.3)/3 = 0.2$
		Coefficient of MD (y) = 0.2 / 5/3 = 0.6/5 = 0.12 * 100 = 12
5.	(b)	Measures of dispersion are known as averages of the second order.
6.	(a)	Mean = 4 - 11/100 = 3.89
		$\sum x^2 = 257 + 8(389) - 16(100) = 1769$
		$SD^2 = 1769/100 - (3.89)^2 = 2.5579$
		SD = 1.60
		Coefficient of variation = 1.60/3.89 * 100 = 41.13%
 7.	(d)	Quartiles are used for measuring central tendency, dispersion and skewness.

8.	(a)	Company A:
	Mec	ın = (5+9+6+12+15+10+8+10)/8 = 9.375
	$\sum X^2$	= 25+81+36+144+225+100+64+100 = 775
	SD ²	$= 775/8 - (9.375)^2 = 8.984375$
	SD =	= 3
	COV	<i>'</i> = 3/9.375 * 100 = 32%.
	Com	ipany B:
	Mec	ın = (4+8+7+15+18+9+6+6)/8 = 9.125
	$\sum \mathbf{X}^2$	= 16+64+49+225+324+81+36+36 = 831
	SD ²	= 831/8 - (9.125)2 = 20.609375
	SD =	= 4.54
	COV	' = 4.54/9.125 * 100 = 49.75%
	Com	npany A is more consistent. [As COV(A) < COV(B)]
9.	(d)	Highest Mark = 59.5
		Lowest Mark = 9.5
		Coefficient of Range = (H - L)/(H + L) * 100 = (59.5 - 9.5)/(59.5 + 9.5) * 100 =
		50/69 = 72.46
		SEnteri
10.	(a)	Combined Mean = (35*80 + 65*70)/(35+65) = 73.50
		D1 = 80 - 73.50 = 6.50
		D2 = 70 - 73.50 = -3.50
		Combined SD2 = [35(16 + 42.25) + 65(9 + 12.25)]/100 = (2038.75+1381.25)/100
		= 34.20
		Combined SD = $\sqrt{34.20}$ = 5.85
11.	(d)	QD(y) = 3(12)/4 = 9,
12.	(d)	The best measure of dispersion is Standard Deviation.
1.0		
13.	(C)	$Y = (X - \alpha)/b$
		D.SD(Y) = SD(X) = D
		SU(Y) = D/D = 1

47	orania	
14.	(b)	A = B - 50
		V(A) = V(B)
		V(A) / V(B) = 1
15.	(b)	65*100 = (60 * 70) + (40 * X)
		6500 = 4200 + 40X
		X (Mean of the second group) = 57.5
		D1 = 70 - 65 = 5
		D2 = 57.5 - 65 = - 7.5
		$100(7.03)^2 = 60(9 + 25) + 40(S^2 + 56.25)$
		$(4942.09 - 2040)/40 - 56.25 = S^2 = 16.30225$
		S = 4.03
		®
16.	(d)	$QD = \frac{Q_3 - Q_1}{2}$
		On solving we get , $Q_1 = 3$ and $Q_3 = 5$
		$QD = \frac{5-3}{2}$
		2
		= 1 Senter
		dd -
17.	(a)	V(X + Y) = V(X) + V(Y)
18.	(b)	Y = (x - 50)/5
		5Y = x - 50
		5 SD(Y) = SD(x) = 5
		SD(Y) = 5/5 = 1
		Mean(Y) = (50 - 50)/5 = 0
19.	(a)	Y = 1.2(X + 100) = 1.2X + 120
 		Mean(Y) = 1.2(1500) + 120 = 1920
		SD(Y) = 1.2 SD(X) = 1.2 * 400 = 480

20	(b)	V = X - 5
 20.		$10 = 5 / (x^2 - 5) * 100$
		x' - 5 = 105
 		7 = X + 5
 		6 = S/(X' + 5) * 100
 		6X' + 30 = 100S
 		10X' - 50 = 100S
		4X' = 80
		Mean(X) = 20
		SD(X) = 1.5
		Original COV = 1.5/20 * 100 = 7.5%
 		•
 21.	(b)	Inter-Quartile Range is Double of Quartile Deviation.
22.	(c)	SD ² = 250/10 = 25; SD = 5
		COV = 5/10 * 100 = 50%
23.	(b)	Coefficient of Range = (L1 - L2)/(L1 + L2) * 100.
		Senteri
24.	(b)	5 MD(x) = 2 MD(y) = 2*5 = 10
		MD(x) = 10/5 = 2.
 25.	(b)	Vx = 5
		Vy= ?
		Y = 2 - 3x
 		$Vy = b^2 \times Vx$
 		$= (-3)^2 \times 5$
		= 9 × 5
		= 45
	(1.)	
 26.	(b)	Mean = (3 + 4 + 5 + 8) = 20/4 = 5
 		SDZ = (4 + 1 + 0 + 9)/4 = 14/4 = 3.5
_		

u ,	Clanac	
27.	(c)	Median for the data 4,9,11,14,37
		Median 4, 9, 11, 14, 37
		M = 11
		\checkmark
		MD from M = $\frac{\Sigma x - M }{ x - M }$
		n
		$=\frac{38}{5}$
		5
		= 7.6
28.	(c)	Variance of the series is independent of change of the origin.
29.	(c)	SD is independent of the change of origin. No change in the SD. SD = 4.5.
30.	(b)	SD > QD. Or, QD < SD.
		2/9
31.	(b)	$S^2 = (n^2 - 1)/12$
		$4*12 + 1 = n^2 = 49$
		n = 7 Senter
32.	(b)	SD is independent of the change of Origin.
33.	(a)	In normal distribution SD > MD > QD.
34.	(d)	y = (ax+b)/c
	y = 0	a/c x + b/c
	σy=	lbl σx
	σy=	<u>α</u> σx
	σy=	$\frac{a}{c}\sigma$
35.	(c)	Standard deviation is used to measure the consistency between two series
		using Coefficient of variation.
36.	(c)	Mean ² = 3390/30 - SD ² = 113 - 49 = 64
		Mean = 8.

37.	(a)	0.45 = SD/100
		SD = 45
38.	(d)	$\bar{x} = \frac{8+4}{2} = (8+4)/2$ (given)
		∴ The two numbers are 8 and 4
		$\sigma = \frac{\kappa ange}{2} = \frac{8-4}{2} = \frac{4}{2} = 2$
		Variance = σ^2 = 4
		$\sum w = \overline{w} $
39.	(c)	Coefficient MD = $\frac{2 x-x }{n}/\bar{x} \times 100$
		$\bar{x} = \frac{n+1}{2} = \frac{9+1}{2} = 5$ (Mean for n natural no's)
		$\Sigma(x-\bar{x}) = 20$
		Coefficient of MD = $\frac{9}{5} \times 100$
		5
		Coefficient of MD = $\frac{400}{9}$
		595 rprise
40.	(c)	Coefficient of QD = QD/Median * 100 = 1.5/5 * 100 = 30
		dd -
41.	(c)	QD = (40 - 15)/2 = 12.5
		MD = (12.5)*6/5 = 15
42.	(a)	Range of middle 50% of items = $Q_3 - Q_1$ and it is called inter quartile range.
		Whereas $\frac{q_3 - q_1}{2}$ is called semi inter quartile range which is quartile deviation
43.	(b)	18 = (Q3 - 142)/2
		Q3 = 178
		Q2 = (178 + 142)/2 = 160
44.	(a)	The QD = 2/3 SD.
45.	(a)	SD(50 + 5x) = 5.SD(x) = 5*10 = 50.
46.	(a)	Coefficient of QD = QD/Median * 100.

J.K. SHAH C L A S S E S a Veranda Enterprise

47.	(d)	If all the observations are increased by 5, there is no change in any measure of
		dispersion, as all measures of dispersion are independent of change of origin.
48.	(c)	Mean = (5+8+6+3+4)/5 = 26/5 = 5.2
		x - Mean = 0.2 + 2.8 + 0.8 + 2.2 + 1.2 = 7.2
		MD = 7.2/5 = 1.44.
49.	(b)	Range = 10 - 1 = 9.
50.	(d)	V(2x + 10) = 4*V(x) = 4*23 = 92.
51.	(b)	Variance = 148.6, SD = 12.2
		Coefficient of variation = 12.2/40 * 100 = 30.48 ©
52.	(a)	$SD^2 = (n^2 - 1)/12$
 53.	(a)	80/100 = SD/20; SD = 16; Variance = 16 ² = 256.
 		Serpris
54.	(b)	Both SD and variance remain unchanged.
		da
55.	(d)	40/100 = SD/10; SD = 4; Variance = 16
		V(-15 + 3x/2) = 9/4 * V(x) = 9/4 * 16 = 36
 56.	(b)	Mead deviation is least when deviations are taken from Median.
 		$a_{2} = 0_{1}$
57.	(b)	Coefficient of QD = $\frac{c_3 - c_1}{Q_3 + Q_1}$
50	()	20 / 2 4)/42
58.	(a)	30 = (n2 - 1)/12
		$n^2 = 30^{\circ}12 + 1 = 361; n = \sqrt{361} = 19.$
 50	(c)	CE = 82 Minimum value
59.	(C)	
 		Minimum Vulue - 05 - 05 - 10.
 60	(b)	$M_{0} = (5 + 7 + 9 + 11)/4 = 32/4 - 9$
 00.	(0)	$SD = \sqrt{h} = 2$
		$SU = \sqrt{4} = 2$ COV = 2/8 * 100 = 25%
 		COV = 2/0 100 = 2370

	SHAH S S E S Enterprise
 61. (b)	Mean = $(30 + 35 + 25 + 20 + 15)/5 = 25$
	$SD^{2} = [(30 - 25)^{2} + (35 - 25)^{2} + (25 - 25)^{2} + (20 - 25)^{2} + (15 - 25)^{2}] / 5$
	= (25 + 100 + 0 + 25 + 100) / 5 = 50
 	$SD = \sqrt{50}$.
62. (c)	Variance = 36 ² = 1296.
	8
	ise
 	erpins
 	Ente
	- Andu
	- Vera

SELF /	ASSESSMENT	TEST 3
	30 Marks	

	1.	What does measure of dispersion indicate:						
		α)	Correlation between data	b)	Regression between variables			
		c)	Variability of data	d)	Central tendency of data			
	2.	Sto	andard deviation of two numbers A ar	id B i	s:			
		α)	A – B	b)	(A – B)/2			
		c)	A – B / 2	d)	(A – B)			
	3.	As	shift of origin has no impact on:		3			
		α)	Range	b)	Quartile Deviation			
		c)	Mean Deviation	d)	All of the above			
					29			
	4.	Wł	nich measures of dispersion is not affe	cted	by the presence of extreme values?			
		α)	Standard Deviation	b)	Range			
		c)	Mean Deviation	d)	Semi-Inter Quartile Range			
				3 -				
	5.	Wł	nich empirical relation is CORRECT?					
		α)	MD = 8 SD	b)	8 MD = SD			
		c)	MD = 0.8 SD	d)	MD = 1.25 SD			
	6.	We	e shall compute the following to study	the	deviations of middle 40% portion of a			
		ser	ries:					
		α)	$Q_2 - Q_1$	b)	$Q_3 - Q_1$			
		c)	$P_{70} - P_{30}$	d)	$D_6 - D_2$			
	7.	Wł	nich measure of dispersion is useful in	oper	i-end classes?			
		α)	Range	b)	Mean Deviation			
		c)	Standard Deviation	d)	Semi-Inter Quartile Range			
	8.	Th	e square of the standard deviation is k	know	n as:			
		α)	Variation	b)	Coefficient of Variation			
		c)	Coefficient of Standard Deviation	d)	None of the above			
1								

J.K. SHAH CLASSES a Veranda Enterprise

9.	What empirical relation would you expect to exist between the semi-inter quartile						
	range and the mean deviation for bell shaped distribution which are moderately						
	skewed?						
	α)	Semi IQR = 5/6 * MD	b)	Semi IQR = 6/5 * MD			
	c)	5/6 * Semi IQR = MD	d)	None of the above			
10.	lf t	he profits of a firm remain the same	for th	ne last 10 months, then the standard			
	dev	viation of profits for these 10 months	woul	d be?			
	α)	Positive	b)	Zero			
	c)	Negative	d)	Can't be determined			
11.	The	e range find its wide application in:					
	α)	Econometrics	b)	Quantum Statistics			
	c)	Statistical Quality Control	d)	Psychoroetrics			
12.	Wŀ	ich measure of dispersion is based on	the o	absolute deviations only?			
	α)	Standard Deviation	b)	Range			
	c)	Quartile Deviation	d)	Mean Deviation			
		/9	5	ntern			
13.	Wh	ich measure of dispersion is conside	red	for computing a pooled measure of			
	dis	persion after combining several group	s?				
	α)	Mean Deviation & Standard Deviation	۱				
	b)	Mean Deviation					
	c)	Standard Deviation					
	d)	Range					
14.	То	compare the variability between two	o ser	ies which also differ on their unit of			
	me	asurements, the measure usually use	d is:				
	α)	Standard Deviation	b)	Mean Absolute Deviation			
	c)	Coefficient of Variation	d)	Inter-Quartile Range			
15.	Fin	d the standard deviation of 4, 8, 10, 1	2, 16	5.			
	a)	2 b) 4	c) 8	d) None of the above			

J.K. SHAH

CA FOUNDATION STATISTICS

al	/@randa Enterprise			
16.	Calculate the variance	e of 1, 5, 6.		
	a) 2.16	b) 4.67	c) 6.47	d) 5.47
17.	Find the Mean-Deviat	ion about the Aritl	nmetic Mean of the	e numbers 31, 35, 29, 63,
	55, 72, 37.			
	a) 12.86	b) 14.86	c) 13.78	d) 13.86
18.	Find the coefficient of	mean deviation of	f the following nun	nbers: 46, 79, 26, 85, 39,
	65, 99, 29, 56, 72.			
	a) 33.27%	b) 34.87%	c) 34.23%	d) 32.43%
19.	The arithmetic mean	is 25 and standa	rd deviation is 6.2	5. Find the coefficient of
	variation.		®	
	a) 20	b) 25	c) 30	d) 50
20.	The mean and SD of 2	20 items were four	nd to be 12 and 6	respectively. On checking
	it was dis-covered the	at items which sho	ould correctly read	l as 11 and 21 had been
	wrongly taken as 15 a	and 27 respectively	. Find the correct S	5D.
	a) 3.5	b) 4.3	c) 5.3	d) 4.5
			0	
21.	Find mean, if co-effici	ent of variation is	5% and variance is	s 4.
	a) 30	b) 40	c) 45	d) None of the above
22.	The mean of 5 obser	vations is 4.4 and	d the variance is 8	8.24. If three of the five
	observations are 1, 2	and 6, find the oth	ner two.	
	a) 4, 8	b) 9, 4	c) 8, 6	d) 9, 5
23.	If in the distribution, r	$n = 10, \Sigma x = 20, \Sigma x$	x^2 = 200, then find	the value of SD.
	a) 2	b) 4	c) 3.5	d) 4.5
24.	The two variables X a	nd Y are related by	y Y = 10 - 3X. If the	e SD of X is 4, what is the
	SD of Y.			
	a) 2	b) 12	c) – 2	d) None of the above

J.K. SHAH[®] C L A S S E S a Veranda Enterprise

CA FOUNDATION STATISTICS

25.	Find the Quartile Devi	ation of the follow	ing data: 12, 10, 1	7, 14, 19, 21, 27, 30, 32,
	28, 34.			
	α) 8	b) 3.8	c) 8.3	d) 9
26.	The standard deviation	n of 10, 16, 10, 16	, 10, 10, 16, 16 is:	
	a) 6	b) 4	c) 3	d) 9
27.	The maximum and mi	nimum values of	a series are 60 and	d 0 respectively. What is
	the coeffi-cient of ran	ge?		
	a) 1	b) – 1	c) 0	d) None of the above
28.	Find the first quartile,	if coefficient of quo	rtile deviation = 0.	37 and the third quartile
	is 46.25.		R	
	a) 46.62	b) 21.26	c) 21.07	d) 27.08
				·
29.	The mean of 200 item	ns is 48 and stand	ard deviation is 3.	What is the sum of the
	squares of these items	s?		
	a) 462600	b) 400000	c) 460000	d) None of the above
		/9	Enteri	
30.	The means of two san	nples of sizes 50 a	nd 100 respectivel	y are 54.4 and 50.3 and
	the standard deviation	n is 8 and 7. Obtain	n the standard dev	iation of the sample size
	150 obtained by comb	ining the two sam	ples.	
	a) 5.79	b) 6.79	c) 7.59	d) 7.37
		150		
		100		

And the second

EXPLANATORY ANSWERS

1.	Measures of dispersion indicate the variability of data. Option C
2.	SD of two numbers is average if their absolute range = $\frac{1}{2}$ A – B . Option C
3.	All measures of dispersion are independent of change/shift of origin. Option D
4.	Quartile deviation or Semi-Inter Quartile Range is not affected by the presence of
	extreme val-ues. Option D
5.	Mean Deviation = 80% of Standard Deviation. Option
6.	Middle 40% means to the left and right, we need to leave 60% data, 30% on both
	sides. Thus middle 40% is correctly represented by $P_{70} - P_{30}$. Option C
7.	Quartile deviation best fits in case of open end classes. Option D
	SEnteri
8.	Square of SD = Variance. Option D
	L'aconte
9.	Quartile Deviation = 5/6 Mean Deviation. Option A
10.	If all values are same, SD = 0. Option B
11.	Range is widely used in statistical quality control measures. Option C
12.	Mean deviation is based on absolute deviations. Option D
13.	Standard deviation is used to measure pooled measure of dispersion. Option C
14.	With different units of measurements, co-efficient of variation is the best relative
	measure of dispersion. Option C

T 1	
	A S S E S CA FOUNDATION STATISTICS
al	/dranda Enterprise
15.	Mean = (4 + 8 + 10 + 12 + 16)/5 = 50/5 = 10
	$SD^2 = [(4-10)^2 + (8-10)^2 + (10-10)^2 + (12-10)^2 + (16-10)^2]/5 = (36+4+0+4+36)/5 = 16$
	SD = 4. Option B
16.	Mean = (1 + 5 + 6)/3 = 12/3 = 4
	Variance= [(1-4) ² + (5-4) ² + (6-4) ²]/3 = (9 + 1 + 4)/3 = 14/3 = 4.67. Option B
17.	AM = (31+35+29+63+55+72+37)/7 = 46
	MD = (15 + 11 + 17 + 17 + 9 + 26 + 9)/7 = 104/7 = 14.86. Option B
18.	AM = (46+79+26+85+39+65+99+29+56+72)/10 = 59.6
	MD = (13.6+19.4+33.6+25.4+20.6+5.4+39.4+30.6+3.6+12.4)/10 = 204/10 = 20.4
	Coefficient of MD = 20.4/59.6 * 100 = 34.23% Option C
19.	COV = 6.25/25 * 100 = 25. Option B
20.	∑X = 12*20 = 240
	Correct ∑X = 240 - 15 - 27 + 11 + 21 = 230
	$\Sigma X^2 = 20 [36 + 144] = 3600$
	Correct $\sum X^2 = 3600 - 15^2 - 27^2 + 11^2 + 21^2 = 3600 - 225 - 729 + 121 + 441 = 3208$
	Correct $SD^2 = 3208/20 - (230/20)^2 = 160.4 - 132.25 = 28.15$
	$SD = \sqrt{28.15} = 5.3$. Option C
	O
21.	5/100 = 2/Mean. Mean = 200/5 = 40. Option B
	-
 22.	Mean = 4.4 * 5 = 22
	Sum of remaining two numbers = 22 - 1 - 2 - 6 = 13. Only option fits in is Option B
23.	SD2 = 200/10 - (20/10)2 = 20 - 4 = 16. SD = 4. Option B
24.	SD(y) = 3.SD(x) = 3*4 = 12. Option B
 25.	After arrangement: 10, 12, 14, 17, 19, 21, 27, 28, 30, 32, 34
	$Q3 = \frac{3}{(11+1)} = 9^{\text{th}}$ item = 30
	$Q1 = \frac{1}{4}(11+1) = 3^{rd}$ item = 14
	QD = (Q3 - Q1)/2 = (30 - 14)/2 = 16/2 = 8. Option A

11	
	ASSES CA FOUNDATION STATISTICS
 al	dranda Enterprise
26.	$SD = \frac{1}{2} 16 - 10 = \frac{6}{2} = 3$. Option C
27.	Coefficient of Range = (H – L)/(H + L) = (60 – 0)/(60 + 0) = 1. Option A
28.	0.37 = (46.25 - Q1)/(46.25 + Q1)
	17.1125 + 0.37Q1 = 46.25 - Q1
	1.37Q1 = 29.1375
	Q1 = 29.1375/1.37 = 21.26. Option B
29.	Sum of squares = 200[9 + 482) = 462600
	Option A
30.	Combined Mean = (50*54.4 + 100*50.3)/150 = 51.7 🛞
	D1 = 54.4 - 51.7 = 2.7, D2 = 50.3 - 51.7 = - 1.4
	Combined SD2 = $[50(82 + 2.72) + 100(72 + 1.42)]/150 = 57.737$
	Combined SD = (57.737)1/2 = 7.59
	Option C
	Sintisc
	Schterp
	Ad En
	C Ver