\rightarrow If a quantity increases or decreases in the ratio a:b then

new quantity
$$= \frac{b}{a} \times$$
 original quantity

The fraction by which the original quantity is multiplied to get a new quantity is called the **factor multiplying ratio**.

> Inverse Ratio: One ratio is the inverse of another if their product is 1. Thus b: a is the inverse of a: b and vice-versa.

- > The ratio **compounded** of the two ratios a : b and c : d is ac : bd.
- > Compounding two or more ratios means multiplying them.

 π

> A ratio compounded of itself is called its duplicate ratio.

 $a^{2}:b^{2}$

is the duplicate ratio of a:b

 $a^{3}:b^{3}$

is the **triplicate ratio** of a:b

 \mathcal{T}

is the **sub-duplicate ratio** of a:b

$$\sqrt[3]{a}:\sqrt[3]{b}$$

is the **sub-triplicate ratio** of a:b

- > Continued Ratio: is the relation or comparison between the magnitudes of three or more quantities of same kind.
- > The continued ratio of three similar quantities a, b, c can be written as **a:b:c**

> Cross Product Rule: If a : b = c : d are in proportion then ad = bc

Product of extremes = Product of means

> Continuous Proportion: Three quantities a, b, c of the same kind (in same units) are said to be in continuous proportion if a:b = b:c

$$\frac{a}{b} = \frac{b}{c}$$

$$b^2 = ac$$

here, a = first proportional, c = third proportional and b is mean proportional (because b is GM of a and c)

> Invertendo

If a : b = c : d, then

$$b:a=d:c$$

> Alternendo

If
$$a : b = c : d$$
, then

$$a:c=b:d$$

 $\mathcal{\Pi}$

> Componendo

If
$$a:b=c:d$$
, then

$$a+b:b=c+d:d$$

 $\mathcal{\Pi}$

> Dividendo

If a : b = c : d, then

$$a-b:b=c-d:d$$

> Componendo and Dividendo

If a : b = c : d, then

$$\frac{a+b}{a-b} = \frac{c+d}{c-d}$$

$$\frac{a-b}{a+b} = \frac{c-d}{c+d}$$

 \mathcal{T}

> Addendo

$$If a:b = c:d = e:f = ... = k$$

then
$$\frac{u}{1}$$

$$\frac{a+c+e+\dots}{b+d+f+\dots} = k$$

 \mathcal{T}

> Subtrahendo

$$If a:b = c:d = e:f = ... = k$$

then
$$\frac{a-c-e+...}{b-d-f+...}=k$$

Indices - Standard Results

> Any base raised to the power zero is defined to be 1

$$a^{0} = 1$$

> Roots can also be expressed in the form of power.

$$\sqrt[r]{a} = a^{\frac{1}{r}}$$

Law 1

 \mathcal{T}

$$a^m \times a^n = a^{m+n}$$

> If two or more terms with same base are multiplied, we can make them one term having the same base and power as sum of all powers.

 \mathcal{T}

$$\frac{a^m}{a^n} = a^{m-n}$$

> If two or more terms with same base are in division, we can make them one term having the same base and power as difference of power. Law 3

 π

$$\left(a^{m}\right)^{n}=a^{m\times n}$$

> If a term having power is raised to another power, we can do product of powers to simplify the expression

Law 4

 \mathcal{T}

$$(a \times b)^n = a^n \times b^n$$

> If a product of two or more terms is raised to power, we can split the two terms with same individual power to each one of them.

Calculator Trick for Power

 \mathcal{T}

Calculator Trick for Reciprocal

 π

Calculator Trick for any root

 \mathcal{T}

Calculator Trick for any power (including non integer)

Log Conditions

> The logarithm of a number to a given base is the **index or the power** to which the **base must be raised** to **produce** the **number**, i.e. to make it equal to the given number.

$$3^4 = 81 \log_3 81 = 4$$

$$\Rightarrow If \quad a^x = n \quad then \quad \log_a n = x$$

- > Conditions:
 - Number should be positive
 - Base should be positive
 - Base cannot be equal to one

$$n > 0, a > 0, a \neq 1$$

$\mathcal{\Pi}$

Standard Results of Log

> Log of a number with same base as number is equal to 1

$$\log_a a = 1$$

> Log of 1 (one) for any base is equal to zero

$$\log_a 1 = 0$$

Law 1

Logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers to the same base

$$\log_a mn = \log_a m + \log_a n$$

Law 2

 \mathcal{T}

> The logarithm of the quotient of two numbers is equal to the difference of their logarithms to the same base

$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

 π

Law 3

Logarithm of the number raised to the power is equal to the index of the power multiplied by the logarithm of the number to the same base.

$$\log_a m^n = n \log_a m$$

Change of Base Theorem

 \mathcal{T}

> If the logarithm of a number to any base is given, then the logarithm of the same number to any other base can be determined from the following relation

$$\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$$

Base of Log

> Common Log's Base

> Natural Log's Base

e

\mathcal{H}

Quadratic Equation

- > Equation having degree = 2 is called as Quadratic Equation
- ightarrow QE will have two roots/ solutions usually denoted by lpha,eta
- > Equation Format

$$ax^2 + bx + c = 0$$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

Solution of Quadratic Equation

 \mathcal{T}

$$ax^2 + bx + c = 0$$

> Formula to calculate roots:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a is coefficient of x^2 b is coefficient of xc is constant $a \neq 0$

 \mathcal{T}

$$ax^2 + bx + c = 0$$

> Sum of roots

$$\alpha + \beta = -\frac{b}{a}$$

 $\Rightarrow \textit{Product of roots} \quad \alpha\beta = \frac{c}{a}$

π

> Construction of Quadratic Equation

If sum of roots and product of roots are given, equation can be constructed in the below manner:

$$x^2 - (\alpha + \beta)x + \alpha\beta = 0$$

> Concept of discriminant - to get nature of roots

Discriminant of QE is the mathematical expression which is used to understand nature of roots of QE, it is expressed as below:

$$b^2-4ac$$

Condition	Nature of Roots
$b^2 - 4ac = 0$	Real and Equal
$b^2 - 4ac < 0$	Imaginary
$b^2 - 4ac > 0$	Real and Unequal
$b^2 - 4ac > 0$ and a perfect square	Real, Unequal and Rational
$b^2 - 4ac > 0$ & not a perfect square	Real, Unequal and Irrational

 \mathcal{T}

Conjugate Pairs

- If one root of the equation is

$$m + \sqrt{n}$$

- The other one is surely

$$m-\sqrt{n}$$

- This pair is called as conjugate pairs

π

Simple Equation

- > Equation of one degree and having one unknown variable is simple.
- > A simple equation has only one root.
- > Form of Equation:

$$ax + b = 0$$

where, a is coefficient of x b is constant $a \neq 0$

> Solution Method - Direct basic algebra

Simultaneous Linear Equations (two unknowns)

- > Here we always deal with two equations as it consist of 2 unknowns
- > Form:

$$a_1 x + b_1 y + c_1 = 0$$
$$a_2 x + b_2 y + c_2 = 0$$

$$a_2 x + b_2 y + c_2 = 0$$

where. a is coefficient of x b is coefficient of y c is constant $a \neq 0$

π

Methods of Solution Simultaneous Linear Equations

- > Elimination Method: In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.
- > **Substitution Method:** equation is written in the form of one variable in LHS and that value is substituted in other equation.
- > Cross Multiplication Method: Formula based method

$$a_1 x + b_1 y + c_1 = 0$$

$$a_2 x + b_2 y + c_2 = 0$$

$$\frac{x}{b_1 c_2 - b_2 c_1} = \frac{y}{c_1 a_2 - c_2 a_1} = \frac{1}{a_1 b_2 - a_2 b_1}$$

Cubic Equation

 \mathcal{T} T.

> Form:

$$ax^3 + bx^2 + cx + d = 0$$

where, a is coefficient of x^3 b is coefficient of x^2 c is coefficient of x^3 d is constant $a \neq 0$

> Method of solution: Trial and Error

Addition/Subtraction of Matrices

- > Property

- Commutative Law:
$$A + B = B + A$$

– Associative Law:
$$(A+B)+C=A+(B+C)$$

- Distributive Law:
$$k(A+B)=kA+kB$$

Multiplication of Matrices

 \mathcal{T}

> Condition

- The product A x B of two matrices A and B is defined only if the number of columns in Matrix A is equal to the number of rows in Matrix B.

$$A_{m \times n} \times B_{n \times p} = AB_{m \times p}$$

Determinant – 2x2

> If a square matrix of order 2 x 2 is given

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \qquad \det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$\det A = a_{11} \times a_{22} - a_{12} \times a_{21}$$

Determinant - 3x3

> If a square matrix of order 3 x 3 is given

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\det A = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

Minors and Cofactors

> Minor of the element of a determinant is the determinant of M_{ij} by deleting i^{th} row and j^{th} column in which element is existing.

$$C_{ij} = \left(-1\right)^{i+j} M_{ij}$$

Inverse of Matrix

 \mathcal{T}

$$A^{-1} = \frac{1}{\det A} \times adj.A$$

Cramer's Rule

 π

$$x = \frac{\Delta x}{\Delta}$$
, $y = \frac{\Delta y}{\Delta}$, $z = \frac{\Delta z}{\Delta}$

Simple Interest

 \mathcal{T}

P = principal value r = rate of interest per annum t = time period in years

Simple Interest

> Amount as per SI

$$A = P + SI = P + \frac{P.r.t}{100} = P(1 + \frac{rt}{100})$$

Conversion Period

 π

Conversion period	Description	Number of conversion period in a year
1 day	Compounded daily	365
1 month	Compounded monthly	12
3 months	Compounded quarterly	4
6 months	Compounded semi annually	2
12 months	Compounded annually	1

Compound Interest Amount

- Calculation of Accumulated Amount under CI denoted by A

$$A = P(1+i)^n$$

where,

P = Initial Principal i = adjusted interest rate n = no. of periods

$$i = \frac{r\%_0}{nocppy}$$

$$n = t \times noccpy$$

π

Compound Interest Amount by Trick

> Calculator Tricks for Amount as per CI

- Example: P = 1000, i = 10%, n = 3 then

Calculator Steps to obtain A:

 π

Compound Interest

- > Formula for Compound Interest
 - Calculation of Compound Interest Value denoted by CI

$$CI = P[(1+i)^n - 1]$$

- where,

P = Initial Principal
i = adjusted interest rate
n = no. of periods

$$i = \frac{r\%_0}{nocppy}$$

$$n = t \times noccpy$$

Effective Rate of Interest

 \mathcal{T}

$$E = [(1+i)^n - 1]$$

where,

i = adjusted interest rate n = no. of periods in a year

Future Value - Single Cashflow

 \mathcal{T}

$$FV = CF(1+i)^n$$

where,

CF = Single Cashflow of which FV is to be calculated i = adjusted interest rate n = no. of periods

Future Value - Annuity Regular

 \mathcal{H}

$FVAR = A_i \times FVAF(n,i)$

Future Value Annuity Factor:

It is a multiplier for Annuity Value to obtain Final Future Value

$$FVAR = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\}$$

where,

FVAR = Future Value of Annuity Regular

A_i = Annuity Value (Installment)

FVAF = Future Value Annuity Factor

i = adjusted interest rate

n = no. of periods

Future Value - Annuity Due

 π

> Formula:

$$FVAD = A_i \times FVAF(n,i) \times (1+i)$$

$$FVAD = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\} \times (1+i)$$

where,

FVAD= Future Value of Annuity Due A_i = Annuity Value (Installment)

FVAF = Future Value Annuity Factor i = adjusted interest rate n = no. of periods

Future Value Annuity Factor:

It is a multiplier for Annuity Value to obtain Final Future Value

Present Value - Single Cashflow

 \mathcal{T}

where,

CF = Single Cashflow for which PV is to be calculated i = adjusted interest rate n = no. of periods

Compounding and Discounting Factor

 π

Compounding

- Finding Future Value of any Cashflow
- Compounding Factor.

$$\times (1+i)^n$$

Discounting

- Finding Present Value of any Cashflow
- Discounting Factor:

$$\times \frac{1}{(1+i)^n}$$

Present Value - Annuity Regular

 \mathcal{T}

$PVAR = A_i \times PVAF(n,i)$

$$PVAR = A_i \times \left[\frac{1}{i} \times \left\{ 1 - \frac{1}{(1+i)^n} \right\} \right]$$

Present Value Annuity Factor:
It is a multiplier for Annuity Value
to obtain Final Present Value

where,

PVAR = Present Value of Annuity Regular

A_i = Annuity Value (Installment)

PVAF = Present Value Annuity Factor

i = adjusted interest rate

n = no. of periods

 π

Calculator trick of PVAF

 $\boxed{1+i} \div = = ...n - times \boxed{GT}$

Present Value - Annuity Due

 π

$$PVAD = \left[A_i \times PVAF \left\{ (n-1), i \right\} \right] + A_i$$

where,

PVAD = Present Value of Annuity Due
A_i = Annuity Value (Installment)
PVAF = Present Value Annuity Factor
i = adjusted interest rate
n = no. of periods
n-1 = one lesser period

Perpetuity

 \mathcal{T}

$$PVP = \frac{A_i}{i}$$

where,

 $PVP = Present \ Value \ of \ Perpetuity$ $A_i = Annuity \ Value \ (Installment)$ $i = adjusted \ interest \ rate$

Growing Perpetuity

 \mathcal{T}

$$PVGP = \frac{A_i}{i - g}$$

where,

PVGP = Present Value of Growing Perpetuity
A_i = Annuity Value (Installment)
i = adjusted interest rate
g = growth rate

Net Present Value

 π

- > Formula
 - NPV = Present Value of Cash Inflows Present Value of Cash Outflows
- > Decision Base:
 - If NPV ≥ 0, accept the proposal, If NPV < 0, reject the proposal

\mathcal{T}

Real Rate of Return

- Meaning:
 - The real interest rate is named so to show what a lender or investor receives in real terms after inflation is factored in.
- > Formula:
 - Real Rate of Return = Nominal Rate of Return Rate of Inflation

CAGR

 π

- Compounded Annual Growth rate is the interest rate we used in Compound Interest.
- > It is used to see returns on investment on yearly basis

\mathcal{T}

Rules of Counting

- > Multiplication Rule
 - If certain thing may be done in 'm' different ways and when it has been done, a second thing can be done in 'n ' different ways then total number of ways of doing both things simultaneously is (m x n) ways
- > Addition Rule
 - It there are two alternative jobs which can be done in 'm' ways and in 'n' ways respectively then either of two jobs can be done in (m + n) ways

Word Used	Use
OR	+ Plus
AND	× Product

$\overline{\pi}$

Factorial

$$n! = n(n-1)(n-2) \dots 3.2.1$$

$$n! = 1.2.3 \dots (n-2)(n-1)n$$

$$n! = n(n-1)!$$

$$n! = n(n-1)(n-2)!$$

$$> 0! = 1$$

Factorial Values

 \mathcal{T}

Value of n	Value of n!
1	1
2	2
3	6
4	24
5	120
6	720
7	5040

Value of n!
40320
362880
3628800
39916800
479001600
6227020800
871178291200

Theorem of Permutations

Number of Permutations when r objects are chosen out of n different

objects

$$^{n}P_{r} = \frac{n!}{(n-r)!}$$

Few Observations: $n \ge r$ n is a positive integer

Particular Case of theorem (n = r)

Number of Permutations when n objects are chosen out of n different objects

$$^{n}P_{n}=n!$$

$$(n+1)!-n!=n.n$$

Circular Permutations

- > Theorem:
 - The number of circular permutations of n different things chosen at a time is (n-1)!
 - Note: this theorem applies only when we choose all of n things

Circular Permutations (Type II)

> number of ways of arranging n persons along a closed curve so that no person has the same two neighbours is

$$\frac{1}{2}(n-1)!$$

> Same formula will apply if ask is to find number of different forms of necklaces/ garlands

 π

> Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is

 $^{n-1}P_r$

Permutations with Restrictions: Theorem 2

> Number of permutations of r objects out of n distinct objects when a <u>particular object is always included</u> in any arrangement is

$$r. ^{n-1}P_{r-1}$$

Relation between restriction theorem

One particular thing always included

One particular thing always excluded

Total Permutations

Ways of Never Together =

Total ways - Ways of always together

Theorem of Combinations

Number of Combinations when r objects are chosen out of n different objects

$${}^{n}C_{r} = \frac{n!}{(n-r)! \, r!}$$

Few Observations:

$$> n \ge r$$

 $\rightarrow n$ is a positive integer

Linkage of PNC Theorems

 π

$${}^{n}C_{r}=\frac{{}^{n}P_{r}}{r!}$$

Few Observations:

$$\rightarrow n \geq r$$

 $\rightarrow n$ is a positive integer

Special Result of Combinations

$${}^nC_0 = 1$$
 ${}^nC_n = 1$

$${}^nC_r = {}^nC_{n-r}$$

$$^{n+1}C_r = {^nC_r} + {^nC_{r-1}}$$

Combinations of one or more

Combinations of n different things taking **one or more** out of n things at a time

$$2^{n}-1$$

Geometry in PNC

 π

Particulars	Tips to Solve
No. of Straight Lines with the given n points	${}^{n}C_{2}$ 2 is used as we need to select two points to make a line
No. of Triangles with the given n points	${}^{n}\mathcal{C}_{3}$ 3 is used as we need to select two points to make a line
Adjustment of Collinear Points	If there are collinear points in any problem, no. of lines or triangles formed using those points should be deducted from total no. of lines/ triangles
No. of Parallelogram with the given one set of m parallel lines and another set of n parallel lines	$^{n}C_{2}\times^{m}C_{2}$ Selecting 2 lines from each set of parallel lines
No. of Diagonals	${}^{n}C_{2}-n$ 86

Common Difference of AP

$$d = t_2 - t_1 = t_3 - t_2 = \dots = t_n - t_{n-1}$$

General Term of an AP

 \mathcal{T}

$$t_n = a + (n-1)d$$

where,

a = first term

d = common difference

n = position number of term

General Term of an AP

 π

$$t_n = a + (n-1)d$$

Calculator Trick:

Sum of first n terms of an AP

 \mathcal{T}

$$S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$

where, a = first term d = common difference n = position number of term

 $t_n = nth term of AP$

Sum of first n terms of an AP

 \mathcal{T}

$$S_n = \frac{n}{2}(a + t_n)$$

$$S_n = \frac{n}{2} \left\{ 2a + (n-1)d \right\}$$

Calculator Trick

$$S = \frac{n(n+1)}{2}$$

Sum of first n odd numbers

$$S = n^2$$

Sum of the squares of first n natural numbers

 π

$$S = \frac{n(n+1)(2n+1)}{6}$$

$$S = \left\{ \frac{n(n+1)}{2} \right\}^2$$

Common Ratio of GP

$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \frac{t_n}{t_{n-1}}$$

General Term of an GP

 \mathcal{T}

$$t_n = ar^{n-1}$$

where, a = first term r = common ratio n = position number of term

General Term of an AP

 \mathcal{T}

$$t_n = ar^{n-1}$$

Calculator Trick:

Sum of first n terms of a GP

 π

Use when r < 1

where,
a = first term
r = common ratio
n = position number of term

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

Use when r > 1

Sum of first n terms of a GP

 \mathcal{T}

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

Calculator Trick

Sum of Infinite Geometric Series

 \mathcal{T}

Can be used only if -1 < r < 1

where, $a = first \ term$ $r = common \ ratio$ $n = position \ number \ of \ term$

 π

> No. of possible subset of any set

Total =
$$2^n$$

Proper=
$$2^n-1$$

$$\rightarrow (P \cup Q)' = P' \cap Q'$$

$$\rightarrow$$
 (P \cap Q)' = P' \cup Q'

2 Set Operations Formulas

 \rightarrow n(AUB) = n(A) + n(B) - n(A\cap B)

- Proof:
 - \rightarrow Example: A = {6, 2, 4, 1} B = {2, 4, 3}

3 Set Operations Formula

 π > n(AuBuC) =

$$n(A) + n(B) + n(C) -$$

 $n(A \cap B) - n(B \cap C) - n(A \cap C) +$
 $n(A \cap B \cap C)$

Composition of Functions

 π

$$\Rightarrow f \circ g = f \circ g(x) = f[g(x)]$$

$$\rightarrow gof = gof(x) = g[f(x)]$$

Step Method of finding inverse of f

1. Write your function in the form of y

$$-y = f(x)$$

2. From above expression, find the value of x

$$-x=$$

3. Interchange value of x and y, now the RHS is Inverse function

$$-y=$$

Differentiation Basic Formulas

 π

f(x)	$f^{'}(x)$
$\frac{d}{dx}(x^n)$	nx^{n-1}
$\frac{d}{dx}(e^x)$	e^{x}
$\frac{d}{dx}(a^x)$	$a^x \log_e a$
$\frac{d}{dx}(constant)$	0
$\frac{d}{dx}(e^{ax})$	ae^{ax}
$\frac{d}{dx}(\log x)$	$\frac{1}{x}$ 108
	100

Basic Laws of Differentiation

\mathcal{J}	l

Function	Derivative of the Function
$oldsymbol{h}(x) = c.f(x)$ where c is a real constant, scalar multiplication of function	$\frac{d}{dx}\{h(x)\} = c.\frac{d}{dx}\{f(x)\}$
$h(x) = f(x) \pm g(x)$ sum/ difference of function	$\frac{d}{dx}\{h(x)\} = \frac{d}{dx}\{f(x)\} \pm \frac{d}{dx}\{g(x)\}$
h(x) = f(x).g(x) Product of functions	$\frac{d}{dx}\{h(x)\} = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$
$h(x) = rac{f(x)}{g(x)}$ Quotient of Function	$\frac{d}{dx}\{h(x)\} = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{\{g(x)\}}$

Cost and Revenue Functions

 \mathcal{T}

Cost Function	y = C(x)
Average Cost	$A(x) = \frac{C(x)}{x}$
Average Cost is minimum or maximum when	A'(x) = 0
Marginal Cost	$M(x) = \frac{dC}{dx}$
Marginal Cost is minimum or maximum when	M'(x) = 0
Marginal Revenue	$MR(x) = \frac{dR}{dx}$

11C

Integration - Basic Formulas

 \mathcal{T}

i)
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
, $n \ne -1$ (If $n=-1$, $\frac{x^{n+1}}{n+1} = \frac{1}{0}$ which is not defined)

ii)
$$\int dx = x + c, \text{ since } \int 1 dx = \int x^{\circ} dx = \frac{x1}{1} = x + c$$

iii)
$$\int e^x dx = e^x + c, \text{ since } \frac{d}{dx} e^x = e^x$$

iv)
$$\int e^{ax} dx = \frac{e^{ax}}{a} + c$$
, since $\frac{d}{dx} \left(\frac{e^{ax}}{a} \right) = e^{ax}$

v)
$$\int \frac{dx}{x} = \log x + c$$
, since $\frac{d}{dx} \log x = \frac{1}{x}$

vi)
$$\int a^x dx = a^x / \log_e a + c$$
, since $\frac{d}{dx} \left(\frac{a^x}{\log_e^a} \right) = a^x$

Integration by Parts - ILATE Rule

 \mathcal{I}

$$\int u v dx = u \int v dx - \int \left[\frac{d(u)}{dx} \int v dx \right] dx$$

where u and v are two different functions of x

(There are always exceptions, but these are generally helpful.)

"L-I-A-T-E" Choose 'u' to be the function that comes first in this list:

L: Logrithmic Function

I: Inverse Trig Function

A: Algebraic Function

T: Trig Function

E: Exponential Function

