MATHS MAGIC MATHS HANDBOOK

By

MATHS MAGICIAN

Prof. RAJ AWATE (Always with u)

Contact:

Instagram - raj_awate_

INSPIRE for CA 8989308989

Chapter 1 RATIO & PROPORTION

OPERATION ON RATIO:

- Inverse ratio $\Rightarrow \frac{a}{b} \Rightarrow \frac{b}{a}$
- Duplicate ratio $\Rightarrow \frac{a}{b} \Rightarrow \frac{a^2}{b^2}$
- Sub-duplicate ratio $\Rightarrow \frac{a}{b} \Rightarrow \frac{\sqrt{a}}{\sqrt{b}}$
- Triplicate ratio $\Rightarrow \frac{a}{b} \Rightarrow \frac{a^3}{b^3}$
- Sub-triplicate ratio $\Rightarrow \frac{a}{b} \Rightarrow \frac{\sqrt[3]{a}}{\sqrt[3]{b}}$
- Compounded ratio $\Rightarrow \frac{a}{b} \times \frac{c}{d} \times \frac{e}{f}$

OPERATION ON PROPORTION:

- Invertendo $\Rightarrow \frac{a}{b} = \frac{c}{d} \Rightarrow \frac{b}{a} = \frac{d}{c}$
- Alternendo $\Rightarrow \frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a}{c} = \frac{b}{d}$
- Componendo $\rightarrow \frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{b} = \frac{c+d}{d}$
- Dividendo $\Rightarrow \frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a b}{b} = \frac{c d}{d}$
- Componendo-dividendo→

$$\frac{a}{b} = \frac{c}{d} \Rightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$$

INDICES & LOGARITHMS

INDICES

 $a^{m/n} = \sqrt[n]{a^m}$

Here, a = base m = power n = root

- $a^m x a^n = a^{m+n}$
- $(a^m)^n = a^{mn}$
- $a^0 = 1$
- $a^{-m} = 1/a^m$
- $a^{m} = 1/a^{-m}$

LOGARITHMS

Conversion of log into indices

$$log_a m = n$$
 then $a^n = m$

- $\log_a m + \log_a n = \log_a mn$
- $\log_a m \log_a n = \log_a (m/n)$
- $log_a(m^n) = n log_a m$
- $\log_a 1 = 0$
- $log_aa = 1$
- $log_ab = \frac{log_cb}{log_ca}$
- **❖ Do you know this →** $(a + b)^3 = a^3 + b^3 + 3ab (a + b)$
- $(a b)^3 = a^3 b^3 3ab (a b)$
- $a^3 + b^3 = (a + b) (a^2 ab + b^2)$
- $a^3 b^3 = (a b)(a^2 + ab + b^2)$

Chapter 2 EQUATIONS

• Quadratic Equation
$$\rightarrow ax^2 + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

•
$$\alpha + \beta = -b/a$$

$$\alpha.\beta = c/a$$

•
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha \beta$$

$$(\alpha - \beta)^2 = \alpha^2 + \beta^2 - 2\alpha \beta$$

•
$$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha \beta)$$

$$\alpha^3 + \beta^3 = (\alpha + \beta) (\alpha^2 + \beta^2 - \alpha \beta)$$

$$\alpha^3 - \beta^3 = (\alpha - \beta) (\alpha^2 + \beta^2 + \alpha \beta)$$

	·	
-001		
-00000		
6300 3		
V	L	
	SHAPING YOUR FUTURE	

Chapter 3 TIME VALUE OF MONEY

- Simple interest:
 - *Interest is paid only once at the end of time*

$$I = (Pnr)/100$$

$$A = P + I$$

$$A = P + I \qquad \qquad A = P \left[1 + \frac{nr}{100} \right]$$

Here, P = principle = initial money deposited

R = rate of interest

N = number of year = number of month /12 = number of days / 365

Compound interest:

$$A = P (1 + i)^n$$

$$I = A - P$$

Here, N = number of conversion period = no of years * (1 or or 4 or 12)

 $I = (rate\ of\ interest)/(1\ or\ 2\ or\ 4\ or\ 12)$

Note: When n = 1 & interest is paid annually then Simple interest = compound interest

- Applications of compound interest:
 - a. In the problems of population:

$$A = P (1 + i)^n$$

here, A = final population p = initial populationi = rate of growth of population = birth rate - death rate

b. In the problems of depreciation:

$$SV = CP(1-i)^n$$

$$SV = scrap \ value \qquad CP = cost \ price$$

$$I = rate of depreciation$$

$$n = effective life$$

c. Effective rate of interest:

$$i_e = (1+i)^n - 1$$

Where,
$$i = actual / nominal interest rate$$
 $n = 1 year * 1/2 / 4/12$

$$i = actual / nominal interest rate$$

$$n = 1 \text{ year } * 1/2/4/12$$

Future value:

(payment at end)

$$F. V = \frac{A[(1+i)^n - 1]}{i}$$

where,
$$A = annuity$$

(payment at start)

F. V =
$$\frac{A[(1+i)^n - 1]}{i} \times (1+i)$$

- > If installments are paid initially & total amount is to be received after certain years then use future value formula.
- Future value is also used for sinking fund problems.

Present value:

a. By annuity regular:

$$V = \frac{A |(1+i)^n - 1|}{i(1+i)^n} = A \cdot P(n, i)$$

- > If total amount is received initially & installments are paid later on then use present value.
- Present value is applicable in the problems of house property, loan or borrow.
- > Amount of loan, amount of money borrowed& amount of house property is taken as present value.

Chapter 4 Permutation and combination

Permutation is method of selection and arrangement. If r things are selected from n things & arranged in r places, then no. of arrangements or ways are -

$${}^{n}P_{r} = \frac{n!}{(n-r)!}$$

Properties:

- $np_n = n!$
- $^{n}p_{0} = 1$
- np₁=n

For circular permutation:

- No. of ways are (n-1)!
- When two neighbours are never together (necklace problem):

No. of ways are
$$\frac{(n-1)!}{2}$$

Combination is method of selection. If r things are selected from n things, then no. of ways are -

$$nC_{\rm r} = \frac{n!}{(n-r)!r!}$$

$${}^{\mathbf{n}}\mathbf{C}_0 = {}^{\mathbf{n}}\mathbf{C}_{\mathbf{n}} = \mathbf{1}$$

- $n_{C_1} = n$
- $\bullet \qquad {}^{n}C_{r} = {}^{n}C_{n-r}$
- $n_{C_r} + n_{C_{r-1}} = n+1_{C_r}$
- $n_{C_1} + n_{C_2} + n_{C_3} + \dots + n_{C_n} = 2^n -$

Chapter 5

Arithmatic progression (AP):

• *nth term of series is given by* :

$$t_n = a + (n - 1) \cdot d$$

• *Sum of n terms is given by :*

$$s_n = n/2 [2a + (n - 1) d]$$

• When 1st term and last term is given then sum of n terms is given by,

$$S_n = n/2 [t_1 + t_n]$$

• When sum of n terms is given then nth term is given by,

$$t_n = S_n - S_{n-1}$$

Geometric progression:

- $nth \ term \ of \ series \ is \ given \ by :$ $t_n = a \cdot r^{n-1}$
- Sum of n terms is given by:

$$S_n = a \frac{(r^n - 1)}{r - 1}$$

• *Sum of infinite no. of terms is given by:*

$$S_{\infty} = \frac{a}{1-r}$$

Do you know this:

• Sum of n natural numbers is-

$$\sum_{n} = \frac{n(n+1)}{2}$$



• Sum of squares of n natural numbers is-

$$\sum n^2 = \frac{n(n+1)(2n+1)}{6}$$

• Sum of cubes of n natural numbers is-

$$\sum n^3 = \left[\frac{n(n+1)}{2}\right]^2$$

Chapter 6 SET, FUNCTION & RELATION

SET :- *Set is group of things. It is represented by* { }.

Null set \rightarrow *It is a set containing* 0 *no. of elements. It is given by* ϕ *or* { }.

For equal sets \rightarrow Set A = Set B

For equivalent sets $\rightarrow n(A) = n(B)$

SUBSET: *Set B is said to be subset of set A if all the elements of set B belong to set A*.

No. of subsets $\rightarrow 2^n$

Number of proper subsets $\rightarrow 2^n - 1$ *Number of improper subset* $\rightarrow 1$

THEOREM OF ADDITION \rightarrow For two sets A & B- $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

For 3 sets A, B & C: $n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n$ $(A \cap B \cap C)$

me i	

Maths Magician Raj Awate (Always With U)

Chapter 7 **DERIVATIVE**

$$\bullet \quad \frac{\mathsf{d}}{\mathsf{d}\mathsf{x}} \left(\mathsf{x}^n \right) = n \; . \; \mathsf{x}^{n-1}$$

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{x}}\left(e^{x}\right)=e^{x}$$

$$\frac{d}{dx}(\log x) = 1/x$$

$$\frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}}$$

$$\frac{d}{dx}(a^x) = a^x . log_e a$$

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{x}}\left(x\right)=1$$

$$\frac{\mathsf{d}}{\mathsf{d}\mathsf{x}}\left(k\right)=0$$

•
$$y = u \pm v \Rightarrow \frac{dy}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$

•
$$y = u \cdot v \implies \frac{dy}{dx} = V \cdot \frac{du}{dx} + u \cdot \frac{dv}{dx}$$

•
$$y = u/v \implies \frac{dy}{dx} = V \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}$$

$$\bullet \quad \frac{dy}{dx} = \frac{dy / dt}{dx / dt}$$

•
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
 when $y = f(t)$ & $x = g(t)$

•
$$y = f(x)g(x)$$
 then

$$\log y = \log f(x)g(x)$$

Chapter 8 CORRELATION & REGRESSION

- **❖ Bivariate data**: data made up of **2 variable** at **same** point of **time**. For m × n distribution: No. of **marginal distribution**: **2** __ No. of **conditional** distribution: m + n __ methods of analysis: correlation & regression.
- ❖ Correlation: cause & effect relationship between two variable__ states extent & value of relation__ can't give mathematical relation or formula between 2 variable Regression: gives mathematical relation__ gives value of dependent variable from independent variable
- **❖ Correlation**: +ve or -ve.____ -1≤ r ≤1 ____ coeff. of correlation r has **no unit** (it is relative measure) __ not affected by both change of scale & origin___ positive relation: one increases & other increases e.g. height & wt of person, income & expense, speed of car & distance covered after applying brakes, rainfall & crop production ___ Negative relation: one increases & other decreases e.g. price & demand, day temp & sale of woolen clothes__ No relation: e.g. size of shoes & intelligence__ Methods of correlation (4):
 - a. **Scatter diagram**: r is +ve: points from lower left to upper right $_$ r is -ve: points from upper left to lower right $_$ If all points are on a line then perfect +ve (agreement r = +1) or perfect -ve (disagreement r = -1) relation. $_$ scatter diagram may be linear or curvilinear $_$ gives only sign of relation but not its extent.
 - b. Karl pearson's: product moment correlation: used only when data is quantitative, relation is linear, variation is less. $r = \frac{\text{cov}(x,y)}{\sigma_x \cdot \sigma_y}$
 - c. **Spearman's rank correlation method**: used when data is **qualitative**, relation is linear or non-linear__ can't be used for bivariate data__ if $\Sigma d^2 = 0$ then r=1 $r = 1 \left[\frac{6\sum d^2}{n(n^2-1)}\right]$
 - d. Concurrent deviation method : used when magnitude of data is not much important __quickest method of correlation $r = \pm \sqrt{\frac{\pm (2c m)}{m}}$
- * Probable error : difference between r of sample & r of population $P.E(r) = \frac{0.6745 \, (1-r^2)}{\sqrt{n}}$ If r < (P.E.) then no significant relation ____ if r > 6 .(PE) then significant relation
- * Coefficient of determination = ratio of explained variance to total variance = r^2 coeff. of non-determination = $1-r^2$

1.

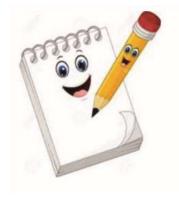
Effect of scale & origin on $r \rightarrow If u = a + bx & v = c + dx$

$$b = -x/u & d = -y/v$$

If x changes into x or y into y then change of scale is

b	+	-	+
d	+	1	1
r_{uv}	r_{xy}	r_{xy}	•
=			r_{xy}

* Regression: uses least square principle __ 2 types of line: x on y (used when y is given & x is unknown) by on x (used when x is given by is unknown)


$$Y \ on \ X \rightarrow y = a + b.x \rightarrow (y - \bar{y}) = b_{yx} (x - \bar{x}) \rightarrow b_{yx} = r \ x \frac{\sigma_y}{\sigma_x} = \frac{-coeff.ofx}{coeff.ofy}$$

$$X \text{ on } Y \rightarrow x = a + b.y \rightarrow (x-\bar{x}) = b_{xy} (y - \bar{y}) \rightarrow b_{xy} = r x \frac{\sigma_x}{\sigma_y} = \frac{-coeff.ofy}{coeff.ofx}$$

 $r = \pm \sqrt{byx \cdot bxy}$ $-1 \le r \le 1$ $|byx \cdot bxy| \le 1$

$$-1 \le r \le 1$$

$$|byx.bxy| \le 1$$

Chapter 9 PROBABILITY & EXPECTED VALUE

 \bullet $0 \le P(A) \le 1$

P(A) = 0 ... impossible event

 $P(A) = 1 \dots Sure event$

- * Simple event: which can't be split into 2 parts e.g. getting a head

 Compound/complex event: which can be split into two or more parts e.g. tossing of a coin (2 parts-head & tail)
- ***** Mutually exclusive event: can't occur simultaneously $P(A \cap B) = 0$

*Exhaustive*events: any one of them will surely occur $P(A \cup B) = 1$

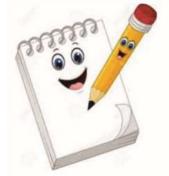
Equally likelyevents: probability are equal P(A) = P(B) but event may be same or different If A & B are exclusive, exhaustive, equally likely then P(A) = P(B) = 1/2 If A & B & C are exclusive, exhaustive, equally likely then P(A) = P(B) = P(C) = 1/3

- Two methods: a. Subjective probability: Dependent on personal judgement b. Objective probability
- **Compound probability or joint probability**: The probability of occurrence of two events A and B simultaneously is known as the Compound Probability or Joint Probability of the events A and B and is denoted by $P(A \cap B)$.

Two types of compound probability:

- a) Dependent events : $P(A/B) = P(A \cap B) / P(A)$ or $P(A \cap B) = P(A/B) \cdot P(A)$
- b) Independent events : $P(A/B) = P(A) & P(A \cap B) = P(A) \cdot P(B)$ If A & B are independent then A, B' & A', B & A', B' are also independent
- ***** Expected value: (mean) $E(x) = \sum xPE(x^2) = \sum x^2P$ Variance = $V(x) = E(x^2) - [E(x)]^2$

Properties of expected value : Affected by both change of scale & change of origin : If Y = a + b. Xthen E(Y) = a + b. E(x) = E



• Odds in favour of an event = $\frac{number \ of \ ways \ favourable to \ event}{number \ of \ non-favourable ways} = \frac{p}{q}$

Odds against an event =
$$\frac{number of \ ways \ non - favourable to \ event}{number of \ favourable ways} = \frac{q}{p}$$

Probability =
$$\frac{p}{p+q}$$

Theorem of addition : $P(AUB) = P(A) + P(B) - P(A \land B)$

-- YNSP

INSPIRE AGADEMY

--

Chapter 10 STATISTICAL DESCRIPTION OF DATA

*	Origin of word statistics:	Latin : status	_ Italian : statista_	_German : statistik _	_French :
	statistique				

***** *Definition of Statistics* :

- a. As a plural noun: defined as data qualitative as well as quantitative, that are collected, usually with a view of having statistical analysis.
- **b.** As a **singular noun**: defined, as the scientific method that is employed **for collecting**, analysing and presenting data.
- Limitations of Statistics: deals with the aggregates, not with individual___concerned with quantitative data.

Collection of data:

- **a.** Interview method: Personal Interview method (best for natural calamity like cyclone, earthquake, epidemic like plague)__Indirect Interview (best for rail accident) ___Telephone interview (quickest and non-expensive)
- **b.** Mailed questionnaire method: (covers widest area)
- **c. Observation method**: (time consuming, laborious and covers only a small area.)
- Scrutiny of data: To detect error__ Used for internal consistency __Applicable if there may be two or more series of figures which are in some way or other related to each other e.g density = population / area

Types of data:

- a. **Quantitative data:** termed as variable. Discrete data- It has fixed value. Discrete data with frequency is known as ungrouped frequency data. __Continuous data- known as grouped frequency data. E.g. Height, weight, profit, loss etc.
- b. **Qualitative data**: can not be measured by numerical value. It includes characteristics or qualities. This is known as attribute.e.g. colour of a person, intelligence, nationality, gender.
- c. Time-series or chronological data: This varies according to time.

- d. Geographical data: It varies with space.
- * Types of data according to method of collection:-Primary data: It is data collected personally by a person or agency. ____ Secondary data: A data which uses primary data as basis is called as secondary data. Sources of secondary data are-national & international organizations, ministry of different departments etc
- * Methods of presentation of data: Textual method___Tabular method: Data is presented in the table. It contains rows & columns___Diagramatic method: Data is expressed by diagrams. It is most attractive method. Types of diagrams:
 - **a.** Line diagram:used for time-series data. Multiple line diagrams- for comparing two data with same unit. Multiple axis diagram- for comparism of data with different unit. In ratio chart, data is presented in the form of logarithms.
 - **b.** Bar diagrams: Vertical bar diagram for quantitative data & horizontal for qualitative data. For comparing two or more data, multiple or grouped bar diagrams are used.
 - c. Pie chart: For showing a total data in smaller groups, pie chart is used which is in the form of percentage or angle.
- * Types of frequency distribution diagram:
 - a. Histogram: is in the form of vertical bar & used for continuous data__ gives information about mode.
 - **b.** Frequency polygon/ frequency curve: smooth curve for which the total area is taken to be unity ____freq. curve is limiting form of a histogram or frequency ____four types of frequency curve: Bell-shaped curve: most commonly used shape e.g. distribution of height, weight, mark, profit etc.___U-shaped curve ___ J-shaped curve ___ Mixed curve.
 - **c. Ogive:** It is graph of less than or more than cumulative frequency against given data. It gives median, quartiles, decile, percentile.
- **❖ Inclusive data** includes both limits. E.g. 0-9, 10-19, 20-29 etc **. Exclusive** data excludes upper limit of each class. Here, class limits & boundaries are same.e.g. 0-10, 10-20, 20-30 etc.
- **Relative frequency**: It is ratio frequency of given class to the total frequency. R.F. = $\frac{f}{N} \times 100$
- ***** *Frequency density*: It is ratio of frequency of given class to its width.F.D. = $\frac{f}{h}$

CENTRAL TENDENCY

Central tendency may be defined as the tendency of a given set of observations to cluster around a single central or middle value and the single value that represents the given set of observations is described as a measure of central tendency or, location or average.

	A.M.	Median	Mode	G.M.	H.M.
Best/most commonly used	Yes				
Most popular			Yes		
Based on all observations	Yes			YES	Yes
Have mathematical property	Yes			Yes	Yes
Affected by sampling	Yes very	No			
fluctuations	much				
Easy to calculate			Most easy &fast	Most difficult	
For open end class		can be used (best)	Can be used		
	1		Sometimes can't be defined		

***** Types of average:

i. Mathematical average: AM, GM, HM

ii. Positional average: Median, Mode, Quartile, Decile& Percentile

• Properties of arithmetic mean:

1) If all observations are same then mean is also same:

2) Sum of deviations of all observations about AM is zero.

$$\sum (X - \bar{x}) = 0 \left(\sum d = 0 \right)$$

3) Sum of squares of deviations of all observations about AM is minimum (It is minimum when they are compared with median & mode)

$$\sum (X - \bar{x})^2 = Minimum$$

4) Effect of change of scale & change of origin:

AM, median & mode is affected by both change of origin (addition & subtraction) & change of scale (multiplication & division)

5) Combined Arithmetic mean:-

If two groups with N_1 , X_1 & N_2 , X_2 as number of observations & AM respectively are combined together then AM of combined group is given by $\bar{x}_{12} = \frac{n_1\bar{x}_1 + n_2\bar{x}_2}{n_1 + n_2}$

• Weighted arithmetic mean :-

It is useful when all observations don't have equal importance.

$$\bar{\chi} = \frac{\sum wx}{\sum w}$$

* Imperial relationship between AM, median & mode:-

a. For symmetrical data:

$$AM = Median = Mode.$$

Special properties of 2 observations:

For 2 observations a &b:

$$AM = \frac{a+b}{2}$$

$$GM = \sqrt{ab}$$

$$HM = \frac{2 ab}{a+b}$$

* Relationship between AM, GM & HM for two numbers:

$$(G.M.)^2 = AM x HM$$

Range:

$$R = L - S$$

Coefficient of range =
$$\frac{L-S}{L+S} \times 100$$

Quartile deviation:

Inter quartile range : It is the range of middle 50% of the observations.

Inter quartile range = $Q_3 - Q_1$

Quartile deviation = $(Q_3 - Q_1)/2$

Coefficient of quartile deviation = $\frac{Q_3 - Q_1}{Q_3 + Q_1} * 100$

Mean deviation:

$$MD = \frac{\sum |d|}{N}$$

$$MD = \frac{\sum |f.d|}{\sum f}$$

$$MD = \frac{\sum |f.d|}{\sum f}$$

Where d = X - A

A = mean or median or mode

Coefficient of mean deviation = $\frac{MD}{A} * 100$

Standard deviation:

$$SD = \sigma = \frac{\sum d^2}{N} = \sqrt{\frac{\sum x^2}{N} - (\bar{x})^2}$$

$$SD = \sigma = \frac{\sum f d^2}{\sum f} = \sqrt{\frac{\sum f x^2}{\sum f} - (\bar{x})^2}$$

$$SD = \sigma = \frac{\sum f d^2}{\sum f} = \sqrt{\frac{\sum f x^2}{\sum f} - (\bar{x})^2}$$

Where
$$d = X - \bar{X}$$

Variance = σ^2

Coefficient of variation (CV) = $\frac{\sigma}{\bar{X}}$ * 100

• *Uses* :-

Coefficient of variation or CV is used to compare two or more series. It is used where stability or consistency or variation is to be compared.

Properties of dispersion:

1) If all observations are same then

Range = Mean deviation = Standard deviation = Quartile deviation = 0 e.g. range, MD of of 5,5,5,5,5 is '0'.

2) Combined Standard deviation:

If two groups with N_1 , X_1 , $\sigma_1 & N_2$, X_2 , σ_2 as number of observations & AM & standard deviation respectively are combined together then standard deviation of combined group is given by

$$\sigma_{12} = \sqrt{\frac{[N^{1} (\sigma^{1} + d^{1}) + N^{2} (\sigma^{2} + d^{2})]}{N^{1} + N^{2}}}$$

Where,
$$d1 = \bar{x}_1 - \bar{x}_{12}$$

$$d2 = \bar{x}_2 - \bar{x}_{12}$$

Combined mean
$$X_{12} = \frac{N_1 \overline{x_1} + N_2 \overline{x_2}}{N_1 + N_2}$$

3) Effect of change of scale & change of origin:

Range, MD, SD, QD are affected by change of scale (multiplication & division), but not affected by change of origin (addition & subtraction).

If
$$y = a + b x$$
 then,

$$Ry = |b| \cdot Rx$$

$$MDy = |b| \cdot MDx$$

$$SDy = |b| \cdot SDx$$

$$QDy = |b| \cdot QDx$$

where, b = (-coeff. of x)/(coeff. of y)

❖ Mean- best measure of central tendency, have mathematical property, used for finding average speed when time is constant

Median- best for open end class, not affected by extreme value

Mode- can have multiple values, can't be defined every time

G.M – difficult to compute , used for finding average in case of rate, interest, percentage

H.M. - used for finding average speed when distance is constant

❖ A.M, median, mode – affected by both change of scale (multiplication/division) & change of origin (addition/subtraction)

{ if
$$3x + 4y = 8$$
 then $\rightarrow 3.\bar{x} + 4.\bar{y} = 8$ $\rightarrow 3.Me_x + 4.Me_y = 8$ $\rightarrow 3.Mo_x + 4.Mo_y = 8$ }

Range, mean deviation, standard deviation, quartile deviation – affected only by change of scale (multiplication/division) & not by change of origin (addition/subtraction)

{ if
$$y = a + b.x$$
 then $\rightarrow R_y = |b| R_x \rightarrow M.D_y = |b| M.D._x \rightarrow \sigma_y = |b| \sigma_x \rightarrow Q.D._y = |b| Q.D._x$ }

- For 2 numbers a & b, A.M. = (a + b)/2 $G.M. = \sqrt{ab}$ $H.M. = \frac{2ab}{a+b} :: (G.M)^2 = A.M. * H.M.$
- $A.M \ge G.M. \ge H.M.$
- ❖ Variance = σ^2 coeff. of variation (C.V)= $\frac{\sigma}{\bar{x}}$ * 100 { less C.V. → more consistency →more stability}
- Combined std. deviation $\sigma_{12} = \sqrt{\frac{[N_1 (\sigma_1^2 + d_1^2) + N_2 (\sigma_2^2 + d_2^2)]}{N_1 + N_2}}$ Combined mean $X_{12} = \frac{N_1 x_1 + N_2 x_2}{N_1 + N_2}$

THEOROTICAL DISTRIBUTION

- **Binomial distribution** \rightarrow biparametric (n,p) $\rightarrow P = F(x) = {}^{n}c_{x} \cdot p^{x} \cdot q^{n-x}$ Mean= np variance = npq max. variance = n/4 mode (unimodal or bimodal) – (n+1)pMean is always more than variance.
- **Poisson's distribution** \rightarrow uniparametric (m= np) \rightarrow P = F(x) = $\frac{e^{-m} \cdot m^x}{x!}$ Mean= m variance = m mode (unimodal or bimodal) - m
- Normal distribution \rightarrow Symmetric curve Mean = Mode = Median = μ (It is unimodal.) Variance = σ^2 Mean deviation = 0.8σ Q.D. = 0.675σ

INDEX NUMBER

Value= price × *quantity*

Index no. of base year is 100

- Simple aggregative method $P_{on} = \frac{\sum P_n}{\sum P_o} \times 100$ Simple relative method $P_{on} = \frac{\sum P_{n/Po}}{N} \times 100$
- Weighted relative method $P_{on} = \frac{\sum_{Po}^{Pn} w}{W} * 100$
- Laspayres method weightage (base yr.) $-\frac{\sum PnQo}{\sum PoQo}$ *100
- **Paasches** method weightage (current yr.) $-\frac{\sum PnQn}{\sum PoQn}$ *100
- Fisher's method $\sqrt{Laspayres * paasches}$
- Test of adequacy:
 - **> Unit test**→ satisfied by **all method except simple aggregative** method.
 - **Factor reversal** test → $P_{on} * Q_{on} = V_{on}$ → satisfied by **fishers** test only.

	Time reversal	$test \rightarrow P_1$	$_{10} \times P_{01} = 1$	\rightarrow	satisfied by fis	hers test only	١.
--	---------------	------------------------	---------------------------	---------------	-------------------------	-----------------------	----

Circular test —	\rightarrow test of shifting of base \rightarrow extension of time reversal test \rightarrow Satisfied only by
weighted	aggregative, simple aggregative & geometric mean method

 YNSPIRE SHAPING YOUR FUTURE	
 INSPIRE AGADEMY	

INDICES & LOGARITHMS

- 1. The value of $\left[\frac{2p^2q^3}{3xy}\right]^0$ is equal to
 - *a*. 0
- b.2/3
- <u>c. 1</u>
- d. None
- 2. $X^{(a-b)} * X^{(b-c)} * X^{(c-a)} =$
- b. 0
- c. 3
- d. x

Solution: $X^{a-b+b-c+c-a} = X^{(a-b)} = X^0 = 1$

- 3. 2 * (8)^{1/3} =
 - a. <u>4</u> b. 1
- c. 8
- d. none

Solution : 2 * 2 = 4

- 4. $\left[\frac{81x^4}{v^{-8}}\right]^{\frac{1}{4}}$ has simplified value equal to

- b. x^2y c. $9xy^2$ d. None

Solution:

$$\left[\frac{81x^4}{4^{-8}}\right]^{1/4} = \left[\frac{81x^4}{\frac{1}{y^8}}\right]^{1/4} = \left[81x^4y^8\right]^{1/4} = \left[81\right]^{\frac{1}{4}} \times x^{4 \times \frac{1}{4}} y^{8 \times \frac{1}{4}} = 3 \times x^1 \times y^2 = 3xy^2$$

- 5. (32/243)-1/5
 - a. 2/3
- **b. 3/2** c. 0
- d. none

Solution:

$$\left[\frac{32}{243}\right]^{\frac{-1}{5}} = \frac{\frac{1}{32\frac{1}{5}}}{\frac{1}{243\frac{1}{5}}} = \frac{1}{2} \times \frac{3}{1} = \frac{3}{2}$$

- 6. $(x^{b+c})^{b-c} (x^{c+a})^{c-a} (x^{a+b})^{a-b}$ is equal to

- a. 0 **b** 1 $c x d \frac{1}{x}$

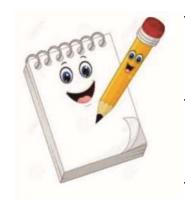
Solution:

$$(x^{b+c})^{b-c} \times (x^{c+a})^{c-a} \times (x^{a+b})^{a-b} = x^{b^2-c^2} \times x^{c^2-a^2} \times x^{a^2-b^2} = x^{b^2-c^2+c^2-a^2+a^2-b^2} = x^0 = 1$$

7.
$$\left[\frac{x^1}{x^m}\right]^{1^2+1m+m^2} \times \left[\frac{x^m}{x^n}\right]^{m^2+mn+n^2} \times \left[\frac{x^n}{x^1}\right]^{1^2+1n+1^2}$$

- a. 0 b. x c.1 d. none

- 8. Value of $(a^{1/8} + a^{-1/8})(a^{1/8} a^{-1/8})(a^{1/4} + a^{-1/4})(a^{1/2} + a^{-1/2})$ is


- a. $a + \frac{1}{a}$ b. $a \frac{1}{a}$ c. $a^2 + \frac{1}{a^2}$ d. $a^2 \frac{1}{a^2}$

Solution:

$$(a^{1/8} + a^{-1/8})(a^{1/8} - a^{-1/8})(a^{1/4} + a^{-1/4})(a^{\frac{1}{2}} + a^{-\frac{1}{2}})$$

$$[a^{1/8}]^2 - [a^{-1/8}]^2 [a^{1/4} - a^{-1/4}][a^{1/4} + a^{-1/4}][a^{1/2} + a^{-1/2}]$$

$$[a^{1/2}]^2 - [a^{-\frac{1}{2}}][a^{1/2} + a^{-1/2}] = a^1 - a^{-1} = a - \frac{1}{a^1}$$

CHAPTER - 2

		STATISTICAL DATA	4		
1.	. Initially, statistics was mostly related with				
	a) State	c) Economics			
	b) Accounts				
2 .	Word 'statistics' is a	defined in sense			
	a) 1	c) 3			
	<i>b</i>) 2	d) None			
3.	In singular sense sta	itistics is defined as :			
	a) Data quantitati	ive & Qhalitative	c) Both a) and b)		
	b) Scientific metho	od of collection, analysis & presentation	d) None.		
4.	Which of the follow	ing is best method of collection of d	ata -		
	a) Interview meth	od c) Observation,			
	b) Mailed question	naire d) None.			
5.	Chronological or ten	nporal data is another name of –			
	a) Geographical da	ata c) Attribute			
	b) Time series data	a d) None.			
6.	Line diagram is mos	tly drawn for –			
	a) Geographical da	ata c) Time series data			
	b) Attribute	d) None.			
7.	Which of the method	d is useful for educated & uneducate	ed people both –		
	a) Tabular	c) Diagramatic			
	b) Tentual	d) None			
8.	When time series da	ta has large variations the which o	f the following diagram is used		
	a) Dan diaonam	a) Dia Chaut			
	a) Bar diagram b) Ratio chart	c) Pie Chart d) None			
9.	·	a, which of the following diagram is	s used –		
	a) Bar digram b) Ratio chart	c) Pie chart d) None			
	- /	/			

10. Horiz	contai var alagram 18 1	usea for -
a)	Time series data	c) Qualitative data
<i>b</i>)	Spatial data	d) Both b & c
11. Verti	cal bar diagram is dra	wn for:
a)	Time series data	c) Spatial data
<i>b</i>)	Quantitative data	d) both a & b
12. There	aretypes o	of Frequency distribution –
a)	1 c) 3	
<i>b</i>)	2 d) Not	ne.
13. Tabu	lation of discrete rand	lom variable is known as
a)	Discrete frequency dist	ribution
<i>b</i>)	Ungrouped frequency a	distribution,
c)	Simple frequency distri	ibution,
d)	All of these.	
14. Group	ped frequency distribu	tion is related with –
a)	Discrete variable	c) Both a & b
<i>b</i>)	Continuous Variable	d) None
15. Cumu	ılative frequency only	refers to –
a)	Less than C.F.	c) Both a & b
<i>b</i>)	More than C.F.	d) None
16. Ratio	on of class frequency to	o total frequency is –
<i>a</i>)	Relative frequency	c) Percentage frequency
<i>b</i>)	Frequency density	d) None.
17.Ratio	of class frequency to	total frequency, expressed as a percentage is called as -
a)	Relative frequency	c) Percentage frequency
<i>b</i>)	Frequency density	d) None
18. Sum o	of all relative frequenc	cy is –
a)	o c) 100)
<i>b</i>)	1 d) No	ne.

19. Sum (of all percentage frequ	iency is:	
a) b)	•		
20. Area	diagram is another no	ame of -	
	Histogram Frequency poly gon	c) Ogi d) Noi	
21. We ol	btain,	_from histogi	ram,
,	AM c) Mo Median d) Non		
22. Frequ	ency polygon is suita	ble for -	
b) c)	Simple frequency distr Grouped frequency dis Both a & b None.		
23. Cumu	ılative frequency diaş	gram is anoth	er name of -
	Histogram Frequency polygon		ve PIRE
24. Ogive	e is oftypes -	· INSPIRE	
a) b)	,		
25. Frequ	ency curve is limiting	g form of -	
	listogram requency polygon	c) a) or b). d) None	
26. The a	lata obtained from a	newspaper ar	e
	Primary data Both (a) and (b)		
27. In an	exclusive type distrib	bution, the lin	nits excluded are
	Ipper limits ther of the lower or upp	er limits	(b) Lower limits(d) lower limits and upper limits both

28. The heading of the rows given in the first column of a table are called
(a) Stubs (b) Captions (c) Sub titles (d) Prefatory notes
29. The column heading of a table are known as
(a) Sub-titles (b) Stubs (c) Reference notes (d) Captions
30. The median of a given frequency distribution is found graphically with the help of
(a) Pictogram (b) Pie Chart (c) Frequency curve (d) Ogive
31. The amount of non-responses is maximum in
(a) Mailed questionnaire method(b) Interview method(c) Observation method(d) All of these
32. The quickest method to collect primary data is
(a) Personal interview (b) Indirect interview (c) Telephone interview (d) By observation
TNSPIRE SHAPING YOUR FUTURE INSTANTABLE MY

CHAPTER 3

PART A: CENTRAL TENDENCY

1. The mean for a symmetrical distribution is 50.6. Find the values of median and mode.

i. 56

- ii. 65
- iii. 50.6
- iv. none

Solution: $\bar{x} = Median = Mode = 50.6$

2. In a moderately asymmetrical distribution -The mode and median are 300 and 240 respectively. Find the value of mean.

i. 210

- ii. 240
- iii. 350
- iv. None

Solution:

$$\bar{x} - Mode = 3 (\bar{x} - Median)$$

$$\bar{x} - 300 = 3 (\bar{x} - 240)$$

$$\vec{x} = 210$$

3. If there are two groups containing 30 and 20 observations and having 50 and 60 as arithmetic means, then the combined arithmetic mean is:

i)

- 55
- ii) 56
- iii) 54
- iv) 52.

2

$$N1 = 30$$
 $N2 = 20$ $\bar{x}1 = 50$ $\bar{x}2 = 60$

$$\bar{x}12 = \frac{N1\bar{x}1 + N2\bar{x}2}{N1 + N2} = \frac{30 \times 50 + 20 \times 60}{30 + 20} = 54$$

4. The average salary of a group of unskilled workers is Rs. 10000 and that of a group of skilled workers is Rs. 15,000. If the combined salary is Rs. 12000, then what is the percentage of skilled workers?

i) 40%

- ii) 50%
- iii) 60%iv) none of these.

Solution : N1 = x N2 = 100 - x

$$N2 = 100 - x$$

$$\bar{x}1 = 15000$$
 $\bar{x}2 = 10000$

 $\bar{x}12 = 12000$

$$N1 + N2 = 100$$

$$\bar{x}12 = \frac{N1\bar{x}1 + N2\bar{x}2}{N1 + N2}$$

$$12000 = \frac{x \times 15000 + (100 - n) \times 10000}{100}$$

$$\therefore x = 40$$

- The average rainfall to a week excluding Sunday was 10 cms. Due to heavy rainfall on Sunday, the average rainfall for the week rose to 15 cms. How much rainfall was there on Sunday?
 - a) 55
- b. 45
- c. 40
- d. none

Solution:
$$N1 = 6$$
 $N2 = 1$ $N1 + N2 = 7$

$$\bar{x}1 = 10$$
 $\bar{x}2 = ?$ $\bar{x}12 = 15$

$$\bar{x}12 = 15$$

- 6. If there are two groups with 75 and 65 as harmonic means and containing 15 and 13 observation then the combined HM is given by
 - i) 65
- *ii*) 70.36
- iii) 70
- iv) 71.

Solution:
$$N1 = 15$$
 $N2 = 13$

$$H1 = 75$$
 $H2 = 65$

$$H12 = \frac{\frac{N1+N2}{N1} + \frac{N2}{H2}}{\frac{N1}{H2} + \frac{N2}{H2}} = \frac{\frac{15+13}{15} + \frac{13}{65}}{\frac{15}{15} + \frac{13}{65}} = 70$$

- 7. If a constant 25 is added to each observation of a set, the mean of the set is
 - *a)* increased by 25

- (b) decreased by 25
- c) 25 times the original mean
- (d) zero
- 8. Two variables x and y are given by y = 2x 3. If the median of x is 20, what is the median of y?
 - a) 20
- b) 40
- c) 37

Solution: y = 2x - 3

 $Median\ of\ y=2\ Median\ of\ x-3$

$$= 2 \times 20 - 3 = 37$$

- 9. Mean of two numbers is 16 & their geometric mean is 8. What is harmonic mean?
 - a. 8
- b. 24 c. 4
- d. 128

Solution: $GM^2 = AM \times HM$

$$(8)^2 = 16 \times HM$$

$$64 = 16 \times HM$$

$$4 = HM$$

- 10. A cyclist pedals from his house to college at a speed of 10 km. per hour and back from the college to his house at 15 km. per hour. Compute his average speed.
 - a) 10
- b) 12
- c) 20
- d) none

Solution: S1 = 10 S2 = 15

Distance is same, so use HM

$$Avg.Speed = HM = \frac{2ab}{a+b} = \frac{2 \times 10 \times 15}{10 + 15} = \frac{300}{25} = 12$$

- 11. An aeroplane flies from A to B at the rate of 500 km/hour and comes back from B to A as the rate of 700 km/hour. The average speed of the aeroplane is:
 - i) 600 km. per hour
- iii) 100 √35 km. per hour.
- ii) 583.33 km. per hour.
- iv) 620 km. per hour.

Solution : S1 = 500 S2 = 700

Avg.Speed = HM =
$$\frac{2ab}{a+b} = \frac{2\times500\times700}{500+700} = 583.33$$

- 12. The average age of 15 students of a class is 15 years. Out of them, the average age of 5 students is 14 years and that of the other 9 students is 16 years. The age of the 15th student is:
 - **(a)** 11 years
 - **(b)** 14 years
 - **(c)** 15 years
 - (d) None

Solution :
$$N1 = 5$$
 $N2 = 9$ $N3 = 1$ $N1 + N2 + N3 = 15$

$$\bar{x}1 = 14$$
 $\bar{x}2 = 16$

$$\bar{x}3 =$$

$$\bar{x}123 = 15$$

$$\bar{x}123 = \frac{N1\bar{x}1 + N2\bar{x}2 + N3\bar{x}3}{N1 + N2 + N3}$$

$$15 = \frac{S \times 14 + 9 \times 16 + 1 \times \bar{x}3}{S + 9 + 1}$$

$$\bar{x}3 = 11$$

- 13. For open-end classification, which of the following is the best measure of central tendency?
 - a) AM
- b) GM
- c) Median
- d) Mode
- 14. The presence of extreme observations does not affect:
 - a) AM
- b) Median
- c) Mode
- *d)* Any of these.

15. Which	one of the fol	lowing is no	ot uniquely	y defined?			
a) Mear	ı b) Me	edian c) M	ode	d) All	of these		
16. The al	gebraic sum oj	f deviations	of observe	ations froi	n their A.M.	is	
a) 2	b) -1	c) 1		d) 0.			
17. G.M. a	of a set of n ob	servations i	s the		root of t	heir product.	
a) n/.	2th b) (n-	+1) th	c) nth		d) (n-1) th.		
18. G.M. i	s less than H.l	M.					
a) Tru	e b) fa i	lse	c)	both d) noi	1e.		
19. The va	lue of the mid	dlemost iten	n when the	ey are arra	nged in orde	r of magnitude is	s called.
a) Star	ıdard deviation	b) Mean	c)) Mode	d) Median.		
20. The va	lue which occ	curs with the	maximun	n frequenc	y is called.		
a) Med	lian	b) mode	c)) mean		d) none.	
21. Which	measure(s) of	f central ten	dency is (a	re) consid	ered for find	ing the average	rates?
a) AN	1 b) G	М с) Н	M SHAPING Y	d) Bo	th		
22. Which	of the follow	ing results h	old for a s	set of disti	nct positive	observations?	
i) $AM \le GM \le HM$ ii) $HM \le GM \le AM$			iii) AM > GM > HMiv) GM > AM > HM				
	a firm register cy cannot be c		ts and los	ses, which	of the follow	wing measure of	central
i) Al	іі) G і	M iii) I	Median	iv) Mo	ode.		
24. Quart	iles are the va	lues dividin	g a given s	set of obse	rvations into	o:	
ii) Fou iii)Five	equal parts requal parts equal parts equal parts ae of these.						
25. Quart	iles can be det	ermined gra	phically u	sing:			
•	stogram eauency Polygon		Og i ve t				

CHAPTER 4

DISPERSION

- 1. The range of 15, 12, 10, 9, 17, 20 is
 - a) 5 b) 12 c) 13
- *d*) 11.

Solution : Range = L - S = 20 - 9 = 11

2. Range for following data is,

2 4 6 8 X

10

F 7 9 5 4

a)4

b)8 c) 12 d) none

Solution : Range = L - S = 10 - 2 = 8

- 3. The mean and S.D. of 1, 2, 3, 4, 5, 6 is
 - a) 7/2, $\sqrt{35/12}$
- b) 7/2, $\sqrt{3}$

c) 3, 3

d) 3, 35/12

solution:

X	d	d^2
	$=x-\overline{x}$	SHAPIN
1	-2.5	6.25
2	-1.5	2.25
3	-0.5	0.25
4	0.5	0.25
5	1.5	2.25
6	2.5	6.25
		17.5

$$\bar{x} = \frac{\sum x}{N} = \frac{21}{6} = 3.5$$

$$\bar{x} = \frac{\sum x}{N} = \frac{21}{6} = 3.5$$
 $\sigma = \sqrt{\frac{\sum d^2}{N}} = \sqrt{\frac{17.5}{6}} = \sqrt{\frac{35}{12}}$

- 4. The coefficient of variation of a series is 58. Its S.D is 21.2. Its arithmetic mean is
 - a) 36.6

b) 22.6

c) 26.6

d) 36.1

Solution:

 $C.V = \frac{\sigma}{\bar{x}} \times 100$ $58 = \frac{21.2}{\bar{x}} \times 100$

 $\bar{x} = 36.6$

Which of the following companies A and B is more consistent so far as the payment of dividend is concerned?

Dividend paid by A:

9

10

6

Dividend paid by B:

15

a) *A*

8

solution:

Find
$$C.V_A = \frac{\sigma}{\bar{x}} \times 100$$

$$C.V_B = \frac{\sigma}{\bar{x}} \times 100$$

$$C.V_A < C.V_B$$

∴ A is more Consistent

- 6. If all the observations are multiplied by 2, then
 - a) New SD would be also multiplied by 2
 - b) New SD would be half of the previous SD
 - c) New SD would be increased by 2
 - d) New SD would be decreased by 2.
- 7. If X and Y are related as 3x 4y = 20 and the quartile deviation of x is 12 then, then the quartile deviation of y is:
 - (a) 14
 - **(b)** 15
 - (c) 16

Solution: $Q.Dy = |b| \times Q.Dx = \left| \frac{-x}{y} \right| \times QDx = \left| \frac{-3}{4} \right| \times 12 = 9$

- If two variables x and y are related by 2x+3y-7=0 and the mean and mean deviation about mean of x are 1 and 0.3 respectively. Then the coefficient of mean deviation of y about mean is:
 - a) -5

b) 12

b) 50

c) 4

 $solution : \bar{x} = 1$

$$2x + 3y - 7 = 0$$

$$2\bar{x} + 3\bar{y} - 7 = 0$$

 $Put\bar{x}=1$

then
$$\bar{y} = \frac{5}{3}$$

M.Dx = 0.3

$$MDy = |b| \times MDx = \left| \frac{-x}{y} \right| \times MDn = \left| \frac{-2}{3} \right| \times 0.3 = 0.2$$

Coeff. of Mdy=
$$\frac{MDy}{\bar{y}} \times 100 = 12$$

9. If two samples of sizes 30 and 20 have means as 55 and 60 and variances as 16 and 25 respectively, then what would be the S.D of the combined sample size 50?

solution:

$$N1 = 30$$

$$N2 = 20$$

$$\bar{x}1 = 55$$

$$\bar{x}2 = 60$$
 $\sigma 1 = 4$

$$\sigma 1 = 4$$

$$\sigma$$
2 = 5

$$\bar{x}12 = \frac{N1\bar{x}1 + N2\bar{x}2}{N1 + N2} = \frac{30 \times 55 + 20 \times 60}{30 + 20} = 57$$

$$d1 = \bar{x}12 - \bar{x}1 = 57 - 55 = 2$$

$$d2 = \bar{x}12 - \bar{x}2 = 57 - 60 = -3$$

$$\sigma_{12} = \sqrt{\frac{N1(\sigma 1^2 + d1^2) + N2(\sigma 2^2 + d2^2)}{N1 + N2}}$$

$$= 5.06$$

10. When it comes to comparing two or more distribution, we consider

- a) Relative measures of dispersion
- b) Absolute measures of dispersion
- c) Both a) and b

- *d)* Either a) or b)
- 11. The most commonly used measure of dispersion is
 - a) Coefficient of variation
- b) Standard deviation

c) Range

- d) Quartile deviation
- 12. Which one is an absolute measure of dispersion?
 - *a)* Standard deviation
- b) Mean deviation

c) Range

d) All these measures

12	0 0	· · ·				
13.	Coeff	^c icient	Of 7	arıat	1011 19	3
10.		,,,,,,,	$\boldsymbol{\omega}_{j}$			1

- *a) Absolute measure*
- b) Relative measure

c) Both a) and b)

d) None of these

14. The square of standard deviation is known as:

a) Variance

- b) Mean deviation
- c) Standard deviation
- d) None of these

15. Which measure is based on only the central fifty per cent of the observations?

a) Mean deviation

- b) Quartile deviation
- c) Standard deviation
- d) All these measures

16. Which measure of dispersion is the quickest to compute?

a) Standard deviation

c) Mean deviation

b) Quartile deviation

d) Range.

17. Which measure of dispersion is based on the absolute deviations only?

a) Standard deviation

c) Quartile deviation

b) Mean deviation

d) Range.

18. Which measure of dispersion is based on all the observations?

a) Mean Deviation

c) Quartile deviation

b) Standard deviation

d) *a*) *and b*) *but not c*)

19. The appropriate measure of dispersions for open - end classification is

a) Standard deviation

c) Quartile deviation

b) Mean deviation

d) All these measures.

CORRELATION & REGRESSION

1. If for two variable x and y, the covariance, variance of x and variance of y are 40, 16 and 256 respectively, what is the value of the correlation coefficient?

Solution : cov(x, y) = 40

$$\sigma x = 4$$

$$\sigma y = 16$$

$$r = \frac{cor(n, y)}{\sigma n. 6y} = \frac{40}{4 \times 16} = 0.625$$

- 2. If cov(x, y) = 15, what restrictions should be put for the standard deviations of x and y?
 - a) No restriction,
 - *b)* The product of the standard deviations should be more than 15.
 - c) The product of the standard deviations should be less than 15.
 - *d)* The sum of the standard deviations should be less than 15.

Solution:
$$r = \frac{cor(x,y)}{\sigma n.6y} = \frac{15}{\sigma x.6y}$$

but r < 1

$$\therefore \sigma x. \sigma y > 15$$

- 3. If r = 0.6 then the coefficient of non-determination is
 - a) 0.4

c) 0.36

b) -0.6

Solution:

r = 0.6

coefficient of non – determination =
$$l - r^2 = l - (0.6)^2 = l - 0.36 = 0.64$$

For the following data, the coefficient of rank correlation is:

Rank in botany:

1

3

1

5

Rank in chemistry:

2

3

(a) 0.93

(b) 0.4

(c) 0.6

2

(d) None

1

1

Solution: *Rank in botany:*

3

1

Rank in chemistry:

2

1

3

-1

2

-1

 D^2

1

1

1

$$N = 5 \qquad \sum d^2 = 8$$

$$r = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6\times8}{5*24} = 0.6$$

- 5. If the sum of squares of difference of ranks, given by two judges A and B, of 8 students in 21, what is the value of rank correlation coefficient?
 - a) 0.7
- b) 0.65 c) -0.75
- d) 0.8

Solution: N = 8 $\sum d^2 = 21$

$$r = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 21}{8 \times 63} = 0.75$$

- 6. For 10 pairs of observations, No. of concurrent deviations was found to be 4. What is the value of the coefficient of concurrent deviation?

 - a) $\sqrt{0.2}$ b) $\sqrt{0.2}$ c) 1/3 d) -1/3.

$$m = n - 1 = 9$$

$$c = 4$$

Solution:
$$n = 10$$
 $m = n - 1 = 9$ $c = 4$ $r = \pm \sqrt{\pm \frac{(2c - m)}{m}} = \sqrt{\frac{-(2 \times 4 - 9)}{9}} = \frac{-1}{3}$

- 7. If u + 5x = 6 and 3y 7v = 20 and the correlation coefficient between x and y is 0.58 then what would be the correlation coefficient between u and v?
 - a) 0.58

c) -084.

b) -0.58

d) 0.84.

Solution: $b = \frac{-x}{u} = \frac{-5}{1} = -5$ $d = \frac{-y}{v} = \frac{-3}{-7} = \frac{3}{7}$

$$d = \frac{-y}{v} = \frac{-3}{-7} = \frac{3}{7}$$

rxy = 0.58

$$ruv = -rxy = -0.58$$

- 8. If coefficient of correlation between x and y is 0.46. Find coefficient of correlation between x and $\frac{y}{2}$
 - (a) 0.46
- (b) 0.92
- (c) -0.46

(d) -0.92

$$d = \frac{1}{2}$$

Solution:
$$b = 1$$
 $d = \frac{1}{2}$ $rx, \frac{y}{2} = +rxy = 0.46$

- 9. If the relation between x and u is 3x + 4u + 7 = 0 and the correlation coefficient between x and y is -0.6, then what is the correlation coefficient between u and y?
 - a) -0.6

c) 0.6

b) 0.8

d) -0.8

Solution:
$$b = \frac{-x}{u} = \frac{-3}{4}$$
 $d = 1$

$$d = 1$$

$$ruy = -rxy = -0.6 = 0.6$$

10. From the following data regarding the rainfall and the crop yield, estimated the yield when the rainfall I s 22 cms.

Y Yield

X Rainfall

(In kgs.)

(In cms.)

Average

508.4

26.7

S.D.

36.4

4.6

 $Correlation\ co-efficient = 0.52$

- *a*) 32.65
- b) 488.85
- c) 466.6
- d) 848.8

Solution: $\overline{x} = 26.7$

$$\bar{x} = 26.7$$

$$\bar{y} = 508.4$$

$$\sigma x = 4.6$$

$$\sigma y = 36.4$$

$$r=0.52$$

$$x = 22$$

$$byx = r x \frac{\sigma y}{\sigma x} = 0.52 x \frac{36.4}{4.6} = 4.1147$$

$$y = -19.3390 + 508.4 = 489.0609 \sim 488.85$$

11. From the following data regarding the rainfall and the crop yield, estimated the yield when the yield is 600 kg..

Y Yield

X Rainfall

(In kgs.)

(In cms.)

Average

508.4

26.7

S.D.

36.4

4.6

Correlation co-efficient = 0.52

- *a*) 32.65
- *b*) 32
- c) 36.6
- *d*) 30.25

$$bxy = 0.52 \times \frac{4.0}{36.4} = 0.06571$$

$$x - 26.7 = 0.657(91.6)$$

$$x = 6.0181 + 26.7 = 32.7181$$

- 12. If the regression line of y on x and that of x on y are given by y = 2x + 3 and 8x = y + 3respectively, what is the coefficient of correlation between x and y?
 - a) 0.5
- b) $-1/\sqrt{2}$ c) -0.5
- d) None of these.

Solution:

$$y = 2x + 3$$

$$8x = y + 3$$

$$byx = 2$$

$$x = \frac{y}{8} + \frac{3}{8}$$

$$x = \frac{y}{8} + \frac{3}{8}$$
 compare with $x = a + bY$ then $bxy = +1/8$

$$bxy = +1/8$$

$$r = \pm \sqrt{byx \times bxy} = \pm \sqrt{2 \times +1/8} = +\sqrt{+0.25} = 0.5$$

- 13. If 4y 5x = 15 is the regression line of y on x and the coefficient of correlation between x and y is 0.75, what is the value of the regression coefficient of x on y?
 - *a*) 0.45
- b) 0.9375
- c) 0.6
- d) None of these.

Solution:

$$bxy = 0.75$$

Line of y on x is :
$$4y - 5x = 15$$
 $4y = 15 + 5x$

$$4y - 5x = 15$$

$$4v = 15 + 5x$$

$$4 = \frac{15}{4} + \frac{5}{4}x \qquad byx = \frac{5}{4}$$

$$byx = \frac{5}{4}$$

$$r = \pm \sqrt{byx \times bxy}$$

$$r = \pm \sqrt{byx \times bxy} \qquad 0.75 = \sqrt{5/4} \times \sqrt{bxy}$$

$$\frac{0.75}{1.1180} = \sqrt{bxy}$$

$$0.4489 = bxy$$

- 14. Two random variables have the regression lines 3x+2y=26 and 6x+y=31. The coefficient of correlation is:
 - (a) -0.25
- (b) 0.5
- (c) -0.5

(d) 0.25

Solution:

$$3x + 2y = 26$$

$$2y = 26 - 3x$$

$$y = \frac{26}{2} - \frac{3x}{2}$$

$$byx = -3/2$$

$$6x + y = 31$$

$$6x = 31 - 4$$

$$x = \frac{31}{6} - \frac{1}{6}x$$

$$bxy = \frac{-1}{6}$$

$$r = \pm \sqrt{-3/2 \times -1/6}$$

$$r = -0.5$$

15. Given the regression equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x?

- a) 1^{st} equation
- b) 2nd equation
- c) both a) and b)
- d) none of these.

Solution:

$$2x + 5y = 26$$

$$5y = 20 - 2x$$

$$y = \frac{20}{2} - \frac{2}{2}x$$

$$byx = -2/5$$

$$r = \pm \sqrt{-2/5 \times -1/3}$$

$$r = -0.3651$$

$$6x + y = 31$$

$$6x = 31 - 4$$

$$x = \frac{13}{3} - \frac{1}{3}y$$

$$bxy = \frac{-1}{3}y$$

INSPIRE AGAINSMY

16. If y = a + bx, then what is the coefficient of correlation between x and y?

a) 1

c) 1 or -1 according as b > 0 or b < 0

b) – 1

d) None of these.

17. If the lines of regression is a bivariate distribution are given by x+2y=5 and 2x+3y=8, then the coefficient of correlation is:

- (a) 0.866
- (b) -0.666
- (c) 0.667
- (d) -0.866

Solution:

$$x + 2y = 5$$

$$2x + 3y = 8$$

$$x = 5 - 2y$$

$$3y = 8 - 2x$$

$$bxy = -2$$

$$y = \frac{8}{3} - \frac{2}{3}x$$

$$r = \pm \sqrt{-2 \times -2/3}$$

$$r = -1.1547$$

$$\therefore = \frac{1}{1,1547} = -0.8660$$

18. If the regression line of y and x and of x on y are given by 2x + 3y = -1 and 5x + 6y = -1 then the arithmetic means of x and y are given by

- a) **(1, -1)** b) (-1, 1) c) (-1, -1),
- d)(2,3)

Solution: *Solve both equation simultaneously*

19. Correlation analysis aims at:

- a) Predicting one variable for a given value of the other variable.
- b) Establishing relation between two variables.
- c) Measuring the extent of relation between two variables.
- *d*) *Both b*) *and c*).

20. Regression analysis is concerned with:

- a) Establishing a mathematical relationship between two variables.
- b) Measuring the extent of association between two variables
- c) Predicting the value of the dependent variable for a given value of the independent variable.
- d) Both a) and c)

21. Scatter diagram is considered for measuring:

- a) Linear relationship between two variables
- b) Curvilinear relationship between two variables.
- *c) Neither a) nor b).*
- *d) Both a) and b)*.

22. If the plotted points in a scatter diagram lie from upper left to lower right, then the correlation is

- a) Positive
- c) Negative,

b) Zero

d) None of these.

23. The correlation between shoe-size and intelligence is:

a) **Zero**

- c) Negative
- *b)* Positive
- *d)* None of these.

	correlation betw ying the brakes is		ın automobil	e and th	e distance travelled by it after		
a)	Negative	c) Zero					
<i>b</i>)	Positive	d) None of	these.				
25. Two	regression lines	always intersect at	the means.				
a)	True	b) False	c) E	Both	d) None		
26. The r	egression lines a	re identical if r is ea	qual to				
a)	+1	b) -1	c) <u>+</u> 1	d) 0			
27. Wha	t are the limits o	f the correlation co	efficient ?				
a)	No limit	c) 0 and 1,	including the l	limits,			
<i>b</i>)	– 1 and 1	d) -1 and 1	, including th	ıe limits.			
28. For f	inding correlatio	n between two attr	ibutes, we co	nsider :			
a)	Person's correla	Person's correlation coefficient,					
<i>b</i>)	Scatter diagram,						
c)	Spearman's rank correlation coefficient,						
d)	Coefficient of co	ncurrent deviations.	PING YOUR FUTUR	E 2			
29. For fause.	inding the degree	e of agreement abou	it beauty beta	ween two	judges in a Beauty Contest, we		
a)	Scatter diagram		c) Coeffici	ent of cori	relation		
<i>b</i>)	· ·	rank correlation,		•	current deviation.		
30. When		ncerned with the n	nagnitude of	the two	variables under discussion, we		
a)	Rank correlation	ı coefficient	c) (Coefficier	ıt of concurrent deviation		

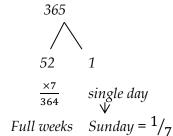
b) Product moment correlation coefficient d) a) or b) but not c).

PROBABILITY

- 1. A box contains 6 black and 4 white balls. Two balls are drawn at random from it, the probability that both the balls are black is
 - a) 1/2

- b) 1/3 c) 2/3 d) 1/4.

Solution: $\frac{B}{6} \frac{w}{4} = {}^{6}C_{2} / {}^{10}C_{2} = 15/45 = 1/3$


- A box contains 6 black and 4 white balls. three balls are drawn at random from it, probability that there are 2 white & one black ball is
 - a) 1/15
- b) 1/5 c) 2/15
- d) 4/15

Solution: B W

$$\frac{64}{12} = {}^{6}C_{1} \times {}^{4}C_{2} / {}^{10}C_{3} = \frac{6 \times 6}{120} = \frac{36}{120} = \frac{3}{10}$$

- 3. The probability that a leap year will have 53 Sundays is:
 - a) 1/7
- b) 2/7

Solution: *P*(53 Sunday in non-leap year)

P(53. Sundays in leap Year) = 3665Ź 2days $\bigvee_{Sunday = 2/7}^{4}$

- 4. A speaks truth in 60% of the cases and B in 90% of the cases. In what percentage of cases are they likely to contradict each other in stating the same fact?
 - 36% (a)
- (b) 42%
- (c) 54%
- (d)None of these.

Solution : P(A) = 0.6

$$P(A')=0.4$$

$$P(B) = 0.9$$

$$P(B')=0.1$$

$$P(A \& B') + P(B \& A'0 = [0.6 \times 0.1] + [0.9 \times 0.4] = 0.06 + 0.36 = 0.42 \times 100 = 42\%$$

- 5. Three persons A, B and C aim a target. The probabilities of their hitting the target are respectively 2/3, 1/4,1/2. What is the probability that the target will be hit?
 - a) 1/8
- b) 3/8
- c) 5/8
- *d*) 7/8

Solution : P(A) = 2/3

$$P(B) = \frac{1}{4}$$

$$P(C) = 1/2$$

$$P(A') = 1/3$$

$$P(B') = \frac{3}{4}$$

$$P(C') = 1/2$$

$$P(Target \ will \ be \ hit) = 1 - (target \ will \ not \ be \ hit) = 1 - P(A' * B' * C') = 1 - (1/3x \ 3/4x \ 1/2)$$

= 1 - (1/8) = 7/8

- 6. An example of statistics is given to three students A, B and C. Their probabilities of solving the example correctly are respectively 1/2, 3/4, 1/4 the probability that the example will be solved is
 - a) 20/32
- b) 27/32
- c) 28/32
- d) 29/32

Solution : P(A) = 1/2

$$P(A) = 1/2$$

$$P(A') = \frac{1}{2}$$

$$P(B) = \frac{3}{4}$$

$$P(B') = 1/4$$

$$P(C) = \frac{1}{4}$$
 $P(C') = \frac{3}{4}$

$$P$$
 (solving the problem) = 1 - P (not solving problem) = 1 - $[\frac{1}{2}x\frac{1}{4}x\frac{3}{4}]$

- = 1 3/32
- = 29/32
- 7. The present age of a person A is 35. The odds in favour of his living upto the age of 65 is 3:2. The age of another person B is 40 at present. The odds against his living upto the age of 70 is 4:1. The probability that atleast one of them will be alive after 30 years is
 - a) 17/30
- b) 17/25
- c) 18/72
- d) 7/25

Solution : P(A) = 3/5

$$P(A') = 2/5$$

P(B) = 4/5

$$P(B') = 4/5$$

$$=I-8/25$$

8. For a 60 years old person living upto the age of 70, it is 7:5 against him and for another 70 years old person surviving upto the age of 80, it is 5:2 against him. The probability that only one of them will survive for 10 years more is:

- a) 15/42
- b) **39/84**
- c) 49/84
- d) 40/84

Solution : P(A) = 5/12

$$P(A') = 7/12$$

$$P(B) = 2/7$$

$$P(B') = 5/7$$

$$P(AB')+P(BA') = \frac{5}{12} \times \frac{5}{7} + \frac{2}{7} \times \frac{7}{12} = \frac{35}{84} + \frac{14}{84} = \frac{39}{84}$$

A and B are mutually exclusive events of an experiment. If P(not A)=0.65, 9.

 $P(A \cup B)=0.65$ and P(B)=P, then the value of p is

- (a) 0.45
- **(b)** 0.30
- 0.25 (c)
- (d) None of these.

Solution : $P(A^1) = 0.65$, P(AUB) = 0.65, P(B) = P, P(A) = 0.35

A & B are mutually exclusive then $P(A \cap B) = 0$

$$:. P(AUB) = P(A) + P(B) - P(A \cap B)$$

$$0.65 = 0.35 + P(B)-0$$

$$p(B) = 0.30$$

10. Given that P(A) = 1/3, P(B) - 1/4, $P(A \mid B) = 1/6$, the probability $P(B \mid A)$ is equal to :

- a) 4/8
- b) 3/8
- c) 2/8
- d) 1/8

Solution: P(A)=1/3 P(B)=1/4, P(A/B)=1/6, P(B/A)=?

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
 : $1/6 = \frac{P(A \cap B)}{1/4}$

:.
$$1/6 = \frac{P(A \cap B)}{1/4}$$

$$1/6 \ x^{1/4} = P(A \cap B)$$

$$1/24 = P(A \cap B)$$

$$P(B/A) = \frac{P(A \cap B)}{P(A)} = \frac{1/24}{1/3} = 3/24 = 1/8$$

11. Given that P(A) = 1/3, P(B) = 3/4 and P(AUB) = 11/12, the probability, P(B/A) is

- a) 1/6
- b) 4/9
- c) 1/2
- d) 1/4

Solution:

$$P(A) = 1/3$$
, $P(B) = 3/4$, $P(AUB) = 11/12$, $P(B/A) = ?$

$$P(AUB) = P(A) + P(B) - P(A \cap B)$$

$$11/12 = 1/3 + 3/4 - P(A \cap B)$$

$$11/12 = 13/12 - P(A \cap B)$$

$$11/12-13/12 = -P(A \cap B)$$

$$-2/12 = -P(A \cap B)$$

:.
$$P(A \cap B) = 2/12$$

$$P(B/A) = \frac{^{2}/_{12}}{^{1}/_{3}} = ^{2}/_{12} \times ^{3}/_{1} = ^{2}/_{4} = ^{1}/_{2}$$

- 12. For a random variable x, E(x) = 2, the value of the E(2x + 3) is
 - *a*) 7
- b) 5
- c) 4
- d) 3

Solution :
$$mean = E(x) = 2$$
 $E(2x+3) = [2(2)+3] = 7$

$$E(2x+3) = [2(2)+3] = 7$$

- 13. From a pack of cards, two are drawn, the first being replaced before the second is drawn. The chance that the first is a diamond and the second is king is:

 - a) $\frac{1}{52}$ b) $\frac{3}{2704}$ c) $\frac{4}{13}$ d) $\frac{3}{52}$

Solution:
$$\frac{13_{c_1} \times 4_{c_1}}{52_{c_1} \times 52_{c_1}} = \frac{52}{2704} = 1/52$$

- 14. The theory of compound probability states that for any two events A and B:
 - a) $P(A \cap B) = P(A) \times P(B)$
 - b) $P(A \cap B) = P(A) \times P(B/A)$
 - c) $P(A \cup B) = P(A) \times P(B/A)$
 - d) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 15. If $P(A \cap B) = P(A) \times P(B)$, then the events are:
 - a) Independent events.
 - b) Mutually exclusive events
 - c) Exhaustive events
 - d) Mutually inclusive events.

INDEX NUMBER

1. Find the index number by the method of relatives (using arithmetic mean) from the following data

Commodity	Base Price	Current Price
Rice	35	42
Wheat	30	35
Pulse	40	38
Fish	107	120

a. 110

b. 115

c. 120

d. 125

Solution:

Po	Pn	Pn/Po
35	42	1.2
30	35	1.66
40	38	0.95
107	120	1.121
212	235	4.4381

$$Pon = \frac{\sum_{Po}^{Pn} \times 100}{N} = \frac{4.4381}{4} \times 100 = 110.95$$

Refer data for the Question

Commodity	1979		1980		
	Price in Rs.	Quantity In	Price in Re.	Quantity	
		Kg.			
A	20	8	40	6	
В	50	10	60	5	
С	40	15	50	10	
D	20	20	20	15	

2. Which of the following represent Paasche's price index number

a. 125.23 b. 124.70 c. 124.96 d. 125.95

Po	Qo	Pn	Qn	PnQo	PoQo	PnQn	PoQn
20	8	40	6	320	120	240	120
50	10	60	5	600	250	300	250
40	15	50	10	750	400	500	400
20	20	20	15	400	400	300	300
				2070	1660	1340	1070

Solution: *Paasche's*
$$=\frac{\sum Pn \times Qn}{\sum Po \times Qn} \times 100 = \frac{1340}{1070} \times 100 = 125.95$$

3. Which of the following represent Laspeyer's Price index Number

a. 125.23

b. 124.70

c. 124.96

d. 125.95

Solution:
$$\frac{\sum Pn \times Qn}{\sum Po \times Qu} \times 100 = \frac{2070}{1660} \times 100 = 124.698$$

4. Which of the following represent Fisher's Price index Number

a. 125.23 b. 124.70 c. 124.96 d. 125.95

Solution =
$$\sqrt{124.70 \times 125.95} = 125.32$$

5. Which of the following represent Marshall Edgeworth Price Index Number

a. 125.23 b. 124.70 c. 124.96 d. 125.95

1705

$$\frac{1705}{1365} \times 100 = 124.90$$

6. Laspeyre's and Paasche's method _____ time reversal test

1365

a) Satisfy

b) Do not satisfy

c) Are

d) Are not.

7.	There is no such thing as un	ıweighted index nı	umbers				
	a) False b) Tru	c) Bo	th	d) None.			
	Theoretically, G.M. is the be mostly the A.M. is used.	est average in the	construction	on of index nos. but in practice,			
	a) False b) Tr ı	ie	c) both	d) none			
9.	Laspeyre's or Paasche's or	the Fisher's ideal a	index do no	t satisfy :			
	a) Time Reversal Test	c) Circular I	c) Circular Test				
	b) Unit Test	d) None.	d) None.				
10.	The test of shifting the base	e is called :					
	a) Unit Test	c) Circular	c) Circular Test				
	b) Time Reversal Test	d) None	d) None				
11.	The no. of test of Adequacy	is:					
	a) 2 b) 5	c) 3	d) 4	1			
12.	The best average for constr	ucting an index nu	mbers is				
	a) Arithmetic Mean	c) Geometri	c) Geometric Mean				
	b) Harmonic Mean	d) None of th	d) None of these.				
13.	The time reversal test is sa	tisfied by					
	a) Fisher's index number,	c) Laspeyre's	c) Laspeyre's index number				
	b) Paasche's index number	d) None of th	d) None of these.				
14.	Paasche index is based on						
	a) Base year quantities.	c) Average oj	f current and	base year.			
	b) Current year quantitie	s. d) No	one of these.				
15.	Fisher's ideal index number	r is					
	a) The Median of Laspeyre'	s and Paascher's inde:	x number.				
	b) The Arithmetic Mean of) The Arithmetic Mean of Laspeyre's and Paasche's.					
	c) The Geometric Mean o	f Laspeyre's and Pa	asche's				
	d) None of these.						

- 16. Net monthly salary of an employee was Rs. 3000 in 1980. The consumer price index number in 1985 is 250 with 1980 as base year. If he has to be rightly compensated, then the Dearness Allowance to be paid to the employee is:
 - a) Rs. 4,200
- b) Rs. 4,500
- c) Rs. 4,900
- d) Rs. 7,500.

Solution: Dearress Allowance

1980	1985

7500-3000=4500

- 17. P_{10} is the index for time:
 - a) **0 on 1**
- b) 1 on 0
- c) 1 on 1
- d) 0 on 0

18. Shifted Price Index

Original Price Index

=Price index of the year on which x 100:it has to be shifted.

- a) True
- b) False
- c) Partly True d) Partly False.
- 19. Consumer price index is commonly known as:
 - a) Chain Based Index

c) Wholesale price index

b) Ideal Index

- d) Cost of living index.
- 20.20. Wholesale Price Index (WPI) is given by:
 - a) Marchall Edgeworth Index
- c) Paasche's Index

b) Laspeyre's Index

d) None of the above.

THEOROTICAL DISTRIBUTION

- 1. What is the probability of making 3 correct guesses in 5 True False answer type questions?
 - a) 0.4156

c) 0.3125

b) 0.32

d) 0.5235

Solution: N= 5

x = no of correct guesses = 0,1,2,3,4,5

$$P=1/2, q=1/2$$

$$P(3 \ correct \ guess) = P(x=3) = {}^{5}C_{3} \times [\frac{1}{2}]^{3} \times [\frac{1}{2}]^{2} = 10x0.125x0.25 = 0.3125$$

- 2. The Interval (μ 38, μ + 38) covers :
 - a) 95% area of normal distribution
 - b) 96% area of normal distribution
 - c) 99% area of normal distribution
 - d) All but 0.27% area of a normal distribution.
- 3. The overall percentage of failure in a certain examination is 0.30. What is the probability that out of a group of 6 candidates at least 4 passed the examination?
 - a) 0.74

c) 0.59

b) 0.71

d) 0.67.

Solution: P(x=4,5,6)

$$P(x = 4) + P(x = 5) + P(x = 6)$$

$${}^{6}c_{4} x (0.7)^{4} x (0.3)^{2} + {}^{6}c_{5} x (0.7)^{3} x (0.3)^{1} + {}^{6}C_{6} x (0.7)$$

$$= 0.3241 + 0.3025 + 0.1176 = 0.7443$$

4. A manufacturer, who produces medicine bottles, finds that 0.1% of the bottles are defective. The bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producer of bottles. Using Poisson distribution, find how many boxes will contains at least two defectives:

(Given $e^{-0.5} = 0.6065$)

- *a*) 7
- b) 13
- c) 9
- d) 11

Solution: N=np=500x0.1%=0.5

$$P(at least 2 are detective) = P(x=2,3,4,5......) = 1-P(x=0)-P(x=1)$$

$$= 1 - \frac{e^{-0.5} \times 0.5^{0}}{0!} - \frac{e^{-0.5} \times 0.5^{0}}{1!}$$

$$= 1 - 0.6065 - 0.30325 = 0.69675 = 0.09025 \times 100 = 9\%$$

- 5. Suppose that weather records show that on an average 5 out of 31 days in October are rainy days. Assuming a binomial distribution with each day of October as an independent trial, then the probability that the next October will have at most three rainy days is:
 - a) 0.4403
- b) 0.2403
- c) 0.3403
- d) None.

Solution: *P*(*at most 3 rainy days*)

$$x = No \ of \ rainy \ days = 0,1,2,.....31$$

 $n = 31$ $p = 5/31 = 0.1612$ $q = 26/31 = 0.8388$
 $P(x = 0,1,2,3)$
 $= {}^{31}c_0 \ x \ 0.1612^0 \ x \ 0.8388^{31} + {}^{31}c_1 \ x \ 0.1612^1 \ x \ 0.8388^{30}$
 $+ {}^{31}c_2 \ x \ 0.1612^4 \ x \ 0.8388^{29} + {}^{31}c_3 \ x \ 0.1612^3 \ x 0.8388^{28}$
 $= 1x1x0.0042 + 31x0.1612x$

6. If 5% of the families in Kolkata do not use gas as a fuel, what will be the probability of selecting 10 families in a random sample of 100 families who do not use gas as fuel?

(Given : $e^{-5} = 0.0067$)

- a) 0.038
- b) 0.026
- c) 0.048d) 0.018

Solution: P(10 Families Who do not use gas) = P(x = 10)

$$m = np = 100x0.05 = 5$$

$$P(x=10) = \frac{e^{-m} \times m^x}{x!} = \frac{0.0067 \times 5^{10}}{10!} = \frac{65429.6875}{3628806} = 0.0180$$

- 7. If 15 dates are selected at random, then the probability of getting two Sundays is:
 - a) 0.29
- b) 0.99
- c) 0.49 d) 0.39

Solution: n=15, P=1/7, q=6/7

x=*no of Sundays*

$$P(2 \text{ Sundays}) = P(x = 2)$$
 $F(x) = {}^{15}C_2 x \left[\frac{1}{7}\right]^2 \times \left[\frac{6}{7}\right]^{13} = 0.288$

8. In a certain manufacturing process, 5% of the tools produced turn out to be defective. Find the probability that in a sample of 40 tools, at most 2 will be defective:

(Given : $e^{-2} = 0.135$)

- a. 0.555
- b. 0.932
- c. 0.785 d. 0.675.

Solution:

$$P=0.05$$

use formula for poisson distribution

np = m 40 x 0.05=2

P(at most 2) = P(x=0) + P(x=1) + P(x=2) = 2.7182

9. Examine the validity of the following: Mean and standard Deviation of a binomial distribution are 10 and 4 respectively.

- a) Not valid
- b) Valid
- *c) Both a & b)*
- *d) Neither a) nor b)*.

Solution: mean = 10

variance = 16

but mean is always greater than variance

10. An experiment succeeds twice as often as it fails. What is the probability that in next five trials there will be at least three successes?

- a) $\frac{33}{81}$ b) $\frac{46}{81}$ c) $\frac{64}{81}$ d) $\frac{25}{81}$ SHAPING VOUR FUTURE

Solution: P=2q

$$P=2q$$

P=2(1-P)

$$P = 2 - 21$$

3P = 2

P = 2/3

$$\therefore q = 1/3$$

$$n=5$$

$$P(x=3,4,5) = {}^{5}C_{3} x \left[\frac{2}{3}\right]^{3} \times \left[\frac{1}{3}\right]^{2} + {}^{5}C_{4} x \left[\frac{2}{3}\right]^{4} \times \left[\frac{1}{3}\right]^{1} + {}^{5}C_{5} x \left[\frac{2}{3}\right]^{5} \times \left[\frac{1}{3}\right]^{0} = 64 / 81$$

11. In Poisson Distribution, probability of success is very close to:

- a) -1
- b) 0
- c) 1
- d) Non

12. If the mean of a poisson variable X is 1, what is P(x = at least one)?

- *a*) 0.456
- b) 0.821
- c) 0.632d) 0.254

Solution : m = 1 P(X = at least one) = P(X = 1, 2, 3, 4...) = 1 - P(x = 0)

=1-
$$\frac{e^{-m} \times m^x}{x!}$$
 = 1 - $\frac{e^{-1} \times (1)^0}{0!}$ 1 - $\frac{1}{2.7182} \times \frac{1}{1}$ = 80.3632 = 1-0.3678 = 0.632

13. What is the probability of getting 3 heads if 6 unbiased coins are tossed simultaneously?

- *a*) 0.3125
- *b*) 0.25 *c*) 0.6875
- d) 0.50

Solution: $P(X=3) = {}^{6}C_{3} \times (0.5)^{3} \times (0.5)^{3} = 20 \times 0.125 \times 0.125 = 0.3125$

14. In a poisson distribution P(x = 0) = P(X = 2). Find E(x).

- a) $\sqrt{2}$
- b) 2
- c) -1
- d) 0

P(x=0) = P(x=2)**Solution:**

$$\frac{e^{-m} \times m^0}{0!} = \frac{e^{-m} \times m^2}{2!}$$

$$\frac{1}{1} = \frac{m*m}{2}$$

$$m^2=2$$

$$m = \sqrt{2} = mean = E(x)$$

15. For binomial distribution E(x) = 2, V(x) = 4/3. Find the value of n.

- *a*) 3
- b) 4
- c) 5
- d) 6

Solution: E(x) = 2 = np

$$V(x) = 4/3$$

Npq=4/3 put np=2

$$q=4/3 \times 2 = 2/3$$
 $p = 1/3$

$$p = 1/3$$

16. What are the parameters of binomial distribution?

- *a*) *n*
- *b*) *p*
- c) Both n and p
- d) None of these.

17. If standard deviation of a poisson distribution is 2, then its

- a) Mode is 2
- b) Mode is 4
- c) Modes are 3 and 4
- d) Modes are 4 and 5

18. The area under the Normal curve is:

- a) 1
- b) 0
- c) 0.5
- *d*) -1