CA PRANAV CHANDAK

Properties of Ratio

Θ Order of the terms in a ratio is important.
Θ Ratio is written in simplest form (lowest form).
[Ex: $3: 4$ is not same as 4:3].
[Ex: $\left.12: 16=\frac{12}{16}=\frac{3 \times 4}{4 \times 4}=\frac{3}{4}=3: 4\right]$
Θ No impact when terms of ratio are multiplied or divided by same (non-zero) number.
Θ Inverse Ratio of $a: b=b: a[P C$ Note: Product of a ratio with its inverse Ratio $=1]$
Θ Compound Ratio of two ratios $a: b \& c: d=\frac{\boldsymbol{a}}{\boldsymbol{b}} \times \frac{\boldsymbol{c}}{\boldsymbol{d}}=\frac{\mathbf{a x c}}{\mathbf{b x d}}$
[Multiplication of Ratios]
Q. Ratio comp
(a) $(a+b): 1$
(b) $(a-b): 1$
and a^{2}
(c) $1: 1$
(d) None
Θ Duplicate Ratio of $a: b=a^{2}: b^{2}$ \& Triplicate Ratio of $a: b=a^{3}: b^{3}$
Θ Sub-duplicate Ratio of $a: b=\sqrt{a}: \sqrt{b}$ \& Sub-Triplicate Ratio of $a: b=\sqrt[3]{a}: \sqrt[3]{b}$
Q. If $(4 x+3):(9 x+10)$ is the Triplicate Ratio of $3: 4$, then the value of x is
(a) 9
(b) 7
(c) 6
(d) 5
Q. Ratio compounded of Duplicate Ratio of 4: 5, Triplicate of $1: 3$, Sub Duplicate Ratio
of 81: 256 and Sub Triplicate Ratio of $125: 512$ is
(a) $4: 512$
(b) $3: 32$
(c) $1: 12$
(d) 1:120
Q. $p: q$ is a sub-duplicate ratio of $p-x^{2}: q-x^{2}$, then $x^{2}=$
(a) $\frac{p}{p+q}$
(b) $\frac{q}{p+q}$
(c) $\frac{p q}{p q}$
(d) $\frac{p q}{p+q}$
Θ If original quantity increases or decreases in the ratio $a: b$, then

$$
\text { New Quantity }=\text { Original Quantity } \times \frac{b}{a}
$$

Q. Mr. PC weighs 56.7 kg . If he reduces his weight in the ratio 7: 6, find his new weight.

Class Note:

Number $=\mathbf{7 2}$ Ratio $=\frac{45}{27}=\frac{5}{3}$ Part 1 = 45 Part 2 = 27		$\frac{5 \times 9}{3 \times 9}$ [Common]

- To Calculate original numbers, Most Imp Step is to find out "Common".
Common $=\frac{\text { Total of Numbers in Ratio }}{\text { Sum of Ratios }}=\frac{72}{8}=9$
Q. Two numbers whose sum is 72 are in the ratio 5:3. Find the numbers.
First Term $=5 \times 9=45$
Second Term $=3 \times 9=27$
Q. Ratio of the number of boys to number of girls in a school of 1,200 Students is $7: 5$. If 20 boys are newly admitted in the school, find how many new girls may be admitted so that above ratio changes to $4: 3$.
(a) 40
(b) 140
(c) 60
(d) 58

CONTINUED RATIO \Rightarrow A:B:C:D

	Question Asked	Method to Use
1	A:B:C:D	Use Option Method
2	A:D	$\frac{A}{D}=\frac{A}{B} \times \frac{B}{C} \times \frac{C}{D}$
3	A:C	$\frac{A}{C}=\frac{A}{B} \times \frac{B}{C}$
4	B:D	$\frac{B}{D}=\frac{B}{C} \times \frac{C}{D}$

Q. If $2 A=3 B \& 4 B=5 C$, then $A: C$ is
(a) $4: 3$
(b) $15: 8$
(c) $8: 15$
(d) $3: 4$
Q. If $a: b=3: 4$, value of $(2 a+3 b):(3 a+$
$4 b)=--$.
(a) $18: 25$
(b) $8: 25$
(c) 17:24
(d) None
Q. $1 f \frac{a}{3}=\frac{b}{4}=\frac{c}{7}$, then $\frac{a+b+c}{c}=$ \qquad
(a) 7
(b) 2
(c) $1 / 3$
(d) $1 / 5$
Q. $A: B=2: 3 ; B: C=4: 5 ;$ \& $C: D=6: 7$, then $A: B: C: D=$
(a) $16: 22: 30: 35$
(b) $16: 24: 15: 35$
(c) $16: 24: 30: 35$
(d) 18:24:30:35
Q. If $A: B=2: 3, B: C=4: S, C: D=6: 7 ; A ; D=$
(a) $35: 16$
(b) $16: 35$
(c) $2: 7$
(d) None

Proportion = Equality of two ratios a, b, c, d are in proportion
a : b::c:d

$$
a: b=c: d
$$

$$
\frac{\mathrm{a}}{\mathrm{~b}}=\frac{\mathrm{c}}{\mathrm{~d}}
$$

Product of means $=$ Product of extremes

$$
b \times c=a \times d
$$

Continuous Proportion [3 Terms]

$\Theta I f \frac{a}{b}=\frac{b}{c}$, then $b^{2}=a c ; \quad b=\sqrt{a c}$
a $\rightarrow 1^{\text {st }}$ proportional;
$\mathrm{b} \rightarrow$ Mean proportional between a \& c;
c $\rightarrow 3^{\text {rd }}$ proportional
$(\text { Mean Proportional })^{2}=1^{\text {st }}$ Proportional $\times 3^{\text {rd }}$ Proportional
Q. If b is mean proportion between $a \& c$, then mean proportion betn $\left(a^{2}+b^{2}\right) \&\left(b^{2}+c^{2}\right)$ is
(a) $b(a+c)$
(b) $a(b+c)$
(c) $c(a+b)$
(d) $a b c$
Θ If $\frac{a}{b}=\frac{c}{d}=\frac{e}{f} \ldots \ldots . .=\frac{a+c+e \ldots \ldots}{b+d+f \ldots \ldots}$
Addendo
$=\frac{a-c-e \ldots \ldots}{b-d-f \ldots . .}=$ Original Ratio
subtrahendo
Q. If $a: b=c: d=2.5: 1.5$, what are the values of (i) ad: $b c \&$ (ii) $a+c: b+d$?

DIRECTLY PROPORTION

INVERSELY PROPORTION

$a \& b$ are directly proportional $\Rightarrow a \uparrow, b \uparrow \quad \& a \downarrow, b \downarrow \quad a \& b$ are inversely proportional $\Rightarrow a \uparrow, b \downarrow \quad \& a \downarrow, b \uparrow$

Expressed as $a \propto b$	Mathematically $a=k \cdot b$	Expressed as $a \propto \frac{1}{b}$	Mathematically $a=\frac{k}{b}$

PC Note: Calculate ' K ' using one set of given value of $x \& y$. Put value of ' K ' \& given variable to calculate unknown.
Q. x varies inversely as y^{2}. Given that $y=2$ for $x=1$. Value of x for $y=6$ will be
(a) 3
(b) 9
(c) $1 / 9$
(d) $-1 / 9$
(0)8888111134 | 8888111034 www.pranauchandak.com

CA PRANAV CHANDAK RPLI - Revision

LAWS OF INDICES

1. $a^{0}=1$	Ex: $5^{0}=1$
2. $a^{m} \times a^{n}=a^{m+n}$	Ex: $3^{2} \times 3^{1}=3^{2+1}=3^{3}$
3. $a^{m} \div a^{n}=a^{m-n}$	Ex: $3^{2} / 3^{1}=3^{2-1}=3^{1}$
4. $\left(a^{m}\right)^{n}=a^{m n}$	Ex: $\left(3^{2}\right)^{2}=3^{2 \times 2}=3^{4}$
5. $(a \cdot b)^{m}=a^{m} \cdot b^{m}$	Ex: $(3 \cdot 2)^{2}=3^{2} \cdot 2^{2}$
6. $(a / b)^{m}=a^{m} / b^{m}$	Ex: $(4 / 2)^{2}=4^{2} / 2^{2}$
7. $a^{-m}=\frac{1}{a^{m}} \& \frac{1}{a^{-m}}=a^{m}$	Ex: $x^{-1 / 4}=1 / x^{1 / 4}$
8. $x^{a}=x^{b}$ then $a=b$	Ex: $3^{x}=9 ; 3^{x}=3^{2 ;} x=2$
9. $x^{a}=y^{a}$ then $x=y$	Ex: $a^{3}=27 ; a^{3}=3^{3} ; a=3$

Q. $\left[x^{(-3)} \cdot y^{(-4)}\right] \times\left(x^{4} \cdot y^{3}\right)=$
(a) 1
(b) $\frac{x}{y}$
(c) $\frac{y}{x}$
(d) 0
Q. $\frac{2^{m+1} \cdot 3^{2 m-n} \cdot 5^{m+n} \cdot 6^{n}}{6^{m} \cdot 10^{n+2} \cdot 15^{m}}=$
(a) 1
(b) $\frac{1}{50}$
(c) $\frac{1}{9}$
(d) 0
Q. Value of $\frac{1}{(216)^{-\frac{2}{3}}}+\frac{1}{(256)^{-\frac{3}{4}}}+\frac{1}{(32)^{-\frac{1}{5}}}$
(a) 102
(b) 105
(c) 107
(d) 109
Q. $\sqrt{a^{3 / 4} \cdot b^{2 / 3} \cdot c^{4}} \div \sqrt[3]{a^{6} \cdot b^{-3} \cdot c^{6}}$
$\begin{array}{llll}\text { (a) } a^{-13 / 8} b^{4 / 3} & \text { (b) } a^{-1 / 8} b^{1 / 3} & \text { (c) } a^{-8} b^{3} & \text { (d) } 1\end{array}$
Q. $\left(x^{2^{n-1}}+y^{2^{n-1}}\right) \cdot\left(x^{2^{n-1}}-y^{2^{n-1}}\right)=$
$\begin{array}{ll}\text { (a) } x^{2^{n}}-y^{2^{n}} & \text { (b) } x^{2}-y^{2}\end{array}$
(c) $x^{a}-y^{b}$
(d) None

Some Useful Results

$\Theta a^{1 / n}=\sqrt[n]{a} \quad \& \quad a^{m / n}=\left(a^{m}\right)^{1 / n}=\sqrt[n]{a^{m}}$
$\Theta \sqrt{a \sqrt{a \sqrt{a \sqrt{a \ldots \infty}}}}=\mathbf{a}$
Θ If $x=a^{1 / 3}-a^{1 / 3}$, then $\left(x^{3}+3 x\right)=(a-1 / a)$
Θ If $x=a^{1 / 3}+a^{1 / 3}$, then $\left(x^{3}+3 x\right)=(a+1 / a)$
Θ If $a^{x} b^{y}=a^{m} b^{n}$, then $x=m \& y=n$
Q. If $2^{x}=\sqrt[3]{32}$ then $x=$
(a) 5
(b) 3
(c) $3 / 5$
(d) $5 / 3$
Q. If $x=7^{1 / 3}+7^{-1 / 3}$, then $7 x^{3}-21 x=$
(a) 49
(b) 50
(c) 48
(d) 51
Q. Find ' b ' if $12^{2 b+4}=3^{3 b} \times 4^{b+8}$
Θ If $a^{x}=k$, then $a=k^{1 / x}$ \qquad $\rightarrow \underline{\text { Method }} \Rightarrow$ Used when more than 2 variables are equal.

Type 1-Condition is expressly given in the question Q. If $a p=b a=c^{r}=d^{s} \& a b=c d$; then $\frac{1}{p}+\frac{1}{q}-\frac{1}{r}-\frac{1}{s}=$

Type 2 - Condition is not given in question (but implied) Q. If $2^{a}=3^{b}=(12)^{c}$ then $\frac{1}{c}-\frac{1}{b}-\frac{2}{a}=$ \qquad
(a) $1 / a$
(b) $1 / b$
(c) 0
(d) 1
(a) 1
(b) 0
(c) 2
(d) None

BASIC FORMULAE

$(a+b)^{2}=a^{2}+b^{2}+2 a b$	$(a+b)^{3}=a^{3}+b^{3}+3 a b(a+b)$	$a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$
$(a-b)^{2}=a^{2}+b^{2}-2 a b$	$(a-b)^{3}=a^{3}-b^{3}-3 a b(a-b)$	$a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$
$a^{2}-b^{2}=(a+b)(a-b)$	$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$	
	If $(a+b+c)=0$, then $a^{3}+b^{3}+c^{3}=3 a b c$	If $a^{1 / 3}+b^{1 / 3}+c^{1 / 3}=0$, then $(a+b+c)^{3}=27 a b c$

CA PRANAV CHANDAK
 RPLI - Reuision

LOGARITHMS

Transformation Rule \Rightarrow If $a^{x}=b$ then $\log _{a} b=x$

Exponential Form	Logarithmic Form	Read as
$2^{4}=16$	$\log _{2} 16=4$	\log of 16 to the base $2=4$
$10^{3}=1000$	$\log _{10} 1000=3$	\log of 1000 to the base $10=3$
$3^{-4}=\frac{1}{81}$	$\log _{3} \frac{1}{81}=-4$	\log of $\frac{1}{81}$ to the base $3=-4$
$100^{1 / 2}=10$	$\log _{100} 10=1 / 2$	\log of 10 to the base 100 is $1 / 2$

Mentos Zindagi:

- Log apne side me positive logo ko hi rakhte hai [a \& b should be positive; $a \& b>0 ; a \neq 1$]
- Log ' x ' ko apne se dur rakhte hai [Therefore ' x ' should be on other side of Log]
- If NO BASE is given in the question, it is always taken as 10 [In this chapter]
- Base of Log > I [If Base $=1$, then Value of b will always be I (1 x$).]$
- Number (b) >0 [Log $0 \rightarrow$ Does not Exist.]

LAWS OF LOGARITHMS			Values of Log (Base 10)
	$\left[\right.$ Log of any number to same base $=1\left(\right.$ Since $\left.\left.a^{\prime}=a, \log _{a} a=1\right)\right]$		- $\log 1=$
2	[Because since base is not given, it is taken as 10]		- $\log 2=0.3010$
3	$\left[\log\right.$ of 1 to any Base $=0 ;\left(\right.$ Since $\left.\left.a^{0}=1, \log _{a} 1=0\right)\right]$		
4	$\log M+\log N=\log (M \times N)$	[PC Note: $\log M+\log N \neq \log (M+N)]$	$\log 3=0.4771$
	Q. $\log x+\log X^{2}=\log x \cdot x^{2}=\log x^{3}$	Q. Value of $\log \frac{\mathrm{a}^{\mathrm{n}}}{\mathrm{b}^{\mathrm{n}}}+\log \frac{\mathrm{b}^{\mathrm{n}}}{\mathrm{c}^{\mathrm{n}}}+\log \frac{\mathrm{c}^{\mathrm{n}}}{\mathrm{a}^{\mathrm{n}}}=$	- $\log 4=$
4	$\log M-\log N=\log (M / N) \quad[P C$ Note: $\log (M-N) \neq \log M-\log N]$		$\log 5=$
	$\text { Q. } \log 32 / 4=\log 32-\log 4$	Q. $\log (\log \times 2)-\log (\log x)=$	- $\log 6$
	Master Question: If $\log _{10} y=1+2 \log _{10} x-\log _{10} 2$; then value of $\frac{y z}{x^{2}}$ is		50
5	Log $\left(M^{N}\right)=$ N. Log $M \quad\left[P C\right.$ Note: $\left.(\log M)^{N} \neq N . \log M\right]$		
	Q. $\log 25=\log 5^{2}=2 \cdot \log 5$	Q. If $2 \log x=4 \log 3$, then $x=$	
6	$\log _{N} M^{a}=\left(a \times \frac{1}{b}\right) \times \log _{N} M$		- $\log 9=0$ - $\log 10=1$
	- Jo Number ka Log nikalna hai uska power "jaisa ka waise" bahar aayega. - Base ka power "reciprocal" me bahar aayega.		
	Q. $\log _{4} 8=$		
8	$\log _{N} M=\frac{\log M}{\log N}$ [Base Changing Rule.]		Use in Questions of Log$\begin{aligned} & 1=\log 10 \\ & 2=\log 100 \end{aligned}$
	$\text { Q. } \log _{4} 8=\frac{\log _{2} 8}{\log _{2} 4}=\frac{3 \log _{2} 2}{2 \log _{2} 2}=\frac{3}{2}$	Q. $\frac{\log _{8} 17}{\log _{9} 23}-\frac{\log _{2 \sqrt{2}} 17}{\log _{3} 23}=\ldots \ldots$.	
9	$\log _{c} A=\log _{B} A \times \log _{c} B$		$\begin{aligned} & 3=\log 1000 \\ & 4=\log 10,000 \end{aligned}$
	Q. Value of $\log _{3} 2 . \log _{4} 3 . \log _{5} 4 \ldots \log _{15} 14 . \log _{16} 15=$ Q. If Loge 2. Logb $625=$ Log1016. Loge10, then $b=$ \qquad		

⑧8888111134 | 8888111034 www.pranauchandak.com

Q. Given that $\log 2=0.3010, \log _{3}=0.4771$, The value of $\log _{8} 81$ is \qquad
(a) $\frac{9542}{4515}$
(b) $\frac{9442}{4515}$
(c) $\frac{4515}{9442}$
(d) None
Q. Log 0.0001 to the base $0.1=$ \qquad (c) $1 / 4$
(d) None
Q. If $\frac{\log _{8} 17}{\log _{9} 23}-\frac{\log _{2 \sqrt{2}} 17}{\log _{3} 23}=$ \qquad
(a) 1
(b) $\frac{1}{2}$
(c) $\frac{1}{4}$
(d) 0
Q. Find the number of Digits in 2^{69}.
Q. If $\log _{e} M+\log _{e} N=\log _{e}(M+N)$, then find M as a function of N.
(a) $1 / \mathrm{N}$
(b) N^{2}
(c) $N^{2} \times(N-1)$
(d) $N /(N-1)$
Q. Given that $\log _{10} 2=x$ and $\log _{10} 3=y$, the value of $\log _{10} 60$ is expressed as \qquad _.
(a) $x-y+1$
(b) $x+y+1$
(c) $x-y-1$
(d) None

EQUATIONS \& ITS TYPES

	Power	One Variable		2 Variables		3 Variables [Option Method]	
Linear	$H D=1$	$3 x-4=11$	(OM)	$2 x+3 y+6=0$	(OM)	$2 x-y+z=3$	
Quadratic	$H D=2$	$x^{2}-2 x-15=0$	(TM)	$2 x^{2}-3 y^{2}-5 x=0$	(OM)	$2 x^{2}-3 y^{2}-5 z^{2}+3 y=0$	
Cubic	$H D=3$	$x^{3}+1=28$	(OM)	$2 x^{3}+3 y^{3}-y^{2}=0$	(OM)	$2 x^{3}-6 y^{3}-4 z^{3}+2 x y-3 x^{2}=0$	

PC Note: $O M \Rightarrow$ Option Method
\& TM \Rightarrow Tamiz Se - Pura Padhke Method
33
\rightarrow Variable: It is a quantity whose value varies (changes). Generally denoted by x, y, z.
\rightarrow Constant: It is a quantity whose value does not change. Generally denoted by a, b, c.
\rightarrow Root/Solution: Value of variable which satisfies the given equation. [LHS=RHS when substituted].
PC Note: Number of Roots = Highest Degree of an Equation.

HOW TO SOLVE LINEAR EQUATION IN 2 VARIABLES:

1. Substitution Method: Any one variable is written in terms of another variable in any one equation \& then obtained value is substituted in other equation.
Q. Solve: $6 x+5 y-16=0$ and $3 x-y-1=0$ we get values of x, y as \qquad
Solution: $6 x+5 y-16=0 \ldots \ldots$-...... (i)
and
$3 x-y-1=0$
Now from (2), we get $y=3 x-1 \ldots \ldots$ (iii);
substitute the value of y in (i), $6 x+5(3 x-1)-16=0$.
$6 x+15 x-5-16=0 ;$
$21 x-21=0 ; \quad 21 x=21 ;$
$x=1$
Now Put $x=1$ in (iii); we get $y=3(1)-1=3-1=2$. Thus $(x, y)=(1,2)$
2. Solving Both Equations simultaneously

- Sign of variable with same co-efficient is opposite \rightarrow Add the equations.
- Sign of variable with same co-efficient is same \rightarrow Subtract the equations.
Q. Solve for $(x, y): 7 x-2 y=45 \& 5 x+y=37$.

Solution:

Q. If $a-b=p \& a+b=k$, then $a^{2}-b^{2}=\ldots$	(a) $p k$	(b) $p^{2}-k^{2}$	(c) $p+k$	(d) $\frac{p^{2}}{k^{2}}$
Q. If $b(x+2 y)=60$ and $b y=15$, value of $b x=\ldots$	(a) 20	(b) 25	(c) 30	(d) 45
Q. If $\frac{1}{2} x+\frac{1}{4} x+\frac{1}{8} x=14$, then x is	(a) 4	(b) 8	(c) 12	(d) 16

TEST OF CONSISTENCY FOR A SYSTEM OF EQUATIONS
\rightarrow Consistent system \rightarrow System having at least one Solution.
\rightarrow Inconsistent System \rightarrow System having NO Solution.

No. of Solutions	System of Equations	Lines intersect at
No solution	Inconsistent	Parallel
Unique Solution	Consistent	One Point
Infinite solutions	Consistent	Coincident

(1) 8888111134 | 8888111034 www.pranauchandak.com

QUADRATIC EQUATION \Rightarrow Highest degree $=2 \&$ thus No. of Roots $=2$
\rightarrow General format $\Rightarrow a x^{2}+b x+c=0 \quad$ [where $a \neq 0 \& a, b, c \rightarrow$ Constant]
$\rightarrow x^{2}-$ (sum of roots) $x+$ Product of roots $=0$
$\rightarrow P C$ Note: Sum of roots $(\alpha+\beta)=-\frac{b}{a} \quad$ \& Product of roots $(\alpha \beta)=\frac{c}{a}$
$\rightarrow \frac{\text { Roots of } Q E \Rightarrow(1) \frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { (2) } \frac{-b-\sqrt{b^{2}-4 a c}}{2 a} \quad\left[b^{2}-4 a c \Rightarrow \text { Discriminant }\right]}{2 a}$

\mid	$2 a$			
NATURE OF THE ROOTS				
Value of $\mathbf{b}^{2}-\mathbf{4 a c}$	Nature of Roots	Example	$\mathbf{b}^{2}-4 \mathbf{a c}=$	Roots
Zero	Real, Equal \& rational	$x^{2}-6 x+9=0$	$36-4.1 .9=0$	3,3
Perfect Square	Real, unequal \& rational	$x^{2}-6 x-16=0$	$36-4.1 .(-16)=100$	$8,-2$
Not Perfect Square	Real, unequal \& irrational	$x^{2}-6 x+7=0$	$36-4.1 .7=8$	$(3+\sqrt{2}),(3-\sqrt{2})$
Negative	Imaginary (Complex No.)	$x^{2}-6 x+10=0$	$36-4.1 .10=-4$	No Solution

Important Properties

* Irrational roots occur in conjugate pairs. One root is $(a+\sqrt{b})$, other root will be $(a-\sqrt{b})$.
* Roots are equal in magnitude (value) but opposite in sign, sum of roots $=0$ \& so $\frac{b}{a}=0$ \& $b=0$.
* If one root is reciprocal of the other root, then their product is 1 \& $\operatorname{thus} \frac{c}{a}=1$ i.e. $a=c$.
* If $\alpha \& \beta$ are the roots of $a x^{2}+b x+c=0$, then $I / \alpha, I / \beta$ will be roots of $c x^{2}+b x+a=0$
Q. If $\alpha \& \beta$ are the roots of $x^{2}=x+1$ then value of $\frac{\alpha^{2}}{\beta}-\frac{\beta^{2}}{\alpha}=--$
(a) $2 \sqrt{5}$
(b) $\sqrt{5}$
(c) $3 \sqrt{5}$
(d) $-2 \sqrt{5}$

SOME USEFUL RESULTS REQUIRED TO SOLVE QUESTIONS OF ROOTS OF QUADRATIC EQUATION

$a^{2}+b^{2}=(a+b)^{2}-2 a b$	$a^{2}-b^{2}=(a+b)(a-b)$	$\frac{1}{a}+\frac{1}{b}=\frac{a+b}{a b}$	$\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{a^{2}+b^{2}}{(a b)^{2}}$
$a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)$	$a^{3}-b^{3}=(a-b)^{3}+3 a b(a-b)$	$a-b=\sqrt{(\mathbf{a}+\mathbf{b})^{2}-4 a b}$	$\frac{1}{b}-\frac{1}{a}=\frac{a-b}{a b}$

Q. If one roots of $5 x^{2}+13 x+p=0$ be reciprocal of the other, $p=$
(a) -5
(b) 5
(c) $1 / 5$
(d) $-1 / 5$
Q. If one root of the equation is $2-\sqrt{3}$, form the equation.
(a) $x^{2}-2 x+2=0$
(b) $x^{2}-3 x+1=0$
(c) $x^{2}-5 x+5=0$
(d) $x^{2}-4 x+1=0$
Q. If roots of equation $2 x^{2}+8 x-m^{3}=0$ are equal then $m=\ldots$.
(a) -3
(b) -1
(c) 1
(d) -2
Q. The roots of the equation $x^{2}+(2 p-1) x+p^{2}=0$ are real if \ldots.
(a) $P \geq 1$
(b) $P \leq 4$
(c) $P \geq 1 / 4$
(d) $P \leq 1 / 4$
Q. The condition that one of the roots of $a x^{2}+b x+c=0$ is thrice the other is \qquad
(a) $3 b^{2}=16 c a$
(b) $b^{2}=9 c a$
(c) $3 b^{2}=-16 c a$
(d) $b^{2}=-9 c a$
Q. Solve for $2: 2^{10}-332^{5}+32=0$
(a) 1, 2
(b) 2,3
(c) 2,4
(d) 1,4
Q. Solve for $x: 4^{x}-3.2^{x+2}+2^{5}=0$
(a) 4,8
(b) $-2,-3$
(c) 2,6
(d) 2,3
Q. Solve for $(x, y): 2^{x} \cdot 4^{y}=32 \& 3^{x} \div 9^{y}=3$.
(a) $x=3, y=1$
(b) $x=y=2$
(c) $x=y=1$
(d) $x=y=3$
Q. Solve for $2: \quad 2+\sqrt{z}=\frac{6}{25}$.
(a) $1 / 5$
(b) $2 / 5$
(c) $1 / 25$
(d) $2 / 25$
Q. Solve for $x:\left(x-\frac{1}{x}\right)^{2}-10\left(x-\frac{1}{x}\right)+24=0$
(a) 0
(b) 1
(c) -1
(d) None

CA PRANAV CHANDAK Inequalities - Revision

Linear Inequality: Any linear function that involves an inequality sign (i.e $<,>, \leq, \geq$)

PC Note: 'NO CHANGE' in Inequality SIGN

- If both sides are multiplied/divided by positive number [Ex: If $a>b \& c>0$, then $a c>b c \& a / c>b / c$]
- If any number is added/subtracted to both sides [Ex: If $a>b$, then $a+c>b+c \& a-c>b-c$]

GRAPHICAL REPRESENTATIONS OF INEQUALITY - Steps to Plot linear inequalities in two variables

1. Consider a linear inequality given by $3 x+y<6$.
2. Replace the inequality by an equality \& then you will get $3 x+y=6$.
3. Now substitute two convenient values for $x \& y$ so that we get two points.

Let $x=0$ so that $y=6$. Let $y=0$, so that $x=2$. You will get two points $(0,6) \&(2,0)$.
4. Plot these points on co-ordinate plane \& join them to get a line of the linear equation.

PC NOTE

> If Plotted line is intersecting (touching) $x \& y$ axis, then for

- 'Less than' inequality \rightarrow Solution = Part Below the line.
- 'Greater than' inequality \rightarrow Solution = Part Above the line.
> If Plotted line is NOT intersecting (touching) both $x \& y$ axis, then we take any point on either side of the line.
- If that point satisfies the inequality, the part in which the point lies will be our solution.
- If that point does not satisfies the inequality, the part on the other side of the point will be our solution. www.pranauchandak.com

CA PRANAV CHANDAK Inequalities - Revision

Q3. LI: $5 x+3 y=30 ; L 2: x+y=9 ; L 3: y=x / 3 ; L 4 ; y=x / 2$. Common region refers to \qquad
(a) $5 x+3 y \leq 30 ; x+y \leq 9 ; y \leq 1 / 5 x ; y \leq x / 2$
(b) $5 x+3 y \geq 30 ; x+y \leq 9 ; y \geq x / 3 ; y \leq x / 2 ; x \geq 0, y \geq 0$
(c) $5 x+3 y \geq 30 ; x+y \geq 9 ; y \geq x / 3 ; y \geq x / 2 ; x \geq 0, y \geq 0$
(d) $5 x+3 y>30 ; x+y<9 ; y \geq 9 ; y \leq x / 2 ; x \geq 0, y \geq 0$

HOW TO FORM INEQUATION FROM WORD PROBLEMS

Q4. A fertilizer company produces two types of fertilizers called Grade I \& Grade II. Each of these types is processed through two critical chemical plant units. Plant A has maximum 120 hrs \& Plant B has maximum of 180 hrs available in a week. Manufacturing one bag of grade 1 fertilizer requires 6 hours in Plant A and 4 hours in plant B. Manufacturing one bag of Grade 11 fertilizer requires 3 hrs in Plant A and 10 hours in Plant B.
Answer: Firstly, we need to identify the key factor (factor having restrictions or conditions). Here we have limited Machine Hours \& thus Machine hours becomes our Key Factor. Always arrange 'Key Factor' in columns.

Particulars	Machine A	Machine B
Chemical Grade I	6 hrs	4 hrs
Chemical Grade II	3 hrs	10 hrs
Maximum Available Time	120 Hours	180 Hours

Assume we will produce x units of Grade I \& y units of Grade II. Thus, $6 x+3 y \leq 120 \& 4 x+10 y \leq 180$.
Q5. Solve for real ' x ' if $5 x-2 \geq 2 x+1 \& 2 x+3<18-3 x$.
(a) $1<x<3$
(b) $-1>x>-3$
(c) $1 \leq x<3$
(d) $x=3$

Q6. If $p-q=-3$ then
(a) $p<q$
(b) $p>q$
(c) $p=q$
(d) $p=0$

Q7. If $x \leq 0$, then $2 / x+8 / x$ is \qquad
(a) $2 \leq x \leq 3$
(b) ≥ 0
(c) ≥ 4
(d) ≤-1

Q8. What is the smallest integer value of x in $4-3 x<11=$ \qquad
(a) -3
(b) -2
(c) -1
(d) 0

Q9. What is the largest integer value of p that satisfies the inequality $4+3 p<p+1$?
(a) -2
(b) -1
(c) 0
(d) 1

Q10. When $x>0$, value of $|x|$ is \qquad -.
(a) 0
(b) $-x$
(c) x
(d) 1

QII. If $\left|\mathbf{x}+\frac{1}{4}\right|>\frac{7}{4}$, then \qquad (Nov 2006)
(a) $x<\frac{-3}{2}$ or $x>2$
(b) $x<-2$ or $x>\frac{3}{2}$
(c) $-2<x<\frac{3}{2}$
(d) None of these.

Q12. If $A=x-2^{-1}, B=x+2^{-1}$ and $A^{2}-B^{2}>0$, then_
(a) $x>0$
(b) $x<0$
(c) $x=0$
(d) $x=A+B$

Q13. Rules demand that employer should employ not more than 5 experienced hands to 1 fresh one.
(a) $y \geq x / 5$
(b) $5 y \geq x$
(c) Both (a) and (b)
(d) $5 y \leq x$

SIMPLE INTEREST

- Simple Interest $(\mathrm{SI})=$ Principal $(\mathrm{P}) \times$ Rate of Interest $(\mathrm{R}$ in \%) \times Time in years (T).
- Accumulated Amount (A) = P + SI = P + PRT = P (1 + RT).
[Not Recommended by PC]
- Interest calculated on the original principal for the entire period of borrowing. No interest on Interest.

Variations in SI Formula	$\mathrm{T}=\frac{\mathrm{SI}}{\mathbf{P} \times \mathbf{R}(\mathrm{in} \%)}$	$\mathbf{R}=\frac{\mathrm{SI}}{\mathbf{P x T}}$	$\mathbf{P}=\frac{\mathrm{SI}}{\mathrm{T} \times \mathbf{R}(\mathrm{in} \%)}$

PC Note for Solving Directly on calculator
Method I: Calculate Interest/year ($P \times R \%$) \& then multiply by Time $O R$
Method 2: Calculate Total Interest (in \%) \& then Multiply by Principle.
QI. Calculate the simple interest on RS. 50,000 at 12% simple interest for 5 years?
Solve using Method I:
Solve using Method 2:

Q2. Sania Mirza deposited Rs. 50,000 in a bank for 20 years with interest rate of 5.5% p.a. How much interest would she earn? Find the final value of her investment.

Q3. Find rate of interest if amount owed after 6 months is Rs. 1050 \& borrowed amount is Rs. 1000.
Q4. Katrina gave Rs. 70,000 as loan to Salman Khan @ 6.5\% p.a. S1. She received Rs. 85,925 after the end of term. Find out the period for which loan was given by Katrina to Salman Khan.

QS. Sharmaji deposited a particular amount in a bank for 7.5 years @ 6% p.a. SI. He received Rs. 1,01, 500 at the end of the term. Compute initial deposit of Sharmaji.

Q6. In what time will Rs. 85,000 become Rs. 1,57,675 at 4.5% p.a.?

PC Note: Sometimes, we are given 2 different amounts for 2 time period \& we have to find out interest, principal \& Rate of interest. Let two amounts be A_{1} \& A_{2} \& time period be $T_{1} \& T_{2}$ Interest per year $=\frac{A_{2}-A_{1}}{T_{2}-T_{1}}$
Q7. A sum of money amount to Rs.6,200 in 2 years and Rs. 7,400 in 3 years. Principal and rate of interest are ...
(a) Rs. $3,800,31.57 \%$
(b) Rs. $3,000,20 \%$
(c) Rs. $3,500,15 \%$
(d) None

How to find Time or Rate when sum becomes Double, Triple etc [Concept se bhi ho jayega]

Particular	Sum is 1.5 times	Sum is Doubled	Sum is Trebled	Sum is 4 times
Time Required	$T=\frac{0.5}{R} y r s$	$T=\frac{1}{R} y r s$	$T=\frac{2}{R} y r s$	$T=\frac{3}{R} y r s$
Rate Required	$R=\frac{0.5}{T}$	$R=\frac{1}{T}$	$R=\frac{2}{T}$	$R=\frac{3}{T}$

Q8. A sum doubles itself in 10 years. Find interest rate.
(a) 10%
(b) 12%
(c) 15%
(d) 20%

Space for class Note:

COMPOUND INTEREST

$$
\text { Amount }(\mathrm{A})=\mathrm{P}(1+\mathrm{R})
$$

$$
\text { Interest }(\mathrm{I})=\mathrm{A}-\mathrm{P}
$$

- Interest of every year is added to principal \& interest for next year is calculated on [Original Principal + Interest].
- In CI, Principal goes on changing every year \& Interest is charged on Interest Earned.

		Under Simple Interest	Under Compound Interest
First year	Principal Interest 10\% Year-end amount	₹ 100.00	₹ 100.00
		$₹ 10.00$	$₹ 10.00$
		₹ 110.00	₹ 110.00
Second year	Principal Interest 10\% Year-end amount	₹ 100.00	₹ 110.00
		$₹ 10.00$	$₹ 11.00$
		₹ $(110+10)=₹ 120$	₹ 121.00
Third year	Principal Interest 10\% Year-end amount	₹ 100.00	₹ 121.00
		₹ 10.00	₹ 12.10
		$₹(120+10)=₹ 130$	₹ 133.10

Q9. PC deposited Rs. I crore in a nationalized bank for 3 years. If the rate of interest is 7% p.a. Calculate the interest after 3 years if interest is compounded annually. Also calculate the amount at the end of third year.

Q10. On what sum will Cl at 5% p.a. for 2 yrs compounded annually be Rs. 1,640?
(a) Rs. 16,000
(b) Rs. 17,000
(c) Rs. 18,000
(d) Rs. 19,000

QII. A sum put at Cl amount to Rs. 2,205 in 2 years \& Rs. 2,315.25 in 3 years. Find R.
(a) 10%
(b) 5%
(c) 8%
(d) 6%

Q12. Cl on a certain sum for 2 years is Rs, 41 \& $S 1$ is Rs. 40 . Find R.
(a) 4%
(b) 5%
(c) 6%
(d) 8%

Q13. At what rate Cl does a sum becomes four fold in 2 years?
(a) 150%
(b) 100%
(c) 200%
(d) 400%

Q14. Time by which a sum would treble itself at 8% p.a $\mathrm{Cl}=$
PC Note for Tricky Questions
(a) 14.28 years
(b) 14 years
(c) 12 years
(d) 15 years

Doubled	Tripled	Four-Fold
$2=(1+R)^{\top}$	$3=(1+R)^{\top}$	$4=(1+R)^{\top}$

PC Note:

- C1 for $1^{\text {st }}$ year $=S 1$ for $1^{\text {st }}$ year. But then $2^{\text {nd }}$ year onwards, $C 1$ \& $S I$ will be different.
- CI for 2 years - SI for 2 years = PR2
- $\mathrm{R}=\frac{2\left(\mathrm{Cl}_{2}-\mathrm{SI}_{2}\right)}{\mathrm{SI}_{2}}$
- $C I$ for 3 years - SI for 3 years $=P R^{2}(R+3)$
- Years required for a sum to double $T=0.35+\frac{0.69}{R}$
- Different Interest Rate for different year $\left(R_{1}, R_{2}, R_{3}\right) \rightarrow$ Direct on Calculator: $A_{n}=P+R_{1} \%+R_{2} \%+R_{3} \%$

Q15. Difference between $S 1$ \& Cl on a certain sum invested for 2 years 5% p.a. is Rs. 30. Then the sum is \qquad
(a) 10,000
(b) 12,000
(c) 13,000
(d) None

Q16. Compound interest at half-yearly rates on Rs. 10,000 , the rate for $1^{5 t}$ \& $2^{\text {nd }}$ years being 6% \& for $3^{\text {rd }}$ year 9% p.a.
(a) Rs. 2,290
(b) Rs. 2,287
(c) Rs. 2,285
(d) Rs. 2,283

MORE THAN I COMPUNDING IN A YEAR

Conversion Period	Number of Conversion Period in a Year (K)	Formula to be used	Apply this TRICK \& Use the Same Cl Formula which we know [PC Special]
12 Months (Annually)	1	$\mathrm{A}=\mathrm{P}(1+\mathrm{R})^{\top}$	Same as CI Formula
6 Month (Semi-annually)	2	$A=P\left(1+\frac{R}{2}\right)^{T}$	New $R=1 / 2 \times$ Given R \& New Time $=2 \times$ Given Time
3 Months (Quarterly)	4	$A=P\left(1+\frac{R}{4}\right)^{4 T}$	New R $=1 / 4 \times$ Given R \& New Time $=4 x$ Given Time
1 Month (Monthly)	12	$A=P\left(1+\frac{R}{12}\right)^{12 T}$	New $R=1 / 12 \times$ Given R \& New Time $=12 \times$ Given Time
I Day (Daily)	365	$A=P\left(1+\frac{R}{365}\right)^{365 T}$	 New Time $=365 \times$ Given Time

Formula (Don't Use - Apply the given Trick): Amount $(A)=P\left(1+\frac{R}{K}\right)^{K T} \quad[' K$ ' $=$ No. of conversion per year $]$
Q17. Rs. 10,000 is invested at annual rate of interest of 12%. What is the amount after 2 years if compounded?
(i) Annually =
(ii) Semi-annually =
(c) Quarterly =
(d) Monthly =

EFFECTIVE RATE OF INTEREST [Relevant when compounded more than once a year] $E=\left(1+\frac{R}{K}\right)^{K}-1 \quad[E=$ Effective interest rate; $R=$ Interest rate per annum; $K=$ No. of conversion period $]$

Q18. Rs. 5,000 is invested in Term Deposit Scheme that fetches interest 6% per annum compounded quarterly. What will be the interest after one year? What is effective rate of interest? [Interest $=$ Rs. $306.82 ; \quad E=6.13 \%$].

Q19. Which is better investment? (i) 3% p.a compounded monthly or (ii) 3.2% p.a S1. $\quad\left[(1+0.0025)^{12}=1.0304\right]$
Solution: $K=12$ times; $E=\left(1+\frac{R}{K}\right)^{n}-1 ; E=\left(1+\frac{3}{12}\right)^{12}-1 ;=1.0304-1=0.0304$. Thus, $E=3.04 \%$
Answer: Effective rate of interest $<3.2 \%$ \& thus $S 1$ @ 3.2% per year is the better investment.
PC Note: CI formula can be used in case of uniform periodical increase at fixed rate like population growth. In case of uniform decrease like depreciation (W.D.V basis), R is replaced by $-R$.
[MIND IT]

| Present Value
 (आज ka Value) | Compounding | Multiply by $(1+R)^{\top}$ |
| :--- | :---: | :---: | | Fiscounting
 Future Value
 (Future ka Value) |
| :---: |

Q20. Present value of Rs. I to be received after 2 years compounded annually at 10% is
(a) Rs. 0.9090
(b) Rs. 0.8264
(c) Rs. 0.7513
(d) Rs. 0.6830

Q21. Find PV of Rs. 10,000 to be required after 5 years if interest rate $=9 \% .\left[(1.09)^{s}=1.5386\right]$
[Ans: 6499.42]
Q22. Find PV of Rs. 500 due after 10 years ($R=10 \%$) is compounded half yearly
(a) Rs. 188.40
(b) Rs. 193.94
(c) Rs. 138.94
(d) Rs. 50.00

Q23. PC Sir invest Rs. 3,000 in a 2-year investment that pays you 12% pa. Calculate FV.
(a) Rs. 3,763.20
(b) Rs. 3,360.00
(c) Rs. 3,565.60
(d) Rs. 3,663.55

ANNUITY $=$ INSTALMENT $=$ PERIODIC PAYMENTS/RECEIPTS (SAME AMOUNT)
EXPLANATORY TABLE OF Rs. 1 invested for 4 years @ 6\%

1	Rs. 1	$1(1+0.06)^{3}=1.191$
2	Rs. 1	$1(1+0.06)^{2}=1.124$
3	Rs. 1	$1(1+0.06)^{1}=1.060$
4	Rs. 1	$1(1+0.06)^{0}=1$
Future Value		4.375

Annuity [Regular - Payment @ End of the Year \& Due - Payment @ Beginning of the Year]

FV of Annuity Regular	FV of Annuity Due	PV of Annuity Regular	PV of Annuity Due
$\begin{aligned} & \mathrm{FV}(\mathrm{R})=\mathrm{P}\left[\frac{(1+\mathrm{R})^{\mathrm{n}}-1}{\mathrm{R}}\right] \\ & \mathrm{P}=\text { Amount deposited, } \\ & \mathrm{R}=\text { Rate of Interest, } \\ & \mathrm{N}=\text { No. of years } \end{aligned}$	$\mathrm{FV}(\mathrm{D})=\mathrm{FY}(\mathrm{R}) \times(1+\mathrm{R} \%)$ PC Note: Calculate $\mathrm{FY}(\mathrm{R})+\mathrm{R}(\%)$	$\begin{aligned} & \mathrm{PV}(\mathrm{R})=\mathrm{A}\left[\frac{(1+\mathrm{R})^{\mathrm{n}}-1}{\mathrm{Rx}(1+\mathrm{R})^{2}}\right] \\ & \mathrm{A}=\text { Instalment Amount, } \\ & \mathrm{R}=\text { Rate of Interest, } \\ & \mathrm{n}=\text { No. of years } \end{aligned}$	Compute $\mathrm{PV}(\mathrm{R})$ of ($n-1$) yrs Add Initial payment/receipt to $P V(R)$ of ($n-1$) yrs Refer Q29 on Next Page

PC Note: If Nothing is said in question, it is assumed as Annuity regular.
PV of Annuity $=\frac{\mathrm{A}}{(1+\mathrm{R})^{1}}+\frac{\mathrm{A}}{(1+\mathrm{R})^{2}}+\frac{\mathrm{A}}{(1+\mathrm{R})^{3}}+\frac{\mathrm{A}}{(1+\mathrm{R})^{4}}+\ldots \ldots . \frac{\mathrm{A}}{(1+\mathrm{R})^{\mathrm{N}}}$
Space for PC Class Note:

Q24. Find FV of annuity of Rs. 500 made annually for 7 years @ 14% compounded annually. [$(1.14) 7=2.5023]$
Q25. Find FV of annuity due of Rs. 500 made for 7 years at 14% compounded annually. [$(1.14) 7=2.5023]$
Q26. 2 invests Rs. 10,000 every year starting from today for next 10 yrs. Interest rate is 8% p.a compounded annually. Find FV of annuity. $\quad[(1+0.08) 10=2.15892500]$
[Ans: Rs. 1,56,454.875]
Q27. S borrows Rs. 5,00,000 to buy a house. If he pays equal installments for 20 years and 10% interest on outstanding balance what will be the equal annual installment?
[Ans: 58,730]
Q28. Rs. 5,000 is paid every year for ten years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually?
[Ans: 26,080]
Q29. Your mom decides to gift you Rs. 10,000 every year starting from today for the next 5 years. You deposit this amount in a bank as and when you receive and get 10% p.a compounded annually. Find PV of this annuity?
Solution: It is an annuity immediate. For calculating value of the annuity immediate following steps will be followed:
Step 1: Present value of the annuity as if it were a regular annuity for one year less i.e. for four years.

$$
=\text { Rs. } 10,000 \times P(4,0.10) ; \quad=\text { Rs. } 10,000 \times 3.16987 ;=\text { Rs. } 31,698.70 .
$$

Step 2: Add initial cash deposit to the step I value: Rs. $(31,698.70+10,000)=$ Rs. $41,698.70$.
Q30. A person invests Rs. 500 at the end of each year with a bank which pays interest at 10% p.a. annually. The amount standing to his credit one year after he has made his yearly investment for the 12th time is \qquad
(a) Rs. $11,761.35$
(b) Rs. 10,000
(c) Rs. 12,000
(d) None

PERPETUITY = Annuity where the receipt (or payment) takes place forever.

* FY of a Perpetuity - Cannot be computed.
* PV of Multi-period Perpetuity $\mathrm{PVA}_{\infty}=\frac{\mathrm{P}}{\mathrm{R}} \quad$ [$\mathrm{P}=$ Payment/Receipt each period; $\mathrm{R}=$ Rate of Interest]
* PV of Growing Perpetuity: Perpetuity which grows at constant rate. PVA $=\frac{\mathrm{P}}{\mathrm{R}-\mathrm{g}}$ [$\mathrm{g}=$ Growth rate $]$

Q31. If I want to retire \& receive Rs. 30,000 every month \& I want my family to receive the same monthly payment after my death. I can earn an interest of 8% p.a. How much will I need to set aside to achieve my perpetuity goal? How much should I invest to get the amount from today itself?
[Ans: Rs. $45,00,000$]
Q32. I want to receive Rs. 10,000 forever. Interest rate is 8% \& the rate at which perpetuity grows is 3%. Advise me the amount to be invested.
[Ans: Rs. 2,00,000]
Answer: $P V A_{\infty}=\frac{\mathrm{P}}{\mathrm{R}-\mathrm{g}}=\frac{10,000}{(8-3) \%}=\frac{10,000}{5 \%}=$ Rs. $2,00,000$.

COMPOUND ANNUAL GROWTH RATE (CAGR)
$\operatorname{CAGR}\left(\mathrm{t}_{0}, \mathrm{t}_{\mathrm{n}}\right)=\left[\frac{\mathrm{Vn}}{\mathrm{V} 0}\left(\frac{1}{\mathrm{t}_{\mathrm{n}}-\mathrm{t}_{0}}\right)\right]-1$
$\mathrm{V} n=$ Value in $\mathrm{n}^{\text {th }}$ year, $\mathrm{Vo}=$ Value in $0^{\text {th }}$ Year; $\mathrm{t}_{0}=$ Starting period $\& \mathrm{t}_{\mathrm{n}}=$ Ending period
CQ33. Revenues of a company for 4 years, Calculate Compound annual Growth Rate.

Year	2013	2014	2015	2016
Revenues	100	120	160	210

Answer: $t_{n}-t_{0}=2016-2013=3 . \operatorname{CAGR}_{(0,3)}$ of Revenues $=\left[\frac{210}{100}^{\frac{1}{3}}\right]-1=1.2806-1=0.2806=28.06 \%$

REAL LIFE APPLICATIONS OF ANNUTTY

| 1 | Sinking Fund - Fund credited for a specified purpose by way of sequence of periodic payments |
| :--- | :--- | Size of Sinking Fund Deposit $(S)=P \times\left[\frac{(1+R)^{N}-1}{R}\right] \quad S=$ Amount to be saved (FV) \& P = Periodic Payment.

Q34. How much amount is required to be invested every year so as to accumulate Rs, $3,00,000$ at the end of 10 years if interest is compounded annually at 10% ?
[Ans: Rs. 18,823.6]
2 NET PRESENT VALUE (NPV) = PV of Cash Inflow - PV of Cash Outflow
PC Note: If NPV $>0 \rightarrow$ Accept Project; \quad If NPV $<0 \rightarrow$ Reject Project.
Q35. Compute NPV for a project with a net investment of Rs. 1,00,000 \& net cash inflows for year 1,2,3 is Rs. 55,000, Rs. 80,000 \& Rs. 15,000 resp. Cost of capital is 10% ? [PVIF @ 10% for 3 years: $0.909,0.826$ \& 0.751] Solution: Since NPV of the project is positive, the company should accept the project.

Year	Net Cash Flows	PVIF @ 10\%	Discounted Cash Flows
0	$(1,00,000)$	1.000	$(1,00,000)$
1	55,000	0.909	49,995
2	80,000	0.826	66,080
3	15,000	0.751	11,265
Net Present Value			27,340

3 LEASING OR BUYING DECISION

- If Cost of Asset > PV of lease rental \rightarrow Lease
- If Cost of Asset < PV of lease rental \rightarrow Buy

Q35. ABC Ltd. wants to lease out an asset costing Rs. 10 lacs for 5 years. It has fixed a rental of Rs. 3.1 lacs p.a payable annually starting from the end of first year. Suppose rate of interest is 12% p.a compounded annually on which money can be invested by the company. Is this agreement favourable to the company?
Answer: Here we have to compute PV of the annuity of Rs. $3,10,000$ for 5 years @ 12% p.a.
PV Factor for 5 years @ $12 \%=3.604776$. Thus, PV of Lease annuity $=3,10,000 \times 3.604776=$ Rs. $11,17,480$.
Since PV of Lease annuity > initial cost of the asset, Leasing is favourable to the lessor.
Q36. A company is considering proposal of purchasing a machine either by making full payment of Rs, 4,000 or by leasing it for 4 years at lease rent of Rs. 1,250 . Which option is preferable if $R=14 \%$ p.a.? [Ans: Lease]

INVESTMENT DECISION

- If PV of cash inflow > PV of cash outflow \rightarrow Invest
- If PV of cash inflow < PV of cash outflow \rightarrow Do NOT invest.

Q37. A machine with useful life of 7 years costs Rs. 10,000 while another machine with useful life of 5 years costs Rs. 8,000. The first machine saves labour expenses of Rs. 1,900 annually \& second one saves labour expenses of Rs. 2,200 annually. Determine preferred course of action. Assume cost of borrowing as 10% p.a.
Answer: (i) PV of annual cost savings for $1^{5 t}$ machine $=$ Rs. $1,900 \times 4.86842=$ Rs. 9,250 .
Cost of 1st machine $=$ Rs. 10,000 \& it saves Rs. 9,250. Thus, it costs Rs. 750 more than labour cost it saves.
(ii) PV of annual cost savings of $2^{\text {nd }}$ machine $=$ Rs. $2,200 \times 3.79079=$ Rs. $8,339.74$.

Cost of $2^{\text {nd }}$ machine $=$ Rs. 8,000 \& it saves Rs. 8339.74 . Thus, effective savings in labour cost $=$ Rs. 339.74 . Hence, the second machine is preferable.

VALUATION OF BOND = PV of Interest Paid + PV of Maturity Amount.
Q38. An investor intends purchasing a 3-year Rs. 1,000 par value bond having nominal interest rate of 10%. At what price the bond may be purchased now if it matures at par and the investor requires a return of 14% ?
Answer: Interest on bond for every year $=$ Rs. 100. Maturity Amount $=$ Rs. 1,000 .
$P V$ of Bond $=\frac{100}{(1.14)^{1}}+\frac{100}{(1.14)^{2}}+\frac{100}{(1.14)^{3}}+\frac{1000}{(1.14)^{3}}=87.719+76.947+67.497+674.972=$ Rs. 907.125
Thus, the bond should be purchased @ Rs. 907.125 or less than it.

Permutation $=$ Arrangement + Order is important i.e $(a, b) \&(b, a)$ are different arrangements.
\rightarrow Combination $=$ Selection + Order is not important i.e $(a, b) \&(b, a)$ are same selection .

FUNDAMENTAL PRINCIPLES OF COUNTING

* Multiplication Rule \Rightarrow No. of ways of doing BOTH things one after another $=(m \times n)$ ways [Connector $=$ AND] Q1. There are 4 routes for going from Dumdum to Sealdah \& 5 routes for going from Sealdah to Chandni. In how many different ways can you go from Dumdum to Chandni Via Sealdah? (a) 9 (b) 1 (c) 20 (d) None
* Addition Rule \Rightarrow No. of ways of doing 2 Alternative things $=(m+n)$ ways
[Connector $=O R]$ Q2. If one wants to go school by bus where there are 5 buses or by auto where there are 4 autos, then total number of ways of going school is ...-
[Ans: $5+4=9$]

FACTORIAL \Rightarrow Denoted as

- Continuous Product of all integers from I to ' n '. $\quad n!=1,2,3,4,5,6 \ldots \ldots(n-2) \cdot(n-1) \cdot n$
- PC Note: While solving the question, all factorials in the question shall be reduced upto lowest factorial.

0 !	1 !	$2!$	$3!$	$4!$	$5!$	$6!$	$7!$	8!	$9!$	10!
		2×1	3×2 !	4×3 !	$5 \times 4!$	6×5 !	7×6 !	8×7 !	9×8 !	10×9 !
1	1	2	6	24	120	720	5040	40320	362880	3828800

Q3. $\frac{\mathrm{n}!}{(\mathrm{n}-1)!}=\frac{\mathrm{n}(\mathrm{n}-1)!}{(\mathrm{n}-1)!}=n$
Q4. Find n if $(n+1)!=30(n-1)![$ Ans $=5]$
Q5. Find x if $\frac{1}{9!}+\frac{1}{10!}=\frac{x}{11!}$ [Ans $\left.=121\right]$

PERMUTATIONS

\rightarrow No. of Permutations of 'r' different object out of ' n ' different object $={ }^{n} P_{r}=\frac{n!}{(n-r)!}[0 \leq r \leq n]$
PC Note: Draw ' r ' blank lines \& put n objects in them. $E x:$ If $n=8 \& r=5$, we will draw 5 lines.
Space for Class Note:
n ways $=8$ Ways $\quad(n-1)$ ways $=7$ Ways $\quad(n-2)$ ways $=6$ Ways $\quad(n-3)$ ways $=5$ Ways $\quad(n-4)$ ways $=4$ Ways

Q6. How many 3 letter words can be formed using the letters of the words (a) SQUARE \& (b) HEXAGON?
Ans: Since 'SQUARE' consists of 6 different letters, number of permutations of choosing 3 letters out of $6={ }^{6} P_{3}=6 \times$ $5 \times 4=120$. Since 'HEXAGON' contains 7 different letters, number of permutations is ${ }^{\top} P_{3}=7 \times 6 \times 5=210$.

Q7. There are 5 guests in a party \& only 3 chairs are there. In how many ways can the guests be seated?
Ans: There are 3 chairs \& 5 guests. It is obvious that 2 guest will not occupy same chair.
${ }^{s t}$ Chair \rightarrow can be occupied by any 1 of the 5 guests $=5$ ways \&
$2^{\text {nd }}$ Chair \rightarrow can be occupied by any 1 of remaining 4 guests $=4$ ways \&
$3^{\text {rd }}$ chair \rightarrow can be occupied by any 1 of remaining 3 guests $=3$ ways. Total number of ways $=5 \times 4 \times 3=60$ ways.
Q8. How many 4-digit numbers can be formed from 1, 2, 3, 4, 5. [Repetition not allowed]
Ans: $5 \times 4 \times 3 \times 2=120$ ways.
Q9. How many 4 digits numbers can be formed by using $1,2,3,4,5,6,7,8,9$, no digit being repeated in any number?
Ans: we have 9 digits \& we have to find number of permutations of these taken 4 at a time, which is ${ }^{9} P_{4}=3024$ ways.
Q10. If $n P_{3:} n p_{2}=3: 1$. Find n.
(a) 7
(b) 4
(c) 5
(d) None
QII. If ${ }^{x+y} P_{2}=90$ and ${ }^{x-y} p_{2}=30$ then
(a) $x=4 y$
(b) $x=2$
(c) $x=y$
(d) $4 x=y$

Q12. How many 4-digits numbers can be formed out of the digits $1,2,3,5,7,8,9$, if no digit is repeated in any number? (b) How many of these will be greater than 3000?

Ans: (a) $7 \times 6 \times 5 \times 4 \times=840$ numbers \quad (b) $5 \times{ }^{6} P_{3}=5 \times 6 \times 5 \times 4=5 \times 120=600$ numbers
Q13. Find total number of numbers greater than 2000 that can be formed with the digits 1, 2, 3, 4, 5 no repetition.
Ans: 5 Digit No. (All) $\rightarrow 120+4$ Digit No. $(>2000) \rightarrow \underline{4} \times \underline{4} \times \underline{3} \times \underline{2}=96=120+96=216$.
Permutations of n different things taken all ' n ' things at a time $=n$! $\quad\left[r=n\right.$ Thus' $\left.n P_{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=n!\right]$

PERMUTATIONS WITH RESTRICTION		
SN	scenario	Formula
1	Particular object is not included	${ }^{(n-1)} P_{r}$
2	Particular object is always included [Person/object to be included is fix]	${ }^{(n-1)} P_{(r-1)}$
3	Particular object is always included [Personlobject to be included is not fix]	r. ${ }^{(n-1)} \mathrm{P}_{(r-1)}$
4	2 things are always together	$(n-1)!\times 2!$
5	2 things are never together = Total ways - 'Always together' ways =n! - $n-1$)! $\times 2!$	$(n-2) \times(n-1)!$

Q14. How many 4-digits numbers can be formed by using $1,2,3,4,5,6,7,8,9$ such a that the numbers will begin with a specified digit \& end with a specified digit?
Ans: Fixed (1 number) Any 7 numbers Remaining 6 numbers Fixed (1 way) $=7 \times 6=42$
Q15. In how many ways 10 examination papers can be arranged so that best \& worst paper never come together?
Ans: Best \& worst paper never together $=$ Total ways - 'always together' $=10!-(9!\times 2!)=9!(10-2)=8.9!$
Q16. There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how many ways can these be placed on a shelf if the books on same subject are to be together?
[Ans: $3!\times 6!\times 3!\times 2!=51,840$]
Q17. In Monday, how many of this arrangement begin with A \& end with D ?
Ans: Suppose all words begin with A \& end with D. Remaining 4 Places can be filled in ${ }^{4} P_{4}=4$! Ways $=24$ ways.
Q18. In Q24, how many arrangements are there in which vowels A \& 0 occur together?
Ans: Vowels are A \& 0 . Assume them as one unit. remaining 5 letters can be arranged in ${ }^{5} P_{s}=120$ ways. These two vowels can be arranged amongst themselves internally in $2!=2$ ways. Total numbers of ways $=2 \times 120=240$ ways.

Permutations when Repetition is Allowed $(n, r)=n^{r} \quad$ [Every place can be filled in ' n ' ways since repetition is allowed] Q19. How many telephones connections may be allotted with 8 digits from 0 to 9?
(a) 10^{8}
(b) 10 !
(c) ${ }^{10} \mathrm{C}_{8}$
(d) ${ }^{10} P_{8}$

Permutation of SIMILAR THINGS taken all at a time

No. of ways in which ' n ' things can be arranged taking all at a time, when ' p ' things are similar of one type, ' q ' things are similar of $2^{\text {nd }}$ type, ' r ' things are similar of $3^{r d}$ type \& remaining things are different $=\frac{n!}{p!\times \mathbf{q}!\times r!}$
Q20. How many permutations can be made out of the letters of the word?
(i) MATHEMATICS [Ans: $11!/ 2!2!2!$]
(ii) COMMERCE [Ans: $8!/ 2!2!2!]$
(iii) EXAMINATION $=[11!/ 2!\times 2!\times 2!]$

Q21. (i) How many different words can be formed with the letters of the word BHARAT?
(ii) How many of these begin with B and End T ? (iii) In how many of these B and H are never together?
Ans: (i) $6!12!=360$
(ii) $4!12!=12$
(iii) $360-120=240$

CIRCULAR PERMUTATIONS

Clockwise \& anti-clockwise are different arrangements: ($n-1)$!
Clockwise \& anti-clockwise are same arrangements: $\frac{(\mathrm{n}-1)!}{2}$.
[Used in 'sitting arrangement of Person'] [Used in 'Necklace \& garlands' examples]

Q22. Number of ways 5 boys \& 5 girls can be seated at a round table, so no two boys are adjacent is: [July 2021]
(a) 2,550
(b) 2,880
(c) 625
(d) 2,476
[Ans: Girls $=(s-1)!$ \& then Boys $=5!=2880$]

SUM OF ALL NUMBERS FORMED OUT OF ' n ' DIGITS $\Rightarrow(n-1)!\times$ sum of digits \times (IIII....n times)

Q23. Compute the sum of 4 digits numbers which can be formed with the four digits $1,3,5,7$, if each digit is used only once in each arrangement.
Ans: $(n-1)!\times$ sum of digits $\times(1111 \ldots . . n$ times $)=(4-1)!\times(1+3+5+7) \times 11111=6.16 .1111=106656$.
PC Note: If digits include 'ZERO', Answer = (i) Solve as per above given formula including ' 0 ' - Solve by ignoring ' 0 '

Q24. A family of 4 brothers and 3 sisters is to be arranged for a photograph in one row. In how many ways can they be seated if (i) all the sisters sit together, (ii) no two sisters sit together?
Ans: (i) $5!\times 3!$ ways $=720$ ways (ii) $5 P_{3} \times 4!=60 \times 24=1440$ ways.
Q25. 6 boys \& 5 girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done.
Ans: $6!\times 5!$.
Q26. How many words can be formed with letters of 'ORIENTAL so that A \& E always occupy odd places [Ang 2007]
(a) 540
(b) 8640
(c) 8460
(d) 8450

COMBINATIONS = SELECTION

No. of combinations of ' r ' different object out of ' n ' different object $={ }^{n} C_{r}=\frac{n!}{(n-r)!x r!}[0 \leq r \leq n]$
PROPERTIES OF ${ }^{n} C_{r}$

1	${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{\mathrm{nPr}}{r} \quad$ Q27.	Q27. If ${ }^{10} P_{r}=6,04,800 \&{ }^{10} C_{r}=120$. Find $r . \quad$ [Ans: $r=7$]	
2	${ }^{n} C_{r}={ }^{n} C_{n-r}$		
3	${ }^{n} C_{n}=1 \&{ }^{n} C_{0}=1 . \quad \text { Here } r=n, \quad\left[{ }^{n} C_{n}=\frac{n!}{(n-n)!\times n!}=\frac{n!}{0!\times n!}=1\right]$		
4	${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{x}}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{y}} \Rightarrow$ Either $\mathrm{x}=\mathrm{y}$ or $\mathrm{x}+\mathrm{y}=\mathrm{n}$ Q28. Find ' r ' if ${ }^{18} c_{r}={ }^{18} c_{r+2}$ Ans: r cannot be equal to $r+2$. Therefore $r+(r+2)=18 \Rightarrow 2 r+2=18 \Rightarrow 2 r=16 \Rightarrow r=8$.		
5	${ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}$ Q29. Find x if ${ }^{12} C_{5}+2 .{ }^{12} C_{4}+{ }^{12} C_{3}=14 C_{x}$ Ans: ${ }^{12} C_{5}+2 .{ }^{12} C_{4}+{ }^{12} C_{3}={ }^{12} C_{5}+{ }^{12} C_{4}+{ }^{12} C_{4}+{ }^{12} C_{3}={ }^{13} C_{5}+{ }^{13} C_{4}={ }^{14} C_{5}$ Thus ${ }^{14} C_{5}={ }^{14} C_{x} \quad \Rightarrow$ Either $x=5$ or $x=9$.		
6	${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n}{r} .{ }^{(n-1)} \mathrm{C}_{(r-1)} \Rightarrow{ }^{10} \mathrm{C}_{3}=\frac{10}{3} \cdot{ }^{9} \mathrm{C}_{2}$		
7	${ }^{\mathrm{n}} \mathrm{C}_{0}+{ }^{\mathrm{n}} \mathrm{C}_{1}+{ }^{\mathrm{n}} \mathrm{C}_{2}+\ldots \ldots . .{ }^{\mathrm{n}} \mathrm{C}_{(n-1)}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}}=2^{n}$	Q30. ${ }^{5} C_{1}+{ }^{5} C_{2}+{ }^{5} C_{3}+{ }^{5} C_{4}+{ }^{5} C_{5}=\ldots$	[An

Q31. A person has 12 friends of whom 8 are relatives. In how many ways can he invite 7 guests such that 5 of them are relatives?
[Ans: ${ }^{8} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{2}=336$ ways]
Q32. A committee of 7 members is to be chosen from 6 CAS, 4 Economists \& 5 Cost Accountants. In how many ways can this be done if in committee, there must be at least one member from each group and at least 3 CAs?
Ans: The various methods of selecting the persons from the various groups are shown below:

Committee of 7 members				
	C.A.s [Total 6]	Economists [Total 4]	Cost Accountants [Total 5]	Ways
Method 1	$3 \Rightarrow{ }^{6} C_{3}$ ways $=20$	$1 \Rightarrow{ }^{4} C_{1}$ ways $=4$	$3 \Rightarrow{ }^{5} C_{3}$ ways $=10$	800
Method 2	$3 \Rightarrow{ }^{6} C_{3}$ ways $=20$	$2 \Rightarrow{ }^{4} C_{2}$ ways $=6$	$2 \Rightarrow{ }^{5} C_{2}$ ways $=10$	1200
Method 3	$3 \Rightarrow{ }^{6} C_{3}$ ways $=20$	$3 \Rightarrow{ }^{4} C_{3}$ ways $=4$	$1 \Rightarrow{ }^{5} C_{1}$ ways $=5$	400
Method 4	$4 \Rightarrow{ }^{6} C_{4}$ ways $=15$	$1 \Rightarrow{ }^{4} C_{1}$ ways $=4$	$2 \Rightarrow{ }^{5} C_{2}$ ways $=10$	600
Method 5	$4 \Rightarrow{ }^{6} C_{4}$ ways $=15$	$2 \Rightarrow{ }^{4} C_{2}$ ways $=6$	$1 \Rightarrow{ }^{5} C_{1}$ ways $=5$	450
Method 6	$5 \Rightarrow{ }^{6} C_{5}$ ways $=6$	$1 \Rightarrow{ }^{4} C_{1}$ ways $=4$	$1 \Rightarrow{ }^{5} C_{1}$ ways $=5$	120

Therefore, total number of ways $=800+1200+400+600+460+120=3,570$
Q33. A box contains 7 red, 6 white \& 4 blue balls. How many selections of 3 balls can be made so that (a) all three are red (b) none is red (c) one is of each colour?
Ans: (a) ${ }^{7} C_{3}=35$ ways.
(b) ${ }^{10} C_{3}=120$ ways
(c) ${ }^{7} C_{1} \times{ }^{6} C_{1} \times{ }^{4} C_{1}=7 \times 6 \times 4=168$ ways.

Q34. Find no. of ways of selecting 4 letters from word 'EXAMINATION'.
[Ans: 136 ways]

SOME STANDARD RESULTS

* Total number of ways of forming a group by taking all of ' n ' different things $=2^{n}-1$
* Number of Diagonals of a polygon with ' n ' sides $=\frac{n(n-3)}{2}$
* No. of Triangles from ' n ' points $={ }^{n} C_{3}$
* No. of Triangles from ' n ' points if ' m ' points are collinear $={ }^{n} C_{3}-{ }^{m} C_{3}$
* No. of lines from ' n ' points if ' m ' points are collinear $={ }^{n} C_{2}-{ }^{m} C_{2}+1$.
* No. of parallelogram formed from ' m ' parallel lines intersecting another ' n ' parallel lines $={ }^{m} C_{2} \times{ }^{n} C_{2}$

FINDING RANK (POSITION) OF A WORD IN DICTIONARY
[Trick will be given in Class]

Q35. Find the rank of 'KNIFE' in the dictionary.
Q36. If all permutations of word "CHALK" are written in a dictionary rank of this word will _-.
(a) 30
(b) 31
(c) 32
(d) None
© 8888111134 | 8888111034 www.pranauchandak.com

ARITHMETIC PROGRESSION (AP)

\rightarrow A sequence in which 'difference between two consecutive terms' is same. It is denoted by ' d '.
\rightarrow First term is denoted by ' a '. Ex: 2, $5,8,11,14,17$ is an AP in which $d=3$ is the common diference.
Θ Common Difference $\rightarrow\left(T_{2}-T_{1}\right)$ or $\left(T_{3}-T_{2}\right) \ldots \ldots . . \Rightarrow D=T_{n}-T_{n-1}$
\rightarrow Arithmetic Mean $(A M) \rightarrow$ If a, b, c are in AP, then $b-a=c-b$. Thus $b(A M)=\frac{a+c}{2}$
$\Theta n^{\text {th }}$ Term of $A P \rightarrow T_{n}=a+(n-1) d \quad O R \quad T_{n}=S_{n}-S_{n-1} \quad$ [Jo Number ki term nikalni hai, 'd' usse 1 kam rahega]

Q1. If the terms $2 x,(x+10)$ and $(3 x+2)$ be in AP, the value of x is \qquad
Q2. Arithmetic mean betn $33 \& 77=\frac{33+77}{2}=55$.
Q3. Find the $n^{\text {th }}$ term of the given AP $4,7,10 \ldots .$. [Ans: $3 n+1$]
Q4. If $10^{\text {th }}$ term of AP is twice the $4^{\text {th }}$ term \& $23^{\text {rd }}$ term is ' k ' times the $8^{\text {th }}$ term, then $k=$

General Form of $T_{n}=A n+B[A \& B$ are constants $] \rightarrow d=A \& a=(A+B)$
Q5. If $T_{n}=5 n+1$, find $A P$.

PC Note: If 2 non-consecutive terms in AP (say T_{m} \& T_{n}) \& their values are given in question \& you are asked to find out $A P \Rightarrow D=\frac{\left(T_{m}-T_{n}\right)}{m-n} \quad$ Q6. If $5^{\text {th }} \& 12^{\text {th }}$ terms of an $A P$ are 14 \& 35 respectively, find $A P$.
Q7. If $1^{\text {st }}$ term of AP is 5 \& its $100^{\text {th }}$ term is -292 , then $T_{51}=$
(a) -142
(b) -149
(c) 155
(d) -145

INSERTION OF ' n ' ARITHMETIC MEANS BETWEEN TWO NUMBERS

\rightarrow Total number of terms in the required AP will be $(n+2)$.
\rightarrow Take $1^{\text {st }}$ given number as T_{1} \& $2^{\text {nd }}$ given number as T_{n+2} \& use the above given note.
Q8. Two AMs between -7 \& 14 is \qquad -.
Ans: If we insert 2 AMs between -7 \& 14, total number of terms will be 4. $\rightarrow-7 \quad$ AM1 $\quad A M_{2} \quad 14$
Take $T_{1}=-7 ; \quad \& T_{2+2}=14 ;$ Thus $T_{4}=14$. Using the above note, $(4-1) d=14-(-7) \rightarrow 3 d=21 \rightarrow d=7$.
$A M_{1} \omega=T_{2}=a+d=-7+7=0 \& A M_{2}=T_{3}=a+2 d=-7+2(7)=7$. So, $2 A M_{s} b / \omega-7$ \& 14 are 0 \& 7 .

SUM OF FIRST ' N ' TERM OF AP
$S_{n}=\frac{n}{2} \times\left(T_{1}+T_{n}\right) \quad$ OR $S_{n}=\frac{n}{2} \times[2 a+(n-1) d] \quad$ Q9. Sum of the series $9,5,1 \ldots$ upto 100 terms $=\ldots$ [Ans: -18900$]$ Q10. A sum of Rs. 6240 is paid off in 30 instalments such that each instalment is Rs. 10 more than the preceding instalment. The value of the $1^{\text {st }}$ instalment is
(a) Rs. 36
(b) Rs. 30
(c) Rs. 60
(d) None

Q11. Sum of AP whose first term is -4 \& last term is 146 is 7171 . Find n.
$\begin{array}{llll}\text { (a) } 99 & \text { (b) } 101 & \text { (c) } 100 & \text { (d) } 102\end{array}$
Q12. Sum of all natural numbers from 100 to 300 divisible by 4 or $5=$
(a) 10200
(b) 15200
(c) 16200
(d) None

General Form of $S_{n}=A n^{2}+B n[A \& B$ are constants $] \rightarrow d=2 A \&(a)=(A+B)$

Q13. If S_{n} is $3 n^{2}+5 n$. Find AP.

Q14. $P^{\text {th }}$ term of AP is $\frac{3 p-1}{6}$. Sum of first n terms of AP is ...
(a) $n(3 n+1)$
(b) $\frac{n}{12}(3 n+1)$
(c) $\frac{n}{12}(3 n-1)$
(d) None

Q15. If a, b, c are the sums of p, q, r terms respectively of AP, value of $\left(\frac{a}{p}\right)(q-r)+\left(\frac{b}{q}\right)(r-p)+\left(\frac{c}{r}\right)(p-q)$ is \qquad
(a) 0
(b) 1
(c) -1
(d) None

IMPORTANT SERIES \Rightarrow SUM OF	FORMULA	
1. Ist 'n' NATURAL No.	$\sum \mathrm{n}=\frac{n(n+1)}{2}$	$Q 16.1+2+3+\ldots .100=\frac{n(n+1)}{2}=\frac{100(100+1)}{2}$
2. $1^{\text {st }}$ ' n ' ODD natural No.	$\sum(2 n-1)=n^{2}$	Q17.1+3+5+7+9=52=25
3. $1^{\text {st }}$ ' n ' EVEN Natural No.	$\sum 2 n=n(n+1)$	Q18. $2+4+6+8+10=n(n+1)=5(6)=30$
4. SQUARE of 1st ' n ' Natural No.	$\sum n^{2}=\frac{n(n+1)(2 n+1)}{6}$	$Q 19 \cdot 1^{2}+2^{2}+\ldots 100^{2}=\frac{n(n+1)(2 n+1)}{6}=\frac{100(100+1)(200+1)}{6}$
5. CUBES of 1st ' n ' Natural No.	$\sum \boldsymbol{n}^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$	Q20.13+23+33..1003 $=\left[\frac{n(n+1)}{2}\right]^{2}=\left[\frac{100(100+1)}{2}\right]^{2}$

Q21. Value of $n^{2}+2 n[1+2+3+\ldots . .+(n-1)]$ is \qquad (a) n3
(b) n 2
(c) n
(d) None

Q22. Value of $11^{2}+12^{2}+13^{2}$... $19^{2}+20^{2}=$
(a) 3845
(b) 2485
(c) 2870
(d) 3255
Θ If 3 numbers are given in AP, Put $1^{\text {st }}$ no $=1 ; 2^{\text {nd }}$ no $=2 ; \& 3^{\text {rd }}$ no. $=3 ;$ (If necessary).
Θ If a, b, c are in AP \rightarrow Put their value as $1,2,3$ in options \& get the answer.
\rightarrow If a^{2}, b^{2}, c^{2} are in AP \rightarrow Put value as 1, 5, 7 in options \& get answer [1,25,49 \rightarrow AP]
Θ If we form a series from the reciprocal of all the terms of AP, it becomes HP.

Q23. If a, b, c are in AP, then value of $\frac{\left(a^{3}+4 b^{3}+c^{3}\right)}{b\left(a^{2}+c^{2}\right)}$
(a) 1
(b) 2
(c) 3
(d) None

Properties of AP	Examples
1. If $\mathrm{S}_{\mathrm{n}}=\mathrm{S}_{\mathrm{m}} \rightarrow \mathrm{S}_{(\mathrm{m}+\mathrm{n})}=0$	If $\mathrm{S}_{7}=\mathrm{S}_{11} \rightarrow \mathrm{~S}_{18}=0$
2. $\mathrm{T}_{\mathrm{p}}=\frac{1}{q} \& \mathrm{~T}_{\mathrm{q}}=\frac{1}{p^{\prime}} \rightarrow \mathrm{T}_{\mathrm{pq}}=1 \& \mathrm{~S}_{\mathrm{pq}}=\frac{p q+1}{2}$	$\mathrm{~T}_{3}=\frac{1}{2} \& \mathrm{~T}_{2}=\frac{1}{3^{\prime}} \rightarrow \mathrm{T}_{6}=1 \& \mathrm{~S}_{6}=\frac{6+1}{2}=\frac{7}{2}$
3. If $\mathrm{S}_{\mathrm{p}}=\mathrm{q} \& \mathrm{~S}_{\mathrm{q}}=\mathrm{p} \rightarrow \mathrm{S}_{(\mathrm{p}+\mathrm{q})}=-(\mathrm{p}+\mathrm{q})$	If $\mathrm{S}_{7}=11 \& \mathrm{~S}_{11}=7, \rightarrow \mathrm{~S}_{18}=-(11+7)=-18$
4. If $\mathrm{T}_{\mathrm{p}}=\mathrm{q} \& \mathrm{~T}_{\mathrm{q}}=\mathrm{p} ;$ then $\mathrm{T}_{\mathrm{r}}=(\mathrm{p}+\mathrm{q}-\mathrm{r})$	5. If $\mathrm{T}_{\mathrm{p}}=\mathrm{q} \& \mathrm{~T}_{\mathrm{q}}=\mathrm{p} ;$ then $\mathrm{T}_{(\mathrm{p}+\mathrm{q})}=0$.

GEOMETRIC PROGRESSION (GP)

Θ A sequence in which 'any term divided by its preceding term' is same. It is denoted by ' r '.
Θ
Common Ratio $\rightarrow r=\frac{T_{2}}{T_{1}}=\frac{T_{3}}{T_{2}}=\frac{T_{4}}{T_{3}}$ $\ldots-=\frac{T_{n}}{T_{n-1}}$
$\Theta T_{n}=a \times r^{(n-1)}$
Θ Geometric Mean $(G M) \rightarrow$ If a, b, c are in $G P$, then $b / a=c / b \Rightarrow b^{2}=a \times c$

Q24. Find $8^{\text {th }}$ term of series $4,8,16 \ldots \ldots$ is
Q25. $10^{\text {th }}$ term of the G.P. $\frac{1}{2}, 1,2,22, \ldots$. is
[Ans: 512]
[Ans: 256]
Q26. The last term of the series $x^{2}, x, 1, \ldots$. to 31 terms is
[Ans: $1 / \mathrm{x}^{28}$]
Q27. Which term of the G.P. series $1 / 4,-1 / 2,1 \ldots$ is -128 ?
Q28. The number of terms in $6,18,54, \ldots \ldots$. upto 1458 is \qquad
Q29. If $(k+9),(k-6) \& 4$ forms three consecutive terms of a G.P, then the value of ' k ' is
© 8888111134 | 8888111034 www.pranauchandak.com

PC Note: If two non-consecutive terms in GP (say T_{m} \& $\left.T_{n}\right)$ \& their values are given in question \& you are asked to find out $G P \Rightarrow \mathrm{r}^{(m-n)}=\frac{T_{m}}{T_{n}}$ Q30. Find GP where T_{3} is $36 \& T_{s}$ is 324 . [GP $\left.=4, \pm 12, \pm 36, \pm 108 \ldots \ldots.\right]$

Insertion of ' n ' Geometric Means b/w 2 Numbers

\rightarrow Total number of terms in the required GP will be $(n+2)$.
\rightarrow Take $1^{\text {st }}$ given number as T_{1} \& $2^{\text {nd }}$ given number as T_{n+2} \& use the above given note.
Q31. Insert 3 geometric means between $1 / 9$ \& 9 .
Ans: Insert $3 G M$ s between $1 / 9$ \& 9 , total number of terms will be $s \rightarrow 1 / 9, G M_{1}, G M_{2}, G M_{3}, 9$.
Take $T_{1}=1 / 9 ; T_{s}=9$. Thus $r^{-1}=9 / 1 / 9 ; r^{4}=81 ;$ \& thus $r=3$.
$G M_{1}=1 / 9 \times 3=1 / 3, G M_{2}=1 / 3 \times 3=1, G M_{3}=1 \times 3=3$.
GP will be $1 / 9,1 / 3,1,3,9$.

SUM OF FIRST ' N ' TERM OF GP

SUM OF INFINITE GP

If $\mathrm{r}<1 \Rightarrow \mathrm{~S}_{\mathrm{n}}=\mathrm{ax} \frac{1-\mathrm{r}^{\mathrm{n}}}{(1-\mathrm{r})}$
$r>1 \Rightarrow S_{n}=a \times \frac{r^{\mathrm{n}}-1}{(r-1)}$
$S_{\infty}=\frac{a}{1-r}$
PC Note: If $r=1$, it will be an Equal series [GP \& AP also]. Sum (if $r=1) \Rightarrow n . a$ [a is term of series]

Q32. Sum of first two terms of a GP is $\frac{5}{3}$ \& sum to infinity of the series is 3 . common ratio =
Q33. Sum of first 20 terms of a GP is 244 terms the sum of its first 10 terms. Common ratio $=$
[Ans: $\pm \sqrt{3}$]
Q34. Sum upto ∞ of the series $8+4 \sqrt{2}+4 \ldots=$
(a) $8(2+\sqrt{2})$
(b) $8(2-\sqrt{2})$
(c) $4(2+\sqrt{2})$
(d) $4(2-\sqrt{2})$

Q35. If $x=a+\frac{a}{r}-\frac{a}{r^{2}}+\ldots \infty, y=b-\frac{b}{r}+\frac{b}{r^{2}} \ldots . \infty, z=c+\frac{c}{r}+\frac{c}{r^{3}}+\ldots \infty$; Value of $\frac{x y}{z}-\frac{a b}{c}$ is \ldots

ASSUMPTIONS OF THE TERMS IN GP

If No. of terms given in question are	Middle Term	r	Examples of Terms
ODD No. of terms	a	r	3 terms: $(a / r), a,(a r)$ 5 terms: $\left(a / r^{2}\right),(a / r), a,(a r),\left(a r^{2}\right)$
EVEN No. of terms	$(a / r) \&(a . r)$	r^{2}	2 terms: $(a / r) \&(a r)$ 4 terms: $\left(a / r^{3}\right),(a / r),(a r),\left(a r^{3}\right)$

PC Note: But we will go by OPTION METHOD in such type of questions TO SAVE TIME.
Q36. Product of first three terms of GP is
27/8. Middle term $=$ \qquad (a) $3 / 2$
(b) $2 / 3$
(c) $2 / 5$
(d) None
Θ If a, b, c OR a^{2}, b^{2}, c^{2} are in $G P \rightarrow$ Put a, b, c value $a s 1,2,4$ in options \& get the answer.
Θ Log of all terms of a GP, it will become AP.
Θ If there are ' n ' terms in a GP, $m^{\text {th }}$ term from the end will be $(m-n+1)^{\text {th }}$ term from the start.
Ex: If there are 7 terms in a GP, $2^{\text {nd }}$ term from the end will be $(7-2+1)^{\text {th }}$ term from the start.
Q37. If a, b, c are in AP; a, x, b are in $G P \& b, y, c$ are in $G P$. Then x^{2}, b^{2}, y^{2} are in_.. (a) AP (b) GP (c) HP (d) None
Q38. Sum of n terms of the series $4+44+444+\ldots .=$
(a) $\frac{4}{9}\left\{\frac{10}{9}\left(10^{n}-1\right)-n\right\}$
(b) $\frac{10}{9}\left(10^{\mathrm{n}}-1\right)-\mathrm{n}$
(c) 1
(d) 0

Q39. Sum upto infinity of the series $\left(1+2^{-2}\right)+\left(2^{-1}+2^{-4}\right)+\left(2^{-2}+2^{-6}\right)+\ldots=$
(a) $7 / 3$
(b) $3 / 7$
(c) $4 / 7$
(d) None

SET THEORY \& VENN DIAGRAM

- Sets: A set is a well-defined collection of objects.
- Element: Each object in a set is called an element of the set.
- A set is denoted by 'capital letters' \& their elements are denoted by 'small letters'.

Ex: Set $A=\{a, e, i, 0, u\} \quad$ ' a ' is an element of Set A \& we write $a \in A$ \& read as ' a ' belongs to ' A '. But 3 is not an element of A \& we write $b \notin B$ \& read as ' 3 ' does not belong to ' B '.
\boxtimes Repetition of elements in a set is MEANINGLESS.
\square Order of the elements in a set is NOT RELEVANT.

TYPES OF SETS

1	Universal Set: A set containing all possible elements.
2	Null Set: Set having NO Element [Denoted by \{\} or \varnothing] (AKA - Empty set/void set) Ex: $A=\{x$: x is odd no. divisible by 2$\}=\varnothing$
3	Singleton Set: A set having only one element Ex: $A=\{5\}$
4	Equal Set: If every element of A is in B \& every element of B is in $A, A \& B$ are equal sets. Ex: If $A=\{2,4,6\}$ and $B=\{6,2,4\}$ then Set $A=$ Set B. [Order of element is NOT relevant]
5	Equivalent Set: If Number of Elements in Set A \& Set B are SAME. $[\mathrm{n}(\mathrm{~A})=\mathrm{n}(\mathrm{~B})]$ Ex: $A=\{a, b, c\} \& B=\{1,2,3\} ; n(A)=3 \& n(B)=3, A \& B$ are equivalent sets.
6	Subset: If all the elements of set A are present in Set B, A is a subset of B. $E x: A=\{1,2\} \& B=\{1,2,3\}$ then A is subset of B. [B is said to be a superset of A] \Rightarrow PC Note: In subset, there exist an Equal set \& Null set also. $E x: A=\{1,2,3\} \quad$ subset of A include $\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\} \&\{ \}$ Number of Subsets of a set $=2^{\text {n }}$ [where ' n ' = Number of elements]
7	Proper Subset: If Set A is a subset of Set B but not equal set. $[A \subset B]$ $E x: A=\{1,2,3\} ; \quad$ Proper subset of A includes $\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\}$ \& $\}$. \Rightarrow PC Note: Proper Subset does not include Equal set. Thus, A Null set does not have a Proper subset. Number of Subsets of a set $=2^{n}-1 \quad$ [where ' n ' = Number of elements]
8	Power Set: Set of all subsets of a set is called Power set. Power set of $A=\{\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\},\{ \}\}$.
9	Disjoint Sets: If Set $A \&$ Set B has NO Common element, they are disjoint Sets. [$A \cap B=\emptyset]$
10	Union of Sets (AUB): It contains all elements which are EITHER in Set A OR in Set B.
11	Intersection of Sets (A@B): It contains all the elements which are in Set A AND Set B.
12	Complimentary Set (A'): Set of elements which are in Universal set but not in Set A.
13	Difference of Sets (A-B): Set of elements which are in Set A but not in Set B [Sirf A me hona] $B-A$: Set of elements which are in Set B but not in Set A. [Sirf B me hona] \Rightarrow PC Note: $n(A-B)=n(A)-A \cap B \quad \& \quad n(B-A)=n(B)-A \cap B$ Ex: If $A=\{1,2,3,5,7\} \& B=\{1,3,6,7,15\} A-B=\{2,5\} \& \quad B-A=\{6,15\}$

CA PRANAV CHANDAK

$A \Delta B=(A-B) \cup(B-A)[$ Symmetric Difference of $A \& B]$
$Q 1 . U=\{1,2,3,4,5,6,7,8,9\} ; P=\{2,4,6,8\} ; Q=\{1,2,3,4,5\}$
(i) $P \cup Q=\{1,2,3,4,5,6,8\} ;$
(ii) $(P \cup Q)^{\prime}=\{7,9\}$
(iii) $P \cap Q=\{2,4\}$
(iv) $P^{\prime}=\{1,3,5,7,9\}$
(v) $(P \cap Q)^{\prime}=\{1,3,5,6,7,8,9\}$;
(vi) $Q^{\prime}=\{0,6,7,8,9\}$;
(vii) $P-Q=\{6,8\}$
(viii) $Q-P=\{1,3,5\}$

| $A \cup B=B \cup A$ | $(A \cup B) \cup C=A \cup(B \cup C)$ | $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$ | $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ | $A \cap A^{\prime}=\varnothing$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $A \cap B=B \cap A$ | $(A \cap B) \cap C=A \cap(B \cap C)$ | $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ | $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ | $A \cup A^{\prime}=U$ |
| $A \cap A=A$ | $A \cup A=A$ | $A \cup \emptyset=A$ | $A \cap \cup=A$ | $P C D O N ' T R E C O M M E N D$ LEARNING THESE FORMULA |

Q2. If $A=\{a, b, c, d, e, f\} \& B=\{a, e, i, o, u\} \& C=\{m, n, o, p, q, r, s, t, u\}$ then
(i) $\mathrm{A} \cup \mathrm{B}=$ \qquad (ii) $A \cup C=$ \qquad (iii) $B \cup C=$ \qquad (iv) $\mathrm{A}-\mathrm{B}=$ \qquad (v) $\mathrm{A} \cap \mathrm{B}=$ \qquad
(vi) $\mathrm{B} \cap \mathrm{C}=$ \qquad (vii) $A \cup(B-C)=$ \qquad (viii) $A \cup B \cup C=$ \qquad (ix) $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}=$ \qquad

VENN DIAGRAM
$\Rightarrow n(A \cup B)=n(A)+n(B)-n(A \cap B)$
[Do Not Use these Formula, Use Venn Diagram]
OR $\quad n(A \cup B)=n(A-B)+n(B-A)+n(A \cap B)$
$\Rightarrow n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(C \cap A)+n(A \cap B \cap C)$.
$\Rightarrow n(A)=n(A-B)+n(A \cap B)$
\& $\quad n(B)=n(B-A)+n(A \cap B)$
$\Rightarrow n(A \Delta B)=$ No. of elements which belongs to exactly one of A or $B=n(A)+n(B)-2 n(A \cap B)$.
\Rightarrow No. of elements in exactly two of the sets $A, B, C=n(A \cap B)+n(B \cap C)+n(C \cap A)-3 n(A \cap B \cap C)$.
\Rightarrow No. of elements in exactly one of three sets $=n(A)+n(B)+n(C)-2 n(A \cap B)-2 n(B \cap C)-2 n(C \cap A)+3 n(A \cap B \cap C)$
Q3. 74% of Indians like grapes, 68% like bananas. What $\%$ of Indians like both grapes \& bananas? [Ans: 42\%]
Q4. In a class of 60 students, 40 students like Maths, 36 like Science \& 24 like both the subjects. Find the number of students who like (i) Maths only
(ii) Science only(iii) Maths or Science
(iv) Not Maths \& Science.

Ans: (i) Maths only $=16$ (ii) Science only $=12$ (iii) Maths or Science $=52$
(iv) Not Maths \& Science $=8$

SCAN ME

VENN DIAGRAM - MOST LOGICAL EXPLANATION

 JUST WATCH THIS LECTURE \& YOU WILL NOT HAVE TO LEARN ANY OF THE FORMULA OF SET THEORY TO SOLVE THE QUESTION.This QR Scanner Contains the Link of a Lecture of our Full Course in which Venn Diagram Along with 15 Past Exam Questions has been Discussed.

CARTESIAN PRODUCT SET

- Ordered Pair: Two elements ' a ' \& 'b', listed in a specific order, form an ordered pair. It is denoted by (a, b).
- Set of all ordered pairs (a, b) such that $a \in A \& b \in B$, is called cartesian product of A \& B. It is denoted by $A \times B$. Thus, $A \times B=\{(a, b)$ such that $a \in A \& b \in B\}$.
- PC Note: $(a, b) \neq\{a, b\}$. If $(a, b)=(c, d)$, it means that $a=c \& b=d$.
- In set, repetition of elements is meaningless. But for ordered pairs, $(5,5)$ means 5 belongs in both the sets.
- Cardinal Number $=$ Number of elements in a set \rightarrow Denoted by $n(A) \rightarrow n(A \times B)=n(A) \times n(B)$
$Q 1$. If $P=\{1,3,6\} \& Q\{3,5\}$. Find $P \times Q \& Q \times P$.
Ans: $P \times Q=\{(1,3),(1,5),(3,3),(3,5),(6,3),(6,5)\} ;$
$Q \times P=\{(3,1),(3,3),(3,6),(5,1),(5,3),(5,6)\}$
It is noted that ordered pairs $(3,5) \&(5,3)$ are not equal. So, $P \times Q \neq Q \times P$; but $n(P \times Q)=n(Q \times P)$.

123456

RELATIONS

- Any subset of the product set $A \times B$ is called a relation from A to B. It is denoted by $R . R \subseteq A \times B$
- Domain of a Relation = Set of all first elements of ordered pair.
- Range of a Relation $=$ Set of all second elements of ordered pair.
$\operatorname{Dom}(R)=\{a:(a, b) \in R\}$
$\operatorname{Range}(R)=\{b:(a, b) \in R\}$

Q2. $\operatorname{Set} A=\{1,2,3\} \& \operatorname{Set} B=\{2,4,6\}$
$A \times B=\{(1,2),(1,4),(1,6),(2,2),(2,4),(2,6),(3,2),(3,4),(3,6)\}$
Every subset of the product set $A \times B$ is called a relation from A to B.
Now, we consider the relation which is the subset of $A \times B$. Let $R=\{(1,2),(1,4),(3,2),(3,4)\}$.
Domain of $R=1^{\text {st }}$ Elements $=\{1,3\}$ \& Range of $R=2^{\text {nd }}$ Element $=\{2,4\}$

TYPES OF RELATIONS

1	Identity Relation: If both elements of ordered pairs are same, it is an identity relation. $[I=\{(a, a): a \in A\}]$ Ex: Let $A=\{1,2,3\}$ then $I=\{(1,1),(2,2),(3,3)\}$
2	Reflexive Relation: R is reflexive relation if $(a, a) \in R \& a=a$. PC Note: R is reflexive if it contains ALL POSSIBLE ORDERED PAIRS of the type (x, x). Ex: Let $A=\{1,2,3\} ;$ If $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,3)\}$; it is a reflexive relation because all possible ordered pair of the form (x, x) are present in the given relation. If $R=\{(1,1),(1,3),(2,3),(3,1),(3,3)\}$ is NOT a reflexive relation because $(2,2)$ is missing in R.
3	symmetric Relation: If $(a, b) \in R$; then (b, a) should also $\in R$. [PC NOTE: Reverse pair bhi hona Relation me] Ex: $R=\{(1,1),(1,3),(1,2),(2,1),(3,1)\}$.
4	Transitive Relation: R is transitive relation if $(a, b) \in R$ \& $(b, c) \in R$, then (a, c) should $\in R$.
5	Equivalence relation: A relation which is reflexive, symmetric \& transitive. [Ex: Parallel \& Is Equal to]
6	Inverse Relation: R is a relation from A to B, then relation R^{-1} from B to $A=\{(b, a):(a, b) \in R\}$. Dom of $\left(R^{-1}\right)=$ Range of (R) \& Range of $\left(R^{-1}\right)=\operatorname{Dom}$ of (R). Ex: Let $A=\{1,2,3\}$ \& If $R=\{(1,2),(2,2),(3,1),(3,2)\}$; then $R^{-1}=\{(2,1),(2,2),(1,3),(2,3)\}$ Dom of $(R)=\{1,2,3\}$ \& Range of $(R)=\{2,1\} \quad \& \quad \operatorname{Dom}\left(R^{-1}\right)=\{2,1\} \& \operatorname{Range}\left(R^{-1}\right)=\{1,2,3\}$
7	Void Relation: A relation R is a void relation if $R=\varnothing$ Ex: Let $A=\{7,11\}$ and $B=\{3,5\}$. Let $R=[(a, b): a \in A, b \in B, a-b$ is odd $\}$, then $R=\emptyset$
	PC Note: A partial order relation is any relation that is reflexive, antisymmetric, and transitive.

FUNCTIONS

सबकी Image होना $\& \operatorname{Sirf} 1$ होना

- Function $=$ Any relation from X to Y in which two different ordered pairs should not have same first element.
- If any ordered pair of a relation have same first element, then such relation is not a function. [f:A $\rightarrow B$]

Function/Mapping [f: $x \rightarrow y]$

1. All Elements in ' x ' \Rightarrow सबकी Image होना ' y ' me.
2. All Elements in ' x ' \Rightarrow Sirf 1 Image होना ' y ' me.

Ex: Let $A=\{1,2,3,4\} \& B=\{1,2,3\}$.
$R=\operatorname{Subset}\{(1,2),(1,3),(2,3)\}$ is a relation on $A \times B$. so, it is "less than" relation since $A<B$ in all ordered pairs This relation is not a function because it includes two different ordered pairs $(1,2),(1,3)$ have same ${ }^{15 t}$ element.

Q3. Which of these is a function from $A \rightarrow B A=\{x, y, z\} B=\{a, b, c, d\}$
[Ans: C]
(a) $\{(x, a)(x, b)(y, c)\}$
(b) $\{(x, a)(x, b)(y, c)(z, d)\}$
(c) $\{(x, a)(y, b)(z, d)\}$
(d) $\{(a, x)(b, z)(c, y)\}$

Q4. If $f(x)=x^{2}-5$, evaluate $f(3), f(-4), f(5)$ and $f(1)$.
[Ans: C]
$\begin{array}{llll}\text { (a) } 0,11,20,4 & \text { (b) }-4,11,-2,4 \text { (c) } 4,11,20,-4 & \text { (d) } 4,10,20,5\end{array}$
Q5. If $f(x)=2^{x}$, then $f(x+y)=\ldots$ [Nov 2007]
(a) $f(x)+f(y)$
(b) $f(x) \cdot f(y)$
(c) $f(x) \div f(y)$
(d) None

Q6. $f(x)=(2 x+3)$, then the value of $f(2 x)-2 f(x)+3=$
(a) 3
(b) 2
(c) 1
(d) 0

Q7. If $f(x-1)=x^{2}-4 x+8$, then $f(x+1)=$ \qquad
(a) $x^{2}+8$
(b) $x^{2}+7$
(c) $x^{2}+4$
(d) $x^{2}-4 x$

Q8. If $f(x)=\log \left(\frac{1+x}{1-x}\right)$, then $f\left(\frac{2 x}{1+x^{2}}\right)=$ _-
(a) $f(x)$
(b) $2 f(x)$
(c) $3 \mathrm{f}(\mathrm{x})$
(d) $-f(x)$

Q9. If $f(x)=$ then $\frac{x}{x-1}$, then $\frac{f(x / y)}{f(y / x)}=$ \qquad
(a) x / y
(b) y / x
(c) $-x / y$
(d) $-y / x$

TYPES OF FUNCTIONS

One - One function (injective function) \Rightarrow Every element in Set A have different images in Set B.
Ex: Let $A=\{1,2,3\} \& B=\{2,4,6\} . \Rightarrow$ Thus, function is $f: A \rightarrow B: f(x)=2 x$.
2 Many-one function \Rightarrow If two or more elements in A have same image in B.
$E x: f(x)=x^{2} ; x \in R \quad \Rightarrow f(1)=(1)^{2}=1 \& f(-1)=f(-1)^{2}=1$
3 Onto function (surjective function) \Rightarrow If all the element in B has at least one pre-image in A.
$\operatorname{Ex}: A=\{1,2,3\} \& B=\{a, b\}$. Let $f=\{(1, a),(2, a),(3, a)\}$. Since ' b ' does not have any pre image, it is not onto function. It is an Into Function.
4 Into function \Rightarrow If at least one element in B has no pre-image in A.
5 Bijective Function \Rightarrow One-One onto function.
6 Constant Function $\Rightarrow A l l$ the elements in ' A ' have same image in ' B '.

- Range of a constant function $=$ Singleton set. \quad Ex: Let $f(x)=\{(1,3),(2,3),(3,3),(4,3)\}$.

7 Identity function \Rightarrow If every element in A is mapped to itself (has same image), it is an identity function.

- It is a one-to-one onto function with domain A and range A.

Ex: Let $x=\{1,2,3,4\}$ then $f(1)=1 ; f(2)=2 ; f(3)=3 ; f(4)=4$ is an identity function.
8 Equal Function \Rightarrow Two functions $f(x) \& g(x)$ are said to be equal if (i) they have same domain; (ii) $f(x)=g(x)$.
Ex: Let $f(x)=x^{2}, \forall x \in R \& g(y)=y^{2}, \forall y \in R$. Then two function f \& g are equal.
9 Inverse Function \Rightarrow If $f(x)=y$; then $f^{-1}(y)=x$.
[Don't even dare to see the definition]
PC Tips to find Inverse Function

1. Substitute $f(x)=y$.
2. Find the value of x in terms of y.
3. Replace ' x ' with $f^{-1}(x)$ \& ' y ' with x.

Q9. $f(x)=2 x$. Find $f^{-1}(x)$.
Ans: Step 1: Let $f(x)=y$. Thus $y=2 x$; Step 2: $x=y / 2$;
4. The resultant will be the answer.

Step 3: $f^{-1}(x)=x / 2$.

Q10. If $f(x)=\frac{2+x}{2-x}$, then $f^{-1}(x)$:
June [2008]
(a) $\frac{2(x-1)}{x+1}$
(b) $\frac{2(x+1)}{x-1}$
(c) $\frac{x+1}{x-1}$
(d) $\frac{x-1}{x+1}$

10 Composite Function \Rightarrow Function of a Function

PC Tips to find Composite Function

$\Theta f[g(x)]$: Replace ' x ' with $g(x)$ in $f(x)$.
$\Theta g[f(x)]$: Replace ' x ' with $f(x)$ in $g(x)$.
QII. Let $f(x)=2 x \& g(x)=3 x^{2}$. Find $f[g(x)] \& g[f(x)]$.
Ans:
(i) $f[g(x)]=$ Replace ' x ' with $g(x)$ in $f(x)$;
$f[g(x)]=2\left(3 x^{2}\right)=6 x^{2}$.
(ii) $g[f(x)]=$ Replace ' x ' with $f(x)$ in $g(x)$;
$g[f(x)]=3(2 x)^{2}=12 x^{2}$.

Q12. If $f(x)=x^{2}-1 \& g(x)=|2 x+3|$, then $\operatorname{fofg}(3)-\operatorname{gof}(-3)=$?
[July 2021]
(a) 71
(b) 61
(c) 41
(d) 51

