Measures of Central Tendency) $-8-12$ marks 1 and Dispersion.
i) Mean

Arithmetic mean
Geometric mean (AVERAGE)

Harmonic mean
ii) Median (Partition value)

iii) mode

* Arithmetic mean

$$
\begin{aligned}
A \cdot m & =\frac{\text { sum of all observations }}{\text { Total no. of observations }}=\frac{\sum x_{i}}{n} \\
\bar{x} & =\int_{\text {sigma (summation) }}^{\frac{\sum x_{i}}{n}(i=1)}
\end{aligned}
$$

* Arithmetic mean of Frequency Distribution

$$
\begin{aligned}
& \left.\left\lvert\, \bar{x}=\frac{\sum x_{i} f_{i}^{i}}{\sum f_{i}}\right.\right) \text { Anirect methoce } \\
& \left.\bar{x}=A+\left(\frac{\sum d_{i} f_{i}^{0}}{\overline{A-x_{i}}} \times h\right) \right\rvert\, \text { step Deration method } \\
& { }_{\text {middle value of } x_{i}}
\end{aligned}
$$

PROPERTIES OF AM
i) If the observations are say ' K ' then $A m$ is also ' K '.
ii) If the observations,,$+- x$ by value ' K ', then Am will also be $+, \ldots, x$ by value ' k '.
iii) The sum of deration from the mean is zero.

$$
\Sigma\left(x_{i}-\bar{x}\right)=0
$$

iv)

$$
\begin{array}{r}
\left.\begin{array}{r}
y_{i}=x_{i}+a \\
y_{i}=x_{i}-a
\end{array}\right\} \text { Origin -shift } \\
\left.\begin{array}{rl}
y_{i} & =b x_{i}^{0} \quad \\
y_{i} & =\frac{x_{i}}{b} \quad
\end{array}\right\} \text { Scaling } \\
\quad \bar{y}=a+b \bar{x}
\end{array}
$$

v) If there are 2 observations $n_{1} \& n_{2}$ with respecter $A m$ as $\bar{x}_{1} \$ \bar{x}_{2}$, then combined $A M$ is:

$$
\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{1} \bar{x}_{2}+\cdots}{n_{1}+n_{2}+\cdots}
$$

CORRECTNG INCORRECT MEAN

$$
\bar{x}_{r}=\bar{x}_{w}+\frac{x_{r}-x_{w}}{n}
$$

* toughted Arithmetic mean

$$
\bar{x}=\frac{\Sigma w_{i} x_{i}^{i}}{\Sigma \omega_{i}}
$$

Arithmetic mean

Merits

- Rigidly- olefincol.
- Easy to calculate \$ understand
- Based on all observations
- Liftable for maths treatment further.
- Least affected by fluctuations of sampling

Demerits

- Affected by extreme values.
- Open - end classes
- Not detected graphically
- Qualitative data X
- Wrong conclusions it details not available.

$$
\text { Median } \rightarrow \text { middle value }
$$

positional average

* Ungrouped data (Data in ascending value) n is odd, $\left(\frac{n+1}{2}\right)^{\text {th }}$ term
n is even, $\frac{n^{\text {th }}}{2}+\left(\frac{n}{2}+1\right)^{\text {th }}$ term

$$
\left(\frac{n+1}{2}\right)^{\text {th }}=3.5^{\text {th }}=3^{r d}+0.5\left(4^{\text {th }}-3^{r d}\right)
$$

* Discrete series
i) Find Cumulative Frequency
ii) Total of $\frac{N}{2}$
iii) $C f>\frac{N}{2}$
iv) Ans is x corresponding for $C F>\frac{N}{2}$
* Continuous series
i) Find Cumulative Frequency
ii) Total of $\frac{N}{2}$
iii) $C F>\frac{N}{2} \Rightarrow$ Median class
iv) $x_{\text {med }}=L \cdot C \cdot B+\frac{\frac{N}{2}-C f_{1-1}}{f} \times h$

PROPERTIES OF MEDIAN
i) x and y are two variables, $y=a+b x$, then the median of y is $y_{\text {median }}=a+b x_{\text {median }}$
ii) $\quad \rightarrow$ ignore signs
ii) When the sum of absolute deviations is minimum, when deviation is taken from median.

$$
\Sigma\left[x-x_{\text {median }}\right] \rightarrow \mathrm{min}
$$

MERITS

- rigidly defíved
- Simple to calculate.
- Can deal with open-end class
- Unaffected by extreme values
- Qualitative data
- Determinieal graphically

DEMERITS

- Not based on each and every item.
- Not suitable for maths
- Ungrouped data draatinint even not suitable.
- Sampling fluctuation
- need to arrange data
(Partition Values)
i) Quartiles

3 Quartiles \rightarrow divide in 4 equal parts (25%-each)
ii) Deciles 9 Deciles \rightarrow divide in 10 equal parts (10% each)
iii) Percentiles

$$
\begin{aligned}
& \text { Percentiles } \\
& 99 \text { Percentiles } \rightarrow 100 \text { equal parts }(1 \% \text { each) }
\end{aligned}
$$

Calculation of Quartiles [Individual observations] :-

$$
\begin{aligned}
& K^{\text {th }} \text { quartile }=\left[K\left(\frac{n+1}{4}\right)\right]^{\text {th }} \text { value } \\
& Q_{1}=\left(\frac{n+1}{4}\right)^{\text {th }} \\
& Q_{2}=2\left(\frac{n+1}{4}\right)^{\text {th }}=\left(\frac{n+1}{2}\right)^{\text {th }} \Rightarrow \text { MEDIAN } \\
& Q_{3}=3\left(\frac{n+1}{4}\right)^{\text {th }}
\end{aligned}
$$

Calculation of Deciles:-

$$
D_{k}=\left[K\left(\frac{n+1}{10}\right)\right]^{t h} \quad k=1 \text { to } 9
$$

Calculation of Percentiles:-

$$
P_{k}=\left[K\left(\frac{n+1}{100}\right)\right]^{\text {th }} \quad K=1 \text { to } 99
$$

* In case of Discrete series: Quartiles

$$
O_{K} \rightarrow \text { value corresponding to } C F \geqslant \frac{K N}{4}
$$

Deciles

$$
D_{K} \rightarrow \text { value corresponding to } C F \geqslant \frac{K N}{10}
$$

Percentiles

$$
P_{K} \rightarrow \text { value corresponding to } C F \geqslant \frac{K N}{100}
$$

* In case of Continuous Series:-

Quartiles.

$$
x_{\text {median }}=l+\frac{\frac{K N}{4}-C F_{-1}}{f} \times h \quad C F \geqslant \frac{K N}{4}
$$

Deciles

$$
x_{\text {motion }}=l+\frac{\frac{K N}{10}-C F-1}{f} \times h \quad C F \geqslant \frac{k N}{10}
$$

Percentiles

$$
x_{\text {median }}=l+\frac{\frac{K N}{100}-C F_{-1}}{f} \times h \quad C F \geqslant \frac{K N}{100}
$$

$$
\int^{M} \theta \subset l \rightarrow \text { most occuring value }
$$

* Bi-model distribution - 2 modes
multi-medel distribution - more than 2 modes No mode - 1 observation of each
* Discrete series
max. frequency
* Continuous series

$$
x_{\text {mod }}=L C B+\frac{f_{0}-f_{-1}}{2 f_{0}-f_{1}-f_{-1}} \times h
$$

LIMITATIONS:-
i) Exclusive type series
ii) Same length of class interval

PROPERTIES
i)

$$
\begin{aligned}
& \text { mean }- \text { Mode }=3(\text { mean }- \text { median }) \\
& 3 \text { median }=2 \text { mean }+ \text { mode } \quad \text { Empiricat } \\
& \text { formula }
\end{aligned}
$$

$$
\downarrow
$$

Moderately Skewed Distribution
Symmetrical Distribution X

ii) $y=a+b x$, then $y_{\text {mod }}=a+b x_{\bmod }$

MERITS

- Simple and easy to calculate.
- Located by inspection
- Graphically by histogram.
- Not affected by extreme value.
- Open end class not affected

DEMERITS

- Not rigidly defined (1-2vilues)
- Not based on all observations
- Not further for mathematical. treatment
- Affected by sampling
- May have bi-modal distribution.
most popular. - Arithmetic mean
most reasonable - Geometric mean
Dato.
Geometric Mean
∇

$$
G \cdot m=\frac{\left(x_{1} * x_{2} * \ldots * x_{n}\right)^{\frac{1}{n}}}{\text { where } n=\text { no. of observations }}
$$

$>$
> Contirous series same (except $x_{i}=$ mid-point) Uses:-
i) When ratio of consecutive terms remains constant.
ii) Most appropriate average in index number.
iii) Give weightage to smaller items.

PROPERTIES
i) If observations are ' K ' then $G M$ is also ' K '.
ii) If $z=x y$, then, $G m_{z}=G m_{x} \times G m_{y}$
iii) If $z=\frac{x}{y}$, then $G m_{z}=\frac{G m x}{G m y}$

$$
\begin{aligned}
& \log G M=\frac{1}{n} \sum \log x_{i} \\
& G M=\operatorname{antilog}\left(\frac{\Sigma \log x_{i}}{n}\right) \\
& \left.>G m=\left(x_{1}^{f_{1}} \times x_{2}^{f_{2}} \times x_{3}^{f_{2}} \ldots \times x_{n}^{f_{n}}\right)^{\frac{1}{n}}\right) \\
& \text { tog } G M=\operatorname{antilog}\left(\frac{\sum f_{i} \log x_{i}}{N}\right) \quad \rho^{\text {series }}
\end{aligned}
$$

- If all observations are k, then $G M=H M=A M=k$ But otherwise $A m>G M>H M$

Harmonic Mean

$$
H m=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}}=\frac{n}{\sum \frac{1}{x_{i}}}
$$

* Discrete Series

$$
H m=\frac{\sum f_{i}}{\frac{f_{1}}{x_{1}}+\frac{f_{2}}{x_{2}}+\cdots \frac{f_{n}}{x_{n}}}=\frac{\sum f_{i}}{\sum \frac{f_{i}}{x_{i}}}
$$

* Continuous Series

$$
H M=\frac{\sum f_{i}^{0}}{\frac{\sum f_{i}}{x_{i}^{i}}} \text { where } x_{i}^{\circ}=\text { class mid-point }
$$

Uses:
i) If observations are ' k ' then $H M$ is also ' k '
ii) $\begin{array}{cc}n_{1} & n_{2} \\ H m_{1}-H m_{2}\end{array} \quad H m_{\text {combined }}=\frac{n_{1}+n_{2}}{\frac{n_{1}}{H m_{1}}+\frac{n_{2}}{H m_{2}}}$

$$
A \omega_{w}=\frac{\sum w_{i} x_{i}^{i}}{\sum \omega_{i}}
$$

$$
\begin{aligned}
& \text { Gm }_{\omega}=\text { antilog } \frac{\sum \omega_{i} \log x_{i}}{\text { Si } \omega_{i}} \\
& H M_{\omega}=\frac{\sum \omega_{i}}{\sum \omega_{i}} \frac{x_{i}}{}
\end{aligned}
$$

* Sum of $1^{\text {st }} n$ natural numbers $=\frac{n(n+1)}{2}$
* Relationship b/w AM, GiN \$ HM

If all observations are equal. $G M=H M=A M=K$ Else $A M>G m>H m$

$$
G m^{2}=A M \times H M \quad \text { for two observations }
$$

* Sum of squares of $1^{\text {st }} n$ natural number.

$$
=\frac{n(n+1)(2 n+1)}{6}
$$

* Sum of cubes of $1^{\text {st }} n$ natural numbers

$$
=\frac{n^{2}(n+1)^{2}}{n^{2}}
$$

* If n terms are there, $\Sigma\left(x_{1}-a\right)=b \quad a^{2}$

$$
\sum x_{i}^{i}-a n=b
$$

