- 1) Regression analysis aims establishing the average relationship between two variables.
- 2) It is used to predict unknown variable with the help of known variable.
- 3) There are two types are regression lines:
 - a) Regression line of x on y
- b) Regression line of y on x

	Feature	x on y	y on x
1)	Regression line general form	X = a + b Y	Y = a + b X
2)	Dependent or Explained or Regressed	X	Y
3)	Independent or Explanatory or Regressor	Y	X
4)	Regression Equation	$X - \overline{X} = r \cdot \frac{\sigma_x}{\sigma_y} (Y - \overline{Y})$	$X - \overline{X} = r \cdot \frac{\sigma_y}{\sigma_x} (X - \overline{X})$
5)	Regression Coefficient	$b_{XY=} r. \frac{\sigma_x}{\sigma_y} = \frac{\text{COV}(x, y)}{\sigma_y^2}$	$\boldsymbol{b}_{YX} = \boldsymbol{r} \cdot \frac{\sigma_y}{\sigma_x} = \frac{\text{COV}(\mathbf{X}, \mathbf{y})}{\sigma_x^2}$
6)	Deviations from mean	$b_{xy} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (y - \overline{y})^2}$	$b_{yx} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$
7)	No deviation	$b_{xy} = \frac{n \sum xy - \sum x \sum y}{n \sum y^2 - (\sum y)^2}$	$b_{yx} = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$
8)	Deviation from assumed mean	$b_{xy} \stackrel{c}{\leftarrow} \frac{n \sum dx.dy - \sum dx. \sum dy}{n \sum dy^2 - (\sum dy)^2}$	$b_{yx} = \frac{n \sum dx.dy - \sum dx. \sum dy}{n \sum dx^2 - (\sum dx)^2}$
9)	Identification of regression equation by the value of $\left \frac{x \ coefficient}{y \ coefficient}\right $	Maximum	Minimum

PROPERTIES OF REGRESSION COEFFICIENTS:

 The coefficient of correlation will have the same sign as that of regression coefficients. i.e., r, b_{YX} and b_{XY} will have same sign.

	b _{YX}	b _{XY}
	And Property and the	•
+	+	+
0	0	0

- 2) Arithmetic mean of regression coefficients is greater than the correlation coefficient i.e., $\frac{b_{yx} + b_{xy}}{2} \ge r. \text{ [AM} \ge \text{GM]}$
- 3) G.M of two Regression Coefficients is Correlation Coefficient i.e., $r = \pm \sqrt{b_{xy} x b_{yx}}$
- 4) If one of the regression coefficients is greater than one other must be less than one i.e., $\sqrt{b_{xy} \cdot b_{yx}} \le 1$
- 5) Regression Coefficients are Independent of change of Origin but not Scale.

If U = a + bx, V = c + dy then $b_{uv} = \frac{b}{d} \times b_{xy}$ and $b_{vu} = \frac{d}{b} \times b_{yx}$

6) In case of perfect correlation, two regression coefficients are reciprocal to each other.

i.e., if $r = \pm 1$ then $r^2 = 1 \Rightarrow b_{yx} \cdot b_{xy} = 1 \Rightarrow b_{yx} = \frac{1}{b_{yx}}$

or
$$b_{xy} = \frac{1}{b_{yx}}$$

- 7) If $\sigma_x = \sigma_y$ then $r = b_{XY} = b_{YX}$.
- 8) Symmetry property does not hold i.e., $b_{XY} \neq b_{YX}$.

PROPERTIES OF REGRESSION LINES:

If two lines of regression are coincided (Angle between the two lines is 0°)	r = ± 1
If two regression lines are perpendicular (Angle between the two lines is 90°)	r = 0
Two regression lines meet at	$(\overline{X},\overline{Y})$