Business Mathematics Statistics & Logical Reasoning

CA Foundation (New Course)

By Aman Khedia

Copyright with the Author

Every effort has been made to avoid errors or omission in this publication. Inspite of efforts, errors might have crept in. Any mistake, error or discrepancy noted may be brought to our notice, which shall be dealt with suitably. It notified that neither the publisher nor the author will be responsible for any damage or loss of action to any person, of any kind, in any manner, therefrom.

This book is sold subject to the condition that it shall not, by the way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior written consent in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser and without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of both the copyright owner and the publisher of this book.

Preface

While the paper setting pattern and assessment methodology have been revised many times over and newer criteria devised to help develop more aspirant-friendly entrance test, the need to standardize the selection process and their outcome at the national level has been felt.

While the methodology and scope of a CA Entrance Test (CA Foundation) are prone to change there are two basic objectives that any test need to serve:

- 1. The Objective to test an aspirant's caliber, aptitude and attitude for the CA field and Profession.
- **2.** The need to test an aspirant's grasp and understanding of concept of the subject of study and their applicability at the grassroot level.

Students appearing for CA Foundation Examination cannot bank solely on conventional shortcut measures to crack the exam. Conventional techniques alone are not enough as most of the questions asked in the examination are based on the concept rather than on just formula. Hence, it is necessary for students appearing for CA Foundation examination to not only gain a thorough knowledge and understanding of the concept but also develop problem-solving skills to be able to relate their understanding of the subject to real-life application based on these concepts.

About the book

- Reduction of unnecessary levels of details in Mathematics
- * Chapters as per latest ICAI Syllabus has been updated
- Past Exam Questions
- ✤ Exceptionally strong emphasis on conceptual Clarity
- ✤ Clear text with relevant diagrams
- ✤ Flexibility that allows a student to study
- * Consist of MIND MAPS for Quick Revision Purpose
- ✤ Quantity, Quality and range of Multiple-Choice Questions (MCQs)

Aman Khedia

Dedicated To

My Mother Seema Khedia

<u>Index</u>

No.	Chapter	Page No.
	Part A: Business Mathematics	
1	Basic Mathematical Tools	1-2
1A	Ratio Proportions & Indices	1.1-1.12
1B	Miscellaneous	1.13-1.14
2	Logarithm	2.1-2.6
3	Equations	3.1-3.14
4.	Linear Inequalities	4.1-4.8
5.	Time Value of Money	5.1-5.16
6.	Permutations & Combinations	6.1-6.8
7.	Sequence & Series	7.1-7.8
8.	Set Relations & Function	8.1-8.12
9.	Differential Calculus	9.1-9.10
10.	Integral Calculus	10.1-10.8
	Part B: Statistics	
11.	Statistical Description of Data	11.1-11.8
12.	Measure of Central Tendency & Dispersion	12.1-12.14
13.	Correlation Analysis	13.1-13.8
14.	Regression Analysis	14.1-14.6

15.	Probability	15.1-15.12								
16.	Theoretical Distributions	16.1-16.8								
17.	Index Numbers	17.1-17.8								
	Part C: Logical Reasoning									
18.	Number Series, Coding and Decoding & Odd Man Out	18.1-18.6								
19.	Direction Sense Test	19.1-19.6								
20.	Seating Arrangements	20.1-20.6								
21.	Blood Relations	21.1-21.6								

Basic Mathematical Tools

Basic

Note: Questions Below Have Designed to Connect Students from Some Basic's this Is not Part of Syllabus as per ICAI but This Questions Will Help Students Later on in Various Chapters

- **1.** Find the product
 - (i) (5 2x) (3 + x)(ii) $(a^2 + b) (a + b^2)$ (iii) $(p^2 - q^2) (2p + q)$ (iv) $(x^2 - 5) (x + 5) + 25$
- 2. Find the multiplicative inverse of the following
 - (i) 2⁻⁴
 - (ii)10⁻⁵
 - (iii) 7⁻²
 - (iv) 5⁻³
- 3. Simplify and write in exponential form
 - (i) $(-2)^{-3} \times (-2)^{-4}$
 - (ii) $p^3 \times p^{-10}$
 - (iii) $3^2 \times 3^{-5} \times 3^6$
- 4. Simplify the expressions and evaluate them as directed:

(i)
$$x(x-3) + 2$$
 for $x = 1$ (ii) $3y(2y-7) - 3(y-4) - 63$ for $y = -2$

5. Simplify the following algebraic expressions:

a.
$$\frac{x}{3} + \frac{x}{2}$$
 b. $\frac{5}{t+1} + \frac{4}{t-3}$
 c. $\frac{m}{7} - \frac{m}{5}$
 d. $\frac{x}{2} - \frac{x}{3}$

 e. $\frac{m}{3} + \frac{2m}{7}$
 f. $\frac{3x}{5} + \frac{x}{2}$
 g. $\frac{2}{x^2} + \frac{5}{x}$
 h. $\frac{m^2}{6} - \frac{9}{4m}$

 i. $\frac{5}{6x} - \frac{1}{3x}$
 j. $\frac{2}{ab^2} - \frac{3}{b^3}$
 k. $\frac{xy}{5} - \frac{1}{x}$
 l. $\frac{x+4}{3} + \frac{x+1}{2}$

 m. $\frac{2x+1}{2} + \frac{x+3}{5}$
 n. $\frac{5x-2}{3} - \frac{2x+7}{4}$
 o. $\frac{3}{x+1} + \frac{x+7}{(x+1)(x+2)}$

Basics

6. Simplify the following algebraic expressions:

(i)
$$\frac{m}{16} \div \frac{5m}{12}$$

(ii)
$$\frac{3m}{8} \div \frac{15m}{20}$$

(iii)
$$\frac{6x+3}{8} \div \frac{2x+1}{12}$$

(iv)
$$\frac{9xy}{7} \div \frac{6x}{3}$$

(v)
$$\frac{\frac{4x}{7}}{\frac{6xy}{5}}$$

You Must Know

Square Root: $\sqrt{a} = a^{\frac{1}{2}}$ Cube Root: $\sqrt[3]{a} = a^{\frac{1}{3}}$ Nth Root: $\sqrt[n]{a} = a^{\frac{1}{n}}$

Ratio Proportion & Indices

	EXERCISE									
	RATIO									
	Basic Level-1									
1.	1. The ratio of two quantities is 3: 4 If the antecedent is 15, the consequent is									
1.	(a)16	(b) 60	(c) 22	(d) 20						
2.	The ratio of the quantities is (a) 5	5: 7. If the consequent of i (b) $\sqrt{5}$	its inverse ratio is 5, the a (c) 7	ntecedent is (d) none of these						
		Basic Lev	el-2							
3.	If a: b = 3 : 4, the value of (2a (a) 54: 25	a + 3b) : (3a + 4b) is (b) 8: 25	(c) 17: 24	(d) none of these						
4.	If x: $y = 3$: 4, the value of x^2y (a) 13: 12	+ xy ² : x ³ + y ³ is (b) 12: 13	(c) 21: 31	(d) none of these						
5.	If p: q is the sub-duplicate rat (a) $\frac{p}{p+q}$	tio of p-x ² : q-x ² then x ² is (b) $\frac{q}{p+q}$	(c) $\frac{pq}{p+q}$	(d) none of these						
6.	If 2s: 3t is the duplicate ratio (a) $p^2 = 6st$	of 2s – p: 3t – p then (b) p = 6st	(c) 2p = 3st	(d) none of these						
7.	If p: $q = 2$: 3 and x: $y = 4$: 5, t (a) 71: 82	hen the value of 5px + 3q (b) 27: 28	y: 10px + 4qy is (c) 17: 28	(d) none of these						
		Types of R	atios							
8.	The inverse ratio of 11: 15 is (a) 15: 11	(b) √11 : √15	(c) 121: 225	(d) none of these						
9.	The ratio compounded of 2: 3 (a) 1: 1	3, 9: 4, 5: 6 and 8: 10 is (b) 1: 5	(c) 3: 8	(d) none of these						
10.	The duplicate ratio of 3: 4 is (a) $\sqrt{3}$: 2	(b) 4: 3	(c) 9: 16	(d) none of these						
11.	The sub-duplicate ratio of 25 (a) 6: 5	: 36 is (b) 36: 25	(c) 50: 72	(d) 5: 6						
12.	The triplicate ratio of 2: 3 is (a) 8: 27	(b) 6: 9	(c) 3: 2	(d) none of these						
13.	The sub-triplicate ratio of 8: (a) 27: 8	27 is (b) 24: 81	(c) 2: 3	(d) none of these						

14.	The ratio compounded of 4: (a) 1: 4	9 and the duplicate ratio (b) 1: 3	of 3: 4 is (c) 3: 1	(d) none of these						
15.	The ratio compounded of 4: (a) 2: 7	9, the duplicate ratio of 3: (b) 7: 2	: 4, the triplicate ratio of 2 (c) 2: 21	: 3 and 9: 7 is (d) none of these						
16.	5. The ratio compounded of duplicate ratio of 4 : 5, triplicate ratio of 1 : 3, sub duplicate ratio of 81 : 256 a sub-triplicate ratio of 125 : 512 is									
	(a) 4: 512	(b) 3: 32	(c) 1: 12	(d) none of these						
		Word Prob	olems							
17.	7. Two numbers are in the ratio 2: 3. If 4 be subtracted from each, they are in the ratio 3: 5. The numbers are									
	(a) (16, 24)	(b) (4, 6)	(c) (2, 3)	(d) none of these						
18.	The angles of a triangle are in (a) (20°, 70°, 90°) (c) (18°, 63°, 99°)	n ratio 2 : 7 : 11. The angl	es are (b) (30º, 70º, 80º) (d) none of these							
19.	Division of Rs. 324 between 2 (a) (204, 120) (c) (180, 144)	X and Y is in the ratio 11:	7. X & Y would get Rupees (b) (200, 124) (d) none of these	5						
20.	Anand earns Rs. 80 in 7 hour (a) 30: 21	rs and Pramod Rs. 90 in 1 (b) 23: 12	2 hours. The ratio of their (c) 8: 9	earnings is (d) none of these						
21.	The ratio of two numbers is (a) (200, 305) (c) (245, 350)	7: 10 and their difference	is 105. The numbers are (b) (185, 290) (d) none of these							
22.	P, Q and R are three cities. The P and R is 9: 8. The ratio betw			11: 12 and that between						
	(a) 22:27	(b) 27:22	(c) 32:33	(d) none of these						
23.	The number which when sub (a) 15	otracted from each of the (b) 5	terms of the ratio 19: 31 r (c) 1	reducing it to 1: 4 is (d) none of these						
24.	Daily earnings of two person Rs. 50 per day, their daily ear (a) (40, 50)		their daily expenses are in (c) (400, 500)	n the ratio 7: 9 If each save (d) none of these						
25.	The ratio between the speed of the first train is									
	(a) 10 Km/hr	(b) 50 Km/hr	(c) 70 Km/hr	(d) none of these						
		Advanced Pr	oblems							
26	If 10% of x is the same as 20	% of v x v is equal to								
20.	(a) 1:2	(b) 2:1	(c) 5:1	(d) 10:1						
27.	What must be added to each (a) 1	term of the ratio 7:13 so (b) 2	that the ratio becomes 2:3 (c) 3	3? (d) 5						

- **28.** If a carton containing a dozen mirrors is dropped, which of the following cannot be the ratio of broken mirrors to unbroken mirrors
 - (a) 2:1
 - (b) 3:1
 - (c) 3:2
 - (d) 7:5
- **29.** The incomes of A & B are in the ratio 3:2 and their expenditures in the ratio 5:3. If each saves Rs. 1000, A's income is
 - (a) Rs.3000
 - (b) Rs.4000
 - (c) Rs.6000
 - (d) Rs.9000
- **30.** Rs. 680 has been divided among A, B, C such that A gets 2/3 of what B gets and B ¼ of what c gets. Then B's Share is
 - (a) 60
 - (b) 80
 - (c) 120
 - (d) 180
- **31.** 729 ml of a mixture contains milk and water in the ratio 7:2. How much more water is to be added to get a new mixture containing milk and water in the ratio of 7:3?
 - (a) 60 ml
 - (b) 70 ml
 - (c) 81 ml
 - (d) 90 ml
- **32.** The prices of scooter & moped are in the ratio 9:5. If a scooter costs Rs. 6800 more than a moped, the price of scooter is
 - (a) 17000
 - (b) 13600
 - (c) 15300
 - (d) None
- **33.** In an express train, the passengers travelling in AC Sleeper Class, first class and 2nd class are in the ratio 1:2:7 and rate per each class is in the ratio 5:4:2. If the total income from this train is Rs. 54,000, then the income of railways from Ac Sleeper Class is
 - (a) Rs.16000
 - (b) Rs.10000
 - (c) Rs.14000
 - (d) Rs.2000
- **34.** The sum of present ages of father and son is 68 years. Eight years ago, the ratio of their age was 12:1. What will be the ratio of their ages 4 years hence?
 - (a) 13:2
 - (b) 15:4
 - (c) 14:3
 - (d) 16:3
- **35.** An alloy contains tin & copper in the ratio 4:5 If tin has 20% impurity and copper has 58%, then average impurity percentage is
 - (a) 20%
 - (b) 41%
 - (c) 35%
 - (d) 38%

1.	d	2.	С	3.	b	4.	b	5.	С	6.	а	7.	С	8.	а	9.	а	10.	С
11.				13.													d	20.	D
21.	С	22.	b	23.	а	24.	d	25.	С	26.	В	27.	D	28.	С	29.	С	30.	С
31.	С	32.	С	33.	В	34.	В	35.	В										

Answer Sheet

	PROPORTION									
		Basic Lev	/el-1							
1.	The fourth proportional to 4 (a) 12	, 6, 8 is (b) 32	(c) 48	(d) none of these						
2.	The third proportional to 12 (a) 24	, 18 is (b) 27	(c) 36	(d) none of these						
3.	The mean proportional betw (a) 40	veen 25, 81 is (b) 50	(c) 45	(d) none of these						
4.	The fourth proportional to 2 (a) ac/2	a, a², c is (b) ac	(c) 2/ac	(d) none of these						
5.	If four numbers ½, 1/3, 1/5, (a) 6/5	1/x are proportional the (b) 5/6	n x is (c) 15/2	(d) none of these						
6.	The mean proportional betw (a) 18xy	veen 12x ² and 27y ² is (b) 81xy	(c) 8xy	(d) none of these						
7.	12, 16, *, 20 are in proportio (a) 25	n. Then * is (b) 14	(c) 15	(d) none of these						
8.	4, *, 9, 13 ½ are in proportio (a) 6	n. Then * is (b) 8	(c) 9	(d) none of these						
9.	The mean proportional betw (a) 28 gms	veen 1.4 gms and 5.6 gms (b) 2.8 gms	is (c) 3.2 gms	(d) none of these						
		BASIC LEV	/EL-2							
10.	If $A = B/2 = C/5$, then A: B: (a) 3: 5: 2	C is (b) 2: 5: 3	(c) 1: 2: 5	(d) none of these						
11.	If $a/3 = b/4 = c/7$, then $a + (a) 1$		(c) 2	(d) none of these						
12.	If $\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$ then $\frac{a+b+c}{c}$ is (a) 4	(b) 2	(c) 7	(d) none of these						
13.	If p/q = r/s = 2.5/1.5, the va (a) 3/5	llue of ps : qr is (b) 1:1	(c) 5/3	(d) none of these						
14.	If $x : y = z : w = 2.5 : 1.5$, the (a) 1	value of (x + z) / (y + w) (b) 3/5) is (c) 5/3	(d) none of these						
15.	If $(5x - 3y) / (5y - 3x) = \frac{3}{4}$, (a) 2:9	the value of x : y is (b) 7 : 2	(c) 7 : 9	(d) none of these						
16.	If A : B = 3 : 2 and B : C = 3 : (a) 9 : 6 : 10	5, then A : B : C is (b) 6 : 9 : 10	(c) 10:9:6	(d) none of these						

17. If $x/2 = y/3 = z/7$, then the (a) $6/23$	e value of (2x – 5y + 4z) / (b) 23/6	2y is (c) 3/2	(d) 17/6					
18. If x: y = 2: 3, y: z = 4: 3 then (a) 2: 3: 4	n x: y: z is (b) 4: 3: 2	(c) 3: 2: 4	(d) none of these					
	Properties of F	Proportions						
 19. If x/y = z/w, implies y/x = (a) Dividendo 	w/z, then the process is c (b) Componendo	alled (c) Alternendo	(d) none of these					
20. If $p/q = r/s = p - r/q - s$, th (a) Subtrahendo	ne process is called (b) Addendo	(c) Invertendo	(d) none of these					
 21. If a/b = c/d, implies (a + b (a) Componendo (c) Componendo and Divid 		ne process is called (b) Dividendo (d) none of these						
22. If u/v = w/p, then (u-v)/(u (a) Invertendo	(w+p)=(w-p)/(w+p). The p (b) Alternendo	process is called (c) Addendo	(d) none of these					
23. If $\frac{a}{4} = \frac{b}{5}$ then								
$(\mathbf{a})_{a-4}^{a+4} = \frac{b-5}{b+5}$	(b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$	$(c)_{a+4}^{a-4} = \frac{b+5}{b-5}$	(d) none of these					
	Word Pro	oblem						
24. Division of Rs. 750 into 3 p. (a) (200, 250, 300)	arts in the ratio 4: 5: 6 is (b) (250, 250, 250)	(c) (350, 250, 150)	(d) 8: 12: 9					
	5. The sum of the ages of 3 persons is 150 years. 10 years ago, their ages were in the ratio 7: 8: 9. Their							
present ages are (a) (45, 50, 55)	(b) (40,60,50)	(c) (35, 45, 70)	(d) none of these					
26. The numbers 14, 16, 35, 42 (a) 45	are not in proportion. Th (b) 40	e fourth term for which th (c) 32	ey will be in proportion is (d) none of these					
27. Two numbers are in the rat	tio 3: 4; if 6 be added to ea	ch terms of the ratio, ther	the new ratio will be 4: 5,					
then the numbers are (a) 14, 20	(b) 17, 19	(c) 18 and 24	(d) none of these					
	Miscellaneous	Problems						
28. If a: b = 4: 1 then $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$	is							
(a) 5/2	(b) 4	(c) 5	(d) none of these					
29. If $\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c}$ th (a) 1	en (b-c) x + (c-a) y + (a-b (b) 0) z is (c) 5	(d) none of these					
30. The 4 th term for which the (a) 45	e numbers 14,16,35,32 w (b) 40	ill be in proportion is (c) 32	(d) None					
31. Find the third proportiona (a) 34.8 kg	ll to 2.4 kg & 9.6 kg (b) 38.4 kg	(c) 36.8 kg	(d) 35.8 kg					

32. The fourth proport (a) $a^2c/2$	tional to 2a, a^3 , c is: (b) ac	(c) 2/ac	(d) None							
33. The fourth proport (a) $a^2 + b^3$	tional to $(a^2 - ab + b^2)$ (b) $a^2 - b^2$		u — b)is eaqual to (d) None							
34. Find 2 numbers suc (a) 9, 36	ch that mean proportion (b) 29, 56	al between them is (c) 18, 72	18 & third proportional to them is 144. (d) None							
35. If a,b,c,d,e are in co (a) <i>a</i> ⁴	ontinued proportion the (b) b^4	n abde is equal to (c) c^4	(d) d^4							
36. If a:b = c:d = e:f = 2 (a) 2:4	2:5, Then value of $\frac{4a + 15a}{4b + 15a}$ (b) 1:5	$\frac{c+29e}{d+29f}$ is (c) 4:5	(d) 2:5							
12 10 12 110	37. If $\frac{\sqrt{2-x} + \sqrt{2+x}}{\sqrt{2-x} - \sqrt{2+x}} = 3$, then x is equal to (a) -6/5 (b) -5/6 (c) -1/5 (d) 6/5									
38. If $\frac{a^3 + 3a}{3a^2 + 1} = \frac{91}{37}$ then 'a' equal (a) 8 (b) 7 (c) 6 (d) None										
	Answer Sheet									
1. a 2. b 3	3. c 4. a 5.	c 6. a 7	. c 8. a 9. b 10. c							

1.	а	2.	b	3.	С	4.	а	5.	С	6.	а	7.	С	8.	а	9.	b	10.	C
11.	С	12.	b	13.	b	14.	С	15.	d	16.	а	17.	d	18.	d	19.	d	20.	Α
21.	С	22.	d	23.	b	24.	а	25.	а	26.	b	27.	С	28.	а	29.	b	3.	В
31.	В	32.	Α	33.	В	34.	Α	35.	С	36.	D	37.	Α	38.	b				

1.7

	INDICES								
		Basic Lev	/el-1						
1.	4x ^{-1/4} is expressed as (a) -4x ¹ / ₄	(b) x ⁻¹	(c) 4/x ^{1/4}	(d) none of these					
2.	The value of 8 ^{1/3} is (a) 2	(b) 2	(c) 2	(d) none of these					
3.	The value of 2 x (32) ^{1/5} is (a) 2	(b) 10	(c) 4	(d) none of these					
4.	The value of 4/(32) ^{1/5} is (a) 8	(b) 2	(c) 4	(d) none of these					
5.	The value of (8/27) ^{1/3} is (a) 2/3	(b) 3/2	(c) 2/9	(d) none of these					
6.	The value of 2(256) ^{-1/8} is (a) 1	(b) 2	(c) 1/2	(d) none of these					
7.	2 ^{1/4} , 4 ^{1/4} is equal to (a) a fraction (c) 1/2		(b) a positive integer (d) none of these						
8.	$\left(\frac{81x^4}{y^{-8}}\right)^{\frac{1}{4}}$ has simplified value of (a) xy ²	equal to (b) x²y	(c) 9xy ²	(d) none of these					
9.	The value of (²⁴³ ₃₂) ^{-4/5} is: (a) 18/16	(b) 16/81	(c) 4/9	(d) 9/4					
10.	The value of [(10) ¹⁵⁰ ÷ (10) (a) 1000	¹⁴⁶] is: (b) 10000	(c) 100000	(d) (10) ⁶					
11.	Simplification of $9^{x+3} = 27^{x}$ (a) 8	⁻¹ gives: (b) 7	(c) 9	(d) none of these					
12.	If $(25)^{7.5} \times (5)^{2.5} \div (125)^{1.5}$ (a) 8.5	$b = 5^x$, then the value of x (b) 13	c is: (c) 16	(d) none of these					
		Basic Lev	/el-2						
13.	If $\frac{9^n \times 3^5 \times 27^3}{3 \times 81^4} = 27$, then the val (a) 0	ue of n is: (b) 2	(c) 3	(d) 4					
14.	$64^{-1/2} - (-32)^{-4/5} = x$, then (a) 1/8	the value of x is: (b) 3/8	(c) 1/16	(d) 3/16					
15.	If $2^{x} - 2^{x-1} = 4$, then the value (a) 27	ue of <i>x^x</i> is: (b) 4	(c)1	(d) 256					

16.	$\operatorname{lf}\left(\frac{x^{a}}{x^{b}}\right)^{(a+b)} \cdot \left(\frac{x^{b}}{x^{c}}\right)^{(b+c)} \cdot \left(\frac{x^{c}}{x^{a}}\right)^{(c)}$	(x+a) = x, then the value of x	c is:	
	(a) 0	(b) <i>x</i> ^{<i>abc</i>}	(c) x^{a+b+c}	(d) 1
17.	$\operatorname{If}\left(\frac{x^{b}}{x^{c}}\right)^{(b+c-a)} \cdot \left(\frac{x^{c}}{x^{a}}\right)^{(c+a-b)} \cdot \left(\frac{x^{c}}{x^{a}}\right)^{(c$	$\left(\frac{x^a}{x^b}\right)^{(a+b-c)} = x$, then the value	alue of x is :	
	(a) <i>x</i> ^{<i>abc</i>}	(b) 1	(c) <i>x</i> ^{<i>ab+bc+ca</i>}	(d) x^{b+c+a}
18.	If $2^x = 4^y = 8^z$ and $\left(\frac{1}{2x} + \frac{1}{4y}\right)^2$	$+\frac{1}{6z}$ = $\frac{24}{7}$, the c the value	e of z is:	
	(a) $\frac{7}{16}$	(b) 7/32	(c) 7/48	(d) 7/64
19.	If $a^x = b, b^y = c, c^z = a$, ther (a) 1	h the value of xyz is: (b) -1	(c) 0	(d)2
20.	If $2^x = 3^y = 6^{-z}$ then value (a)0	of $\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$ is : (b) 1	(c) 3/2	(d) – (1/2)
		Miscellaneous	Problems	
21.	If $(a/b)^{x-3} = (b/a)^{x-3}$, The (a) 1	n x is equal to (b) ½	(c) 7/2	(d) 3
22.	The value of x for which 2^{x+4} (a) 0	$-2^{x+2} = 6$ (b) -2	(c) 2	(d) -1
23.	If $9^x - (10 * 3^x) + 9 = 0$, ther (a) 2 or 0	n x is equal to: (b) 1 or 3	(c) 1 or 9	(d) 1 or -2
24.	The Value of $\frac{3^{(19+n)} * 27^{(2n-7)}}{3^{7n}}$ is			
	(a) 1/3	(b) 9/13	(c) 1/9	(d) 2/3
25.	If m & n are whole numbers s (a) 1	uch that $m^{n} = 121$, then t (b) 10	he value of $(m-1)^{n+1}$ is (c) 121	(d) 1000
26.	$\sqrt{x^3\sqrt{x^3\sqrt{x^3}}}$ is (a) x^7	(b) x ⁸	(c) $x^{21/8}$ (d) x^9	
			., .,	
27.	Value of $(a^{1/8} + a^{-1/8})(a^{1/8})$ (a) a + (1/a)	$a^{-} - a^{-1/6}$ $(a^{1/4} + a^{-1/4})$ (b) $a^2 + (1/a^2)$		(d) $a^2 - (1/a^2)$
28.	$\sqrt{11 + 4\sqrt{7}} - \sqrt{11 - 4\sqrt{7}} =$ (a) 8	(b) 2	(c) 6	(d) 4
29.	If $x = p^{1/3} - p^{-1/3}$, then (a) $x^3 + 3x = p + (1/p)$		(b) $x^3 + 3x = p - (1/p)$	
20	(c) $x^3 + 3x = p + 1$	10^{Z} then	(d) None	
30.	If $(5.678)^x = (0.5678)^y =$ (a) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = 1$		(c) $\frac{1}{x} - \frac{1}{y} + \frac{1}{z} = -1$	(d) None

31. If $3^a = 5^b = (75)^c$ then the value of $ab - c(2a + b)$ reduces to							
(a) 1	(b) 0	(c) 3	(d) 5				
32. If $a = xy^{m-1}$, $b = xy^{n-1}$, (a) 1	$c = xy^{p-1} then a^{n-p} * c^n$ (b) -1	<pre>n-n reduces to (c) 0</pre>	(d) None				
33. On simplification $\left[\frac{x^{ab}}{x^{(a^2+b^2)}}\right]$ (a) x^{-2a^3}	$x^{(a+b)} * \left[\frac{x^{(b^2+c^2)}}{x^{bc}}\right]^{(b+c)} * \left[\frac{x}{x^{(c^2)}}\right]^{(b+c)}$ (b) x^{2a^3}	$\frac{c^{ca}}{(c^{2}+a^{2})} \Big]^{(c+a)}$ (c) $x^{-2(a^{3}+b^{3}+c^{3})}$	(d) $\chi^{2(a^3+b^3+c^3)}$				
(a) x	(b) <i>x</i>		(u) x <				
34. If $x = 3^{1/3} + 3^{-1/3}$, then (a) 15	$3x^3 - 9x$ is (b) 10	(c) 12	(d) None				
35. Show that $\left(\frac{x^b}{x^c}\right)^{1/bc} * \left(\frac{x^c}{x^a}\right)^{1/bc}$	$\frac{1}{x^a} * \left(\frac{x^a}{x^b}\right)^{1/ab}$ reduces to (b) 0	(c) 1	(d) None				
(u) 1	(5) 0	(0) 1	(d) None				
36. If $x = \sqrt{7 + 4\sqrt{3}}$, then $x + (a) 4$	$-\frac{1}{x} =$ (b) 6	(c) 3	(d) 2				
37. If $a^b = b^a$ then the value	of $\left(\frac{a}{b}\right)^{\frac{a}{b}} - a^{\frac{a}{b}-1}$ reduces to	0					
(a) a	(b) b	(c) 0	(d) None				

Answer Sheet

1.	С	2.	С	3.	С	4.	b	5.	а	6.	а	7.	b	8.	d	9.	b	10.	b
11.	С	12.	b	13.	С	14.	С	15.	а	16.	d	17.	b	18.	С	19.	а	20.	а
21.	а	22.	d	23.	а	24.	С	25.	d	26.	С	27.	b	28.	d	29.	b	30.	b
31.	b	32.	а	33.	а	34.	b	35.	C	36.	а	37.	C						

ALP-NO-1A

Tutorial Note: This ALP Sheets are designed for Students Self Practice if any difficulty arrives then students Should Refer Lectures This Will Develop There Mind to Deal with New Problems in Exams

1. If p : q is the sub-duplicate ratio of $p - x^2 : q - x^2$, then x^2 is :

$$(a)\frac{p}{p+q} \qquad (b)\frac{q}{p+q}$$

(c)
$$\frac{qp}{p-q}$$
 (d) none

- **2.** An alloy is to contain copper and zinc 9 : 4. The zinc required to melt with 24 kg of copper is :
 - (a) $10\frac{2}{2}$ kg (b) $10\frac{1}{2}$ kg
 - (c) $9\frac{2}{3}$ kg (d) 9 kg
- 3. A box contains Rs 56 in the form of coins of one rupee, 50 paise and 25 paise. The number of 50 paise coin is double the number of 25 paise coins and four times the numbers of one rupee coins. The numbers of 50 paise coins in the box is :

(a)64	(b) 32
(c) 16	(d) 14

4. Value of $(a^{1/8} + a^{-1/8}) (a^{1/8} - a^{-1/8}) (a^{1/4} + a^{-1/4}) (a^{1/2} + a^{-1/2})$ is:

(a) $a + \frac{1}{a}$	(b) a - $\frac{1}{a}$
(c) $a^2 + \frac{1}{a^2}$	(d) $a^2 - \frac{1}{a^2}$

- **5.** Eight people are planning to share equally the cost of a rental car. If one person withdraws from the arrangement and the others share equally entire cost of the car, then the share of each of the remaining persons increased by :
 - (a) 1/9 (b) 1/8
 - (c) 1/7 (d) 7/8
- **6.** A bag contains Rs 187 in the form of 1 rupee, 50 paise and 10 paise coins in the ratio 3:4:5. Find the number of each type of coins:

(a) 102, 136, 170	(b) 136, 102, 170
(c) 170, 102, 136	(d) none

7. On simplification $\frac{1}{1+z^{a-b}+z^{a-c}} + \frac{1}{1+z^{b-c}+z^{b-a}} + \frac{1}{1+z^{c-a}+z^{c-b}}$ reduces to :

(a)
$$\frac{1}{z^{2(a+b+c)}}$$
 (b) $\frac{1}{z^{(a+b+c)}}$
(c) 1 (d) 0

- **8.** Ratio of earning of A and B is 4 : 7. If the earning of A increase by 50% and those of B decrease by 25%, the new ratio of their earning becomes 8 :7. What is A's earning?
 - (a) Rs 21,000 (b) Rs 26,000
 - (c) Rs 28,000 (d) data inadequate.
- **9.** In 40 liters mixture of glycerin and water, the ratio of glycerin and water is 3:1. The quantity of water added in the mixture in order to make the ratio 2:1 is:
 - (a) 15 litres (b) 10 litres
 - (c) 8 litres (d) 5 litres
- **10.** log 144 is equal to :

(a) $2 \log 4 + 2 \log 2$	
(b) $4 \log 2 + 2 \log 3$	
(c) $3 \log 2 + 4 \log 3$	
(d) 3 log 2 – 4 log 3	

- **11.** If $x = 3^{1/3} + 3^{-1/3}$ then find value of $3x^3 9x$
 - (a) 3 (b) 9
 - (c) 12 (d) 10
- **12.** What must be added to each term of the ratio 49 : 68, so that it becomes 3 : 4
 - (a) 3 (b) 5
 - (c) 8 (d) 9

	Answers									
	1.	d	2.	а	3.	а	4.	b	5.	С
	6.	а	7.	С	8.	d	9.	d	10.	b
ĺ	11.	d	12.	С						

ALP-NO-1B

1. The third proportional between $(a^2 - b^2)$ and $(a + b)^2$ is :

(a)
$$\frac{a+b}{a-b}$$
 (b) $\frac{a-b}{a+b}$
(c) $\frac{(a-b)^2}{a+b}$ (d) $\frac{(a+b)^3}{a-b}$

2. Fourth proportional to x, 2x, (x+1) is :

- (c) (2x + 2) (d) (2x 2)
- **3.** A dealer mixes Tea costing Rs 6.92 per kg with Tea costing Rs 7.77 per kg and sells the mixture at Rs 8.80 per kg and earns a profit 17.5% on his sale price. In what proportion does he mix them?

- (c) 3 : 4 (d) 5 : 3
- Gold is 19 times as heavy as Water and Copper is 9 times as heavy as Water. In what ratio should these be mixed to get an alloy 15 times as heavy as water?
 (a) 1 + 1
 (b) 2 + 2

(a) I : I	(D) Z : 3
(c) 1 : 2	(d) 3 : 2

- **5.** What must be added to each of the numbers 10, 18, 22, 38 to make them proportional
 - (a) 5 (b) 2
 - (c) 3 (d) 9

- **6.** If one type of rice of cost Rs 13.84 is mixed with another type of rice of cost Rs 15.54. the mixture is sold at Rs 17.6 with a profit of 14.6% on selling price then in which proportion the two types of rice mixed?
 - (a) 3 : 7 (b) 5 : 7
 - (c) 7:9 (d) None of these
- 7. In a film shooting, A and B received money in a certain ratio and B and C also received the money in the same ratio. If A gets Rs 1,60,000 and C gets Rs 2,50,000. Find the amount received by B?

(a) Rs 2,00,000	(b) Rs 2,50,000
(c) Rs 1,00,000	(d) Rs 1,50,000

8. Find two numbers such that mean proportional between them is 18 and third proportional between them is 144

(a) 9, 36	(b) 8, 32
(c) 7, 28	(d) 6, 24

Answers									
1.	d	2.	С	3.	а	4.	d	5.	b
6.	а	7.	а	8.	а				

Miscellaneous Question Bank

Basic

Note: Below are Question Based On Basic Formulas Doesn't Relates to any Specific Chapters So we will Cover it Separately this types of questions are frequently asked in Exam.

1.	If $x = 4^{\frac{1}{3}} + 4^{\frac{-1}{3}}$ prove that 4 (a) 12	$x^3 - 12x$ is given by (b) 13	(c) 15	(d) 17
2.	If $x = 5^{\frac{1}{3}} + 5^{\frac{-1}{3}}$ prove that 5 (a) 25	$x^3 - 15x$ is given by (b) 26	(c) 27	(d) 30
3.	If $a^b = b^a$, then the value o (a) a	$f\left(\frac{a}{b}\right)^{\frac{a}{b}} - a^{\frac{a}{b}-1} \text{ reduces to}$ (b) b	(c) 0	(d) None
4.	If $m = b^x$, $n = b^y$ and $(m^y n)$ (a) -1	a^x) = b^2 the value of xy is (b) 0	s given by (c) 1	(d) None
5.	If $a = xy^{m-1} b = xy^{n-1}$, (a) 1	$c = xy^{p-1}$ then the value (b) -1	of $a^{n-p} \times b^{p-m} \times c^{m-1}$ (c) 0	ⁿ reduces to (d) None
6.	If $a = x^{n+p}y^m$, $b = x^p$ (a) 0	${}^{+m}y^n, c = x^{m+n}y^p$ the (b) 1	n the value of $a^{n-p} \times b^{\frac{n}{2}}$ (c) -1	$p^{-m} \times c^{m-n}$ reduces to (d) None
7.	If $a = \sqrt[3]{\sqrt{2}+1} - \sqrt[3]{\sqrt{2}-1}$ (a) 3	then the value of a ³ + 3 (b) 0	a - 2 is (c) 2	(d) 1
8.	If $a = x^{\frac{1}{3}} + x^{\frac{-1}{3}}$ then a^{3} - (a) $x + x^{-1}$	3a is (b) x - x ⁻¹	(c) 2x	(d) 0
9.	If $a = 3^{\frac{1}{4}} + 3^{\frac{-1}{4}}$ and $b = 3$ (a) 67	$3^{\frac{1}{4}} - 3^{\frac{-1}{4}}$ then the value of 3 (b) 65	$(a^2 + b^2)^2$ is (c) 64	(d) 62
10.	If $x = \sqrt{3} + \frac{1}{\sqrt{3}}$ and $y = \sqrt{3}$ (a) 5	$\sqrt{3} - \frac{1}{\sqrt{3}}$ then x ² - y ² is (b) $\sqrt{3}$	(c) $\frac{1}{\sqrt{3}}$	(d) 4
11.	If $a = \frac{4\sqrt{6}}{\sqrt{2} + \sqrt{3}}$ then the value (a) 1	e of $\frac{a+2\sqrt{2}}{a-2\sqrt{2}} + \frac{a+2\sqrt{3}}{a-2\sqrt{3}}$ is giv (b) -1	en by (c) 2	(d) -2
12.	If P + $\sqrt{3}$ Q + $\sqrt{5}$ R + $\sqrt{1}$ (a) 7/11	$\overline{5}$ S = $\frac{1}{1+\sqrt{3}+\sqrt{5}}$ then the value (b) $3/11$	alue of P is (c) -1/11	(d) -2/11
13.	If $a = 3 + 2\sqrt{2}$ then the v. (a) $\sqrt{2}$	alue of $a^{\frac{1}{2}} + a^{\frac{-1}{2}}$ is (b) $-\sqrt{2}$	(c) 2√2	(d) $-2\sqrt{2}$

14.	If $a = 3 + 2\sqrt{2}$ then the var (a) $2\sqrt{2}$	alue of $a^{\frac{1}{2}} - a^{\frac{-1}{2}}$ is (b) 2	(c) -2	(d) −2√2
15.	If $a = \frac{1}{2}(5 - \sqrt{21})$ then the (a) 0	value of $a^3 + a^{-3} - 5a^2 - 5a^2$	5a ⁻² + a + a ⁻¹ is (c) 5	(d) -1
16.	If $a = \sqrt{\frac{7+4\sqrt{3}}{7-4\sqrt{3}}}$ then the value (a) 14	e of [a(a-14)] ² is (b) 7	(c) 2	(d) 1
17.	If $a = 3 \cdot \sqrt{5}$ then the value (a) 10	of a ⁴ - a ³ -20a ² - 16a + 2 (b) 14	4 is (c) 0	(d) 15
18.	If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ then the value (a) 21	of 2a ⁴ - 21a ³ + 12a ² -a - (b) 1	+ 1 is (c) 12	(d) None
19.	The square root of $3 + \sqrt{5}$ (a) $\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}$	$(\mathbf{b}) - \left(\sqrt{\frac{5}{2}} + \sqrt{\frac{1}{2}}\right)$	(c) Both the above	(d) None
20.	If x = $\sqrt{2 - \sqrt{2 - \sqrt{2}}} \dots \alpha$ t (a) -2	he value of x is given by (b) 1	(c) 2	(d) 0
21.	If $a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$, $b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}t$ (a) 10	hen the value of a + b is (b) 100	(c) 98	(d) 99
22.	The square root of $x + \sqrt{x^2}$ (a) $\frac{1}{2} \left[\sqrt{x + y} + \sqrt{x - y} \right]$ (c) $\left[\sqrt{x + y} + \sqrt{x - y} \right]$	$\frac{2}{3}$ - y ² is given by	(b) $\frac{1}{2} [\sqrt{x + y} - \sqrt{x - y}]$ (d) $[\sqrt{x + y} - \sqrt{x - y}]$	
23.	The square root of $11 - \sqrt{12}$ (a) $\sqrt{6} + \sqrt{5}$	$\overline{0}$ is given by (b) $\sqrt{6}$ - $\sqrt{5}$	(c) 2√3- 3√2	(d) $2\sqrt{3} + 3\sqrt{2}$

Answer Sheet

1.	D	2.	В	3.	С	4.	С	5.	Α	6.	В	7.	В	8.	Α	9.	С	10.	D
11.	С	12.	Α	13.	С	14.	В	15.	Α	16.	D	17.	С	18.	В	19.	С	20.	Α
21.	Α	22.	Α	23.	В														

Logarithm

	EXERCISE						
		Basic Level	-1				
1.	log 6 + log 5 is expressed as (a) log 11	(b) log 30	(c) log 5/6	(d) none of these			
2.	log ₂ 8 is equal to (a) 2	(b) 8	(c) 3	(d) none of these			
3.	log 32/4 is equal to (a)log 32/log 4 (c) 3	(b) 8 (d) none of these					
4.	$log (1 \times 2 \times 3) id equal to$ (a) log 1 + log2 + log 3	(b) log 3	(c) log 2	(d) none of these			
5.	The value of log 0.0001 to th (a) - 4	e base 0.1 is (b) 4	(c) ¼	(d) none of these			
6.	log ₂ 64 is equal to (a) 12	(b) 6	(c) 1	(d) none of these			
7.	$\log_{2\sqrt{3}} 1728$ is equal to (a) $2\sqrt{3}$	(b) 2	(c) 6	(d) none of these			
8.	log (1/81) to the base 9 is e (a) 2	qual to (b) ½	(c) -2	(d) none of these			
		Basic Level	- 2				
9.	If $2 \log x = 4 \log 3$, the <i>x</i> is eq (a)-4	ual to (b) 9	(c) 2	(d) none of these			
10	log 0.0625 to the base 2 is e (a) 4	equal to (b) 5	(c) 1	(d) none of these			
11.	The value of $\log \frac{1}{3}$ to the base (a)-1/2	se 9 is (b) ½	(c) 1	(d) none of these			
12	If $\log x + \log y = \log (x+y)$, (a) x - 1	y can be expressed as (b) x	(c) x/x-1	(d) none of these			
13	. If $\log_2 x + \log_4 x + \log_{16} x =$ (a)8	21/4, then x is equal to (b) 4	(c) 16	(d) none of these			
14	The simplified value of 2 log (a)½	$g_{10}5 + \log_{10} 4$ is (b) 4	(c) 2	(d) none of these			
15	On solving the equation log (a) 5	(t) + log(t-3) = 1 the valu (b) 2	ue of "t" is (c) 3	(d) 0			

16.	$\log \frac{a^2}{bc} - \log \frac{ca}{b^2} + \log \frac{c^2}{ab} =$ (a) 0	(b) 1	(c) log a	(d) None of these.
		Finding Value P	roblem	
17.	Given log2 = 0.3010 and log (a) 0.9030	g3 = 0.4771 the value of lo (b) 0.9542	og 6 is (c) 0.7781	(d) none of these
18.	Given that $log_{10}2 = x$ and lo (a) $x - y + 1$	$g_{10}3 = y$, the value of log_{10} (b) $x + y + 1$	₀60 is expressed a (c) x – y - 1	as (d) none of these
19.	Given that $log_{10}2 = x$, $log_{10}3$ (a) $x + 2y + 1$	B = y, then log ₁₀ 1.2 is expr (b) x + y - 1	ressed in terms of (c) 2x + y - 1	f x and y as (d) none of these
20.	Given that $\log x = m + n$ an is expressed in terms of m a (a) $1 - m + 3n$ (c) $m + 3n + 1$		of log 10x/y²	
21.	$log (a^2) + log a = 10$ if the v (a) 0	value of a is given by (b) 10	(c) -1	(d) 10 ^{10/3}
		Chain Based Pr	roblem	
22.	The value of log2log2 16 (a) 0	(b) 2	(c) 1	(d) none of these
23.	The value of log ₂ [log ₂ {log ₂ (a) 1	(log ₃ 27 ³)}] is equal to (b) 2	(c) 0	(d) none of these
24.	On solving the equation log (a) 8	$[\log_2(\log_3 t)] = 1$ we get (b) 18	the value of t as (c) 81	(d) 6561
25.	On solving the equation log $(a) \frac{5}{2}$	$[\log_t (\log_4 32)] = 2 \text{ we g}$ (b) $\frac{25}{4}$	et the value of t a (c) ⁶²⁵ / ₁₆	s (d) None
26.	If $\log_5[\log_2(\log_3 z)] = 0$, the (a) 30	e value of z is (b) 9	(c) 21	(d) 1
		Base Changing T	heorem	
27.	$\frac{1}{\log_{ab}(abc)} + \frac{1}{\log_{bc}(abc)} + \frac{1}{\log_{ca}(abc)}$ (a)0	(abc) is equal to (b) 1	(c) 2	(d) -1
28.	$\frac{1}{1 + \log_a(bc)} + \frac{1}{1 + \log_b(ca)} + \frac{1}{1 + \log_b(ca)}$ (a)0	$\frac{1}{g_b(ab)} $ is equal to (b) 1	(c) 3	(d) -1
29.	$\frac{1}{\log a_{/b}(x)} + \frac{1}{\log b_{/c}(x)} + \frac{1}{\log c_{/a}(x)}$ (a)0	id equal to (b) 1	(c) 3	(d) -1
30.	$log_b(a)$. $log_c(b)log_a(c)$ is e (a) 0	equal to (b) 1	(c) -1	(d) None
31.	$log_b\left(a^{\frac{1}{2}}\right). log_c(b^3). log_a(c^{\frac{1}{2}})$ (a) 0	²) is equal to (b) 1	(c) -1	(d) None

22							
32.	The value of $\frac{1}{\log_a(ab)} + \frac{1}{\log_b(ab)}$ (a) 0	(b) 1	(c) -1	(d) None			
33.	If $\frac{1}{\log_a t} + \frac{1}{\log_b t} + \frac{1}{\log_c t} = \frac{1}{\log_z t}$ then the value is z is given by						
	(a) 0	(b) abc	(c) -1	(d) None			
34.	$\frac{1}{\log_{\frac{p}{q}}(m)} + \frac{1}{\log_{\frac{q}{r}}(m)} + \frac{1}{\log_{\frac{r}{p}}(m)} = $?					
	(a) 0	(b) 2	(c) 3	(d) None			
		Problems on Princi	pal Identity				
35.	The value of the expression	$a^{\log_a b \cdot \log_b c \cdot \log_c d \cdot \log_d t}$					
	(a) t (c) $(a + b + c + d + t)$		(b) abcdt (d) none				
36.	Find the value of 2 ^{2–log₂ 5 (a) -1}	(b) 20	(c) 5/4	(d) 4/5			
37.	$4^{\log_9 3} + 9^{\log_2 4} = 10^{\log_x 83}$ (a) 10	then (b) -10	(c) 20	(d) 25			
38.	The value of 16 ^{log₄ 5} is (a) 15	(b) 40	(c) 20	(d) 25			
		Advance Prol	blem				
20	If $\log(a) = \frac{1}{2}\log(b) = \frac{1}{5}\log(b)$	c loge the value of $a^{4}h^{3}c^{-2}$	is				
57.	(a) 0	(b) 1	(c) -1	(d) None			
40.	If $\frac{1}{2}loga = \frac{1}{3}logb = \frac{1}{5}logc$ (a) 0	the value of a ⁴ -bc is (b) 1	(c) -1	(d) None			
41.	If $\frac{1}{4}log_2a = \frac{1}{6}log_2b = -\frac{1}{24}l$ (a) 0	$\log_2 c$ the value of a^3b^2c is (b) 1	(c) -1	(d) None			
42.	If $\log \frac{a+b}{3} = \frac{1}{2}(\log a + \log b)$	then the value of $\frac{a}{a} + \frac{b}{a}$ is					
	(a) 2	(b) 5	(c) 7	(d) 3			
43.	If $a^2 + b^2 = 7ab$ then the value	lue of is $\log \frac{a+b}{3} - \frac{\log a}{2} - \frac{\log a}{2}$	<i>gb</i> 2				
	(a) 0	(b) 1	(c) -1	(d) 7			
44.	If $p^2 + q^2 = 12pq$, then log (p + 2q) is:					
	(a) $\frac{1}{2}[\log p + \log q + \log 2]$ (b) $\log \frac{p}{q} + \log \frac{q}{2} + \log 2$						
	(c) $\frac{1}{2}[\log p + \log q + 4\log 2]$ (d) $\frac{1}{2}[\log p - \log q + 4\log 2]$						
45.	If $x^{18} = y^{21} = z^{28}$, then 3,3 lo (a) A. P	g _y x, 3 log _z y, 7 log _x z are i (b) G. P	n: (c) H. P	(d) None			

		Accuming Value	Problems				
		Assuming Value	Problems				
46.	 For any three consecutive integers x y z the equation log (1+xz) - 2logy = 0 is (a) True (b) False (c) Sometimes true (d)Cannot be determined in the cases of variables with cyclic 						
47.	7. If $x = \log_a bc$, $y = \log_b ca$, $z = \log_c ab$ then the value of $xyz - x - y - z$ is (a) 0 (b) 1 (c) -1 (d) 2						
48.	If $\log_x yz = p$, $\log_y zx = q$, (a) 0	$\log_{z} xy = r, \text{ Then } \frac{1}{p+1} + \frac{1}{q+1}$ (b) 1	$r + \frac{1}{r+1} = is$ (c) 2	(d) None			
		Significant D	ligits				
49.	Number of digits in the nu (a) 18 digits	meral for 2 ⁶⁴ [Given log 2 : (b) 19 digits		(d) 21 digits			
50.	If log107=0.8451 then the (a) 9 th	e position of the first signifi (b) 10 th	icant figure of 7 ⁻²⁰ is (c) 17th	(d) 8th.			
51.	If log 2 = 0.30103 and log (a) 22	3 = 0.4771, then number o (b) 33	of digits in (648) ¹⁰ is: (c) 28	(d) 35			
		Problems Based on	Cyclic Order				
52.	If $p + q + r = 0$, find the v (a) 0	alue of $\frac{1}{a^{q}+a^{-r}+1} + \frac{1}{a^{r}+a^{-p}+1}$ (b) 2	$+\frac{1}{a^{p}+a^{-q}+1}$ (c) 1	(d) None			
53.	The value of $\frac{1}{1+y^{p-q}+y^{p-r}}$ -(a) 0	$+\frac{1}{1+y^{q-p}+y^{q-r}}+\frac{1}{1+y^{r-p}+y^{r-q}}$ (b) 1	(c) 2	(d) None			
		Miscellaneous P	roblems				
54.	The integral part of a loga (a) Mantissa, Characterist (c) Whole, Decimal		e decimal part of a logarit (b) Characteristic, Man (d) None of these				
55.	The value of log ₂ 0.0625 is (a) -3	(b) -4	(c) -5	(d) None			
56.	The value of $\log_{\sqrt{3}} 27$ is (a) 6	(b) 5	(c) 2	(d) None			
57.	The logarithm of 19683 to (a) Not unequal (c) Have a difference of 13	the base of $3\sqrt{3}$ that of 2	1952 to the base of 2√7 a (b) Not equal (d) None	are			
58.	The value of $16\log \frac{64}{60} + 12$ (a) 0 The value of $\log_5 \sqrt{5\sqrt{5\sqrt{5}}}$	$\frac{2 \log \frac{50}{48} + 7 \log \frac{81}{80} + \log 2 \text{ is}}{\textbf{(b) 1}}$	(c) 2	(d) -1			
59.	The value of $\log_5 \sqrt{5\sqrt{5\sqrt{5}}}$ (a) 0	5 <i>to</i> ∞ is (b) 1	(c) 2	(d) none			
60.	Find the value of $2^{2+\log_2 7}$ (a) 2	(b) 3	(c) 8	(d) 5			

61.	Find the simplest value of lo (a) 0	$\begin{array}{c} \log_{3} \sqrt[4]{729.3\sqrt{9^{-1}.27^{-4/3}}} \\ \textbf{(b) 1} \end{array}$	_(c) 2	(d) none
62.	(a) 0Find the simplest value of lo(a) 1	$\log_{17} \sqrt{17\sqrt{17}\dots\dots}$ (b) -1	<u>∞</u> (c) 0	(d) none
63.	If $\log_2[\log_3\sqrt{y}] = 1$ then y = (a) 27	? (b) 81	(c) 343	(d) none
64.	The value of log ₁₀ 1 + log ₁₀ 1 (a) 15	0 + log ₁₀ 100 + log ₁₀ 1,00 (b) log ₁₀ 11111	$0 + \log_{10} 10,000 + \log_{10} 1,0$ (c) $\log_{10} 1111$	00,000 is: (d) 14 log ₁₀ 100
65.	If $\log 300 = 2.4771$, then th (a) 9 th	e position of first significa (b) 10 th	ant digit in 3 ⁻²⁰ is: (c) 11 th	(d) 8 th
66.	If $A = \log_2 \log_2 \log_4 256 + 5 \log_4 256$	$\log_{\sqrt{2}} 2$, then A equals: (b) 13	(c) 11	(d) none
67.	If $\log_{30}3 = x$, $\log_{30}5 = y$, the (a) $3(1 - x - y)$		(c) 1 – x – y	(d) 2(x - y +1)
68.	If x = 2983!, then the value (a) 0	of the expression: $\frac{1}{\log_2 x}$ + (b) 1	$\frac{1}{\log_3 x} + \frac{1}{\log_4 x} \dots \dots + \frac{1}{\log_2 x}$ (c) 2	$\frac{1}{2983 x}$ is equal to: (d) 3
69.	$\log_7 \log_3 \sqrt{3(\sqrt{3\sqrt{3}})}$ equals:			
	(a) 3 log ₂ 7	(b) 1 – 3 log ₃ 7	(c) 1 – 3 log ₇ 2	(d) none of these
	The expression log73 is: (a) An integer (c) An irrational number	(b) A rational (d) A prime number		
71.	If $x = \frac{e^{y} - e^{-y}}{e^{y} + e^{-y}}$ then the value (a) $\frac{1}{2} \log_e \frac{1+x}{1-x}$	of y is: (b) $\log_e \frac{1+x}{1-x}$	(c) $\log_e \frac{1-x}{1+x}$	(d) $\frac{1}{2} \log \frac{1+x}{1-x}$

Answer Sheet

1.	b	2.	С	3.	d	4.	а	5.	b	6.	b	7.	С	8.	С	9.	b	10.	d
11.	а	12.	С	13.	а	14.	С	15.	а	16.	а	17.	С	18.	b	19.	С	20.	а
21.	d	22.	b	23.	С	24.	d	25.	С	26.	b	27.	С	28.	b	29.	а	30.	b
31.	b	32.	b	33.	b	34.	а	35.	а	36.	d	37.	а	38.	d	39.	b	40.	а
41.	b	42.	С	43.	а	44.	С	45.	а	46.	а	47.	d	48.	b	49.	С	50.	С
51.	d	52.	С	53.	b	54.	b	55.	b	56.	а	57.	а	58.	b	59.	b	60.	а
61.	b	62.	а	63.	b	64.	а	65.	С	66.	С	67.	а	68.	b	69.	b	70.	С
71.	а																		

Summary Notes

Equations

EXERCISE

		EXERCISE
		LINEAR EQUATION
		In One Variable
1.	The equation $-7x + 1 = 5 - 3x$ will be (a) 2	satisfied for x equal to: (c) 1
	(b) -1	(d) none of these
2.	Pick up the correct value of $x \frac{x}{30} = \frac{2}{45}$	
	(a) $X = 5$	(c) $x = 1\frac{1}{2}$
	(b) X = 7	(d) none of these
3.	The solution of the equation $\frac{x+24}{5} = 4$	$+\frac{x}{4}$
	(a) 6	(c) 16
	(b) 10	(d) none of these
4.	8 is the solution of equation	w124 w
	(a) $\frac{x+4}{4} + \frac{x-5}{3} = 11$	(c) $\frac{x+24}{5} = 4 + \frac{x}{4}$
	$(b)\frac{x+4}{2} + \frac{x+10}{9} = 8$	$(\mathbf{d})\frac{x-15}{10} + \frac{x+5}{5} = 4$
5.	The value of y that satisfies the equat	$\sin\frac{y+11}{6} - \frac{y+1}{9} = \frac{y+7}{4}$ is
	(a) -1	(c) 1
	(b) 7	(d) $-\frac{1}{7}$
6.	The solution of the equation (p+2) (p	(p-3) + (p+3) (p-4) = p(2p-5) is
	(a) 6	(c) 5
	(b) 7	(d) none of these
7.	The equation $\frac{12x+1}{4} = \frac{15x-1}{5} + \frac{2x-5}{3x-1}$ is t	crue or
	(a) $X = 1$	(c) $x = 5$
	$(\mathbf{b})\mathbf{X} = 2$	(d) $x = 7$
8.	Pick up the correct value x for which	$\frac{x}{0.5} - \frac{1}{0.05} + \frac{x}{0.005} - \frac{1}{0.0005} = 0$
	(a)X = 0	(c) $x = 10$
	(b) X = 1	(d) none of these
		In Two Variable

9. The solution of the set of equations 3x + 4y = 7, 4x - y = 3 is
(a)(1, -1)
(b)(1, 1)
(c) (2, 1)
(d) (1, -2)

- **10.** Solve for x and y : x 3y = 0, x + 2y = 20. **(a)** X = 4, y = 12 **(b)** X = 12, y = 4 **(c)** x = 5, y = 4**(d)** none of these
- **11.** 1.5x + 3.6y = 2.1, 2.5(x + 1) = 6y **(a)**(0.2, 0.5) **(b)**(0.5, 0.2) **(c)**(2, 5)**(d)**(-2, -5)
- 12. $\frac{x}{p} + \frac{y}{q} = 2$, x + y = p + q are satisfied by the values given by the pair. (a)(x=p, y=q) (c) (x=1, y=1) (b)(x=q, y=p) (d) none of these
- **13.** The solution for the pair of equation $\frac{1}{16x} + \frac{1}{15y} = \frac{9}{20}, \frac{1}{20x} \frac{1}{27y} = \frac{4}{45}$ is given by **(a)** $\left(\frac{1}{4}, \frac{1}{3}\right)$ **(c)** (3, 4) **(b)** $\left(\frac{1}{2}, \frac{1}{4}\right)$ **(d)** (4, 3)

14. The simultaneous equations 7x - 3y = 31, 9x - 5y = 41 have solutions given by(a) (-4, -1)(b) (-1, 4)(c) (4, -1)(d) (3, 7)

15. The values of x and y satisfying the equations $\frac{3}{x+y} + \frac{2}{x-y} = 3, \frac{2}{x+y} + \frac{3}{x-y} = 3\frac{2}{3}$ are given by **(a)**(1, 2) **(c)** (1, $\frac{1}{2}$) **(b)**(-1, -2) **(d)** (2, 1)

(c) (3, 4, 2)

(d) (4, 2, 3)

In 3 Variable

- **16.** $\frac{x}{4} = \frac{y}{3} = \frac{z}{2}$; 7x + 8y + 5z = 62 **(a)**(4, 3, 2) **(b)**(2, 3, 4)
- **17.** $\frac{xy}{x+y} = 20, \frac{yz}{y+z} = 40, \frac{zx}{z+x} = 24$ **(a)**(120,60, 30) **(b)**(60, 30, 120) **(c)** (30, 120, 60) **(d)** (30, 60, 120)

Word Problems

18. Monthly income of two persons are in the ratio 4 : 5 and their monthly expenses are in the ratio 7 : 9. If each saves Rs 50 per month find their monthly income.
(a)(500, 400)
(b)(400, 500)
(c) (300, 600)
(d) (350, 550)

- **19.** Find the fraction which is equal to ½ when both its numerator and denominator are increased by 2. It is equal to ¾ when both are increased by 12.
 - (a) 3/8(c) 2/8(b) 5/8(d) 2/3
- 20. The age of a person is twice the sum of the ages of his two sons and five years ago his age was thrice the sum of their ages. Find his present age.(a)60 years(c) 51 years

(a) oo years	
(b) 52 years	(d) 50 years

21. A number between 10 and 100 is five times the sum of its digits. If 9 be added to it the digits are reserved find the number.

(a) 54	(c) 45
(b) 53	(d) 55

22. The wages of 8 men and 6 boys amount Rs 33. If 4 men earn Rs 4.50 more than 5 boys determine the wages of each man and boy.

8	
(a) (Rs 1.50, Rs 3)	(c) (Rs 2.50, Rs 2)
(b) (Rs 3, Rs 1.50)	(d) (Rs 2, Rs 2.50)

23. A number consisting of two digits is four times the sum of its digits and if 27 be added to it the digits are reserved. The number is :(a)63 (c) 36

(a) 05	(0) 50
(b) 35	(d) 60

24. Of two numbers, 1/5th of the greater is equal to 1/3rd of the smaller and their sum is 16. The numbers are:

(a) (6, 10)	(c) (12, 4)
(b) (9, 7)	(d) (11, 5)

- **25.** Y is older than x by 7 years, 15 years back x's ages was $\frac{3}{4}$ of y's age. Their present ages are: **(a)** (x = 36, y = 43) **(c)** (x = 43, y = 50) **(b)** (x = 50, y = 43) **(d)** (x = 40, y = 47)
- 26. Two numbers are such that twice the greater number exceeds twice the smaller one by 18 and 1/3 rd of the smaller and 1/5th of the greater number are together 21. The numbers are:
 (a) (36, 45)
 (c) (50, 41)

	0,45)		(C) (50, 41)
(b) (45, 36) (d) (55, 46)	(5, 36))	(d) (55, 46)

27. The demand and supply equations for a certain commodity are 4q + 7p = 17 and $p = \frac{q}{3} + \frac{7}{4}$. Respectively where p is the market price and q is the quantity then the equilibrium price and quantity are:

(a) 2, $\frac{3}{4}$	(c) $5, \frac{3}{5}$
(b) 3, $\frac{1}{2}$	(d) none of these

28. The sum of two numbers is 52 and their difference is 2. The numbers are
(a) 17 and 15
(b) 12 and 10
(c) 27 and 25
(d) none of these

29. The fourth part of a number exceeds the sixth part by 4. The number is
(a)84
(b)44
(c) 48
(d) none of these

30. Ten years ago the age of a father was four times of his son. Ten years hence the age of the father will be twice that of his son. The present ages of the father and the son are

(a)(50,20)
(b)(60, 20)
(c)(55, 25)
(d) none of these

QUADRATIC EQUATION

Finding Roots of Equation

What is the roots of the Following Equation?

- **31.** $x^2 3x + 2 = 0$
- **32.** $x^2 13x + 12 = 0$
- **33.** x²-7x+12=0
- **34.** x²-15x+26=0
- **35.** $x^2+3x-70=0$
- **36.** x²-12x+35=0
- **37.** The solution of equation $3x^2 17x + 24 = 0$ are **(a)**(2, 3) **(b)**(2, $3\frac{2}{3}$) **(c)** $(3, 2\frac{2}{3})$ **(d)** $(3, \frac{2}{3})$
- **38.** A solution of the quadratic equation $(a + b 2c) x^2 + (2a b c) x + (c + a 2b) = 0$ is **(a)**X = 1 **(c)** x = 2**(b)**X = -1 **(d)** x = -2
- **39.** The values of x for the equation $x^2 + 9x + 18 = 6 4x$ are **(a)** (1, 12) **(c)** (1, -12) **(b)**(-1, -12) **(d)** (-1, 12)
- **40.** If x = m is one of the solutions of the equation $2x^2 + 5x m = 0$ the possible values of m are

(a) (0, 2)	(c) (0, 1)
(b) (0, -2)	(d) (1, -1)

41. The satisfying the values of x for the equation $\frac{1}{x+p+q} = \frac{1}{x} + \frac{1}{p} + \frac{1}{q}$ are **(a)**(p, q) **(c)** (p, -p) **(b)**(-p, -q) **(d)** (-p, q)

Problems Based on Nature of Roots

42. If the roots of the equation 2 x² + 8x - m3 = 0 are equal then the value of m is

(a) - 3
(b) - 1
(c) 1
(d) - 2

43. The equation x² - (p+4)x + 2p + 5 = 0 has equal roots the value of p will be

(a) ± 1 (c) ± 2 (b) 2 (d) -2

44. The roots of equation $x^2 + (2p-1)x + p^2 = 0$ are real if

- (a) $P \ge 1$ (c) $p \ge \frac{1}{4}$
- **(b)** $P \le 4$ **(d)** $p \le \frac{1}{4}$

45. If L + M + N = 0 and L, M, N are rationals the roots of the equation (M + N -L) x² + (N + L -M) x + (L + M - N) = 0 are
(a)Real and irrational
(b)Real and rational
(c)Imaginary and equal real and equal
(d)None of these

Problem Based on Property of Roots

46. If αβ be the roots of the equation $2x^2 - 4x - 3 = 0$ the value of $α^2 + β^2$ is (a)5 (c) 3 (b)7 (d) -4

47. If p and q are the roots of $x^2 + 2x + 1 = 0$ then the values of $p^3 + q^3$ becomes **(a)**2 **(b)**-2 **(c)** 4 **(d)** -4

48. If one root of $5^2x + 13x + p = 0$ be reciprocal of the other then the value of p is

 (a)-5
 (c) 1/5

 (b)5
 (d) -1/5

49. If the root of the equation $x^2 - 8x + m = 0$ exceeds the other by 4 then the value of m is

(a) M = 10	(c) m = 9
(b) M = 11	(d) m = 12

50. If α and β are the roots of $x^2 = x + 1$ then the value of $\frac{\alpha^2}{\beta} - \frac{\beta^2}{\alpha}$ is

(a)275	$(c) = 5\sqrt{5}$
(b) √5	(d) $-2\sqrt{5}$

51. The equation $\left(\frac{l-m}{2}\right)x^2 - \left(\frac{l+m}{2}\right)x + m = 0$ has got two values of x to satisfy the equation given as

(a) $\left(1, \frac{2m}{l-m}\right)$	(c) $\left(1, \frac{2l}{l-m}\right)$
(b) $\left(1, \frac{m}{l-m}\right)$	(d) $\left(1, \frac{l}{l-m}\right)$

Equation Forming Problems

52. If $p \neq q$ and $p^2 = 5p - 3$ and $q^2 = 5q - 3$ the equation having roots as $\frac{p}{q}$ and $\frac{q}{p}$ is **(a)** $X^2 - 19x + 3 = 0$ **(b)** $3x^2 - 19x - 3 = 0$ **(c)** $3x^2 - 19x + 3 = 0$ **(d)** $3x^2 + 19x + 3 = 0$

53. If α and β be the roots of the equation $X^2 + 3x + 4 = 0$, then find the equation whose roots are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$

(a) $X^2 - 2x - 63 = 0$ (b) $X^2 + 2x + 63 = 0$ (c) $X^2 - 2x + 63 = 0$ (d) None of These

		Word Problems		
54.	The sum of two numbers is 8 and	The sum of two numbers is 8 and the sum of their squares is 34. Taking one number as x form an		
	equation in x and hence find the n	umbers. The numbers are		
	(a) (7, 10)	(c) (3, 5)		
	(b) (4, 4)	(d) (2, 6)		
55.	The difference of two positive inte	egers is 3 and the sum of their squares is 89. Taking the smaller		
	integer as x form a quadratic equation and solve it to find the integers. The integers are			
	(a)(7, 4)	(c) (3, 6)		
	(b) (5, 8)	(d) (2, 5)		
56.	Five times of a positive whole num	nber is 3 less than twice the square of the number. The number is		
	(a)3	(c) – 3		
	(b) 4	(d) 2		
57.	_	2000 sq.m and its perimeter is 180 m. form a quadratic equation by and solve it to find the length and breadth of the field. The length		
	and breadth are	and solve it to find the fengui and breader of the field. The fengui		
	(a) (205m, 80m)	(c) (60m, 50m)		
	(b) (50m, 40m)	(d) none		
		(u) none		
58.	Two squares had sides p cm and ((p+5) cms. The sum of their squares is 625 sq.cm. The sides of the		
	squares are			
	(a)(10cm, 30cm)	(c) (15cm, 20cm)		
	(b) (12cm, 25cm)	(d) none of these		
50	Divide 50 into two parts such that	the sum of their reciprocals is $1/12$. The numbers are		
57.	(a)(24, 26)	(c) (27, 23)		
	(b) (28, 22)	(d) (20, 30)		
	(b) (20, 22)	(u) (20, 30)		
50. There are two consecutive numbers such that the sum of their reciprocals is 1/240. The num		ers such that the sum of their reciprocals is $1/240$. The numbers ar		
	(a) 15, 16)	(c) (13, 14)		
	(b) (17, 18)	(d) (12, 13)		
61.	The hypotenuse of a right-angled	triangle is 20 cm. the difference between its other two sides be 4		
	cm. the sides are	5		
	(a)(11cm, 15cm)	(c) (20cm, 24cm)		
	(b) (12cm, 16cm)	(d) none of these		
62.	The sum of two number is 45 and	the mean proportional between them is 18. The numbers are		
	(a)(15, 30)	(c) (36, 9)		
	(b) (32, 13)	(d) (25, 20)		
	(0)(32,13)	(u) (25, 26)		
63.	The sides of an equilateral triangle	e are shortened by 12 units, 13 units and 14 units respectively and		
	right angle triangle is formed. The sides of the equilateral triangle is			
	(a)17 units	(c) 15 units		
	(b)16 units	(d) 18 units		
	(_)			
64.	The sum of two irrational number	rs multiplied by the larger one is 70 and their difference is		
	multiplied by the smaller one is 12	2; the two numbers are		
	(a) $3\sqrt{2}$, $2\sqrt{3}$	(c) $2\sqrt{2}, 5\sqrt{2}$		

(a) 3 $\sqrt{2}$, 2 $\sqrt{3}$	(C) 272, 572	
(b) 5√2, 3√5	(d) none of these	

Advance Problems

- **65.** If $2^{2x+3} 3^2 \cdot 2^x + 1 = 0$ then the values of x are **(a)** 0, 1 **(c)** 0, 3 **(b)** 1, 2 **(d)** 0, -3
- 66. The values of $4 + \frac{1}{4 + \frac{1}{4$
- 67. If the sum of the roots of the quadratic equation ax² + bx + c = 0 is equal to the sum of the squares of their reciprocals then a²/ac + bc/a² is equal to
 (a)2
 (b)-2
 (c) 1
 (d) -1

CUBIC EQUATION

Finding Solution/Roots Based Problems

- **68.** The cubic equation $x^3 + 2x^2 x 2 = 0$ has 3 roots namely. **(a)**(1, -1, 2) **(b)**(-1, 1, -2) **(c)** (-1, 2, -2) **(d)** (1, 2, 2)
- **69.** The roots of the equation $x^3 + 7x^2 21x 27 = 0$ are **(a)**(-3, -9, -1) **(c)** (3, 9, 1) **(b)**(3, -9, -1) **(d)** (-3, 9, 1)
- **70.** The roots of $x^3 + x^2 x 1 = 0$ are(a)(-1, -1, 1)(c) (-1, -1, -1)(b)(1, 1, -1)(d) (1, 1, 1)
- **71.** A rational root of the cubic equation $2x^3 x^2 4x + 2 = 0$ is **(a)** $\frac{1}{2}$ **(b)** $-\frac{1}{2}$ **(c)** 2 **(d)** -2
- **72.** Factors of the equation $3x^2 + 5x^2 3x 5 = 0$ are(a) x 1, x 2, x 5/3(b) x 1, x + 1, 3x + 5(c) x + 1, x 1, 3x 5(d) x 1, x + 1, x 2

Formation of Cubic Equations from given factors

73. Find cubic equation Whose roots are 1,2, -3?(a) $x^3 - 7x^2 + 6 = 0$ (b) $x^3 + 7x^2 + 6 = 0$ (c) $x^3 + 7x^2 + 6 = 0$ (d) None of these**74.** If x, x - 4, x + 5 are the factors of which cubic equation.(a) $x^3 + 2x^2 - x - 2 = 0$ (b) $x^3 + x^2 - 20x = 0$ (c) $x^3 - 3x^2 - 4x + 12 = 0$ (d) $x^3 - 6x^2 + 11x - 6 = 0$

-	-	-		-		-	-	_	-	-			-
1.	b	2.	C	3.	С	4.	b	5.	d	6.	а	7.	d
8.	С	9.	b	10.	b	11.	а	12.	а	13.	а	14.	С
15.	d	16.	а	17.	d	18.	b	19.	а	20.	d	21.	С
22.	b	23.	С	24.	а	25.	а	26.	b	27.	а	28.	С
29.	С	30.	а	31.	(2,1)	32.	(12,1)	33.	(4,3)	34.	(2,13)	35.	(-10,7)
36.	(5,7)	37.	С	38.	b	39.	b	40.	b	41.	b	42.	d
43.	С	44.	d	45.	b	46.	b	47.	b	48.	b	49.	d
50.	d	50.	d	50.	d	50.	d	50.	d	50.	d	50.	d
57.	b	58.	С	59.	d	60.	а	61.	b	62.	С	63.	а
64.	С	65.	d	66.	С	67.	а	68.	b	69.	b	70.	а
71.	а	72.	b	73.	а	74.	b						

Answer Sheet

ADDITIONAL QUESTION BANK

1. Solving equation $x^2 - (a + b)$ (a) a, b	(x + ab = 0 are, value(s) of x)	(c) b	(d) None
2. Solving equation $x^2 - 24x +$ (a) 9,6	135 = 0 are, value(s) of x (b) 9,15	(c) 15,6	(d) None
3. If $\frac{x}{b} + \frac{b}{x} = \frac{a}{b} + \frac{b}{a}$ the roots of the (a) $a, b^2 / a$	the equation are (b) $a^2, b/a^2$	(c) $a^2, b^2/a$	(d) a, b^2
4. Solving equation $\frac{6x+2}{4} + \frac{2x^2-1}{2x^2+2}$ (a) ± 1	$\frac{1}{2} = \frac{10x-1}{4x}$ we get roots as (b) +1	(c) -1	(d) 0
5. Solving equation $3x^2 - 14x$ (a) ± 1	+16 = 0 we get roots as (b) $2and \frac{8}{3}$	(c) 0	(d) None
6. Solving equation $3x^2 - 14x - (a) \pm 4$	+ 8 = 0we get roots as (b) ±2	(c) $4\frac{2}{3}$	(d) None
7. Solving equation $(b - c)x^2(c$ (a) $\frac{a-b}{b-c}$, 1	(a - a)x + (a - b) = 0 following root (b) $(a - b)(a - c), 1$	ots are obtained (c) $\frac{b-c}{a-b}$, 1	(d) None
8. Solving equation $7\sqrt{\frac{x}{1-x}} + 8\sqrt{(a)\frac{64}{113}, \frac{1}{2}}$	$\frac{\sqrt{1-x}}{x} = 15$ following roots are obtain (b) $\frac{1}{50}$, $\frac{1}{65}$	ned (c) $\frac{49}{50}, \frac{1}{65}$	(d) $\frac{1}{50}, \frac{64}{65}$
9. Solving equation $6 \left[\sqrt{\frac{x}{1-x}} + \sqrt{\frac{4}{13}, \frac{9}{13}} \right]$	$ \frac{\left[\frac{1-x}{x}\right]}{x} = 13 $ following roots are obta	ined (c) $\frac{4}{13}, \frac{5}{13}$	(d) $\frac{6}{13}, \frac{7}{13}$
	= $4\sqrt{z^2 - 6z + 6}$ following roots a (b) 5,1	are obtained (c) all of above	(d) None
11. Solving equation $\frac{x + \sqrt{12p - x}}{x - \sqrt{12p - x}} =$ (a) 3 <i>p</i> (c) only -4 <i>p</i>	$\frac{\sqrt{p+1}}{\sqrt{p-1}}$ following roots are obtained	(b) both 3 <i>p</i> and −4 <i>p</i> (d) −3 <i>p</i> and 4 <i>p</i>	
12. Solving equation $(1 + x)^{2/3}$ - (a) $\frac{5}{\sqrt{3}}$	+ $(1-x)^{2/3} = 4(1-x^2)^{1/3}$ are, va (b) $-\frac{5}{\sqrt{3}}$	alues of x (c) $\pm \frac{5}{3\sqrt{3}}$	(d) $\pm \frac{15}{\sqrt{3}}$
13. Solving equation $(2x + 1) + (a) \frac{1 \pm \sqrt{129}}{4}$	(2x+3)(x-1)(x-2) = 150the (b) $\frac{7}{2}$, -3	roots available are (c) $-\frac{7}{2}$, 3	(d) None
14. Solving equation $(2x + 3) +$ (a) $0, \frac{1}{2}, \frac{11}{4}, \frac{9}{4}$ (c) $0, -\frac{1}{2}, -\frac{11}{4}, \frac{9}{4}$	(2x + 5)(x - 1)(x - 2) = 30the r	bots available are (b) $0, -\frac{1}{2}, \frac{-1 \pm \sqrt{105}}{4}$ (d) None	

Equations

15. Solving equation $z + \sqrt{z} = \frac{6}{25}$ (a) $\frac{1}{5}$	the value of z works out to (b) $\frac{2}{5}$	(c) $\frac{1}{25}$	(d) $\frac{2}{25}$
16. Solving equation $z^{10} - 33z^5$ (a) 1, 2	 + 32 = 0 the following value of z a (b) 2,3 	are obtained (c) 2,4	(d) 1, 2, 3
17. When $\sqrt{2z+1} + \sqrt{3z+4} = 2$ (a) 1	7the value of z is given by (b) 2	(c) 3	(d) 4
18. Solving equation $\sqrt{x^2 - 9x} + (a) 3, \frac{2\pm\sqrt{94}}{3}$	$\frac{18}{18} + \sqrt{x^2 + 2x - 15} = \sqrt{x^2 - 4x}$ (b) $\frac{2 \pm \sqrt{94}}{3}$	(c) 4, $-\frac{8}{3}$ (d) 3,4	
19. Solving equation $\sqrt{y^2 + 4y}$ – (a) 2,3,5/3 (c) -2,-3,5/3	$\sqrt{21} + \sqrt{y^2 - y - 6} = \sqrt{6y^2 - 5y}$	 - 39following roots are of (b) 2, 3, -5/3 (d) -2, -3, -5/3 	btained
20. Solving equation $6x^4 + 11x^3$ (a) $\frac{1}{2}$, -2 , $\frac{-1\pm\sqrt{37}}{6}$ (c) $\frac{1}{2}$, -2 , $\frac{5}{6}$, $\frac{-7}{6}$	$-9x^2 - 11x + 6 = 0$ following ro	ots are obtained (b) $-\frac{1}{2}$, 2, $\frac{-1\pm\sqrt{37}}{6}$ (d) None	
21. If $\frac{x-bc}{d+c} + \frac{x-ca}{c+a} + \frac{x-ab}{a+b} = a+b$ (a) $a^2 + b^2 + c^2$ (c) $(a+b)(b+c)$	+ <i>c</i> the value of x is	(b) <i>a</i> + (<i>a</i> + <i>b</i> + <i>c</i>) (d) <i>ab</i> + <i>bc</i> + <i>ca</i>	
22. If $\frac{x+2}{x-2} - \frac{x-2}{x+2} = \frac{x-1}{x+3} - \frac{x+3}{x-3}$ then t	he value of x are		
(a) 0, ±√6	(b) 0,±√3	(c) 0, ±2√3	(d) None
23. If $\frac{x-a}{b} + \frac{x-b}{a} = \frac{b}{x-a} + \frac{a}{x-b}$ then (a) 0, $(a + b)(a - b)$ (c) 0, $(a - b), \frac{a^2+b^2}{a+b}$	the value of x are	(b) $0, (a + b), \frac{a^2 + b^2}{a + b}$ (d) $\frac{a^2 + b^2}{a + b}$	
24. If $\frac{x-a^2b^2}{c^2} + \frac{c^2}{x-a^2-b^2} = 2$ the value of $a^2 + b^2 + c^2$ (a) $a^2 + b^2 + c^2$ (c) $\frac{1}{a^2+b^2+c^2}$	alue of is	(b) $-a^2 - b^2 - c^2$ (d) $-\frac{1}{a^2+b^2+c^2}$	
25. Solving equation $\left(x - \frac{1}{x}\right)^2 - 6$ (a) 0	$6\left(x+\frac{1}{x}\right)+12 = 0$ we get roots as (b) 1	follows (c) -1	(d) None
26. Solving equation $\left(x - \frac{1}{x}\right)^2 - \frac{1}{x}$	$10\left(x-\frac{1}{x}\right)+24=0$ we get roots a	s follows	
(a) 0 (c) −1		(b) 1 (d) $(2 \pm \sqrt{5}), (3 \pm \sqrt{10})$)
27. Solving equation $2\left(x - \frac{1}{x}\right)^2$ - (a) 0	$-5\left(x+\frac{1}{x}+2\right)+18 = 0$ we get ro (b) 1	ots as under (c) –1	(d) $-2 \pm \sqrt{3}$
	tion $x^2 - 5x + 6 = 0$ and $\alpha > \beta$ the		
(a) $x^2 - 6x + 5 = 0$ (c) $2x^2 - 5x + 6 = 0$		(b) $2x^2 - 6x + 5 = 0$ (d) $x^2 - 5x + 6 = 0$	

Aman Khedia

29. If α , β are the roots of equation $(\alpha + \beta^2)$ is (a) $x^2 - 9x + 99 = 0$	$\sin x^2 - 5x + 6 = 0 and \ \alpha > \beta \text{ then}$	the equation with root ((b) $x^2 - 18x + 90 = 0$	$\alpha^2 + \beta$)and
(c) $x^2 - 18x + 77 = 0$		(d) None	
$(\alpha\beta + \alpha + \beta)$ and $(\alpha\beta - \alpha - \beta)$	tion $x^2 - 5x + 6 = 0$ and $\alpha > \beta$ the β) is	-	
(a) $x^2 - 12x + 11 = 0$		(b) $2x^2 - 6x + 12 = 0$	
(c) $x^2 - 12x + 12 = 0$		(d) None	
(a) $b^2 = 4ca$	$a^{2} + bx + c = 0$ the roots of is twice	(b) $2b^2 = 9(c+a)$	
(c) $2x^2 = 9ca$		(d) $2b^2 = 9(c-a)$	
32. The condition that one of ax (a) $3b^2 = 16ca$ (c) $3b^2 = -16ca$	$a^{2} + bx + c = 0$ the roots of is thrice	the other is (b) $b^2 = 9ca$ (d) $b^2 = -9ca$	
33. If the roots of $ax^2 + bx + c =$	= 0 are in the ratio $\frac{p}{a}$ then the value	$e \text{ of } \frac{b^2}{(m)}$ is	
(a) $\frac{(p+q)^2}{(pq)}$	(b) $\frac{(p+q)}{(pq)}$	(c) $\frac{(p-q)^2}{(pq)}$	(d) $\frac{(p-q)}{(pq)}$
34. Solving $6x + 5y - 16 = 0$ and (a) 1,1	d 3x - y - 1 = 0 we get values of x (b) 1, 2	and y as (c) -1, 2	(d) 0,2
35. Solving $x^2 + y^2 - 25 = 0$ and (a) $\pm 3 \pm 4$ (c) 0, 3, 4	x - y - 1 = 0 we get the roots as	under (b) $\pm 2 \pm 3$ (d) 0,-3,-4	
36. Solving $\sqrt{\frac{x}{2}} + \sqrt{\frac{y}{2}} - \frac{5}{2} = 0$ and	x + y - 5 = 0 we get the roots as u	ınder	
(a) 1,4	(b) 1,2	(c) 1,3	(d) 1,5
37. Solving $\frac{1}{2} + \frac{1}{2} - 13 = 0$ and $\frac{1}{2}$	$\frac{1}{x} + \frac{1}{y} - 5 = 0$ we get the roots as u	nder	
(a) $\frac{1}{8}, \frac{1}{5}$	(b) $\frac{1}{2}, \frac{1}{3}$	(c) $\frac{1}{13}, \frac{1}{5}$	(d) $\frac{1}{4}, \frac{1}{5}$
38. Solving $x^2 + xy - 21 = 0$ and (a) $\pm 1, \pm 2$	$4xy - 2y^2 + 20 = 0$ we get the roo (b) $\pm 2, \pm 3$	ots as under (c) $\pm 3, \pm 4$	(d) None
39. Solving $x^2 + xy + y^2 = 37$ an (a) $\pm 3, \pm 4$	ad $3xy + 2y^2 = 68$ we get the follo (b) $\pm 4, \pm 5$	wing roots (c) $\pm 2, \pm 3$	(d) None
40. Solving $4^x \cdot 2^y = 128$ and 3^{3x-1} (a) $\frac{7}{4}, \frac{7}{2}$	$f^{2y} = 9^{xy}$ we get the following roo (b) 2,3	ts (c) 1,2	(d) 1,3
41. Solving $9^x = 3^y$ and $5^{x+y+1} =$ (a) 1, 2	 25^{xy} we get the following roots (b) 0,1 	(c) 0,3	(d) 1,3
42. Solving $9x + 3y - 4z = 3$, $x - (a) 2, 3, 4$	+ $y = 0$ and $2x - 5y - 4z = 0$ follo (b) 1, 3, 4	wing roots are obtained (c) 1, 2, 3	(d) None
43. Solving $x + 2y + 2z = 0.3x - (a) 2.1, -2and - 2, -1.2 (c) only 2.1, -2$	$-4y + z = 0$ and $x^2 + 3y^2 + z^2 =$	 11 following roots are obt (b) 2,1,2 and - 2, -1, - (d) only -2, -1,2 	

44. Solving $x^3 - 6x^2 + 11x$ (a) $-1, -2, 3$ (c) $1, 2, 3$	-6 = 0 get the following root	(b) $1, 2, -3$ (d) $-1, -2, -3$	
45. Solving $x^3 + 9x^2 - x - 9$ (a) $\pm 1, -9$	9 = 0get the following roots (b) $\pm 1, \pm 9$	(c) ±1,9	(d) None
	e of the roots is half the sum o	f the order two solving	
	= 0get the following roots :		
(a) 1,2,3		(b) 3,4,5	
(c) 2,3,4		(d) −3, −4, −5	
47. Solve $x^3 + 3x^2 - x - 3 = 3$	= 0given that the roots are in	arithmetical progression	
(a) −1,1,3	0	(b) 1, 2, 3	
(c) −3,−1,1		(d) −3, −2, −1	
48 . Solve $x^3 - 7x^2 + 14x - $	8 = 0 given that the roots are	in geometrical progression	
(a) ½, 1, 2		(b) 1, 2, 4	
(c) $\frac{1}{2}$, -1,2		(d) −1, 2, −4	
49. Solve $x^3 - 6x^2 + 5x + 1$	2 = 0 given that the product	of the two roots is 12	
(a) 1, 3, 4		(b) -1, 3, 4	
(c) 1, 6, 2		(d) 1,−6,−2	
50. Solve $x^3 - 5x^2 - 2x + 2$	24 = 0 given that two of its roo	ots being in the ratio of 3:4	
(a) −2, 4, 3		(b) -1, 4, 3	
(c) 2,4,3		(d) −2, −4, −3	

ANSWERS

1			1		
1.	(a)	18.	(a)	35.	(a)
2.	(b)	19.	(b)	36.	(a)
3.	(a)	20.	(a)	37.	(b)
4.	(b)	21.	(d)	38.	(c)
5.	(b)	22.	(d)	39.	(a)
6.	(C)	23.	(d)	40.	(a), (b)
7.	(a)	24.	(a)	41.	(a)
8.	(a)	25.	(b)	42.	(c)
9.	(a)	26.	(d)	43.	(a)
10.	(C)	27.	(d)	44.	(c)
11.	(a)	28.	(a)	45.	(a)
12.	(C)	29.	(C)	46.	(b)
13.	(a)	30.	(a)	47.	(c)
14.	(b)	31.	(C)	48.	(b)
15.	(C)	32.	(a)	49.	(b)
16.	(a)	33.	(a)	50.	(a)
17.	(d)	34.	(b)		

ALP-NO-3A

Tutorial Note: This ALP Sheets are designed for Students Self Practice if any difficulty arrives then students Should Refer Lectures This Will Develop There Mind to Deal with New Problems in Exams

 If the ratio of (5x - 3y) and (5y - 3x) is 3 : 4, then the value of x : y is:

(a) 27 : 29	(c) 3 : 4
(b) 29 : 27	(d) 4 : 3

2. If roots of equation $x^2 + x + r = 0$ are ' \propto ' and ' β ' and $\propto^3 + \beta^3 = -6$. Find the value of 'r'?

(a) $\frac{-5}{3}$	(c) $\frac{-4}{3}$
(b) $\frac{7}{3}$	(d) 1

- 3. If one root of the equation $px^2 + qx + r = 0$ is r then other root of the equation will be: (a) 1/q (c) 1/p
 - (b) 1/r (d) $\frac{1}{p+q}$
- 4. If the ratio of the roots of the equation 4x² 6x + p = 0 is 1 : 2 then the value of p is:
 (a) 1
 (b) 2
 (c) -2
 (d) -1
- **5.** The minimum value of the function $x^2 6x + 10$ is _____.

(a) 1	(c) 3
(b) 2	(d) 10

- 6. If p & q are the roots of the equation $x^2 bx + C = 0$, then what is the equation whose roots are (pq + p + q) and (pq - p -q)? (a) $x^2 - 2cx + c^2 - b^2 = 0$ (b) $8cx^2 - 2(b+c)x + c^2$ (c) $x^2 - 2bx + C^2 + b^2 = 0$ (d) $x^2 + 2bx - (C^2 - b^2) = 0$
- **7.** If arithmetic mean between roots of a quadratic equation is 8 and the geometric mean between them is 5, the equation is
 - (a) $x^2 16x 25 = 0$
 - (b) $x^2 16x + 25 = 0$
 - (c) $x^2 16x + 5 = 0$
 - (d) none of these

- 8. The equation of the straight line passing through the intersection of 4x 3y 1 = 0 and 2x 5y + 3 = 0 and parallel to 4x + 5y = 6 is:
 - (a) 4x + 5y 12 = 0
 - (b) 4x + 5y 16 = 0
 - (c) 4x + 5y 9 = 0
 - (d) 4x + 5y 4 = 0
- 9. If |x 2| + |x 3| = 7 then, 'x' will be equal to
 (a) 6
 (b) 1
 (c) 6 and -1
 (c) 1
 - (b)-1 (d) none of the above

10. Roots of equation $2x^2 + 3x + 7 = 0$ are α and β . The value of $\alpha\beta^{-1} + \beta\alpha^{-1}$ is (a) 2 (c) 7/2

(b) 3/7	(d) -19/14
	A

Allswers									
1.	а	2.	а	3.	С	4.	b	5.	а
6.	а	7.	b	8.	С	9.	С	10.	d

ALP-NO-3B

- The present age of a man is 8 years more than thrice the sum of the ages of his two grandsons who are twins. After 8 years, his age will be 10 years more than twice the sum of the ages of his grandsons. The age of a man when his grandsons were born was:

 (a) 86 years
 (c) 68 years
 - (b) 73 years (d) 63 years
- 2. The roots of the cubic equation x³ 7x + 6 = 0 are:
 (a) 1, 2 and 3 (c) 1, 2 and -3
 - (a) 1, 2 and 3 (c) 1, 2 and -3 (b) 1, -2 and 3 (d) 1, -2 and -3
- **3.** If the roots of the equation $4x^2 12x + k = 0$ are equal, then the value of k is:

(a) -3	(c) -9
(b) 3	(d) 9

- 4. If 3x y = 2, 5x + ay = 3 and 2x + y = 3 are concurrent lines, then the value of 'a' is:
 (a) -1
 (b) -2
 (c) 2
 (d) 3
- 5. The equation of line passing through the point of intersection of the lines y = 3 and x + y = 0 and parallel to the 2x y = 4 is: (a) 2x - y + 9 = 0 (c) x - 2y + 9 = 0(b) 2x - y - 9 = 0 (d) x + 2y - 9 = 0

- 6. If α + β = -2 and α β = -3, then α, β are the roots of the equation, which is:
 (a) x² 2x-3 = 0
 (b) x² + 2x 3 = 0
 (c) x² + 2x + 3 = 0
 (d) x² 2x + 3 = 0
- 7. If α , β are the roots of the equation $x^2 + x + 5 = 0$ then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is equal to (a) $\frac{16}{5}$ (c) 3 (b) 2
 - (b) 2^{-14} (d) $\frac{14}{5}$
- 8. If $\frac{3}{x+y} + \frac{2}{x-y} = -1$ and $\frac{1}{x+y} \frac{1}{x-y} = \frac{4}{3}$ then (x, y) is: (a) (2, 1) (c) (-1, 2) (b) (1, 2) (d) (-2, 1)
- 9. The roots of the cubic equation $x^3 + 7x^2 21x 27 = 0$ are (a) -1, 3, 9 (c) -1, 3, -9
 - (b) 1, -3, 9 (d) -1, -3, 9
- **10.** The difference between the roots of the equation $x^2 7x 9 = 0$ is: (a) 7 (c) 9

Allowers									
1.	b	2.	С	3.	d	4.	b	5.	а
6.	b	7.	d	8.	b	9.	С	10.	b

ALP-NO-3C

The value of k for which the points (k, 1), (5, 5) and (10, 7) may be collinear is:

(a) K – 5	(c) K = 9
(b) K = 7	(d) $k = 1$

- 2. If the sides of an equilateral triangle are shortened by 3 units, 4 units and 5 units respectively and a right triangle is formed, then the side of an equilateral triangle is:
 (a) 6 units
 (b) 7 units
 (c) 8 units
 (d) 10 units
- **3.** If α , β are the roots of the equation $x^2 + x + 5 = 0$ then $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ is equal to

$(a)\frac{16}{5}$	(c) 3
(b) 2	$(d)\frac{14}{5}$

- 4. If $\alpha + \beta = -2$ and $\alpha\beta = -3$, then α , β are the roots of the equation, which is: (a) $x^2 - 2x - 3 = 0$ (c) $x^2 + 2x + 3 = 0$ (b) $x^2 + 2x - 3 = 0$ (d) $x^2 - 2x + 3 = 0$
- 5. If $2^{x+y} = 2^{2x-y} = \sqrt{8}$, then the respective values of x and y are ______ (a) $1, \frac{1}{2}$ (c) $\frac{1}{2}, \frac{1}{2}$ (b) $\frac{1}{2}, 1$ (d) none of these

Answers									
1.	а	2.	С	3.	d	4.	В	5.	а

Linear Inequalities

EXERCISE

Formation of Inequality

1. An employer recruits experienced (x) and fresh workmen (y) for his firm under the condition that he cannot employ more than 9 people. X and y can be related by the inequality

(a) $X + y \neq 9$ (c) $x + y \geq 9, x \geq 0, y \geq 0$ (b) $x + y \leq 9, x \geq 0, y \geq 0$ (d) none of these

2. On the average experienced person does 5 units of work while a fresh one 3 units of work daily but the employer has to maintain an output of al least 30 units of work per day. This situation can be expressed as

$(a)5x + 3y \le 30$	(c) $5x + 3y \ge x \ge 0, y \ge 0$
(b) $5x + 3y > 30$	(d) none of these

3. The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact can be expressed as

(a) $Y \ge x/5$	(c) 5y ≥ x
(b) 5y ≤ x	(d) none of these

4. The union however forbids him to employ less than 2 experienced persons to each fresh person. This situation can be expressed as

(a) $X \le y/2$	(c) $y \ge x/2$
(b) Y ≤ x/2	(d) x > 2y

5. A dietitian wishes to mix together two kinds of food so that the vitamin content of the mixture is at least 9 units of vitamin A, 7 units of vitamin B, 10 units of vitamin C and 12 units of vitamin D. the vitamin content per kg of each food is shown below:

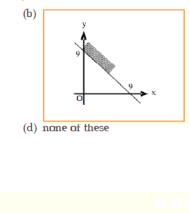
	Α	В	С	D
Food I:	2	1	1	2
Food II:	1	1	2	3

Assuming x units of food I is to be mixed with y units of food II the situation can be expressed as

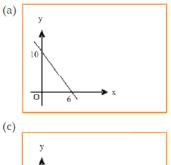
(a) $2x + y \le 9$	(b) 2x + y ≥ 30	(c) $2x + y \ge 9$	(d) $2x + y \ge 9$
$x + y \leq 7$	$x + y \le 7$	$x + y \ge 7$	$x + y \ge 7$
$x + 2y \le 10$	$x + 2y \ge 10$	$x + y \leq 10$	$x + 2y \ge 10$
$2x + 3y \le 12$	$x + 3y \ge 12$	$x + 3y \ge 12$	$2x + 3y \ge 12$
x >0, y > 0			$x \ge 0, y \ge 0$

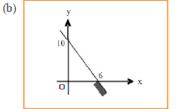
6. A firm makes two types of products: type A and type B. The profit on product A is Nu. 20 each and that on product B is Nu. 30 each. Both types are processed on three machines M1, M2 and M3. The time required in hours by each product and total time available in hours per week on each machine are as follows:


Machine	Product A	Product B	Available time
M1	3	3	36
M2	5	2	50
M3	2	6	60

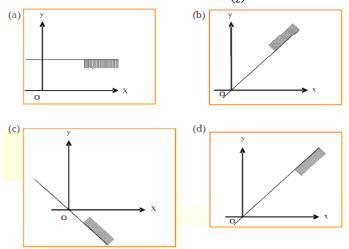

The constraints can be formulated taking x_1 = number of units A and x_2 = number of units B as

(a) $X_1 + x_2 \le 12$ (b) $3x_1 + 3x_2 \ge 36$ (c) $3x_1 + 3x_2 \le 36$ (d) none of these $5x_1 + 2x_2 \le 50$ $5x_1 + 2x_2 \le 50$ $5x_1 + 2x_2 \le 50$ $2x_1 + 6x_2 \le 60$ $2x_1 + 6x_2 \ge 60$ $2x_1 \ge 0, x_2 \ge 0$ $x_1 \ge 0, x_2 \ge 0$ $x_1 \ge 0, x_2 \ge 0$ $2x_1 + 6x_2 \le 60$

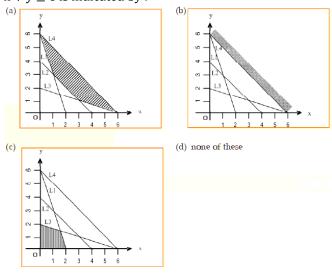

Equation Is Given & Graph Is Asked


7. The graph to express the inequality $x + y \le 9$ is

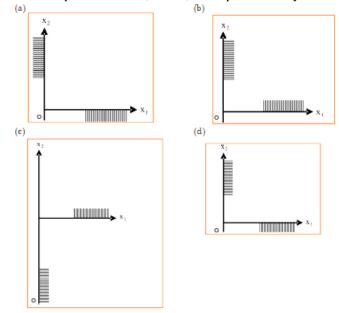
8. The graph to express the inequality $5x + 3y \ge 30$ is

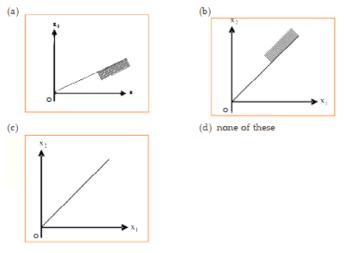


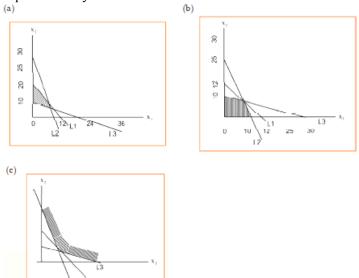
(d) none of these

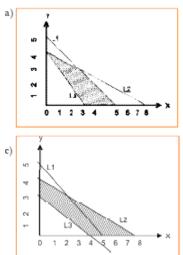

10

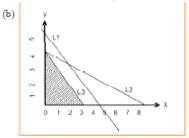
0


9. The graph to express the inequality $y \le \left(\frac{1}{2}\right) x$ is indicated by


10. The common region satisfied by the in equalities L1: $3x + y \ge 6$, L2: $x + y \ge 4$, L3: $x + 3y \ge 6$, and L4 : $x + y \le 6$ is indicated by :

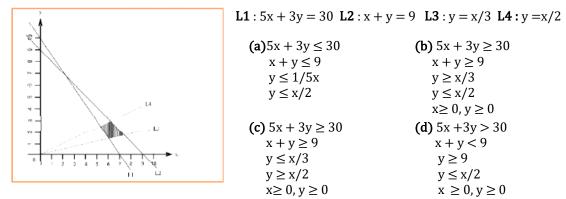

11. The in equalities $x_1 \ge 0$, $x_2 \ge 0$, are represented by one of the graphs shown below:

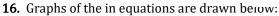

12. The inequality $-x_1 + 2x_2 \le 0$ is indicated on the graph as

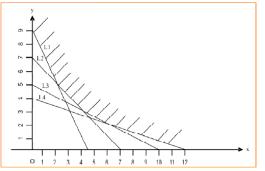


13. The set of in equalities L1; $x_1 + x_2 \le 12$, L2: $5x_1 + 2x_2 \le 50$, L3: $x_1 + 3x_2 \le 30$, $x_1 \ge 0$, and $x_2 \ge 0$ is represented by

14. The common region satisfying the set of inequalities $x \ge 0, y \ge 0, L1 : x + y \le 5, L2 : x + 2y \le 8$ and $L3 : 4x + 3y \ge 12$ is indicated by

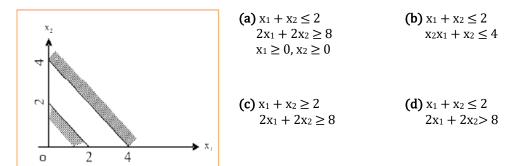




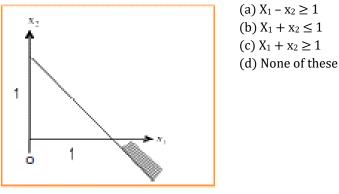

(d) none of these

Graph Is Given & Inequality Is Asked

15. The common region (shaded part) shown in the diagram refers to



L1: 2x + y = 9 L2: x + y = 7 L3: x + 2y = 10 L4: x + 3y = 12


The common region (shaded part) indicated on the diagram is expressed by the set of inequalities

(a) $2x + y \le 9$	(b) $2x + y \ge 9$	(c) $2x + y \ge 9$	(d) none of these
$x + y \ge 7$	$x + y \le 7$	$x + y \ge 7$	
$x + 2y \ge 10$	$x + 2y \ge 10$	$x + 2y \ge 10$	
$x + 3y \ge 12$	$x + 3y \ge 12$	$x + 3y \ge 12$	
		$x \ge 0$, $y \ge 0$	

17. The region indicated by the shading in the graph is expressed by in equalities

18. The region is expressed as

Finding Solution of Equation

- **19.** On solving the inequalities $2x + 5y \le 20$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$, we get the following situation **(a)** (0, 0), (0, 4), (4, 0) and (20/11, 36/11) **(b)** (0, 0), (10, 0), (0, 6) and (20/11, 36/11) **(c)** (0, 0), (0, 4), (4, 0) and (2, 3) **(d)** (0, 0), (10, 0), (0, 6) and (2, 3)
- **20.** On solving the inequalities $6x + y \ge 18$, $x + 4y \ge 12$, $2x + y \ge 10$, we get the following situation **(a)** (0, 18), (12, 0), (4, 2) and (2, 6) **(b)** (3, 0), (0, 3), (4, 2) and (7, 6) **(c)** (5, 0), (0, 10), (4, 2) and (7, 6) **(d)** (0, 18), (12, 0), (4, 2), (0, 0) and (7, 6)

Miscellaneous Problems

21. If
$$|x + \frac{1}{4}| > \frac{7}{4}$$
, then:
(a) $x < \frac{-3}{2}$ or $x > 2$ (b) $x < -2$ or $x > \frac{3}{2}$
(c) $-2 < x < \frac{3}{2}$ (d) none of these

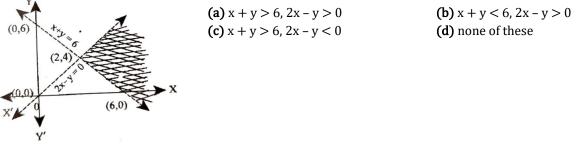
22. If $\left|\frac{3x-4}{4}\right| \le \frac{5}{12}$, then solution set is :

.

(a)
$$\left\{x:\frac{19}{18} \le x \le \frac{29}{18}\right\}$$
 (b) $\left\{x:\frac{7}{9} \le x \le \frac{17}{9}\right\}$
(c) $\left\{x:\frac{-29}{18} \le x \le \frac{-19}{18}\right\}$ (d) none of these

23. On solving the inequalities

 $6x + y \ge 18$, $x + 4y \ge 12$, $2x + y \ge 10$, we get the following situation:


- **(a)** (0,18), (12, 0), (4, 2) & (7, 6)
- **(b)** (3, 0), (0,3), (4, 2) & (7, 6)
- **(c)** (5, 0), (0, 10), (4, 2) & (7, 6)
- **(d)** (0, 18), (12, 0), (4, 2), (0, 0) and (7, 6)

Chap. 4

24. The rules and regulations demand that the employer should employ not more than 5 experienced hands to 1 fresh one and this fact is represented by: (taking experienced person as x and fresh person as y)

(a) $y \ge \frac{x}{5}$	(b) 5y ≤ x
(c) 5y ≥ x	(d) none

25. The shaded region represents:

26. If a > 0 and b < 0, it followings that:

(a)
$$\frac{1}{a} > \frac{1}{b}$$

(b) $\frac{1}{a} < \frac{1}{b}$
(c) $\frac{1}{a} = \frac{1}{b}$
(d) none of these

27. The common region represented by the inequalities $2x + y \ge 8$, $x + y \ge 12$, $3x + 2y \le 34$ is

(a) Unbounded	(b) In feasible
(c) Feasible and bounded	(d) Feasible and unbounded

Answer Sheet

1.	С	2.	С	3.	а	4.	b	5.	d	6.	С	7.	а	8.	С	9.	d	10.	а
11.	b	12.	b	13.	b	14.	а	15.	d	16.	С	17.	а	18.	С	19.	а	20.	а
21.	b	22.	b	23.	а	24.	a,c	25.	а	26.	а	27.	С						

Summary Notes

Time Value of Money

EXERCISE **Problems on Simple Interest** S.I on Rs. 3500 for 3 years at 12% per annum is 1. (a)Rs. 1200 **(b)** 1260 (c) 2260 (d)none of these 2. $P = 5000, R = 15, T = 4\frac{1}{2}$ using 1 = PRT/100, 1 will be (b)Rs. 3300 (a)Rs. 3375 (c)Rs. 3735 (d)none of these If P = 5000, T = 1, I = Rs. 300, R will be 3. **(b)** 5% (c) 6% (d)none of these (a) 5% **4.** If P = Rs. 4500, A = Rs. 7200, then Simple interest i.e. I will be (a)Rs. 2000 **(b)** 3000 (c)Rs. 2500 (d) Rs.2700 P = Rs. 12000, A = Rs. 16500, $T = 2\frac{1}{2}$ years, Rate percent per annum simple interest will be 5. (a) 15% **(b)** 12% (c) 10% (d)none of these **6.** P = Rs. 10000, I = Rs. 2500, $R = 12\frac{1}{2}\%$ SI. The number of years T will be (d) none of these (a) 1½ years (b) 2 years (c) 3 years **7.** P = Rs. 8500, A = Rs. 10200, $R = 12\frac{1}{2}\%$ SI, t will be. (a) 1 yr. 7 month. (d)none of these **(b)** 2 yrs. (c) 1½ yr. 8. The sum required to earn a monthly interest of Rs. 1200 at 18% per annum SI is (a)Rs. 50000 **(b)**Rs. 60000 (c)Rs. 80000 (d)none of these 9. A sum of money amount to Rs. 6200 is 2 years and Rs. 7400 in 3 years. The principal and rate of interest are (a)Rs. 3800 31.57% (b)Rs. 3000, 20% (c)Rs. 3500, 15% (d) none of these **10.** A sum of money doubles itself in 10 years. The number of years it would triple itself is (d) None of these (a) 25 years. **(b)** 15 years. (c) 20 years **11.** A lent a sum at 4% S.I. If interest in 8 years was Rs 3,400 less than the sum, find the sum (a)Rs. 7,000 **(b)** Rs. 5,000 (c) Rs. 5,700 (d) Rs. 6,000 **12.** Out of Rs. 70,000, I invest Rs. 30,000 at 4% & Rs. 20,000 at 3% S. I.. At what rate of interest must I invest the balance to get a return of 5% on whole amount per annum? **(b)** 7% (c) 8% (d) 8.5% (a) 5% **13.** X, Y and Z are the three sums of money such that Y is the simple interest on X and Z is the simple interest on Y for the same time and rate. The relation between X, Y and Z is. (a) $x^2 = YZ$ **(b)** $Y^2 = ZX$ (c) $Z^2 = XY$ (d) XYZ = 1 **14.** What sum will discharge a debt of Rs. 5,300 due after one and half year at 5% p.a. simple interest

today. (a) Rs. 4,730 (b) Rs. 4,630 (c) Rs. 4,930 (d) Rs. 4,830

5	2
J.	4

15.	A sum of Rs. 46,875 was lent out at simple interest and at the end of 1 year 8 months the total amount was Rs. 50,000. Find the rate of interest per cent per annum.						
	(a) 4%	(b) 5%	(c) 7%	(d) None			
16.	It the simple interest on Rs. rate per cent per annum.	20,000 increases by Rs. 4	4,000 with the increase of	time by 4 Yrs. Find the			
	(a) 0.15% (b) 0.5%	(c) 5%	(d) None			
17.	If the difference between simple interest on Rs. 4,000 and on Rs. 6,500 for 5 Yrs. Be Rs. 800 at sat rate of simple interest per annum. Then the rate of interest is						
	(a) 5.3%	(b) 6.2%	(c) 6.4%	(d) None			
18.	A certain sum of money trel (a) 20%	oles itself in 10 years at a (b) 10%	certain rate of S.I. p.a. the (c) 5%	n the rate of interest is (d) None			
19.	A certain sum of money am p.a. The rate of interest is	ounts to Rs.756 in 2 year	rs and to Rs. 873 in 3.5 ye	ears at same rate of S.I.			
	(a) 12%	(b) 13%	(c) 14%	(d) None			
20.	Mrs. Sudha lent Rs. 4,000 in at 5% p.a. S.I, the annual int (a) Rs. 2,800						
21.	 Rs. 1,521 is lent out in two parts in such a way that the S.I. on 1st part at 10% for 5 years is equal to that on 2nd part at 8% for 10 years. Find the both parts. (a) Rs. 1,000 ; Rs. 521 (b) Rs. 920; Rs. 601 (c) Rs.936; Rs. 585 (d) None 						
22.	A certain sum of money bec (a) 15%	ome six times at 5% S.I. p (b) 13%	.a. At what rate % it will b (c) 11%	become 12 times. (d) None			
23.	A certain sum of money am Rs. 750 at 5% p.a. S.I. Find t			time Rs. 640 amounted			
	(a) Rs. 500	(b) Rs. 600	(c) Rs. 700	(d) None			
24.	A certain sum of money among to Rs, 6,000 at same rate of		ars at 10% p.a. In how ma	ny years will it amount			
	(a) 10 years	(b) 8 years	(c) 6 years	(d) None			
25.	Mr. X lent some amount of a sum lent is	money at 4% S.L and he o	btained Rs. 520 less than	he lent in 5 years. The			
	(a) Rs. 620	(b) Rs. 650	(c) Rs. 750	(d) None			
26.	If the simple interest on Rs. time	750 is less than the inter	est on Rs. 845 at 10% p.a	. S.I. by Rs. 57. Find the			
	(a) 4 years	(b) 5 years	(c) 6 years	(d) None			
27.	 The simple interest in 14 months on a certain sum of money at the rate of 6% p.a. is Rs. 250 more than the interest on the same sum at the rate of 8% p.a. in 8 months. How much amount was borrowed? (a) Rs. 15,000 (b) Rs. 25,000 (c) Rs. 7,500 (d) None 						
28.	Mr. X borrows Rs. 7,000 fro years to settle the account. I (a) 5%	-	id Rs. 3,000 after 3 years (c) 8%	and Rs. 5,450 in next 2 (d) None			
29.	If S.I. on a certain sum of m			.,			
	the rate per cent. (a) 3%	(b) 4%	(c) 5%	(d) None			

Problems on Compound Interest

30.	If P = Rs. 1000, R = 5% p.a., (a)Rs. 1215.50, Rs. 215.50 (c)Rs. 2115, Rs. 115	n = 4; What is Amount a	nd C.I. is (b) Rs. 1125, Rs. 125 (d) none of these	
31.	Rs. 100 will become after 20 (a) Rs. 250) years at 5% p.a. compou (b) Rs. 205	nd interest amount (c) Rs. 265.50	(d)none of these
32.	If A = Rs. 1000, n = 2 years, (a)Rs. 888.80	R = 6% p.a. compound ir (b) Rs. 885	nterest payable half-yearly (c) 800	y, then principal (P) is (d) none of these
33.	The population of a town in The number of years by whi (a) 7 years			beginning of that year. (d) none of these
34.	The difference between C.I. 110.16. The sum is? (a)Rs. 3000	and S.I on a certain sum (b) Rs. 3700	of money invested for 3 (c)Rs. 12000	years at 6% p.a is Rs. (d) Rs. 10000
35.	The C.I on Rs. 16000 for 1½ (a)Rs. 2222	years at 10% p.a. payable (b) Rs. 2522	e half yearly is (c) Rs. 2500	(d)none of these
36.	The C.I. on Rs. 40000 at 10% (a)Rs. 4000	6 p.a. for 1 year when the (b) Rs. 4100	interest is payable quarte (c) Rs. 4152.51	erly is (d) none of these
37.	The difference between the (a) Rs. 5	S.I and the C.I on Rs. 2400 (b) Rs. 10) for 2 years at 5% p.a. is (c) Rs. 16	(d) Rs. 6
38.	The annual birth and death which the population will be (a) 35 yrs.			
39.	The C.I on Rs. 4000 for 6 mo (a) Rs. 243.60	nths at 12% p.a. payable (b) Rs. 240	quarterly is (c) 243	(d) none of these
40.	The compound interest in cl 2 nd yar& 15% p.a. for the 3 rd total interest is payable at th	^d year, interest being com ne end of 3 years?	npounded annually in all	the cases. What is the
	(a) Rs. 7,273	(b) Rs. 6,067	(c) Rs. 6252	(d) Rs. 5,268
41.	Mohan borrows Rs. 50,000 year. What amount does he (a)Rs. 10,000	-		000 at the end of each (d) Rs. 18,000
42.	A sum at C.I. becomes Rs. 1,0 (a) 5.60%)20 after 3 yrs. & Rs.1,088 (b) 6.66%	3 after 4 yrs. The rate of ir (c) 7.66%	nterest is (d) 8.66%
43.	A sum at C.I. becomes Rs. 6, amount due after a further p (a)Rs. 9,360			d of 2 more years. The (d) Rs. 9,390
44.	How many years it take for annually at 6% [Given: (1.06 (a) 11 years (c) 11.6 years		to double itself when in (b) 11.3 years (d)11.9 years	terest is compounded
45.	After Mr. Gupta introduced 300 million in 3 yrs. The cor (a)11.22%		Supta & sons went up from	n Rs. 100 million to Rs (d) 44.22%

46.	Find the amount of Rs.2000 after 10 years at 8% converted quarterly for the 1st 4 years and 6%						
	converted monthly thereaft (a) Rs.4025.50	ter. (b) Rs.3931.78	(c) Rs.2600.50	(d) None			
47.			y for 2 years at 4% p.a. be Rs.510, then its simple				
	Interest (S.L) of same time (a) Rs.500	at same rate of interest is (b) Rs.510	(c) Rs.450	(d) None			
48.		f money for 3 years at 5%	p.a. is Rs. 1260. Then its compound interest (C.I.)				
	is (a) Rs.1324.05	(b) Rs.1330	(c) Rs. 1425	(d) None			
49.	If the difference between C	I and S.I on a certain sun.	n of money at 5% p.a. for	2 years is Rs. 1.50. Find			
	the sum of money. (a) Rs. 600	(b) Rs.500	(c) Rs. 400	(d) None			
50.	Find the difference between (a) Rs.65	n the S.I. and C.I. on Rs.80 (b) Rs.62	00 for 3 years at 5% p.a. (c) Rs.61	(d) None			
51.	A certain sum of money ar compounded annually the r		ears and Rs.7896 in 21 y	years at rate of interest			
	(a) 9.5%	(b) 8%	(c) 10%	(d) None			
52.	A certain sum of money a compound interest, the sum		years and Rs.3125 in 3	years at same rate of			
	(a) Rs.2129.60 (c) Rs.2531.62		(b) Rs.2210.37 (d) Data inadequate.				
53.	The ratio of Cl and SI on a c (a) 8:5	ertain sum of money at 1 (b) 20: 19	0% p.a. for 2 years is (c) 21:20	(d) None			
54.	Sohan deposited Rs.4800 i interest what will be his am (a) Rs.9375		becomes Rs.6000 at a certain rate of compound 2 years. (c) Rs.9525 (d) None				
55.			f compound interest of 20% p.a. so that A's share				
	at the end of 3 years may ec (a) Rs.3500; Rs.2600 (c) Rs.3400; Rs.2700						
56.	A money- lender charges ' advance. What effective rat			per quarter, Payable in			
	(a) 22.6%	(b) 12.8%	(c) 22,8%	(d) None of these			
57.	The simple interest on Rs.3 rate being the same in both			ears came to Rs.162, the			
	(a)4%	(b) 6%	(c) 7%	(d) None of these			
		Problems on Effe	ctive Rate				
58.	The effective rate of interes (a) 3.2%	t corresponding to a nom (b) 3.25% p.a.	iinal rate 3% p.a. payable (c) 3.0225% p.a.	half yearly is (d) None of these			
59.	The effective rate of interes (a) 7%	t corresponding a nomina (b) 7.5%	al rate of 7% p.a. converti (c) 5%	ble quarterly is (d) 7.18%			
60.	 Mr. Natarajan wants to make an investment of Rs. 50,000 in one of the two banks that fetches him the maximum return after 6 years. One bank offers 8% interest compounded annually and the other offers 7.5% interest compounded semi – annually. Which bank should be chosen, so that he gets the maximum return? [Given: (1.08)⁶ = 1.5869 and (1.0375)¹² = 1.5554] (a) First bank (b) Second bank (c) Any of the two bank 						

(d) Both the banks.

	Problems on De	preciation				
61.	A machine is depreciated at the rate of 20% on redu Rs. 100000 and its ultimate scrap value was Rs. 300 (a) 4.5 years (appx.) (c) 5 years (appx.)	cing balance. The original cost of the machine was				
62.	The useful life of a machine is estimated to be 10 year p.a. The scrap value at the end of its life is (a) Rs. 3486 (b) Rs. 4383	ars and cost Rs. 10000. Ra (c) Rs. 3400	te of depreciation is 10% (d) Rs. 10000			
63.	A machine is depreciated at the rate of 10% on redu the ultimate scrap value was Rs.3,750. Find the effe log $3 = 0.47712$). (a) 5 yrs. (b) 5.19 yrs.					
			(u) None of these			
	Advance Pro	oblems				
64.	In how many years will a sum become 27 times wh (a) 9 years (b) 6 years	en it trebles itself in 2 yea (c) 12 years	rs at C.I.? (d) 13 ½ years			
65.	 5. The compound interest on a sum for two years is Rs. 1,575 and the corresponding simple interest Rs. 1,500. Find the compound interest on the same sum at the same rate of interest at the end of the year. (a)Rs. 2,428.50 (b)Rs. 2,482.50 (c)Rs. 2,284.50 (d)Rs. 2,382.50 					
66.	A certain sum was lent at compound interest, co interest for each of the three years was 20%, 15% a at a constant rate of simple interest for the same per for obtaining the same amount of interest? (a) 17.27% (b) 17%	nd 10% p.a. respectively.	If the same sum was lent			
67.	The difference between C.I. & S.I. on a sum for 3 yea (a) 40000 (b) 50000	nrs at 10% p.a. is Rs. 1550 (c) 45000	. The sum is (d) 48000			
	Problems on Pre	esent Value				
	Ordinary Ar	nuity				
68.	The present value of an annuity of Rs. 3000 for 15 y (a)Rs. 23809.41 (c)Rs. 32908.41	vears at 4.5% p.a. CI is (b)Rs. 32218.63 (d) none of these				
69.	A loan of Rs. 10.000 is to be paid back in 30 equal ins the principal and at 4% p.a. CI is (a)Rs. 587.87 (c)Rs. 578.87	stalments. The amount of ((b)Rs. 587 (d) none of these	each installment to cover			
70.	 A company borrows Rs. 10000 on condition to repay it with compound interest at 5% p.a. by annual installments of Rs. 1000 each. The number of years by which the debt will be clear is (a) 14.2 yrs. (b) 10 yrs. (c) 12 yrs. (d) None of these 					
71.	Mr. Paul borrows Rs. 20000 on condition to repay 2000 each. The number of years for the debt to be p (a) 10 yrs. (b) 12 yrs.		nnual installments of Rs. (d) None of these			
72.	The present value of annuity of Rs. 5000 per annun (a)Rs. 46000 (c)Rs. 15000	n for 12 years at 4% p.a. C (b)Rs. 46850 (d) none of these	.I. annually is			

73.		ars. How much would be		00 and agreeing to make equal the interest on unpaid amount		
	(a) Rs. 3,432.05	(b) Rs. 3,932.05	(c) Rs. 15000	(d) none of these		
74.	The amount of an annuity du Find the size of each paymen		payments invest	ed at 8% effective is Rs. 10,000.		
	(a) Rs.873.86	(b) Rs. 108.60	(c) Rs.341.01	(d) none of these		
75.	Arjun buys a house for whic is worth 12% converted mo			ach month for 8 years. If money		
	(a) Rs. 307638.50	(b) Rs. 310825.60	(c) Rs. 25902.75			
76.	10 years. The seller charges	interest at the rate of 12	promising to pay Rs.200 every quarter for next % per annum compounded quarterly. If Munna the 11th payment is due to discharge his entire			
	(a) Rs.5873.86	(b) Rs.7108.60	(c) Rs.6399.26	(d) None of these		
		<u>Due Annuit</u>	У			
77.	You deposit this amount in a bank as and when you receive and get 10% per annum interest compounded annually. What is present value of annuity? (a)Rs. 41698.70 (b)Rs. 51820.40					
70	(c)Rs. 60000 (d) none of these					
78.				nning of each 3 months until he hat is the equivalent cash price		
	(a) Rs. 46802.58 (c) Rs. 46399.26		(b) Rs. 47108.60 (d) None of thes			
79.	The value of each equal insta of property priced at Rs.80,0			for 10 years will pay for a piece		
	(a) Rs. 15873.86 (c) Rs. 16399.26		(b) Rs. 10645.03 (d) none of thes			
		Perpetual Ann	uity			
80.	The value of the present val and continuity forever, if mo (a) Rs. 4,000			de at the end of each 6 months ally is		
	(c) Rs. 3,000		(d) None of thes	se		
81.	How much money is needed indefinitely, if money is wor (a) Rs. 80,454.67			at the beginning of each year		
	(c) Rs. 90,350.45		(d) None of thes			
82.	At what rate converted semi end of each 6 months be Rs.		t value of a perpe	tuity of Rs. 450 payables at the		
	(a) 3.5%	(b) 4%	(c) 4.5%	(d) None of these		
83.	Assuming that the discount growing at 8%, annually, for	-	, how much wou	lld you pay to receive Rs.800,		
	(a) 1000	(b) 1500	(c) 2200	(d) None of these		

	Problems on Fut	ure Value							
	Ordinary Annuity								
84.	1. The amount of an annuity certain of Rs. 150 for 12 years at 3.5% p.a. C.I is (a)Rs. 2190.28 (b)Rs. 1290.28 (c)Rs. 2180.28 (d) none of these								
85.	A = Rs. 1200 n = 12 yrs. i = 0.08 v =? Using the formula $V = \frac{A}{i} \left[1 - \frac{1}{(1+i)^n} \right]$ value of v will be (a) Rs. 3039	e (b) Rs. 3990							
	(c)Rs. 9930	(d) none of these							
86.	a = Rs. 100 n = 10, i = 5% find the FV of annuity Using the formula FV = a / { $(1 + i) n - 1$ }, FV is eq (a)Rs. 1258 (c)Rs. 1528	jual to (b) Rs. 2581 (d) none of these							
87.	1 If the amount of an annuity after 25 years at 5% p.a C.I is Rs. 50000 the annuity will be (a)Rs. 1406.90 (b)Rs. 1046.90 (c)Rs. 1146.90 (d) none of these								
88.	Given annuity of Rs. 100 amounts to Rs. 3137.12 at 4 (a) 25 yrs. (appx.) (c) 22 yrs.	 4.5% p.a C.I. The number of years will be (b) 20 yrs. (appx.) (d)none of these 							
89.	Mr. X borrowed Rs. 5120 at 12½ p.a. C.I. At the end interest accrued. The amount of interest paid by him (a)Rs. 2100 (b)Rs. 2170		s repaid along with the (d) None of these						
90.	A person invests Rs. 500 at the end of each year w annually. The amount standing to his credit one yea 12 th time is. (a)Rs. 11764.50 (b)Rs. 10000		-						
91.	Rs 200 is invested at the end of each month in an ac monthly. What is the future value of this annuity afte (a) Rs. 2044 (c)Rs. 1200	ccount paying interest 6%							
92.	Find the future value of an annuity of Rs. 500 ma compounded annually. Given that $(1.14)^7 = 2.5023$. (a) Rs. 5,365.35 (c)Rs. 6500	de annually for 7 years a (b)Rs. 5000 (d) none of these	at interest rate of 14%						
93.	Rs. 200 is invested at the end of each month in an admonthly. What is the future value of this annuity after (a) Rs2500 (c)Rs. 1850								
94.	An annuity consisting of payments of Rs. 500 made a of 6% compounded quarterly. Its Future value is (a) Rs. 8966.18 (c) Rs. 9602.75	t the end of every 3 month (b)Rs. 8108.60 (d) none of these	ns for 4 years at the rate						
95.	An annuity consisting of equal payments at the end Rs. 2000. If the interest rate is 6% compounded mor								

	Due Annuity									
96.	Z invested Rs 10,000 annum compounded a (a) Rs. 1,56,454.875 (c)Rs. 1,80,500.900				y for next 10 Years. Suppose interest rate 8% per e of the annuity. (b)Rs. 1,60,500.900 (d) none of these					
97.	At the Beginning of ea pays 5% compounded (a) Rs.5724 (c) Rs.5472						it the end o	nto saving account that f each year.		
98.	A Bank Pay interest a deposited in the bank (a) Rs 5,884 (c) Rs.5,848							d how much should be Rs.80,000 in 3 Years.		
				Sinki	ng Fund	1				
99.	A person desires to cr every year. Using V =				d at 10%	% CI per annu	m to provid	le for a prize of Rs. 300		
	(a) Rs. 2000		(b) 2500			(c) Rs. 3000		(d) none of these		
100.	How much amount is 10 years if interest is (a) Rs. 18,823.62			nually at		ear so as to ac (c) Rs. 16,000		s. 300000 at the end of (d) none of these		
				Capital E	wnondi	turo				
101.	costs Rs. 8,000. The fit	rst mac s. 2,20 r annu 7, (1.1)	chine save 0 annuall m.	s labor e y. Deteri	xpense	s of Rs. 1900 a	annually an course of a nachine	ith useful life of 5 years d the second one saves action. Assume cost of		
102.		chasing	g the macl	nine for F able alte	Rs. 8,10	0. If the comp		l life) at an annual rent rrow money at 8% p.a., (d) None		
				Net Pre	sent Va	lue				
	 103. Assume cash outflow are Rs. 1,20,000 followed by cash inflows of Rs. 25,000 per year for 8 years and cost of capital is 11% what is the net present value? (a) Rs. 38,214 (b) Rs. 9,650 (c) Rs. 8,650 (d) Rs. 38,214 104. A company proposes to install a machine involving a capital cost of Rs. 3,60,000. The life of the machine									
	of Rs. 68,000 per annu 15 % pa. The net pres	um. Yo ent val	u are requ ue factors	ired to c for 5 ye	alculate ars as u	e NPV when d nder		oduce the net cash flow rate is		
	Discounting Rate	14	15	16	17	18				
	Cumulative factor	3.43	3.35	3.27	3.20	3.13				
	(a) - 13,2200		(b) 13,22	00		(c) Rs. 15,50	0	(d) none of these		

105. A company is considering the proposal of taking up a new project which requires an investment of Rs. 400 lakhs on machinery and other assets. The project is expected to yield the following cash flows

over the next five years.		The cost of voicing the additional conital is 120/ The cover
Year	Cash Flow (Rs. Lakhs)	The cost of raising the additional capital is 12% The scrap
1	160	value at the end of the five year may be taken as zero. You are required to calculate the Net Present Value of the
2	160	project
3	180	(a) 197.91 (b) 132
4	180	(c) 250 (d) none of these
5	150	

Leasing Decision

- **106.** A company is considering proposal of purchasing a machine either by making full payment of Rs. 4,000 or by leasing it for 4 years at an annual rent of Rs. 1,250. Which course of action is preferable, if the company can borrow money at 14% per annum? [Given: $(1.14)^4 = 1.68896$] (a) Leasing is preferable
 - (c) Can't say.

- (b) Leasing is not preferable (d) None of these
- **107.** ABC Ltd. wants to lease out an asset costing Rs. 3,60,000 for a five-year period. It has fixed a rental of Rs. 1,05,000 per annum payable annually starting from the end of first year. Suppose rate of interest is 14% per annum compounded annually on which money can be invested by the company. Is this agreement favorable to the company?

(a) Leasing is preferable(c) Can't say.	(b) Leasing is not preferable (d) None of these
	Valuation of Bond

108. An investor intends purchasing a three-year Rs. 1,000 par value bond having nominal interest rate of 10%. At what price the bond may be purchased now if it matures at par and the investor requires a rate of return of 14%? (a) Rs. 907.125 **(b)** 1000 (c) 825.45

(d)None of these

Compound Annual Growth Rate (CAGR)

109. Suppose the revenues of a company for four years, V(t) in the above formula, have been

Year	2013	2014	2015	2016	
Revenues	100	120	160	210	
Calculate Comp	ound annu	al Growth Rate.			
(a) =27.74%	(b) 23.64%		(c) 34.56%	(d)None	of these

Answer Sheet

1.	b	2.	а	3.	c	4.	d	5.	а	6.	b	7.	а	8.	С	9.	а	10.	С
11.	b	12.	d	13.	b	14.	С	15.	а	16.	С	17.	С	18.	а	19.	b	20.	а
21.	С	22.	С	23.	b	24.	b	25.	b	26.	С	27.	а	28.	а	29.	а	30.	а
31.	С	32.	а	33.	С	34.	d	35.	b	36.	С	37.	d	38.	а	39.	а	40.	С
41.	b	42.	b	43.	а	44.	d	45.	d	46.	b	47.	а	48.	а	49.	а	50.	С
51.	а	52.	а	53.	С	54.	а	55.	b	56.	С	57.	b	58.	С	59.	d	60.	а
61.	b	62.	а	63.	С	64.	а	65.	С	66.	а	67.	b	68.	b	69.	С	70.	а
71.	d	72.	b	73.	а	74.	С	75.	а	76.	С	77.	а	78.	а	79.	b	80.	а
81.	b	82.	С	83.	а	84.	а	85.	d	86.	а	87.	b	88.	d	89.	b	90.	а
91.	а	92.	а	93.	b	94.	С	95.	С	96.	а	97.	b	98.	С	99.	С	100.	а
101.	b	102.	а	103.	С	104.	а	105.	а	106.	а	107.	а	108.	а	109.	а		

5.10

ADDITIONAL QUESTION BANK1. The difference between compound and simple interest at 5% per annum for 4 years on

R	Rs. 20,000 is Rs						
(8	a) 250	(b) 277	(c) 300	(d) 310			
	 The compound interest on half-yearly rests on Rs. 10,000 the rate for the first and second years being 6% and for the third year 9% p.a. is Rs. 						
(8	a) 2,200	(b) 2,287	(c) 2,285	(d) None			
	The present value of Rs nterest is paid on yearly			nd interest when the			
(8	a) 9,070	(b) 9,000	(c) 9,061	(d) None			
	The present value of Rs nterest is paid on half-ye	-		nd interest when the			
(8	a) 9,070	(b) 9,069	(c) 9,061	(d) None			
n a	5. Johnson left Rs. 1,00,000 with the direction that it should be divided in such a way that his minor sons Tom, Dick and Harry aged 9,12 and 15 years should each receive equally after attaining the age 25 years. The rate of interest being 3.5%, how much each son receive after getting 25 years old?						
(8	a) 50,000	(b) 51,994	(c) 52,000	(d) None			
6. Ir	n how many years will a	sum of money double	at 5% p.a. compound	interest?			
(8	a) 15 years 3 months		(b) 14 years 2 mont	hs			
(0	c) 14 years 3 months		(d) 15 years 2 months				
	7. In how many years a sum of money trebles at 5% p.a. compound interest payable on half yearly basis?						
(8	a) 18 years 7 months		(b) 18 years 6 months				
(0	c) 18 years 8 months		(d) 22 years 3 months				
v	8. A machine depreciates at 10% of its value at the beginning of a year. The cost and scrap value realized at the time of sale being Rs. 23,240 and Rs. 9,000 respectively. For how many years the machine was put to use?						
(8	a) 7 years	(b) 8 years	(c) 9 years ((d) 10 years			
	A machine worth Rs. 4,9 is value would reduce to		15% on its opening va	alue each year. When			
(8	a) 4 years 6 months		(b) 4 years 7 months				

(c) 4 years 5 months (d) 5 years 7 months approximately

10. A machine worth Rs. 4,90,740 is depreciated at 15% of its opening value each year. When its value would reduce by 90%?

(a) 11 years 6 months	(b) 11 years 7 months
(c) 11 years 8 months	(d) 14 years 2 months approximately

11. Alibaba borrows Rs. 6 lakhs Housing Loan at 6% repayable in 20 annual installments commencing at the end of the first year. How much annual payment is necessary.

(a) 52,420	(b) 52,419	(c) 52,310	(d) 52,320
(,,	(,,	(0) 0=,0.0	(,,

- **12.** A sinking fund is created for redeming debentures worth Rs. 5 lakhs at the end of 25 years. How much provision needs to be made out of profits each year provided sinking fund investments can earn interest at 4% p.a.?
 - (a) 12,006 (b) 12,040 (c) 12,039 (d) 12,035
- **13.** A machine costs Rs. 5,20,000 with an estimated life of 25 years. A sinking fund is created to replace it by a new model at 25% higher cost after 25 years with a scrap value realization of Rs. 25000. what amount should be set aside every year if the sinking fund investments accumulate at 3.5% compound interest p.a.?
 - (a) 16,000 (b) 16,500 (c) 16,050 (d) 16,005
- **14.** Raja aged 40 wishes his wife Rani to have Rs. 40 lakhs at his death. If his expectation of life is another 30 years and he starts making equal annual investments commencing now at 3% compound interest p.a. how much should he invest annually?
 - (a) 84,448 (b) 84,450 (c) 84,449 (d) 84,077
- **15.** Appu retires at 60 years receiving a pension of 14,400 a year paid in half-yearly installments for rest of his life after reckoning his life expectation to be 13 years and that interest at 4% p.a. is payable half-yearly. What single sum is equivalent to his pension?
 - (a) 1,45,000 (b) 1,44,900 (c) 1,44,800 (d) 1,44,700
- 16. A stock pay annually an amount of Rs.10 from 6th year onwards ,what is the present value of perpetuity ,if the rate of interest is 20% ?
 (a) 20.1
 (b) 19.1
 (c) 21.1
 (d) 22.1
- 17. An amount is lent at nominal rate of 4.5% per annum compounded quarterly. What would be the gain in rupees over when compounded annually.
 (a) 0.056
 (b) 0.045
 (c) 0.076
 (d) 0.085

(a) 0.056	(b) 0.045	(c) 0.076	(d) 0.085
-----------	-----------	-----------	-----------

1.	(d)	2.	(d)	3.	(a)	4.	(c)	5.	(d)	6.	(b)
7.	(d)	8.	(c)	9.	(d)	10.	(d)	11.	(c)	12.	(a)
13.	(c)	14.	(d)	15.	(b)	16.	(a)	17.	(c)		

Answer Sheet

ALP-NO-7A

Tutorial Note: This ALP Sheets are designed for Students Self Practice if any difficulty arrives then students Should Refer Lectures This Will Develop There Mind to Deal with New Problems in Exams

- If the difference of S.I and C.I is Rs 72 at 12% for 2 years. Calculate the amount.
 (a) Rs 8,000
 (b) Rs 6,000
 (c) Rs 5,000
 (d) Rs 7,750
- If a simple interest on a sum of money at 65 p.a. for 7 years is equal to twice of simple interest on another sum for 9 years at 5% p.a.. The ratio will be:

(a) 2 : 15	(c) 15 : 7
(b) 7 : 15	(d) 1 : 7

3. By mistake a clerk, calculated the simple interest on principal for 5 months at 6.5% p.a. instead of 6 months at 5.5% p.a. If the error in calculation was Rs 25.40. The original sum of principal was_____

(a) Rs 60, 690	(c) Rs 90, 660
(b) Rs 60,960	(d) Rs 90,690

4. If the simple interest on Rs 1,400 for 3 years is less than the simple interest on Rs 1,800 for the same period by Rs 80, then the rate of interest is

(a) 5.67%	(c) 7.20%
(b) 6.67%	(d) 5.00%

5. Nominal rate of interest is 9.9% p.a. If interest is compounded monthly, What will be the effective rate of interest (given $\left(\frac{4033}{12}\right)^{12} - 1.1036$ (approx))?

(4000) - 1.100	o (approx)):
(a) 10.36%	(c) 11.36%
(b) 9.36%	(d) 9.9%

- 6. The S.I on a sum of money is ⁴/₉ of the principal and the no. of years is equal to the rate of interest per annum. Find the rate of interest per annum?
 (a) 5%
 (b) 20/3%
 (c) 22/7%
 (d) 6%
- **7.** Simple interest on Rs 2,000 for 5 months at 16% p.a is _____.

1070 p.a 13	
(a) Rs 133.33	(c) Rs 134.00
(b)Rs 133.22	(d) Rs 132.09

8. How much investment is required to yield an Annual income of Rs 420 at 7% p.a simple interest.

(a) Rs 6,000	(c) Rs 5,580
(b) Rs 6,420	(d) Rs 5,000

9. Mr.X invests Rs 90,500 in post office at 7.5% p.a simple interest. While calculating the rate was wrongly taken as 5.7% p.a. The difference in amounts at maturity is Rs 9,774. Find the period for which the sum was invested:

(a) 7 years	(c) 6 years
(b) 5.8 years	(d) 8 years

- **10.** In what will a sum of money double its y at 6.25% p.a simple interest?
 - (a) 5 years (c) 12 years
 - (b) 8 years (d) 16 years

Answers									
1.	С	2.	С	3.	b	4.	b	5.	a
6.	b	7.	b	8.	а	9.	С	10.	d

ALP-NO-7B

- The difference between compound and simple interest on a certain sum of money for 2 years at 4% p.a is Rs 1. The sum (in Rs) is:
 (a) 625 (c) 640
 (b) 630 (d) 635
- A sum of money compounded annually becomes Rs 1,140 in two years and Rs 1,710 in three years. Find the rate of interest per annum.
 (a) 30%
 (c) 50%

(a) 30%	(C) 50%		
(b) 40%	(d) 60%		

 On what sum difference between compound interest and simple interest for two years at 7% p.a interest is Rs 29.4

(a) Rs 5,000	(c) Rs 6,000
(b) Rs 5,500	(d) Rs 6,500

4. The partners A and B together lent Rs 3,903 at 4% per annum interest compounded annually. After a span of 7 years, A gets the same amount as B gets after 9 years. The share of A in the sum of Rs 3,903 would have been:

(a) Rs 1,875	(c) Rs 2,028
(b) Rs 2,280	(d) Rs 2,820

5.13

If a sum triples in 15 years at simple rate of interest, the rate of interest per annum will be:

(a) 13.0%	(c) 13.5%
(b) 13.3%	(d) 18.0%

6. How much amount is required to be invested every year as to accumulate Rs 6,00,000 at the end of 10 years, if interest is compounded annually at 10% rate of interest [given: $(1.)^{10}$ = 2.59374]

(a) Rs 37,467	(c) Rs 37,647
(b) Rs 37,476	(d) Rs 37,674

7. The future value of an annuity of Rs 1,000 made annually for 5 years at the interest of 14% compounded annually is: (given (1.14)⁵ = 1.92541))

,,	
(a) Rs 5,610	(c) Rs 6,160
(b) Rs 6,610	(d) Rs 5,160

A sum of money invested of compound interest doubles itself in four years. It becomes 32 times of itself at the same rate of compound interest in
 (a) 12 years

(a) 12 years	(c) 20 years
(b)16 years	(d) 24 years

9. A certain sum of money was invested at simple rate of interest for three years. If the same has been invested at a rate that was seven percent higher, the interest amount would have been Rs 882 more. The amount of sum invested is:

(a) Rs 12,600	(c) Rs 4,200
(b) Rs 6,800	(d) Rs 2,800

10. A sum of Rs 44,000 is divided into three parts such that the corresponding interest earned after 2 years, 3 years and 6 years may be equal. If the rate of simple interest are 6% p.a, 8% p.a and 6% p.a respectively, then the smallest part of the sum will be:

(a) Rs 4,000	(c) Rs 10,000
(b) Rs 8,000	(d) Rs 12,000

Answers										
Ī	1.	а	2.	С	3.	С	4.	С	5.	b
Ī	6.	С	7.	b	8.	С	9.	С	10.	b

ALP-NO-7C

- - (b) 12 years (d) none of these
- Suppose your parent decides to open a PPF (Public Provident Fund) account in a bank towards your name with Rs 10,000 every year starting from today for next 15 years. When you receive and get 8.5% per annum interest rate compounded annually. What is the present value of this annuity? {given answer in Rs without any fraction) (given P (15,0.085) = 8.304236576) (a) 83,042 (c) 93,042

(b) 1,66,084	(d) 8,30,423
--------------	--------------

3. In how many years will a sum of money become four times at 12% p.a simple interest?(a) 18 years(c) 25 years

() = 0) 0 0	(-) =-)
(b) 21 years	(d) 28 years

- 4. The simple interest for a certain sum of 2 years at 10% per annum is Rs 90. The corresponding compound interest is (in Rs):
 (a) 99 (c) 94.50
 (b) 95.60 (d) 108
- 5. Mr. X bought an electronic item for Rs 1,000. What would be the future value of the same item after 2 years, if the value is compounded semi annually at 22% per annum?
 (a) Rs 1,488.40 (c) Rs 2,008.07
 (b) Rs 1,518.07 (d) Rs 2,200.00
- 6. If an amount is kept at simple interest, it earns an interest of Rs 600 in first two years but when kept at compound interest it earns an interest of Rs 660 for the same period, then the rate of interest and principal amount respectively are:

 (a) 20%, Rs 1,200
 (b) 10%, Rs 1,200
 (c) 20%, Rs 1,500
- 7. The sum invested at 4% per annum compounded semi-annually amounts to Rs 7,803 at the end of one year, is:
 (a) RS 7,000 (c) Rs 7,225
 (b) Rs 7,500 (d) Rs 8,000

- 8. A compound interest on a sum for 2 years is Rs 30 more than the simple interest at the rate of 5% per annum then the sum is:
 (a) Rs 11,000
 (b) Rs 13,000
 (c) Rs 12,000
 (d) Rs 15,000
- **9.** A person lends Rs 6,000 for 4 years and Rs 8,000 for 3 years at simple interest. If he gets Rs 2,400 as total interest, the rate of interest is:

(a) 5%	(c) 6%
(b) 4%	(d) 7%

					Ansv	vers				
I	1.	С	2.	С	3.	С	4.	С	5.	b
	6.	С	7.	b	8.	С	9.	а		

ALP-NO-7D

1. The future value of an annuity of Rs 1,500 made annually for five years at interest rate 10% compounded annually is (given that $(1.1)^5 = 1.61051$):

(a) Rs 9,517.56	(c) Rs 9,715.56
(b) Rs 9,157.65	(d) Rs 9,175.65

2. How much amount is required to be invested every year as to accumulate Rs 7,96,870 at the end of 10 years, if interest compounded annually at 10% given that A(10,0.1) = 15.9374?
(a) Rs 40,000 (c) Rs 48,000

(b) Rs 4,50,000	(d) Rs 50,000

3. If compound interest on any sum at the rate of %% for two years is Rs 512.50 then the sum would be:

(a) Rs 3,000	(c) Rs 5,000
(b) Rs 4,000	(d) Rs 6,000

4. The effective rate of interest equivalent to the nominal rate of 7% converted monthly:
(a) 7.26%
(c) 7.02%

(b) 7.22%	(d) 7.20%
-----------	-----------

5. Mr. X invest Rs 10,000 every year starting from today for next 10 years suppose interest rate is 8% per annual compounded annually. Calculate future value of the annuity.

(a) Rs 1,56,454.88
(b) Rs 1,56,554.88
(c) Rs 1,44,865.625
(d) none of these

6. How much amount is required to be invested every year so as to accumulate Rs 3,00,000 at the end of 10 years, if interest is compounded annually at 10%?

(a) Rs 18,823.65	(c) Rs 18,828.65
(b) Rs 18	(d) Rs 18,882.65

7. If Rs 1,000 be invested at interest rate of 5% and the interest be added to the principal every 10 years, than the number of years in which it will amount to Rs 2,000 is:

(a) $16\frac{2}{3}$ years	(c) 16 years
(b) $6\frac{1}{4}$ years	(d) $6\frac{2}{3}$ years

8. A person borrows Rs 5,000 for 2 years at 4% per annual simple interest. He immediately lends to another person at $6\frac{1}{4}$ %. Per annual for 2 years find his gain in the transaction for year:

(a) Rs 112.50	(c) Rs 125
(b) Rs 225	(d) Rs 107.50

- **9.** If an amount is kept at S.I it earns an interest of Rs 600 in first two years but when kept at compound interest it earns an interest of Rs 660 for the same period, then the rate of interest and principal amount respectively are:
 - (a) 20%, Rs 1,200 (c) 10%, Rs 1,200 (b) 20%, Rs 1,500 (d) 10%, Rs 1,500
- 10. The future value of an annuity of Rs 1,000 made annually for 5 years at the interest of 14% compounded annually is:

(a) Rs 5,610	(c) Rs 6,160
(b) Rs 6,610	(d) Rs 5,160

Answers									
1.	b	2.	d	3.	С	4.	b	5.	a
6.	а	7.	а	8.	b	9.	b	10.	b

ALP-NO-7E

A man invests an amount of Rs 15,860 in the names of his three sons A, B and C in such a way that they get the same amount after 2, 3 and 4 years respectively. If the rate of interest is 5%, then the ratio of amount invested in the name of A, B and C is
 (a) 6 : 4 : 2

(a) 6 : 4 : 3	(b) 3:4:6
(c) 30 : 12 : 5	(d) None of the above

2. If the difference between the compound interest compounded annually and simple interest on a certain amount at 10% per annum for two years is Rs 372, then the principal amount is

(a) Rs 37,200	(b) Rs 37,000
(c) Rs 37,500	(d) None of the above

3. How much will Rs 25,00 amount to in 2 years at compound interest if the rates for the successive years are 4% and 5% per year

(a) Rs 27,300	(b) Rs 27,000
(c) Rs 27,500	(d) Rs 27,900

Answers					
1.	а	2.	а	3.	а

Permutations & Combinations

EXERCISE

Problem Based on Word's				
1. In how many ways ca (a) 720	n the letters of the word F (b) 5040	IEXAGON be permuted? (c) 740	(d) 640	
2. How many different v(a) 240	vords can be formed with (b) 360	letters of the word HARY (c) 840	ANA? (d) 640	
3. How many different v (a) 9! / (4! × 2!)	vords can be formed by us (b) 11! /4!	sing all the letters of the v (c) 11!	vord ALLAHABAD? (d) None	
4. The number of ways t (a) 40319	the letters of the word CO (b) 40340	MPUTER can be rearrang (c) 40318	ed is: (d) None	
5. The number of ways i (a) 40,319	in which the letters of the (b) 40,320	word "DOGMATIC" can b (c) 40,321	e arranged is (d) none of these	
6. In how many ways ca (a) 120	n the letters of the word I (b) 130	PENCIL be arranged so tha (c) 140	at N is always next to E (d) 160	
7. How many words can together? (a)576	n be formed of the letter (b) 586	s in the word FAILURE, t (c) 476	the four vowels always coming (d) 486	
8. In how many can the separated?(a) 4320	e letters of the word "LAI (b) 4230	JGHTER" be arranged so (c) 4370	that the vowels may never be (d) 4270	
	gements in which the lette ith M and do not end with (b) 120		" be arranged so that the words (d) none of these.	
	s in which the letters of th		nged so that consonants always	
(a) 36	(b) 63	(c) 30	(d) none of these	
11. In how many ways of the odd places?		_	d so that vowels may appear in	
(a) 1440	(b) 1460	(c) 1340	(d) 1360	
12. How many ways of t (a) 11! /(2!) ³	the word MATHEMATICS (b)12! / (2!) ³	can be arranged so that th (c) $(8! \times 4!)/(2!)^3$	ne vowels occur together? (d) None	
be always present is	:	0	d so that the word "ANGLE" will	
(a) 20	(b) 60	(c) 24	(d) 32	
14. How many 3 letter v(a) 336	vords can be made using t (b) 320	he letters of the word OR (c) 226	IENTAL? (d) 436	

15 If the letters of w	and DAUCUTED and to h	a arranged as that your	le accuru the odd places then
number of different (a) 2,880		(c) 625	els occupy the odd places then (d) 576
16. The number of wor	rds that can be made by re	earranging the letters of th	ne word APURNA so that vowels
and consonants app (a) 18	-	(c) 36	(d) none of these
17. The number of arra (a) 8	angements of the letters of (b) 8! /2! 2! 2!	f the word. 'COMMERCE' is (c) 7	s (d) none of these
	ferent words that can be owels in each word is (b)17 _{c7} (d)none of these	e formed with 12 conson	ants and 5 vowels by taking 4
19. The ways of selecti (a) 136	ng 4 letters from the word (b) 130	ł 'EXAMINATION' is (c) 125	(d) none of these
	can be formed with the	letters of the word 'ORIE	ENTAL' so that A and E always
occupy odd places. (a) 8540	(b) 8640	(c) 8460	(d) 8540
	Problem Ba	ased on Number	
21. How many four-dia repeated?	git number can be formed	d by using the digit 0, 1, 2	2, 3, 4, 5, 6, 7, 8, 9 with no digit
(a) 4536	(b) 3604	(c) 3354	(d) 5554
	ligit numbers greater than ne number of such is	n 5,000 can be formed ou	t of the digits 3,4,5,6 and 7 (No
(a) 72	(b) 27	(c) 70	(d) none of these
23. The number of num (a) 210	nbers lying between 100 a (b) 200	nd 1000 can be formed w (c) 110	rith the digits 1,2,3,4, 5,6,7 is (d) none of these
24. The number of ev repletion is	ven numbers greater tha	n 300 can be formed w	ith the digits 1,2,3,4,5 without
(a) 110	(b) 112	(c) 111	(d) none of these
25. The sum of all 4-dia (a) 1, 33,330	git number containing the (b) 1, 22,220	digits 2, 4, 6, 8 without re (c) 2, 13,330	petitions is (d) none of these
26. Find the sum of all (a) 6666600	the four-digit numbers the (b) 39996	at formed with the digits 3 (c) 33963	3,2,3,4. (d) none
27. How many number (a) 216	rs greater than 2000 can b (b) 210	e formed with the digits 1 (c) 220	, 2, 3, 4, 5 ? (d) 12440
28. In how many numb (a) 260	pers greater than a million (b) 360	can be formed with the d (c) 280	igits 4, 5, 5, 0, 4, 5, 3 ? (d) 380
29. The number of num (a) 124	nbers lying between 10 an (b) 120	d 1000 can be formed wit (c) 125	th the digits 2,3,4,0,8,9 is (d) none of these
30. The total number o (a) 10! 9	f 9-digit numbers of differ (b) 8! 9	rent digits is (c) 9! 9	(d) none of these

Problems Based on Geometry				
31. The number of straight lines obtained by Joining 16 points on a plane, on twice of them being on the				
same line is (a) 120	(b) 110	(c) 210	(d) none of these	
	d on the circumference of	a circle. The number of c	hords obtained by joining these	
in pairs is (a) 25	(b) 27	(c) 28	(d) none of these	
33. There are 12 points(a) 200	s in a plane of which 5 are (b) 211	collinear. The number of (c) 210	triangles in (d) none of these	
34. The number of diag (a) 30	onals in a decagon is (b) 35	(c) 45	(d) none of these	
35. The number of para set of three parallel		rmed from a set of four pa	arallel lines intersecting another	
(a) 6	(b) 18	(c) 12	(d) 9	
36. The number of diag (a) 21	onals that Can be drawn b (b) 14	by joining the angular point (c) 7	nts of a heptagon is: (d) 28	
	Circula	r Permutations		
37. The number of way: (a) 700	s in which 7 girls form a r (b) 710	ing is (c) 720	(d) none of these	
38. If 50 different jewel(a) 49! /2	s can be set to form a nec (b) 50! /2	klace then the number of (c) 49!	ways is (d) none of these	
39. 3 ladies mind 3 ger together. The number(a) 70		und table so that any two (c) 72	and only two of the ladies sit(d) none of these	
			s always on the right-side of the	
	number of such arrangem (b) 8		(d) none of these	
41. The number of way: (a) 2500	s in which 8 different beac (b) 2520	ds be strung on a necklace (c) 2250	e is (d) none of these	
	BASED	ON THEOREMS		
42. A person has 8 frien (a) 250	nds. The number of ways i (b) 255	n which he may invite on (c) 200	e or more of them to a dinner is. (d) none of these	
		of 10 different things ta	ken 4 at a time in which one	
particular thing alwa (a) 2015	(b) 2016	(c) 2014	(d) none of these	
44. The number of arra is	ngements of 10 things tak	ken 4 at a time in which o	ne particular thing never occurs	
(a) 3,020	(b) 3,025	(c) 3,024	(d) none of these	
-	rs in which a person can ng Machine and a cooler is (b) 25		e four electrical appliances: T.V. (d) none of these	
	(b) 25 s in which 12 students car (b) 7575			
47. The number of ways (a) 15! /5! ⁴	s in which 15 mangoes ca (b) 15! /5! ³	n be equally divided amor (c)15! /5! ²	ng 3 students is (d) none of these	

	MISCE	ELLANEOUS				
language together?						
(a) 5!.3!.3!.3!	(b) 5!.3!.3!	(c) 11!	(d) none			
49. The number of way two-rupee and 1 one (a)15		e to a fund out of 1 ten-r (c) 10	upee note. 1 five-rupee note 1(d) none of these			
50. In how many ways c (a) 35	an a student choose 5 cou (b) 25	rses out of 9 courses, if 2 (c) 45	courses are compulsory? (d) 15			
	pers are arranged in suc ers of arrangements is (b) 10!	ch a way that the best a	and worst papers never come (d) none of these			
		.,				
52. If 12 school teams a third positions may b (a) 1,230		(c) 3,210	er of ways the first second and (d) none of these			
53. Mr. X and Mr. Y ent which they can occup		rtment having six vacant	seats. The number of ways in			
(a) 25	(b) 31	(c) 32	(d) 30			
54. The number of ways i (a) 4 _{P4}	in which 6 men can be arra (b) 4_{P_4} x 3_{P_3}	nged in a row so that the pa (c) 4 _{C4}	articular 3 men sit together is (d) none of these			
55. There are 5 speakers (a) 24	s A, B, C D and E. The num (b) 4! 2	ber of ways in which A w (c) 5	ill speak always before B is (d) none of these			
56. Out of 7 gents and 4 committee includes a		to be formed. The numbe	er of committees such that each			
(a) 400	(b) 440	(c) 441	(d) none of these			
			l. A voter is entitled to vote for l. The number of ways a voter			
(a) 20	(b) 22	(c) 25	(d) none of these			
			now many ways it is possible to			
make an unsuccessfu (a) 999	al attempt to open the lock (b) 899	<br (c) 799	(d) 1001			
	plying between Calcutta a ni and return by a differen (b) 90	t train is	ways in which a person can go(d) none of these			
60. The number of way	ys in which 8 sweats of		stributed among 8 persons of ming that each one of then gets			
a sweat is (a) <u>8</u>	(b) 5040	(c) 5039	(d) none of these			
signs occur together	is		inged in a line such that no two			
(a) 7 / 3	(b) <u> 6</u> × <u> 7</u> / <u> 3</u>	(c) 35	(d) none of these			
	has given a 6 to 3 decisi ion reversing the lower co (b) 276		urt; the number of ways it can (d) 226.			

Business Mathematics

		to be tried in two bulb po	ints in a dark room. Number of
trials the room sha (a) 6	ll be lighted is (b) 8	(c) 5	(d) 7
64. The number of 4-d (a) 100	igit numbers formed with (b) 101	the digits 1,1, 2, 2, 3, 4 is (c) 201	(d) 102
		r-boxes. The number of v	vays the letters can be dropped
into the boxes, are : (a) 119	(b) 120	(c) 121	(d) none of these
	Algebraic	Based Problems	
66. The value of 1.3.5.7		(2m)	(2m)1
(a) $\frac{2n!}{4!}$	(b) $\frac{2n!}{2.n!}$	(c) $\frac{(2n)!}{2^n \cdot n!}$	(d) $\frac{(3n)!}{2^n \cdot n!}$
67. The LCM of 6! 7! & (a) 8!	8! Is (b) 7!	(c) 6!	(d) none
68. HCF of 3! 7! & 5! Is (a) 5!	(b) 7!	(c) 3!	(d) none
69. If $\frac{1}{4!} + \frac{1}{5!} = \frac{x}{6!}$; the value (a) 26	alue of x is (b) 36	(c) 52	(d) none
70. If ${}^{18}C_r = {}^{18}C_{r+2}$ the (a) 55	value of ^r C ₅ is (b) 50	(c) 56	(d) None
71. If ¹³ C ₆ + 2 ¹³ C ₅ + ¹³ (a) 6 or 7	C ₄ = ¹⁵ C _x , value of x is (b) 6 or 8	(c) 6 or 9	(d) None
72. If ¹⁰ P _r = 604800 ar (a) 7	ad ${}^{10+C}r = 120$. Find the val (b) 2	ue of r. (c) 5	(d) 6
73. If ${}^{2n}C_3 : {}^{n}C_2 = 44 : 3$ (a) 8	, then value of n is (b) 6	(c) 18	(d) 5
74. If ${}^{167}C_{90} + {}^{167}C_x = 1$ (a) 89	⁶⁸ C _x then value of x is (b) 90	(c) 91	(d) 92
75. If ${}^{1000}C_{98} = {}^{999}C_{97} + $ (a) 999	xC ₉₀₁ , find the value of x (b) 989	(c) 889	(d) 898
76. If $n+1C_4 = 9 \times nC_2$, f (a) $n = 11$	ind the value of n. (b) n = 10	(c) n = 9	(d) n = - 10
77. Find $\sum_{r=1}^{5} C(5, r)$ (a) 41	(b) 31	(c) 51	(d) 61
78. If ⁿ⁺¹ C _{r+1} : ⁿ C _r : ⁿ⁻¹ C _r (a) 20	r-1 = 8 : 3 : 1, then n is equa (b) 16	al to: (c) 10	(d) 15
79. If ⁿ P _r = 720 and ⁿ C (a) 3	r = 120, then r is (b) 4	(c) 5	(d) 6

Aman Khedia

	Miscellar	eous Problems				
80. How many 3 letter w (a) 100	vords can be formed by us (b) 120	sing the letters of the wor (c) 150	d "SQUARE" (d) none			
	s are to be awarded at a ways can the prizes be aw (b) 1816		exhibits have been entered. In (d) none			
82. How many 3 digits n not allowed (2) allo (a) 60 and 125		using digits 9, 8, 7, 6, 5, wh (c) 60 and 120	nen repetitions of digits are (1) (d) none			
83. How many 4 digits allowed. (a) 100	even numbers can be ma (b) 625	ade by using digits 0, 3, 4 (c) 120	5, 7, 9 repetitions of digits are (d) none of these			
	e connections may be allo (b) 10!					
85. In how many ways of prizes? (a) 125	can three prizes be given (b) 729	away to 5 students when (c) 625	each student is eligible for any (d) none			
 86. Six boys and five girls are to be seated for a photograph in a row such that no two girls sit together and no two boys sit together. Find the number of ways in which this can be done. (a) 86400 (b) 14400 (c) 518400 (d) none 						
	n be made by using all let ends with letter R and lett (b) 36		LKAR" so that each word starts ether (d) none			
88. Find the number of ((a) 2598960	different poker hands in a (b) 3585620	pack of 52 playing cards. (c) 3298960	(d) none			
89. In how many ways goalkeeper?(a) 150	can a team of 11 be cho (b) 132	sen from 14 football pla (c) 114	yers, two of them can only be (d) none			
	ns and he is not permitte		divided into two groups each from each group. In how many (d) 200			
	words which can be form and 3 different vowels; tl (b) 210		nsonants & one vowels out of 7 een two consonants. (d) none			
92. In how many ways c (a) 4	an zero or more letters be (b) 5	e selected from the letters (c) 6	AAAAA. (d) none			
93. From 5 apples, 4 ora (a) 120	nges and 3 mangoes how (b) 119	many selections of fruits (c) 118	can be made? (d) none			
94. Find the number of ((a) 72	divisors of 21600 (b) 76	(c) 71	(d) none			

Answer Sheet

1.	b	2.	С	3.	а	4.	а	5.	b	6.	а	7.	а	8.	а	9.	С	10.	а
11.	а	12.	С	13.	С	14.	а	15.	а	16.	С	17.	b	18.	С	19.	а	20.	b
21.	а	22.	а	23.	а	24.	С	25.	а	26.	b	27.	а	28.	b	29.	С	30.	С
31.	а	32.	С	33.	С	34.	b	35.	b	36.	b	37.	С	38.	а	39.	С	40.	а
41.	b	42.	b	43.	b	44.	C	45.	а	46.	а	47.	b	48.	а	49.	а	50.	а
51.	а	52.	b	53.	d	54.	b	55.	а	56.	С	57.	С	58.	а	59.	b	60.	b
61.	С	62.	а	63.	d	64.	d	65.	b	66.	С	67.	а	68.	b	69.	b	70.	С
71.	С	72.	а	73.	b	74.	C	75.	а	76.	а	77.	b	78.	d	79.	а	80.	b
81.	а	82.	а	83.	а	84.	а	85.	а	86.	а	87.	b	88.	а	89.	b	90.	d
91.	а	92.	С	93.	b	94.	а												

Summary Notes

Sequence and Series

EXERCISE

		Arithmetic Prog	ression	
1.	Which term of the progressi (a) 21 st	on -1, -3, -5? Is-39 (b) 20 th	(c) 19 th	(d) none of these
2.	The value of x such that 8x - (a) 15	+ 4, 6x – 2, 2x + 7 will for (b) 2	m an AP is (c) 15/2	(d) none of these
3.	The m th term of an A.P. is n a (a) m + n + r	and n th term is m. The r th (b) n + m – 2r	the term of it is (c) $m + n + r/2$	(d) none of these
4.	The 20 th term of the progres (a) 58	ssion 1, 4, 7, 10is (b) 52	(c) 50	(d) none of these
5.	The last term of the series 5 (a) 44	, 7, 9,to 21 term (b) 43	s is (c) 45	(d) none of these
6.	The last term of the A.P. 0.6, (a) 8.7	1.2, 1.8, to 13 terms is (b) 7.8	(c) 7.7	(d) none of these
7.	The sum of the series 9, 5, 1 (a)-18900	to 100 terms is (b) 18900	(c) 19900	(d) none of these
8.	The number of numbers bet (a) 5090	ween 74 and 25556 divis (b) 5097	ible by 5 is (c) 5095	(d) none of these
9.	The first term of an A.P is 1 magnitude but opposite in s (a) $6\frac{4}{11}$			ten terms are equal is(d) none of these
10.	The sum of a certain numbe (a) 12			
11.	The first and the last term terms is (a) 101	of an AP are -4 and 146. (b) 100	The sum of the terms is	7171. The number of (d) none of these
12.	The sum of three integers in (a) 2, 8, 5		ct is 80. The integers are (c) 2, 5, 8	(d) none of these
13.	The sum of all positive integ (a) 1584	ral multiples of 3 less tha (b) 1665	n 100 is (c) 1683	(d) None of these
14.	In an A.P. 3 rd term is 18 & 7 ^t (a) 600	^h term is 30, the sum of it: (b) 612	s 17 terms is (c) 624	(d) None of these
15.	If the 9 th term of an A.P. is ze (a) 1	ero, $\frac{t_{29}}{t_{19}}$ is (b) 2	(c) 3	(d) 4
_				

16.	A person saved Rs. 16,500 in in the preceding year. The at (a) 1000		-	100 more than he did (d) None of these
17.	If sum of n terms of an A.P. is (a) 26	$s 3n^2 + 5n \& T_m = 164$, th (b) 27	en m = ? (c) 28	(d) 29
18.	In an A.P., if S ₁₀ = 550 and a = (a) 10	= 100, then find d. (b) -10	(c) 20	(d) -20
19.	If 4, A ₁ , A ₂ , A ₃ , 28 are in A.P., (a) 24	then the value of A ₃ is equ (b) 22	ual to (c) 19	(d) 23
		Arithmetic Me	ean	
20.	The arithmetic mean betwee (a) 50	en 33 and 77 is (b) 45	(c) 55	(d) none of these
21.	The 4 arithmetic means betw (a) 3, 13, 8, 18 (c) 3, 8, 13, 18	ween -2 and 23 are (b) 18, 3, 8, 13 (d) none of these		
22.	The two-arithmetic means b (a) 2/3, 1/3	etween -6 and 14 is (b) 2/3, 7 $\frac{1}{3}$		
	(c) $-2/3$, $-7\frac{1}{3}$	(d) none of these		
		Geometric Progr	ession	
23.	The 7 th term of the series 6, (a) 384	12, 24,1s (b) 834	(c) 438	(d) none of these
24.	t ₈ of the series 6, 12, 24is (a) 786	(b) 768	(c) 867	(d) none of these
25.	t ₁₂ of the series – 128, 64, -3 (a) -1/6		(c) 1/16	(d) none of these
26.	The 4 th term of the series 0.0 (a) 0.5	04, 0.2, 1is (b) ½	(c) 5	(d) none of these
27.	The last term of the series 1, (a) 512	2, 4to 10 terms is (b) 256	(c) 1024	(d) none of these
28.	The last term of the series 1, (a) 297	, -3, 9, -27 up to 7 terms is (b) 729	(c) 927	(d) none of these
29.	The sum of the series -2, 6, - (a) -1094	18to 7 terms is (b) 1094	(c) -1049	(d) none of these
30.	The sum of the series 243, 8 (a) 36	1, 27, to 8 terms is (b) $\left(36\frac{13}{30}\right)$	(c) $36\frac{1}{9}$	(d) none of these
31.	The sum of the series $\frac{1}{\sqrt{3}} + 1$ (a)9841 $\frac{(1+\sqrt{3})}{\sqrt{3}}$	$+\frac{3}{\sqrt{3}}+\cdots$ to 18 terms is (b) 9841	(c) $\frac{9841}{\sqrt{3}}$	(d) none of these

22				
52.	The second term of a G P is (a) 16, 36, 24, 54 (c) 16, 24, 36, 54	24 and the fifth term is 81 (b) 24, 36, 53 (d)none of these	. The series is	
33.	The sum of 3 numbers of a ((a) 3, 27, 9	G P is 39 and their produc (b) 9, 3, 27	t is 729. The numbers are (c) 3, 9, 27	(d) none of these
34.	If you save 1 paise today, 2		se the succeeding day and	l soon, then your total
	savings in two weeks will be (a) Rs. 163	e (b) Rs. 183	(c) Rs. 163.83	(d) none of these
35.	Sum of the series 1 + 3 + 9 (a) 5	+ 27 + is 364. the nur (b) 6	nber of terms is (c) 11	(d) none of these
36.	The product of 3 numbers in (a) 9, 3, 27	n G P is 729 and the sum o (b) 27, 3, 9	of squares is 819. The num (c) 3, 9, 27	ibers are. (d) none of these
37.	The sum of the infinite GP 1	4 - 2 + 2/7 - 2/49 + i	\$	
57.	(a) $4\frac{1}{12}$	(b) $12\frac{1}{4}$	(c) 12	(d) none of these
38.	The number of terms to be t (a) 10	taken so that 1 + 2 + 4 + (b) 13	8 + will be 8191 is (c) 12	(d) none of these
39.	The sum of the infinite serie (a) 1/3	es 1 + 2/3 + 4/9+is (b) 3	(c) 2/3	(d) none of these
40.	The sum of the first two ter	ms of a G.P. is 5/3 and th	e sum to infinity of the se	ries is 3. The common
	ratio is			
	(a) 1/3	(b) 2/3	(c) -2/3	(d) none of these
		Geometric M	ean	
41.	Four geometric means betw (a) 12 ,36 ,108 ,324 (c) 10, 36, 108, 320	veen 4 and 972 are (b) 12, 24, 108, 320 (d) none of these		
42.	If 40 GMs. are inserted be	etween 2 and 40 then pr	roduct of 10th GM from	beginning and that of
	from end is	(1) 40		
	(a) 20	(b) (1)	() 00	(I) N I
		(b) 40	(c) 80	(d) None
		Harmonic Progr		(d) None
42	The double curp ¹ 4 ²	Harmonic Progr		(d) None
43.	The10th term of H.P $\frac{1}{5}, \frac{4}{19}, \frac{2}{9}$	Harmonic Progr	ression	
43.	The10th term of H.P $\frac{1}{5}, \frac{4}{19}, \frac{2}{9}$ (a) $\frac{11}{4}$	Harmonic Progr		(d) None(d) none of these
	Calculate the sum of first 30	Harmonic Progr , $\frac{14}{17}$ (b) $\frac{14}{4}$) terms of the H.P2, -5,	(c) $\frac{11}{9}$ -8,-11	(d) none of these
		Harmonic Progr $,\frac{14}{17}$ (b) $\frac{14}{4}$	(c) $\frac{11}{9}$	
	Calculate the sum of first 30	Harmonic Progr , $\frac{14}{17}$ (b) $\frac{14}{4}$ b terms of the H.P2, -5, (b) $\frac{2}{1365}$	(c) $\frac{11}{9}$ -8,-11 (c) $\frac{1}{1265}$	(d) none of these
44.	Calculate the sum of first 30 (a) $-\frac{1}{1365}$	Harmonic Progr $,\frac{14}{17} \dots \dots$ (b) $\frac{14}{4}$ 0 terms of the H.P2, -5, - (b) $\frac{2}{1365}$ Harmonic Ma	(c) $\frac{11}{9}$ -8,-11 (c) $\frac{1}{1265}$	(d) none of these
44.	Calculate the sum of first 30	Harmonic Progr $,\frac{14}{17} \dots \dots$ (b) $\frac{14}{4}$ 0 terms of the H.P2, -5, - (b) $\frac{2}{1365}$ Harmonic Ma	(c) $\frac{11}{9}$ -8,-11 (c) $\frac{1}{1265}$	(d) none of these
44. 45.	Calculate the sum of first 30 (a) $-\frac{1}{1365}$ The Harmonic Mean of 2 a	Harmonic Progr $,\frac{14}{17} \dots \dots$ (b) $\frac{14}{4}$ 0 terms of the H.P2, -5, (b) $\frac{2}{1365}$ Harmonic Mathematical Mathematical Harmonic Harmonic Mathematical Harmonic Harmonic Mathematical Harmonic Ha	ression (c) $\frac{11}{9}$ -8,-11 (c) $\frac{1}{1265}$ ean	(d) none of these (d) none of these
44. 45. 46.	Calculate the sum of first 30 (a) $-\frac{1}{1365}$ The Harmonic Mean of 2 a (a) 12/5 The two H.M Between ½ a (a) 12/5	Harmonic Progr , $\frac{14}{17}$ (b) $\frac{14}{4}$) terms of the H.P2, -5, (b) $\frac{2}{1365}$ Harmonic Mo and 13 is (b) 5/12 nd 4/17 are (b) 5/12	(c) $\frac{11}{9}$ -8,-11 (c) $\frac{1}{1265}$ ean (c) 5/2 (c) 5/2	 (d) none of these (d) none of these (d) none of these
44. 45. 46.	Calculate the sum of first 30 (a) $-\frac{1}{1365}$ The Harmonic Mean of 2 a (a) 12/5 The two H.M Between ½ a	Harmonic Progr , $\frac{14}{17}$ (b) $\frac{14}{4}$) terms of the H.P2, -5, (b) $\frac{2}{1365}$ Harmonic Mo and 13 is (b) 5/12 nd 4/17 are (b) 5/12	(c) $\frac{11}{9}$ -8,-11 (c) $\frac{1}{1265}$ ean (c) 5/2 (c) 5/2	 (d) none of these (d) none of these (d) none of these

Aman Khedia

		Relationship Between	AM, GM, HM	
40	If AM and LIM of two numb	are are 22 and 2 reapost	ively then C.M. in	
40.	If AM and HM of two numb (a) 8	(b) $4\sqrt{2}$	(c) 64	(d) None
49.	If two numbers x and y are 10^{-10} km s s 10^{-10}		eds their GM by 3/2 and	the GM exceeds their
	HM by 6/5, then the values (a) 8,5	(b) 3,12	(c) 6,4	(d) none of these
		Series Is Given & Forn	nula Is Asked	
		Nth Term Formula	ls Asked	
50.	The nth element of the sequ (a)n	ence 1, 3, 5, 7,Is (b) 2n – 1	(c) 2n + 1	(d) none of these
51.	The nth element of the sequence (a) $(-1)^{n}2^{n-1}$	ence -1,2, -4,8is (b) 2 ^{n - 1}	(c) 2 ^{n + x}	(d) none of these
52.	Find the sum to n terms of t	he series. $\frac{1}{2\times 5} + \frac{1}{5\times 8} + \frac{1}{8\times 11}$	+	
	(a) $\frac{n}{2(3n+2)}$		(c) $\frac{n}{(3n+2)}$	$(\mathbf{d})^{\underline{n}}_{(3n-2)}$
		Sum Formula Is	Asked	
53.	Sum of n terms of the series (a) $4/9 \{10/9 (10^n - 1) - n\}$ (c) $4/9 (10^n - 1) - n$	4 + 44 + 444 + is	(b) 10/9 (10 ⁿ -1) –n (d) none of these	
54.	Sum of n terms of the series (a) $1/9 \{n - (1 - (0.1)^n)\}$ (c) $n - 1 - (0.1)^n/9$	0.1 + 0.11 + 0.111 + is	(b) 1/9 {(1-(0.1) ⁿ)/9} (d) none of these	
55.	The sum of $1.03 + (1.03)^{2+}$ (a) 103 {(1.03) ⁿ - 1} (c) (1.03) ⁿ - 1	(1.03) ³⁺ to n terms is	(b) 103/3{(1.03) ⁿ - 1} (d) none of these	
		Formula Is Given & Se	ries Is Asked	
		Nth Term Formula	ls Given	
56.	The first three terms of sequ (a) -1, 0, 3	(b) 1, 0, 2	(c) -1, 0, -3	(d) none of these
		Sum Formula Is		
57.	The nth term of the series w (a) 3n - 10	hose sum to n terms is 5r (b) 10n – 2	n ² + 2n is (c) 10n - 3	(d) none of these
58.	The sum of n terms of an AP (a) 8, 14, 20, 26	is 3n ² + 5n. The series is (b) 8, 22, 42, 68	(c) 22, 68, 114,	(d)none of these
		Advance Prob	lems	
59.	If p, q and r are in A. P. and x (a) 0	x, y, z are in G.P. then x ^{q-r} , y (b) -1	y ^{r-p} , z ^{p-q} is equal to (c) 1	(d) none of these
60.	If a, b, c, d are in A.P. then: (a) $a^2 - 3b^2 + 3c^2 - d^2 = 0$ (c) $a^2 + 3b^2 + 3c^2 - d^2 = 0$		(b) $a^2 - 3b^2 + 3c^2 + d^2 =$ (d) None	0
61.	Given x, y, z are in G.P. and x (a) A.P. (c) Both A.P. and G.P.	$x^{p} = y^{q} = z^{\sigma}$, then 1/p, 1/q	, 1/σ are in (b) G.P. (d) none of these	
Due				Aman Khadia

Aman Khedia

62.	If x, y, z are in G.P., then (a) $y^2 = xz$ (c) $2y = x + z$		(b) $y(z^2 + x^2) = x(z^2 + (d))$ none of these	y ²)
63.	If x, y, z are in A.P. and x, y, ((a) $(x - z)^2 = 4x$ (c) $z = x - y$	(z + 1) are in G.P. then	(b) $z^2 = (x - y)$ (d) none of these	
64.	The numbers x, 8, y are in G (a) (-8, -8)	.P. and the numbers x, y, - (b) (16, 4)	8 are in A. P. The value of (c) (8, 8)	f x and y are (d) none of these
65.	The sum of three numbers i the products are in AP. The (a) 12, 18, 40		remes by multiplied each (c) 40, 20, 10	by4and the mean by 5, (d) none of these
66	If S ₁ , S ₂ , S ₃ are S _n of 3 A. P., w		1.2.3 resp. then $\frac{(s_1 + s_2)}{1}$ is	
00.	(a) 1	(b) 2	(c) 3	(d) none of these
67.	The sum of all-natural numl (a) 10200	bers from 100 to 300 whi (b) 15200	ch are exactly divisible by (c) 16200	4 or 5 is (d) None
68.	If a, b, c, d are in geometric p (a) $(a - b)^2$	progression, then $(b - c)$ (b) $(c - d)^2$	$(c)^{2} + (c-a)^{2} + (d-b)^{2}i$ (c) $(a-d)^{2}$	s equal to $(d)(b-d)^2$
69.	If $\frac{1}{x+y}$, $\frac{1}{2y}$, $\frac{1}{y+z}$ are in A.P., t (a) G.P. (c) Both (a)&(b)	hen x,y,z are in	(b) A.P. (d) None	
70.	Let A ₁ , A ₂ be two A. M's & G ₁	1, G2 be two G. M's betwee	n x & y then $\frac{A_1 + A_2}{G_1 G_2}$ is equa	l to
	(a) $\frac{xy}{x+y}$	(b) $\frac{x+y}{xy}$	(c) $\frac{x-y}{xy}$	$(\mathbf{d})_{x+y}^{x-y}$
71.	If a, 4, b are in A.P., a,2, b are	e in G.P., then $\frac{1}{2}$, 1, $\frac{1}{2}$ are in		
	(a) A.P.	(b) G.P.	(c) H.P.	(d) none of these
72.	t_4 of a G.P. in x, $t_{10} = y$ and t_2 (a) $x^2 = yz$	$z_{16} = z$, Then (b) $z^2 = xy$	(c) $y^2 = zx$	(d) none of these
73.	If $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in A.P., t (a) G.P.	hen a², b², c² are in: (b) A.P.	(c) H.P.	(d) none of these
74.	Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$	may be the AM between	a and b:	
	(a) 1/2	(b) 1	(c) -1/2	(d) 0
75.	Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$	may be the GM between	a and b:	
	(a) 1/2	(b) 1	(c) -1/2	(d) 0
76.	Find n such that $\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$	may be the HM between	a and b:	
	(a) 1/2	(b) -1	(c) -1/2	(d) 0

	Divisibili	ty Test						
77 2^{4n} 1 is divisible by								
77. 2 ⁴ⁿ - 1 is divisible by (a) 5	(b) 24	(c) 15	(d) 34					
70 2^n 2^n 1 is divisible by								
78. 3 ⁿ - 2n -1 is divisible by (a) 25	(b) 4	(c) 36	(d) 24					
	Additional Qu	estion Bank						
79. Given x, y, z are in G.P and z		q, 1/σ are in						
(a) A. P	(b) G.P							
(c) Both A.P and G. P	(d) none of these							
80. The sum to ∞ of the series -	·5, 25, -125, 625, ca	an be written as						
(a) $\sum_{k=1}^{x} (-5)^k$	(b) $\sum_{k=1}^{x} 5^{k}$							
(c) $\sum_{k=1}^{x} -5^{k}$	(d) none of these							
01 If C the sum of first a term	s in a sorias is siyon by 2	n ² - On the corios is in						
81. If S_n the sum of first n terms(a) A.P	(b) G.P	n ⁻ + 3n the series is in	I					
(a) A.P (c) H. P	(d) none of these							
	(d) none of these							
82. The sum up to infinity of th	e series (1 + 2 ⁻²)+ (2 ⁻¹ + 2	2 ⁻⁴) + (2 ⁻² + 2 ⁻⁶) +						
(a) 7/3	(b) 3/7							
(c) 4/7	(d) none of these							
83. The sum up to infinity of th	e series 4/7 – 5/7² + 4/7	$^{3}-5/7^{4}+$ is						
(a) 23/48	(b) 25/48	5,,, , , , , , , , , , , , , , , , , ,						
(c) ½	(d) none of these							
04 - 15 - 14 - 14 - 15 - 5 - 5 - 5								
84. If the third term of a G.P is			the series would be					
(a) 4 + 8 + 16 + 32 + (c) both	• •							
(c) both	(d) none							
85. Sum up to ∞ of the series γ	$\frac{1}{3^2} + \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5}$	+ 1/3 ⁶ + is						
(a) 19/24	(b) 24/19							
(c) 5/24	(d) none of these							
86. If $1 + a + a^2 + \dots \infty = x$ and	1 + b + b ² +∞ = y t	then $1 + ab + a^2b^2 +$	∞ = x is given by					
(a) (xy)/ (x + y-1)	(b) (xy)/(x-y-1)							
(c) (xy)/(x+y+1)	(d) none of these							
87. In a G.p if the $(p + q)^{th}$ term	is mand the (n a) th torn	n is n then the n th ter	m is					
(a) $(mn)^{1/2}$	(b) mn							
(c) (m+n)	(d) (m-n)							
88. The sum of p term of an A.F.		erms is p. The sum of	p+q terms is					
(a) –(p+q)	(b) p + q							
(c) $(p-q)^2$	(d) $p^2 - q^2$							

89. The sum of n terms of two A.P are in the ratio of (7n - 5)/(5n + 17). Then the _____ term of the two series are equal. (a) 12 **(b)** 6 (c) 3 (d) none **90.** If a, b, c are in A.P then a²(b + c), b²(c + a), c²(a + b) are in _____. (a) A.P (b) G.P (c) H.P (d) none **91.** If S_1 , S_2 , S_3 be the respectively the sum of terms of n, 2n, 3n an A.P. the value of $S_3 \div (S_2 - S_1)$ is given by (b) 2 (a) 1 (c) 3 (d) None **92.** If S_1 , S_2 S_3 be the sums of **n** terms of three A.P.s the first term of each being unity and the respective common differences 1, 2, 3 then (S₁ + S₃) / S₂ is _____ (a) 1 (d) None (b) 2 (c) -1 **93.** The sum of **n** terms of $(x + y)^2$, $(x^2 + y^2)$, $(x - y)^2$,is (a) $(x + y)^2 - 2(n - 1)xy$ (b) $n(x + y)^2 - n(n - 1)xy$ (c) both the above (d) None 94. The sum of n terms of (1/n)(n - 1), (1/n) (n - 2), (1/n) (n - 3)is (a) 0 (b) (1/2)(n - 1) (c) (1/2)(n + 1) (d) None **95.** The sum of n terms of the series 2.4.6 + 4.6.8 + 6.8.10 +is (a) $2n(n^3+6n^2+11n+6)$ (b) $2n(n^3-6n^2+11n-6)$ (d) $n(n^3+6n^2+11n-6)$ (c) $n(n^3+6n^2+11n+6)$ **96.** The sum of **n** terms of the series $1+(1+1/3)+(1+1/3+1/3^2)+\dots$ is (b) (3/2)[n-(1/2)(1-3⁻ⁿ)] (a) (3/2) (1-3⁻ⁿ) (c) Both (d) None **97.** The least value of n for which the sum of n terms of the series $1 + 3 + 3^2 + \dots$ is greater than 7000 is _____. (a) 9 (b) 10 (c) 8 (d) 7 98. If 'S' be the sum, 'P' the product and 'R' the sum of the reciprocals of n terms in a G.P. then 'P' is the of S^n and R^{-n} . (b) Geometric Mean (a) Arithmetic Mean (c) Harmonic Mean (d) None **99.** Sum upto ∞ of the series $8+4\sqrt{2}+4+\ldots$ is (a) $8(2+\sqrt{2})$ (b) 8(2-√2) (c) $4(2+\sqrt{2})$ (d) 4(2-√2) **100.**Sum upto ∞ of the series $1/2+1/3^2+1/2^3+1/3^4+1/2^5+1/3^6+\dots$ is (d) None (a) 19/24 (b) 24/19 (c) 5/24 **101.** If $x = a + a/r + a/r^2 + ..., \infty$, $y = b - b/r + b/r^2 - ..., \infty$, and $z = c + c/r^2 + c/r^4 + ..., \infty$, then the value of $\frac{xy}{z} - \frac{ab}{c}$ is (a) 0 (b) 1 (c) -1 (d) None

102. If S1, S2, S3, Sn are the sums of infinite G.P.s whose first terms are 1, 2, 3n and whose
common ratios are 1 /2, 1 /3,1 /(n+1) then the value of S1 + S2 + S3 +Sn is
(a) (n/2) (n + 3)(b) (n/2) (n + 2)(c) (n/2) (n+1)(d) $n^2/2$

103.If the sum of n terms of a G.P. with first term 1 and common ratio 1/2 is 1+127/128, the value of n is _____.

104. The sum up to infinity of the series $\sqrt{2}+1/\sqrt{2}+1/(2\sqrt{2})+$ is (a) $2\sqrt{2}$ (b) 2 (c) 4

Answer Sheet

1.	b	2.	С	3.	b	4.	а	5.	С	6.	b	7.	а	8.	b	9.	d	10.	b
11.	а	12.	С	13.	С	14.	b	15.	b	16.	С	17.	b	18.	b	19.	b	20.	С
21.	С	22.	b	23.	а	24.	b	25.	С	26.	С	27.	а	28.	b	29.	а	30.	d
31.	а	32.	С	33.	С	34.	С	35.	b	36.	C	37.	b	38.	b	39.	b	40.	С
41.	а	42.	С	43.	а	44.	а	45.	а	46.	а	47.	b	48.	а	49.	b	50.	b
51.	а	52.	а	53.	а	54.	а	55.	b	56.	а	57.	C	58.	а	59.	С	60.	а
61.	а	62.	а	63.	а	64.	b	65.	b	66.	b	67.	b	68.	С	69.	а	70.	b
71.	а	72.	С	73.	b	74.	d	75.	С	76.	b	77.	C	78.	b	79.	а	80.	а
81.	а	82.	а	83.	а	84.	а	85.	а	86.	а	87.	a	88.	а	89.	b	90.	а
91.	С	92.	b	93.	b	94.	b	95.	а	96.	b	97.	а	98.	b	99.	а	100.	а
101.	а	102.	а	103.	104	а													

(d) None

Sets, Relation & Function

	EXERCISE
	0570
	SETS
	Basics
1. If A = {2, 5, 6, 8}, then n (a) is	
(a) 2	(c) 5
(b) 4	(d) 1
2. If A has 70 elements, B has 32 ele	ements and A $\cap B$ has 22 elements then A \cup B is
(a) 60	(c) 80
(b) 124	(d) none of these
3. E is a set of positive even number	r and O is a set of positive odd numbers, then E \cup O is a
(a) Set of whole numbers	(c) a set of rational number
(b) N	(d) none of these
4. If A has 32 elements, B has 42 elements	ements and A \cup B has 62 elements, the number of elements in A \cap B
is	
(a) 12	(c) 10
(b) 74	(d) none of these
5. If n (P) = 3 and n (Q) = 4, then n ((P × Q) is
(a) 3	(c) 12
(b) 4	(d) 1
6. If the set P has 3 elements, Q fou	r and R two then the set $P \times Q \times R$ contains
(a) 9 elements	(c) 24 elements
(b) 20 elements	(d) none of these
	Method to Write Set

7. Represent the following sets in set notation: - set of all alphabets in English language set of all odd integers less than 25 set of all integers set of positive integers x satisfying the equation x² + 5x + 7 = 0

(a) A = {x:x is an alphabet in English} I = {x:x is an odd integer > 25} = {2 4 6 8...} I = {x:x² + 5x + 7 = 0}

(b) A = {x:x is an alphabet in English} I = {x:x is an odd integers < 25} = {1 3 5 7...}I ={x:x² + 5x + 7 = 0}

(c) A = {x:x is an alphabet in English} I = {x:x is an odd integer ≤ 25 } = {1 3 5 7...} I = {x:x² + 5x + 7 = 0}

(d) None of these

- 8. Rewrite the following sets in a set builder form: -
 - A = {a e i o u} B = {1 2 3 4.....} C is a set of integers between -15 and 15.
 - (a) A = {x:x is a constant} B = {x:x is an irrational number} C = {x: -15 < x < 15, x is a fraction}
 - (b) A = {x:x is a vowel} B = {x:x is an natural number} C = {x: $-15 \le x \le 15$ x is a whole number}
 - (c) A = {x:x is a vowel} B = {x:x is an natural number} C = {x: -15 < x < 15x is a whole number}
 - (d) None of these
- 9. What is the relationship between the following sets?
 - A = {x:x is a letter in the word flower}
 - $B = \{x:x \text{ is a letter in the word flow}\}$
 - C = {x:x is a letter in the word wolf}
 - D = {x:x is a letter in the word follow}
 - (a) B = C = B and all these are subsets of the set A
 - (b) B = C ≠D
 - (c) $B \neq C \neq D$
 - (d) None of these

10.Following set notations represent: $A \subset C B$; $x \notin A$; $A \supset B$; {0}; $A \notin B$

- (a) A is a proper subset of B; x is not an element of A; A contains B; singleton with an only element zero; A is not contained in B.
- (b) A is a proper subset of B; x is an element of A; A contains B; singleton with an only element zero; A is contained in B.
- (c) A is a proper subset of B; x is not an element of A; A does not contains B; contains elements other than zero; A is not contained in B.
- (d) None
- Represent the following sets in set notation: Set of all alphabets in English language, set of all odd integers less than 25, set of all odd integers, set of positive integers x satisfying the equation x²+5x+7=0:
 - (a) A = {x:x is an alphabet in English}, I = {x:x is an odd integer>25}, I = {2, 4, 6, 8} I = {x: $x^2+5x+7=0$ }
 - (b) A= {x:x is an alphabet in English}, I = {x:x is an odd integer <25}, I = {1, 3, 5, 7} I = {x: $x^2+5x+7=0$ }
 - (c) A = {x:x is an alphabet in English}, I = {x:x is an odd integer $\pounds 25$ }, I = {1, 3, 5, 7} I = {x: x²+5x+7=0}
 - (d) None
- **12.**Rewrite the following sets in a set builder form: A= {a, e, i, o, u} B= {1, 2, 3, 4 ..} C is a set of integers between -15 and 15.
 - (a) A= {x:x is a consonant}, B= {x:x is an irrational number}, C= {x: $-15 < x < 15^x$ is a fraction}
 - (b) A= {x:x is a vowel}, B= {x:x is a natural number}, C= {x: $-15^3x^315^x$ is a whole number}
 - (c) A= {x:x is a vowel}, B={x:x is a natural number}, C= {x: -15 < x < 15^x is a whole number}
 - (d) None
- 13. What is the relationship between the following sets? A= {x:x is a letter in the word flower}B= {x:x is a letter in the word flow} C={x:x is a letter in the word wolf} D={x:x is a letter in the word follow}
 - (a) B=C=D and all these are subsets of the set A (b) $B=C\neq D$ (c) $B\neq C\neq D$ (d) None

Types of Set

14. The null set is represented by (a){φ} (b){0}	(c) Φ (d) none of these
15. If A = {1, 2, 3}, then P (a) is (a) 3 (b) {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1} (c) {1, 2, 3} (d) {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}	
16. If A = {a, b, c}, then n (p (a)) is (a) 3 (b) 8	(c) 7 (d) 1
 17.If N is the set of natural numbers an (a)N = I (b)N I 	d I is the set of positive integers, then (c) N I (d) none of these
18.The set of cubes of the natural num (a)A finite set (b)An infinite set	ber is (c) a null set (d) none of these
19.The set of squares of positive intege (a) A finite set (b) Null set	ers is (c) an infinite set (d) none of these
20. The set {2 ^x Ix is any positive rational (a) An infinite set (b)A null set	number} is (c) a finite set (d) none of these
 21.{ⁿ⁽ⁿ⁺¹⁾/₂ : n is a positive integer} is (a) A finite set (b) An infinite set 	(c) is an empty set (d) none of these
22.Equal sets are –(a) Equivalent(b) Equal	(c) null (d) singleton
23.If cardinal number of two finite sets i(a) Equivalent(b) Equal	is same, then the sets are- (c) null (d) singleton
24. The range set of a constant function(a) Disjoint set(b) Singleton set	is a – (c) void set (d) infinite set
 25. The number of subsets of a set cont (a) 2ⁿ (b) 2⁻ⁿ 	taining n elements is (c) n (d) none of these

26.A set containing 4 elements have -	
(a) 15 subsets	(c) 14 subsets
(b) 16 subsets	(d) 13 subsets
27. The number of subsets of the set {2	, 3, 5} is
(a) 3	(c) 6
(b) 8	(d) none of these
28. Let A = {a, b} set of subsets of A is a	called power set of A denoted by P (a) . now n(P (a)) is
(a) 2	(c) 3
(b) 4	(d) none of these
29. State whether the following sets are (i) $X = \{1, 2, 3, 500\}$	finite, infinite or empty: -
(ii) Y ={y: y= a ² ; a is an integer}	
(iii) A = {x:x is a positive integer mul	· · · · · · · · · · · · · · · · · · ·
(iv) $B = \{x:x \text{ is an integer which is a } \}$	perfect root of 26 <x<35}< td=""></x<35}<>
(a) finite infinite infinite empty	(b) infinite infinite finite empty
(c) infinite finite infinite empty	(d) None
30. If $A = \{a, b, c, d\}$ list the element of p	power set P (a)
(a) {φ {a} {b}({c} {d} {a, b} {a, c} {a, c}	l} {b, c} {b, d} {c, d}
(b) {a, b, c} {a, b, d} {a, c, d} {b, c, d}	}
(c) {a, b, c, d}	
(d) All the above elements are in P ((a)
	Algebra on Set
31. If A = (1, 2, 3, 5, 7) and B = (1, 3, 6,	10, 15) then cardinal number of A – B is
(a) 3	(c) 6
(b) -4	(d) none of these
32. If $f(x) = x + 3$, $g(x) = x^2$ then $f(x).g(x)$	is
(a) $(x + 3)^2$	(c) $x^3 + 3x^2$
(b) X ² + 3	(d) none of these
	Operation on Set
33. A \cup A is equal to	
(a) A	(c) φ
(b) E	(d) none of these
34. A \cup A` is equal to	
(a) A	(c) φ
(h) Sample space	(d) none of these

35. $A \cup E$ is equal to (a) A **(c)** φ (b) E (d) none of these **36.**If P = {1, 2, 3, 4}: Q = {2, 4, 6} then P ∪ Q (c) {1, 2, 3, 6} (a) {1, 2, 3, 4, 6} (b) {1, 4, 6} (d) none of these **37.**If P = {1, 2, 3, 4}: Q = {2, 4, 6} then P ∪ Q $(a) \{1, 2, 3, 6\}$ (c){1, 2, 3, 4, 6} (b) {1, 4, 6} (d) none of these **38.** $(A \cup B)$ is equal to (a) (A ∩ B) (c) A` ∩ B` (b) A ∪ B` (d) none of these **39.** $(A \cap B)$ is equal to (a) (A` ∪ B`) (c) A`∩ B` (b) A ∪ B` (d) none of these **40.** If V= {0, 1, 2, ...9}, X= {0, 2, 4, 6, 8}, Y= {3, 5, 7} and Z= {3 7} then (i) $Y \cup Z$, $(V \cup Y) \cap X$, $(X \cup Z) \cup V$ are respectively: -(a) $\{3, 5, 7\}, \{0, 2, 4, 6, 8\}, \{0, 1, 2, .9\}$ (b) $\{2, 4, 6\}, \{0, 2, 4, 6, 8\}, \{0, 1, 2, .9\}$ (c) $\{2, 4, 6\}, \{0, 1, 2, \dots 9\}, \{0, 2, 4, 6, 8\}$ (d) None (ii) $(X \cup Y) \cap Z$ and $(\phi \cup V) \cap \phi$ are respectively: -(a) {0, 2, 4, 6, 8}, φ (b){3, 7}, φ (c) {3, 5, 7}, φ (d) None **41.** If A = {0, 1} state which of the following statements are true: - (i) {1} \subset A (ii) {1} \in A (iii) $\phi \in$ A (iv) 0 \in A (v) $1 \subset A$ (vi) $\{0\} \in A$ (vii) $\phi \subset A$ (a) (i) (iv) and (vii) only are true (b) (i) (iv) and (vi) only are true (d) None (c) (ii) (iii) and (vi) only are true 42. If four members a, b, c, d of a decision-making body are in a meeting to pass a resolution And given that a, b, c, d own 50%, 20%, 15%, 15% shares each. (i) list the wining coalitions (majority prevails) (a) {a, b} {a, c} {a, d} {a, b, c} {a, b, d} {a, b, c, d} (b) {b, c, d} (c) {b, c} {b, d} {c, d} {a, c, d} {b, c, d} {a} {b} {c} {d} φ (d) None

(ii) As per above question with same order of options (a) (b) (c) and (d) list the blocking conditions.

(iii) As per above question with same order of options (a) (b) (c) and (d) list the losing conditions.

Venn Diagram

		U	
 43.At a certain conference of 100 Indian people 4 are doctors a of women doctors attending t (a) 2 (b) 4 	nd 24 either men or d	octors. There are n	23 Indian men. Out of these o foreign doctors. The number
44.Solve the below Questions Out 2000 staff 48% preferred 32% tea and cocoa and 30%	coffee 54% tea and 6	64% cocoa. Of the te	
 (i) Find the number having all th (a) 360 (b) 280 	e three (c) 160 (d) none		
 (ii) Find the number having tea a (a) 360 (b) 280 	nd cocoa but not coff (c) 160 (d) none	ee.	
(iii) Find the number having onl(a) 360(b) 280	y coffee. (c) 160 (d) none		
-	een had been about N	/less(M) Food(F) ar	d Services(S). total complaint: $\cap S \cap F`$) = 11; n (M $\cap F \cap S`$
(i) Determine the complaints about the comp	out all three (c) 35 (d) none		
(ii) Determine the complaints about the com	out two or more than t (c) 35 (d) none	wo.	
46. Out of a total population of 50 4,000 read the both. How ma	•	• •	,000 read Times of India while
(a) 3,000	(b) 2,000	(c) 4,000	(d) None
47.Out 2000 staff 48% preferred 32% tea and cocoa and 30%(i) Find the number having	coffee and cocoa. Or		
(a) 360	(b) 280	(c) 160	(d) None
(ii) As per above question w tea and cocoa but not coffee.		options (a), (b), (c)	and (d) find the number having
(iii) As per above question v	vith the same order of	options (a), (b), (c)	and (d) find the number having

(iii) As per above question with the same order of options (a), (b), (c) and (d) find the number having only coffee.

- **48.**Out of total 150 students 45 passed in Accounts 50 in Maths. 30 in Costing 30 in both Accounts and Maths. 32 in both Maths and Costing 35 in both Accounts and Costing. 25 students passed in all the three subjects. Find the number who passed at least in any one of the subjects.
 - (a) 63 (b) 53 (c) 73 (d) None
- **49.** After qualifying out of 400 professionals, 112 joined industry, 120 started practice and 160joined as paid assistants. There were 32, who were in both practice and service 40 in both practice and assistantship and 20 in both industry and assistantship. There were 12 who did all the three.
- (i) Find how many could not get any of these.
 - (a) 88 (b) 244 (c) 122 (d) None
- (ii) As per above question with the same order of options (a) (b) (c) and (d) find how many of them did only one of these.
- **50.** Out of 60 students 25 failed in paper (1), 24 in paper (2), 32 in paper (3), 9 in paper (1) alone, 6 in paper (2) alone, 5 in papers (2) and (3) and 3 in papers (1) and (2). Find how many failed in all the three papers.
 - (a) 10 (b) 60 (c) 50 (d) None
- **51.** As per above question how many passed in all the three papers?
 - (a) 10 (b) 60 (c) 50 (d) None

FUNCTIONS

		Identify the Function
52. {(x, y), Y (a) Not a (b) A fur	a function	(c) inverse mapping (d) none of these
53. {(x, y) x = (a) Not a (b) Func	a function	(c) one – one mapping(d) none of these
(a) A fur	2, 3} and B = {4, 6, 7} then action from A to B (a) and (b)	the relation R = {(2, 4) (3, 6)} is (c) A function from B to A (d) not a function
55. {(x, y)lx< (a) Not a (b) A fur	function	(c) one-one mapping (d) none of these
		Domain & Range
56. The dom (a) (1, 6 (b) (7, 6		(c) (1, 2) (d) (6, 7)
(a) (real	ain and range of {(x, y) : y : s, natural numbers) (c) (rea s, positive reals)	
58. The rang (a) (0, 0 (b) (0)	e of {(3, 0), (2, 0), (1, 0), (0)	, 0)} is (c) {0, 0, 0, 0} (d) none of these
59. The rang (a) (6, 7 (b) (1, 7		(c) (1, 2) (d) (6, 2)
(a) Set of(b) Set of(c) Set of	f function f(x) = 1/(1 – x) is - of rational numbers of real numbers(except zerc of natural numbers of integers	
61. The rang (a) {0} (b) {0, 1		$p(1 + x)$ for the domain of real values of x when $0 \le x \le 9$ is (c) {0, 1} (d) none of these
	unction $h(x) = 10^{1+x}$ the don $x(x) \le 10^{10}$	the nain of real values of x where $0 \le h(x) \le 9$, the range is (c) $0 < h(x) < 10$

(b) (b) $0 \le h(x) \le 10^{10}$ **(d)** none of these

		One-One / Many One
63.	If $f(x) = x^2$, $x > 0$, then the function is (a) Not one to one function	
	(b) One to one function	(c) into function(d) none of these
64.	A function is invertible if and only if	f is –
	(a) One – one	(c) one-one, onto
	(b) One-one, into	(d) many-one, into
65.	N is the set of all-natural numbers a for all x ε N is:	nd E is the set of all even numbers. If f: N E defined by $f(x) = 2x$,
	(a) One – one and onto	(c) Many one onto
	(b) one – one into	(d) can't say
66.	The function $f(x) = 2^x$ is	
	(a) One one mapping	(c) many one
	(b) One many	(d) none of these
67.	$\{(x, y) x + y = 5\}$ is	
	(a) Not a function	(c) one – one mapping
	(b) A composite function	(d) none of these
68	. Let f: A \rightarrow B f (x) = x^2 , A= {-1,1, -2,	2) and B {1.4.9.16} then f is
	(c) One-One	(b) many one
	(d) Onto	(d) none
69.	Let f: $Z \rightarrow Z$ f (x) = $x^2 + x$ for all x	$\in z$, then f is:
	(a) Many-one	(b) One-One
	(b) Onto	(d) None
70.	Let f: $Z \rightarrow Z$ f (x) = 3x+2 for all $x \in Z$, then f is
	(a) Onto (surjective)	(b) One-One
	(b) Injective	(d) None
71.	Let f: $\mathbb{R} \to R$, f (x) = $3x^3 + 5$ for all	
	(a) Into	(b) One-One Onto
	(b) One-One into	(d) None
		Onto / Into Function
72.	Let $A = \{2, 3, 5, 7\}$ and $B = \{0, 1, 3,\}$	5, 7}. If f is a mapping from A to B such that $f(x) = x - 2$ then f is

Let $A = \{2, 3, 5, 7\}$ and **(a)** An into function 6, 7}. If t is a mapping (c) constant function (X)), 1, 3, 3,

- (d) identical function (b) An onto function

	Odd / Even Function
 73. A function f(x) is an even function if (a) -f(x) = f(x) (b) F(-x) = -f(x) 	(c) $f(-x) = f(x)$ (d) none of these
 74. If g(x) = 3 - x² then g(x) is (a) An odd function (b) A periodic function 	(c) an even function(d) none of these
	Composite Function
 75. Given the function f(x) = x² - 5, f (5) (a) 0 (b) 5 	is (c) 10 (d) none of these
 76. If f (x + 1) = 2x + 7 then f (0) is equal (a) 5 (b) 4 	al to (c) 3 (d) 0
 77. If f(x) = x² + 3x then f(2) - f(4) is eq (a) - 15 (b) - 18 	ual to (c) 18 (d) 12
78. If $f(x) = x \ 3$, $g(x) = x^2$ then fog (x) is (a) $X^2 + 3$ (b) $X^2 + x + 3$	(c) (x + 3) ² (d) none of these
79. If $f(x) = x^2 + 3$, $g(x) = (x)$ then fog (x (a) $x^2 + 3$ (b) $(x)^2 + (x^2 + 3)$) is – (c) $(x + 3)^2$ (d) $(x)^2 (x^2 + 3)$
	Inverse Function
80. If $f(x) = 100 x$ then $f^{-1}(x) =$ (a) $\frac{x}{100}$ (b) $\frac{1}{100x}$	(c) $\frac{1}{100}$ (d) none of these
 81. The reverse f⁻¹ when f(x) = x² is (a) 1/x² (b) X 	(c) 1/x (d) none of these
 82. The inverse h⁻¹ (x) when h(x) = log₁ (a) Log₁₀x (b) 10^x 	₀ x is (c) log ₁₀ (1/x) (d) none of these
 83. If f(x) = 1/1-x, then f⁻¹ (x) is (a) 1-x (b) (x-1)/x 	(c) x/x-1 (d) none of these
84. If $f(x) = x^2$ then f inverse is – (a) $1/x$ (b) \sqrt{x}	(c) $1/x^2$ (d) $\sqrt[3]{x}$

Types of Relations

85.	(a)	equal to" over the set of all ration Transitive Symmetric	al numbers is (c) reflexive (d) equivalence
86.	(a)	smaller than" over the set of eggs Transitive(T) Symmetric(S)	s in a box is (c) reflexive(R) (d) equivalence(E)
87.	(a)	greater than" over the set of all-n Transitive Symmetric	atural number if known as (c) reflexive (d) equivalence
88.	(a)	e relation "is parallel to" on the se An equivalence relation An equal relation	t of all straight lines are plane is – (c) reflexive relation (d) transitive relation
89.	(a)	perpendicular to" over the set of s Symmetric Reflexive	straight lines in a given plane is (c) transitive (d) equivalence
90.	(a)	he reciprocal of' ov Symmetric Reflexive	ver the set of non-zero real numbers is (c) transitive (d) none of these
91.	(a)	he squares of" over n set of real Reflexive Symmetric	numbers is (c) transitive (d) none of these
92.	(a)	s the same father as" over th Reflexive Symmetric	e set of children (c) transitive (d) equivalence
93.	(a) (b) (c)	= $\{1, 2, 3\}$ then R = $\{(1, 1), (2, 2)\}$ Reflexive and transitive but not Reflexive and symmetric but not Symmetric and transitive but not Identity relation	symmetric transitive
94.	(a)	= {1, 2, 3} then a relation {(1, 1), An into relation An identity relation	(2, 2), (3, 3)} is-

- (c) Symmetric relation
- (d) Transitive relation

1.	b	2.	С	3.	b	4.	а	5.	С	6.	c	7.	b	8.	C	9.	а	10.	а
11.	b	12.	с	13.	а	14.	с	15.	b	16.	b	17.	а	18	b	19.	b	20.	а
21.	b	22.	а	23.	a	24.	b	25.	а	26.	b	27.	b	28	b	29.	а	30.	d
31.	а	32.	с	33.	a	34	b	35.	b	36.	a	37.	с	38.	с	39.	а	40 i.	a
40 ii.	b	41.	а	42 i.	a	42 ii.	b	42 iii.	с	43	с	44 i.	а	44 ii.	b	44 iii.	с	45 i.	a
45 ii	а	46.	а	47 i.	a	47 ii.	b	47 iii.	с	48.	b	49 i.	a	49 ii.	b	50.	b	51.	a
52.	b	53.	а	54.	d	55.	а	56.	с	57.	b	58.	а	59.	а	60.	b	61.	с
62.	а	63.	b	64.	с	65.	с	66.	а	67.	с	68.	b	69.	а	70.	b	71.	b
72.	b	73.	с	74.	a	75.	a	76.	а	77.	b	78.	a	79.	с	80.	а	81.	d
82.	b	83.	b	84.	b	85.	d	86.	а	87.	a	88.	a	89.	а	90.	а	91.	d
92.	d	93.	а	94.	b														

Answer Sheet

Differential Calculus

EXERCISE					
	Basic Proble	ems			
1. If $y=2x+x^2$ then dy/dx is: (a) $2(x+1)$	(b) 2(x-1)	(c) x+1	(d) x-1		
2. The gradient of the curve y= 2(a) 3	$2x^3 - 5x^2 - 3x at = 0 is:$ (b) -3	(c) 1/3	(d) none		
3. if $y = x (x-1) (x-2)$ then $\frac{dy}{dy}$ is: (a) $3x^2 - 6x + 2$	(b) -6 <i>x</i> + 2	(c) $3x^2 + 2$	(d) none		
4. if $y = \frac{1}{\sqrt{x}} then \frac{dy}{dy}$ is equal to: (a) $\frac{1}{2x\sqrt{x}}$	(b) $\frac{-1}{x\sqrt{x}}$	(c) $\frac{-1}{2x\sqrt{x}}$	(d) none		
5. if $y = (3x^3 - 5x^2 + 8)^3$ then dy (a) $3(3x^3 - 5x^2 + 8)^3(9x^2 + (b) 3(3x^3 - 5x^2 + 8)^2(9x^2 - (c) 3(3x^3 - 5x^2 + 8)^3(9x^2 + (d) None$	10x) · 10x)				
6. If $y = e^{\sqrt{2x}}$ then $\frac{dy}{dx}$ is equal to (a) $\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$	(b) $e^{\sqrt{2x}}$	(c) $\frac{e^{\sqrt{2x}}}{\sqrt{2x}}$	(d) none		
7. If $f(x) = x^k$ and $f'(1) = 10$, then (a) 10	n the value of k is: (b) -10	(c) 1/10	(d) None		
8. The derivative of $(x^2-1)/x$ is: (a) $1 + \frac{1}{x^2}$	(b) $1 - \frac{1}{x^2}$	(c) $\frac{1}{\chi^2}$	(d) none		
9. If $y=(3x^2 + 1) (x^3 + 2x)$ then (a) $15x^4 + 21x^2 + 2$ (c) $15x^3 - 21x + 2$	$\frac{dy}{dx}$ is:	(b) $15x^3 + 21x^2 - 2$ (d) none			
10. If $(x) = e^{3 \log x}$, then $f'(x)$ is (a) $3 \log x$: (b) 3 <i>x</i>	(c)3x ²	(d) none		
11. If $(x) = e^{ax^2+bx+c}$, the $f'(x)i$ (a) e^{ax^2+bx+c} (c) 2ax+b	<i>s</i> :	(b) <i>e^{ax²+bx+c}</i> (2ax+b) (d) none			
12. If $f(x) = {}^{x}C_{3}$; then $f'(1) = ?$ (a) $\frac{1}{6}$	(b) $\frac{5}{6}$	(c) $\frac{-1}{6}$	(d) $\frac{-5}{6}$		

13. The derivative of $y = \sqrt{x + 1}i$ (a) $1/\sqrt{x + 1}$ (c) $(1/2)\sqrt{x + 1}$	s:	(b) $-1/\sqrt{x+1}$ (d) None	
14. If $y^2 = 4ax$, then dy/dx is: (a) a/y	(b) 2 <i>a</i> / <i>y</i>	(c) za	(d) <i>a</i>
15. If $y = log_3 x + 3 log_e x$, then (a) $(1/x)log_3 e + (3/x)$ (c) $log_3 e + x$	n dy/dx is :	(b) $log_3 e + 3/\chi$ (d) none of these	
16. If $y = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$ (a)1	then $\frac{dy}{dx}$ - y is proved to (b) -1	o be (c) 0	(d) none
17. If $f(x) = x^k$ and $f'(1) = 10$ th (a) 10	en the value of k is: (b) -10	(c) 1/10	(d) none
18. Differentiate $e^{(x^x)}$: (a) $(1 + \log x)$ (c) $e^{x^x}(1 + \log x) x^x$		(b) $x^{x} (1 + \log x)$ (d) $e^{x^{x}} (1 + \log x)$	
19. The derivative of the functio (a) $\frac{1}{2\sqrt{x+\sqrt{x}}}$	$n \sqrt{x + \sqrt{x}}$ is (b) $1 + \frac{1}{2\sqrt{x}}$	(c) $\frac{1}{2\sqrt{x+\sqrt{x}}}(1+\frac{1}{2\sqrt{x}})$	(d) none of these
20. Let $y = \sqrt{2x} + 3^{2x}$ then $\frac{dy}{dx}$ is (a) $(1/\sqrt{2x}) + 2.3^{2x} \log_{e} 3$ (c) 2. $3^{2x} \log 44 + + + + *3444$		(b) 1/√2x (d) none of these	
	Multiplication	Rule	
21. The derivative of $x^2 \log x$ is:			
(a) 1+2log x	(b) x (1+2logx)	(c) 2logx	(d) None
(a) 1+2log x 22. If $y = xy$, then dx/dy is : (a) $\frac{y}{1-x}$	(b) x (1+2logx) (b) $\frac{y}{1+x}$	(c) $2\log x$ (c) $\frac{x}{1+y}$	(d) None (d) none
22. If $y = xy$, then dx/dy is :			
22. If $y = xy$, then dx/dy is : (a) $\frac{y}{1-x}$ 23. If $y = 5xy$, then dx/dy is :	(b) $\frac{y}{1+x}$ (b) $\frac{4y}{1+x}$	(c) $\frac{x}{1+y}$	(d) none
22. If $y = xy$, then dx/dy is : (a) $\frac{y}{1-x}$ 23. If $y = 5xy$, then dx/dy is : (a) $\frac{5y}{1-5x}$ 24. If $y = a^{x} \log x$, then dy/dx (a) $a^{x} (\log x \log a + 1/x)$	(b) $\frac{y}{1+x}$ (b) $\frac{4y}{1+x}$	(c) $\frac{x}{1+y}$ (c) $\frac{x}{1+5y}$ (b) $\log x \log a + a^{x}$ (d) $\log x \log a + a^{x}$	(d) none
22. If $y = xy$, then dx/dy is : (a) $\frac{y}{1-x}$ 23. If $y = 5xy$, then dx/dy is : (a) $\frac{5y}{1-5x}$ 24. If $y = a^{x} \log x$, then dy/dx (a) $a^{x} (\log x \log a + 1/x)$	(b) $\frac{y}{1+x}$ (b) $\frac{4y}{1+x}$ <i>is</i> :	(c) $\frac{x}{1+y}$ (c) $\frac{x}{1+5y}$ (b) $\log x \log a + a^{x}$ (d) $\log x \log a + a^{x}$	(d) none
22. If $y = xy$, then dx/dy is: (a) $\frac{y}{1-x}$ 23. If $y = 5xy$, then dx/dy is: (a) $\frac{5y}{1-5x}$ 24. If $y = a^{x} \log x$, then dy/dx (a) $a^{x} (\log x \log a + 1/x)$ (c) $a^{x} (\log x + 1/x)$ 25. If $f(x) = \frac{x^{2}+1}{x^{2}-1}$ then $f'(x)$ is:	(b) $\frac{y}{1+x}$ (b) $\frac{4y}{1+x}$ <i>is</i> : Division Ru (b) $4x (x^2 - 1)^2$	(c) $\frac{x}{1+y}$ (c) $\frac{x}{1+5y}$ (b) $\log x \log a + a^{x}$ (d) $\log x \log a + a^{x}$	(d) none (d) none

28. The slope of the tangent to t	he curve $y = \frac{x-1}{x+2}$ at $x = 2$ is	S:					
(a) $\frac{3}{16}$	(b) $-\frac{3}{16}$	$(c)^{\frac{1}{4}}$	(d) $-\frac{1}{4}$				
	Parametric Eq	uation					
29. If $x = 3t^2 - 1$, $y = t^3 - t$ the	29. If $x = 3t^2 - 1$, $y = t^3 - t$ them $\frac{dy}{dy}$ is equal to						
(a) $\frac{3t^2-1}{6t}$	(b) 3t ² -1	(c) $\frac{3t-1}{6t}$	(d) none				
30. Given $x = t + t^{-1}$ and $y = t - t^{-1}$		at $t = 2$ is:					
(a) 3/5	(b) -3/5	(c) 5/3	(d) none				
31. Given $x = 2t+5$: $y=t^2-2$ the		1					
(a) t	(b) $\frac{-1}{t}$	$(c)\frac{1}{t}$	(d) none				
32. If $x = (1 - t^2)(1 + t^2)$, $y = \frac{1}{1}$	$\frac{2t}{t+t^2}$ then dyldx at $t = 1$ is	:					
(a) 1	(b) 2	(c) 0	(d) none				
33. If $x = \log t$, $y = e^t$, then $\frac{dy}{dx} =$							
(a) 1/t	(b) t.e ^t	(c) -1/t2	(d) none of these				
34. If $x = at^3 + bt^2 - t$ and $y = at^3 + bt^2 - t$	d^2 – 2bt, then the value of $\frac{d}{d}$	$\frac{y}{x}$ at t = 0 is:					
(a) 2b	(b) - 2b	(c) $\frac{1}{2b}$	(d) $-\frac{1}{2b}$				
	Geometry Based	Problems					
35. The slope of the tangent to t	he curve $y = 2x^3 - 3x^2 - 1$	2x + 8					
at $x = 0$ is:	(b) 12						
(a) -12		(c) 0	(d) none				
36. The gradient of the curve y+ (a) (0, -1)	-px+qy =0 at (1,1) is 1/2 (b) (2, -1)	The values of p and q are (c)(1,2)	e: (d) none				
37. The slope of the tangent to t equal is:	he curve $y = \sqrt{4 - x^2}$ at the	e point where the ordinat	e and the abscissa are				
(a) -1	(b) 1	(c) 0	(d) None				
38. The gradient of the curve y =(a) 1	$=3x^2 - 5x + 4$ at the point (b) 0	t (1,2) is: (c) -1	(d) 2				
39. The gradient of the curve y-: (a) (1/2,1/2)	xy+2px+3qy=0 at the poi (b) (2,2)	nt (3,2) is-2/3 The value: (c) (-1/2, -1/2)	s of p and q are: (d) (1/2, 1/6)				
40. The slope of the tangent to t quadrant is:	he curve $y=x^2-x$ at the po	int where the line y=2 cu	its the curve in the lst				
(a) 2	(b) 3	(c) -3	(d) none				
41. The slope of the tangent at t(a) 0	he point (2, 2) to the curve (b) 1	e x^2 +xy+ y^2 -4=0 is give (c) -1	n by: (d) none				
42. The points on the curve $y = (a)(\frac{-1}{2},\frac{32}{27})$ and $(1,0)$	x ³ – x ² – x + 1, where the t	angent is parallel to x – a (c) (1, 0) and (1, 1)	xis are				
(b) (0,0), and (1,0)		(d) (0, 1) and (1, 1)					

	Special Prob	lems	
43. If $f(x) = x^2 - 6x + 8$ then $f'(5)$ (a) $f'(2)$) -f' (8) is equal to: (b) 3f'(2)	(c) 2f (2)	(d) None
44. if $y = x e^x$, then dy/dx is (a) $e^x(x + 1)$	(b) $e^{x}(x-1)$	(c) 2e ^x (x - 1)	(d) none
45. If $y = \sqrt{\frac{1-x}{1+x}}$ then $\frac{dy}{dx}$ is equal to			
$(a)_{x^2-1}^{y}$	(b) $\frac{y}{1-x^2}$	(c) $\frac{y}{1+x^2}$	(d) $\frac{y}{y^2-1}$
46. If $f(x) = \log_e \left(\frac{x-1}{x+1}\right)$, then the	value of x at which f'(x) =		
(a) 0	(b) 1	(c) $\pm \sqrt{3}$	(d) $\pm \sqrt{2}$
47. If $y = e^x + e^{-x}$ the $\frac{dy}{dx} - \sqrt{y^2}$ (a) 1	- 4 is equal to (b) -1	(c) 0	(d) none
	Logarithmic Pro	oblems	
48. If $x^{y,}y^{x} = m$ where m is con (a) $\frac{-y}{x}$	stant then $\frac{dy}{dy}$ is equal to (b) $\frac{-y(y+x\log y)}{r(y\log x+r)}$	(c) $y + x \log y$	(d) none
X		$\left(\mathbf{C} \right) \frac{1}{y \log x + x}$	(u) none
49. If $y = \sqrt{x}^{\sqrt{x}\infty}$ then $\frac{dy}{dx}$ is equa			
$(a)\frac{y^2}{2-y\log x}$	$x(2-y\log x)$		
$(c)\frac{y^2}{\log x}$	(d) none		
50. Given $e^{-xy} - 4xy = 0$ then dy (a) $-y/x$	<i>yldx</i> can be proved to be (b) y/x	equal to (c) x/y	(d) none
51. If x^{x^x} then the value of (dy) (a) $y [x^{x-1} + \log x (1 + \log x) (x)^2 (1 + \log x) (x)^2 (1 + \log x) (x)^2 (1 + (x^{2} + 1) + x^{2} \log x) (\log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x + (x^{2} + 1) + x^{2} \log x) (\log x$	(1) (1)		
52. If $y = (1 + x)^x$, then dy/dx			
(a) $(1 + x)^{x} \left[\log(1 + x) + \frac{x}{1 + x} \right]$ (c) $\left(\log(1 + x) + \frac{x}{1 - x} \right) (1 + x)$		(b) $x (1 + x)^{x-1}$ (d) none	
53. If $x^y = e^{x-y}$ then find dy/dx (a) $\frac{y(1-x)}{x(1+y)}$? (b) $\frac{\log x}{(1 + \log x)^2}$	(c) $\frac{2 \log x}{(1 + \log x)^2}$	(d)None
	Implicit Fund	ction	
54. If $xy=1$ then $y^2 + dy/dx$ is e (a) 1	qual to (b) 0	(c) -1	(d) none
55. If $y = \sqrt{x^2 + m^2}$ then y y_1 (when (a) -x	here $y_1 = dy/dx$) is equal t (b) x	o (c) 1/x	(d) None

56. If $x^y = e^{x \cdot y}$ then $\frac{dy}{dx}$ is equal to		$\log x$	
(a) $\frac{2\log x}{(1+\log x)^2}$	$(b) \frac{\log x}{(1+\log x)^2}$	(c) $\frac{\log x}{1 + \log x}$	(d) none
57. If $\log (x/y) = x + y$ then $\frac{dy}{dy}$ is p	proved to be		
(a) $\frac{y(1-x)}{x(1+y)}$	(b) $\frac{y}{x}$	(c) $\frac{1-x}{1+y}$	(d) none
58. If $\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$ then $\frac{dy}{dx}$ can be	exprese as:		
(a) $\frac{a^2}{a}$ (a) $\frac{a^2}{a}$	(b) $\frac{x}{\sqrt{x^2-a^2}}$	(c) $\frac{x}{y}$	(d) none
59. If $x^3 - 2x^2y^2 + 5x + y - 5 =$	= 0 then $\frac{dy}{dy}$ at x = 1 y=1 is	equal to:	
(a) 4/3	(b) -4/3	(c) 3/4	(d) none
60. If $x^5 + y^5 = 5xy$, then dx/dy	y is:		
(a) $\frac{y-x^4}{y^4-x}$	(b) $\frac{y+x^4}{y^4+x}$	(c) $\frac{x^4 - y}{x - y^4}$	(d) none
61. If $x^3 y^2 = (x - y)^5$. Find $\frac{dy}{dx}$ at ((1, 2).		
(a) -7/9	(b) 7/9	(c) 9/7	(d) -9/7

Higher Order Derivation

62. If $x^2 + y^2 + 4$ then (a) $y \frac{d^2 y}{dx^2} + \left(2 \frac{dy}{dx}\right)^2 + 1 = 0$ (c) $y \frac{d^2 y}{dx^2} \left(\frac{dy}{dx}\right)^2 + 1 = 0$

(b)
$$y \frac{d^2 y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + 1 = 0$$

(d) $y \frac{d^2 y}{dx^2} + 2 \left(\frac{dy}{dx}\right)^2 + 1 = 0$

63. If Y = X^x then
$$\frac{d^2y}{dx^2} =$$

(a) $\frac{dy}{dx}(1 + \log x) + Y \frac{d}{dx}(1 + \log x)$
(b) $\frac{dy}{dx}(1 + \log x) + \frac{d}{dx}(1 + \log x)$
(c) $\frac{dy}{dx}(1 + \log x) - Y \frac{d}{dx}(1 + \log x)$
(d) $\frac{dy}{dx}(1 + \log x) - \frac{d}{dx}(1 + \log x)$

64. For the functions $y = x^3 - 3x$, the value of $\frac{d^2y}{dx^2}$ at which $\frac{dy}{dx}$ is zero, is (a) ± 1 (b) ± 6 (c) ± 3 (d) none

65. If $y = ae^{nx} + be^{-nx}$, then $\frac{d^2y}{dx^2}$ is equal to _____. (a) n^2y (b) ny (c) $-n^2y$ (d) none 66. If $y = 2x + \frac{4}{x}$ then $x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx}$ y yields (a) 3 (b) 1 (c) 0 (d) 4

Application of Derivative

Cost Function

- **67.** The total cost function of a commodity is given by $C(x) = 0.5x^2 + 2x + 20$. Where C denotes the total cost and x denotes the quantity produced. Find the average cost and the marginal cost

 - (a) AC = $0.8x + \frac{20}{x} + 2$; M.C = x + 5(b) AC = $0.5x + \frac{20}{x} + 2$; M.C = x + 2(c) AC = 0.5x + 20x + 2; M.C = x + 2

 - (d) None
- **68.** If $C = 0.05q^2 + 16 + \frac{100}{q}$ is the manufacturer's average cost function, what is the marginal cost when 50 units are produced?

(a) 300	(b) 350
(c) 391	(d) 450

- **69.** The total cost C(x) of a firm is $C(x) = 0.0005x^3 0.02x^2 30x + 5000$, where x is the output. determine value of x, for which MVC = AVC, where VC denotes the variable cost
 - **(b)** 20 (a) 30 (c) 40 (d) none
- **70.** The cost of manufacturing a particular type of a cricket ball is given by $C(x) = x^2$ -1200x+360040.Where x denotes the number of balls produced. How many balls should the company manufacture at which cost is minimum, and what would be cost per ball at this level of production? (a) x = 600; Cost per ball = Rs. 40 per ball (b) x = 800; Cost per ball = Rs. 40 per ball
 - (c) x = 600; Cost per ball = Rs.80 per ball
 - (d) x = 800; Cost per ball = Rs. 60 per ball

Revenue Function

71. Let p be the price per unit of a certain product, when there is a sale of q units. The relation between p and q is given by $p = \frac{100}{3q+1} - 4$ Find the marginal revenue function

(a)
$$\frac{100q}{(3q+1)^2} - 4$$
 (b) $\frac{100q}{(3q+1)^3} - 5$ (c) $\frac{100q}{(3q+1)^2} + 4$ (d) none

72. The revenue R due to the sale of x units of a product is given by $R = 25x - 0.5x^2$. When x = 10, find the relative rate of change of R and the percentage rate of change of R.

(a)
$$\frac{7}{50}$$
 (b) $\frac{3}{49}$ (c) $\frac{4}{63}$ (d) none

73. The total revenues received from the sale of x units of product is given by: $R(x) = 200 + \frac{x^2}{5}$ find the marginal revenue when x=25 and also calculate the actual revenue from the sale of 26^{th} unit. (a

(a) 10 and 10.20	(b) 20 and 20.5
(c) 12 and 10.20	(d) none

- **74.** A company charges Rs. 550 for a transistor set on orders of 50 or less sets. The charge is reduced by Rs. 5 per set for each set ordered in excess of 50. Find the largest size order company should allow so as to receive maximum revenue. (c) 80 (a) 60
 - **(b)** 70 (d) none of these

Profit Function

- **75.** The profit P(x) due to advertising x, in hundreds of rupees is given by $p(x) = 120 + 80x x^2$. what amount of advertising fetches maximum profit and what is the maximum profit?
 - (a) x= 40, 172000 (c) x= 50, 170000 **(b)**x = 40, 165000(d) none of these

- **76.** A manufacture can sell x items per day at a price p rupee each, where p = 125 (5/3) x. The cost of production for x items is $500 + 13x + 0.2x^2$. Find how much he should produce to have a maximum profit assuming that all items produced can be sold. What's the maximum profit.
 - (a) 30 units, Rs.1180 (c) 40 units, Rs.1280
 - **(b)** 60 units, Rs.1300 (d) none of these
- **77.** A firm finds that if can sell all that is produced (within limits). The demand function is p = 260 3x, where p is the price per unit at which it can sell x units. The cost function is C = 500 + 20x, where x is the number of units produced. Find x so that profit is maximum.
 - (a) 40 **(b)** 50
 - (c) 60 (d) 5

Advance Questions – Level-1

Tutorial Note: This Questions are Inspired from Additional Question Bank of Institute Module, there are very few Chance That Questions Come from This Category As they are Very Lengthy and Time Consuming, we are Covering Some Questions of this Category So that we can cover 100 % and Students Don't Lose Their

Confidence.

78. If $y=2x^{3/2}(x^{1/2}+2)(x^{1/2}-1)$ then dy/dx is (a) $4x+5x(x-6)^{1/2}x^{1/2}$ (c) $4x+5x(x-2)^{1/2}x^{1/2}$	(b) $4x+5x(x-3)^{1/2}x^{1/2}$ (d) None
79. If $y=(5x^4-6x^2-7x+8)/(5x-6)$ then dy/dx is (a) $(75x^4-120x^3-30x^2+72x+2)$ $(5x-6)^{-2}$ (b) $(75x^4-120x^3+30x^2-72x+2)$ $(5x-6)^{-2}$ (c) $(75x^4-120x^3-30x^2+72x-2)$ $(5x-6)^{-2}$ (d) None	
80. If $y=(2x+1)(3x+1)(4x+1)^{-1}$ then dy/dx is (a) $(24x^2+12x+1)(4x+1)^{-2}$ (c) $(24x^2+12x+5)(4x+1)^{-2}$	(b) (24x ² +12x+3)(4x+1) ⁻² (d) None
81. If $y = \log \sqrt{x + \sqrt{x^2 + a^2}}$ then dy/dx is (a) $(1/2)(x^2+a^2)^{-1/2}$ (c) $(1/2)(x^2+a^2)^{1/2}$	(b) (-1/2)(x ² +a ²) ^{-1/2} (d) None
82. If $y = \log[e^{3x}(5x-3)^{1/3}(4x+2)^{-1/3}]$ then dy/dx is (a) $3+(1/3)[5/(5x-3)-4/(4x+2)]$ (c) $3+(1/3)[5/(5x-3)+4/(4x+2)]$	(b) 3-(1/3)[5/(5x-3)-4/(4x+2)] (d) None
83. If $y=(2-x)(3-x)^{1/2}(1+x)^{-1/2}$ then the value of (a) $(x-2)^{-1}+(1/2)(x-3)^{-1}-(1/2)(1+x)^{-1}$ (b) $(x-2)^{-1}+(x-3)^{-1}-(1+x)^{-1}$ (c) $(x-2)^{-1}-(1/2)(x-3)^{-1}+(1/2)(1+x)^{-1}$ (d) None	[dy/dx]/y is
84. If $y = \log[e^{x}[x-2]/(x+3)]^{3/4}$ then dy/dx is (a) $1+(3/4)(x-2)^{-1}-(3/4)(x+3)^{-1}$ (c) $1+(3/4)(x-2)^{-1}+(3/4)(x+3)^{-1}$	(b) $1 \cdot (3/4)(x \cdot 2)^{-1} + (3/4)(x + 3)^{-1}$ (d) None
85. If $y=x^2e^{5x}(3x+1)^{-1/2}(2x-1)^{-1/3}$ then the value (a) $5+2x^{-1}-(3/2)(3x+1)^{-1}-(2/3)(2x-1)^{-1}$ (b) $5+2x^{-1}-(2/3)(3x+1)^{-1}-(3/2)(2x-1)^{-1}$ (c) $5+2x^{-1}-(2/3)(3x+1)^{-1}+(3/2)(2x-1)^{-1}$ (d) None	of [dy/dx]/y is

86. If $y=x^{1/2}(5-2x)^{2/3} (4-3x)^{-3/4} (7-4x)^{-4/5}$ then the value of $[dy/dx]/y$ is (a) $(1/2)x^{-1} - (4/3) (5-2x)^{-1} + (9/4) (4-3x)^{-1} + (16/5) (7-4x)^{-1}$ (b) $(1/2)x^{-1} - (3/4) (5-2x)^{-1} + (9/4) (4-3x)^{-1} + (16/5) (7-4x)^{-1}$ (c) $(1/2)x^{-1} + (4/3) (5-2x)^{-1} + (9/4) (4-3x)^{-1} + (16/5) (7-4x)^{-1}$ (d) None								
87. If $y=x^{m}e^{nx}$ then $d^{2}y/dx^{2}$ is (a) $m(m-1)x^{m-2}e^{nx} + 2mnx^{m-1}e^{nx} + n^{2}x^{m}e^{nx}$ (b) $m(1-m)x^{m-2}e^{nx} + 2mnx^{m-1}e^{nx} + n^{2}x^{m}e^{nx}$ (c) $m(m+1)x^{m''^{2}}e^{nx} + 2mnx^{m-1}e^{nx} + n^{2}x^{m}e^{rK}$ (d) None								
88. If y=(logx)/x then a (a) (2logx-3)/x ³		x ³ (c) (2logx+3)/x ³	(d) None					
89. If y=ae ^{mx} +be ^{-mx} the (a) m ² y	n d²y/dx² is (b) my	(c) -m ² y	(d) -my					
90. If $y = ae^{2x} + bxe^{2x}$ wh	ere a and b are constants	the value of the expression	on $d^2y/dx^2-4dy/dx+4y$ is					
(a) 0	(b) 1	(c) -1	(d) None					
91. If $y=(x+1)^{1/2}-(x-1)^{1/2}$ the value of the expression $(x^2-1)d^2y/dx^2+xdy/dx-y/4$ is given by (a) 0 (b) 1 (c) -1 (d) None								
92. If $y = \log[x + (1+x^2)^{1/2}]$ the value of the expression $(x^2+1)d^2y/dx^2 + xdy/dx$ is (a) 0 (b) 1 (c) -1 (d) None								
93. If x=(1-t)/(1+t) an (a) 0	d t=(2t)/(1+t) then d ² y/ (b) 1	dx ² is (c) -1	(d) None					

-			r														-		
1.	а	2.	b	3.	а	4.	С	5.	b	6.	а	7.	а	8.	а	9.	а	10.	С
11.	b	12.	С	13.	С	14.	b	15.	а	16.	С	17.	а	18.	C	19.	С	20.	а
21.	b	22.	а	23.	а	24.	а	25.	а	26.	а	27.	b	28.	а	29.	а	30.	С
31.	а	32.	С	33.	b	34.	а	35.	a	36.	а	37.	а	38.	a	39.	d	40.	b
41.	С	42.	а	43.	b	44.	а	45.	a	46.	С	47.	С	48.	b	49.	b	50.	а
51.	а	52.	а	53.	b	54.	b	55.	b	56.	b	57.	а	58.	C	59.	а	60.	С
61.	а	62.	b	63.	а	64.	b	65.	а	66.	С	67.	b	68.	С	69.	b	70.	а
71.	а	72.	b	73.	а	74.	С	75.	а	76.	а	77.	а	78	а	79	а	80	а
81.	а	82.	а	83.	а	84.	а	85.	а	86.	а	87.	а	88.	а	89.	а	90.	а
91.	а	92.	а	93.	а														

Answer Sheet

Tutorial Note

This ALP Sheets are designed for Students Self Practice if any difficulty arrives then students Should Refer Lectures This Will Develop There Mind to Deal with New Problems in Exams

<u>ALP-NO-9A</u>

- 1. If $f(x) = {}^{x}C_{3}$; then f'(1) = ?(a) $\frac{1}{6}$ (c) $\frac{5}{6}$ (b) $\frac{-1}{6}$ (d) $\frac{-5}{6}$
- 2. If Y = X^x then $\frac{d^2y}{dx^2} =$ _____ (a) $\frac{dy}{dx}(1 + \log x) + Y \frac{d}{dx}(1 + \log x)$ (b) $\frac{dy}{dx}(1 + \log x) + \frac{d}{dx}(1 + \log x)$ (c) $\frac{dy}{dx}(1 + \log x) - Y \frac{d}{dx}(1 + \log x)$ (d) $\frac{dy}{dx}(1 + \log x) - \frac{d}{dx}(1 + \log x)$
- 3. if $y = e^{a\log x} + e^{x\log a}$, then $\frac{dy}{dx} =$ (a) $x^a + a^x$ (c) $a x^{a-1} + x a^{x-1}$ (b) $a x^{a-1} + a^x \log a$ (d) $x^x + a^a$
- 4. For the functions $y = x^3 3x$, the value of $\frac{d^2y}{dx^2}$ at which $\frac{dy}{dx}$ is zero, is (a) ± 1 (c) ± 6 (b) ± 3 (d) none of these
- 5. The equation of the tangent to the curve, $f = x^2 3x + 2$, at the point (2, 7) is (a) Y = 2x - 13 (c) y = 10x - 13(b) Y = 10x (d) y = 10
- 6. If $y = \log\left(\frac{5-4x^2}{3+5x^2}\right)$, then $\frac{dy}{dx} =$ _____ (a) $\frac{8}{4x-5} - \frac{10}{3+5x}$ (b) $(4x^2 - 5) - (3 + 5x^2)$ (c) $\frac{8x}{4x^2-5} - \frac{10x}{3+5x^2}$ (d) 8x - 10
- 7. If $y = \log_y x$, then $\frac{dy}{dx}$ is equal to : (a) $\frac{1}{x + \log y}$ (c) $\frac{1}{1 + x \log y}$ (b) $\frac{1}{x + x \log y}$ (d) $\frac{1}{y + \log x}$
- 8. If $x = \log t$, $y = e^t$, then $\frac{dy}{dx} =$ (a)1/t (c) -1/t2 (b) t.e^t (d) none of these

- 9. The points on the curve $y = x^3 x^2 x + 1$, where the tangent is parallel to x - axis are $(a)(\frac{-1}{3}, \frac{32}{27}) and (1, 0)$ (b)(0, 0), and (1, 0) (c) (1, 0) and (1, 1)
 - (d) (0, 1) and (1, 1)

Answers									
1.	b	2.	а	3.	b	4.	С	5.	С
6.	С	7.	b	8.	b	9.	а	10.	b

ALP-NO-9B

- 1. If $x^{p}y^{q} = (x + y)^{p+q}$, then $\frac{dy}{dx}$ is equal to $(a) \frac{q}{p} \qquad (c) \frac{y}{x}$ $(b) \frac{x}{y} \qquad (d) \frac{p}{q}$
- 2. If $e^{xy} 4xy = 4$ then $\frac{dy}{dx} =$ _____ (a) $\frac{y}{x}$ (c) $\frac{x}{y}$ (b) $\frac{-y}{x}$ (d) $\frac{-x}{y}$
- 3. If $u = 3t^4 + 5t^3 + 2t^2 + t + 4$, then the value of $\frac{du}{dt}$ at t = -1 is: (a) 0 (c) 2 (b) 1 (d) 5
- 4. If $y = ae^{nx} + be^{-nx}$, then $\frac{d^2y}{dx^2}$ is equal to _____. (a) n^2y (c) ny (b)- n^2y (d) none of these

5. The slope of the tangent to the curve $y = \frac{x-1}{x+2}$ at x = 2 is : (a) $\frac{3}{16}$ (c) $\frac{1}{4}$ (b) $-\frac{3}{16}$ (d) $-\frac{1}{4}$

6. If $y = \sqrt{\frac{1-x}{1+x}}$, then $\frac{dy}{dx}$ is equal to -(a) $\frac{y}{x^2-1}$ (c) $\frac{y}{1+x^2}$ (b) $\frac{y}{1-x^2}$ (d) $\frac{y}{y^2-1}$

- 7. The equation of the curve which passes through the point (1, 2) and has the slope 3x 4 at any point (x, y) is :
 (a) 2y = 3x² 8x + 9
 (b) y = 6x² 8x + 9
 (c) y = x² 8x + 9
 - (d) $2y = 3x^2 8x + c$
- 8. If $x = at^3 + bt^2 t$ and $y = at^2 2bt$, then the value of $\frac{dy}{dx}$ at t = 0 is :
 - (a) 2b (c) $\frac{1}{2b}$ (b)-2b (d) $-\frac{1}{2b}$
- 9. If $x^y = e^{x \cdot y}$ then $\frac{dy}{dx}$ is equal to : (a) $\frac{2 \log x}{(1 + \log x)^2}$ (c) $\frac{\log x}{(1 + \log x)^2}$ (b) $\frac{\log x}{1 + \log x}$ (d) none of the above
- **10.** If $y = 1 + \frac{x}{\underline{|1|}} + \frac{x^2}{\underline{|2|}} + \frac{x^3}{\underline{|3|}} + \dots \dots \infty$ then the value of $\frac{dy}{dx}$ is equal to : (a) x (c) 1 (b) y (d) 0

Answers									
1.	С	2.	b	3.	а	4.	а	5.	а
6.	а	7.	а	8.	а	9.	С	10.	b

ALP-NO-9C

- **1.** If $f(x) = \log_e \left(\frac{x-1}{x+1}\right)$, then the value of x at which f'(x) = 1, is
 - (a) 0 (c) $\pm \sqrt{3}$ (b) 1 (d) $\pm \sqrt{2}$
- 2. If $x = at^2$, y = 2at then the value of $\frac{dy}{dx}$ at t = 2 is : (a) 2 (c) $\frac{1}{2}$
 - (a) 2 (c) $\frac{1}{2}$ (b) 4 (d) $\frac{1}{4}$
- **3.** If $y = \log x^x$ then $\frac{dy}{dx}$ is equal to :

(a) log ex	(c) $\log \frac{x}{e}$
(b) $\log \frac{e}{x}$	(d) 1

4. $\frac{d}{dx} [2^{\log_2 x}] =$ _____ (a) 1 (c) $\frac{1}{2}$ (b) 0 (d) $2^x \log_2 x$

5. If
$$x = c t$$
, $y = c/t$, then $\frac{dy}{dx}$ is equal to :
(a) $1/t$ (c) $-1/t2$
(b) t.e^t (d) none of these

Answers									
1.	С	2.	С	3.	a	4.	a	5.	С

ALP-NO-9D

- 1. If $y = 2x + \frac{4}{x}$ then $x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx}$ y yields (a) 3 (b) 1 (c) 0 (d) 4
- 2. If f(x) = x^k and f'(1) = 10, then the value of k is:
 (a) 10 (b) -10
 (c) 1/10 (d) None
- 3. If $y = (x + \sqrt{x^2 + m^2})^n$ then $\frac{dy}{dx} = :$ (a) $\frac{ny}{\sqrt{x^2 + m^2}}$ (b) n y (c) $-\frac{ny}{\sqrt{x^2 + m^2}}$ (d) None
- 4. Differentiate $e^{(x^x)}$: (a) $(1 + \log x)$ (b) $x^x (1 + \log x)$ (c) $e^{x^x} (1 + \log x) x^x$ (d) $e^{x^x} (1 + \log x)$
- 5. If $x^3 y^2 = (x y)^5$. Find $\frac{dy}{dx}$ at (1, 2). (a) -7/9 (b) 7/9 (c) 9/7 (d) -9/7

Answers									
1.	С	2.	a	3.	a	4.	С	5.	a

10

Chapter

Integral Calculus

EXERCISE								
Basic Problems								
1. Evaluate = $\int 5x^2 dx$:								
(a) $5/3x^3 + K$	(b) $\frac{5x^3}{2} + K$	(c) $5x^3$	(d) none of these					
	5		(_)					
2. Integration of $3 - 2x - x^4$ will be	_							
(a) $-x^2 - x^5 + 5x$	(b) $3x - x^2 - \frac{x^5}{5} + $	- <i>K</i>						
(c) $12x^2 + 6x - 2x^2$	(d) none of these							
3. Given $f(x) = 4x^3 + 3x^2 - 2x + 5$	and $\int f(x)dx$ is							
(a) $x^4 + x^3 - x^2 + 5x + k$		⊦ 5 <i>x</i>						
(c) $12x^2 + 6x - 2x^2$	(d) none of these							
4. $\int \left(x^4 + \frac{3}{r}\right) dx$ is equal to								
(a) $x^{5}/5 + \log x $	(b) $1/5x^5 + 3\log x $	/ + b						
(c) $1/5x^5 + k$	(d) none of these							
5. Evaluate $\int (x^2 - 1) dx$	× ³							
(a) $x^5/5 - 2/3x^3 + x + k$	(b) $\frac{x^3}{3}$ - x+k							
(c) 2x	(d) none of these							
6. $\int (1-3x)(1+x) dx$ is equal	to							
(a) $x - x^2 - x^3$	(b) $x^3 - x^2 + x$							
(c) x- $x^2 - x^3 + k$	(d) none of these							
7. Evaluate the integral $\int (1 - x)^2 dx$	$(x)^3/x$ dx and the answ	ver is equal to						
(a) $\log x - 3x + 3/2x^2 + k$	(b) $\log x - 2 + 3x^2 $	-k						
(c) $\log x + 3x^2 + k$	(d) none of these							
	Method of	Substitution						
8. Use method of substitution of	f integrate the functi	on $f(x) = (4x \pm 5)^6 dx$	nd the answer is					
(a) $1/28 (4x+5)^7 + K$	(b) $(4x+5)^{7/7}+k$	(x) = (x + 3) .ux a						
(c) $(4x+5)^7/7$	(d) none of these							
9. Use method of substitution t	o evaluate $\int r(r^2 + 4)$	b^{5} dx and the answer is						
(a) $(x^2 + 4)^6 + k$	(b) $1/12(x^2 + 4)$							
(c) $(x^2+4)^{6/}$ +k	(d) none of these							

10. $\int 8x^2/(x^3+2)^3 dx$ is equal to

(a) $-4/3(x^3+2)^2+k$	(b) $-\frac{4}{3(x^3+2)^2}$ + k
(c) $\frac{4}{3(x^3+2)^2} + k$	(d) none of these

11. $\int x^{x}(1+\log x) dx$ is equal to (a) $x^2 \log x + k$ **(b)** *e*^{*x*2}+k (c) $\frac{x^2}{2} + k$ (d) $x^{x} + c$ **12.** $\int (e^x + e^{-x})^2 (e^x - e^{-x}) dx$ is (a) $1/3 (e^x + e^x)^3 + k$ **(b)** $\frac{1}{2} (e^x - e^{-x})^2 + k$ (c) *e*^{*x*}+k (d) none of these **13.** $\int \frac{\log(\log x)}{x} x dx$ is (a) log (logx-1) +k (b) log x-1+k (c) $[\log (\log^{x} - 1)] \log x + k$ (d) none of these **14.** Evaluate $\int \left(\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}\right) dx$ and the value is (a) $\log_e |e^x + e^{-x}|$ **(b)** $\log_e |e^x + e^{-x}| + k$ (c) $\log_e |e^{x-}e^{-x}| + k$ (d) none of these **15.** Integrate w.r.t x, $(x^3 + 1)^2 3x^2 dx$ to get (a) $\left(\frac{1}{2}\right)(x^3+1)^3+k$ (b) $3(x^3+2)^3+k$ (c) $3x^2(x^3+2)^3+k$ (d) $9x^2(x^3+2)^3+k$ **16.** $\int \frac{dx}{x(x^3+1)} =$ (a) $\left[\log |x| - (1/3) \log |x^3 + 1| + k \right]$ **(b)** $(1/3)[\log |x| + \log |x^3 + 1|] + k$ (c)(1/3)log $\left(\frac{x^3}{x^3-1}\right) + c$ (d) None of these. By Parts **17.** Use integration by parts to evaluate $\int x^2 e^{3x} dx$ (a) $\frac{x^2 e^{3x}}{3} - 2x \frac{e^{3x}}{9} + \frac{2}{27} e^{3x} + K$ (b) $x^2 e^{3x} - 2x e^{3x} + 2e^{3x} + k$ (c) $\frac{e^{3x}}{3} - \frac{xe^{3x}}{9} + 2e^{3x} + k$ (d) none of these **18.** $\int \log x \, dx$ is equal to **(b)** $x \log x - x^2 + k$ (a) $x \log x + k$ (c) $x \log x + k$ (d) none of these **19.** $\int xe^x dx$ is (a) $(x-1)e^{x} + k$ **(b)** (x-1)*e*^{*x*} (c) xe^x +k (d) none of these.

20. $\int (log x)^2 x \, dx$ and the result is

(a) $\frac{x^2}{2} [(logx)^2 - log + \frac{1}{2}] + K$ (b) $x (log)^2 - 2x + k$ (c) 2x (log x - 1) + k(d) None of these

21. $\int \log x^2 dx$ is equal to (a) x (log x - 1)+k (c) 2 (log x - 1)+k	(b) 2x (logx -1)+k (d) none of these							
 22. Using integration by parts J (a) x⁴/16 +k (c) 4 log x-1+k 								
	Geometry Based Proble	em						
23. The equation of the curve w (x,y) is (a) $y = 2x^3 - 3x + 4$ (c) $x = 2y^2 - 3y + 4$	(a) $y = 2x^3 - 3x + 4$ (b) $y = 2x^2 - 3x + 4$							
	24. If f'(x) =2x-1then the equation of a curve $y = f(x)$ passing through the point (1,0) is given by (a) $y=x^2-x$ (b) $y = x^2/2-x+1$							
	Problems on Partial Frac	tion						
25. $x (x - 1)^{-1}(2x + 1)^{-1} dx$ is: (a) $(1/3)[\log x-1 +\log 2x+1] + k$ (b) $(1/3)[\log x-1 +(1/6) \log 2x+1] k$ (c) $(1/3)[\log x-1 + (1/2) \log 2x+1] + k$ (d) none of these. 26. Evaluate using partial fraction $\int (x + 5) dx/(x + 1)(x + 2)^2$ we get (a) $4 \log (x+1) - 4 \log (x+2) + \frac{3}{x} + 2 + K$ (b) $1 \log (x+2) - 3/x + 2) + K$ (c) $4 \log (x+1) - 4 \log (x+2)$ (d) none of these 27. By the method of partial fraction $\int \frac{3x}{x^2 - x - 2} dx$ is								
(b) $2 \log_e x-2 - \log_e x+1 + 1$	(a) $2 \log_e x-2 + \log_e x+1 + k$ (b) $2 \log_e x-2 - \log_e x+1 + k$ (c) $\log_e x-2 + \log_e x+1 + k$							
	Exponential (e^x) Based Pro	oblems						
28. $\int (x-1)e^x/x^2 dx$ is equal to (a) $e^x/x + k$ (b) e^{-1}		(d) none of these						
29. $\int \frac{e^x (x \log x + 1)}{x} dx \text{ is equal to}$ (a) $e^x \log x + k$ (b) e^x		(d) none of these						
30. Evaluate $\int \frac{(2-x)e^x}{(1-x)^2} dx$ and the (a) $\frac{e^x}{1-x} + k$ (b) e^x		(d) none of these						

Problems on Definite Integration

31. Evaluate $\int_0^1 (2x^2 - x^3)$	dx and the value is		
(a) 4/3+k	(b) 5/12	(c) -4/3	(d) none of these
32. Evaluate $\int_{2}^{4} (3x - 2)^2 dx$	lx and the value is		
(a) 104	(b) 100	(c) 10	(d) none of these
33. Evaluate $\int_0^1 x e^x dx dx$	and the value is		
(a) -1	(b) 10	(c) 10/9	(d) +1
34. $\int_0^a [f(x) + f(-x)] dx$ is			
(a) $\int_0^a 2f(x) dx$	(b) $\int_{-a}^{a} f(x) dx$	(c) 0	(d) $\int_{-a}^{a} -f(-x) dx$
35. Evaluate $\int_{1}^{4} (2x + 5) dx$	and the value is		
(a) 3	(b) 10	(c) 30	(d) none of these
36. $\int_{1}^{2} \frac{2x}{1+x^2} dx$ is equal to			
(a) log(5/2)	(b) $log_e 5$ -lo $g_e 2$ +k		
(c) $\log_e(2/5)$	(d) none of these		
37. $\int_{0}^{2} \sqrt{3x+4} dx$ is equal $\frac{1}{2}$	to		
(a) 9/112	(b) 112/9	(c) 11/9	(d) none of these
38. $\int_0^2 \frac{x+2}{x+1} dx$ is equal to			
(a) $2 + \log_e 2$	(b) 2+log _e 3	(c) log _e 3	(d) none of these
39. Evaluate $\int_{1}^{e^2} \frac{dx}{x(1+\log x)^2} dx$	and the value is		
(a) 3/2	(b) 1/3	(c) 26/3	(d) ½ (log _e 5)
40. The value of $\int_{2}^{3} f(5-2)$	$x)dx - \int_2^3 f(x)dxis$		
(a) 1	(b) 0	(c) -1	(d) none of these
41. $\int_{1}^{2} x \log x dx$ is equal to)		
(a) 2 log 2	(b) -3/4	(c) 2 log 2 -3/4	(d) none of these
42. Evaluate $\int_0^2 3x^2 dx$ is			
(a) 8	(b) 7		
(c) 5	(d) none of these		
43. The value of $\int_{0}^{1/2} \frac{dx}{\sqrt{3-2x}}$	is		
(a) 1	(b) $\sqrt{3} - \sqrt{2}$		
(c)1 -√ <u>3/2</u>	(d) $\sqrt{2} - \sqrt{3}$		

Problems on Standard Function

44. Integrate w.r.t x, $(3x+7)(2x^2+3x-2)^{-1}$ (a) $(3/4)\log(2x^2+3x-2)+(19/20)\log[(2x-1)/{2(x+2)}]+k$ (b) $(3/4)\log(2x^2+3x-2)+\log[(2x-1)/{2(x+2)}]+k$ (c) $(3/4)\log(2x^2+3x-2)+(19/20)\log[2(2x-1)(x+2)]+k$ (d) None **45.** Integrate w.r.t x, $1/(2x^2-x-1)$ (a) $(1/3)\log[2(x-1)/(2x+1)]+c$ (b) $-(1/3)\log[2(x-1)/(2x+1)]+c$ (c) $(1/3)\log[2(1-x)/(2x+1)]$ (d) None **46.** Integrate w.r.t x, $(x+1)(3+2x-x^2)^{-1}$ (a) $-(1/2)\log(3+2x-x^2)+(1/2)\log[(x+1)/(x-3)]+c$ (b) $(1/2)\log(3+2x-x^2)+(1/2)\log[(x+1)/(x-3)]+c$ $(c) - (1/2)\log(3+2x-x^2) + (1/2)\log[(x-3)/(x+1)] + c$ (d) None **47.** Integrate w.r.t x, $(5x^2+8x+4)^{-1/2}$ (a) $(1/\sqrt{5})\log[\{\sqrt{5}x+4/\sqrt{5}+(5x^2+8x+4)^{1/2}\}] + c$ (b) $\sqrt{5}\log[\{\sqrt{5}x+4/\sqrt{5}+(5x^2+8x+4)^{1/2}\}]+c$ (c) $(1/\sqrt{5})\log[\{\sqrt{5}x+4/\sqrt{5}+(5x^2+8x+4)^{-1/2}\}]+c$ (d) None **48.** Integrate w.r.t x, $(x+1)(5x^2+8x-4)^{-1/2}$ (a) $(1/5)(5x^2+8x-4)^{1/2}+[1/(5\sqrt{5})]\log[5\{x+4/5+(x^2+8x/5-4/5)^{1/2}(1/6)\}]+c$ (b) $(1/5)(5x^2+8x-4)^{1/2}+[1/(5\sqrt{5})]\log[5\{x+4/5+(x^2+8x/5-4/5)^{-1/2}(1/6)\}]+c$ (c) $(1/5)(5x^2+8x-4)^{1/2}+[1/(5\sqrt{5})]\log[5\{x+4/5+(x^2+8x/5-4/5)^{1/2}\}]+c$ (d) None **49.** Integrate w.r.t x, $(x^2-1)(x^4-x^2+1)^{-1}$ (a) $\left[\frac{1}{2\sqrt{3}}\right]\log\left[\frac{x^2}{\sqrt{3}x+1}\right] + c$ (b) $\left[\frac{1}{(2\sqrt{3})}\right]\log\left[\frac{x^2+\sqrt{3}x+1}{x+1}\right]+c$ (c) $[3/(2\sqrt{3})]\log[(x^2-\sqrt{3}x+1)/(x^2+\sqrt{3}x+1)]+c$ (d) None

Additional Questions

Tutorial Note Below Questions are Based on Above Discussed Methods Only But Presentation of Questions Are Changed And Students Get Confused So Lets Deal with them

Basics

50. Integrate w.r.t x, $(x^{1/2}-x/2+2x^{-1/2})$ (a) $(2/3)x^{3/2}-(1/4)x^2+4x^{1/2}+k$ (c) $(2/3)x^{3/2}+(1/4)x^2+4x^{1/2}$

- **51.** Integrate w.r.t x, (3x⁻¹+4x²-3x+8) (a) 3logx-(4/3)x³+(3/2)x²-8x+k (c) 3logx+(4/3)x³+(3/2)x²+8x+k
- **52.** Integrate w.r.t x, $(ax^2+bx^{-3}+cx^{-7})x^2$
 - (a) $(1/4)ax^4$ +blogx- $(1/4)cx^{-4}$ +k
 - (c) $(1/4)ax^4$ +blogx+ $(1/4)cx^{-4}$ +k

- (b) $(3/2)x^{3/2}-(1/4)x^2+4x^{1/2}$ (d) None
- (b) $3\log x + (4/3)x^3 (3/2)x^2 + 8x + k$
- (d) None

(b) $4ax^4$ +blogx- $4cx^{-4}$ +k

(d) None

- (a) $(2/3)x^{3/2}-2x^{1/2}+k$
- (b) $(3/2)x^{3/2} (1/2)x^{1/2} + k$
- (c) $-(1/2)x^{-1/2}-(3/2)x^{-3/2}+k$
- (d) None
- **54.** Integrate w.r.t x, (7x²-3x+8-x^{-1/2}+x⁻¹+x⁻²)
 - (a) $(7/3)x^{3}-(3/2)x^{2}+8x-2x^{1/2}+\log x-x^{-1}+k$
 - (b) $(3/7)x^{3}-(2/3)x^{2}+8x-(1/2)x^{1/2}+\log x+x^{-1}+k$
 - (c) $(7/3)x^3+(3/2)x^2+8x+2x^{1/2}+\log x+x^{-1}+k$
 - (d) None
- **55.** Integrate w.r.t x, $x^{-1}[ax^3+bx^2+cx+d]$
 - (a) $(1/3)ax^3+(1/2)bx^2+cx+dlogx+k$
 - (b) 3ax³+2bx²+cx+dlogx+k
 - (c) $2ax+b-dx^{-2}+k$
 - (d) None
- **56.** Integrate w.r.t x, $x^{-3}[4x^6+3x^5+2x^4+x^3+x^2+1]$
 - (a) $x^4+x^3+x^2+x+\log x-(1/2)x^{-2}+k$
 - (b) $x^4+x^3+x^2+x+\log x+(1/2)x^2+k$
 - (c) $x^4+x^3+x^2+x+\log x+2x^{-2}+k$
 - (d) None
- **57.** Integrate w.r.t x, $[2^{x}+(1/2)e^{-x}+4x^{-1}-x^{-1/3}]$
 - (a) $2^{x}/\log^{2}(1/2)e^{-x} + 4\log^{-3}(3/2)x^{2/3} + k$
 - (b) $2^{x}/\log^{2}+(1/2)e^{-x}+4\log^{2}+(3/2)x^{2/3}+k$
 - (c) $2^{x}/\log 2 2e^{-x} + 4\log x (2/3)x^{2/3} + k$
 - (d) None

Method of Substitution

- **58.** Integrate w.r.t x, $(x^3+2)^{1/2}x^2$
 - (a) $(2/9)(x^3+2)^{3/2}+k$
 - (b) $(2/3)(x^3+2)^{3/2}+k$
 - (c) $(9/2)(x^3+2)^{3/2}+k$
 - (d) None
- **59.** Integrate w.r.t x, $(x^3+2)^{-3}8x^2$
 - (a) $-(4/3)(x^3+2)^{-2}+k$
 - (b) $(4/3)(x^3+2)^{-2}+k$
 - (c) $(2/3)(x^3+2)^{-2}+k$
 - (d) None
- **60.** Integrate w.r.t x, $(x^3+2)^{-1/4}x^2$
 - (a) $(4/9)(x^3+2)^{3/4}+k$
 - (b) $(9/4)(x^3+2)^{3/4}+k$
 - (c) $(3/4)(x^3+2)^{3/4}+k$
 - (d) None
- **61.** Integrate w.r.t x, (x²+1)⁻ⁿ3x
 - (a) $(3/2) (x^2+1)^{1-n}/(1-n) +k$
 - (b) $(3/2)(x^2+1)^{n-1}/(1-n)$
 - (c) $(2/3) (x^2+1)^{1-n}/(1-n) + k$
 - (d) None

- **62.** Integrate w.r.t x, $(x^2 + 1)^{-3}x^3$ (a) $-(1/4)(2x^2+1)/(x^2+1)^2+k$ (b) $(1/4)(2x^2 + 1)/(x^2 + 1)^2 + k$ (c) $-(1/4)(2x^2+1)/(x^2+1)+k$ (d) $(1/4) (2x^2+1)/(x^2+1) + k$ **63.** Integrate w.r.t x, 1/[xlogxlog(logx)] (a) $\log[\log(\log x)] + k$ (b) $\log(\log x) + k$ (c) logx+k(d) x⁻¹ **64.** Integrate w.r.t x, $1/[x(\log x)^2]$ (a) $-1/\log x + k$ (b) $1/\log x + k$ (c) logx (d) None **65.** Integrate w.r.t x, $x(x^2+3)^{-2}$ (a) $-(1/2)(x^2+3)^{-1}+k$ (b) $(1/2) (x^2+3)^{-1}+k$ (c) $2(x^2+3)^{-1}+k$ (d) None **Partial Fraction 66.** Integrate w.r.t x, $x(x-1)^{-1}(2x+1)^{-1}$ (a) $(1/3)[\log(x-1)+(1/2)\log(2x+1)]+k$ (c) $(1/3)[\log(x-1)-(1/2)\log(2x+1)]+k$ (d) None **67.** Integrate w.r.t x, (x-x³)⁻¹
 - (a) $(1/2)\log[x^2/(1-x^2)] + k$
 - (c) $(1/2)\log[x^2/(1+x)^2]+k$

(b) $(1/3)[\log(x-1)+\log(2x+1)]+k$

(b) $(1/2)\log[x^2/(1-x)^2]+k$

(d) None

Answer Sheet

1.	b	2.	b	3.	b	4.	b	5.	b	6.	С	7.	d	8.	а	9.	b	10.	b
11.	d	12.	а	13.	С	14.	b	15.	а	16.	С	17.	а	18.	d	19.	а	20.	а
21.	b	22.	b	23.	b	24.	а	25.	С	26.	а	27.	а	28.	а	29.	а	30.	а
31.	b	32.	а	33.	d	34.	b	35.	С	36.	b	37.	b	38.	b	39.	d	40.	b
41.	С	42.	а	43.	b	44.	Α	45.	Α	46.	Α	47.	Α	48.	Α	49.	Α	50.	Α
51.	В	52.	Α	53.	Α	54.	Α	55.	Α	56.	Α	57.	Α	58.	Α	59.	Α	60.	Α
61.	Α	62.	Α	63.	Α	64.	Α	65.	Α	66.	Α	67.	Α						

	<u>ALP-NO-10A</u>								
1.	$\int 2^{3x} \cdot 3^{2x} \cdot 5^x \cdot dx =$								
	(a) $\frac{2^{3x} \cdot 3^{2x} \cdot 5^x}{\log(720)} + c$	$(c)\frac{2^{3x}\cdot 3^{2x}\cdot 5^{x}}{\log(180)} + c$							
	$(b)\frac{2^{3x} \cdot 3^{2x} \cdot 5^{x}}{\log(360)} + c$								
2	5.	105(30)							
2.	$\int (a)^{2x} dx _$ (a) $\frac{a^{2x}}{2 \log a}$	(c) $\frac{a^{2x} \log a}{2}$							
	(a) $\frac{2 \log a}{2 \log a}$ (b) $\frac{2 \cdot a^{2x}}{\log a}$	Z							
	(b) $\frac{1}{\log a}$	(d) none of these							
3.	$\int_0^5 \frac{x^2 dx}{x^2 + (5 - x)^2}$ is equal t	.0							
	(a) 5	(c) 1							
	(b) $\frac{5}{2}$	(d) none of these							
4.	The value of definite	e integral $\int_0^2 1 - x dx =$							
	(a) 0	(2) $2/2$							
	(a) 0 (b) $\frac{1}{2}$	(c) 3/2 (d) 1							
5.	The value of $\int_0^{1/2} \frac{dx}{\sqrt{3-1}}$	$\frac{x}{-2x}$ is							
	(a) 1	(c) $\sqrt{3} - \sqrt{2}$ (d) $\sqrt{2} - \sqrt{3}$							
	(b)1 - $\sqrt{3/2}$	(d) $\sqrt{2} - \sqrt{3}$							
6.	The value of $\int_0^2 x e^{x^2}$	dx is							
	(a) 1	(c) $(e/2) - 1$							
	(b) e – 1	(d) $\frac{1}{2}(e^4 - 1)$							
7.	The value of $\int_{1}^{2} \frac{1-x}{1+x} dx$	lx is equal to :							
	(a) $\log \frac{3}{2} - 1$								
	(b) $2\log_{\frac{3}{2}}^{2} - 1$	$(d)\frac{1}{2}\log\frac{2}{3}-1$							
	[**								
8.	$\int_0^2 \frac{3^{\sqrt{x}}}{\sqrt{x}} dx \text{ is equal to } \frac{1}{\sqrt{x}}$								
	(a) $\frac{2\sqrt{2}}{\log_e 3}$	$(C)\frac{2(3^{\sqrt{2}}-1)}{\log_e 3}$							
	(b) 0	(d) $\frac{3^{\sqrt{2}}}{\sqrt{2}}$							

- 9. $\int \frac{x}{(x^2+1)(x^2+2)} dx \text{ is equal to } ___$ (a) $\log\left(\frac{x^2+1}{x^2+2}\right) + c$ (c) $\frac{1}{2}\log\left(\frac{x^2+2}{x^2+1}\right) + c$ (b) $\frac{1}{2}\log\left(\frac{x^2+1}{x^2+2}\right) + c$ (d) $-\log\left(\frac{x^2+1}{x^2+2}\right) + c$
- **10.** The value of $\int_{1}^{2} \frac{x}{x^{2}+1} dx$ is equal to : (a) $\log_{e} \left(\frac{5}{2}\right)$ (c) $\log_{e}(5) - \log_{e} 2 + c$ (b) $\frac{1}{2} \log_{e} \left(\frac{5}{2}\right)$ (d) none of these

				Ans	swers	2			
1.	b	2.	a	3.	b	4.	d	5.	С
6.	d	7.	b	8.	C	9.	b	10.	b
			A	LP-N	10-1	0B			
1.	The	value					:)]dx	=	
						$\frac{\int f^{1}(x)}{f(x)}$			
						$ f(x) = e^{x} \left \frac{f(x)}{f^{1}} \right $			
	(0) 6	en 1º (.	x) +	С	(u)	$e^{A} _{\overline{f^1}}$	(x) +	·C	
2.	ſ x.	e ^{x²} d:	x is e	aual	to :				
		$2e^{x^2}$ -		1		$\frac{1}{2}e^{x^2}$	+ c		
	(b) e	$e^{x^2} +$	С			xe^{x^2}			
3.	The	value	e of ∫ ₁	$2 \frac{1-x}{1+x}$	dx is	equal	to :		
	(a) l	$\log \frac{3}{2}$ -	- 1		(c)	$\frac{1}{2} \log \frac{3}{2}$	-x		
	(b)2	$\log \frac{3}{2}$	- 1		(d)	$\frac{1}{2}\log$	$\frac{2}{3} - x$		
		_				_	-		
4.	$\int_0^2 \frac{3^{\vee}}{\sqrt{2}}$	$\frac{\sqrt{x}}{\frac{1}{x}}$ dx i	s equ	ial to					
	(a) -	_				$2(3^{\sqrt{2}}-$	1)		
	(a) <u> </u>	og _e 3				1050	3		
	(b) ()			(d)	$\frac{3^{\sqrt{2}}}{\sqrt{2}}$			
_	$\int_0^2 \frac{1}{\sqrt{2}}$	\sqrt{x}	J	_					
5.	0 1	ι τν 2	$\frac{1}{x}$ ax 1	s :		n			
	(a) ((b) 3				(c) (d)				
	(-)-				()				
6.	Solv	e: ∫_1	(e ^x -	$-e^{-x}$)dx				
	(a) ((c)				
	(b) 1	L			(d)	none	of th	ie abov	ve
7.	If f	(x) =	= 3x ²	2	, f'(1	l) =	0 ar	nd f(x)) =
				x	, `				
	(a) x	$\frac{x^{6}}{2} - x$	-2 _	2	(c)	x ³ + 2	x ⁻² – 2	2	
		3 x ³ + x				none			
_	م1 ^{ار}	rl -							
8.	$\int_{-1}^{1} \frac{ z }{z}$	i	=		-	4			
	(a)-1 (b) ((c) (d)				
	(0) (,			(u)	4			
1					wers			T -	-
1. 6.	a a	2. 7.	C C	3. 8.	b b	4.	С	5.	d

Statistical Description of Data

	E	XERCISE						
1. Marks of a student is an example of:								
(a) a continuous va	riable	(b) a discrete varial	ble					
(c) an attribute		(d) None of these.						
	rce of the data, if any							
(a) Footnote	(b) Body	(c) Stub	(d) caption.					
3. The unit of measu	urement in tabulation	is shown in:						
(a) Box head	(b) body	(c) Caption	(d) stub.					
4. 'Stub' of a table is	s the:							
	table describing the	columns.						
	able describing the co							
(c) right part of the	table describing the r	rows						
(d) left part or the t	table describing the ro	ows.						
5. The quicker meth	od to collect primary	data is:						
(a) personal intervi	ew	(b) by observation						
(c) telephone interv	view	(d) indirect intervie	W					
6. The best method	to collect data, in cas	e of a natural calamit	y, is:					
(a) Personal intervi	ew	(b) Questionnaire method						
(c) Indirect intervie	W	(d) Direct observation method.						
 7. The frequency distribution of a continuous variable is known as: (a) Grouped frequency distribution (b) Simple frequency distribution (c) Either (a) or (b) (d) Both (a) and (b). 								
8. For determining t	he class frequencies i	t is necessary that the	ese classes are:					
(a) Mutually exclusi	ve	(b) Not mutually ex	clusive					
(c) Independent		(d) None of these.						

- 9. Cumulative Frequency Distribution is a
- (a) Frequency (b) Graph (c) Statistical table (d) Distribution
- 10. Divided bar chart is considered for
- (a) the relation of different components to the table.
- (b) Comparing different components o0f a variable
- (c) Either (a) or (b)
- (d) Both (a) and (b)
- 11. An approximate idea of the shape of frequency curve is given by:
- (a) Both (a) and (b)
- (d) None of these.
- 12. To find the number of observations less than any given value, we use:
- (a) Grouped frequency distribution.
- (b) Single frequency distribution
- (c) Cumulative frequency distribution
- (d) None of these.
- 13. Difference between the lower and upper class boundaries is:
- (a) Size (b) Width (c) Both (a) and (b) (d) None of these.
- 14. Frequency density is used in the construction of:
- (a) Histogram (b) Frequency Polygon (d) None of these.
- (c) Ogive
- 15. Frequency density corresponding to a class interval is the ratio of:
- (a) Class length to the total frequency.
- (b) Class frequency to the class length
- (c) Class frequency to the total frequency
- (d) Class frequency to the cumulative frequency.
- 16. When one end of a class is not specified, the class is called:
- (a) Closed-end class (b) Open-end class
- (c) Both (a) and (b) (d) None of these.

17. A comparison among the class frequencies is possible only in:

(a) Ogive	(b) Histogram			
(c) Frequency Polygon	(d) Either (a) or (b)			
18. In Histogram if the classes are of unequal width then the heights of the rectang must be proportional to the frequency densities.				

(a) True	(b) False
(c) Both (a) and (b)	(d) None of these.

19. The curve obtained by joining the points, whose x-coordinates are the upper limits of the class-intervals and y-coordinates are corresponding cumulative frequencies is called:

(a) Ogive	(b) Frequency Polygon
(c) Histogram	(d) Frequency curve.

20. Difference between the maximum and minimum value of given data is called:

(a) Size	(b) Width	(c) Range	(d) None
----------	-----------	-----------	----------

21. In 1995out of total of 4,0000 worker in a factory 3,300 were members of a trade union. The number of women workers was 500 out of which 400 did not belong to the union. In 1994, the number of workers in the union was 3,450 of which 3,2000 were men. The number of workers not belonging to the union was 760 of which 300 were women.

On the basis of this information the ratio of women members of the union in 1994 and 1995 is:

(a) 2:5 (b) 5;2 (c) 1:2 (d) 2:1.

22. The number of accidents for seven days in a locality is given below:

No. of accidents:	0	1	2	3	4	5	6
Frequency:	15	19	22	31	9	3	2

What is the number of cases when 3 or less accidents occurred?

(a) 56	(b) 6	(c) 68	(d) 87

23. The marks obtained by 30 students in a class test, out of 50 marks, according to their roll numbers are:

41, 25,33,12,21,19, 39, 19, 21, 12, 1, 19, 17, 12, 17, 17, 41, 41, 19, 41, 33, 12, 21, 33, 5, 1, 21.

If the data are arranged in the form of a frequency distribution with classes 1-10, 11-20, 21-30, 31-40, 41-50 then the frequency of these 5 days intervals are:

(a) 4, 13, 5, 4, 4	(b) 5, 12, 5, 4, 4
(c) 4, 13, 4, 5, 4	(d) 4, 11, 7, 4, 4.

- (a) Classification follows tabulations
- (b) Classification precedes tabulations
- (c) Both are done simultaneously
- (d) No criterion.

25. In a exclusive type distribution , the limits excluded are:

(a) Upper limits (b) Lower limits

(c) Either of the lower or upper limits (d) Lower limit and upper limits both.

26. As the numbers of observations and classes increases, the shape of a frequency polygon:

(a) Tends to become increasingly smooth.

(b) Stays the same.

- (c) tends to become jagged.
- (d) Varies only if data become more reliable.

27. A series showing the sets of all values in classes with their corresponding frequencies is known as:

- (a) Grouped frequency distribution.
- (b) cumulative frequency distribution.
- (c) Simple frequency distribution.
- (d) None of the above.

28. Which of the following statement is true?

(a) The size of a sample can never be as large as the size of the population from which it is taken.

- (b) Classes describe only one characteristic of the data being organized.
- (c) As a rule statisticians generally use between six and fifteen classes.
- (d) All of these.

29. If a data can take on only limited number of values, the classes of these data are called:

- (a) Discrete (b) continuous
- (c) Both discrete and continuous (d) none of these.

30. A relative frequency distribution presents frequencies in terms of:

- (a) Fractions (b) Whole numbers
- (c) Percentages (d) Both (a) and (c)

31. The following frequency distribution,

SI. The following	, nequency u	50100		/					
	x:	12	17	24	36	45	48	52	
	y:	4	0	7	8	9	6	3	
Is classified as:									
(a) Continuous d	listribution.								
(b) discrete distr	ribution								
(c) cumulative fr	requency dist	ributi	on						
(d) None of thes	e.								
32. The class interval of the continuous grouped data:									
32. The class inte	erval of the c	ontin	lous	grou	ped	data	:		
32. The class inte 10-19, 20-29, 30			lous	grou	ped	data	:		
			JOUS		ped (c) 9	data	:		(d) 4.5
10-19, 20-29, 30)-39, 40-49 is		suou			data	:		(d) 4.5
10-19, 20-29, 30 (a) 7)-39, 40-49 is (b) 10	5:		(0	c) 9			ervati	(d) 4.5 ion would be called:
10-19, 20-29, 30 (a) 7)-39, 40-49 is (b) 10	5:		(• a set	c) 9	ingle	obse	ervati	
10-19, 20-29, 30 (a) 7 33. If a collection)-39, 40-49 is (b) 10 n of data is ca	5:		(• a set (I	c) 9 , a si	ingle ata po	obse		
10-19, 20-29, 30 (a) 7 33. If a collection (a) An element)-39, 40-49 is (b) 10 n of data is ca	5:		(• a set (I	c) 9 , a si b) da	ingle ata po	obse		
10-19, 20-29, 30 (a) 7 33. If a collection (a) An element)-39, 40-49 is (b) 10 n of data is ca r an element	s: Illed a	a dat	(4 a set (1 (4	c) 9 , a si b) da	ingle ata po	obse		
 10-19, 20-29, 30 (a) 7 33. If a collection (a) An element (c) Data point or)-39, 40-49 is (b) 10 n of data is ca r an element	s: Illed a	a dat	(• a set (1 (•	c) 9 , a si b) da	ingle ata po	obse		
 10-19, 20-29, 30 (a) 7 33. If a collection (a) An element (c) Data point or 34. The class interval)-39, 40-49 is (b) 10 n of data is ca r an element	s: Illed a	a data ution	(• a set (1 (•	c) 9 , a si b) da	ingle ata po	obse		ion would be called:

Is:

(a) 4 **(b)** 3

35. The following frequency distribution

Classes	Frequency
0-30	27
0-20	15
0-10	9

(c) 2

Is classifiedcumulative distribution.

(a) more than type	(b) less than type
(c) discrete	(d) None of these.

36. If you are interested in how the earnings of a company have fluctuated over time, it would be best to use:

(a) Bar graph (b) time series graph

(d) None of these

(c) pie chart

(d) Histogram.

37. It is best to use a sample when conducting a survey if:

- (a) the population is small.
- (b) we have a limited amount of time to conduct the survey.
- (c) we would like to keep the costs of the survey low.
- (d) All of the above except (b)

38. The number of observations in the current class intervals plus all previous class interval is known as:

- (a) Frequency
- (b) relative frequency
- (c) Cumulative frequency
- (d) Cumulative relative frequency.

39. It is always possible to construct a histogram from the:

(a) Data

(b) frequency polygon

- (c) Both from the data and frequency polygon
- (d) None of these.
- 40. In a bar diagram , the base line is:
- (a) Horizontal (b) Vertical
- (c) False base line (d) Any of the above.
- 41. In a column chart, bars are:

(a) horizontal	(b) vertical
(c) Slanting	(d) None of these.

42. If there is a decrease in a series at constants rate, the graph will be a:

- (a) hyperbola
- (b) A straight line from left top to right bottom.

(c) a convex curve

- (d) None of these.
- 43. Pictograms are shown by:

(a) Dots	(b) lines	(c) circles	(d) pictures.
----------	-----------	-------------	---------------

44. A simple table represents:

- (a) Only one factor or variable
- (b) Always two factors or variables
- (c) two or more number of factors or variables
- (d) All the above

45. Graphs and charts facilitate:

- (a) Comparison of values(b) to know the trend
- (c) to know relationship (d) All the above.

46. To show the maximal and minimal values in a time series, the suitable chart is:

(d) All the above.

(a) deviation bar diagram	(b) range curve
---------------------------	-----------------

- (c) hostorigram
- **47.** Which of the following statement is not correct?
- (a) The bars in a histograms touch each other.
- (b) The bar in column chart touch each other.
- (c) There are bar diagrams which are known as broken bar diagrams.
- (d) Multiple bar diagrams also exist.

48. In a histogram with equal class intervals; height of bar are proportional to:

- (a) mid-values of the classes
- (b) frequencies of respective classes
- (c) Either (a) or (b)
- (d) Neither (a) or (b)

49. When for some countries, the magnitudes are small and for other, the magnitudes are very large, to portray the data, it is preferred to construct:

- (a) deviation bar diagram
- (b) duo-directional bar diagram
- (c) broken bar diagram
- (d) Any of the above.

50. A histogram can be draws for the distribution with unequal class intervals by considering:

- (a) Heights of bars proportional to class intervals.
- (b) class frequency
- (c) height of bars proportional frequency density.
- (d) None of these.

51. In a study relating to the laborers of a jute mill in West Bengal, the following information was collected.

Twenty per cent of the total employees were females and forty per cent of them were married. Thirty female workers were not members of Trade Union. Compared to this, out of 600 male workers 500 were members of trade Union and fifty per cent of the male workers were married. The unmarried non-member male employees were 60 which formed ten per cent of the total male employees. The unmarried non-members of the employees were 80. On the basis of this information, the ratio of married male nonmembers to the married female non-members is:

(a) 1:3 (b) 3:1 (c) 4:1 (d) 5:1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
в.	Α.	Α.	D.	C.	Α.	Α.	Α.	C.	D.	В.	C.	C.	Α.	В.
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
В.	В.	Α.	Α.	C.	В	D	А	В.	C.	Α.	Α.	C.	C.	D.
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
в.	В.	C.	В.	Α.	в.	D.	C.	C.	В.	В.	В.	D.	Α.	D.
46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
в.	в.	в.	C.	C.	C.									

Answers Sheet

Measures of Central Tendency & Dispersion

		EXERCISE
		Mean
1.	If there are 3 observations 15, 20, 25 t (a) 0	han the sum of deviation of the observation from their AM is (c) -5
	(b) 5	(d) none of these
2.	If there are two groups containing 30 a the combined arithmetic mean is	and 20 observations and having 50 and 60 as arithmetic means, then
	(a)55 (b)56	(c) 54 (d) 52
3.		led workers is Rs 10,000 and that of a group of skilled workers is Rs ,000, then what is the percentage of skilled workers? (c) 60%
	(b) 50%	(d) none of these
4.		5 with frequencies as 1, 2, 35, then what is the AM?
	(a) $\frac{11}{3}$ (b)5	(c) 4 (d) 4.50
		Median
5.	What is the median for the following c 5, 8, 6, 9, 11, 4.	bservations?
	(a)6 (b)7	(c) 8 (d) none of these
		Mode
6.	What is the modal value for the numb	ers 5, 8, 6, 4, 10, 15, 18, 10?
	(a) 18	(c) 14
	(b) 10	(d) none of these
		Partition Value
7.	What is the value of the first quartile f	or observations 15, 18, 10, 20, 23, 28, 12, 16?
	(a)17 (b)16	(c) 12.75 (d) 12
	(b) 16	(u) 12
8.	The third decile for the numbers 15, 10	
	(a)13 (b)10.70	(c) 11 (d) 11.50

		Geometric Mean
9.	What is the GM for the numbers 8, 24 a	
	(a)24	(c) $8.\sqrt[3]{15}$
	(b) 12	(d) 10
10.	If GM of x is 10 and GM of y is 15, then	the GM of xy is
	(a) 150	(c) log 150
	(b) Log 10 × log 15	(d) none of these
		Harmonic Mean
11.	The harmonic mean for the numbers 2,	, 3, 5 is
	(a) 2. 00	(c) 2.90
	(b) 3.33	(d) $-\sqrt[3]{30}$
12.	If there are two groups with 75 and 65	as harmonic means and containing 15 and 13 observation then the
	combined HM is given by	u u u u u u u u u u u u u u u u u u u
	(a) 65	(c) 70
	(b) 70.36	(d) 71
13.	What is the HM of 1, ½, 1/3,1	/n?
	(a)n	(c) $\frac{2}{(n+1)}$
	(b) 2n	(d) $\frac{n(n+1)}{2}$
14.	An aero plane flies from A to B at the ra	ate of 500 km/hour and comes back from B to A at the rate of 700
	km/hour. The average speed of the aer	o plane is
	(a) 600 km/hr	(c) 100√ <u>35</u> km/hr
	(b) 583.33 km/hr	(d) 620 km/hr
	Problems	s Based on Common Property
15.		2x - 3. If the median of x is 20, what is the median of y?
	(a)20	(c) 37
	(b) 40	(d) 35
16.	If the relationship between two variabl	es u and v are given by 2u + v + 7 = 0 and if the AM of u is 10, then
	the AM of v is	
	(a) 17	(c) -27
	(b) -17	(d) 27
17.	If x and y are related by $x - y - 10 = 0$ a	nd mode of x is known to be 23, then the mode of y is
	(a)20	(c) 3
	(b) 13	(d) 23

	Relati	on Between AM GM & HM
18.		6.50 and 6 respectively then the two numbers are (c) 10 and 3 (d) 8 and 5
19.	If the AM and HM for two numbers are (a)16.00 (b)4.10	5 and 3.2 respectively then the GM will be (c) 4.05 (d) 4.00
20.	If the AM and GM for 10 observations a (a) Less than 15 (b) More than 15	re both 15, then the value of HM is (c) 15 (d) cannot be determined
		Mixed Problems
21.	If the difference between mean and mo be (a)63 (b)31.5	ode is 63, then the difference between mean and median will (c) 21 (d) none of the above
22.	Harmonic mean between them is	mbers is 64 and the geometric mean between them is 16. The (c) 16 (d) 40
23.	The average of 5 quantities is 6 and the (a)4 (b)5	average of 3 is 8. What is the average of the remaining two? (c) 3 (d) 3.5
24.		nts was 20 years. The average age increased by two years when hat is the average age of two new students who joined the group? (c) 44 years (d) 32 years
25.	Geometric Mean of three observations (a)2 (b)4	40, 50 and X is 10. The value of X is (c) ½ (d) none of the above
26.	The mean of first three term is 14 and n (a)14.5 (b)15	nean of next two terms is 18. The mean of all five term is : (c) 14 (d) 15.6
27.		ns is Rs 5,850. Later on it is discovered that the salary of one s 8,000 instead of Rs 7,800. The corrected mean salary is (c) Rs 5,650 (d) none of the above

29. A man travels from Agra to Gwalior at an average speed of 30 km per hour and back at an average speed of 60 km per hour. What is his average speed?

(a) 38 km per hour	(c) 45 km per hour
(b)40 km per hour	(d) 35 km per hour

30. Geometric mean of 8, 4, 4, 2 is
(a)4
(b)2
(c) 8
(d) none of these

31. The average age of 15 students of a class is 15 years. Out of them, the average age of 5 students is 14 years and that of other 9 students is 6 years. The age of the 15th students is:

(a)11 years	(c) 15 years
(b) 14 years	(d) none of these

32. The mean of the following data is 6. Find the value of 'P'.

X:	2	4	6	10	P +5
Y:	3	2	3	1	2
(a) 4					
(a)4 (b)6		(c) 8 (d) 7			

33. The harmonic mean H of two numbers is 4 and their arithmetic mean A and the geometric mean G satisfy the equation 2A + G² = 27, then the numbers are

(a) (1, 3)	(c) (6, 3)
(b) (9, 5)	(d) (12, 7)

34. In a class of 50 students, 10 have failed and their average marks in 2.5. the total marks secured by the entire class were 281. The average marks who have passed is :

(a) 5.32	(c) 6.40
(b) 7.25	(d) none of the above

35. For moderately skewed distribution of marks in commerce for a group of 200 students the mean marks and mode marks were found to be 55.60 and 46. What is the median marks?

(a) 55.5	(c) 52.4
(b) 60.5	(d) none of these

36. Mean for the data 6, 4, 1, 6, 5, 10, 3 is 5 when each observation added by 2, what is mean of the data

 (a)5
 (b)6
 (c) 7
 (d) 10

37. If the mean of two numbers is 30 and geometric mean is 24 then what will be these two numbers?
(a) 36 and 24
(b) 30 and 30
(c) 48 and 12
(d) none of these

12.4

Theory Based Questions

- 38. Measures of central tendency for a given set of observations measures
 - (a) The scatterings of the observations
 - (b) The central location of the observations
 - (c) Both (a) and (b)
 - (d) None of these
- 39. While computing the AM from a grouped frequency distribution, we assume that
 - (a) The classes are of equal length
 - (b) The classes have equal frequency
 - (c) All the values of a class are equal to the mid-value of that class
 - (d) None of these
- 40. Which of the following statements is wrong?
 - (a) Mean is rigidly defined
 - (b) Mean is not affected due to sampling fluctuations
 - (c) Mean has some mathematical properties
 - (d) All these
- 41. Which of the following statements is true?
 - (a) Usually mean is the best measure of central tendency
 - (b) Usually median is the best measure of central tendency
 - (c) Usually mode is the best measure of central tendency
 - (d) Normally, GM is the best measure of central tendency

42. For open-end classification, which of the following is the best measure of central tendency?

(a) AM	(b) GM
(c) Median	(d) Mode

- 43. The presence of extreme observations does not affect
 - (a) AM (b) Median
 - (c) Mode (d) Any of these
- 44. In case of an even number of observations which of the following is median?
 - (a) Any of the two middle-most value
 - (b) The simple average of these two middle values
 - (c) The weighted average of these two middle values
 - (d) Any of these
- **45.** The most commonly used measure of central tendency is
 - (a) AM (b) Median
 - (c) Mode (d) Both GM and HM
- **46.** Which one of the following is not uniquely defined?
 - (a) Mean(b) Median(c) Mode(d) All of these measures
- 47. Which of the following measure of the central tendency is difficult to compute?
 - (a) Mean(b) Median(c) Mode(d) GM

48. Which measure(s) of central tendency is (are) considered for finding the average rates?

(a) AM	(b) GM
(c) HM	(d) Both (a) and (c)

49. For a moderately skewed distribution, which of the following relationship holds?

- (a) Mean Mode = 3(Mean Median)
- (b) Median Mode = 3 (Mean Median)
- (c) Mean Median = 3 (Mean Mode)
- (d) Mean Median = 3(Median Mode)
- 50. Weighted averages are considered when
 - (a) The data are not classified
 - (b) The data are put in the form of grouped frequency distribution
 - (c) All the observations are not of equal importance
 - (d) Both (a) and (c)
- **51.** Which of the following results hold for a set of distinct positive observations?

(a) AM ≥ GM ≥ HM	(b) HM ≥ GM ≥ AM
(c) AM > GM > HM	(d) GM > AM > HM

52. When a firm register both profits and losses, which of the following measure of central tendency cannot be considered?

(a) AM	(b) GM
(c) Median	(d) Mode

53. Quartiles are the values dividing a given set of observations into
(a) Two equal parts
(b) Four equal parts
(c) five equal parts
(d) None of these

54. Quartiles can be determined graphically using
(a) Histogram
(b) Frequency Polygon
(c) Ogive
(d) Pie chart

55. Which of the following measure(s) possesses (possess) mathematical properties?
(a) AM
(b) GM
(c) HM
(d) All of these

56. Which of the following measure(s) satisfies (satisfy) a linear relationship between two variables?
(a) Mean
(b) Median
(c) Mode
(d) All of these

57. Which of the following measures of central tendency is based on only fifty percent of the central values?
(a) Mean
(b) Median
(c) Mode
(d) both (a) and (b)

Answer Sheet

1.	а	2.	С	3.	а	4.	а	5.	b	6.	b	7.	С	8.	b	9.	С	10.	а
11.	С	12.	С	13.	С	14.	b	15.	С	16.	С	17.	b	18.	b	19.	d	20.	d
21.	С	22.	b	23.	С	24.	а	25.	С	26.	d	27.	b	28.	С	29.	b	30.	С
31.	а	32.	d	33.	С	34.	С	35.	С	36.	С	37.	С	38.	b	39.	С	40.	b
41.	а	42.	С	43.	b	44.	b	45.	а	46.	С	47.	d	48.	d	49.	а	50.	С
51.	С	52.	b	53.	b	54.	С	55.	d	56.	d	57.	b						

Measure of Dispersion

EXERCISE Range 1. What is the coefficient of range for the following wages of 8 workers? Rs 80, Rs 65, Rs 90, Rs 60, Rs 75, Rs 70, Rs 72, Rs 85. (a) Rs 30 (c) 30 (b) Rs 20 (d) 20 2. If R_x and R_y denote ranges of x and y respectively where x and y are related by 3x + 2y + 10 = 0, what would be the relation between x and y? (a) $R_x = R_y$ (c) $3 R_x = 2 R_y$ (b) $2 R_x = 3R_y$ (d) $R_x = 2 R_y$ 3. What is the coefficient of range for the following distribution? Class interval: 10 - 19 40 - 49 20 - 29 30 - 39 50 - 59 Frequency: 11 25 16 7 3 (c) 72.46 (a) 22 (b) 50 (d) 75.82 4. If the range of x is 2, what would be range of -3x + 50? (a) 2 (c) -6 **(b)** 6 (d) 44 **Mean Deviation** 5. What is the value of mean deviation about mean for the numbers? 5, 8, 6, 3, 4. (a) 5.20 (c) 1.44 (b) 7.20 (d) 2.23 6. What is the value of mean deviation about for the following observations? 50, 60, 50, 50, 60, 60, 60, 50, 50, 50, 60, 60, 60, 50. (a) 5 (c) 35 (b) 7 (d) 10 7. The coefficient of mean deviation about mean for the first 9 natural numbers is (c) 400/9 (a) 200/9 (b) 80 (d) 50 8. If the relation between x and y is 5y - 3x = 10 and the mean deviation about mean for x is 12, then the mean deviation of y about mean is (a) 7.20 (c) 20 (b) 6.80 (d) 18.80 9. If two variables x and y are related by 2x + 3y - 7 = 0 and the mean and mean deviation about mean of x are 1 and 0.3 respectively, then the coefficient of mean deviation of y about its mean is

(a) -5 (c) 50

	(b) 12	(d) 4
10.	The mean deviation about mode for th	e numbers 4/11, 6/11, 8/11, 9/11, 12/11, 8/11 is
	(a) 1/6	(c) 6/11
	(b) 1/11	(d) 5/11
		Quartile Deviation
11	The quartiles of everiable are 45.52 a	ad CE respectively. Its quartile deviation is
11.	(a) 10	nd 65 respectively. Its quartile deviation is (c) 25
	(b) 20	(d) 8.30
12.		d the quartile deviation of x is 12, then the quartile deviation of y is
	(a) 16 (b) 14	(c) 10 (d) 9
	(6) 14	(4) 5
		Standard Deviation
13.	What is the standard deviation of 5, 5,	9, 9, 9, 10, 5, 10, 10?
	(a) $\sqrt{14}$]	(c) 4.50
	(b) $\frac{\sqrt{42}}{3}$	(d) 8
14	If the mean and SD of x are a and b res	nectively, then the SD of $\frac{x-a}{x}$ is
14.	(a) -1	(c) ab
	(b) 1	(d) a/b
15	What is the coefficient of variation of t	
13.	53, 52, 61, 60, 64.	
	(a) 8.09	(c) 20.23
	(b) 18.08	(d) 20.45
16.	If the SD of x is 3, what is the variance of	of (5-2x) ?
	(a)36	(c) 1
	(b)6	(d) 9
17.	If x and y are related by $2x + 3y + 4 = 0$	and SD of x is 6, then SD of y is
	(a)22	(c) √5
	(b)4	(d) 9
18.	If the SD of the 1 st n natural numbers is	5.2. then the value of n must be
	(a)2	(c) 6
	(b)7	(d) 5
19.	If x and y are related by $y = 2x + 5$ and t	the SD and AM of x are known to be 5 and 10 respectively, then the
	coefficient of variation is	
	(a)25	(c) 40
	(b)30	(d) 20
20.	The mean and SD for a, b and 2 are 3 a	nd $\frac{2}{\sqrt{3}}$ respectively. The value of ab would be
	(a)5	√3 (c) 11
	(b)6	(d) 3

Ch	ар. 12	Measures of Central Tendency & Dispersion	12.10
21.	 21. The mean and SD for a group of 100 observations are 65 and 7.03 respectively. If 60 of these observ have mean and SD as 70 and 3 respectively, what is the SD for the group comprising 40 observation (a)16 (c) 4 		
	(a)16 (b)25	(c) 4 (d) 2	
22. If two samples of sizes 30 and 20 have means as 55 and 60 and vacancies as 16 and 25 respective what would be the SD of the combined sample of size 50?		espectively, then	
	(a)5.00	(c) 5.23	
	(b)5.06	(d) 5.35	
23. The mean and SD of a sample of 100 observations were calculated as 40 student who took one of the observations as 50 instead of 40 by mistake			
	be		
	(a)4.90	(c) 4.88	
	(b)5.00	(d) 4.85	
		Mixed Problems	
24.	If sum of squares of the	values = 3390, N = 30 and standard deviation = 7, find out the m	iean.
	(a)113	(c) 8	
	(b)210	(d) none of these	
25.	If standard deviation of f	first 'n' natural numbers is 2 then value of 'n' is	
	(a)10	(c) 6	
	(b)7	(d) 5	
26.	The standard deviation is	s independent of change of	
	(a)Scale	(c) both origin and scale	
	(b)Origin	(d) none of these	
27.	If the mean of a frequen is:	cy distribution is 100 and coefficient of variation is 45% then sta	andard deviation
	(a)45	(c) 4.5	
	(b)0.45	(d) 450	
28.	Which of the following r	measures of central tendency cannot be calculated by graphical	method?
	(a)Mean	(c) median	
	(b)Mode	(d) Quartile	
29.	Find at the variance give	n that the Arithmetic Mean = $(8 + 4)/2$	
	(a)2	(c) 1	
	(b)6	(d) 4	
30.		ean, median and mode are	
	(a)Equal	(c) zero	
	(b)Not equal	(d) none of above	
31.		ation about mean for the first 9 natural numbers is	
	(a)200/9 (b)80	(c) 400/9 (d) 50	
	(b)80	(d) 50	

32. If mean = 5, standard deviation = 2.6, median = 5 and quartile deviation = 1.5, then the coefficient of quartile deviation equals
(a)35
(c) 30

(b)39	(d) 32

33. What is value of mean deviation about mean from the number 5, 8, 6, 3 and 4?
 (a)5.20 (c) 1.44
 (b)7.20 (d) 2.23

34.	. For the observation of 6, 4, 1, 6, 5, 10, 4, 8 the range is	
	(a)10	(c) 8
	(b)9	(d) none

35. If a variance of a random variable 'x' is 23, then what is variance of 2x + 10?
(a)56
(b)33
(c) 46
(d) 92

36. If variance = 148.6 and \overline{x} = 40, then the coefficient of variation is :(a)37.15(c) 33.75(b)30.48(d) none of the above

37. The SD of first n natural number is _____

(a) $\sqrt{\frac{n^2-1}{12}}$	$(C)\sqrt{\frac{n(n-1)}{6}}$
$(b)\sqrt{\frac{n(n+1)}{12}}$	(d) none of these

38. If mean and coefficient of variation of the marks of 10 students is 20 and 80 respectively. What will be variance of them?

(a)256	(c) 25
(b)16	(d) none of these

39. If same amount is added to or subtracted from all the values of individual series then the standard deviation and variance both shall be ______

(a)Changed	(c) same
(b)Unchanged	(d) none of these

40. The sum of the squares of deviations of a set of observations has the smallest value, when the deviations are taken from their:

(a) A.M	(b) H.M
(c) G.M	(d) None

- **41.** If two samples of sizes 30 and 20 have means as 55 and 60 and variances as 16 and 25 respectively, then what would be the S.D of the combined sample size 50?
 - (a) 5.33 (b) 5.17 (c) 5.06 (d) 5

42. ______ are used for measuring central tendency, dispersion and skewness:

(a) Median(b) Deciles(c) Percentiles(d) Quartiles

43. Which of the following companies A or B is more consistent so far as the payment of dividend is concerned?

Dividend paid by A: 5 9 6 12 15 1	0 8 10
Dividend paid by B: 4 8 7 15 18 9	6 6
(a) A	(b) B
(c) Both A & B	(d) Neither A nor B

44. A lady travel at a speed of 20 km/h and returned at quicker speed. If her average speed of the whole journey is 24 km/h, find the speed of return journey (in km/h)

(a) 25	(b) 30
(c) 35	(d) 38

45. If Standard deviation of x is σ , then Standard deviation of ax + b, where a, b and c (c ± 0) are arbitrary constants, will be

(a) σ	(b) $\frac{a\sigma+b}{c}$
(c) $\frac{a}{c}$. σ	(d) $\left \frac{a}{c}\right \sigma$

46. The quartile deviation is:

(a) 2/3 of S.D	(b) 4/5 of S.D
(c) 5/6 of S.D	(d) None of these

- **47.** If a variance of a random variable 'x' is 23, then what is variance of 2x + 10?
 - (a) 56 (b) 33 (c) 46 (d) 92

48. If variance = 148.6 and \overline{x} = 40, then the coefficient of variation is:

(a) 37.15 (b) 30.48 (c) 33.75 (d) None

Theory Based Questions

- 49. Which of the following statements is correct?
 - (a) Two distributions may have identical measures of central tendency and dispersion.
 - (b) Two distributions may have the identical measures of central tendency but different measures of dispersion
 - (c) Two distributions may have the different measures of central tendency but identical measures of dispersion.
 - (d) All the statements (a), (b) and (c)

50. Dispersion measures

- (a) The scatternes of a set of observations
- (b) The concentration of a set of observations
- (c) Both (a) and (b)
- (d) Neither (a) and (b)
- 51. When it comes to comparing two or more distributions, we consider
 - (a) Absolute measures of dispersion
 - (b) Relative measures of dispersion
 - (c) Both (a) and (b)
 - (d) Either (a) or (b)

52.	 Which one is easier to compute? (a) Relative measures of dispersion (b) Absolute measures of dispersion (c) Both (a) and (b) (d) Range 	
53.	Which one is an absolute measure of dispersion	
	(a) Range(c) Standard Deviation	(b) Mean Deviation(d) All these measures
	(c) Standard Deviation	(u) All these measures
54.	Which measure of dispersion is most useful?	
•	(a) Standard Deviation	(b) Quartile deviation
	(c) Mean Deviation	(d) Range
55.	Which measures of dispersions is not affected b	y the presence of extreme observations?
	(a) Range	(b) Mean deviation
	(c) Standard deviation	(d) Quartile deviation
56.	Which measure of dispersion is based on the ab	-
	(a) Standard Deviation	(b) Mean deviation
	(c) Quartile deviation	(d) Range
57.	Which measure is based on only the central fifty	v percent of the observations?
	(a) Standard deviation	(b) Quartile deviation
	(c) Mean deviation	(d) All these measures
58.	Which measure of dispersion is based on all the	observations?
	(a) Mean deviation	(b) Standard deviation
	(c) Quartile deviation	(d) (a) and (b) but not (c)
59.	The appropriate measure of dispersion for open	
	(a) Standard deviation	(b) Mean deviation
	(c) Quartile deviation	(d) All these measures
60	The most commonly used measure of dispersion	n ic
00.	(a) Range	(b) Standard deviation
	(c) Coefficient of variation	(d) Quartile deviation
61.	Which measure of dispersion has some desirabl	e mathematical properties?
	(a) Standard deviation	(b) Mean deviation
	(c) Quartile deviation	(d) All these measure
62.		the last ten months, then the standard deviation of profits
	for these ten months would be?	
	(a) Positive	(b) Negative
~~	(c) Zero	(d) (a) or (c)
63.		inding a pooled measure of dispersion after combining
	several groups? (a) Mean deviation	(b) Standard deviation
	(c) Quartile deviation	(d) Any of these
		(a) may or these

64. A shift of origin has no impact on(a) Range(c) Standard deviation	(b) Mean deviation (d) All these and quartile deviation
 65. The range of 15, 12, 10, 9, 17, 20 is (a) 5 (c) 13 	(b) 12 (d) 11
66. For any two numbers SD is always(a) Twice the range(c) square of the range	(b) Half of the range (d) None of these

67. If all the observations are increased by 10, then

- (a) SD would be increased by 10
- (b) Mean deviation would be increased by 10
- (c) Quartile deviation would be increased by 10
- (d) All these three remain unchanged
- 68. If all the observations are multiplied by 2, then
 - (a) New SD would be also multiplied by 2
 - (b) New SD would be half of the previous SD
 - (c) New SD would be increased by 2
 - (d) New SD would be decreased by 2

Answer Sheet

1.	d	2.	С	3.	С	4.	b	5.	С	6.	а	7.	С	8.	а	9.	b	10.	b
11.	а	12.	d	13.	b	14.	b	15.	а	16.	а	17.	b	18.	b	19.	С	20.	С
21.	С	22.	b	23.	b	24.	С	25.	а	26.	b	27.	а	28.	а	29.	b	30.	а
31.	С	32.	С	33.	С	34.	b	35.	d	36.	b	37.	a	38.	а	39.	b	40.	а
41.	С	42.	d	43.	а	44.	b	45.	d	46.	а	47.	d	48.	b	49.	d	50.	а
51.	b	52.	d	53.	d	54.	a	55.	d	56.	b	57.	b	58.	d	59.	С	60.	b
61.	а	62.	С	63.	b	64.	d	65.	d	66.	b	67.	d	68.	а				

Correlation Analysis

						E	XERCISE						
	Practical Questions												
	Basic Problems												
1. If y	1. If $y = a + bx$, then what is the coefficient of correlation between x and y?												
• •)1)-1					(c) 1 or -1 (d) none		ing as b 3	> 0 or b	< 0			
					Karl Pe	arson C	orrelatio	on Coef	ficient				
	2. Compute the co-efficient between x & y from the following data $n = 10$, $\sum xy = 220$, $\sum x^2 = 200$, $\sum y^2 = 262$, $\sum x = 40$, $\sum y = 50$												
• •) 0.9					(c) 0.4							
(b) 0.6	25			((d) 0.5							
wl (a	 3. If for two variables x and y, the covariance, variance of x and variance of y are 40, 16 and 256 respectively, what is the value of the correlation coefficient? (a) 0.01 (c) 0.4 (b) 0.625 (d) 0.5 												
(a (b (c)) No) Th) Th	e produ e produ	tion ct of the ct of the	restrictio standard standard ndard dev	deviatio deviatio	ons shou ons shoul	ld be mo d be less	re than 1 s than 15	15.	ns of x a	nd y?		
				en two va er variab		is 20 and	the vari	ance of o	one of th	e variabl	es is 16,	what wo	uld be
	-	ore than				(c) less tł							
(b) Mo	ore than	10		((d) more	than 1.2	5					
6. Wh	at is	s the val	ue of cor	relation o	coefficie	nt due to	Pearson	on the b	basis of t	he follov	ving data	1:	
-	X:	-5	-4	-3	-2	-1	0	1	2	3	4	5]
				-		-	-		-	-	-	-	-

	X:	-5	-4	-3	-2	-1	0	1	2	3	4	5
	Y:	27	18	11	6	3	2	3	6	11	18	27
(a	(a)1 (c) 0											
(ł) -1				(d) -0.5						

Spearman Rank Correlation

7. If the sum of squares of difference of ranks, given by two judges A and B, of 8 students in 21, what is the value of rank correlation coefficient?

(a) 0.7	(c) 0.75
(b) 0.65	(d) 0.8

8. If the rank correlation coefficient between marks in management and mathematics for a group of students in 0.6 and the sum of squares of the differences in ranks in 66, what is the number of students in the group?
(a) 10
(c) 8

(a) 10	(c) 8
(b) 9	(d) 11

9. While computing rank correlation coefficient between profit and investment for the last 6 years of a company the difference in rank for a year was taken 3 instead of 4. What is the rectified rank correlation coefficient if it is known that the original value of rank correlation coefficient was 0.4?
(a) 0.3

(a) 0.3	(c) 0.25
(b) 0.2	(d) 0.28

Coefficient of Concurrent Deviation

10. For 10 pairs of observations no. of concurrent deviations was found to be 4. What is the value of the coefficient of concurrent deviation?

$(a)\sqrt{0.2}$	(c) 1/3
(b) $-\sqrt{0.2}$	(d) -1/3

11. The coefficient of concurrent deviation for p pairs of observations was found to be $1/\sqrt{3}$. If the number of concurrent deviations was found to be 6, then the value of p is

(a) 10	(c) 8	
a > a	(1)	

(b)9 **(d)** none of these

Property Based Problems

12. If u + 5x = 6 and 3y - 7v = 20 and the correlation coefficient between x and y is 0.58 then what would be the correlation coefficient between u and v?

(a) 0.58	(c) -0.84
(b) -0.58	(d) 0.84

13. If the relation between x and u is 3x + 4u + 7 = 0 and the correlation coefficient between x and y is -0.6, then what is the correlation coefficient between u and y?

(a) -0.6	(c) 0.6
(b) 0.8	(d) -0.8

14. From the following data

X:	2	3	5	4	7
Y:	4	6	7	8	10

Two coefficients of correlation were found to be 0.93. what is the correlation between u and v as given below?

U:	-3	-2	0	-1	2	
V:	-4	-2	-1	0	2	
(a) -0.93 (b) 0.93		(c) 0. (d) -0	57			
(b) 0.93		(d) -0	.57			

15. Referring the data presented in Q.no 8, what would be the correlation between u and v?

U:	10	15	25	20	35
V:	-24	-36	-42	-48	-60
(a)-0.6 (b)0.6		(c) -0.93 (d) 0.93			
(b) 0.6		(d) 0.93			

16. If r = 0.6 then the coefficient of non-determination is

(a) 0.4	(c) 0.36
(b) -0.6	(d) 0.64

Mixed Problems

17. When each individual gets the exactly opposite rank by the two judges, then the rank correlation will be

bc	
(a) 0	(c) +1
(b) -1	(d) $\frac{1}{2}$

18. If the coefficient of correlation between X and Y variables is +0.90 then what will be the coefficient of determination?

(a) 0.30	(c) 0.94
(b)0.81	(d) none of these

19. In a beauty contest there were 10 competitions. Rank of these candidates are assigned by two judges A and B. the sum of squares of differences of ranks is 44. The value of rank correlation is:

(a)0.70	(c) 0.80
(b) 0.73	(d) 0.60

20. The coefficient of correlation between x and y is 0.6. If x and y values are multiplied by -1, then the coefficient of correlation will be:

(a) 0.6	(c) $\frac{1}{0.6}$
(b) -0.6	(d) 1 – 0.6

21. If two regression lines are 5y = 9x - 22 and 20x = 9y + 350, then the value of correlation coefficient (r) will be:
 (a)0.10
 (b)-0.10
 (c) -0.90
 (d) 0.90

(a)AM

(b)GM

(a) 0.40	(c) 0.36
(b) -0.60	(d) 0.64

23. The correlation coefficient (r) is the _____ of the two regression coefficients (byx and bxy)

(c) HM (d) median

24. The coefficient of determination is defined by the formula

(a) $r^2 = \frac{1 - unexplained variance}{1 - unexplained variance}$	(c) both (a) and (b)
total variance	
(b) $r^2 = \frac{1 - explained variance}{1 - explained variance}$	(d) none
total variance	(u) none

- **25.** A relationship $r^2 = 1 \frac{500}{300}$ is not possible
 - (a)True(c) both(b)False(d) none

Theory Based Questions

- 26. Bivariate Data are the data collected for
 - (a) Two variables
 - (b) More than two variables
 - (c) Two variables at the same point of time
 - (d) Two variables at different points of time
- 27. For a bivariate frequency table having (p + q) classification the total number of cells is
 - (a) p (b) p + q
 - (c) q (d) pq

28. Some of the cell frequencies in a bivariate frequency table may be

- (a) Negative (b) Zero
- (c) a or b (d) None of these

29. For a p × q bivariate frequency table, the maximum number of marginal distributions is

- (a) p (b) p + q
- (c) 1 (d) 2

30. For a p × q classification of bivariate data, the maximum number of conditional distributions is

- (a) p (b) p + q
- (c) pq (d) p or q
- 31. Correlation analysis aims at
 - (a) Predicting one variable for a given value of the other variable
 - (b) Establishing relation between two variables
 - (c) Measuring the extent of relation between two variables
 - (d) Both (b) and (c)

32. What is spurious correlation?

- (a) It is a bad relation between two variables
- (b) It is very low correlation between two variables
- (c) It is the correlation between two variables having no causal relation
- (d) It is a negative correlation
- 33. Scatter diagram is considered for measuring
 - (a) Linear relationship between two variables
 - (b) Curvilinear relationship between two variables
 - (c) Neither (a) or (b)
 - (d) Both (a) and (b)

34. If the plotted points in a scatter diagram lie from upper left to lower right, then the correlation is

- (a) Positive (b) Zero
- (c) Negative (d) None of these

35. If the plotted points in a scatter diagram are evenly distributed, then the correlation is

- (a) Zero (b) Negative
- (c) Positive (d) (a) or (b)

36. If all the plotted points in a scatter diagram lie on a single line, then the correlation is

(a) Perfect positive	(b) Perfect negative
(c) Both (a) and (b)	(d) Either (a) or (b)

- 37. The correlation between shoe-size and intelligence is
 - (a) Zero (b) Positive
 - (c) Negative (d) None of these

38. The correlation between the speed of an automobile and the distance travelled by it after applying the brakes is

- (a) Negative (b) Zero
- (c) Positive (d) None of these
- 39. Scatter diagram helps us to
 - (a) Find the nature correlation between two variables
 - (b) Compute the extent of correlation between two variables
 - (c) Obtain the mathematical relationship between two variables
 - (d) Both (a) and (c)
- 40. Pearson's correlation coefficient is used for finding
 - (a) Correlation for any type of relation
 - (b) Correlation for linear relation only
 - (c) Correlation for curvilinear relation only
 - (d) Both (b) and (c)
- 41. Product moment correlation coefficient is considered for
 - (a) Finding the nature of correlation
 - (b) Finding the amount of correlation
 - (c) Both (a) and (b)
 - (d) Either (a) and (b)

- 42. If the value of correlation coefficient is positive, then the points in a scatter diagram tend to cluster
 - (a) From lower left corner to upper right corner
 - (b) From lower left corner to lower right corner
 - (c) From lower right corner to upper left corner
 - (d) From lower right corner to upper right corner

43. Product moment correlation coefficient may be defined as the ratio of

- (a) The product of standard deviations of the two variables to the covariance between them
- (b) The covariance between the variables to the product of the variances of them
- (c) The covariance between the variables to the product of their standard deviations
- (d) Either (b) or (c)

44. The covariance between two variables is

- (a) Strictly positive (b) Strictly negative
- (c) Always 0 (d) Either positive or negative or zero
- **45.** The coefficient of correlation between two variables
 - (a) Can have any unit
 - (b) Is expressed as the product of units of the two variables
 - (c) Is a unit free measure
 - (d) None of these
- 46. What are the limits of the correlation coefficient?
 - (a) No limit
 - (b) -1 and 1
 - (c) 0 and 1, including the limits
 - (d) -1 and 1, including the limits
- **47.** In case the correlation coefficient between two variables is 1, the relationship between the two variables would be
 - (a) y = a + bx
 - (b) y = a + bx, b > 0
 - (c) y = a +bx, b < 0
 - (d) y = a + bx, both a and b being positive
- **48.** If the relationship between two variables x and y in given by 2x + 3y + 4 = 0, then the value of the correlation coefficient between x and y is
 - (a) 0 (b) 1
 - (c) -1 (d) negative
- 49. For finding correlation between two attributes, we conside
 - (a) Pearson's correlation coefficient
 - (b) Scatter diagram
 - (c) Spearman's rank correlation coefficient
 - (d) Coefficient of concurrent deviations.
- 50. For finding the degree of agreement about beauty between two judges in a beauty contest, we use
 - (a) Scatter diagram
 - (b) coefficient of rank correlation
 - (c) Coefficient of correlation
 - (d) Coefficient of concurrent deviation

- **51.** If there is a perfect disagreement between the marks in Geography and Statistics, then what would be the value of rank correlation coefficient?
 - (a) Any value
 (b) Only 1

 (c) Only -1
 (d) (b) or (c)
- 52. When we are not concerned with the magnitude of the two variables under discussion, we consider
 - (a) Rank correlation coefficient
 - (b) product moment correlation coefficient
 - (c) Coefficient of concurrent deviation
 - (d) (a) or (b) but not (c)
- 53. What is the quickest method to find correlation between two variables?
 - (a) Scatter diagram
 - (b) Method of concurrent deviation
 - (c) Method of rank correlation
 - (d) Method of product moment correlation
- 54. What are the limits of the coefficient of concurrent deviations?
 - (a) No limit
 - (b) Between -1 and 0, including the limiting values
 - (c) Between 0 and 1, including the limiting values
 - (d) Between -1 and 1, the limiting values inclusive
- 55. The method applied for deriving the regression equations is known as
 - (a) Least squares

- (b) Concurrent deviation(d) Normal equation
- (c) Product moment (d) Normal e

Answer Sheet

1.	С	2.	а	3.	b	4.	b	5.	а	6.	С	7.	С	8.	а	9.	b	10.	d
11.	а	12.	b	13.	С	14.	b	15.	С	16.	d	17.	b	18.	b	19.	b	20.	а
21.	d	22.	d	23.	b	24.	С	25.	а	26.	С	27.	d	28.	b	29.	d	30.	b
31.	d	32.	С	33.	d	34.	С	35.	а	36.	d	37.	а	38.	а	39.	а	40.	b
41.	С	42.	а	43.	С	44.	d	45.	С	46.	d	47.	b	48.	С	49.	С	50.	b
51.	С	52.	С	53.	b	54.	d	55.	а										

Summary Notes

Regression Analysis

EXERCISE

PRACTICAL QUESTIONS

Regression Coefficient

1 .	You are given the followin	g information's:		
Γ		Price (Rs.) (X)	Amounts demanded ('000 units) (y)	
Ī	Arithmetic Mean	20	55	
Γ	Standard deviation	2	5	
(correlation coefficient r =	0.6		
,	The regression coefficient	of y on x (b _{yx}) is		
((a) -3	(b) +3		
((c) 1.5	(d) None		
2. 7	The regression coefficient	of X on Y of the following d	ata.	
J	N = 10; ΣX = 250; Σ Y = 22	10; $\Sigma(X-25)^2 = 262;$		
$\Sigma(Y - 21)^2 = 322$, $\Sigma(X - 25)(Y - 21) = 192$ is				
((a) 0.596	(b) -0.414		
((c) 0.568	(d) None		
3. 7	The regression coefficient	of Y on X (b _{yx}) of the follow	ing data cov. (X ; Y) = 121; $\sigma x = 15$; $\sigma y = 14$ is	
((a) 0.54	(b) 0.55		
((c) 0.6875	(d) None		
4. ⁷	4. The regression coefficient b_{xy} for the following data:			
{(x, y): (6,4), (8, 3), (5, 2), (7, 4), (4,2)} is:				
((a) 0.4.	(b) 0.3		
((c) 0.8	(d) None		
5.	Given the following data :			
2	$\Sigma(X - \overline{X})(Y - \overline{Y}) = 3900, \Sigma(X - \overline{X})^2 = 6360,$			
	$\Sigma(Y - \overline{Y})^2 = 2668$	-		
2	2(1 - 1) = 2000			
	then the regression coeffic	cient b _{xy} is :		

6. Given below the information about the capita! employed and profit earned by a company over the last twenty-five years:

(d) None

Particulars	Mean	SD
Capital employed ('0000 Rs.)	62	5
Profit earned ('000 Rs.)	25	6

Correlation Coefficient between capital and profit = 0.69. The sum of the regression coefficients for the above data would be :

(a) 1.403	(b) 2.958
(c) 3.241	(d) None

(c) 4.363

- 7. In a correlation study of two variables X and Y, the following values are obtained: $\overline{X} = 45$, $\overline{Y} = 54$, $\sigma_x = 4$; $\sigma_y = 5$; r = 0.8, The two regression coefficients (b_{xy} , b_{yx}) are
 - (a) (5.57,3.12)
 (b) (0.64, 1.00)
 (c) (7.12,2.67)
 (d) None of these
- 8. Regression equation of Y on X is 4X 5Y + 31 = 0 and $\sigma_x = 9$. Hence Cov.(X, Y) is equal to : (a) 9.25 (b) 7.2 (c) 5.4 (d) None of these.
- **9.** Following are the two normal equations obtained for deriving the regression line of y and x: 5a + 10b = 4010a + 25b = 95

The regression line of y on x is given by

-	
(a) $2x + 3y = 5$	(b) $y = 2 + 3x$
(c) $2y + 3x = 5$	(d) $y = 3 + 5x$

10. Given the regression equations as 3x + y = 13 and 2x + 5y = 20, which one is the regression equation of y on x?

(a) 1 st equation	(b) both (a) and (b)
(c) 2 nd equation	(d) none of these

11. Find the regression equation from the following data:

If $\sum X = 34$, $\sum Y = 56$, $\sum XY = 351$, $\sum X^2 = 234$, $\sum Y^2 = 554$, $N = 6$			
Hence estimate Y when X is 10 and estimate also x when Y is 12.			
(a) 12 & 13	(b) 12.60 & 15.89		
(c) 11.76 & 15.30	(d) none of these		

Property Based Problem

12. If u = 2x + 5 and v = -3y - 6 and regression coefficient of y on x is 2.4, what is the regression coefficient of v on u?
(a) 3.6
(b) 2.4
(c) -3.6
(d) -2.4

13. If 4y - 5x = 15 is the regression line of y on x and the coefficient of correlation between x and y is 0.75, what is the value of the regression coefficient of x on y?

	0
(a) 0.45	(b) 0.6
(c) 0.9375	(d) none of these

14. If y = 3x + 4 is the regression line of y on x and the arithmetic mean of x is -1, what is the arithmetic mean of y?

(a) 1	(b) 7
(c) -1	(d) none of these

15. If the regression line of y on x and of x on y are given by 2x + 3y = -1 and 5x + 6y = -1 then the arithmetic means of x and y are given by

(a) (1, -1) (b) (-1, -1) (c) (-1, 1) (d) (2, 3)

(a) 0.5	f correlation between x and y? (b) -0.5	
$(c) - 1/\sqrt{2}$	(d) none of these	
17. If the regression coeff	cient of y on x, the coefficient of correlation between x and y and varian	ce of y
are $-3/4$, $\frac{\sqrt{3}}{2}$ and 4 resp	ctively, what is the variance of x?	
(a) 2/ $\sqrt{3/2}$	(b) 4/3	
(c) 16/3	(d) 4	
18.In a bivariate distribut	on $b_{xy} = 0.49$ and $b_{yx} = 0.25$, then the coefficient of determination is giv	ven by:
(a) 0.1313	(b) 0.1225	
(c) 0.1523	(d) None	
19. In a bivariate data b _{xy}	0.14 and $b_{yx} = 0.38$, then the coefficient of non-determination is given	by:
(a) 0.3425	(b) 0.9468	
(c) 0.5729	(d) None	
20. In a bivariate data: σ x	= 15, $r = 0.60$, then the standard error of estimate of X on Y is given by	:
(a) 24	(b) 14	
(c) 12	(d) None	
21. For a bivariate data, th	two lines of regression are $4x - y + 13=0$ and $4x - 9y + 17=0$. For this	data r =
(a) 1/9	(b) 1/3	
(c) 3/4	(d) None	
22. If the correlation coeff	ient between two variables X and Y is 0.5 and the regression coefficien	t of X or
	sion coefficient of Y on X is:	
(a) 0.7	(b) ±0.5	
(c) 1.25	(d) None of these.	
	Mixed Problems	
23. Two regression equati		
Regression equation		
	f y on x: 64x - 45y = 24	
What will be the mean	-	
(a) $\overline{x} = 8, \overline{y} = 6$ (c) $\overline{x} = 6, \overline{y} = 6$	(b) $\overline{x} = 6, \overline{y} = 8$	
(c)x = 0, y = 0	(d) $\overline{x} = 8, \overline{y} = 8$	
24. The two lines of regres	ion become identical when	
(a) R = 1	(b) $r = 0$	
(c) R=-1	(d) (a) or (b)	
25. If $r = 0.6$, then the coefficients of the coefficient of the c		
(a) 0.4	(b) 0.36	
(a)0.4 (c)-0.6	(d) 0.64	

(a)Represent means	(b) (a) and (b)
(c)Represent S.Ds	(d) none of these

27. Out of the following the one which effects the regression coefficient is

(a) Change of origin only

(b)Change of scale and origin both

(c) change of scale only

(d)neither change in origin nor change of scale

28. The regression equation x and y is 3x + 2y = 100, the value of b_{xy}

(a) $-\frac{2}{3}$	$(b)^{\frac{3}{2}}$
(c) $\frac{100}{3}$	(d) $\frac{2}{3}$

29. The equation of two lines of regression for 'x' and 'y' are 5x = 22 + y and 64x = 24 + 45y then the value of regression coefficient of 'y' on 'x' will be _____.

(a) 5	(b) $\frac{64}{45}$
$(c)^{\frac{1}{5}}$	(d) $\frac{45}{64}$

30. If the correlation coefficient between two variables is zero, then the lines of regression are :

(a)Parallel	(b) coincide
(c)Perpendicular	(d) none of these

31. If the value of correlation between x & y is 1, then the value of correlation coefficient between x – 2 and $\frac{-y}{2} + 1$ is :

Z	
(a) 1	(b) -1/2
(c) -1	(d) ½

32. The equations of two regression lines are x + y = 6 and x + 2y = 10, then the value of correlation coefficient between x and y is :

(a) -1/2	(b) -1/√2
(c) +1/2	(d) $+1/\sqrt{2}$

33. Two regression lines are

16x - 20y + 132 = 0 80x - 36y - 428 = 0The value of the correlation coefficient is (a) 0.6 (b) 0.54 (c) -0.6 (d) 0.45

34. When the correlation coefficient r is equal to + 1, all the points in a scatter diagram would be (a)On a straight line directed from upper left to lower right

(b)On a straight line directed from lower to upper right(c)On a straight line

(**d**)Both (a) and (b)

35.Out of following which is correct?

(a)
$$b_{yx} = r \frac{\sigma_x}{\sigma_y}$$

(b) $b_{yx} = \frac{\pi \sum xy}{\sigma_x}$
(c) $b_{yx} = r \frac{\sigma_y}{\sigma_x}$
(d) $b_{yx} = \frac{\pi \sum xy}{\sigma_y}$

Theory Based Questions

36.Regression analysis is concerned with

- (a) Establishing a mathematical relationship between two variables
- **(b)** Measuring the extent of association between two variables
- (c) Predicting the value of the dependent variable for a given value of the independent

(d) Both (a) and (c)

37. If there are two variables x and y, then the number of regression equations could be

(a) 1	(b) 2
(c) Any number	(d) 3

38. Since Blood Pressure of a person depends on age, we need consider

(a) The regression equation of Blood Pressure on age

(b) The regression equation of age on Blood Pressure

(c) Both (a) and (b)

(d) Either (a) or (b)

39. The difference between the observed value and the estimated value in regression analysis is known as

(a) Error	(b) Residue
(c) Deviation	(d) (a) or (b)

40. The errors in case of regression equations are

(a) Positive	(b) Negative
(c) Zero	(d) All these

41. The regression line of y on x is derived by

(a) The minimization of vertical distances in the scatter diagram

(b) The minimization of horizontal distances in the scatter diagram

- (c) Both (a) and (b)
- **(d)** (a) or (b)

42. The two lines of regression become identical when

(a) r = 1	(b) r = -1
(c) r = 0	(d) (a) or (b)

43. What are the limits of the two regression coefficients?

(a) No limit

(b) Must be positive

(c) One positive and the other negative

(d) Product of the regression coefficient must be numerically less than unity

44. The regression coefficients remain unchanged due to a

(a) Shift of origin	(b) Shift of scale
(c) Both (a) and (b)	(d) (a) or (b)

45. The method of least squares dictates that we choose a regression line where the sum of the square of deviations of the points from the lie is:

(a) Maximum	(b) Minimum
(c) Zero	(d) Positive

46. A relationship where the flow of the data points is best represented by a curve is called:

- (a) Linear relationship
- (b) Nonlinear relationship
- (c) Linear positive
- (d) Linear negative

47.What are the limits of the two regression coefficients?

- (a) Both positive or both negative.
- (b) Must be positive,
- (c) No limit.
- (d) One positive and the other negative
- **48.** The value we would predict for the dependent variable when the independent variables are all equal to zero is called:
 - (a) Slope(b) Sum of residual(c) Intercept(d) Difficult to tell

Answer Sheet

1.	С	2.	а	3.	а	4.	а	5.	а	6.	а	7.	b	8.	b	9.	С	10.	С
11.	С	12.	С	13.	а	14.	а	15.	а	16.	b	17.	С	18.	b	19.	b	20.	С
21.	b	22.	С	23.	а	24.	d	25.	b	26.	а	27.	b	28.	а	29.	b	30.	С
31.	С	32.	b	33.	а	34.	b	35.	С	36.	d	37.	b	38.	а	39.	d	40.	d
41.	а	42.	d	43.	d	44.	а	45.	b	46.	а	47.	а	48.	С				

Probability

Exercise

Subjective Problems

Problems on Sample Space

- **1.** From a group of 2 boys and 3 girls, two children are selected. Find the sample space associated to this random experiment.
- **2.** A coin is tossed. If it shows head, we draw a ball from a bag consisting of 3 red and 4 black balls; if it shows tail, we throw a die. What is the sample associated to this experiment?
- **3.** An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the number on the die is odd, the coin is tossed twice. Write the sample space for this experiment.
- **4.** A coin is tossed. If the result is a head, a die is thrown. If the die shows up an even number, the die is thrown again. What is the sample space for this experiment?

Single Event

- 5. Find the probability of getting a head in a toss of an unbiased coin.
- 6. Ina simultaneous toss of two coins, find the probability of getting:
 (i) 2 heads
 (ii) exactly one head
 (iii) exactly 2 tails
 (iv) exactly one tail
 (v) no tails.
- 7. Three coins are tossed once. Find the probability of getting
 - (i) all heads

- (ii) at least two heads(v) exactly one tail
- (iii) at most two head (vi) exactly 2 tails

- (iv) no head (vii) a head on first coin
- **8.** One card is drawn from a pack of 52 cards, each of the 52 cards being equally likely to be drawn. Find the probability that the card drawn is:
 - (i) an ace,
 - (ii) red,
 - (iii) either red or king,
 - (iv) red and a king.
- 9. An urn contains 9 red, 7 white and 4 black balls. If two balls are drawn at random, find the probability that:
 (i) both the balls are red,
 (ii) one ball is white
 - (iii) the balls are of the same color
- (iv) one is white and other red.
- **10.** A box contains 10 red marbles, 20 blue marbles and 30 green marbles. 5 marbles are drawn from the box, what is the probability that **(i)** all will be blue?

11. A box contains 10 bulbs, of which just three are defective. If a random sample of five bulbs is drawn, find the probabilities that the sample contains:

(i) exactly one defective bulb,

(ii) exactly two defective bulbs,

(iii)no defective bulbs.

MCQ'S

- **12.** Two balls are drawn from a bag containing 5 white and 7 black balls at random. What is the probability that they would be of different colors?
 - (a) 35/66
 - (c) 12/66

(b) 30/66 (d) None of these

- 13. What is the chance of throwing at least 7 in a single cast with 2 dice?
 - (a) 5/12 (b) 7/12
 - (c) 1/4 (d) 17/36
- **14.** If two unbiased dice are rolled together, what is the probability of getting no difference of points?

(a) 1/2	(b) 1/3
(c) 1/5	(d) 1/6

15. There are 10 balls numbered from 1 to 10 in a box. If one of them is selected at random, what is the probability that the number printed on the ball would be an odd number greater that 4?

(a) 0.50	(b) 0.40
(c) 0.60	(d) 0.30

16. Following are the wages of 8 workers in rupees: 50, 62, 40, 70, 45, 56, 32, 45

If one of the workers is selected at random, what is the probability that his wage would be lower than the average wage?

	5 5	
(a) 0.625		(b) 0.500
(c) 0.375		(d) 0.450

17. It is given that a family of 2 children has a girl, what is the probability that the other child is also a girl?

(a) 0.50	(b) 0.75
(c) 1/3	(d) 2/3

18. X and Y stand in a line with 6 other people. What is the probability that there are 3 persons between them?

(a) 1/5	(b) 1/6
(c) 1/7	(d) 1/3

19. Four digits 1, 2, 4 and 6 are selected at random to form a four-digit number. What is the probability that the number so formed, would be divisible by 4?

(a) 1/2	(b) 1/5
/	

d) 1/3

20. Find the probability that a leap year, selected at random, will contain 53 Sundays.

(a) 1/2		(b) 1/5
(c) 1/4		(d) 2/7

- 21. A bag contains 12 balls which are numbered from 1 to 12. If a ball is selected at random, what is the probability that the number of the ball will be a multiple of 5 or 6? (a) 0.30 (b) 0.25
 - (c) 0.20
- 22. If two unbiased dice are rolled, what is the probability of getting points neither 6 nor 9?
 - (a) 0.25 (b) 0.50
 - (c) .075 (d) 0.80
- 23. A number is selected at random from the first 1000 natural numbers. What is the probability that the number so selected would be a multiple of 7 or 11?

(a) 0.25	(b) 0.32
(c) 0.22	(d) 0.33

- 24. Probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24 respectively. Also, the probability is .38 that a truck stopped at a roadblock will have faulty brakes and or badly working tires. What is the probability that a truck stopped at the roadblock will have faulty brakes as well as badly worn tires? (a) 0.45 (b) 0.39
 - (c) 0.62

(d) 1/3

- (d) None of These
- **25.** One number is chosen from numbers 1 to 200. Find the probability that it is divisible by 4 or 6?
 - (a) 67/200
 - (c) 56/200

- (b) 89/200
- (d) None of These
- 26. A drawer contains 50 bolts and 150 nuts. Half of the bolts and half of the nuts are rusted. If one item is chosen at random, what is the probability that it is rusted or a bolt? (a) 5/8 (b) 1/8 (c) 6/8 (d) None of These
- 27. Two dice are thrown together. What is the probability that the sum of the numbers on the two faces is neither divisible by 3 nor by 4?
 - (a) 5/10 (c) 4/7

- (b) 4/9
- (d) None of These
- 28. Two cards are drawn from a pack of 52 cards. What is the probability that either both are red or both are kings? (a) 55/120 (b) 55/221
 - (d) None of These (c) 45/78

29. The probability that a person will get an electric contract is $\frac{2}{r}$ and the probability that he will not get plumbing contract is $\frac{4}{7}$. If the probability of getting at least one contract $is\frac{2}{3}$ what is the probability that he will get both?

- (a) 19/105 (b) 17/105 (c) 21/105 (d) None of These
- **30.** The probability that a person visiting a dentist will have his teeth cleaned is 0.44, the probability that he will have a cavity filled is 0.24. The probability that he will have his teeth cleaned or a cavity filled is 0.60. What is the probability that a person visiting a dentist will have his teeth cleaned and cavity filled? (2) 0 06 (h) 0 00

(a) 0.06	(D) U.U8
(c) 0.8	(d) None of These

- **31.** Probability that Hameed passes in mathematics is $\frac{2}{3}$ and the probability that he passes in English is $\frac{4}{q}$. If the probability of passing both courses is $\frac{1}{4}$ what is the probability that Hameed will pass in at least one of these subjects? (a) 31/36 (b) 17/36 (d) None of These
 - (c) 6/15
- 32. The probability that an Accountant's job applicant has a B. Com. Degree is 0.85, that he is a CA is 0.30 and that he is both B. Com. and CA is 0.25 out of 500 applicants how many would be B. Com. or CA? (a) 450 (b) 535 (c) 615 (d) None of These
- **33.** A card is drawn from a deck of 52 cards. Find the probability of getting a king or a heart or a red card.
 - (a) 5/13

(c) 6/15

(b) 7/13 (d) None of These

Where Question Demands At least One Event to Occur for INDEPENDENT EVENTS

- 34. A problem in probability was given to three CA students A, B and C whose chances of solving it are 1/3, 1/5 and 1/2 respectively. What is the probability that the problem would be solved? (b) 7/8
 - (a) 4/15
 - (c) 8/15 (d) 11/15
- 35. A problem in mathematics is given to 3 students whose chances of solving it are
 - $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. What is the probability that the problem is solved?
 - (a) 3/5
 - (d) None of These (c) 5/6
- **36.** A can solve 90% of the problems given in a book and B can solve 70%. What is the probability that at least one of them will solve the problem, selected at random from the book?
 - (a) 0.97
 - (c) 0.56

(b) 0.89

(b) $1 - (\frac{3}{4})^4$

(b) 3/4

- (d) None of These
- **37.** A machine operates if all of its three components function. The probability that the first component fails during the year is 0.14, the second component fails is 0.10 and the third component fails is 0.05. What is the probability that the machine will fail during the year? (a) 0.2647 (b) 0.8954 (c) 0.5623 (d) None of These
- **38.** A bag contains 5 white, 7 red and 8 black balls. Four balls are drawn one by one with replacement, what is the probability that at least one is white?
 - (a) $1 (\frac{3}{4})^5$
 - (c) $1 (\frac{5}{4})^4$ (d) none of These

39. A bag contains 8 red and 5 white balls. Two successive draws of 3 balls are made without replacement. The probability that the first draw will produce 3 white balls and the second 3 red balls is

(a) 5/223	(b) 6/257
(c) 7/429	(d) 3/548

40. A police-man fires four bullets on a dacoit. The probability that the dacoit will be killed by one bullet is 0.6. What is the probability that the dacoit is still alive?

(a) 0.0256	(b) 0.8954		
(c) 0.5623	(d) None of These		

41. A bag contains 10 white and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that first is white and second is black?(a) 5/7(b) 1/4

- (c) 7/9 (d) 3/5
- **42.** Find the probability of drawing a diamond card in each of the two consecutive draws from a well shuffled pack of cards, if the card drawn is not replaced after the first draw.
 - (a) 5/17 (b) 1/16 (c) 1/17 (d) 3/17
- **43.** A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one without replacement, find the probability of getting all white balls.

(a) 5/969	-	 (b) 6/969
(c) 7/969		(d) 1/969

44. A bag contains 19 tickets, numbered from 1 to 19. A ticket is drawn and then another ticket is drawn without replacement. Find the probability that both tickets will show even numbers.(a) 5/17(b) 1/16

(a) 5/17	(b) 1/16
(c) 4/19	(d) 3/17

45. A box contains 5 white and 7 black balls. Two successive drawn of 3 balls are made

(i) With replacement (ii) without replacement.

The probability that the first draw would produce white balls and the second draw would produce black balls are respectively

(a) 6/321 and 3/926

(c) 35/144 and 35/108

- (b) 1/20 and 1/30
- (d) 7/968 and 5/264

Total Probability

46. There are two urns. The first urn contains 3 red and 5 white balls whereas the second urn contains 4 red and 6 white balls. A ball is taken at random from the first urn and is transferred to the second urn. Now another ball is selected at random from the second arm. The probability that the second ball would be red is

(a) 7/20
(b) 35/88
(c) 17/52
(d) 3/20

47. There are three boxes with the following composition: Box I: 5 Red + 7 White + 6 Blue balls Box II: 4 Red + 8 White + 6 Blue balls Box III: 3 Red + 4 White + 2 Blue balls If one ball is drawn at random, then what is the probability that they would be of same colour?

(a) 89/729
(b) 97/729
(c) 82/729
(d) 23/32

48. There are two boxes containing 5 white and 6 blue balls and 3 white and 7 blue balls respectively. If one of the the boxes is selected at random and a ball is drawn from it, then the probability that the ball is blue is
(a) 115/227(b) 83/250

(d) 127/250

(a) 115/227		
(c) 137/220		

49. A packet of 10 electronic components is known to include 2 defectives. If a sample of 4 components is selected at random from the packet, what is the probability that the sample does not contain more than 1 defective?

(a) 1/3	(b) 2/3
(c) 13/15	(d) 3/15

50. To test the quality of electric bulbs produced in a factory, two bulbs are randomly selected from a large sample without replacement. If either bulb is defective, the entire lot is rejected. Suppose a sample of 200 bulbs contains 5 defective bulbs. Find the probability that the sample will be rejected.

(a) 197/3980	(b) 125/3980
(c) 189/3980	(d) None of These

51. Tom speaks truth in 30 percent cases and Harry speaks truth in 25 percent cases. What is the probability that they would contradict each other?(a) 0.325(b) 0.400

(a) 0.325	(D) 0.400
(c) 0.925	(d) 0.075

52. There are three persons aged 60, 65 and 70 years old. The survival probabilities for these three persons for another 5 years are 0.7, 0.4 and 0.2 respectively. What is the probability that at least two of them would survive another five years?

(a)	0.425
(C)	0.392

(b) 0.456 (d) 0.388

Conditional Probability

53.	Given that for two events A and B, P (A) = P (A/B)? (a) 0.655 (c) 31/60	3/5, P (B) = 2/3 and P (A ∪B) = 3/4, what is (b) 13/60 (d) 0.775	
54.	Given that P(a) = 1/2, P (B) = 1/3, P (A ∩ E (a) 1/2 (c) 5/8	B) = 1/4, what is P (A'/B') (b) 7/8 (d) 2/3	
55.	If P (a) = p and P (B) = q, then (a) $P(A/B) \le p/q$ (c) $P(A/B) \le q/p$	(b) P(A/B) ≤ p/q (d) None of these	
56.	If P(A) = 2/3, P (B) = 3/4, P (A/B) = 2/3, the (a) 1/3 (c) 3/4	n what is P (B /A)? (b) 2/3 (d) ½	
57.	 57. For a group of students, 30 %, 40% and 50% failed in Physics, Chemistry and at least one of the two subjects respectively. If an examinee is selected at random, what is the probability that he passed in Physics if it is known that he failed in Chemistry? (a) 1/2 (b) 1/3 (c) 1/4 (d) 1/6 		
58.		of which 430 are girls. It is known that out of Vhat is the probability that a student chosen chosen student is a girl? (b) 1/13 (d) 1/6	
59.	o 1	the the number on the drawn card is more ven number?	

than 3, what is the probability the	at it is an even numbe
(a) 3/10	(b) 6/13
(c) 4/7	(d) 1/6

60. Assume that each child born is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls given that (i) the youngest is a girl, (ii) at least one is a girl?

(a) 1/2 and 1/3	(b) 2/5 and 1/3
(c) 1/2 and 2/3	(d) None of These

61. In a class 40 % students read Mathematics, 25 % Biology and 15 % both Mathematics and Biology. One student is select at random. The probability that he reads Mathematics if it is known that he reads Biology is

(a) 2/5	(b) 3/5	
(c) 4/5	(d)	none

62. In a class 40 % students read Mathematics, 25 % Biology and 15 % both Mathematics and Biology. One student is select at random. The probability that he reads Biology if he reads Mathematics

(a) 7/8	(b) 1/8

(c) 3/8 (d) none

63. Two coins are tossed simultaneously. What is the probability that the second coin would show a tail given that the first coin has shown a head?(a) 0.50(b) 0.25

(a) 0.50	(b) 0.25
(c) 0.75	(d) 0.125

	Expected Va	alue
64.	If a random variable x assumes the values 0, 0.20, then its expected value is	
	(a) 1.50 (c) 0.90	(b) 3 (d) 1
65.	A packet of 10 electronic components is know are selected from the packet at random, what defective?	
	(a) 1.20 (c) 1.69	(b) 1.21 (d) 1.72
66.	The probability that there is at least one error persons A, B and C are 0.2, 0.3 and 0.1 response 90 such statements, then the expected number (a) 170 (c) 178	ectively. If A, B and C prepare 60, 70 and
67.	A bag contains 6 white and 4 red balls. If a p and Rs. 20 for a white and red balls respective (a) Rs. 25 (c) Rs. 29	
68.	The probability of winning of a person is 6/1 expectation of this person is	1 and at a result he gets Rs. 77/ The
	(a) Rs. 35/-	(b) ' 42/-
	(c) ' 58/-	(d) none
69.	If two random variables x and y are related as x is 2, then the standard deviation of y is $(a) - 6$	y = $-3x + 4$ and standard deviation of (b) 6
	(c) 18	(d) 3.50
70.	If 2x + 3y + 4 = 0 and v(x) = 6 then v (y) is	

70. If 2x + 3y + 4 = 0 and v(x) = 6 then v(y) is (a) 8/3 (b) 9 (c) -9 (d) 6

71. The probability distribution of a random variable x is given below:

X:	1	2	4	5	6		
P:	0.15	0.25	0.20	0.30	0.10		
What is the standard deviation of x?							

(a) 1.49	(b) 1.56
(c) 1.69	(d) 1.72

72. The probability distribution of a random variable is as follows:

72.	The proba	ability distrib	ution of a	random v	variable is as	follows:				
	Х:	1	2	4	6	8				
	P:	k	2k	3k	3k	k]			
	The variar (a) 2.1 (c) 2.32	nce of x is		(b) 4.4 (d) 2.4						
			C	dds In Fa	avor /Agains	st				
73.	73. The odds in favor of one student passing a test are 3:7.The odds against another student passing at are 3:5.The probability that both pass is $(a) \frac{7}{16} \qquad (b) \frac{21}{80} \\ (c) \frac{9}{80} \qquad (d) \frac{3}{16}$									
74.	74. The odds in favor of one student passing a test are 3:7. The odds against anoth student passing at are 3:5. The probability that both fail is $(a) \frac{7}{16} \qquad (b) \frac{21}{80} \\ (c) \frac{9}{80} \qquad (d) \frac{3}{16}$									
			Th	neory Bas	ed Questio	ns				
(((((75. Initially, probability was a branch of (a) Physics (b) Statistics (c) Mathematics (d) Economics. 76. Two broad divisions of probability are (a) Subjective probability and objective probability (b) Deductive probability and non-deductive probability (c) Statistical probability and Mathematical probability (d) None of these. 									
(Subjective (a) Mathem (c) Manage		may be ι	ised in	(b) Statis (d) Accou					
((a) Can not	ment is knov be predicte split into fur	d		(b) Can b	ne results of the experiment (b) Can be predicted (d) Can be selected at random.				
(79. An event that can be split into further events is known as(a) Complex event(b) Mixed event(c) Simple event(d) Composite event.									
() ()	 80. Which of the following pairs of events are mutually exclusive? (a) A : The student reads in a school. (b) A : Raju was born in India. (c) A : Ruma is 16 years old. (d) A : Peter is under 15 years of age. B : He studies Philosophy. B : He is a fine Engineer. B : She is a good singer. B : Peter is a voter of Kolkata. 									
(P(B), then are the sar may be diff					same events ally exclusive e	events.		

(a	If P(A H B) = 0, then the two events A and E a) Mutually exclusive b) Equally likely	B are (b) Exhaustive (d) Independent.
(a	If for two events A and B, P(AUB) = 1, then a) Mutually exclusive events b) Exhaustive events	A and B are (b) Equally likely events (d) Dependent events.
	If an unbiased coin is tossed once, then the (a) Mutually exclusive (c) Equally likely	e two events Head and Tail are (b) Exhaustive (d) All these (a), (b) and (c).
85.	If P(A) = P(B), then the two events A and I (a) Independent (c) Equally likely	B are (b) Dependent (d) Both (a) and (c).
86.	If for two events A and B, $P(A \cap B) \neq P$	(a) \times P(B), then the two events A and B
	are (a) Independent (c) Not equally likely	(b) Dependent (d) Not exhaustive.
87.	If P(A/B) = P(A), then (a) A is independent of B (c) B is dependent of A	(b) B is independent of A (d) Both (a) and (b).
88.	If two events A and B are independent, the (a) A and the complement of B are independent, the (b) B and the complement of A are independent (c) Complements of A and B are independent (d) All of these (a), (b) and (c).	endent endent
89.	If two events A and B are independent, the (a) They can be mutually exclusive (c) They can not be exhaustive	en (b) They can not be mutually exclusive (d) Both (b) and (c).
90.	If two events A and B are mutually exclusi (a) They are always independent (c) They can not be independent	ive, then (b) They may be independent (d) They can not be equally likely.
91.	If a coin is tossed twice, then the events heads' and 'occurrence of no head' are (a) Independent (c) Not equally likely	s 'occurrence of one head', 'occurrence of 2 (b) Equally likely (d) Both (a) and (b).
92.	Probability mass function is always (a) 0 (c) greater than equal to 0	(b) greater than 0 (d) less than 0
93.	The sum of probability mass function is eq (a) -1 (c) 1	qual to (b) 0 (d) none
94.	When X is a continues function f(x)is caller (a) probability mass function (c) both	ed (b) probability density function (d) none

(c) both

95.	Which of the following set of function define a (a) $P(a_1) = \frac{1}{3}$, $P(a_2) = \frac{1}{2}$, $P(a_3) = \frac{1}{4}$ (c) $P(a_1) = P(a_2) = \frac{2}{3}$, $P(a_3) = \frac{1}{4}$	a probability space on S = { $a_1 a_2, a_3$ } (b) P(a_1) = $\frac{1}{3}$ P(a_2) = $\frac{1}{6}$, P(a_3) = $\frac{1}{2}$ (d) None			
96.	If p (a ₁) = 0, P (a ₂) $\frac{1}{3}$, P(a ₃) = $\frac{2}{3}$ then S = {a ₁ a, (a) true (c) both	a} is a probability space, (b) false (d) none			
97.	If two events are independent then (a) P(B/A) = P(AB) P(A) (c) P(B/A) = P(B)	(b) P(B/A) = P(AB) P(B) (d) P(B/A) P(A)			
98.	In formula P(B/A), P (a) is (a) greater than zero (c) equal to zero	(b) less than zero (d) greater than equal to zero			
99.	Two events A and B are mutually exclusive r (a) not disjoint (c) equally likely	neans they are (b) disjoint (d) none			
100.	For a event A which is certain, P (a) is (a) 1 (c) - 1	equal to (b) 0 (d) none			
101.	When none of the outcomes is favourable to (a) certain (c) impossible	the event then the event is said to be (b) sample (d) none			
102.	All possible outcomes of a random experime (a) events (c) both	nt forms the (b) sample space (d) none			
103.	If one of outcomes cannot be expected to oc experiment the events are (a) simple events (c) favourable events	cur in preference to the other in an (b) compound events (d) equally likely events			
104.	If two events cannot occur simultaneously in (a) mutually exclusive events (c) favourable events	the same trial then they are (b) simple events (d) none			
105.	When the number of cases favourable to the (a) 1 (c) $\frac{1}{2}$	event A is none then P(A) is equal to (b) 0 (d) none			
106.	If events A and B are independent then (a) A^c and B^c are dependent (c) A and B^c are dependent	(b) A ^c and B are dependent (d) A ^c and B ^c are also independent			

Answer Sheet

1.		2.		3.		4.		5.		6.		7.		8.		9.		10.	
11.		12.	Α	13.	В	14.	D	15.	D	16.	В	17.	с	18.	С	19.	D	20.	D
21.	D	22.	С	23.	С	24.	в	25.	Α	26.	Α	27.	В	28.	В	29.	В	30.	в
31.	Α	32.	Α	33.	В	34.	D	35.	В	36.	Α	37.	Α	38.	В	39.	С	40.	Α
41.	В	42.	С	43.	D	44.	С	45.	D	46.	в	47.	Α	48.	С	49.	С	50.	Α
51.	в	52.	D	53.	D	54.	С	55.	A	56.	С	57.	Α	58.	Α	59.	С	60.	Α
61.	В	62.	С	63.	Α	64.	С	65.	A	66.	С	67.	D	68.	В	69.	В	70.	Α
71.	С	72.	в	73.	D	74.	в	75.	С	76.	Α	77.	с	78.	D	79.	D	80.	D
81.	С	82.	Α	83.	С	84.	D	85.	С	86.	в	87.	D	88.	D	89.	в	90.	С
91.	С	92.	С	93.	С	94.	В	95.	В	96.	Α	97.	С	98.	Α	99.	В	100	Α
101	с	102	в	103	D	104	Α	105	в	106	D								

т	heoretical Distribut	Chapter	16						
	EXERCISE								
		PRACTICAL QUESTIONS							
	BINOMIAL DISTRIBUTION								
1.	If x is binomial variate with parameter (a)5 and 6 (b)5	 15 and 1/3, what is the value of mode of th (c) 5.50 (d) 6 	e distrib	oution?					
2.	 2. What is the standard deviation of the number of recoveries among 48 patients when the probability of recovering is 0.75? (a) 36 (c) 9 								
3	(b) 81	(d) 3 nial distribution having mean and SD as 3 ar	nd 1 5 re	ospectively?					
5.	(a)2 (b)4	(c) 8 (d) 12	10 1.5 10	spectively:					
4.	What is the probability of getting 3 he (a)0.50 (b)0.25	ads if 6 unbiased coins are tossed simultane (c) 0.3125 (d) 0.6875	ously?						
5.	What is the probability of making 3 co (a)0.3125 (b)0.5676	rrect guesses in 5 True- False answer type c (c) 0.6875 (d) 0.4325	Juestion	s?					
6.	X is binomial variable with n = 20. Wh (a)5 (b)10	at is the mean of X if it is known that x is syn (c) 2 (d) 8	mmetric	?					
7.	If X ~ B (n – p), what would be greate (a)2 (b)4	st value of the variance of x when $n = 16$? (c) 8 (d) $\sqrt{5}$							
8.	If the overall percentage of success students, at least one has passed? (a)0.6525	in an exam is 60, what is the probability (c) 0.8704	that out	of a group of 4					
	(b) 0.9744	(d) 0.0256							
9.	If a random variable X follows binomi 1), what is the value of P ($x \ge 1/x > 0$) (a)0.67 (b)0.56	al with mean as 5 and satisfying the conditi)? (c) 0.99 (d) 0.82	on 10 P	(X = 0) = P (X =					
10									

		POISSON DISTRIBUTION
11.	If a mean of a Poisson variable X is 1 (a)0.456 (b)0.821	 , what is P(X = takes the value at least 1)? (c) 0.632 (d) 0.254
12.		fer a minor equipment failure in an aircraft, what is the probability
13.	If for a Poisson variable X, $f(2) = 3 f(2)$	(4), what is the variance of X?
	(a)2	(c) $\sqrt{2}$
	(b) 4	(d) 3
14.	If the standard deviation of a Poisson (a)0.231 (b)0.158	n variate X is 2, what is P(1.5 < X < 2.9)? (c) 0.15 (d) 0.144
15.	X is a Poisson variate satisfying the f value of $P(X \le 1)$?	following condition 9 $P(X = 4) + 90 P(X = 6) = P(X = 2)$. What is the
	(a)0.5655 (b)0.6559	(c) 0.7358 (d) 0.8201
16.	A random variable x follows Poisson of P ($x > 1/x > 0$)? (a) 0.1876	a distribution and its coefficient of variation is 50. What is the value (c) 0.9254
	(b) 0.2341	(d) 0.8756
17.	If $X \sim P$ (m) and its coefficient of vazero values?	riation is 50, what is the probability that X would assume only non-
	(a) 0.018	(c) 0.989
	(b) 0.982	(d) 0.976
18.	If 1.5 per cent of items produced probability that a sample of 200 item (a)0.05 (b)0.15	by a manufacturing unit are known to be defective, what is the as would contain no defective item? (c) 0.20 (d) 0.22
	(b)0.13	(u) 0.22
19.	For a Poisson variate X, $P(X = 1) = P$	P(X = 2). What is the mean of X?
	(a)1.00	(c) 2.00
	(b) 1.50	(d) 2.50
20.	missiles fired, at least 2 will hit the ta	5
	(a) 0.4258 (b) 0.3968	(c) 0.5238 (d) 0.3611
		Normal Distribution
21.	What is the coefficient of variation of $f(x) = \frac{1}{4\sqrt{2\pi}}e^{-(x-10)^2/32}$ for $-\alpha < x$	f x, characterized by the following probability density function: $< \propto$

$f(x) = \frac{1}{4\sqrt{2\pi}} e^{-(x-10)^{-3/2}}$ for $-\infty < \infty$	$x < \infty$
(a) 50	(c) 40
(b) 60	(d) 30

22.	What is the quartile of X having the f	ollowing probability density function? $F(x) = \frac{1}{\sqrt{72\pi}}e^{-(x-10)^2/72}$	
	for $-\alpha < x < \alpha$ (a)4	(c) 5.95	
	(b)5	(d) 6.75	
23.		e 14.6 and 25.4 respectively, what is the standard deviation of the	
	distribution?		
	(a) 9 (b) 6	(c) 10 (d) 8	
		(4) 0	
24.		riable is 16, what is its quartile deviation?	
	(a)10.00	(c) 15.00	
	(b) 13.50	(d) 12.05	
25	If the points of inflexion of a normal	curve are 40 and 60 respectively, then its mean deviation is	
-0.	(a)40	(c) 50	
	(b) 45	(d) 60	
26	If the quantile deviation of a normal	numerie 4.05 then its mean deviation is	
26.	(a)5.26	curve is 4.05, then its mean deviation is (c) 4.24	
	(b)6.24	(d) 4.80	
27.		ation about median of a normal distribution are 13.25 and 8	
	respectively, then the mode of the di		
	(a)20 (b)10	(c) 15 (d) 12	
	(0)10	(u) 12	
28.		between $z = 0$ to $z = 1$ is 0.3413, then the value of φ (1) is	
	(a) 0.5000	(c) -0.5000	
	(b) 0.8413	(d) 1	
29.	If X and Y are 2 independent normal	variables with mean as 10 and 12 and SD as 3 and \$, then (X+Y) is	
	normally distributed with		
	(a) Mean = 22 and SD = 7	(c) Mean = 22 and SD = 5	
	(b) Mean = 22 and SD = 25	(d) Mean = 22 and SD = 49	
		Theory Based Questions	
	theoretical probability distribution		
•	a) Does not exist •) Exists in real life	(b) Exists only in theory(d) Both (b) and (c)	
(t	J Exists in real me		
	robability distribution may be		
(a) Discrete (b) Continuous			
(0) Infinite	(d) (a) or (b)	
32.4	an important discrete probability dist	ribution is	
) Poisson distribution	(b) Normal distribution	
	Cauchy distribution	(d) log normal distribution	

33. An important continuous probability distribution

1	1	2	
(a) Binomial distribution			(b) Poisson distribution
(c) Geometric distribution	1		(d) Normal distribution

34. Parameter is a characteristic of(a) Population(c) Probability distribution	(b) Sample (d) Both (a) and (b)					
35.An example of a parameter is(a) Sample mean(c) Binomial distribution	(b) Population mean (d) Sample size					
 36.A trial is an attempt to (a) Make something possible (b) Make something impossible (c) Prosecute an offender in a court of (d) Produce an outcome which is neither 						
 37. The important characteristic(s) of Ben (a) Each trial is associated with just two (b) Trials are independent (c) Trials are infinite (d) Both (a) and (b) 						
38. The probability mass function of bino (a) $f(x) = p^{x}q^{n-x}$ (c) $f(x) = {}^{n}c_{x}q^{x}p^{n-x}$	mial distribution is given by (b) $f(x) = {}^{n}c_{x}p^{x}q^{n \cdot x}$ (d) $f(x0 = {}^{n}c_{x}p^{n \cdot x}q^{x}$					
 39. If x is a binomial variable with parameters n and p, then x can assume (a) Any value between 0 and n (b) Any value between 0 and n, both inclusive (c) Any whole number between 0 and n, both inclusive (d) Any number between 0 and infinity 						
 40.A binomial distribution is (a) Never symmetrical (c) never negatively skewed 	(b) Never positively skewed (d) Symmetrical when p =0.5					
 41. The mean of a binomial distribution w (a) n(1 - p) (c) np 	with parameter n and p is (b) $np(1 - p)$ (d) $\sqrt{np(1 - p)}$					
 42. The variance of a binomial distributio (a) np² (1 - p) (c) nq(1 - q) 	n with parameters n and p is (b) $\sqrt{np(1-p)}$ (d) $n^2p^2 (1-p)^2$					
43.An example of a bi-parametric discret(a) Binomial distribution(c) Normal distribution	e probability distribution is (b) Poisson distribution (d) Both (a) and (b)					
44. For a binomial distribution, mean and(a) Are never equal(c) Are equal when q = 0.50	mode (b) Are always equal (d) Do not always exist					
 45. The mean of binomial distribution is (a) Always more than its variance (b) Always equal to its variance (c) Always less than its variance (d) Always equal to its standard deviation 	ation					

 46. For a binomial distribution, there may (a) One mode (c) (a) 	y be (b) Two modes (d) (a) or (b)
 47. The maximum value of the variance o (a) n/2 (c) np(1 - p) 	f a binomial distribution with parameters n and p is (b) n/4 (d) 2n
 48. The method usually applied for fitting (a) Method of least square (b) Method of moments (c) Method of probability distribution (d) Method of deviation 	
 49. Which one is uniparametric distributi (a) Binomial (c) Normal 	ion? (b) Poisson (d) Hyper geometric
 50.For a Poisson distribution (a) Mean and standard deviation are (b) Mean and variance are equal (c) Standard deviation and variance a (d) Both (a) and (b) 	
 51.Poisson distribution may be (a) Unimodal (c) Multi-modal 	(b) Bimodal (d) (a) or (b)
 52. Poisson distribution is (a) Always symmetric (c) Always negatively skewed 	(b) Always positively skewed(d) symmetric only when m = 2
53. A binomial distribution with parameter parameter $m = np$ is (a) $n \to \infty$ (c) $n \to \infty$ and $p \to 0$	ers n and p can be approximated by a Poisson distribution with (b) $p \rightarrow \infty$ (d) $n \rightarrow \infty$ and $p \rightarrow 0$ so that np remains finite
(b) We equate the Poisson parameter	quency distribution to the mean of the frequency distribution to the median of the frequency distribution to the mode of the frequency distribution
 55. The most important continuous probation (a) Binomial distribution (c) Chi-square distribution 	ability distribution is known as (b) Normal distribution (d) Sampling distribution

56. The probability density function of a normal variable x is given by

(a)
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
 for $- \propto < x < \infty$
(b) $f(x) = f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ for $0 < x < \infty$
(c) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ for $- \propto < x < \infty$
(d) None of these

Statistics

57. The total area of the normal curve is(a) One(c) 0.50	(b) 50 per cent (d) Any value between 0 and 1
58. The normal curve is(a) Bell-shaped(c) J-shaped	(b) U-shaped (d) Inverted J-shaped
59. The normal curve is(a) Positively skewed(c) Symmetrical	(b) negatively skewed (d) All these
60. Area of the normal curve (a) Between $- \propto to \mu$ is 0.50 (c) Between $- \propto to \propto$ is 0.50	 (b) Between µ to ∝ is 0.50 (d) Both (a) and (b)
61. The cumulative distribution function of a (a) $F(x) = P(X \le x)$ (c) $F(x) = P(X \ge x)$	a random variable X is given by (b) $F(X) = P(X \le x)$ (d) $F(x) = P(X = x)$
62. The mean and mode of a normal distribution (a) May be equal(c) Are always equal	tion (b) May be different (d) (a) or (b)
63. The mean deviation about median of a st (a) 0.675 σ (c) 0.80 σ	andard normal variate is (b) 0.675 (d) 0.80
64. The quartile deviation of a normal distribution (a) 0.675(c) 2.70	oution with mean 10 and SD 4 is (b) 67.50 (d) 3.20
65. For a standard normal distribution, the p (a) $\mu - \sigma$ and $\mu + \sigma$ (c) – 1 and 1	ooints of inflexion are given by (b) – σ and σ (d) 0 and 1
 66. The symbol φ (a) indicates the area of th (a) 0 to a (c) - ∝ to a 	e standard normal curve between (b) a to ∞ (d) - ∝ <i>to</i> ∝
 67. The interval (μ -3σ, μ + 3σ) covers (a) 95% area of a normal distribution (b) 96% area of a normal distribution (c) 99% area of a normal distribution (d) All but 0.27% area of a normal distribution 	ibution
 68. Number of misprints per page of a hick b (a) Normal distribution (c) Binomial distribution 	oook follows (b) Poisson distribution (d) Standard normal distribution
 69. The results of ODI matches between Indi (a) Binomial distribution (c) Normal distribution 	a and Pakistan follows (b) Poisson distribution (d) (b) or (c)

- (a) Binomial distribution
 - (c) Normal distribution

(b) Poisson distribution

- (d) (Chi-square distribution
- **71.** If X and Y are two independent normal random variables, then the distribution of (X + Y) is
 - (a) Normal (c) T

(b) Standard normal (d) Chi-square

<u>Answer Sheet</u>

1.	b	2.	d	3.	d	4.	С	5.	а	6.	b	7.	b	8.	а	9.	С	10.	b
11.	С	12.	b	13.	а	14.	d	15.	С	16.	С	17.	b	18.	а	19.	С	20.	d
21.	С	22.	С	23.	d	24.	b	25.	а	26.	d	27.	а	28.	b	29.	С	30.	d
31.	d	32.	а	33.	d	34.	а	35.	b	36.	d	37.	d	38.	b	39.	С	40.	d
41.	С	42.	С	43.	а	44.	С	45.	а	46.	С	47.	b	48.	b	49.	b	50.	b
51.	d	52.	b	53.	d	54.	а	55.	b	56.	а	57.	а	58.	а	59.	С	60.	d
61.	а	62.	С	63.	d	64.	С	65.	С	66.	С	67.	d	68.	b	69.	а	70.	С
71.	а																		

Summary Notes

Index Numbers

EXERCISE

PRACTICAL QUESTIONS Basic Problems 1. If the index number of prices at a place in 1994 is 250 with 1984 as base year, then the prices have increased on average by (b) 350% (a)250% (c)150% (d) none of these 2. If the prices of all commodities in a place have increased 125 times in comparison to the base period prices, then the index number of prices for the place is now (a)100 (b) 225 (c)125 (d) none of these 3. If now the prices of all the commodities in a place have been decreased by 85% over the base period prices, then the index number of prices for the place is now (index number of prices of base period = 100)(a)100 (b) 65 (c)135 (d) none of these **Construct Index No 4.** If the prices of all commodities in a place have decreased 35% over the base period prices, then the index number of prices of that place is now (a)35 (b) 65 (c)135 (d) none of these 5. If the prices of all commodities in a place have increased 1.25 times in comparison to the base period, the index number of prices of that place now is (a)125 (b) 225 (c)150 (d) none of these **6.** If $\sum p_o q_o = 1360$, $\sum p_n q_o = 1900$, $\sum p_o q_n = 1344$, $\sum p_n q_n = 1880$ then the Laspeyre's index number is (a)0.71 (b) 1.75 (c)1.39 (d) none of these

7. If the ratio between Laspeyre's index number and Paasche's index number is 28: 27. Then the missing figure in the following table P is:

Commodity	Ba	se year	Curre	nt year		
	Price	Quantity	Price	Quantity		
Х	L	10	2	5		
Y	L	5	Р	2		
(a)7)7 (b) 3					
(d) 9						

8.	3. If $\sum P_n Q_n = 249$, $\sum P_o Q_o = 150$, Paasche's index number = 150 and Drobiseh and Bowely's index					
	number = 145 , then the Fisher's ideal number number is					
	(a)75	(b) 145.97				
	(c)60	(d) none of these				

Miscellaneous Problems							
 9. Consumer Price index number for the year 19 Monthly wages in 1957 of the workers into fa (a)Rs 48.40 (c)Rs 51.12 	 57 was 313 with 1940 as the base year 96 the Average ctory be Rs 160/- their real wages is (b) Rs 40.30 (d) none of these 						
10. If $\sum p_o q_o = 3500$, $\sum p_n q_o = 3850$, then the cos (a)110 (c)90	st of living index (C.L.I) for 1950 w.r. to base 1960 is (b) 100 (d) none of these						
11. The index number in whole sale prices is 152 for August 1999 compared to August 1998. During the year there is net increase in prices of whole sale commodities to the extent of (a)45% (b) 52%							
(c)35%	(d) 48%						
12. The wholesale price index number or agricult The percentage increase in prices of agricultu (a)380 (c)280	nural commodities in a given region at a given date is 280. ral commodities over the base year is: (b) 180 (d) 80						
13. If the 1970 index with base 1965 is 200 and 1 1960 will be:	965 index with base 1960is 150, the index 1970 on base						
(a)700 (c)300	(b) 500 (d) 600						
	10 to 200 and the salary of a worker is also raised from maintain his previous standard of living he should get an						
(a)Rs 85	(b) Rs 98.25						
(c)Rs 90.91	(d) none of these						
15. The prices of a commodity in the year 1975 as year the price relative is:	nd 1980 were 25 and 30 respectively taking 1980 as base						
(a)109.78	(b) 113.25						
(c)110.25	(d) none of these						
- · · ·	ex number goes up from 110 to 200 and the salary of a The worker does not get really gain. Then the real wages						
(a)Rs 45.45	(b) Rs 100						
(c)Rs 43.25	(d) none of these						

17. If the 2018 index with base 2015 is 250 and 2015 index with base 2012 is 150, the index 2018 on base 2012 will be:

(a) 800	(b) 375
(c)600	(d) None

18. The prices of a commodity in the years 2015 and 2016 were 25 and 30 respectively, taking 2015 as base year the price relative is:

(a) 145	-	(b) 120
(c) 125		(d) None of these.

19. From the following data

	Year	2012	2013	2014	2015	2016
	Link Index	100	103	105	112	108
(Base 2012= 100) for	the years 201	2 -16. The co	onstruction of	f chain index	is:
((a) 110,105.25,104,1	18.72				
	(b) 108,110.94,117,1	28.72				
	(c) 103,108.15,121.3	,130.82				
	(d) None of these.					
	Net monthly salary of a	an employee v	vas Rs. 30,00	00 p.m in 201	0. The consu	imer price i
	2018 is 350 with 2010			-		-
t	to be paid to the emplo	oyee is :				
	(a) Rs. 48,000		(b) Rs. 47,000)	
	(c) Rs. 75,000		(d) None of th	ese.	
			401 405	1.1		-
	f the price index for th			-		year, say 2
	the purchasing power (a) 1.32	of money (Ru)	,	b) Rs. 1.11	5 15	
	(c) Rs.1.57		•	d) None of th	050	
			(
		-	Theory Bas	ed Questior	าร	
2.	The series of numeri	cal figures wh	ich shows th	e relative pos	sition is calle	ed:
	(a)Index number	_	(b) absolute n	umber	
	(c)Relative number		(d) none of th	ese	
			e alwaye tak	en as		
3.	Index number for the	e base period i	s always tak	cnus		
3.	Index number for the (a)200	e base period i		b) 1		
3.		e base period i	(
	(a)200 (c)50	important par	(b) 1 d) 100	ıdex number	s.
	(a)200 (c)50 play a very (a)Weights	-	((t in the cons	b) 1 d) 100		s.
	(a)200 (c)50 play a very	-	((t in the cons	b) 1 d) 100 truction of in	IS	's.
4.	(a)200 (c)50 play a very (a)Weights	important par	(((t in the cons (b) 1 d) 100 truction of in b) estimatior d) none of th	is ese	'S.
4.	(a)200 (c)50 play a very (a)Weights (c)Classes	important par	((((t in the cons (((the constru	b) 1 d) 100 truction of in b) estimatior d) none of th	is ese	s.
4.	(a)200 (c)50 play a very (a)Weights (c)Classes is particular	important par	((((t in the cons ((the constru	b) 1 d) 100 truction of in b) estimation d) none of th action of inde	ns ese x numbers.	s.
4 . 5 .	(a)200 (c)50 play a very (a)Weights (c)Classes is particular (a)H.M.	important par rly suitable for	((((t in the cons ((the constru ((b) 1 d) 100 truction of in b) estimation d) none of th action of index b) G.M. d) none of th	is ese x numbers. ese	
3. 4. 5.	(a)200 (c)50 play a very (a)Weights (c)Classes is particular (a)H.M. (c)A.M.	important par rly suitable for	((((t in the cons (((the constru ((nges rather t	b) 1 d) 100 truction of in b) estimation d) none of th action of index b) G.M. d) none of th	is ese x numbers. ese	
ł.	(a)200 (c)50 play a very (a)Weights (c)Classes is particular (a)H.M. (c)A.M. Index numbers show	important par rly suitable for	((((t in the cons ((the constru (nges rather t	b) 1 d) 100 truction of in b) estimation d) none of th ction of inde: b) G.M. d) none of th	ns ese x numbers. ese • amounts of	
4. 5.	(a)200 (c)50 play a very (a)Weights (c)Classes is particular (a)H.M. (c)A.M. Index numbers show (a)Relative (c)Percentage The makes in	important par rly suitable for r char	t in the const ((t the construction () () () () () () () () () () () () ()	 b) 1 d) 100 truction of in b) estimation d) none of th action of index b) G.M. d) none of th chan absolute b) both d) none of th 	ns ese x numbers. ese • amounts of	
4. 5.	(a)200 (c)50 play a very (a)Weights (c)Classes is particular (a)H.M. (c)A.M. Index numbers show (a)Relative (c)Percentage	important par rly suitable for r char	t in the construct t the construct the construct the construct (the construct (the construct (the construct (the construct (the construct (the construct (the construct (the construct) (the construct)) (the construct)) (the construct)) (the construct)) (the construc	 b) 1 d) 100 truction of in b) estimation d) none of th action of index b) G.M. d) none of th chan absolute b) both d) none of th 	ns ese x numbers. ese amounts of ese	

28.	Price relative is equal to	
	(a) $\frac{price in the given year \times 100}{100}$	(b) price in the given year $ imes 100$
	price in the base year	
	(c) $\frac{price in the year base year \times 100}{price in the given year}$	(d) price in the base year \times 100
29.	Index number is equal to	
	(a)Sum of price relatives	(b) product of price relative
	(c)Average of the price relatives	(d) none of these
30.	The of group indices given the General	l Index
	(a)H.M.	(b) A.M.
	(c)G.M.	(d) none of these
31.	Circular Test is one of the tests of	
	(a)Index numbers	(b)both
	(c)Hypothesis	(d) none of these
32.	is an extension of time reversal test	
	(a)Factor Reversal test	(b) both
	(c)Circular test	(d) none of these
33	Weighted G.M. of relative formula satisfy	test
55.	(a)Time Reversal Test	(b) factor reversal test
	(b)Circular test	(d) none of these
		(u) none of these
34.	Factor reversal test is satisfied by	
	(a)Fisher's ideal index	(b) Paasches index
	(c)Laspeyres index	(d) none of these
35.	Laspeyre's formula does not satisfy	
	(a) Factor reversal test	(b) circular test
	(c)Time reversal test	(d) all the above
26	A ratio or an average of ratios expressed as a	norgantago is called
50.	(a)A relative number	(b) an index number
	(c)An absolute number	(d) none of these
	(C)All absolute liuliber	(u) none of these
37.	The value at the base time period serves as the	
	(a)False	(b) both
	(c)True	(d) none of these
38.	An index time series is a list of numb	pers for two or more periods of times
	(a)Index	(b) relative
	(c)Absolute	(d) none of these
39.	Index numbers are often constructed from th	
39.		
	(a)Frequency	(b) sample
	(c)Class	(d) none of these
40.	is a point of reference in comparing	various data describing individual behavior.
	(a)Sample	(b) estimation
	(c)Base period	(d) none of these

41. The ratio of price of single commodity in a given period to its price in the preceding year price is called the

(a)Base period	(b) relative price
(c)Price ratio	(d) none of these

- 42. sum of all commodity prices in the current year×100 sum of all commodity prices in the base year is
 (a)Relative Price Index
 (b) both
 (c)Simple Aggregative Price Index
 - (d) none of these
- **43.** Chain index is equal to

(a) ———	f current year ×chain index of the current year 100
(b) link relative o	f prevoius year ×chain index of the current year
(0)	100
(c) link relative o	f current year ×chain index of the previous year
()	100
(d) link relative o	f previous year \times chain index of the previous year
	100

44.	P ₀₁ is the index for time	
	(a)1 on 0	(b) 1 on 1
	(c)0 on 1	(d) 0 on 0
45.	P ₁₀ is the index for time	
	(a)1 on 0	(b) 1 on 1
	(c)0 on 1	(d) 0 on 0

46. When the product of price index and the quantity index to the corresponding value index then the test that holds is

(a)Unit test
(b) factor reversal test
(c)Time reversal test
(d) none holds

47. The formula should be independent of the unit in which or for which price and quantities are quoted in

	(a)Unit test (c)Time reversal test	(b) factor reversal test (d) none
48.	Laspeyre's method and Paasche's method do not satis (a)Unit test (c)Time reversal test	sfy (b) factor reversal test (d) b & c
49.	The purpose determines the type of index number to (a)Yes (c)No	use (b) may be (d) may not be
50.	The index number is a special type of average (a)False (c)True	(b) both (d) none

51.	The choice of suitable base period is at best temporar	ry solution				
	(a)True	(b) both				
	(c)False	(d) none				
52.	Fisher's Ideal Formula for calculating index numbers satisfies the tests					
	(a)Unit test	(b) both				
	(c)Factor reversal test	(d) none				
53.	Fisher's Ideal Formula does not satisfy test					
	(a)Unit test	(b) time reversal test				
	(c)Circular test	(d) none				
F 4						
54.						
	(a)G.M of price relatives or the weighted aggregate w	-				
	(b)A.M of price relatives or the weighted aggregate w	-				
	(c)G\H.M of price relatives or the weighted aggregate (d)None	e with fixed weights				
	(u)None					
55.	Laspeyre's and Paasche's method time reversa	l test				
	(a)Satisfy	(b) are				
	(c)Do not satisfy	(d) are not				
56.	There is no such thing as un weighted index numbers					
50.	(a)False	(c) both				
	(b)True	(d) none				
57.	Theoretically, G.M is the best average in the construct	tion of index numbers but in practice, mostly				
	the A. M is used					
	(a)False	(b) both				
	(c)True	(d) none				
FO	Lagnarma's on Dagasha's on the Fisher's ideal index do	not acticfy				
58.	Laspeyre's or Paasche's or the Fisher's ideal index do (a)Time reversal test	(b) circular test				
	(c)Unit test	(d) none of these				
59.	is concerned with the measurement of price	changes over a period of years, when it is				
	desirable to shift the base					
	(a)Unit test	(b) time reversal test				
	(c)Circular test	(d) none of these				
60.	The test of shifting the base is called					
00.	(a)Unit test	(b) circular test				
	(c)Time reversal test	(d) none of these				
61.	The formula for conversion to current value					
	(a)Deflated value = $\frac{price \ index \ of \ the \ current \ year}{previous \ value}$					
	(b) Deflated value = $\frac{\text{price index of the current year}}{1}$					
	current value rrice index of the previous year					
	(c)Deflated value = $\frac{price index of the previous year}{previous value}$					
	(d)Deflated value = $\frac{price index of the previous year}{previous value}$					
	previous value					

62	Shifted price index =	original price $\times 100$			
02.	Sinteu price muex –	price Index of the year on which it has to be shifted			
	(a)True	(b) both			
	(c)False	(d) none			

63. The number of test of Adequacy is (a)2 (b) 3 (c)5 (d) 4

64. We use price index numbers(a)To measure and compare prices(b)To measure prices(c)To compare prices(d)None

65.	Simple aggregate of quantities is a type of					
	(a)Quantity control	(b) both				
	(c)Quantity indices	(d) none				

Answer Sheet

1.	С	2.	b	3.	b	4.	b	5.	b	6.	С	7.	С	8.	d	9.	С	10.	а
11.	b	12.	b	13.	С	14.	С	15.	d	16.	b	17.	b	18.	b	19.	С	20.	С
21.	С	22.	а	23.	d	24.	а	25.	b	26.	С	27.	С	28.	а	29.	С	30.	b
31.	а	32.	С	33.	а	34.	d	35.	b	36.	b	37.	С	38.	а	39.	b	40.	С
41.	b	42.	С	43.	С	44.	а	45.	С	46.	b	47.	а	48.	d	49.	а	50.	С
51.	а	52.	b	53.	С	54.	а	55.	С	56.	а	57.	С	58.	b	59.	С	60.	С
61.	b	62.	а	63.	d	64.	а	65.	С										

17.7

Summary Notes

Number Series, Coding & Decoding & Odd Man Out

	EXERCISE						
	Number Series						
1.	6, 11, 21, 36, 56 ? (a) 42	(b) 51	(c) 81	(d) 91			
2.	10,100,200, 310? (a) 400	(b) 410	(c) 420	(d) 430			
3.	11, 13, 17, 19, 23, 25, 27 (a) 33	7 (b) 27	(c) 29	(d) 49			
4.	6, 12, 21, 33 ? (a) 33	(b) 38	(c) 40	(d) 48			
5.	2, 5, 9, 14, ? , 27 (a) 20	(b) 16	(c) 18	(d) 24			
6.	6, 11, 21, ? , 56, 81 (a) 42	(b) 36	(c) 91	(d) 51			
7.	10, 18, 28, 40, 54, ?, 88 (a) 70	(b) 86	(c) 87	(d) 98			
8.	120, 99, ?, 63, 48, 35 (a) 80	(b) 36	(c) 45	(d) 40			
9.	22, 24, 28, 36, ? , 84 (a) 44	(b) 52	(c) 38	(d) 54			
10.	4832, 5840, 6848, 7856 (a) 8864	? (b) 8815	(c) 8846	(d) 8887			
11.	10,100,200, 310, 430? (a) 560	(b) 540	(c) 550	(d) 590			
12.	28, 33, 31, 36, 34 ? (a) 38	(b) 39	(c) 40	(d) 42			
13.	120, 80, 40, 45, ?, 5 (a) 15	(b) 20	(c) 25	(d) 47			
14.	2, 15, 41, 80, 132? (a) 184	(b) 144	(c) 186	(d) 196			
15.	6, 17, 39, ?, 116 (a) 72	(b) 75	(c) 85	(d) 80			

16.	1, 4, 10, 22, ?, 94 (a) 46	(b) 48	(c) 49	(d) 47
17.	4, 9, 25, 48, ? , 169, 289 (a) 120	, 361 (b) 121	(c) 122	(d) 164
18.	4, 12, 36, ? , 324 (a) 107	(b) 109	(c) 108	(d) 110
19.	1, 1, 4, 8,9, ? , 16, 64 (a) 27	(b) 28	(c) 32	(d) 40
20.	5760, 960, 192, ? 16, 8 (a) 47	(b) 48	(c) 52	(d) 50
21.	1, 2, 6, 7, 21, 22, 66, ? , (a) 69	201 (b) 68	(c) 67	(d) 69
22.	48, 24, 96 , ?192 (a) 48	(b) 47	(c) 44	(d) 54
23.	165, 195, 255, 285, ?, 43 (a) 345	35 (b) 390	(c) 335	(d) 395
24.	2, 3, 3, 5, 10, 13, 39, ?, 7 (a) 42	172, 177 (b) 44	(c) 43	(d) 40
25.	7, 26, 63, 214, 215, ?, 57 (a) 342	11 (b) 343	(c) 441	(d) 421
26.	3, 7, 15, 31, ? 127 (a) 62	(b) 63	(c) 64	(d) 65
27.	8, 28, 116, 584, ? (a) 1752	(b) 3502	(c) 3504	(d) 3508
28.	6, 13, 28, 59, ? (a) 122	(b) 114	(c) 113	(d) 112
29.	2, 7, 27, 107, 427, ? (a) 1707	(b) 4027	(c) 4207	(d) 1207
30.	5, 2, 7, 9, 16, 25, 41, ? (a) 65	(b) 66	(c) 67	(d) 68
31.	In a certain language, M. (a) EMMJI	ADRAS is coded NBE (b) EFMIJ	SBT, how DELHI is co (c) EMFIJ	ded in that code? (d) JIFEM
32.	If RAMAN is written as 1 (a) 92323	2325 and DINESH as (b) 92233	675489 how HAMAM (c) 93233	is written? (d) 93292
33.	If RED is coded as 6720 (a) 9207716	then GREEN would b (b) 167129	e coded as (c) 1677209	(d) 1672091

34.	If A = 1, FAT = 27, FAITI (a) 44	H = ? (b) 45	(c) 46	(d) 36
35.	If BROTHER is codec BORBERS?	1 2456784, SISTER	coded as 919684,	what is coded for
	(a) 2542889	(b) 2542898	(c) 2454889	(d) 2524889
36.	If DELHI is coded 73541 (a) 5279431	and CALCUTTA as 8 (b) 5978213	2589662, How can CA (c) 8251896	LICUT be coded? (d) 8543962
37.	If CLOCK is coded 3423 (a) 72894	5 and TIME is 8679, v (b) 77684	vhat will be code of MC (c) 72964	DTEL? (d) 27894
38.	If PALE is coded as 2134 (a) 29530	4 and EARTH is codec (b) 24153	d as 41590, how is PE (c) 25430	ARL is code? (d) 254313
39.	If LOSE is coded as 135 (a) NGLAI	7 and GAIN is coded a (b) NGLIA	as 2468, what do figur (c) GNLIA	e 82146 stands for? (d) GNLIA
40.	If MEKLF is coded as 91 (a) 97854	782 and LLLJK as 88 (b) 64512	867, how can IHJED is (c) 54310	s coded as? (d) 75632
41.	If in a certain code langu (a) 2458	age NAME is written a (b) 5842	as 4258 then what is c (c) 8524	oded as MEAN ? (d) 5824
42.	If GOLD is written as IQI (a) VHMC	NF, how WIND can be (b) VHCM	written as code? (c) XJOE	(d) DNIW
43.	If ROSE is written as TQ (a) DKUEWKV	UG, how BISCUIT car (b) CJTDVJU	n be written in that coc (c) DKVEWKV	le? (d) DKUEWKY
	LETTER: C Z N V R S V CODE DIGIT: 8 6 4 7 2 9 (Q. No. 44-46) In each of from amongst the given	9 3 5 1 If the following questic		tly coded alternative
44.	ZDRCVF (a) 612875	(b) 619875	(c) 612845	(d) 612835
45.	WNCSZV (a) 348267	(b) 318267	(c) 348957	(d) 348967
46.	RDNFVS (a) 21679	(b) 216549	(c) 214579	(d) 218579
47.	If DELHI is coded as CC (a) AJMTVT	IDD, how would you e (b) AMJXVS	encode BOMBAY? (c) MJXVSU	(d) WXYZAX
48.	In a certain code, RIPP PILLER written in that co	ode?		
40	(a) 318826	(b) 318286	(c) 618826	(d) 338816
49.	If PALAM could be give SANTACRUZ? (a) 123	en the code number (b) 85	43, what code numb (c) 120	er can be given to (d) 125

Latter					3	9	8	6	4
Letter	W	L	М	S	I	Ν	D	J	В
50. 1846 (a) №	32 IDJBSI		(b) MD	JBIL	(c)	MDJBWL		(d) MDB	JIL
	and bac		•	•		and' in tha		ad' and '38 (d) 3	58' mea
				Odd N	lan Out				
			Nur	nber Bas	sed Prob	lems			
ind odd	l man ou	t of the f	ollowing	(52-61)					
5 2. 3, 5, (a) 1	7, 15, 17 5	, 19	(b) 17		(c)	19		(d) 7	
3. 10, 1 (a) 2		, 23, 24, 2	26 (b) 23		(c)	24		(d) 18	
5 4. 1, 4, (a) 9	9, 16, 24	, 25, 36	(b) 24		(c)	25		(d) 36	
55. 41, 4 (a) 7		, 61, 71, 7	73, 75 (b) 73		(c)	71		(d) 53	
6. 16, 2 (a) 3		, 144, 196	6, 225 (b) 73		(c)	196		(d) 225	
57. 1, 4, (a) 1	9, 16, 19 9	, 36, 49	(b) 9		(c)	49		(d) 16	
58. 1, 5, (a) 4	14, 30, 4 9	9, 55, 91	(b) 30		(c)	55		(d) 91	
i9. 835, (a) 7		, 751, 853	3, 981, 53 (b) 853		(c)	981		(d) 532	
60. 4, 5, (a) 7	7, 10, 14	, 18, 25, 3	32 (b) 14		(c)	18		(d) 33	
61.52,5 (a)2		, 34, 27, ⁻	16 (b) 34		(c)	43		(d) 48	

tions: The number in each question below is to be codified in the following code:

Calendar Based Questions										
	Choose out the odd one a) December	of the following: (b)February	(c) March	(d) July						
	Choose out the odd one a) June	of the following: (b) July	(c) Aug	(d) Oct						
	Choose out the odd one a) June	of the following: (b) July	(c) Sept	(d) Nov						
	Choose out the odd one a) Month	of the following: (b) Week	(c) Fortnight	(d) Season						
	Choose out the odd one a) Calendar	of the following: (b) Year	(c) Date	(d) Month						
	Measuring Units Based Questions									
	Choose out the odd one a) Meter	of the following: (b) Yard	(c) Mile	(d) Acre						
	Choose out the odd one a) Arc	of the following: (b) Diagonal	(c) Diameter	(d) Radius						
	Choose out the odd one a) Inch	of the following: (b) Foot	(c) Yard	(d) Quart						
	Choose out the odd one (a) Square	of the following: (b) Rectangle	(c) Triangle	(d) Cube						
	Choose out the odd one a) Circle	of the following: (b) Ellipse	(c) Sphere	(d) Cube						
	Choose out the odd one a) Tonne	of the following: (b) Pint	(c) Gallon	(d) Litre						
		Human Body Based	Questions							
	Choose out the odd one a) Ear	of the following: (b) Lung	(c) Eye	(d) Heart						
	Choose out the odd one a) Tongue	of the following: (b) Lung	(c) Lever	(d) Heart						
	Choose out the odd one a) Shoulder	of the following: (b) Foot	(c) Elbow	(d) Arm						
	Choose out the odd one a) Knee	of the following: (b) Foot	(c) Ankle	(d) Fingers						
	Choose out the odd one a) Ear	of the following: (b) Nose	(c) Tongue	(d) Throat						
	Choose out the odd one a) Fingers		(c) Knee	(d) Wrist						

Food Items Based Questions									
79. Choose out the odd one of the following:(a) Curd (b) Butter	(c) Oil	(d) Cheese							
80. Choose out the odd one of the following:(a) Wheat(b) Mustard	(c) Rice	(d) Gram							
81. Choose out the odd one of the following:(a) Biscuits (b) Chocolate	(c) Cake	(d) Bread							
82. Choose out the odd one of the following:(a) Almond (b) Turmeric	(c) Pepper	(d) Chillies							
Famous Personalities Based Questions									
 83. Choose out the odd one of the following: (a) VV Giri (c) Dr S. Radha Krishanan 		(b) Dr Rajendra Prasad (d) Lal Bahadur Shastri							
84. Choose out the odd one of the following:									
(a) Baber (b) Humayu	(c) Akbar	(d) Vikramaditya							
(a) Baber (b) Humayu Colors Based	. ,	(d) Vikramaditya							
	. ,	(d) Vikramaditya (d) Orange							
Colors Based 85. Choose out the odd one of the following:	Questions								

1.	С	2.	d	3.	С	4.	d	5.	а	6.	b	7.	а	8.	а	9.	b	10.	а
11.	С	12.	b	13.	а	14.	d	15.	а	16.	а	17.	b	18.	С	19.	а	20.	b
21.	С	22.	а	23.	а	24.	С	25.	b	26.	b	27.	d	28.	а	29.	а	30.	b
31.	b	32.	а	33.	С	34.	а	35.	а	36.	С	37.	а	38.	b	39.	а	40.	С
41.	d	42.	а	43.	а	44.	а	45.	d	46.	С	47.	а	48.	а	49.	а	50.	d
51.	С	52.	а	53.	b	54.	b	55.	а	56.	b	57.	а	58.	а	59.	а	60.	С
61.	b	62.	В	63.	b	64.	В	65.	D	66.	Α	67.	D	68.	В	69.	D	70.	D
71.	D	72.	Α	73.	D	74.	В	75.	В	76.	В	77.	D	78.	С	79.	С	80.	С
81.	В	82.	Α	83.	D	84.	D	85.	D	86.	D	87.	В						

Direction Sense Test

EXERCISE 1. Mohan starts from point A and walks 1 km towards south, turns left and walks 1 km. Then he turns left again and walks 1 km. Now he is facing. (a) East (b) West (c) North (d) South-west 2. Suresh starts from a point, walks 2 miles towards south, turns right and walks 1 ½ miles, turns left and walks V miles and then he turns back. What is the direction he is facing now? (a) East (b) West (c) South (d) North 3. A man starts from a point, walks 4 miles towards north and turns left and walks 6 miles, turns right and walks for 3 miles and again turns right and walks 4 miles and takes rest for 30 minutes. He gets up and walks straight 2 miles in the same direction and turns right and walks one mile. What is the direction he is facing? (a) North (b) South (c) South-east (d) West 4. Arun started from point A and walked 10 km East to point B, then turned to North and walked 3 km to point C and then turned West and walked 12 kms to point D, then again turned South and walked 3 kms to point E. In which direction is he from his straight point? (a) East (b) South (c) West (d) North 5. A start from a point and walks 5 kms north, then turns left and walks 3 kms. Then again turns left and walks 5 km. Point out the direction in which he is going now. (a) North (b) South (c) East (d) West 6. A rat run 20 towards East and turns to right runs 10 and turns to right runs 9 and again turns to left runs 5 and then turns to left runs 12 and finally turns to left and runs 6. Now what direction is the rat facing? (a) East (b) North (c) West (d) South 7. A driver left his village and drove North for 20 km, after which he stopped for breakfast. Then he turned left and drove another 30 km, when he stopped for lunch. After some rest, he again turned left and drove 20 kms before stopping for evening tea. Once more he turned left and drove 30 kms to reach the town where he had supper. After evening tea in which direction did, he drive? (a) West (b) East (c) North (d) South 8. A man is facing East, then he turns left and goes 10 m, then turns right and goes 5 m then goes 5 m to the South and from there 5 m to West. In which direction is be from his original place? (a) East (b) West (c) North (d) South

- 9. From her home Prerna wishes to go to school. From home she goes towards North and then turns left and then turns right, and finally she turns left and reaches school. In which direction her school is situated with respect to her home?
 (a) North-East
 (b) North-West
 (c) South-East
 (d) South-West
- 10. A child walks 25 feet towards North, turns right and walks 40 feet, turns right again and walks 45 feet. He then turns left and walks 20 feet. He turns left again walks 20 feet. Finally, he turns to his left to walks another 20 feet. In which direction is the child from his starting point?
 (a) North
 (b) South
 (c) West
 (d) East

- **11.** Raju facing North and moves 20 km, then he turned to his right and moves 20 km and then he moves 10 km in North-East, then he turned to his right and moves 20 km and then he turned to his right and moves 20 km. Now in which direction Rahu is facing?
 - (a) South-East (b) North-East (c) South-West (d) North-West
- 12. K is a place which is located 2 km away in the north-west direction from the capital P. R is another place that is located 2 km away in the south-west direction from K. M is another place and that is located 2 km away in the north-west direction from R. T is yet another place that is located 2 km away in the south-west direction from M. In which direction is T located in relation to P?
 (a) South-west
 (b) North-west
 (c) West
 (d) North
- 13. Babu is Rahim's neighbor and his house is 200 meters away in the north-west direction. Joseph is Rahim's neighbor and his house is located 200 meters away in the south-west direction. Gopal is Joseph's neighbor and he stays 200 meters away in the south-east direction. Roy is Gopal's neighbor and his house is located 200 meters away in the north-east direction. Then where is the position of Roy's house in relation to Babu's?
 (a) South-east
 (b) south-west
 (c) North
 (d) North-east
- 14. A tourist drives 10 km towards west and turns to left and takes a drive of another 4 km. He then drives towards east another 4 km and then turns to his right and drives 5 km. Afterwards he turns to his left and travels 6 km. In which direction is je from the starting point?
 (a) North
 (b) East
 (c) West
 (d) South
- 15. A man started walking West. He turned right, then right again and finally turned left. Towards which direction was he walking now?
 (a) North
 (b) South
 (c) West
 (d) East
- 16. One evening, Raja started to walk toward the Sun. After walking a while, he turned to his right and again to his right. After walking a while, he again turned right. In which direction is he facing?
 (a) South
 (b) East
 (c) West
 (d) North
- 17. Five boys A, B, C, F, E, are sitting in a park in a circle. A is facing South-West, D is facing South-East, B and E are right opposite A and D respectively and C is equidistant between D and B. Which direction is C facing?
 (a) West
 (b) South
 (c) North
 (d) East
- 18. If a man on a moped start from a point and rides 4 km South then turns left and rides 2 km and turn again to the right to ride to go more towards which direction is, he moving?
 (a) North
 (b) West
 (c) East
 (d) South
- 19. A man starts from a point, walk 8 km towards North, turns right and walks 12 km, turns left and walks 7 km turns and walks 20 km towards South, turns right and walks 12 km. In which direction is he from the starting point?
 (a) North
 (b) South
 (c) West
 (d) East
- 20. Daily in the morning the shadow of Gol Gumbaz falls on Bara Kaman and in the evening the shadow of Bara Kaman falls on Gol Gumbaz exactly. So in which direction is Gol Gumbaz to Bara Kaman?
 (a) Easter side
 (b) Western side
 (c) Northern side
 (d) Southern side
- 21. Ashok went 8 km South and turned West and walked 3 km again he turned North and walked 5 kms. He took a final turn to East and walked 3 kms. In which direction was Ashok from the starting point?
 (a) East
 (b) North
 (c) West
 (d) South

22.	If X stands on his head with (a) East	h his face towards south (b) West	, to which direction will h (c) North	is left-hand point? (d) South					
23.	I drove East for 5 miles the again turned to my left. Wh (a) South		•	drove for 2 miles and (d) North-west					
24.	If A stands on his head with (a) North-East	h his face towards north. (b) North	In which direction will hi (c) East	s left-hand point? (d) North-West					
25.	A car travelling from south and again turns to the right (a) South								
26.	A taxi driver commenced his journey from a point and drove 10 km toward north and turned to his left and drove another 5 km. After waiting to meet a friend here, he turned to his right and continued to drive another 10 km. He has covered a distance of 25 km so far, but in which direction would he be now?								
	(a) South	(b) North	(c) East	(d) South-east					
27.	A walk 3 kms northward ar He turns right and walks st (a) East			ns left and goes 3 km. (d) South					
28.	A walk southwards, then t	turns right, then left and	d then right. In which dii	rection is he from the					
	starting point? (a) South	(b) East	(c) West	(d) North					
29.	A man starts from a point, turns right again and walks (a) North			<s 10="" meters,<br="">(d) South</s>					
30.	A boy starts walking towar last. Towards which directi (a) West		and again he turns right (c) West	and then turns left at (d) East					
31.	I stand with my right-hand	extended side-ways to	wards South. Towards w	hich direction will my					
	back be? (a) North	(b) West	(c) East	(d) South					
32.	If a person moves 4 km to moves 6 km, which is the c	directions in which he is i	now moving?	-					
	(a) East	(b) West	(c) North	(d) South					
33.	If Mohan sees the rising s from his house, what is the (a) South	•		nd the railway station (d) West					
34.	Laxman went 15 km to No and covered 5 kms. Finally house?								
	(a) East	(b) West	(c) North	(d) South					
35.	A man starts from a point, his right and walks 2 miles, which direction would he b	, again turns to his right a	-	2 miles, again turns to					
	(a) North	(b) South	(c) East	(d) West					

- **36.** I started walking down a road in the morning facing the Sun. After walking for some time, I turned to my left. Then I turned to my right. In which direction was I going then? (a) East (b) West (c) North (d) South 37. Lakshmi walked 2 furlongs north from her house and took a turn to left and continued to walk another one kilometer and finally she turned left and reached the school. Which direction is she facing now? (a) West (b) North (c) South (d) North 38. You are going straight, first eastwards, then turn to the right, then right again, then left. In which direction would you be going now? (a) East (b) West (c) South (d) North 39. If Ahmed travels towards North from his house, then to left, then to South covering equal distances in each direction to reach Sohan's house, in which direction is Ahmed's house now? (a) East (b) South (c) North (d) West
- **40.** You go North, turn right, then right again and then go to the left. In which direction are you now? (a) South (b) East (c) West (d) North
- 41. Roopa starts from a point and walks 15 meters towards west, turns left and walks 12 meters, turns right again and walks. What is the direction she is now facing? (c) East (a) South (b) West (d) North
- 42. A man starts his journey facing the sun early morning. He then turns right and walks 2 km. He then walks 3 km after turning right again. Which is the direction he is facing now? (a) North-East (b) North (c) West (d) South
- 43. Roy walks 2 km to East, then turns North-West and walks 3 km. Then he turns South and walks 5 km. Then again, he turns West and walks 2 km. Finally, he turns North and walks 6 km. In which direction, is he from the starting point? (a) South-West (b) South-East (c) North-West (d) North-East
- 44. Seeta starts from a point, walks 2 km towards north, turns towards her right and walks 2 km, turns right again and walks. What is the direction she is facing now? (a) East (b) West (c) South (d) North
- **45.** Shyam was facing East. He walked 5 km forward and then after turning to his right walked 3 km. Again, he turned to his right and walked 4 km. After this he turned back. Which direction was he facing at that time? (a) East (b) West (c) North (d) South
- **46.** Raju is standing facing north. He goes 30 meters ahead and turns left and goes for 15 meters. Now he turns right and goes for 50 meters and finally turns to his right and walks. In which direction is he heading? (a) North (b) East (c) South (d) West
- 47. Sanmitra starts from his house and walks 3 km towards north. Then he turns right and walks 2 km and then turns right and walks 5 km, then turns right and walks 2 km and then again turns right and walks 2 km. Which direction is he facing now? (a) North (b) South (c) West (d) East
- 48. Raju is Ramu's neighbor and he stays 100 meters away towards southeast. Venu is Raju's neighbor and he stays 100 meters away towards southwest. Khader is Venu's neighbor and he stays 100 meters away towards, north-west. Then where is the position of Khader's home in relation to Ramu's? (a) South-East

- 49. Ramesh walked 3 km, towards West and turned to his left and walked 2 km. He, then turned to his right and walked 3 km. Finally, he turned to his right again and walked another 2 km. In which direction is Ramesh from his starting point now?
 (a) East
 (b) West
 (c) North
 (d) South
- 50. Deepa starts walking north towards and after a while she turns to her right. After walking some distance, she turns to his left and walks a distance of 1 km. She then urns to her left again. In which direction she moving now?
 (a) North
 (b) West
 (c) East
 (d) South
- 51. Raman starts walking in the morning facing the Sun. After sometime, he turned to the left later again he turned to his left. At what direction is Raman moving now?
 (a) East
 (b) West
 (c) South
 (d) North
- 52. A start walking towards North turns left, again turns left, turns right, again turns right once again turns left. In which direction is A walking now?
 (a) East
 (b) South
 (c) West
 (d) South-East
- 53. X walks southwards and then turns right, then left and then right, in which direction is he moving now?
 (a) South
 (b) North
 (c) West
 (d) South-West
- 54. A man started to walk East. After moving a distance, he turned to his right. After moving a distance, he turned to his right again. After moving a little he turned in the end to his left. In which direction was he going now.?
 (a) North
 (b) South
 (c) East
 (d) West

1.	С	2.	d	3.	b	4.	С	5.	b	6.	b	7.	b	8.	С	9.	b	10.	d
11.	а	12.	С	13.	а	14.	d	15.	а	16.	а	17.	d	18.	d	19.	b	20.	а
21.	d	22.	b	23.	а	24.	С	25.	а	26.	b	27.	b	28.	а	29.	b	30.	b
31.	b	32.	а	33.	С	34.	С	35.	а	36.	а	37.	d	38.	С	39.	а	40.	b
41.	b	42.	С	43.	С	44.	С	45.	а	46.	b	47.	а	48.	С	49.	b	50.	b
51.	b	52.	а	53.	С	54.	b												

Summary Notes

Chapter **5**

Seating Arrangements

	<i>E</i>	XERCISE								
		w Arrangement								
-	 Five boys A, B, C, D and E are sitting in a row A is to the right of B and E is to the left of B but to the right of C. A is to the left of D. Who is second from the left end? (U.P.B. Ed 2013) (a) D (b) A (c) E (d) B 									
 There are five different h of A, B is to the right of D (a) A 		-	and E is to the left of C and right (IO) 2013) (d) D							
	-	-	is between T and Q and Q is to ddle? (SSC (Multi Task)2014) (d) R							
does not stand next to e	 4. Six children A, B, C, D, E and F are standing in a row. B is between F and D. E is between A and C. A does not stand next to eight F or D. C does not stand next to D. F is between which of the following pairs of children? (SSC (FCI) 2012) (a) B and E (b) B and C (c) B and D (d) B and A 									
on TQM, three books or the second, fifth and siv between two books on T	n Industrial Relations a th books are on Indu QM. One book of Indu above the book of Eco	and one book is on Ecc strial Relations. Two bo strial Relations is betwe	rganization Behavior, two books phomics. Counting from the top, poks on Industrial Relations are een two books on Organizational QM. Which book is the last book al Behavior							
	-	ipin is fourth from the le	Vipin and Chavan to the left of eft, then how far is Tavan to the (d) Fourth							
7. Six persons M, N, O, P, are in front of each other	Q and R are sitting in r. Q is not at the end o	two rows with three pe f any row. P is second t	rsons in each row. Both the row he left of R. O is the neighbor of N? (UPSC (CSAT) 2011) (d) M							

- 8. Six persons A, B, C, D, E and F are sitting in two rows, three in each row. (MAT 2011)
 - (I) E is not at the end of any row
 - (II) D is second to the left of F

((III) C, the neighbor of E, is (IV) B is the neighbor of F. Which of the following are ir 		e	
(a) D, B and F	(b) C, E and B	(c) A, E and F	(d) F, B
 	Five boys A_1 , A_2 , A_3 , A_4 and . A_5 is above A_1 . I. A_4 is under A_2 II. A_2 is under A_1 V. A_4 is between A_2 and A_3 Who is at the lowest position (a) A_1		n the following way. (RRE (c) A₅	3 (TC/CC) 2010) (d) A ₂
10	Five children are sitting in	a row S is sitting payt t	o Phut not T. K is sittin	a port to P, who is sitting
10.	on the extreme left and T i (a) K and P	-		
11.	Five senior citizens are liv Mr. Lokesh in a flat below lives in a flat below Mr. Lo	Mr. Gaurav, Mr. Ashoka	in lives in a flat below Mi	
	(a) Mr. Lokesh	(b) Mr. Gaurav	(c) Mr. Muan	(d) Mr. Rakesh
12.	In a gathering seven mem sitting right to 'B', 'F; is sitt the middle (SSC (10+2) 20	ing right to 'E' but left to '	•	•
	(a) C	(b) D	(c) E	(d) F
	Directions (No: 13-17): S A to H are seated in straig two people sit between I immediate neighbor of A.	ht line facing North. C sin D and A. B and F are i	ts fourth left of G. D sits immediate neighbors of	second to right of G. Only
13.	Who amongst the followin person who sit sixth from t	• •	lle of the persons who si	t fifth from the left and the
	(a) C	(b) H	(c) E	(d) F
14.	Who amongst the followin (a) B	g sits third to the right of ((b) F	C? (c) A	(d) E
15.	Which of the following rep (a) C, D	resents persons seated a (b) A, B	at the two extreme ends o (c) B, G (d) D, I	
16.	What is the position of H v (a) Third to the left	vith respect to F? (b) Immediate right	(c) Second to right	(d) Fourth to left
17.	How many persons are se (a) One	ated between A and E? (b) Two	(c) Three	(d) Four

Stud Ten I. B II. G III. T IV. I V. J	 Directions (Q. No. 18-22) Study the following information carefully to answer the given questions. Ten students are A to J are sitting in a row facing west. I. B and F are not sitting on either of the edges. II. G is sitting left of D and H is sitting to the right of J. III. There are four persons between E and A. IV. I is the north of B and F is the south of D. V. J is between A and D and G is in E and F. VI. There are two persons between H and C. 									
18.	Who is sitting at th (a) H	e seventh place counting (b) C	g from left? (c) J	(d) Either H or C						
19.	Who among the fo (a) C	llowing is definitely sitting (b) H	g at one of the ends? (c) E	(d) Cannot be determined						
20.	Who are immediate (a) BC	e neighbors of I? (b) BH	(c) AH	(d) Cannot determined						
21.	Who is sitting seco (a) G	nd left of D? (b) F	(c) E	(d) J						
22.	If G and A intercha (a) G and F	inge their positions, then (b) Only F	who become the immed (c) Only A	iate neighbors of E? (d) J and H						
that A gr I. D II. F III. E IV. E V. C	 Directions (Q. Nos. 23-24) Read the following information carefully and then answer the questions that follow. A group of singers, facing the audience, are standing in line on the stage as follows. I. D is not right to C II. F is not standing beside G. III. B is not left of F IV. E is not left of A V. C and B have one person between E and F VI. There are two persons H and C. 									
23.	Who is on the Sec (a) D	ond extreme right? (b) F	(c) G	(d) E						
24.	If we start counting (a) 1 st	g from the left, on which r (b) 2 nd	number is B? (c) 3 rd	(d) 5 th						
	Double Row Arrangement									

Directions (Q. No. 25- 27): Study the following information carefully to answer the given questions. Eight persons P to W are sitting in front of one another in two rows. Each row has four persons. P is between U and V and facing North. Q, who is to the immediate left of M is facing W. R is between T and M and W is to the immediate right of V. (UCO Bank 2011)

25.	Who is sitting in front of R [·] (a) U	? (b) Q	(c) ∨	(d) P				
26.	Who is to the immediate ri (a) M	ght of R? (b) U	(c) M or W	(d) None of these				
27.	In which of the following pa (a) MV	airs, persons are sitting i (b) RV	n front of each other? (c) TV	(d) UR				
28.	Four girls A, B, C, D are s of the following is definitely (a) A and D Infront of each (c) D is left of C	y true? (MAT 2009)	ng the centre. B and C ir (b) A is not between B (d) A is left of C					
		Rectangular & Circu	lar Arrangement					
29.	Siva, Satish, Amar and Prave is to the right of Amar?	en are playing cards. Amar	is to the right of Satish wh	o is to the right of Siva. Who				
	(a) Satish	(b) Amar	(c) Praveen	(d) Shiva				
(a) (b) (c) { (d) \	ections (Q. No. 30- 33): Stu P, Q, R, S, T, U, V and w are sit P is second to the right of T wh S is not the neighbor of P V is the neighbor of U Q is not between S and W. W i	ting round the circle and an no is the neighbor of R and	e facing the centre.					
30.	Which two of the following a							
	(a) RV	(b) ∪∨	(c) RP	(d) QW				
31.	Who is immediate right to th	ie V?						
	(a)P	(b) ∪	(c) R	(d) ⊤				
32.	 Which of the following is correct? (a) P is not the immediate right of Q. (b) R is between U and V (c) Q is to the immediate left of W (d) U is between W and S 							
33.	 What is the position of S? (a) Between U and V (b) Second to right of P (c) To the immediate right of (d) Data inadequate 	fW						

Directions (Q. No. 34- 37): Study the following information carefully to answer the given questions.

Six friends are sitting in a circle and are facing the centre of the circle. Deepa is between Prakash and Pankaj. Priya is between Mukesh and Lalit. Prakash and Mukesh are opposite to each other.

34. Who is sitting ri(a) Mukesh	ght to Prakash? (b) Deepa	(c) Pankaj	(d) Lalit
35. Who is just right	t to Pankaj?		
(a) Deepa	(b) Lalit	(c) Prakash	(d) Priya
36. Who are the ne(a)Prakash and De(b)Deepa and Priy	еера	(c) Priya and Panka (d) Lalit and Priya	i
37. Who is sitting o	pposite to Priya?		
(a) Prakash		(c) Pankaj	
(b) Deepa		(d) Lalit	

1.	С	2.	а	3.	а	4.	b	5.	а	6.	d	7.	b	8.	а	9.	b	10.	d
11.	С	12.	b	13.	d	14.	С	15.	d	16.	а	17.	а	18.	d	19.	С	20.	d
21.	а	22.	С	23.	b	24.	d	25.	d	26.	b	27.	а	28.	а	29.	С	30.	а
31.	d	32.	С	33.	С	34.	d	35.	а	36.	С	37.	b						

Summary	Notes
---------	-------

Summary Notes
X

Blood Relations

EXERCISE

1.	A is B's brother. C is A's mot (a) Son	her. D is C's father; E is (b) Grandson	B's son. How is D re (c) Grandfather	lated to A? (d) Great Grandfather
2.	As is B's brother. C is A's fat (a) Grand-daughter (b) Great grands daughter (c) Grandaunt (d) Daughter	her. D is C's sister and E	is D's mother. How	is B related to E?
3.	A is B's Sister. C is B's Moth (a) Grandmother	er. D is C's Father. E is I (b) Grandfather	D's Mother. Then hov (c) Daughter	v is A related to D? (d) Grands-daughter
4.	A is the father of B. C is the d between C and E? (a) Brother and sister	aughter of B. D is the bro (b) Cousins	ther of B. E is the sor (c) Niece and uncle	n of A. What is the relationship (d) Uncle and aunt
5.	If P is the husband of Q and (a) Mother	R is the mother of S and (b) Sister	Q. What is R to P? (c) Aunt	(d) Mother-in-law
6.	P and Q are brothers. R and (a) Uncle	S are sister. P's son is S (b) Brother	S's brother. How is Q (c) Father	related to R? (d) Grandfather
7.		the daughter of X. Z is h	usband of W. N is th	ne daughter of Z. What is the
	relationship of N to Y? (a) Cousin	(b) Niece	(c) Daughter	(d) Grand-daughter
8.	A reads a book and find the the daughter of A. How is B		liar. The author 'B' is	the paternal uncle of C. C is
	(a) Brother	(b) Sister	(c) Father	(d) Uncle
9.	A's mother is sister of B and (a) Uncle	she has a daughter C w (b) Maternal Uncle (c) N	-	ow is B related to D? (d) Daughter
10.	A is B's brother. C is A's m (a) Son (b) Grandson (c) Grand-grandson (d) Grand-daughter	other. D is C's father. F is	s A's son. How is F r	elated to D?
11.	A is B's brother. C is A's m (a) Son	other. D is C's father. E i (b) Grand-daughter (c)		elated to D? (d) Great grandfather
12.	A is B's brother. C is A's m (a) Aunt	other. D is C's father. F a (b) Cousin	a is A's son. How is E (c) Nephew	B related to F's child? (d) Grandfather

13.	A is B's daughter. B is C's i (a) Father	mother. D is C's brother. (b) Grandfather	How is D related to a (c) Brother	A? (d) Son
14.	A is D's brother. D is B's fa (a) Cousin	ther. B and C are sisters (b) Niece	. How is C related to (c) Aunt	A? (d) Nephew
15.	A is B's brother. C is A's ma (a) Grandson (b) Great Grandson (c) Great Grandfather (d) Grandfather	other; D is C's father. E i	s B's son. How is D r	elated to E?
16.	X and Y are the children of (a) Sister	A. A is the father of X bu (b) Brother	ut Y is not his son. He (c) Son	ow is Y related to A? (d) Daughter
17.	A is B's brother. C is A's ma (a) Cousin	other. D is C's father. E i (b) Nephew	s B's son. How is E r (c) Uncle	elated to A? (d) Grandson
18.	Based on the statements g (i) K is the bother of J (ii) M is the sister of K (iii) P is the brother of N (iv) N is the daughter of J (a) K	iven below, find out who (b) J	is the uncle of P? (c) N	(d) M
19.		other of D. D has a daug	hter C who is marrie	d to F. G is the husband of A.
	How is C related to D? (a) Cousin	(b) Niece	(c) Aunt	(d) Sister-in-law
20.	R and S are brothers. X is (a) Uncle	the sister of Y and X is m (b) brother	nother of R. What is ` (c) Father	Y to S? (d) Mother
21.	A is B's brother. C is A's m Who is A's son?	nother. D is C's father. B	and D's grand-daug	hter. How is B related to D.?
	(a) Aunt	(b) Cousin	(c) Niece	(d) Grandaunt
22.	A is the son of B while B a which of the following state (a) D is the maternal uncle (b) E is the brother of B (c) D is the cousin of A (d) B and D are brothers	ments is correct?	another. E is the mot	her of C. If D is the son of E.
23.	P is the father of T. T is the (a) Father	daughter of M. M is the (b) Father-in-law	daughter of K. What (c) Brother	is P to K? (d) Son-in-law
24.	A and B are brothers. E is t (a) Sister	he daughter of F. F is th (b) Daughter	e wife of B. What is t (c) Niece	he relation of E to A? (d) Daughter
25.	M and F are a married cou (a) Sister	ple. A and B are sisters. (b) Sister-in-law (c) Nie		Vho is B to M? (d) Daughter
26.	If A is the mother of D. B is related to B?	s not the son of C. C is t	the father of D, D is	the sister of B, then how is A
	(a) Mother	(b) Brother	(c) Step son	(d) Sister

27.	A and B are brother and sis B related to E? (a) Grand-daughter (c) Aunt	ster respectively. C is A's father. D is C's sister and E is D's mother. Ho (b) Great grand-daughter (d) Daughter							
28.	Q is the son of P. X is the c L to P?	daughter of Q. R is the a	unty (Bua) of X and I	is the son of R, then what is					
	(a) Grandson	(b) Grand-daughter	(c) Daughter	(d) Nephew					
29.	P and Q are brothers. R an (a) Uncle	id S are sisters. P's son i (b) Brother	is S's brother. How is (c) Father	Q related to R? (d) Grandfather					
30.	the relationship between C (a) Nephew and Aunty		(b) Brother and Sist						
	(c) Mother and son		(d) Niece and Aunty						
31.	A is the mother of D and si How is G related to D?	ister of B. B has a daugh	nter C who is married	to F. G is the husband of A.					
	(a) Uncle	(b) Husband	(c) Son	(d) Father					
32.	Pointing towards A, B said (a) Uncle	"your mother is the youn (b) Cousin	ger sister of my moth (c) Nephew	ner". How is A related to B? (d) Father					
33.	A is B's wife's husband's br (a) Brother	rother. C and D are siste (b) Sister-in-law	rs of B. How is A rela (c) Wife	ated to C? (d) Sister					
34.	A and B are brothers. C an (a) Father	d D are sisters. A's son i (b) Brother	s D's brother. How is (c) Uncle	B related to C? (d) Son					
35.	A is B's sister. C is B's mot (a) Grandmother	her. D is C's father. E is (b) Grandfather	D's mother. Then ho (c) Daughter	w is A related to D? (d) Grand-daughter					
36.	 5. P, Q, R, S, T, U are 6 members of a family in which there are two married couples. T, a teacher is married to a doctor who is mother of R and U. Q the lawyer is married to P. P has one son and one grandson. Of the two married ladies one is a housewife. There is also one student and one male engineer in the family. Which of the following is true about the grand-daughter of the family? (a) She is a lawyer (b) She is an engineer (c) She is a student (d) She is a doctor 								
37.		C are married couple. E	is the brother of C. D	her. 'B' is the son of C but C is the daughter of A. F is the (d) 1					
38.				B from among the following? (d) Father					
39.	Rajiv is the brother of Atul.	Sonia is the sister of Sur	nil. Atul is the son of	Sonia. How is Rajiv related to					
•	Sonia? (a) Nephew	(b) Son	(c) Brother	(d) Father					

40.	 Sita is the niece of Ashok. Ashok's mother is Lakshmi. Kalyani is Lakshmi's mother. Kalyani's husband is Gopal. Parvathi is the mother-in-law of Gopal. How is Sita related to Gopal? (a) Great grandson's daughter (b) Gopal's Sita's father (c) Sita is Gopal's great grand-daughter (d) Grand niece 							
41.	Seema is the daughter-in-l only brother of Ramesh. Fi (a) Sister-in-law (c) Cousin			(b) Aunt				
42.	Suresh introduces a man mother". How is Suresh rel		woman who is the	mother of the husband of my				
	(a) Uncle	(b) Son	(c) Cousin	(d) Grandson				
43.	is Meera's husband related			wife is my mother-in-law "How				
	(a) Nephew	(b) Uncle	(c) Son	(d) Father				
44.	Pointing to a photograph V related to Vikas in the phot		aughter of my grand	father's only son". How is the				
	(a) Father	(b) Brother	(c) Sister	(d) Mother				
45.				r is Madhur. Sheetal is Ram's other's son. Who is Rohit to				
	(a) Brother-in-law (c) Brother		(b) Son (d) Nephew					
46.	Vinod introduces Vishal as Vishal?	s the son of the only bro	other of his father's	wife. How is Vinod related to				
	(a) Cousin	(b) Brother	(c) Son	(d) Uncle				
47.	loved most by his uncle N	lithun. The head of the t and Ganga have been ma	family is Ram Lal, w	the mother of Sharat, who is who is succeeded by his sons ad have 3 children. What is the				
	(a) Uncle	(b) Son	(c) Brother	(d) No relation				
48.	niece. Shubha is Sheela's	grand-daughter. How is	Rahul related to Shu					
	(a) Brother	(b) Cousin	(c) Uncle	(d) Nephew				
49.	Neeta is Ram's sister. What	at is Arun's relationship to	o Reema?	s a daughter named Reema.				
	(a) Brother	(b) Nephew	(c) Cousin	(d) Uncle				
50.	There are 2 film stars. One other?	is the father of the other	s son. What is the re	lationship of the two with each				
	(a) Grandfather and Grand(c) Husband and wife	son	(b) Grandfather and (d) Father and Son					
51.	Ramu's mother said to Ran Ramu?	mu,"My mother has a so	n whose son is Achy	vut". How is Achyut relation to				
	(a) Uncle	(b) Cousin	(c) Brother	(d) Nephew				

- 52. Ravi's father has a son Rohit who has an aunt Laxmi who has a husband Rao whose father-in-law is Mohan. What is the relation of Mohan to Ravi?(a) Nephew(b) Grandfather(c) Son(d) Uncle
- 53. Vijay says, Ananda's mother is the only daughter of my mother". How is Ananda relation to Vijay?(a) Brother(b) Father(c) Nephew(d) Grandfather
- 54. Introducing a man, a woman said, "His wife is the only daughter of my mother." How is the woman related with the man?(a) Sister-in-law(b) Wife(c) Aunt(d) Mother-in-law
- 55. A prisoner introduced a boy who came to visit him to the jailor as "Brothers and sisters I have none, he is my father's son's son". Who is the boy?(a) Nephew(b) Son(c) Cousin(d) Uncle

1.	с	2.	a	3.	d	4.	с	5.	d	6.	а	7.	d	8.	а	9.	b	10.	с
11.	b	12.	d	13.	с	14.	b	15.	с	16.	d	17.	b	18.	а	19.	а	20.	а
21.	а	22.	а	23.	d	24.	с	25.	b	26.	а	27.	а	28.	а	29.	а	30.	с
31.	d	32.	b	33.	а	34.	с	35.	d	36.	с	37.	с	38.	а	39.	b	40.	с
41.	d	42.	b	43.	а	44.	с	45.	d	46.	а	47.	d	48.	с	49.	с	50.	d
51.	b	52.	b	53.	с	54.	b	55.	b									•	

<u>Summary Notes</u>

