CHAPTER 6

MENSURATION

6.1. MENSURATION OF PLANE FIGURES: Triangle:

1. Area of a triangle $=\frac{1}{2}$ (Base × height) $=\frac{1}{2}bh$ sq.units.

Hero's formula:

2. Area of a triangle = $\sqrt{s(s-a)(s-b)(s-c)}$ sq.units where s = 1/2(a+b+c), called the semiperimetre of the triangle.

3 (i) Area of an equilateral triangle = $\frac{\sqrt{3}}{4}a^2$ sq.units.

- (ii) Height $=\frac{\sqrt{3}}{2}$ a units
- (iii) Perimeter = 3a units
- 4 (i) Area of a right angled isosceles triangle $=\frac{1}{2}a^2$ sq.units.
 - (ii) Perimeter = $2a + \sqrt{2}a$ units.
- 5 (i) Area of a square $=a^2$ sq.units
 - (ii) Perimeter = 4a units
- 6 (i) Area of a rectangle = $l \times b$ sq.units
 - (ii) Perimeter = 2(l+b) units
- 7 (i) Area of a parallelogram = Base \times height = bh sq.units
 - (ii) Perimeter = 2 (sum of adjacent sides) units
- ⁸ (i) Area of a Rhombus = $\frac{1}{2} d_1 d_2$ = Base × height sq.units.

READY - RECKONER OF MATHEMATICS FORMULAR

(ii) Side
$$=\frac{1}{2}\sqrt{d_1^2 + d_2^2}$$
 units
(iii) Perimeter $= 4 \times$ side units
9. Area of a trapezium $=\frac{1}{2}$ (sum of bases) × Altitude sq.units
10 (i) Area of a circle $= \pi r^2$ sq.units
(ii) Circumference $= 2\pi r$ units
11 (i) Area of a sector $=\frac{\theta}{360} (\pi r^2)$ sq.units
(ii) Length of an arc $=\frac{\theta}{360} (2\pi r)$ units
6.2. MENSURATION OF SOLID FIGURES:
Cube:
1 (i) Volume of the cube $= a^3$ cubic units.
(ii) Total surface area of the cube $= 6a^2$ sq.units.
(iii) Diagonal of the cube $= \sqrt{3}$ a units.
Cuboid:
2 (i) Volume of cuboid $=l bh$ cubic units.
(ii) Total surface area of the cuboid $= 2 (lb + bh + lh)$ sq.units

(iii) Diagonal of the cuboid = $\sqrt{l^2 + b^2 + h^2}$ units.

(iv) Area of 4 walls of a room = 2(l+b)h sq.units 3. Cylinder:

(i) Volume $= \pi r^2 h$ cu units

(ii) Curved surface area = $2 \pi rh$ sq.units.

(iii) Total surface area = $2 \pi r (h + r)$ sq.units.

Hollow Cylinder:

(i) Volume of the material $= \pi h (R^2 - l^2)$ cu.units.

(ii) Curved surface area = $2 \pi h (R + r)$ sq.units where R, r is

MENSURATION

the radius of the external and internal cylinders respectively.

(iii) Total surface area of the hollow cylinder

 $= 2 \pi (R + r) (R + h - r)$ sq.units.

4. Cone:

(i) Volume $=\frac{1}{3}\pi r^2 h$ cu.units

(ii) Curved surface area of a cone = $\pi r l$ sq.units.

(iii) Total surface area = $\pi r (l + r)$ sq.units where $l = \sqrt{h^2 + r^2}$

5. Sphere:

- (i) Volume $=\frac{4}{3}\pi r^3$ cu.units
- (ii) Surface area = $4 \pi r^2$ sq.units

(iii) Volume of spherical shell = $\frac{4}{3}\pi (R^3 - r^3)$ cu.units.

Hemi-sphere:

- (i) Volume $=\frac{2}{3}\pi r^3$ cu.units
- (ii) Curved surface area = $2 \pi r^2$ sq.units
- (iii) Total surface area = $3 \pi r^2$ sq.units
- (iv) Volume of hemi-spherical shell

$$=\frac{2}{3}\pi (R^3 - r^3)$$
 cu.units.