CHAPTER 6

MENSURATION

6.1. MENSURATION OF PLANE FIGURES:

Triangle:

1. Area of a triangle $=\frac{1}{2}$ (Base \times height $)=\frac{1}{2} b h$ sq. units.

Hero's formula:
2. Area of a triangle $=\sqrt{s(s-a)(s-b)(s-c)}$ sq.units where $s=1 / 2(a+b+c)$, called the semiperimetre of the triangle.
3 (i) Area of an equilateral triangle $=\frac{\sqrt{3}}{4} \alpha^{2}$ sq.units.
(ii) Height $=\frac{\sqrt{3}}{2}$ a units
(iii) Perimeter $=3 a$ units

4 (i) Area of a right angled isosceles triangle $=\frac{1}{2} a^{2}$ sq.units.
(ii) Perimeter $=2 a+\sqrt{2} a$ units.

5 (i) Area of a square $=a^{2}$ sq.units
(ii) Perimeter $=4 a$ units

6 (i) Area of a rectangle $=l \times b$ sq.units
(ii) Perimeter $=2(l+b)$ units

7 (i) Area of a parallelogram $=$ Base \times height $=b h$ sq.units
(ii) Perimeter $=2$ (sum of adjacent sides) units

8 (i) Area of a Rhombus $=\frac{1}{2} d_{1} d_{2}=$ Base \times height sq.units.
(ii) Side $=\frac{1}{2} \sqrt{d_{1}^{2}+d_{2}^{2}}$ units
(iii) Perimeter $=4 \times$ side units
9. Area of a trapezium $=\frac{1}{2}$ (sum of bases) \times Altitude sq.units

10 (i) Area of a circle $=\pi r^{2}$ sq.units
(ii) Circumference $=2 \pi r$ units

11 (i) Area of a sector $=\frac{\theta}{360}\left(\pi r^{2}\right)$ sq.units
(ii) Length of an arc $=\frac{\theta}{360}(2 \pi r)$ units

6.2. MENSURATION OF SOLID FIGURES:

Cube:

1 (i) Volume of the cube $=a^{3}$ cubic units.
(ii) Total surface area of the cube $=6 a^{2}$ sq.units.
(iii) Diagonal of the cube $=\sqrt{3}$ a units.

Cuboid:

2 (i) Volume of cuboid $=l b h$ cubic units.
(ii) Total surface area of the cuboid $=2(l b+b h+l h)$ sq.units
(iii) Diagonal of the cuboid $=\sqrt{l^{2}+b^{2}+h^{2}}$ units.
(iv) Area of 4 walls of a room $=2(l+b) h$ sq.units
3. Cylinder:
(i) Volume $=\pi r^{2} h$ cu.units
(ii) Curved surface area $=2 \pi r h$ sq.units.
(iii) Total surface area $=2 \pi r(h+r)$ sq.units.

Hollow Cylinder:

(i) Volume of the material $=\pi h\left(R^{2}-l^{2}\right)$ cu.units.
(ii) Curved surface area $=2 \pi h(R+r)$ sq.units where R, r is
the radius of the external and internal cylinders respectively.
(iii) Total surface area of the hollow cylinder
$=2 \pi(R+r)(R+h-r)$ sq.units.
4. Cone:
(i) Volume $=\frac{1}{3} \pi r^{2} h$ cu.units
(ii) Curved surface area of a cone $=\pi r l$ sq. units.
(iii) Total surface area $=\pi r(l+r)$ sq.units where $l=\sqrt{h^{2}+r^{2}}$
5. Sphere:
(i) Volume $=\frac{4}{3} \pi r^{3}$ cu.units
(ii) Surface area $=4 \pi r^{2}$ sq.units
(iii) Volume of spherical shell $=\frac{4}{3} \pi\left(R^{3}-r^{3}\right)$ cu.units.

Hemi-sphere:

(i) Volume $=\frac{2}{3} \pi r^{3}$ cu.units
(ii) Curved surface area $=2 \pi r^{2}$ sq.units
(iii) Total surface area $=3 \pi r^{2}$ sq.units
(iv) Volume of hemi-spherical shell

$$
=\frac{2}{3} \pi\left(R^{3}-r^{3}\right) \text { cu.units. }
$$

