Time Value of Money

Simple Interest Formula: $\quad \mathbf{S I}=\mathbf{P}(\mathbf{i})(\mathbf{n})$ SI= Simple Interest $\mathrm{P}=$ Principal amount $\mathrm{I}=$ Interest rate per time period (in decimals) n= number of time periods	Present Value $\begin{aligned} & \text { Formula: } \begin{array}{r} \text { PV }=\mathbf{F V} \times \frac{1}{(\mathbf{1}+\mathbf{i})^{\mathbf{n}}} \\ \\ \qquad=\mathbf{F V} \times \mathbf{P V F} \end{array} \\ & \text { Where, } \\ & \text { FV= Future Value, PV= Present Value } \\ & \mathrm{i}=\text { interest rate per annum } \\ & \mathrm{n}=\text { time, PVF= present value factor } \end{aligned}$
Compound Interest Formula: $\mathrm{A}=\mathrm{P}\left(\mathbf{1}+\frac{\mathrm{r}}{\mathrm{n}}{ }^{\mathrm{nt}}-\mathrm{A}\right.$ Where, $\mathrm{A}=$ future value = principal amount (initial investment) $\mathrm{n}=$ numb interest rate imes the interest is $=$ number of years	Future Value $\text { Formula: } \begin{aligned} \mathrm{FV} & =\mathrm{PVX}(1+i)^{\mathrm{n}} \\ & =\mathrm{PV} \times \mathbf{F V F} \end{aligned}$ Where, FVF= Future Value Factor
Effective Interest Rate Formula: $E=\left(1+\frac{i}{n}^{n}-1\right.$ Where, $\mathrm{E}=$ effective annual interest rate = the nominal interest rate = number of time the interest is compounded per year	Perpetuity Formula: $\text { Value of perpetuity }=\frac{A}{r}$ Where A=Amount of periodic payment, $r=$ yield, discount rate, interest rate
Annuity	
Formula: VI. 1 Future value of annuity $=$ Annuity x FVAF $\begin{aligned} & =\text { Annuity } x \frac{F V F-1}{i} \\ & =\text { Annuity } x \frac{(1+i)^{n}-1}{i} \end{aligned}$	VI. 2 Present value of annuity $\begin{aligned} & =\text { Annuity } \times \text { PVAF } \\ & =\text { Annuity } \times \frac{1-P V F}{i} \\ & =\text { Annuity } \times \frac{1-\frac{1}{(1+i)^{n}}}{i} \end{aligned}$
Where, FVAF = Future value annuity factor, PVAF= Present value annuity factor	

Cash Flow Statement: Indirect Method

Cash Flow from Operating Activities
Net profit before tax and extraordinary items
Adjustments for:
Depreciation
Foreign exchange
nvestments
Gain or loss on sale of fixed assets Interest/dividend
Operating profit before working capital changes Adjustments for:

Trade and other receivables
Inventories
Cash Generation from operations Interest paid
Direct Taxes
Cash before extraordinary items
Deferred revenue
Net cash flow from operating activities
Cash Flow from Investing Activities
Purchase of fixed assets
Sale of fixed assets
Purchase of Investments
Interest received
Dividend received
.oans to subsidiaries
Net cash flow from investing activities Cash Flow from Financing Activities Proceeds from issue of share capital Proced frof eividend paid Dividend paic
(a)xxx
xxx(xxx)
xxx
xxx xxx(xxx)xxx$(X X X)$
$(X X x)$

\qquad | xxx |
| :--- |
| xxx |

 xxx Net cash flow from financing activities Cash and Cash Equivalents at the beginning of the yea Cash and Cash Equivalents at the end of the year

Doctors Prescription © Time Value of Money and
Ratio Analysis is all about formulas and basic concept.
While
studying
these While studying thes
chapters don't just mug chapters don't just mug up
the formulas, if you know the concept behind each it will be easy to remember al the formulas.
In case of any issues dont
forget to call
Your FM Doctor Dr. Mac ©
+91-8983-47-5152
It is advisable to read this
chart thrice a week. $\begin{array}{lll}\text { Wednesday, Friday and } \\ \text { Sunday will } & \text { an a }\end{array}$ Sunday will be a better

Cash Flow Statement: Direct Method		Fund Flow Statement								
Cash Flow from Operating Activities $₹$ Cash Receipts from the customers xxx Cash paid to suppliers and employees (xxx) Cash generated from operations xxx Income (Xxx) Cash for paid xx Proceeds from extraordinary items xxx settlement etc. 		Particulars		Working Amount Amount Note						
		Sources of funds								
		Funds from Operations		1	xx					
		Issue of Equity sharesIssue of Debentures			xx					
		Loan raised from bankSale of Fixed Assets			xx	xx				
		xx								
		Sale of InvestmentsDecrease in Working Capita			xx	xxx				
Net Cash flow from operating activities Cash Flows from Investing Activities										
		Application of Funds								
Cash flows from Investing Activities		Purchase of Plant and Machinery Purchase of Investments			xx					
Purchase of fixed assets (XXX)										
Proceeds from sale of equipment		Tax Payment			xx					
Interest received										
Dividend received		Increase in Working Cap Loan Repayment			xx	xxx				
Net cash flow from investing activities (b) \qquad										
Cash Flows from Financing Activities		Note that the above list is not exh								
Proceeds from issuance of share	xxx	Statement of Changes in Working Capital								
capitalProceeds from long term borrowings	xxx	Particulars	31.03.2013	31.03.2014	Increasein WC	Decrease in WC				
		Current Assets								
Repayments of long term borrowings Interest Paid	(xxx)									
Interest Paid	(XX	Stock	xxx	xxx						
Dividend Paid	(XXX)	Debtors XXX Inventory XXX Cash and Bank XXX								
Net cash from Financing Activities (c)	xxx			xxx						
Cash Equivalents Cash and Cash Equivalents at the beginning of the period Cash and Cash Equivalents at the end of the period				Prepaid Expenses XXX XXXCurrent LiabilitiesChX						
		Creditors Other Liabilities Net Working Capital Net Increase/Decrease in WC	XXX	xxx						
		xxx	xxx							
			xxx							

xx

Deductions

Deferred credit (other than the portion aiready charged to Profit and Loss A / c) Profit on sale of investment Any subsidy of fixed assets Any subsidy credited to $A L A / c$. Funds from Operations
vote: Here, Fund from Operations, is calculated after adding back tax provision and proposed dividend. Students should note
that if provision for taxation and proposed dividend are eecluded hat in provision forlaxation and proposed dividend are excluded
from current liabilities, then only these items are to be added Fock to find out the, 'fund from operations'. By fund from
back
and operations if we want to mean gross fund generated before tax
and dividend, then this concept is found useful. At the same and dividend, then insioncept is found useful. At the same
time, fund from operations may also mean net fund generated time, fund from operations may also mean net fund generated
after tax and dividend. For explaining the reasons for change in fund it would be better to follow the gross concep.

Working Note 1: Funds from Operations

 Net IncomeAdditions
$\begin{array}{ll}\text { Depreciation of fixed assets } & \text { XX } \\ \text { Amortization of intangible and deferred } & \\ \text { XX }\end{array}$ charges (i.e. amortization of goodwill, trade marks, patent rights, copyright,
discount on issue of shares and discount on issue of shares and
debentures, on redemption of preference shares and debentures, preliminary expenses, etc.) Amortization of loss on sale of investments
Amortization of loss on sale of fixed
Losses from other non-operating items Tax provision (created out of current profit)
Proposed profit)

Cost of Capital

Capital Structure Decisions

Weighted Average Cost of Capital

Weighted average cost of capital (WACC) is the average after tax cost of all the sources. It is calculated by multiplying the cost of each source of finance by the relevant weight and summing the products up
Formula
The marginal cost of capital may be defined as the cost of raising an additional rupee of capital. Since the capital is raised in substantial amount in practice, marginal cost is referred to as the cost incurred in raising new funds. Marginal cost of capital is derived when the average cost of capital is calculated using the marginal weights. The marginal weights represent the proportion of funds the firm intends to employ. Thus, the problem of choosing between the book value weights and the market value weights does not arise in the case of marginal cost of capital computation.
$\mathrm{E}=$ Value of equity in capital $\mathrm{K}_{\mathrm{d}}=$ Cost of debt, $\mathrm{K}_{\mathrm{p}}=$ Cost of preferentes [Covers equity \& retained earnings both], $\mathrm{P}=$ Value of preference $\mathrm{E}=\mathrm{V}$ aue of equity in cap
$\mathrm{D}=$ Value of debt in capital structure
There is a choice between the book value weights and market value weights. While the book value weights may be operationally convenient, the market value basis is theoretically more consistent, sound and a better indicator of firm's capital structure
The desirable practice is to employ market weights to compute the firm's cost of capital. This rationale rests on the fact that the cost of capital measures the cost of issuing securities - stocks as well as bonds - to finance projects, and that these securities are issued at market value, not at

To calculate the marginal cost of capital, the intended financing proportion should be applied as weights to marginal component costs. The marginal cost of capital should, therefore, be calculated in the composite sense. When a firm raises funds in proportional manner and the component's cost remains unchanged, there will be no difference between costs may remain constant upto certain level of funds raised and then start increasing with amount of funds raised.

Types of Leverages

Capital structure refers to the mix of a firm's capitalisation (i.e. mix of long term sources of funds such as debentures, preference share capital, equity share capital and retained earnings for meeting total capital requirement).
Financial Break-even and Indifference Analysis
Financial break-even point is the minimum level of EBIT needed to satisfy all the fixed financial charges i.e interest and preference dividends. It denotes the level of EBIT for which the firm's EPS equals zero
The equivalency or indifference point can also be calculated algebraically in the following manner
 $\mathrm{E}_{2}=$ Number of equity share in alternative $2, \mathrm{I}_{1}=$ Interest charges in alternative 1 ,
= Interest charges in alternative 2, Alternative $1=$ All Equity finance, Alternative $2=$ Debt-Equity finance Capital Structure Theories
(a) Net income approach: The value of the firm on the basis of Net Income Approach can be ascertained as follows:

$=\mathrm{S}+\mathrm{D}$

Where, $\mathrm{V}=$ Value of the firm, $\mathrm{S}=$ Market value of equity, $\mathrm{D}=$ Market value of debt
Market Value of Equity $=\frac{\text { Earnings Available for Equity shareholders }}{K_{e}}$
Under, NI approach, the value of the firm will be maximum at a point where weighted average cost of capital is minimum. Thus, the theory suggests total or maximum possible debt financing for minimising the cost of capital. The overall cost of capital under this approach is:

$$
\text { Cost of Equity }=\frac{\text { EBIT }}{\text { Value of the firm }}
$$

(b) Net operating income approach: NOI means earnings before interest and tax. According to this approach, capital structure decisions of the firm are irrelevant. Any change in the leverage will not lead
to any change in the total value of the firm and the market price of shares, as the overall cost of capital is independent of the degree of leverage.
(c) Modigliani-Miller approach: The above approach (NOI approach) is definitional or conceptual and lacks signicance. It does not provide operational justification for irrelevance of capital
structure.
Based on the assumptions, Modigliani-Miller derived the following three propositions:

1. Total market value of a firm is equal to its expected net operating income dividend by the discount rate appropriate to its risk class decided by the mark
2. Average cost of capital is not affected by financial decision.

What is Venture Capital Financing? [Topics from Types of Financingl

The venture capital financing refers to financing of new
high risky venture promed high risky venture promoted by qualified entrepreneurs
who lack experien
ideas. In broad sense, under venture capital financing venture
capitalist make investment to purchase equity or debt securities from inexperienced entrepreneurs who indertake highly risky ventures with a potential of
uccess. success.
are:-
(ii) It is basically a equity finance in new companies. (ii) It t basically a equity finance in new companies.
(ii) It can be viewed as a long term investment in growth-oriented small/medium firms.
(iv) Apart from providing funds, the investor also provides support in form of sales strategv, business
networking and management expertise, enabling the nerworking and managemen.

What is Debt Securitisation?fTopics from Types of Financingl
Debt securitisation is the process of conversion of
existing assets or future cas flows into marketable securities. In other words seccuritisation deals with the conversion of assets which are not marketable into marketable ones.
The originator, entity owning the assets out of an
ggreeme agreement identifies a pool of homogeneous assets,
which it desires to securitize. which it desires to securitize. Originator makes sales to
Originator transfers the ass entity who has trust agreement with trustee Guarentee agreement with guarentee and is
top rated top rated by rating agency, commonly
known as specil) SPV will convert such assets into certificates known as Pay through or Pass through known as Pay through or Pass through
certificates and sell those certificates to 4. Public. sub

Public subscribes to such certificates and pay to the SPV.
. proceeds to Originator
The debtors will due amount.
As and when SPV collects money from debtors, it will be immediately distributed to
public (In case of pass or will accumulate uston thouint of time tificates a year and then distribute
pay through certificates).

It's simple, "Work hard when it's time to work and drink hard when it's time to celebrate, don't put average efforts, this is what everybody is doing around you and you are doing no good. You can do much better than everyone else. Put that extra effort because this is what going to change your entire life. When you are going to travel on your dream path, it's not going to be easy but yes it's going to be worth it.

Capital Budgeting Techniques

Discounted Techniques

1. Net Present Value

Here, Cash inflows and outflows are discounted to the present value and NPV = Present value of Cash Inflow - Present Value of Cash Outflow
If the NPV is positive, that means we are earning more than the expected return on the project under consideration and hence the project should be accepted. the project under consideration and hence the project should be accepted.
If the NPV is negative, that means we are earning less than what is expected from the project under consideration and hence the project should not be accepted.
Draft Format
Year (\mathbf{n}) w/(outflow)

	inflow/(outflow)		
0	-ve	1	XX
1	+ve	$1 /(1+r)^{1}$	XX
2	+ve	$1 /(1+r)^{2}$	XX
3	+ve	$1 /(1+\mathrm{r})^{3}$	XX
NPV			XXXX

3. Internal Rate of Return

internal rate of return for an investment proposal is the discount rate that guates the present value of the expected net cash flows with the initial cash UTFLow. IRR is the discount rate that sets NPV to zero

Calculating IRR

Scenario 1: Investment with same cash inflows each year Step 1: Calculate present value annuity factor using following formula: Annual cash inflow x PVAF = Present value of cash outflow Step 2: Find out discount rate (iRR) for the present value annuity factor calculated above in the annuity table. Or else lnterpolation formula can also be USED.
Scenario 2: Investment with different cash inflows over its life,
When the cash flows are not uniform over the life of the investment, determination of the discount rate involves using trial and error and interpolation method between interest rates.
Step 1: Trial and error method: Consider two discount rates:
A: One, at which the net present value is more than Zero
B: Other, at which the net present value is less than initial Zero
Step 2: Interpolation formula: Calcu ina using

$$
\mathrm{IRR}=\mathrm{A}+\frac{\mathrm{NPV@A}-0(\mathrm{ZERO})}{\text { NPV@A }- \text { NPV@B }} \mathrm{x}(\mathrm{~B}-\mathrm{A})
$$

5. Discounted Payback Period

A DISCOUNTED PAYBACK PERIOD IS THE SAME AS THE PAYBACK PERIOD EXCEPT FOR TH act that it takes into account the time value of the money. Discount dir AYBack period. armua:

iscounted Payback Period = A +				
Where, A= Last period with a negative discounted cumulative cash flow; B= Value of discounted cumulative cash flow at the end of the period A; C= Discounted cash flow during the period just after A.				
Ex: An initial investment of $₹ 23,24,000$ is expected to generate $₹ 600,000$ per year for 6 years. Calculate the discounted payback period of the investment if the discount rate is 11%.				
Step 1: Prepare a table to calculate discounted cash flow of each period by multiplying the actual cash flows by present value factor. Create cumulative discounted cash flow column.				
Year	Cash Flow	Present Value Factor PV ₹ $1=1 /(1+\mathrm{i})^{\mathrm{n}}$	Discounted Cash Flow CF \times PV₹1	Cumulative Discounted Cash Flow
0	-23,24,000	1	-23,24,000	-23,24,000
1	6,00,000	0.9009	5,40,541	-17,83,459
2	6,00,000	0.8116	4,86,973	- 12,96,486
3	6,00,000	0.7312	4,38,715	-8,57,771
5	6,00,000	0.5935	3,56,071	- 1,06,462
6	6,00,000	. 5346	3,20,785	2,14,32

2. Profitability Index

Profitability Index is defined as a tool for measuring profitability of a proposed project by comparing the cash inflows of the project with the investment required for the same project.

PI $=\frac{\text { Present value of cash inflows }}{\text { Present }}$

Important notes:

. The profitability index is often used to rank the company's possible investment projects. Since companies have limited resources hence the top ranked PI
projects are accepted and companies make investments in these projects in order to achieve maximum profit. Profitability index is also known as Profit Investment ratio or Value Investment ratio.
Rules for selection or rejection of project

- If $\mathrm{PI}>1$, then the project should be accepted
- If $\mathrm{PI}<1$, then the project should be rejected
- Pl of 1 indicates the breakeven of the projec

Standard Deviation and Variance of Cash Flows

Standard Deviation (represented by the symbol sigma, σ)
or dispersion exists from the average (mean), or expected value.
or dispersion exists from the average (mean), or expecte

$$
\sigma=\frac{(\mathbf{R}-\overline{\mathbf{R}})^{2}}{\mathrm{~N}}
$$

Working Capital Management

Operating or Working Capital Cycle
Working Capital cycle indicates the length of time between a compan's's paying for materials, entering into stock and receiving the cash 15 days, production goods. For example, a company holds raw materials on an average for 60 days, it gets credit from the supplier for 15 days, production process needs 15 days, finished goods are held for 30 days and 30 days credit is extended to debtors. The total of In the form of an equation, the operating cycle process can be expressed as follows.

Non-Discounted Techniques

1. Payback Period

Payback period in capital budgeting refers to the period of time required for the return on an investment to "repay" the sum of the original investment. For example, a ₹ 1000 investment which returned $₹ 500$ per year would have a two year payback period. Formula:

Total initial capital investment
Payback Period $=\frac{\text { Total initial capital investment }}{\text { Annual expected after tax net cash flow }}$ Payback Reciprocal Annual expected after tax net ca The payback reciprocal can be calculated as follows

$$
\text { Payback Reciprocal }=\frac{\text { Average Annual Cash Inflow }}{\text { Initial Investment }}
$$

2. Accounting Rate of Return

The accounting rate of return of an investment measures the percentage of the investment.

Accouting rate of return $=$ Average Annual Net Income Average Investment
The denominator can be either the initial investment or the average investment over the useful life of the project:

 Inventory

Management of Payables Computation of Cost of Payables

$\left(\frac{100}{100-\mathrm{d}}\right)^{\frac{36}{\mathrm{t}}}$

Where, $d=$ size of discount, i.e. for 6% discount. $d=6, t=$ The reduction in the obtain the early discount or Das Credit Outstanding - Discount Period.
$\xlongequal{\text { Estimated production (in units) } \mathrm{x} \text { Estimated cost of raw material per unit }} \mathrm{x}$ Avg. raw material holding period 12 months or 360 days (in months or in days)

Estimated production (in units) x Estimated WIP cost per unit ${ }^{12}$ Avg. WIP holding period 12 months or 360 days $\times \begin{gathered}\text { Avg. WIP holding period } \\ \text { (in months or in days) }\end{gathered}$

Estimated production (in units) x Cost of production (per unit)

$\frac{\text { excluding depreciation }}{12 \text { months or } 360 \text { days }} \mathrm{x}$ Avg finishedgoods holding period (in months or in days)

Estimated Credit Sales (in units)x Cost of Sales(per unit)

excluding depreciation
12 months x Avg. debtors collection period (months/days)
$\frac{\text { Estimated yearly production (in units) } \text {) Raw material requirements per unit }}{12 \text { months or } 360 \text { days }} \mathrm{x}$ Creditor period granted by suppliers (months/days)
$\frac{\text { Estimated production (in units) } \times \text { Direct Labour cost per unit }}{12} \times$ Avg. time lag in payment ofwages (months/days) 12 months or 360 days

Estimated yearly production (in units)x overhead cost per unit
12 months or 360 days
Doctors Prescription © © Capital Budgeting and Working Capital Management are altogether chapters for the business people. While studying this chapter it is advised that you should think from the point of
view of b businessman wwith long term gools and ojiectives view of a businessman with long term go
In case of any issues don't forget to call.

Your FM Docto
Dr. Mac ©
It is advisable to read this chart twice a week.
Monday \& Thursday will be better choice.

Types of Financing

Lease Financing		
Types of lease contract		
1. Operating Lease		
Distinguish between Financial and Operating lease		
Basis	Financial Lease	Operating Lease
Lease term	Covers the economic life of the equipment	Covers significantly less than the
Cancellation	Financial lease cannot be cancelled during the primary lease period.	Operating lease can be cancelled by the lessee prior to its expiration.
Amortization	The lease rentals are more or less fully amortized during the primary lease period.	The lease rentals are not sufficient enough to amortize the cost of the asset.
Risk of obsolescence	The lessee is required to take the ris of obsolescence.	The lessee is protected against the risk of obsolescence.
Costs of maintenance, taxes, insurance etc.	Incurred by the lessee unless the contract provides otherwise.	Incurred by the lessor.

American
Depositary Receipts

Shares of many non-US companies trade on US stock exchanges through ADRs. Shares of many non-US companies trade on US stock exchanges through ADRS.
ADRs are denominated and pay dividends in US dollars and may be traded lik regular shares of stock
his is an excellent way for the public in US to buy shares in a non US company Whie realizing any dividends and capital gains in U.S. dollars. shares of a foreign corporation.
If the ADR's are "sponsored," the corporation provides financial information and ther assistance to the bank and may subsidize the administration of the ADR. Unsponsored ADRs do not receive such assistance.
charged by the commercial banks with correspond tes.
A bank certificate issued in more than one country for shares in a foreign ompany.
The shares trade as domestic shares, but are offered for sale globally through the various bank branches. Several international banks issue GDRs, such as JPMorgan Chase, Citigroup,
Deutsche Bank, The Bank of New York Mellon. Deutsche Bank, The Bank of New York Mellon. ExRs are often listed in the Frankfurt Stock Exchange, Luxembourg Stock International Order Book (IOB). An Indian Depository Receipt (IDR) is a financial instrument denominated in ndian Rupees in the form of a depository receipt created by a Domestic Depository against the underlying equity of issuing company to enable foreign companies to raise funds from the Indian securities Markets.
The foreign company IDRs will deposit shares to an Indian depository. The benefit of the underlying shares (like bonus, dividends etc.) would accrue to The benefit of the underlying shares (like
the depository receipt holders in India.
The Seesd capital assistance scheme is designed by IDBI for professionally or technically qualified entrepreneurs and/or persons possessing relevant experience, skills and entrepreneurial traits.
through refinance are eligible under the scheme. The Seed Capital Assistance is interest free but carries a service charge of one per cent per annum for the first five years and at increasing rate thereafter. However, IDBI will have the option to charge interest at such rate as may be determined by IDBI on the loan if the financial position and profitability of the The repayment schedule is fixed depending upon the repaying capacity of the unit with an initial moratorium upto five years.
The project cost should not exceed ₹2 crores and the maximum assistance under the project will be restricted to 50 percent of the required promoter's ontribution or ₹15 lacs, whichever is lower.

$\frac{\text { What is } \text { Bridge Financing }}{\checkmark}$ Bridge finance refers

refers to loans taken by a company ormally from commercial banks for a short period secause of pending disbursement by financial institutions. te bridge loans are repaid/ adjusted out of the institutions.
Bridge loans are normally secured by hypothecating
movable assets, personal suarantees and demand novable assets, permonsoly suararattees and demand promissory notes. Generally, the rate of interest o
bridge finance is higher as compared with that on term loans.

