Acknowledgement

I would like to express the words of gratitude for all those who have helped me in lightening my task during the course of formation of my book ,

" SCOOBY DOO" (STATS & LR REGULAR BOOK)

Here, I Would like to express my deep sense of gratitude to Almighty who has guided me towards my path; my parents (Praveen Jain & Kalpana Jain)

AND

To my respectful in-laws (CA Prakash Nahta & Indira Nahta), my little Dearest sister (Bhumika Kothari) and my Dearest Husband (CA Pratik Nahta) & my Cutie Brother- inlaw (Achin Nahta) who has always inspired and supported me towards journey of this book.

The **FIRST** edition is also dedicated towards all my dear students without whom this would not be possible

Vote Of Thanks !!!!!!!!!!

- CA MEGHA NAHTA

© All rights reserved with the Author.

INDEX

S. NO.	CHAPTER	NOS OF QUESTION	PAGE NO
1	Statistical Description of Data	82	1.1 – 1.24
2	Measures of Central Tendency & Dispersion	246	2.1 – 2.62
3	Probability & Expected Value by Mathematical Expectation	203	3.1 – 3.52
4	Theoritical Distribution	172	4.1 – 4.44
5	Correlation & Regression	167	5.1 – 5.48
6	Index Number & Time Series	269	6.1 – 6.56
7	Logical Reasoning	661	7.1 – 7.128
	TOTAL QUESTIONS	1,800	

Call : 9302355649, 8518819888

Call : 9302355649, 8518819888

<section-header>

T 8

. HO

STATISTICAL DESCRIPTION OF DATA

	"PRACTICE & PRACTICE MAKES STATS PERFECT"
	<u>Set A – (Theory Question)</u>
Ι.	Which of the following statements is false?
	(a) Statistics is derived from the Latin word 'Status'
	(b) Statistics is derived from the Italian word 'Statista'
	(c) Statistics is derived from the French word 'Statistik'
	(d) None of these.
2.	Statistics is defined in terms of numerical data in the
	(a) Singular sense (b) Plural sense (c) Either (a) or (b) (d) Both (a) and (b).
3.	Statistics is applied in
	(a) Economics (b) Business management (c) Commerce and industry (d) All these.
4.	Statistics is concerned with
	(a) Qualitative information (b) Quantitative information (c) (a) or (b) (d) Both (a) and (b
5.	An attribute is
	(a) A qualitative characteristic (b) A quantitative characteristic
	(c) A measurable characteristic (d) All these.
6.	Annual income of a person is
	(a) An attribute (b) A discrete variable (c) A continuous variable d) (b) or (c).
7.	Marks of a student is an ex. Of:

FACULTY:CAMEGHA NAHTA

8.	Nationality of a student is					
	(a) An attribute (b) A continuous variable (c) A discrete variable (d) (a) or (c).					
9.	Drinking habit of a person is					
	(a) An attribute (b) A variable (c) A discrete variable (d) A continuous variable.					
10.	Age of a person is					
	(a) An attribute (b) A discrete variable (c) A continuous variable (d) A variable.					
П.	Data collected on religion from the census reports are					
	(a) Primary data (b) Secondary data (c) Sample data d) (a) or (b)					
12.	The data collected on the height of a group of students after recording their heights with a measuring tape are					
	(a) Primary data (b) Secondary data (c) Discrete data (d) Continuous data.					
13.	The primary data are collected by					
	(a) Interview method (b) Observation method (c) Questionnaire method (d) All these.					
14.	The quickest method to collect primary data is					
	(a) Personal interview (b) Indirect interview (c) Telephone interview (d) By observation.					
15.	The best method to collect data, in case of a natural calamity, is					
	(a) Personal interview (b) Indirect interview					
	(c) Questionnaire method (d) Direct observation method.					
16.	In case of a rail accident, the appropriate method of data collection is by					
	(a) Personal interview (b) Direct interview (c) Indirect interview (d) All these.					
17.	Which method of data collection covers the widest area?					
	(a) Telephone interview method (b) Mailed questionnaire method					
	(c) Direct interview method (d) All these.					
18.	The amount of non-responses is maximum in:					
	(a) Mailed questionnaire method (b) Interview method					
1. 2 P	age FACULTY:CAMEGHA NAHTA					

INAH	TA PROFESSIONAL CLASSES STATISTICS					
	(c) Observation method (d) All these.					
19.	Some important sources of secondary data are					
	(a) International and Government sources					
	(b) International and primary sources					
	(c) Private and primary sources					
	(d) Government sources.					
20.	Internal consistency of the collected data can be checked when					
	(a) Internal data are given (b) External data are given					
	(c) Two or more series are given (d) A number of related series are given.					
21.	The accuracy and consistency of data can be verified by					
	(a) Internal checking (b) External checking (c) Scrutiny (d) Both (a) and (b).					
22.	The mode of presentation of data are					
	(a) Textual, tabulation and diagrammatic (b) Tabular, internal and external					
	(c) Textual, tabular and internal (d) Tabular, textual and external.					
23.	The best method of presentation of data is					
	(a) Textual (b) Tabular (c) Diagrammatic (d) (b) and (c).					
24.	The most attractive method of data presentation is					
	(a) Tabular (b) Textual (c) Diagrammatic (d) (a) or (b).					
25.	For tabulation, 'caption' is					
	(a) The upper part of the table (b) The lower part of the table					
	(c) The main part of the table (d) The upper part of a table that describes the column and sub- column.					
26.	'Stub' of a table is the					
	(a) Left part of the table describing the columns (b) Right part of the table describing the columns					
	(c) Right part of the table describing the rows (d) Left part of the table describing the rows.					
27.	The entire upper part of a table is known as					

NAH	ta professional clas	SES		STATISTICS		
	(a) Caption	(b) Stub	(c) Box head	(d) Body.		
28.	The unit of measurement	in tabulation is show	wn in			
	(a) Box head	(b) Body	(c) Caption	(d) Stub.		
29.	In tabulation source of th	e data, if any, is show	vn in the			
	(a) Footnote	(b) Body	(c) Stub	(d) Caption.		
30.	Which of the following st	atements is untrue f	or tabulation?			
	(a) Statistical analysis of	data requires tabula	tion			
	(b) It facilitates comparis	on between rows an	id not columns			
	(c) Complicated data can be presented					
	(d) Diagrammatic representation of data requires tabulation.					
31.	Hidden trend, if any, in the data can be noticed in					
	(a) Textual presentation	(b) Tabulation	(c) Diagrammatic repre	esentation (d) All these.		
32.	Diagrammatic representa	ition of data is done	by			
	(a) Diagrams	(b) Charts	(c) Pictures	(d) All these.		
33.	The most accurate mode	of data presentation	is			
	(a) Diagrammatic method	d (b) Tabu	lation (c) Textual pre	esentation (d) None of these.		
34.	The chart that uses logari	thm of the variable	s known as			
	(a) Line chart	(b) Ratio chart	(c) Multiple line chart	d) Component line chart.		
35.	Multiple line chart is applied for					
	(a) Showing multiple charts					
	(b) Two or more related time series when the variables are expressed in the same unit					
	(c) Two or more related t	time series when the	variables are expressed ir	n different unit		
	(d) Multiple variations in	the time series.				
36.	Multiple axis line chart is	considered when				
	(a) There is more than or	ne time series	(b) The units of the	variables are different		

	(c) (a) or (b)	(d) (a) and (b).	
37.	Horizontal bar diagram is used for		
> 7.	-	(b) Data varying over time	
		(d) (a) or (c).	
88.	Vertical bar diagram is applicable when		
	(a) The data are qualitative	(b) The data are quantitat	tive
	(c) When the data vary over time	(d) (a) or (c).	
39.	Divided bar chart is considered for		
	(a) Comparing different components of a varia	able (c) (a) o	r (b)
	(b) The relation of different components to th	e table (d) (a) a	and (b).
40.	In order to compare two or more related serie	es, we consider	
	(a) Multiple bar chart (b) Grouped bar ch	art (c) (a) or (b)	(d) (a) and (b).
41.	Pie-diagram is used for		
	(a) Comparing different components and their	r relation to the total	
	(b) Representing qualitative data in a circle		
	(c) Representing quantitative data in circle		
	(d) (b) or (c).		
2	A frequency distribution		
	(a) Arranges observations in an increasing or	der	
	(b) Arranges observation in terms of a numbe	r of groups	
	(c) Relaters to a measurable characteristic		
	(d) All these.		
13.	The frequency distribution of a continuous va	riable is known as	
	(a) Grouped frequency distribution	(b) Simple frequency distrib	ution
		(d) (a) and (b).	

NAF	TA PROFESSIONAL CLASSES STATISTICS						
44.	The distribution of shares is an ex. of the frequency distribution of						
	(a) A discrete variable (b) A continuous variable (c) An attribute (d) (a) or (c).						
45.	The distribution of profits of a blue-chip company relates to						
	(a) Discrete variable (b) Continuous variable (c) Attributes (d) (a) or (b).						
46.	Mutually exclusive classification						
	(a) Excludes both the class limit						
	(b) Excludes the upper class limit but includes the lower class limit						
	(c) Includes the upper class limit but excludes the upper class limit						
	(d) Either (b) or (c).						
47.	Mutually inclusive classification is usually meant for						
	(a) A discrete variable (b) A continuous variable						
	(c) An attribute (d) All these.						
48.	Mutually exclusive classification is usually meant for						
	(a) A discrete variable (b) A continuous variable						
	(c) An attribute (d) Any of these.						
49.	The LCB is						
	(a) An upper limit to LCL (b) A lower limit to LCL (c) (a) and (b) (d) (a) or (b).						
50.	The UCB is						
	(a) An upper limit to UCL (b) A lower limit to LCL (c) Both (a) and (b) (d) (a) or (b).						
51.	length of a class is						
	(a) The difference between the UCB and LCB of that class						
	(b) The difference between the UCL and LCL of that class						
	(c) (a) or (b)						
	(d) Both (a) and (b).						
52.	For a particular class boundary, the less than cumulative frequency and more than cumulative frequen						

NAH	TA PROFESSIONAL CLASSES STATISTICS
	add up to
	(a) Total frequency (b) Fifty per cent of the total frequency
	(c) (a) or (b) (d) None of these.
53	Frequency density corresponding to a class interval is the ratio of
	(a) Class frequency to the total frequency (b) Class frequency to the class length
	(c) Class length to the class frequency (d) Class frequency to the cumulative frequency.
54.	Relative frequency for a particular class
	(a) Lies between 0 and 1 (b) Lies between 0 and 1, both inclusive
	(c) Lies between -1 and 0 (d) Lies between -1 to 1.
55.	Mode of a distribution can be obtained from
	(a) Histogram (b) Less than type ogives (c) More than type ogives (d) Frequency polygon
56.	Median of a distribution can be obtained from
	(a) Frequency polygon (b) Histogram (c) Less than type ogives (d) None of these.
57.	A comparison among the class frequencies is possible only in
	(a) Frequency polygon (b) Histogram (c) Ogives (d) (a) or (b).
58.	Frequency curve is a limiting form of
	(a) Frequency polygon (b) Histogram (c) (a) or (b) (d) (a) and (b).
59.	Most of the commonly used frequency curves are
	(a) Mixed (b) Inverted J-shaped (c) U-shaped (d) Bell-shaped
60.	The distribution of profits of a company follows
	(a) J-shaped frequency curve (b) U-shaped frequency curve
	(c) Bell-shaped frequency curve (d) Any of these.
	<u>Set B – (Practical Question)</u>
1.	Out of 1000 persons, 25 per cent were industrial workers and the rest were agricultural workers. 300 persons

NAH	ITA PROFESSIONAL CLAS	SSES	STATISTICS				
	enjoyed world cup matche	s on TV. 30 per cent of the p	cople who had not watched world cup matches were				
	industrial workers. What is	the number of agricultural	workers who had enjoyed world cup matches on TV				
	(a) 260 (b) 240	(c) 230	(d) 250				
2.	A sample study of the peop	le of an area revealed that to	otal number of women were 40% and the percentage				
	Of coffee drinkers were 45	as a whole and the percenta	ge of male coffee drinkers was 20. What was the				
	percentage of female non-o	coffee drinkers?					
	(a) 10 (b) 15	(c) 18	(d) 20				
3,	Cost of sugar in a month ur	nder the heads raw materials	, labour, direct production and others were 12, 20,				
	35 and 23 units respective	ly. What is the difference bet	ween the central angles for the largest and smallest				
	components of the cost of s	sugar?					
	(a) 72° (b) 48°	(c) 56°	(d) 92°				
4.	The number of accidents for seven days in a locality are given below :						
	No. of accidents: 0 Frequency : 15	1 2 3 4 19 22 31 9					
	What is the number of case	es when 3 or less accidents o	ccurred?				
	(a) 56 (b) 6	(c) 68 (d) 87					
5.	The following data relate to the incomes of 86 persons :						
	Income in Rs. : 500–999 No. of persons : 15	1000-1499 1500-19 28 3	99 2000-2499 6 7				
	What is the percentage of persons earning more than Rs. 1500?						
	(a) 50 (b) 45	(c) 40 (d) 60					
6.	The following data relate to	o the marks of a group of stu	dents:				
	Marks : Below 10 No. of students : 15	Below 20 Below 30 38 65) Below 40 Below 50 84 100				
	How many students got marks more than 30?						
	(a) 65 (b) 50	(c) 35 (d) 43					
7.	Find the number of observ	ations between 250 and 300	from the following data Value :				
	Class Interval :	More than 200 Mor	e than 250 More than 300 More than 350				

	No. of observations :		SSES	56	38		15	ATISTIC	0								
					50		15		0								
	(a) 56	(b) 23	(c) 15	(d) 8													
				ANS	WERS												
				Se	et A												
	1. (z) 2 .	(b)	3. (d)	4.	(d)	5.	(a)	6.	(b							
	7. (1	o) 8.	(a)	9. (a)	10.	(c)	11.	(b)	12.	(a							
	1 3. (d	l) 14 .	(c)	15. (a)	16.	(c)	17.	(b)	18.	(a							
	19. (a		(d)	21. (c)	22.	(a)	23.	(b)	24.	(c							
		1) 26.	(d)	27. (c)	28.	(a)	29.	(a)	30.	(ł:							
	1000	c) 32.	200	33. (b)	34.	(b)	35.	(b)	36.	(c							
	37. (0		(b)	39. (d)	40.	(c)	41.	(a)	42.	(c							
		a) 44.	(a)	45. (b)	46.	(b)	47.	(a)	48.	(ł							
	· · · · ·	o) 50.	(a)	51. (a)	52.	(a)	53.	(b)	54.	(7							
	55. (a	ı) 56.	(c)	57. (b)	58.	(d)	59.	(d)	60.	(0							
	Set B																
	10 A		(b)	3. (d)	4. (0	1)	5 . (a	ı)	6 . (c))							
	7. (b)															
		66	KAR LO	PAST AP	NI MUTH	H ME	99		2								
			P	ast Exam	<u>Question</u>	<u>IS</u>			ľ								
Nov 06									y								
	The quickest method to collect primary data is :																
[1]	The quicke	est method to	collect prir							(a) Personal Interview							
			collect prin														

NAH	TA PROFESSIONAL CLAS	SES		STAT	ISTICS				
	(c) Mailed Questionnaire	Method							
	(d) Telephonic Interview								
[2]	Which of the following statement is true?								
	(a) Statistics is derived from the French word 'Statistic								
	(b) Statistics is derived fi	rom the Italian wo	ord 'Statista'.						
	(c) Statistics is derived fi	om the Latin wor	d 'Statistique'.						
	(d) None of these.								
[3]	The following data relate	es to the incomes o	of 90 persons :						
	Income in Rs. :	1500-1999	2000-2499	2500-2999	3000-3499				
	No. of Persons :	13	32	20	25				
	What is the percentage of persons earning more than Rs. 2,500 ?								
	(a) 45 (b) 50	(c) 5	2 (d) 5	5					
Feb 07									
[4]	In tabulation, source of d	ata, if any, is shov	vn in the :						
	(a) Stub (b)	Body	(c) Caption	(d) Footnote					
[5]	Divided bar chart is good	l for:							
	(a) Comparing various co	omponents of a va	rriable						
	(b) Relating the differer	nt components to	the whole.						
	(c) (a) and (b)								
	(d) (a) or (b)								
May 07									
1. 10	Page		FACULTY	: C A M E G H A	NAHTA				

NAH	ta professional cl	ASSES		STATISTICS					
[6]	Relative frequency for a particular class lies between :								
	(a) 0 and 1 (b) 0 and 1, both inclusive (c) -1 and 0 (d) -1 and 1								
[7]	Find the number of observations between 350 and 400 from the following' data:								
	Value :	More than	More than						
		200	350	400	450				
	No. of observations :	48	25	12	0				
	(a) 13 (b) 15 (c) 17 (d) 19								
[8]	When the width of all classes is same, frequency polygon has not the same area as the Histogram :								
	(a) False	(b) True	(c) Both	(d) None					
[9]	The graphical represe	ntation of a cumulat	ive frequency distr	ibution is called :					
	(a) Histogram	(b) Ogive	(c) Both	(d) None					
Aug 07									
[10]	A table has parts.								
	(a) Four	(b) Two	(c) Five	(d) None					
[11]	Cost of sugar in a month under the heads raw materials, labour, direct production and others were								
	12, 20, 35 and 23 units respectively. What is the difference between the central angles for the								
	largest and smallest components of the cost of sugar ?								
	(a) 72° (l	o) 48° (d	c) 56° ((d)' 92°					
[12]	Frequency density cor	rresponding to a clas	ss interval is the rat	tio of:					
	(a) Class Frequency to	the Total Frequenc	У						
	(b) Class Frequency to the Class Length								

NAH	a professional classes	S		STATISTICS
	(c) Class Length to the Class	Frequency		
	(d) Class Frequency to the C	Cumulative Frequen	cy.	
Nov 07				
[13]	In order to compare two or	more related series	we consider:	
	(a) Multiple Bar Chart	(b) Grou	ped Bar Chart	
	(c) (a) or (b)	(d) (a)	and (b)	
[14]	An area diagram is :			
	(a) Histogram (b	o) Ogive	(c) Frequency Polyg	gon (d) None of these
[15]	Most extreme values which	would ever be inclu	ded in a class interva	l are called:
	(a) Class Interval	(b) Class Limits	(c) Class Bound	laries (d) None of these.
[16]	In 2000, out of total of 1,750) workers of a facto	y, 1,200 were memb	ers of a trade union. The
	number of women employed	d was 200 of which	175 did not belong to	o a trade union. In 2004, there
	were 1,800 employees who	belong to a trade u	nion and 50 who did	not belong to trade union. Of all
	the employees in 2004,300	were women of who	om only 8 did not bel	ong to the trade union. On the
	basis of this information, the	e ratio of female me	mbers of the trade u	nion in 2000 and 2004 is
	(a) 292 : 25 (b) 8	: 175 (c)	175:8 (d) 2	25:292
Feb 08				
[17]	The lower class boundary is	:		
	(a) An upper limit to Lower	Class Limit	(b) A lower limit	to Lower Class Limit
	(c) Both (a) & (b)		(d) None of thes	e

NAH	TA PROFESSIONAL CLASSES STATISTICS
[18]	The distribution of profits of a company follows :
	(a) J - shaped frequency curve (b) U - shaped frequency curve
	(c) Bell - shaped frequency curve (d) Any of these
[19]	Out of 1000 persons, 25 per cent were industrial workers and the rest were agricultural workers.
	300 persons enjoyed world cup matches on T.V. 30 per cent of the people who had not watched
	world cup matches were industrial workers. What is the number of agricultural workers who had
	enjoyed world cup matches on TV?
	(a) 230 (b) 250 (c) 240 (d) 260
[20]	Median of a distribution can be obtained from ;
	(a) Histogram (b) Frequency Polygon
	'(c) Less than type Ogives (d) None of these
June 08	
[21]	In indirect oral investigation :
	(a) Data is not capable of numerical expression
	(b) Not possible or desirable to approach informant directly.
	(c) Data is collected from the books.
	(d) None of these
[22]	Circular diagrams are always :
	(a) One - dimensional (b) Two - dimensional
	(c) Three - dimensional (d) Cartograms
[23]	The column headings of a table are known as :

NAH	TA PROFESSIO	NAL CLASSES				STATISTICS	
	(a) Body	(b) Stub	(0	c) Box – head		(d) Caption	
[24]	Some important sources of secondary data are :						
	(a) International and Government sources						
	(b) International and primary sources						
	(c) Private an	d primary sources	5				
	(d) Governme	ent sources					
Dec 08							
[25]		owing data find the 54, 80, 50, 46, 49,		s intervals if class	length is	given as 5.	
	(a) 6	(b) 5	(c) 7	(d) 8			
[26]		propriate diagran s by a family is:'	n to represer	nt the data relat	ing to th	e monthly expenditure on	
	(a) Histogram	(b) Pie-	diagram	(c) Frequen	cy polygo	n (d) Line graph.	
[27]	Which of the f	ollowing is a stati	stical data ?				
	(a) Ram is 50	years old.					
	(b) Height of I	Ram is 5'6" and of	Shyam and H	ari is 5'3" and 5'4	" respecti	ively.	
	(c) Height of I	nam is 5'6" and we	eight is 90kg				
	(d) Sale of A v	vas more than B a	nd C.				
[28]	Sales of XYZ L	td. for 4 months is	5:				
	М	onths		Sales			
		Jan.		10,000			
		Feb.		15,000			

NAH	ta professional	CLASSES			STATISTICS
	Мау		18,000		
	Apr.		9,000		
	The above data re	presents :			I
	(a) Discrete	(b) Continuo	ous (c) Individ	lual	(d) None of these.
June 09					
[29]	Mid values are als	o called			
	(a) Lower limit	(b) Upper	r limit (c) Clas	ss mark	(d) None.
[30]	Which of the follow	wing is not a two-	-dimensional figure ?		
	(a) Line Diagram		(b) Pie Diagram		
	(c) Square Diagrai	n	(d) Rectangle Diag	ram.	
[31]	Less than type and	l more than type	gives meet at a point kno	own as : "	
	(a) Mean	(b) Median	(c) Mode		
Dec 09					
[32]	Arrange the dimer	isions of Bar diag	gram, Cube diagram, Pie	diagram in	sequence.
	(a) 1,2,3	(b) 2,1,3	(c) 2,3, 0	(d) 3,2, 1	l
[33]	With the help of h	stogram one can	find.		
	(a) Mean	(b) Median	(c) Mode	2	(d) First Quartile.
[34]	Nationality of a pe	rson is :			
	(a) Discrete varial	ble	(b) An attribute		
	(c) Continuous va	riable	(d) None		
[35]	If we plot less than	n and more than t	type frequency distribut	ion, then th	e graph plotted is .

NAH	ITA PROFESSIONAL CLASSES			STATISTICS			
	(a) Histogram	(b) Frequency Cu	rve	(c) Ogive	(d) None of these		
June10							
[36]	(i) As far as possib (ii) The classes sho	that should be observed le, the class should be o ould be exhaustive ould be unambiguously	f equal width	1:			
	Then which of the	following is correct:					
	(a) only (i) and (ii)	()	o) only (ii) and'	(iii)			
	(c) only (i) and (iii)	(d) all (i), (ii) a	nd (iii).			
[37]	Using Ogive Curve,	we can determine:					
	(a) Median	(b) Quartile (c) Both (a) and (b) (d)) None.		
[38]	With the help of his	stogram one can find.					
	(a) Mean	(b) Median	(c) Mode	((d) First Quartile.		
[39]	Mode can be obtair	ned from:					
	(a) Frequency poly	rgon. (b)	Histogram.				
	(c) Ogive	(d)	All of the above				
[40]	The most appropri	ate diagram to represer	it the data relati	ng to the mont	hly expenditure on		
	different items by a	a family is:					
	(a) Histogram	(b) Pie-diagram	(c) Freque	ency polygon	(d) Line graph.		
Dec 10							
[41]	The data obtained	by the internet are:					
	(a) Primary data	(b)	Secondary data				
1. 16	Page		FACU	LTY:CAME	GHA NAHTA		

NAH	TA PROFESSIONAL (CLASSES				STATISTI	CS	
	(c) Both (a) and (b)		(d) Noi	ne of these.				
[42]	The statistical measure computed from the sample observations alone have been termed as:							
	(a) estimate (b) parameter (c) statistic (d) attribute.							
June II								
[43]	When the two curve	es of ogive inter	sect, the po	oint of interse	ection provide	S:		
	(a) First Quartile	(b) Sec	ond Quarti	le	(c) Third Qı	uartile	(d) Mode	
[44]	Frequency Density	can be termed a	IS:					
	(a) Class frequency	to the cumulati	ve frequen	су				
	(b) Class frequency	to the total free	quency					
	(c) Class frequency	to the class leng	gth					
	(d) Class length to t	he class freque	ncy.					
[45]	The Chronological c	lassification of	data are cla	assified on th	e basis of:			
	(a) Attributes	(b) Area		(c) Time	(d) Cl	ass Interval		
[46]	Arrange the following	ng dimension w	vise : pie-di	agram, bar- d	liagram and cu	ıbic diagram		
	(a) 1,2,3	(b) 3,1,2	(c) 3,2,	1	(d) 0,2,3			
Dec II								
[47]	The frequency of cla	uss 20-30 in the	following	data is:				
	Class		0-10	10-20	20-30	30-40	40-50	
	Cumulative Freque	ncy	5	13	28	34	38	
	(a) 5 (b)	28	(c) 15	(d)	13			
[48]	The Graphical repre	sentation by w	hich media	n is calculate	d is called			

NAH	ta professional CLA	SSES	STATISTICS				
	(a) Ogive Curve	(b) Frequency	y Curve	(c) Line dia	gram (d)	Histogram	
[49]	Which of the following is not a two dimensional diagram?						
	(a) Square diagram	(b)) Line diagram				
	(c) Rectangular diagram	n (d	l) Pie-chart				
June 12							
[50]	From which graphical r	epresentation, w	ve can calculate	partition value	s ?		
	(a) Lorenz curve	(b) Ogive curve	e (c) Hist	ogram (d) None of the a	ibove.	
[51]	The data given below re	efers to the mark	s gained by a g	roup of student	S:		
	Marks	Below 10	Below 20	Below 30	Below 40	Below 50	
	No. of Students	15	38	65	84	100	
	Then the no. of students	s getting marks r	nore than 30 w	ould be .			
	(a) 50 (b) 53	(c) 35	(d)) 62		
[52]	Cost of Sugar in a mont 12,20,35 & 23 units re smallest components of	espectively. The	difference betw				
	(a) 92° (b	o) 72°	(c) 48°	(d) 5	56°		
[53]	What is a exclusive seri	es?					
	(a) In which both upper	r and lower limit	are not include	ed in class frequ	iency.		
	(b) In which lower limi	t is not included	in class frequer	ıcy.			
	(c) In which upper limi	t is not included	in class frequer	ıcy.			
	(d) None of the above.						
[54]	A pie diagram is used to	o represent the fe	ollowing data:				

	_		_	_				
	Source:	Customs	Excise	Income tax	Wealth tax			
	Revenue in million rupees:	120	160	240	180			
	The central angles in the pie diagram corresponding to income tax and wealth tax respectively:							
	(a) (120°, 90°) (b) (90°, 120°) (c) (60°, 120°) (d) (90°, 60°)							
Dec 13								
[55]	Difference between the maxi	mum and min	imum value of a	given data is called:				
	(a) Width (b) Size	(c)	Range	(d) Class				
[56]	If class interval is 10 - 14, 15	- 19, 20 - 24, 1	hen the first clas	ss is:				
	(a) 10-15. (b) 9.5-14	5 ((c) 10.5-15.5	(d) 9-15				
[57]	The difference between the u	pper and low	er limit of a class	s is called				
	(a) Class Interval	(b) Mid Valu	e (c) Cla	ass boundary (d)	Frequency			
June 14								
[58]	There were 200 employees in	n an office in v	which 150 were r	narried. Total male er	nployees were 160			
	out of which 120'were marri	ed. What was	the number of fe	male unmarried emp	loyees?			
	(a) 30 (b) 10	(c) 40	(d) 50					
[59]	"The less than Ogive" is a:							
	(a) U-Shaped Curve	(b) J-S	haped Curve					
	(c) S-Shaped	(d) E	Bell Shaped Curve	2				
[60]	Marks			No. of Stude	nts			
	More than	70%		07				
	More than	60% '		18				

	M	lore than 50%			40			
	M	lore than 40%			60			
	More than 30% More than 20%			75				
					100			
	How many students	s have got marks le	ss than 50%?	,				
	(a) 60	(b) 82	(c) 40	(d) 53				
[61]	To draw Histogram	, the frequency dis	tribution sho	uld be:				
	(a) Inclusive type		(b) Exc	lusive type				
	(c) Inclusive and Ex	clusive type	(d) Noi	ne of these.				
x								
Dec 14								
Dec 14	The most appropr economic sectors is	-	epresent the	five - year plan	outlay of India in differen			
		-			outlay of India in differen (d) Frequency Polygon			
	economic sectors is (a) Pie diagram	: (b) Histo	gram	(c) Line-Graph	(d) Frequency Polygon			
[62]	economic sectors is (a) Pie diagram If the fluctuations i	: (b) Histo	gram lue are very	(c) Line-Graph	(d) Frequency Polygon			
[62]	economic sectors is (a) Pie diagram If the fluctuations i presented by:	: (b) Histo in the observed va (b) Ogive curve	gram lue are very (c)	(c) Line-Graph small as compare False base line	d to the size of the item, it i (d) Control chart			
[62]	economic sectors is (a) Pie diagram If the fluctuations is presented by: (a) Z chart	: (b) Histo in the observed va (b) Ogive curve	gram lue are very (c) s-intervals of	(c) Line-Graph small as compare False base line	(d) Frequency Polygon d to the size of the item, it i (d) Control chart			
[62]	economic sectors is (a) Pie diagram If the fluctuations is presented by: (a) Z chart For constructing a h (a) equal	: (b) Histo in the observed va (b) Ogive curve histogram, the class (b) unequal	gram lue are very (c) s-intervals of (c) equa	(c) Line-Graph small as compare False base line a frequency distrik al or unequal	(d) Frequency Polygon d to the size of the item, it i (d) Control chart pution must be:			
[62] [63] [64]	economic sectors is (a) Pie diagram If the fluctuations is presented by: (a) Z chart For constructing a h (a) equal	: (b) Histo in the observed va (b) Ogive curve histogram, the class (b) unequal	gram lue are very (c) s-intervals of (c) equa	(c) Line-Graph small as compare False base line a frequency distrik al or unequal	(d) Frequency Polygon d to the size of the item, it i (d) Control chart oution must be: (d) none of these			
[62] [63] [64]	economic sectors is (a) Pie diagram If the fluctuations is presented by: (a) Z chart For constructing a h (a) equal 100 persons are cla	: (b) Histo in the observed va (b) Ogive curve histogram, the class (b) unequal	gram lue are very (c) s-intervals of (c) equa emale and gra	(c) Line-Graph small as compare False base line a frequency distrik al or unequal	(d) Frequency Polygon d to the size of the item, it i (d) Control chart oution must be: (d) none of these ate classes. This data			

NAH	ITA PROFESSIONAL CLA	ASSES					ST	ATISTIC	CS	
[66]	If we draw a perpendic	ular on x-axis	from th	ie point	of inter	section of b	oth 'les	s than' a	and 'mo	re
	than' frequency curves we will get the value of									
	(a) mode (b) median (c) arithmetic mean (d) third quartile									
[67]	Histogram is used for the presentation of the following type of series:									
	(a) Time series		(b) Conti	inuous fi	requency d	istributi	on		
	(c) Discrete frequency	distribution	(0	d) Indivi	idual ob	servation				
[68]	Curve obtained by joini	ng the points	whose	x co-ord	linates a	re the uppe	er limits	of the c	lass int	ervals
	and y coordinates are t	he correspond	ling cur	nulative	e frequer	ncies is calle	ed:			
	(a) Frequency Polygon		(b) l	Frequen	cy curve					
	(c) Histogram		(d)	Ogive.						
[69]	The number of observa	tions betweer	n 150 ar	nd 200 b	oased on	the follow	ing data	is:		
	Value:	More tha	n	More	e than	More	than	М	lore tha	n
		100		1	50	20	0		250	
	No. of observations:	76		6	3	28	3		05	
	(a) 46 (b) 35	(c) 28	8	(0	l) 23				
[70]	The number of car acci	dents in seven	ı days ir	n a local	ity are g	iven below	:			
	No. of accidents:		0	1	2	3	4	5	6	7
	Frequency:		12	9	11	13	8	9	6	3
	What will be the number	er of cases wh	en 4 or	more ac	ccidents	occurred?				
	(a) 32	(b) 41		(c) 26		(d) 18				
[71]	The most common form	n of diagramm	natic rep	oresenta	ation of a	a grouped f	requenc	y distri	bution i	s:

NAH	ta professional (CLASSES				STATIST	ICS
	(a) Histogram	(b) Ogive		(c) Both	(d) No	ne	
Dec 15							
[72]	Classification is of _	kinds:					
	(a) Two (b)) Three	(c) Or	ie	(d) Four		
[73]	The chart that uses	ogarithm of varial	ble is k	nown as:			
	(a) Ratio chart	(b)	Line c	hart			
	(c) Multiple line cha	rt (d)	Compo	onent line	chart		
[74]	Find the number of	observation betwe	een 250) and 300	from the followin	ng data:	
	Value more than:			200	250	300	500
	No. of observation:			56	38	15	0
	(a) 38 (b)	23 (c)) 15	(d)) None of the abo	ve	
June 16							
[75]	Data collected on re	ligion from the cer	nsus rej	ports are:			
	(a) Primary data	(b) Sec	condary	y data			
	(c) Sample data	(d) (a)	or (b)				
Dec 16							
[76]	In collection of data	which of the follow	wing in	terview m	nethods:		
	(a) Personal intervi	ew method					
	(b) Telephone inter	view method					
	(c) Published data						
	(d) (a) and (b)						

[77]	For constructing a histogram the class intervals of a frequency distribution must be of the following type:
	(a) Equal (b) Unequal
	(c) Equal or Unequal (d) None of these
[78]	Profits made by XYZ Bank in different years refer to:
	(a) An attribute (b) A discrete variable
	(c) A continuous variable (d) None of these.
[79]	Mode of presentation data:
	(a) Textual presentation (b) Tabulation
	(c) Oral presentation (d) (a) and (b)
Junel7	
[80]	If the data represent costs spent on conducting an
	examination under various needs, then the most suitable diagram will be:
	(a) Pie diagram (b) Frequency diagram
	(c) Bar diagram (d) Multiple bar diagram
[81]	Frequency density corresponding to class interval is the ratio of:
	(a) Class frequency to the total frequency
	(b) Class frequency to the class length
	(c) Class length to the class frequency
	(d) Class frequency to the cumulative frequency
[82]	The point of intersection of less than ogive and greater than ogive curve gives us:
	(a) Mean (b) Mode (c) Median (d) None of the above.
1. 23	Page FACULTY:CAMEGHA NAHTA

Image: Constraint of the state of the s	ANSWERS															
Image: A bit	1 D 11 D 21 B 31 B 41 B 51 C 61 B 71 A															
Image: A bit	2	В	12	В	22	В	32	С	42	С	52	A	62	A	72	E
Image: Normal Sector	3	В	13	С	23	D	33	С	43	В	53	С	63	С	73	A
Image: Normal Sector	4	D	14	A	24	A	34	В	44	В	54	A	64	A	74	E
Image: Normal Sector	5	С	15	С	25	D	35	С	45	С	55	С	65	В	75	E
Image: A matrix bound of the state of t	6	A	16	D	26	В	36	В	46	D	56	В	66	В	76	Ι
Image: Normal State Image: Normal State<	7	Α	17	В	27	В	37	С	47	С	57	A	67	В	77	(
10 c 20 C 30 B 40 B 50 B 60 A 70 C 80 A 81 B C <t< td=""><td>8</td><td>A</td><td>18</td><td>С</td><td>28</td><td>С</td><td>38</td><td>С</td><td>48</td><td>A</td><td>58</td><td>В</td><td>68</td><td>D</td><td>78</td><td>(</td></t<>	8	A	18	С	28	С	38	С	48	A	58	В	68	D	78	(
81 B 82 C	9	В	19	D	29	С	39	В	49	D	59	С	69	В	79	Ι
82 C	10	С	20	С	30	В	40	В	50	В	60	A	70	С	80	ŀ
	81	B														
STUDENTS NOTES	82	С														
							<u>S</u> 1	TUDEN	NTS NC	<u>DTES</u>						

CH - 2

MEASURES OF CENTRAL TENDENCY
& DISPERSION

	UNIT I: MEASURES OF CENTRAL TENDENCY
	ARITHMETIC MEAN
Q.1	Following are the daily wages in Rupees of a sample of 9 workers: 58, 62, 48, 53, 70, 52, 60, 84, 75
	Compute the mean wage.
Sol.	Let x denote the daily wage in rupees.
	Then as given, x1=58, x2=62, x3= 48, x4=53, x5=70, x6=52, x7=60, x8=84 and x9=75.
	The mean wage is given by,
	$\overline{x} = \frac{\sum_{i=1}^{9} x_i}{9}$
	$= \operatorname{Rs.} \frac{(58+62+48+53+70+52+60+84+75)}{9}$
	$= \text{Rs.} \frac{562}{9}$
	= Rs.62.44
Q.2	Compute the mean weight of a group of BBA students of St. Xavier's College from the following data:
	Weight in 44 - 48 49 - 53 54 - 58 59 - 63 64 - 68 69 - 73 kgs.

No. of Students 3 4 5 7 9 8 Sol.											
Q.3 Find the AM for the following distribution: Q.3 Find the AM for the following distribution: Interval State Interval State Interval State Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an even number of class			3	4	5	7	9		8		
Q.3 Find the AM for the following distribution: Q.3 Find the AM for the following distribution: Interval State Interval State Interval State Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an even number of class											
Class 350 - 369 370 - 389 390 - 409 410 - 429 430 - 449 450 - 469 470 - 489 Interval Interval 38 58 82 65 31 11 Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class	Sol.										
Class 350 - 369 370 - 389 390 - 409 410 - 429 430 - 449 450 - 469 470 - 489 Interval Interval 38 58 82 65 31 11 Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class											
Class 350 - 369 370 - 389 390 - 409 410 - 429 430 - 449 450 - 469 470 - 489 Interval Interval 38 58 82 65 31 11 Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class											
Class 350 - 369 370 - 389 390 - 409 410 - 429 430 - 449 450 - 469 470 - 489 Interval Interval 38 58 82 65 31 11 Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class											
Class 350 - 369 370 - 389 390 - 409 410 - 429 430 - 449 450 - 469 470 - 489 Interval Interval 38 58 82 65 31 11 Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class											
Class 350 - 369 370 - 389 390 - 409 410 - 429 430 - 449 450 - 469 470 - 489 Interval Interval 38 58 82 65 31 11 Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class											
Interval Image: Constraint of the symplect of th	Q.3	Find the AM f	for the follow	ing distribut	ion:						
Sol. Since the amount of computation involved in finding the AM is much more compared to Example 2. Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class			350 -369	370 -389	390 -409	410 - 429	430 -449	450 -469	470 -489		
Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd number of class intervals and any one of the two middle most mid-values for an even number of class		Frequency	23	38	58	82	65	31	11		
number of class intervals and any one of the two middle most mid-values for an even number of class	Sol.	Since the amount of computation involved in finding the AM is much more compared to Example 2 .									
		Any mid value can be taken as A. However, usually A is taken as the middle most mid-value for an odd									
intervals. The class length is taken as C.		number of class intervals and any one of the two middle most mid-values for an even number of class									
Computation of AM					Computati	on of AM					

								,
	Class Interval	$Frequency(f_i)$	Mid-Value	e(x _i)	$d_i = \frac{x_i - A}{c}$ $= \frac{x_i - 419.50}{20}$	0	$f_i d_i$	
					=20	_		
	(1)	(2)	(3)		(4)	(5	(5) = (2)X(4)	
	350 – 369	23	359.50)	- 3		- 69	
	370 – 389	38	379.50)	- 2		- 76	
	390 - 409	58	399.50)	- 1		- 58	
	410 - 429	82	419.50	(A)	0		0	
	430 - 449	65	439.50)	1		65	
	450 - 469	31	459.50)	2		62	
	470 - 489	11	479.50)	3		33	
	Total	308	_		_		- 43	_
	The required AM is	given by						
	$\bar{x} = A + \frac{\sum f_i d_i}{N} X C$							
	$= 419.50 + \frac{(-43)}{308}$	X 20						
	= 419.50 - 2.79	= 416.71						
Q.4	Given that the mean height of a group of students is 67.45 inches. Find the missing frequencies for							
	the following incomplete distribution of height of 100 students.							
	Height in inches	60 -62	2 63 -65	66 -68	69 - 71	72 - 74		
	No. of Students	5	18	-	-	8		
Sol								

Q.5	The mean salary for a group of 40 female workers is Rs. 5,200 per month and that for a group of 60
	male workers is Rs. 6800 per month. What is the combined mean salary?
Sol.	

	MEDIAN - PARTITION VALUES								
Q.6	Find the missing frequency from the following data, given that the median mark is 23.								
	Mark :	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50			
	No. of students :	5	8	?	6	3			
Sol.									
Q.7	Following are the wages	s of the la	bourers: Rs	. 82, Rs. S	6, Rs. 90,	Rs. 50, Rs.	120, Rs. 75, Rs. 75, Rs.		
	80, Rs.130, Rs. 65. Find	1 QI, D6 ai	nd P82.						
Sol.	Arranging the wages in	an ascendi	ing order, v	ve get Rs. 5	50, Rs. 56, I	Rs. 65, Rs. 7	75, Rs. 75, Rs. 80, Rs. 82		
	Rs. 90, Rs. 120, Rs. 130								
	Hence, we have								

	$Q_1 = \frac{(n+1)}{4} \text{th value}$
	$=\frac{(10+1)}{4}$ th value
	= 2.75th value
	= 2nd value + $0.75 \times$ difference between the third and the 2nd values.
	$= \text{Rs.} [56 + 0.75 \times (65 - 56)]$
	= Rs. 62.75
	$D6 = (15 + 1) \times \frac{6}{10}$ th value
	= 6.60th value
	= 6th value + $0.60 \times$ difference between the 7th and the 6th values.
	$= \text{Rs.} (80 + 0.60 \times 2)$
	= Rs. 81.20
	$P_{82} = (10+1) x \frac{82}{100}$ th value
	= 9.02th value
	= 9th value + $0.02 \times$ difference between the 10th and the 9th values
	= Rs. (120 + 0.02 × 10)
	= Rs. 120.20
	Next, let us consider one problem relating to the grouped frequency distribution.
	MODE
Q.8	For a moderately skewed distribution of marks in statistics for a group of 200 students, the mean
	mark and median mark were found to be 55.60 and 52.40. What is the modal mark?
Sol.	

Q.9	If y = 2 + 1.50x and	d mode of x is 15, wl	hat is the mode of y	?	
Sol.	$Y_{mo} = 2 + 1.50 \times 15$				
	= 24.50.				
	<u>GEOMETRIC M</u>	EAN AND HAR	MONIC MEAN		
Q.10	Find the GM of 3, 6	5 and 12.			
Sol.					
Q.11	Find the GM for the	e following distributio	ทะ		
	x :	2	4	8	16
	f :	2	3	3	2
Sol.					

Q.12	Find the HM for 4,	6 and 10.						
Sol.	We have							
	$H = \frac{3}{\frac{1}{4} + \frac{1}{6} + \frac{1}{10}}$							
	$=\frac{3}{0.25+0.17+0.1}$	10						
	= 5.77							
Q.13	Find the HM for the	? following data:						
	x:	2	4	8	16			
	f:	2	3	3	2			
Sol.		1		1	<u> </u>			
Q.14	Compute AM, GM, and HM for the numbers 6, 8, 12, 36.							
Sol	In accordance with the definition, we have							
	$AM = \frac{6+8+12+36}{4} = 15.50$							
		× 12 × 36) ^{1/4}						
	$= = (2^8 \times$	34)1/4=12						
	$HM = \frac{4}{\frac{1}{6} + \frac{1}{8} + \frac{1}{12} + \frac$	$\frac{1}{36} = 9.93$						
Q.15	Find the weighted A	M and weighted HM	1 of first n natural nu	umbers, the weights	being equal to the			
	squares of the corres	sponding numbers.						

STATISTICS	5
-------------------	---

Sol.	
Q 16	The AM and GM for two observations are 5 and 4 respectively. Find the two observations.
Solution	

Q.17	Find the mean and mea	lian from the follo	owing data:				
	Marks :	less than 10	less than20	less than30	less than 40	less than 50	
	No. of Students :	5	13	23	27	30	
	Also compute the mode	using the approxi	imate relationsl	hip between m	ean, median an	d mode.	
Sol.	What we are given in th	is problem is less	than cumulativ	ve frequency di	stribution.		
	We need to convert this	cumulative frequ	ency distributi	on to the corre	sponding frequ	ency	
	distribution and thereby	y compute the me	an and median				
		Computatio	n of Mean Mar	ks for 30 stude	nts		

Marks Class Interval	No. of Students (f _i)	(x _i)	$f_i x_i$
(1)	(2)	(3)	$(4)=(2)\times(3)$
0 - 10	5	5	25
10 - 20	13 - 5 = 8	15	120
20 - 30	23 - 13 = 10	25	250
30 - 40	27 - 23 = 4	35	140
40 - 50	30 - 27 = 3	45	135
Total	30	_	670
Hence the mean mark is g	ivon hv		
	Iven by		
$\bar{X} = \frac{\sum f_i x_i}{N}$			
$=\frac{670}{30}$			
= 22.23			
Computation of Median M	arks		
Marks (Class Boundary)		Students ulative Frequency)	
0		0	
10		5	
20		13	
30		23	
40 50		27 30	

	Since $\frac{N}{2} = \frac{30}{2} = 15$ lies between 13 and 23,	
	we have /1 = 20, N/= 13, Nu= 23	
	and $C = /2 - /1 = 30 - 20 = 10$	
	Thus,	
	$Median = 20 + \frac{15 - 13}{23 - 13} X 10$	
	= 22	
	Since Mode = 3 Median – 2 Mean (approximatel	y), we find that
	Mode = 3x22 - 2x22.33	
	= 21.34	
	"PRACTICE & PRACTICE MAKE	S STATS PERFECT"
	<u>Set A - (Th</u>	neory Question)
1.	Measures of central tendency for a given set of o	observations measures
	(a) The scatterness of the observations	(b) The central location of the observations
	(c) Both (a) and (b)	(d) None of these
2.	While computing the AM from a grouped freque	ncy distribution, we assume that
	(a) The classes are of equal length	
	(b) The classes have equal frequency	
	(c) All the values of a class are equal to the mid-	value of that class
	(d) None of these.	
3.	Which of the following statements is wrong?	
	(a) Mean is rigidly defined	
2 12	Paae	FACULTY: CA MEGHA NAHTA

	(b) Mean is not affected due to sampling fluctuations					
	(c) Mean has some mathematical properties					
	(d) All these					
4.	Which of the following statements is true?					
	(a) Usually mean is the best measure of central tendency					
	(b) Usually median is the best measure of central tendency					
	(c) Usually mode is the best measure of central tendency					
	(d) Normally, GM is the best measure of central tendency					
5.	For open-end classification, which of the following is the best measure of central tendency?					
	(a) AM (b) GM					
	(c) Median (d) Mode					
6.	The presence of extreme observations does not affect					
	(a) AM (b) Median					
	(c) Mode (d) Any of these.					
7.	In case of an even number of observations which of the following is median?					
	(a) Any of the two middle-most value					
	(b) The simple average of these two middle values					
	(c) The weighted average of these two middle values					
	(d) Any of these					
8.	The most commonly used measure of central tendency is					
	(a) AM (b) Median					
	(c) Mode (d) Both GM and HM.					
9.	Which one of the following is not uniquely defined					
	(a) Mean (b) Median					

	(c) Mode (d) All of these measures
10.	Which of the following measure of the central tendency is difficult to compute?
	(a) Mean (b) Median
	(c) Mode (d) GM
11.	Which measure(s) of central tendency is(are) considered for finding the average rates?
	(a) AM (b) GM
	(c) HM (d) Both (b) and (c)
12.	For a moderately skewed distribution, which of he following relationship holds?
	(a) Mean – Mode = 3 (Mean – Median)
	(b) Median – Mode = 3 (Mean – Median)
	(c) Mean – Median = 3 (Mean – Mode)
	(d) Mean – Median = 3 (Median – Mode)
13.	Weighted averages are considered when
	(a) The data are not classified
	(b) The data are put in the form of grouped frequency distribution
	(c) All the observations are not of equal importance
	(d) Both (a) and (c).
14.	Which of the following results hold for a set of distinct positive observations?
	(a) $AM \ge GM \ge HM$ (b) $HM \ge GM \ge AM$
	(c) $AM > GM > HM$ (d) $GM > AM > HM$
15.	When a firm registers both profits and losses, which of the following measure of central tendency
	cannot be considered?
	(a) AM (b) GM
	(c) Median (d) Mode

16.	Quartiles are the values dividing	g a given set of observations into
	(a) Two equal parts	(b) Four equal parts
	(c) Five equal parts	(d) None of these
17.	Quartiles can be determined gra	phically using
	(a) Histogram	(b) Frequency Polygon
	(c) Ogive	(d) Pie chart
18.	Which of the following measure	(s) possesses (possess) mathematical properties?
	(a) AM (b	o) GM
	(c) HM (c	l) All of these
19.	Which of the following measure	(s) satisfies (satisfy) a linear relationship between two variables?
	(a) Mean (b) Median
	(c) Mode (d) All of these
20.	Which of he following measures	of central tendency is based on only fifty percent of the central values?
	(a) Mean (b) Median
	(c) Mode (d) Both (a) and (b)
		<u>Set B – (Practical Question)</u>
1.	If there are 3 observations 15, 2	0, 25 then the sum of deviation of the observations from their AM is
	(a) 0 (b)	5
	(c) -5 (d)	None of these.
2.	What is the median for the follo	wing observations?
	5, 8, 6, 9, 11, 4.	
	(a) 6 (b)	7
	(c) 8 (d)	None of these
215		FACULTY:CA MEGHA NAHTA

3.	What is the modal value for the	e numbers 5, 8, 6, 4, 10, 15, 18, 10?
	(a) 18	(b) 10
	(c) 14	(d) None of these
4.	What is the GM for the number	rs 8, 24 and 40?
	(a) 24	(b) 12
	(c)8 ³ √15	(d) 10
5.	The harmonic mean for the nu	mbers 2, 3, 5 is
	(a) 2.00	(b) 3.33
	(c) 2.90	$(d) - \sqrt[3]{30}$
6.	If the AM and GM for two num	bers are 6.50 and 6 respectively then the two numbers are
	(a) 6 and 7	(b) 9 and 4
	(c) 10 and 3	(d) 8 and 5.
7.	If the AM and HM for two num	bers are 5 and 3.2 respectively then the GM will be
	(a) 16.00	(b) 4.10
	(c) 4.05	(d) 4.00.
8.	What is the value of the first qu	uartile for observations 15, 18, 10, 20, 23, 28, 12, 16?
	(a) 17	(b) 16
	(c) 12.75	(d) 12
9.	The third decile for the numbe	ers 15, 10, 20, 25, 18, 11, 9, 12 is
	(a) 13	(b) 10.70
	(c) 11	(d) 11.50
10.	If there are two groups contain	ning 30 and 20 observations and having 50 and 60 as arithmetic means,
	then the combined arithmetic	mean is
	(a) 55	(b) 56
216	Page	FACULTY'CA MEGHA NAHTA

(c) 54	(d) 52.
The average salary of a group workersis	p of unskilled workers is Rs. 10,000 and that of a group of skilled
Rs. 15,000. If the combined s	salary is Rs. 12,000, then what is the percentage of skilled workers?
(a) 40%	(b) 50%
(c) 60%	(d) none of these
If there are two groups with	75 and 65 as harmonic means and containing 15 and 13 observation then
the combined HM is given by	7
(a) 65	(b) 70.36
(c) 70	(d) 71.
What is the HM of 1,1/2, 1/3	3,1/n?
(a) n	(b) 2n
(c) $\frac{2}{(n+1)}$	$(d)\frac{n(n+1)}{2}$
An aeroplane flies from A to 700	B at the rate of 500 km/hour and comes back from B to A at the rate of
km/hour. The average speed	l of the aeroplane is
(a) 600 km. per hour	(b) 583.33 km. per hour
(c) $100\sqrt{35}$ km. per hour	(d) 620 km. per hour.
If a variable assumes the value	ues 1, 2, 35 with frequencies as 1, 2, 35, then what is the AM?
(a)11/3	(b) 5
(c) 4	(d) 4.50
Two variables x and y are giv	ven by $y = 2x - 3$. If the median of x is 20, what is the median of y?
(a) 20	(b) 40
	The average salary of a group workersisRs. 15,000. If the combined s(a) 40%(c) 60%If there are two groups withthe combined HM is given by(a) 65(c) 70What is the HM of 1,1/2, 1/3(a) n(c) $\frac{2}{(n+1)}$ An aeroplane flies from A to 700km/hour. The average speed(a) 600 km. per hour(a) 600 km. per hourIf a variable assumes the val (a) 11/3(c) 4Two variables x and y are given

17.	If the relations	ship between two	variables u and v	are given by 2u +	-v + 7 = 0	0 and if the	AM of u is	; 10,		
	then the AM of	f v is								
	(a) 17		(b) -1	7						
	(c) -27		(d) 27.							
18.	If x and y are r	elated by x–y–10	= 0 and mode of	x is known to be 2	23, then th	ie mode of	y is			
	(a) 20		(b) 13							
	(c) 3		(d) 23.							
19.	If GM of x is 10) and GM of y is 15	5, then the GM of 2	xy is						
	(a) 150		(b) log	10 X log 15						
	(c) log 150		(d) Nor	ne of these.						
20.	If the AM and (GM for 10 observa	ations are both 15	5, then the value o	f HM is					
	(a) Less than 1	15	(b) Mc	ore than 15						
	(c) 15 .		(d) Cai	n not be determin	ed					
	ANSWERS									
	+									
	Set A									
		2. (c)	3. (b)	4 . (a)	5.	(c)	6.	(ł		
				10. (d)			12.	(2		
	13. (c)	14. (c)	15. (b)	16. (b)	17.	(c)	18.	(0		
	19. (d)	20. (b)								

	Set B										
	1 . (a)	2.	(b)	3.	(b)	4.	(c)	5.	(c)	6.	(b)
	7. (d)	8.	(c)	9.	(b)	10.	(c)	11.	(a)	12.	(c)
	13. (c)	14.	(b)	15.	(a)	16.	(c)	17.	(c)	18.	(b)
	19. (a)	20.	(c)								
				-	STUDE	NT NO	<u>TES</u>				
	1 · · · · · · · · · · · · · · · · · · ·										
			UNIT I	I: ME/	ASURE	S OF	DISPE	RSION			
			<u>UNIT I</u>	I: ME/	ASURE	S OF	DISPE	RSION			
	RANGE		<u>UNIT I</u>	I: ME/	ASURE	S OF	DISPE	RSION			
Q 1	Following are t	the wage								0. Find the	range
Q 1		the wage								0. Find the	range
Q 1 Sol.	Following are t	the wage efficient	es of 8 wo	rkers exp	oressed i	n Rupees	s. 82, 96, 1			0. Find the	range
	Following are t and also its coe	the wage efficient d the sm	es of 8 wo allest wag	rkers exp ges are L	oressed i	n Rupees	s. 82, 96, 1			0. Find the	range
	Following are t and also its coe The largest and Thus range = H	the wage efficient d the sm Rs. 96 – 1	es of 8 wo allest wag Rs. 50 = R	rkers exp ges are L ls. 46	oressed i	n Rupees	s. 82, 96, 1			0. Find the	range
	Following are t and also its coe The largest and	the wage efficient d the sm Rs. 96 – 1	es of 8 wo allest wag Rs. 50 = R	rkers exp ges are L ls. 46	oressed i	n Rupees	s. 82, 96, 1			0. Find the	range
	Following are t and also its coe The largest and Thus range = H	the wage efficient d the sm Rs. 96 – 1	es of 8 wo allest wag Rs. 50 = R 6-50 X 100	rkers exp ges are L ls. 46	oressed i	n Rupees	s. 82, 96, 1			0. Find the	range
	Following are t and also its coe The largest and Thus range = H	the wage efficient d the sm Rs. 96 – I range= $\frac{9}{9}$ = 31	es of 8 wo allest wag Rs. 50 = R 6–50 6+50 X 100 51	rkers exp ges are L .s. 46)	oressed i = Rs. 96	n Rupees and S= I	s. 82, 96, 5 Rs. 50	52, 75, 70	, 65, 50, 7(0. Find the	range
Sol.	Following are t and also its coe The largest and Thus range = H Coefficient of r What is the ran	the wage efficient d the sm Rs. 96 – 1 range = $\frac{9}{9}$ = 31 nge and i	es of 8 wo allest wag Rs. $50 = R$ $\frac{6-50}{6+50} X 100$ 51 its coeffici	rkers exp ges are L s. 46) ent for tl	pressed i = Rs. 96	n Rupees and S= I	s. 82, 96, 1 Rs. 50 ibution o	52, 75, 70	, 65, 50, 7(?	0. Find the	range
Sol.	Following are t and also its coe The largest and Thus range = H Coefficient of r	the wage efficient d the sm Rs. 96 – 1 range = $\frac{9}{9}$ = 31 nge and i	es of 8 wo allest wag Rs. 50 = R 6–50 6+50 X 100 51	rkers exp ges are L .s. 46)	pressed i = Rs. 96	n Rupees and S= I	s. 82, 96, 5 Rs. 50	52, 75, 70	, 65, 50, 7(?	0. Find the	range

Sol.	
Q 3	If the relationship between x and y is given by $2x+3y=10$ and the range of x is Rs. 15, what would be
	the range of y?
Sol.	
	MEAN DEVIATION
Q 4	What is the mean deviation about mean for the following numbers 5, 8, 10, 10, 12, 9.
Sol.	

Q 5	Find mean deviations about media	n and also the corresponding o	coefficient for the following profits			
	('000 Rs.) of a firm during a week.					
	82, 56, 75, 70, 52, 80, 68.					
Sol.	The profits in thousand rupees is denoted by x. Arranging the values of x in an ascending order, we get					
	52, 56, 68, 70, 75, 80, 82.					
	Therefore, Me = 70. Thus, Median	profit = Rs. 70,000.				
	Computation of Mean de	viation about median				
	X _i	x _i -Me				
	52	18				
	56	14				
	68	2				
	70	0				
		5				
	75					
	80	10				
	82	12				
	Total	61				
	Thus mean deviation about media	$n = \frac{\sum x_i - Median }{n}$				
2. 21	Page	FACULT	Y:CA MEGHA NAHTA			

		= Rs. 61/7							
	= Rs. 8714.28								
	Coefficient of mean deviation = $\frac{\text{MD about median}}{\text{Median}} \times 100$								
		$=\frac{8714.28}{70000}$ x $\frac{1}{2}$							
		= 12.45							
Q 6	Compute the	mean deviation a	bout the arithmet	tic mean for the f	ollowing data:				
	x :	1	3	5	7	9			
	f :	5	8	9	2	1			
	Also find the coef	fficient of the mea	n deviation abou	t the AM.					
Sol.									

Q 7	If x and y are related as $4x+3y+11 = 0$ and mean deviation of x is 5.40, what is the mean deviation of y?
Sol.	Since $4x + 3y + 11 = 0$
	Therefore, $y = \left(\frac{-11}{3}\right) + \left(\frac{-4}{3}\right)x$
	Hence MD of $y = b \times MD$ of x
	$=\frac{4}{3}$ X 5.40
	= 7.20
	STANDARD DEVIATION
Q 8	Find the standard deviation and the coefficient of variation for the following numbers: 5, 8, 9, 2, 6
Sol.	

Q 9	Find the SD of the following distribution:											
	Weight (kgs.)):	50-52	52-5	54	54-56	[!	56-58	58-60)		
	No. of Studen	nts :	17	35		28	1	15	5			
Sol.					í	Computat	cio:	n of SD				
	Weight (kgs.) (1)	No.	of Studer (f _i) (2)	nts		id-value (x _i) (3)		d _i =x _i 2 (4)	2	Ģ	$\begin{array}{c} f_i d_i \\ 5) = (2) \times (4) \end{array}$	$f_i d_i^2$ (6)=(5)×(4)
	50-52		17			51		-2			-34	68
	52-54 54-56		35 28			53 55		-1	1		-35 0	35 0
	54-56 56-58		28 15			55 57			1		15	15
	58-60		5			59	\downarrow		2		10	20
	Total		100			_		_	-		- 44	138
	we get the SD	we get the SD of weight as										
	$= \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times C$											
	$=\sqrt{\frac{138}{100} - \frac{(-44)^2}{100}}$	$=\sqrt{\frac{138}{100} - \frac{(-44)^2}{100}} X 2kgs$										
	$=\sqrt{1.38-0.1}$. <u>936</u> X 2	2kgs									
	= 2.18kgs											
Q 10	If AM and coef	fficient	of variatic	on of x	are 1	10 and 40	re	spectivel	ly, what	; is t	the variance o	f (15–2x)?
Sol.												
00												

Q 11	Compute the SD of	9, 5, 8, 6, 2.						
t = -	Without any more		obtain the S	SD of				
							1	
	Sample I	-1,	-5,	-2,	-4,	-8,	-	
	Sample II	90,	50,	80,	60,	20,	-	
	Sample III	23,	15,	21,	17,	9.		
Sol.								

Q 12	For a group of 60 boy students, the mean and SD of stats. marks are 45 and 2 respectively. The same
	figures for a group of 40 girl students are 55 and 3 respectively. What is the mean and SD of marks if
	the two groups are pooled together?
Sol.	

	QUARTILE DEVIATION
Q 13.	Following are the marks of the 10 students : 56, 48, 65, 35, 42, 75, 82, 60, 55, 50. Find quartile
	deviation and also its coefficient.
Sol.	

Q 14.	If the quartile deviation of x is 6 and $3x + 6y = 20$, what is the quartile deviation of y?
Sol.	3x + 6y = 20
	$\Rightarrow \qquad y = \left(\frac{20}{6}\right) + \left(\frac{-3}{6}\right)x$
	Therefore, quartile deviation of $y = \frac{ -3 }{6} X$ quartile deviation of x
	$=\frac{1}{2}X6$
	= 3
	"PRACTICE & PRACTICE MAKES STATS PERFECT"
	<u>Set A – (Theory Question)</u>
1.	Which of the following statements is correct?
	(a) Two distributions may have identical measures of central tendency and dispersion.
	(b) Two distributions may have the identical measures of central tendency but different measures of
	dispersion.
	(c) Two distributions may have the different measures of central tendency but identical measures of
	dispersion.
	(d) All the statements (a), (b) and (c).
2.	Dispersion measures
2.28	Page FACULTY:CA MEGHA NAHTA

	(a) The scatterness of a set of observations	S						
	(b) The concentration of a set of observations							
	(c) Both (a) and (b)							
	(d) Neither (a) and (b).							
3.	When it comes to comparing two or more distributions we consider							
	(a) Absolute measures of dispersion	(b) Relative measures of dispersion						
	(c) Both (a) and (b)	(d) Either (a) or (b).						
4.	Which one is easier to compute?							
	(a) Relative measures of dispersion	(b) Absolute measures of dispersion						
	(c) Both (a) and (b)	(d) Range						
5.	Which one is an absolute measure of dispe	ersion?						
	(a) Range	(b) Mean Deviation						
	(c) Standard Deviation	(d) All these measures						
6.	Which measure of dispersion is most usefu	all?						
	(a) Standard deviation	(b) Quartile deviation						
	(c) Mean deviation	(d) Range						
7.	Which measures of dispersions is not affec	cted by the presence of extreme observations?						
	(a) Range	(b) Mean deviation						
	(c) Standard deviation	(d) Quartile deviation						
8.	Which measure of dispersion is based on t	he absolute deviations only?						
	(a) Standard deviation	(b) Mean deviation						
	(c) Quartile deviation	(d) Range						
9.	Which measure is based on only the centra	al fifty percent of the observations?						
	(a) Standard deviation	(b) Quartile deviation						

	(c) Mean deviation	(d) All these measures					
10.	Which measure of dispersion is based on all the observations?						
	(a) Mean deviation	(b) Standard deviation					
	(c) Quartile deviation	(d) (a) and (b) but not (c)					
11.	The appropriate measure of d	ispersion for open-end classification is					
	(a) Standard deviation	(b) Mean deviation					
	(c) Quartile deviation	(d) All these measures					
12.	The most commonly used mea	asure of dispersion is					
	(a) Range	(b) Standard deviation					
	(c) Coefficient of variation	(d) Quartile deviation.					
13.	Which measure of dispersion	has some desirable mathematical properties?					
	(a) Standard deviation	(b) Mean deviation					
	(c) Quartile deviation	(d) All these measures					
14.	If the profits of a company rea	mains the same for the last ten months, then the standard deviation of					
	profits for these ten months w	/ould be ?					
	(a) Positive	(b) Negative					
	(c) Zero	(d) (a) or (c)					
15.	Which measure of dispersion	is considered for finding a pooled measure of dispersion after combining					
	several groups?						
	(a) Mean deviation	(b) Standard deviation					
	(c) Quartile deviation	(d) Any of these					
16.	A shift of origin has no impact	on					
	(a) Range	(b) Mean deviation					
	(c) Standard deviation	(d) All these and quartile deviation.					

17.	The range of 15, 12, 10, 9, 17, 20 is
	(a) 5 (b) 12
	(c) 13 (d) 11.
18.	The standard deviation of 10, 16, 10, 16, 10, 10, 16, 16 is
	(a) 4 (b) 6
	(c) 3 (d) 0.
19.	For any two numbers SD is always
	(a) Twice the range (b) Half of the range
	(c) Square of the range (d) None of these
20.	If all the observations are increased by 10, then
	(a) SD would be increased by 10
	(b) Mean deviation would be increased by 10
	(c) Quartile deviation would be increased by 10
	(d) All these three remain unchanged.
21.	If all the observations are multiplied by 2, then
	(a) New SD would be also multiplied by 2
	(b) New SD would be half of the previous SD
	(c) New SD would be increased by 2
	(d) New SD would be decreased by 2.
	<u>Set B – (Pratical Question)</u>
1.	What is the coefficient of range for the following wages of 8 workers? 80, Rs. 65, Rs. 90, Rs. 60, Rs. 75,
	Rs. 70, Rs. 72, Rs. 85.
	(a) Rs. 30 (b) Rs. 20
0.31	

	(c) 30	(d) 20
2.	If Rx and Ry denote ranges	s of x and y respectively where x and y are related by $3x+2y+10=0$, what
	would be the relation betw	veen x and y?
	(a) $Rx = Ry$	(b) $2 Rx = 3 Ry$
	(c) $3 Rx = 2 Ry$	(d) $Rx = 2 Ry$
3.	What is the coefficient of r	ange for the following distribution?
	Class Interval : 10-19 20-2	9 30-39 40-49 50-59
	Frequency: 11 25 16 7 3	
	(a) 22	(b) 50
	(c) 72.46	(d) 75.82
4.	If the range of x is 2, what	would be the range of $-3x + 50$?
	(a) 2	(b) 6
	(c) -6	(d) 44
5.	What is the value of mean	deviation about mean for the following numbers?
	5, 8, 6, 3, 4.	
	(a) 5.20	(b) 7.20
	(c) 1.44	(d) 2.23
6.	What is the value of mean	deviation about mean for the following observations? 50, 60, 50, 50, 60, 60,
	60, 50, 50, 50, 60, 60, 60, 5	0.
	(a) 5	(b) 7
	(c) 35	(d) 10
7.	The coefficient of mean de	viation about mean for the first 9 natural numbers is
	(a) 200/9	(b) 80
	(c) 400/9	(d) 50.

8.	If the relation between x a	and y is $5y-3x = 10$ and the mean deviation about mean for x is 12, then the					
	mean deviation of y about mean is						
	(a) 7.20	(b) 6.80					
	(c) 20	(d) 18.80.					
9.	If two variables x and y ar	e related by $2x + 3y - 7 = 0$ and the mean and mean deviation about mean of					
	x are 1 and 0.3 respectivel	y, then the coefficient of mean deviation of y about its mean is					
	(a) -5	(b) 12					
	(c) 50	(d) 4.					
10.	The mean deviation about	mode for the numbers 4/11, 6/11, 8/11, 9/11, 12/11, 8/11 is					
	(a) 1/6	(b) 1/11					
	(c) 6/11	(d) 5/11.					
11.	What is the standard devia	ation of 5, 5, 9, 9, 9, 10, 5, 10, 10?					
	(a) √14	(b) $\frac{\sqrt{42}}{3}$					
	(c) 4.50	(d) 8					
12.	If the mean and SD of x are	e a and b respectively, then the SD of $\frac{a-x}{b}$ is					
	(a) -1	(b) 1					
	(c) ab	(d) a/b.					
13.	What is the coefficient of v	variation of the following numbers? 53, 52, 61, 60, 64.					
	(a) 8.09	(b) 18.08					
	(c) 20.23	(d) 20.45					
14.	If the SD of x is 3, what us	the variance of (5–2x)?					
	(a) 36	(b) 6					
	(c) 1	(d) 9					

15.	If x and y are related by 2	2x+3y+4 = 0 and SD of x is 6, then SD of y is
	(a) 22	(b) 4
	(c)√5	(d) 9.
16.	The quartiles of a variabl	le are 45, 52 and 65 respectively. Its quartile deviation is
	(a) 10	(b) 20
	(c) 25	(d) 8.30.
17.	If x and y are related as 3	3x+4y = 20 and the quartile deviation of x is 12, then the quartile deviation of
	y is:	
	(a) 16	(b) 14
	(c) 10	(d) 9
18.	If the SD of the 1st n natu	ural numbers is 2, then the value of n must be
	(a) 2	(b) 7
	(c) 6	(d) 5.
19.	If x and y are related by y	y = 2x + 5 and the SD and AM of x are known to be 5 and 10 respectively, then
	the coefficient of variatio	on is
	(a) 25	(b) 30
	(c) 40	(d) 20
		ANSWERS

	Set A										
	1. (d)	2. (a)	3.	(b)	4.	(d)	5.	(d)	6.	(a)	
	7. (d)	8. (b)	9.	(b)	10.	(d)	11.	(c)	12.	(b)	
	13. (a)	14. (c)	15.	(b)	16.	(d)	17.	(d)	18.	(c)	
	19 . (b)	20. (d)	21.	(a)							
	Set B					1011100					
	1. (d)	2. (c)	3.	(c)	4.	(b)	5.	(c)	6.	(a)	
	7. (c)	8. (a)	9.	(b)	10.		11.	(b)	12.		
	13. (a)	14. (a)	15.	(b)	16.	(a)	17.	(d)	18.	(b)	
	19. (c)	20. (a)									
			ADDITI	ONAL	QUEST	ION BA	<u>NK</u>				
1	Each value is considered only once for										
	(a) simple average (b) weighted average										
	(c) both	(c) both (d) none									
					- /						
	Fach welve is considered as more times as it as we far										
2	Each value is considered as many times as it occurs for										
2		(a) simple average (b) weighted average									
2		rage		(b) weight	ted avera	age				
2	(a) simple aver	rage		(b) weight	ed avera	age				
2		rage) weight d) none	ted avera	age				
	(a) simple aver		nation n	(4	d) none		age				
2 3	(a) simple aver	rage eful in averaging	g ratios, ra	(4	d) none		age				
	(a) simple aver		·	(4	d) none	ages	age	(d) none			
3	 (a) simple aver (c) both — — — is use (a) A.M 	eful in averaging (b) G	.M	(4	d) none percenta	ages	age	(d) none			
	 (a) simple aver (c) both — — — is use (a) A.M 	eful in averaging	.M	(4	d) none percenta	ages	age	(d) none			
3	 (a) simple aver (c) both is use (a) A.M H.M is defined 	eful in averaginş (b) G d when no obser	.M	(d	d) none percenta (c) H	ages	age				
3	 (a) simple aver (c) both — — — is use (a) A.M 	eful in averaging (b) G	.M	(d	d) none percenta	ages	age	(d) none (d) 0			
3	 (a) simple aver (c) both is use (a) A.M H.M is defined (a) 3 	eful in averaginş (b) G d when no obser (b) 2	.M vation is	(d ates and (c	d) none percenta (c) H	ages .M	age				
3	 (a) simple aver (c) both is use (a) A.M H.M is defined (a) 3 	eful in averaginş (b) G d when no obser	.M vation is	(i ates and (c quency is	d) none percenta (c) H	ages .M	age				

STATISTICS

by averaging these 10 determinations. What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none A person purchases 5 rupees worth of eggs from 10 different markets. You are to find the average no. of eggs per rupee for all the markets taken together. What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. ANSWERS 1 2 3 4 5 A b b d C 6 7 8 9	veen s	econc	1 & up	pper qu	artile, the frequer	ncy is equal to				
is by averaging these 10 determinations. What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none 8 A person purchases 5 rupees worth of eggs from 10 different markets. You are to find the average no. of eggs per rupee for all the markets taken together. What is the suitable form 9 of average in this case? 9 & (c) H.M (d) none 9 & (c) H.M (d) none (d) None. 9 & (c) H.M & C) H.M & C) M (d) None. 9 (b) H.M & A.M (c) H.M & G. M (d) None. 9	N/4			(b) N	/4	(c) N /2	(d) none			
What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none 8 A person purchases 5 rupees worth of eggs from 10 different markets. You are to find the average no. of eggs per rupee for all the markets taken together. What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. 9 &	lengtł	n of a	rod is	s measu	red by a tape 10 t	imes. You are to es	stimate the length of the rod			
a(a) A.M(b) G.M(c) H.M(d) none8A person purchases 5 rupees worth of eggs from 10 different markets. You are to find the average no. of eggs per rupee for all the markets taken together. What is the suitable form of average in this case?9&(b) G.M(c) H.M(d) none9&(b) G.M(c) H.M & O.M(d) none9(d) D.M.(b) H.M & A.M(c) H.M & G.M(d) None.9(b) H.M & A.M(c) H.M & G.M(d) None.9(b) H.M & A.M(c) H.M & G.M(d) None.9(c) H.M & G.M(d) None.9(c) H.M & G.M(d) None.9(c) H.M & G.M(d) None.12345(c) H.M & G.M(c) H.M & G.M1123451bbdC(c) H.M(c) H.M11234514bbdC6789(c) H.M(c) H.M(c) H.M	verag	ing th	ese 10) detern	ninations.					
8 A person purchases 5 rupees worth of eggs from 10 different markets. You are to find the average no. of eggs per rupee for all the markets taken together. What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. ANSWERS	ıt is th	e suit	able f	form of	average in this ca	ise?				
average no. of eggs per rupee for all the markets taken together. What is the suitable form of average in this case? (a) A.M (b) G.M (c) H.M (d) none 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. 1 2 3 4 5 A b d C 6 7 8 9	.M			(b) G.I	M	(c) H.M	(d) none			
of average in this case? (a) A.M (b) G.M (c) H.M (d) none 9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. Image: the system of th	erson j	purch	lases 5	5 rupees	worth of eggs fr	om 10 different ma	arkets. You are to find the			
(a) A.M (b) G.M (c) H.M (d) none 9 &	age no	o. of e	eggs p	er rupe	e for all the mark	ets taken together.	What is the suitable form			
9 & can not be calculated if any observation is zero. (a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. Image: Constraint of the servet o	of average in this case?									
(a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) None. Answers $Answers$ 1 2 3 4 5 A b b d C 6 7 8 9 Image: Constraint of the second se	м.М			(b) G.I		(c) H.M	(d) none			
ANSWERS 1 2 3 4 5 A b b d C 6 7 8 9		- & -			can not be calcula	ated if any observa	tion is zero.			
1 2 3 4 5 A b b d C 6 7 8 9	(a) G.M & A.M (b) H.M & A.M (c) H.M & G. M (d) Nor						M (d) None.			
1 2 3 4 5 A b b d C 6 7 8 9										
1 2 3 4 5 A b b d C 6 7 8 9										
1 2 3 4 5 A b b d C 6 7 8 9										
A b d C 6 7 8 9					A	NSWERS				
A b d C 6 7 8 9	2	3	4	5						
6 7 8 9										
	7		-							
	а	C	C							
"KAR LO PAST APNI MUTHI ME"				"K/	AR LO PASI	APNI MUTHI	ME"			
B		N/4 lengtl verag at is th A.M erson age n verage A.M G.M & G.M &	N/4 length of a veraging th at is the suit A.M erson purch age no. of e verage in th A.M & G.M & A.M & G.M & A.M	N/4 length of a rod is veraging these 10 at is the suitable f A.M erson purchases 5 rage no. of eggs p verage in this cas A.M & G.M & A.M & G.M & A.M & G.M & A.M	N/4 (b) N length of a rod is measured is measured in the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is measured is the suitable form of a rod is resonance. a.M (b) G.I erson purchases 5 rupees rage no. of eggs per rupe verage in this case? A.M (b) G.I & G.M & A.M (b) G.I & G.M & A.M (b) B & & & &	N/4 (b) N /4 length of a rod is measured by a tape 10 to veraging these 10 determinations. At is the suitable form of average in this case A.M (b) G.M erson purchases 5 rupees worth of eggs from age no. of eggs per rupee for all the mark overage in this case? A.M (b) G.M ——— & ————————————————————————————————	length of a rod is measured by a tape 10 times. You are to exveraging these 10 determinations. at is the suitable form of average in this case? A.M (b) G.M erson purchases 5 rupees worth of eggs from 10 different marage no. of eggs per rupee for all the markets taken together. verage in this case? A.M (b) G.M (c) H.M age no. of eggs per rupee for all the markets taken together. verage in this case? A.M (b) G.M (c) H.M & can not be calculated if any observa G.M & A.M (b) H.M & A.M (c) H.M & G. ANSWERS 2 3 4 5 b b b b c			

J

	Past Exam Questions							
Nov- 06								
[1]	If x and y are related by $x - y - 10 = 0$ and mode of x is known to be 23, then the mode of y is :							
	(a) 20 (b) 13							
	(c) 3 (d) 23							
[2]	A man travels at a speed of 20 km/hr and then returns at a speed of 30 km/ hr. His average speed of the							
	whole journey is:							
	a) 25 km/ hr (b) 24.5 km/hr							
	(c) 24 km/hr (d) None							
[3]	A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively.							
	It was later discovered that he had wrongly copied down an observation as 50 instead of 40. The							
	correct standard deviation is:							
	(a) 5 (b) 6							
	(c) 3 (d) 7							
[4]	For a moderately skewed distribution, quartile deviation and the standard deviation are related by:							
	(a) S. D.= $\frac{2}{3}$ Q.D (b) S. D.= $\frac{3}{4}$ Q.D							

	(c) S. D.= $\frac{4}{3}$ Q.D (d) S. D.= $\frac{3}{2}$ Q.D
Feb 07	
[5]	The median of the data 13, 8, 11,6, 4,15, 2, 18, is :
	(a) 5 (b) 8
	(c) 11 (d) 9.5
[6]	The sum of the squares of deviations of a set of observations has the smallest value, when the
	deviations are taken from their:
	(a) A . M. (b) H. M.
	(c) G. M. (d) None
[8]	If two variables \times and y are related by $2x + 3y - 7 = 0$ and the mean and mean deviation about mean
	of x are 1 and 0.3 respectively, then the co-efficient of mean deviation of y about mean is :
	(a) -5 (b) 4
	(c) 12 (d) 50
May07	
[9]	Which of the following result hold for a set of distinct positive observations?
	(a) A. M. \geq G. M. \geq H. M.

	(b) G. M. > A. M. > H. M.							
	(c) G. M. \geq A.M. \geq H. M.							
	(d) $A \cdot M > G \cdot M > H \cdot M$.							
[10]	Measures of dispersion are called averages of the order.							
	(a) 1 st (b) 2 nd							
	(c) 3 rd (d) None							
[11]	For a set of 100 observations, taking assumed mean as 4, the sum of the deviations is -11 cm, and the							
	sum of the squares of these deviations is 257 cm ² . The coefficient of variation is :							
	(a) 41.13% (b) 42.13%							
	(c) 40.13% (d) None							
Aug 07								
[12]	the A. M, and H.M. for two numbers are 5 and 3.2 respectively then the G.M. will be:							
	(a) 4.05 (b) 16							
	(c) 4 (d) 4,10							
[13]	are used for measuring central tendency, dispersion and skewness:							
	(a) Median (b) Deciles							
	(c) Percentiles (d) Quartiles							
0 20 1								

[14]	Which of the following companies A or B is more consistent so far as the payment of dividend is								
	concerned?								
	Dividend paid by A :	5	9	6	12	15	10	8	10
	Dividend paid by B :	4	8	7	15	18	9	6	6
	(a) A (b) B								
	(c) both A & B (d) Neither A nor B								
[15]	What is the coefficient of range	e for the fol	lowing d	istributio	on?				
	Class Interval:	10-19		20 29	3	30-39	40-49		50-59
	Frequency:	11		25		16	7		3
	(a) 22	(b)	50						
	(c) 75.82	(d)	72.46						
Nov 07									
[16]	An aeroplane flies from A to B at the rate of 500 km / hr and comes back from B to A at the rate of								
	700 km / hr. The average speed of the aeroplane is:								
	(a) 600 km / hr	(b)	583.33	km / hr					
	(c) 100√ <u>35</u> km / hr	(d)	620 km	/hr.					
[17]	For a moderately skewed distr	ibution, wh	ich of th	e followi	ng relatio	onship ho	lds ?		

	(a) Mean - Median = 3 (Median - Mode	2)					
	(b) Median - Mode = 3 (Mean - Median	l)					
	(c) Mean - Mode = 3 (Mean - Median)						
	(d) Mean - Median = 3 (Mean - Mode)						
[18]	& are called ratio averages:						
	(a) H. M. & G. M. ((b) H. M. &A. M.					
	(c) A. M. & G. M.	(d) None					
[19]	A sample of 35 observations has the me	ean 80 and S.D. as 4. A second sample of 65 observations from					
	the same population has mean 70 and S	S.D. 3. The S.D. of the combined sample is :					
	(a) 5.85 ((b) 5.58					
	(c) 10.23 ((d) None of these					
[20]	If x and y are related as $3x - 4y = 20$ and	d the quartile deviation of x is 12, then the quartile deviation					
	of y is :						
	(a) 14	(b) 15					
	(c) 16	(d) 9					
Feb 08							
[21]	Extreme values have effect on mod	de.					
0.41							

T

	(a) High	(b) low
	(c) No	(d) None of these
[22]	The mean salary for a group of 40	0 female workers is Rs. 5,200 per month and that for a group of 60
	male workers is Rs. 6,800 per mo	onth. What is the combined salary ?
	(a) Rs. 6,160	(b) Rs. 6,280
	(c) Rs. 6,890	(d) Rs. 6,920
[23]	The best measure of dispersion is	s:
	(a) Q. D.	(b) M. D.
	(c) Range	(d) S. D.
[24]	If the mean and S.D. of x are a and	d b respectively, then the S.D. of $\frac{x-a}{b}$ is:
	(a) a/b (b) -1	(c) 1 (d) ab
[25]	Suppose a population A has 100 c	observations 101, 102, 103,200 anti another population B has
	100 observations 151,152,153, 2	50. If V_A and V_B represents the variance of the two populations
	respectively, then $V_A / V_B = :$	
	(a) 9/4 (b) 1	(c) 4/9 (d) 2/3
June 08		

[26]	If there are two groups with 75 and 65 as harmonic means and containing 15 and 13 observations.								
	Then the combin	ed H.M. is given by.							
	(a) 70		(b) 80						
	(c) 70.35		(d) 69.48						
[27]	The G.M. of 4, 6 a	and 8 is :							
	(a) 4.77 (b) 5.32								
	(c) 6.14	((d) 5.77						
[28]	The Mean and S.I	D. for group of 100 o	bservations are	65 and 7.03 re	espectively If 60 of t	these			
	observations hav	ve mean and S.D. as 7	70 and 3 respect	ively, what is t	he S.D. for the grou	p comprising			
	40 observations?	,							
	(a) 2.03	(b) 4.03	(c) 8.03	((d) 9.33				
[29]	The quartile devi	iation for the data is:	:						
	x :	2	3	4	5	6			
	f :	3	4	8	4	1			
	(a) ¼	(b) ½	(c) 1	L	(d) 0				
Dec 08									
[30]	If X and Y are two	o random variables t	then v (x + y) is	:					

	(a) v(x) + v(y)		.(b) v (x) + v (y)-2 v (x,	y)
	(c) v (x) + v (y)	+ 2 v (x, y)	(d) v (x) - v (y)	
[31]	M is a better mea	asure than others whe	en,	
	(a) ratios and pe	ercentages are given	(b) into	erval of scale is given
	(c) Both (a) and	(b)	(d) Eitl	ner (a) or (b)
[32]	Mean and S. D. o	f x is 50 and 5 respect	tively. Find mean and S.D.	of $\frac{x-50}{5}$
	(a) (1,0)	(b) (0,1)	(c) (1,:)	(d) (0,-1)
[33]	Mean and S. D. o	f a given set of observ	vations is 1,500 and 400 re	espectively. If there is an increment of
	100 in the first y	ear and each observa	tion is hiked by 20% in 2 ⁿ	^{id} years, then find new mean and S.D.
	(a) 1920, 480	(b) 1920, 580	0 (c) 1600,480	(d) 1600,400
[34]	If 5 is subtracted	l from each observati	on of some certain item th	en its co-efficient of variation is 10%
	and if 5 is added	to each item then its	coefficient of variation is	6 %. Find original coefficient of
	variation.			
	(a) 8 %	(b) 7.5%	(c) 4%	(d) None of these
June 09				

[35]	The median of 2	$x, \frac{x}{2}, \frac{x}{3}, \frac{x}{5}$ is 10. Find x where	e x > 0						
	(a) 24	(b) 32	(c) 8	(d) 16					
[36]	The average sal	lary of 50 men was Rs. 80	but it was found tha	at salary of 2 of th	em were Rs. 46 and Rs.				
	28 which was w	vrongly taken as Rs. 64 an	d Rs. 82. The revise	d average salary i	is :				
	(a) Rs. 80	(b) Rs. 78.56	(c) R	s. 85.26	(d) Rs. 82.92				
[37]	Inter Quartile Range is of Quartile Deviation.								
	(a) Half	(b) Double	(c) Triple	(d) Eq	ual				
[38]	The sum of squ	ares of deviation from me	an of 10 observatio	ns is 250. Mean o	f the data is 10. Find				
	the co-efficient	of variation.							
	(a) 10%	(b) 25%	(c) 50 %	(d) 0 %					
[39]	If A be the A.M.	of two positive unequal q	uantities X and Y ar	nd G be their G.M.,	then ;				
	(a) A < G	(b) A > G	(c) A ≤ G	(d) A ≥	G				
Dec 09									
[40]	When mean is 3	3.57 and mode is 2.13 the	n the value of media	nn is					
	(a) 3.09	(b) 5.01	(c) 4.01	(d) None c	of these				
[41]	If $L_1 = highest of$	observation and $L_2 = small$	llest observation, th	en Coefficient of	Range =				
	$(a)\frac{L_1 \times L_2}{L_1/L_2} \times 100$	(b) $\frac{L_1 - L_2}{L_1 + L_2} \times 1$	00 (c) $\frac{L_1}{L_1}$	$\frac{+L_2}{-L_2} \times 100$	$(d) \frac{L_1/L_2}{L_1 \times L_2} \times 100$				
2. 45	Page		FACU	JLTY:CA ME	GHA NAHTA				

[42]	The equation of a line is $5x + 2y = 17$. Mean deviation of y about mean is 5. Calculate mean								
	deviation of x ab	out mean.							
	(a) - 2	(b) 2	(c) -4	(d) None					
[43]	If variance of x is 5, then find the variance of (2 - 3x)								
	(a) 10	(b) 15	(c) 5	(d) -13					
June 10									
[44]	The harmonic me	ean of 1, 1/2, 1/3 1/n is	S						
	(a) 1/(n + 1)	(b) 2/(n + 1)	(c) (n -	+ 1)/2	(d) 1/(n 1)				
[45]	The mean weight of 15 students is 110 kg. The mean weight of 5 of them is 100 kg. and of another								
	five students is 1	25 kg. then the mean w	veight of the remai	ning students is :					
	(a) 120	(b) 105	(c) 115	(d) No	one of these				
[46]	In a class of 11 st	udents, 3 students wer	re failed in a test. 8	students who pass	sed secured 10,11, 20,				
	15, 12, 14, 26 and	d 24 marks respectively	y. What will be the	median marks of t	he students?				
	(a) 12	(b) 15	(c) 13	(d) 13.5					
Dec 10									
[47]	The variance of d	lata : 3,4,5,8 is							
	(a) 4.5	(b) 3.5	(c) 5.	5	(d) 6.5				
2. 46	Page		F A C	CULTY:CA M	EGHA NAHTA				

[48]	A lady travel at a speed of 20km/h and returned at quicker speed. If her average speed of the								
	whole journey is 24km/h, find the speed of return journey (in km/h)								
	(a) 25	(a) 25 (b) 30 (c) 35 (d) 38							
[49]	Let the mean of	the variable 'x' be 50), then the mean of u	= 10 + 5x will be :					
	(a) 250	(b) 260	(c) 265	(d) 273	;				
[50]	Given the observ	Given the observations : 4,9,11,14,37. The Mean deviation about the Median is							
	(a) 11	(b) 8.5	(c) 7.6	(d) 7.45					
June 11									
[51]	If the difference between mean and Mode is 63, then the difference between Mean and Median will								
	be								
	(a) 63	(b) 31.5	(c) 21	(d) None of the al	bove.				
[52]	If the Arithmetic	c mean between two	numbers is 64 and t	he Geometric mean be	etween them is 16.				
	The Harmonic N	lean between them is	.S						
	(a) 64	(b) 4	(c) 16	(d) 40					
[53]	all observations	in a distribution are	increased by 6, then	the variance of the se	ries will be				
	(a) Increased	(b) Dec	creased	(c) Unchanged	(d) None of these.				
[54]	The average of 5	5 quantities is 6 and 1	the average of 3 is 8.	what is the average of	the remaining two.				
			F A						

	(a) 4	(b) 5	(c) 3	(d) 3.5							
Dec 11											
[55]	The standard d	eviation of the wei	ghts (in kg) of the	students of a cla	ss of 50 students w	as					
	calculated to be	e 4.5 kg. Later on it	was found that du	ie to some fault i	n weighing machine	e, the					
	weight of each	weight of each student was under measured by 0.5 kg. The Correct standard deviation of the									
	weight will be:										
	(a) Less than 4	.5 (b) Greater than 4.	5							
	(c) Equal to 4.5 (d) Can not be determined										
[56]	For Normal distribution the relation between quartile deviation (Q.D) and standard deviation										
	(S.D) is										
	(a) Q.D > S.D	(b) Q.D <	S.D ((c) $Q.D = S.D$	(d) None of t	he above					
[57]	The median of	following numbers,	which are given	is ascending orde	er is 25. Find the Va	lue of X.					
	11 13 15 19 (x-	+ 2) (x+ 4) 30 35 3	9 46								
	(a) 22	(b) 20	(c) 15	(d)) 30						
[58]	The average ag	e of a group of 10 s	tudents was 20 ye	ears. The average	e age increased by t	wo years					
	when two new	students joined the	e group. What is th	ne average age of	f two new students	who joined					
	the group?										

T

	(a) 22 years	(b) 30 years	(c) 44 years	(d) 32 years					
June 12									
[59]	If standard devia	ation of first 'n' natural n	umbers is 2 then valu	ie of 'n' is					
	(a) 10	(b) 7	(c) 6	(d) 5					
[60]	Geometric Mean of three observations 40,50 and X is 10. The value of X is								
	(a) 2	(b) 4	(c) ½	(d) None of the above.					
[61]	The mean of first	t three term is 14 and me	ean of next two terms	s is 18. The mean of all five term is :					
	(a) 14.5	(b) 15	(c) 14	(d) 15.6					
[62]	The standard deviation is independent of change of								
	(a) Scale								
	(b) Origin								
	(c) Both origin a	nd scale							
	(d) None of these	е.							
[63]	In a normal distr	ibution, the relationship	between the three m	nost commonly used measures of					
	dispersion are:								
	(a) Standard Dev	viation > Mean Deviatior	n > Quartile Deviatio	n					
	(b) Mean Deviati	ion > Standard Deviatior	n > Quartile Deviatio	n					
	*								

	T									
	(c) Standard Deviation > Quartile Deviation > Mean Deviation									
	(d) Quartile Deviation > Mean Deviation > Standard Deviation									
[64]	If Standard deviati	on of x is σ , then sta	andard deviation of	ax +b , where a, b and c ((c± 0) are					
	arbitrary constants	s, will be								
	(a) σ	(b) $\frac{a\sigma + b}{c}$	$(c)\frac{a}{c}-\sigma$	(d) $\left \frac{a}{c}\right \sigma$						
[65]	The mean salary o	f a group of 50 persc	ons is Rs. 5,850. Late	er on it is discovered that	t the salary of					
	one employee has	one employee has been wrongly taken as Rs. 8,000 instead of Rs. 7,800. The corrected mean salary is:								
	(a) Rs. 5,854	(b) Rs. 5,846	(c) Rs. 5	5,650 (d) None	e of the above.					
Dec 12										
[66]	Which of the follov	ving measures of dis	spersion is used for	calculating the consisten	icy between two					
	series?									
	(a) Quartile deviat	ion	(b) Standa	rd deviation						
	(c) Coefficient of v	ariation	(d) None o	of the above.						
[67]	If the mode of a da	ta is 18 and mean is	24, then median is							
	(a) 18	(b) 24	(c) 22	(d) 21						
[68]	For data on freque	ency distribution of v	veights:							

	1								
	70, 73, 49, 57, 56, 44, 56, 71, 65, 62, 60, 50, 55, 49, 63 and 45								
	If we assume class length as 5, the number of class intervals would be								
	(a) 5	(b) 6	(c) 7	(d) 8					
[69]	The point of in	itersection of the "less tl	han" and "more than"	" ogives correspond to					
	(a) Mean	(b) Mode	(c) Med	dian (d) 10 th Percentile					
[70]	A man travels f	from Agra to Gwalior at	t an average speed of	30 km per hour and back at an average					
	speed of 60 km	n per hour. What is his a	average speed?						
	(a) 38 km per l	hour	(b) 40 km per hour						
	(c) 45 km per l	hour	(d) 35 km per hour						
June 13									
[71]	If sum of squar	res of the values = 339(), N = 30 and standar	rd deviation = 7, find out the mean.					
	(a) 113	(b) 210	(c) 8	(d) None of these					
[72]	If the mean of a	a frequency distributio	n is 100 and coefficier	nt of variation is 45% then standard					
	deviation is:								
	(a) 45	(b) 0.45	(c) 4.5	(d) 450					
[73]	Which of the fc	ollowing measures of ce	entral tendency canno	ot be calculated by graphical method?					
2.51	Page		FAC	ULTY:CA MEGHA NAHTA					

	(a) Mean .	(b) Mode	(c) M	ledian	(d) Quartile	
[74]	Geometric mea	an of 8, 4, 2 is				
	(a) 4	(b) 2	(c) 8	(d)	None of these	
[75]	The average ag	ge of 15 students of a cl	ass is 15 years. (Out of them,	the average age of 5 stude	nts is
	14 years and t	hat of the other 9 stude	ents is 16 years. T	Րhe age of tł	ne 15 th student is:	
	(a) 11 years	(b) 14 years	(c) 1	5 years	(d) None of these	
Dec 13						
[76]	Find at the var	iance given that the Ar	ithmetic Mean =	(8+4)/2		
	(a) 2	(b) 6	(c) 1	(d)	4	
[77]	In normal dist	ribution mean, median	and mode are			
	(a) Equal	(b) Not Equal	(c) Ze	ero	(d) None of above	
[78]	Coefficient of r	nean deviation about n	nean for the first	9 natural n	umbers is	
	(a) 200/9 '	(b) 80	(c) 400/9)	(d) 50	
[79]	The price of av	verages whose value ca	n be determined	graphically	?	
	(a) Mode, Med	ian	(b) Mear	n, Mode		
	(c) Mean, Med	ian	(d) None	of the abov	e	
[80]	If mean = 5, St	andard deviation $= 2.6$	5, median = 5 and	d quartile d	eviation = 1.5 , then the coe	efficient
0.50	P a a a					

	of quartile de	vistion equals							
	of quartile deviation equals								
	(a) 35	(b) 39	(c) 30	(d) 32					
June 14		_	_	_	_				
[81]	What will be	the probable value of	f mean deviation?	When $Q_3 = 40$ a	nd $Q_1 = 15$				
	(a) 17.50	(b) 18.7	5 (c) 1	15.00 (d) None of the above				
[82]	Which of the	following statements	s is true?						
	(a) Median is	(a) Median is based on all the observations							
	(b) The mode is the mid value								
	(c) The medi	(c) The median is the, second quartile							
	(d) The mode	e is the fifth decile.							
[83]	The mean of	the following data is	6. Find the value c	of P					
	x:	2 4	6	10	P+5				
	f:	3 2	3	1	2				
	(a) 4	(b) 6	(c) 8	; (c	l) 7				
[84]	The formula	for range of middle 5	0% items of a seri	es is:					
	(a) Q ₃ – Q ₁	(b) Q ₃ -0	Q ₂ (c) () 2 - Q 1	$(d)\frac{Q_3-Q_1}{2}$				
Dec 14									

[85]	The third decile	for the numbers 15, 1	10, 20, 25, 18, 11, 9, 1	12, is:		
	(a) 13	(b) 10.70	(c) 11		(d) 11.50	
[86]	A random variał	ole X has uniform dist	ribution on the inter	rval (-3, 7). T	The mean of the distribution	ı is:
	(a) 2	(b) 4	(c) 5	(d) 6		
[87]	If the first quarti	ile is 142 and semi-int	ter quartile range is	18, then the	value of median Is:	
	(a) 151	(b) 160	(c) 178		(d) None of these	
[88]	The quartile dev	riation is:				
	(a) 2/3 of S.D.	,	(b) 4/5 of S.D.			
	(c) 5/6 of S.D		(d) None of these			
[89]	If the arithmetic	mean of two number	's is 10 and the geom	ietric mean c	of these numbers is 8, then	
	the harmonic me	ean is:				
	(a) 9	(b) 8.9	(c) 6.4	(d) None o	of these	
June 15						
[90]	The standard de	viation of a variable x	t is known to be 10. 7	Гhe standarc	d deviation of 50 + 5x is	
	(a) 50	(b) 100	(c) 10	(d)) 500	
[91]	The harmonic m	iean H of two number	s is 4 and their arith	metic mean	A and the geometric mean (G
	satisfy the equat	tion $2A + G^2 = 27$, the	n the numbers are			
	Paae		ΕΛ(

	(a) (1,3)	(b) (9,5)	(c) (6,3	;)	(d) (12,7)						
[92]	Coefficient of quartile deviation is equal to										
	(a) Quartile d	leviation × 100/ medi	ian								
	(b) Quartile d	leviation × 100 / mea	ın								
	(c) Quartile deviation $ imes$ 100 / mode										
	(d) None	(d) None									
[93]	If all the observations are increased by 5, then										
	(a) S.D. would be increased by 5										
	(b) Mean deviation would be increased by 5										
	(c) Quartile de	eviation would be inc	creased by 5								
	(d) All the thr	ree would not be incre	eased by 5								
[94]	What is value	of mean deviation ab	out mean from	the number	5, 8,6, 3 and 4 ?						
	(a) 5.20	(b) 7.20	(c) 1.44		(d) 2.23						
[95]	For the observ	vation of 6, 4, 1,6, 5, 1	10, 4, 8 the range	e is:							
	(a) 10	(b) 9	(c) 8	(d) None							
Dec 15											
[96]	If a variance o	of a random variable Y	۲ is 23, then wh	at is variance	e of 2x + 10?						

	(a) 56	(b) 33	(c) 46		(d) 92	
[97]	If variance = 148	$3.6 \text{ and } \overline{x} = 40, t$	hen the coe	fficient of va	riation is	S:
	(a) 37.15	(b) 30.4 ⁴	8	(c) 33.75		(d) None of the above
[98]	Quartiles can be	determined gra	phically usi	ing:		
	(a) Histogram		(b) F	Frequency pol	lygon	
	(c) Ogive curve		(d) P	'ie chart		
[99]	In a class of 50 s	tudents, 10 have	e failed and	their average	e marks i	in 2.5. The total marks secured by
	the entire class v	were 281. The av	verage marl	ks who have j	passed is	5:
	(a) 5.32	(b) 7.25	(c	c) 6.40	(d) 1	None of the above.
June 16						
[100]	The SD of first n	natural number	: is			
	(a) $\sqrt{\frac{n^2-1}{12}}$	(b) √ [!]	$\frac{n(n+1)}{12}$	(c) __	$\sqrt{\frac{n(n-1)}{6}}$	(d) None of these.
[101]	If mean and coef	ficient of variati	on of the m	arks of 10 st	udents is	s 20 and 80 respectively. What will
	be variance of th	iem?				
	(a) 256	(b) 16		(c) 25		(d) None of these.
[102]	If same amount i	is added to or su	ıbtracted fr	om all the val	lues of aı	n individual series then the
	standard deviati	on and variance	both shall	be		
2.56	Page			FA	CULT	Y:CA MEGHA NAHTA

	(a) changed				
		(b) uncha	nged	(c) same	(d) none of these
[103]	If the mean of tw	vo numbers is 30 and	d geometric mear	n is 24 the	n what will be these two numbers?
	(a) 36 and 24		(b) 30 and 3	80	
	(c) 48 and 12		(d) None of t	hese	
[105]	Mean for the dat	ta 6, 4, 1, 6, 5, 10, 3 is	s 5 when each ob	servation	added by 2, what is mean of the
	data				
	(a) 5	(b) 6	(c) 7	(d) 1	.0
[106]	The average of 1	0 observations is 14	4.4. If the average	of first 4	observations is 16.5. The average of
	remaining 6 obs	ervations is:			
	(a) 13.6	(b) 13.0	(c) 13.2	(0	ł). 12.5
[107]	The ordering of	a particular design c	of a cloth show ro	om, a	size be more appropriate.
	(a) median	(b) mean	(c) moo	le	(d) all of these
[108]	The second and	third moments of a s	sample of seven c	bservatio	n (-6, -4, -2, 0, 2,4, 6) are
	(a) (12, 0)	(b) (0,12)	(c) (0,16)	(d) (16, 0)
[109]	The geometric n	nean of three numbe	ers 40,50 and x is	10, the va	lue of x is
	(a) 5	(b) 4	(c) 2	(d)	$\frac{1}{2}$
[109]	The geometric n	nean of three numbe	ers 40,50 and x is	10, the va	lue of x is

	(a) 5	(b) 4	(c) 2	$(d)\frac{1}{2}$
June 17				
[110]	The rates of re	eturns from three diffe	rent shares are 10	00%, 200% and 400% respectively. The
	average rate o	f return will be:		
	(a) 350%	(b) 233.33%	(c) 20	0% (d) 300%
[111]	If geometric m	nean is 6 and arithmeti	c mean is 6.5, the	n harmonic mean will be:
	(a) $\frac{6^2}{6.5}$	(b) $\frac{6}{6.5^2}$	(c) $\frac{6}{6.5}$	(d) None of the above
[112]	A company's p	oast 10 years average e	earning is Rs. 40 c	cores. To have the same average earning for
	11 years inclu eleventh year		ow much earning	must be made by the company in the
	(a) Rs. 40 croi	fes	(b) Rs. 40	× 10 ?? Crores
	(c) More than	Rs. 40 crores	(d) None	of the above.
[113]	A person purc	hases 5 rupees worth	of eggs from 10 di	fferent markets. You are to find the average
	number of egg	gs per rupee purchased	l from all the mar	xets taken together. The suitable average in
	this case is:			
	(a) A.M.	(b) G.M.	(c) H.M.	(d) None of the above.
[114]	For a moderat	ely skewed distributio	on, the relationshi	between mean, median and mode is :

	(a) Me	ean - Mo	de = 2 (M	lean - M	ledian)									
	(b) Mean - Median = 3 (Mean - Mode)													
	(c) Me	ean - Mee	dian $= 2$ ((Mean -	Mode)									
	(d) M	ean - Mo	de = 3 (M	/lean - M	ledian).									
[115]	If arit	If arithmetic mean and coefficient of variation of x are 10 and 40, respectively then the variance of												
	- 15 +	$\frac{3x}{2}$ will b)e:											
	(a) 64	ŀ	(b) 8	81	(c) 49		(d) 36						
	-													
						AN	NSWER.	S						
	1	В	11	A	21	AN C	NSWER 31	S A	41	В	51	C		
	1 2	B	11	A C	21				41	B	51	С В		
						С	31	Α						

5	D	15	D	25	В	35	A	45	В	55	С
6	А	16	В	26	А	36	В	46	А	56	В
7	C	17	С	27	D	37	В	47	В	57	A
8	С	18	A	28	В	38	С	48	В	58	D
9	D	19	A	29	С	39	В	49	В	59	В
10	В	20	D	30	A	40	А	50	С	60	С
61	D	71	С	81	C	91	С	101	Α	111	A
61 62	D B	71 72	C A	81	С С	91 92	C A	101 102	A B	111	
											A
62	В	72	A	82	С	92	A	102	В	112	A
62 63	B	72 73	A	82	C D	92 93	A	102 103	B	112 113	A A C D D
62 63 64	B A D	72 73 74	A A A	82 83 84	C D D	92 93 94	A D C	102 103 104	B C C	112 113 114	A C D
62 63 64 65	B A D B	72 73 74 75	A A A A A	82 83 84 85	C D D B	92 93 94 95	A D C B	102 103 104 105	B C C C C	112 113 114	A C D

69	С	79	А	89	С	99	С	109	D	
70	В	80	С	90	A	100	А	110	С	

STUDENTS NOTES

CH - 3	PROBABILITY & EXPECTED VALUE BY MATHEMATICAL EXPECTATION
Q 1	A committee of 7 members is to be formed from a group comprising 8 gentlemen and 5 ladies. What
	is the probability that the committee would comprise:
	(a) 2 ladies,
	(b) at least 2 ladies.
Solution:	

Q 2	The following data relate to a	the distr	ibution o	f wages	of a group	of workers:		
	Wages in Rs.: 50-60	60-70	70-80	80-90	90-100	100-110	110-120	
	No. of workers: 15	23	36	42	17	12	5	
	If a worker is selected at ran	dom froi	m the en	otire grou	p of worke	rs, what is t	he probability	that
	(a) his wage would be less t	han Rs.	50?					
	(b) his wage would be less t	than Rs.	80?					
	(c) his wage would be more	than Rs.	100?					
	(d) his wages would be betw	veen Rs.	70 and 1	Rs. 100?				
Solution:	As there are altogether 150 v	vorkers,	n = 150.					

	(a) Since there is no worker with wage less than Rs. 50, the probability that the wage of a
	randomly selected worker would be less than Rs. 50 is $P(A) = \frac{0}{150} = 0$
	(b) Since there are (15+23+36) or 74 worker having wages less than Rs. 80 out of a group of
	150 workers, the probability that the wage of a worker, selected at random from the group, would be
	less than Rs. 80 is
	$P(B) = \frac{74}{150} = \frac{37}{75}$
	(C)There are (12+5) or 17 workers with wages more than Rs. 100. Thus the probability of finding a
	worker, selected at random, with wage more than Rs. 100 is
	P(C) $=\frac{17}{150}$
	(d) There are (36+42+17) or 95 workers with wages in between Rs. 70 and Rs. 100. Thus
	P(D) $=\frac{95}{100}=\frac{19}{30}$
Q 3	Three events A, B and C are mutually exclusive, exhaustive and equally likely.
	What is the probability of the complementary event of A?
Solution:	

Т

Q 4	A number is selected from the first 25 natural numbers. What is the probability that it would be
	divisible by 4 or 7?
Solution:	Let A be the event that the number selected would be divisible by 4 and B, the event that the
	selected number would be divisible by 7. Then AUB denotes the event that the number would be
	divisible by 4 or 7. Next we note that $A = \{4, 8, 12, 16, 20, 24\}$ and $B = \{7, 14, 21\}$ whereas $S = \{1, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
	$P(A \cup B) = P(A) + P(B)$
	Since P(A) = $\frac{n(A)}{n(S)} = \frac{6}{25}$
	And P(B) $= \frac{n(B)}{n(S)} = \frac{3}{25}$
	Thus from (1), we have
	$P(A \cup B) = \frac{6}{25} + \frac{3}{25}$
	$=\frac{9}{25}$
	Hence the probability that the selected number would be divisible by 4 or 7 is $9/25$ or 0.36
Q 5	A coin is tossed thrice. What is the probability of getting 2 or more heads?
Solution:	If a coin is tossed three times, then we have the following sample space.
	S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} 2 or more heads imply 2 or 3 heads.

	If A and B denote the events of occurrence of 2 and 3 heads respectively, then we find that
	A = {HHT, HTH, THH} and B = {HHH}
	$P(A) = \frac{n(A)}{n(S)} = \frac{3}{8}$
	And P(B) = $\frac{n(B)}{n(S)} = \frac{1}{8}$
_	As A and B are mutually exclusive, the probability of getting 2 or more heads is
	$P(A \cup B) = P(A) + P(B)$
	$=\frac{3}{8}+\frac{1}{8}$
	= 0.50
Q 6	A number is selected at random from the first 1000 natural numbers. What is the probability that it
	would be a multiple of 5 or 9?
Solution:	

Q 7	The probability that an Accountant's job applicant has a B. Com. Degree is 0.85, that he is a CA is
	0.30 and that he is both B. Com. and CA is 0.25 out of 500 applicants, how many would be B. Com.
	or CA?
Solution:	Let the event that the applicant is a B. Com. be denoted by B and that he is a CA be
	denoted by C Then as given,
	$P(B) = 0.85, P(C) = 0.30 \text{ and } P(B \cap C) = 0.25$
	The probability that an applicant is B. Com. or CA is given by
	$P(B \cup C) = P(B) + P(C) - P(B \cap C)$
	= 0.85 + 0.30 - 0.25
	= 0.90
	Expected frequency = $N \times P (B \cup C)$
	Expected frequency = $500 \times 9.90 = 450$
Q 8	If P(A–B) = 1/5, P(A) = 1/3 and P (B) = 1/2, what is the probability that out of the two events
	A and B, only B would occur?
Solution:	
	·

Q 9	Rupesh is known to hit a target in 5 out of 9 shots whereas David is known to hit the same target
	in 6 out of 11 shots. What is the probability that the target would be hit once they both try?
Solution:	

Q 10	A pair of dice is thrown together and the sum of points of the two dice is noted to be 10.
	What is the probability that one of the two dice has shown the point 4?
Solution:	

NAHTA PROFESSIONAL CLASSSES **STATISTICS** Q 11 In a group of 20 males and 15 females, 12 males and 8 females are service holders. What is the probability that a person selected at random from the group is a service holder given that the selected person is a male? Let S and M stand for service holder and male respectively. We are to evaluate P (S / M). Solution: We note that $(S \cap M)$ represents the event of both service holder and male. Thus $P(S/M) = \frac{P(S \cap M)}{P(M)}$ $=\frac{12/35}{20/35}=0.60$ Q 12 In connection with a random experiment, it is found that P(A) = 2/3, P(B) = 3/5 and $P(A \cup B) = 5/6$ Evaluate the following probabilities: (i) P(A|B) (ii) P(B|A) (iii) P(A'|B)(iv) P(A|B') (v) P(A'|B')Solution:

The odds in favour of an event is 2 : 3 and the odds against another event is 3 : 7. Find the
probability that only one of the two events occurs.

NAHTA PROFESSIONAL CLASSSES STATISTICS Q14 There are three boxes with the following compositions : Very state Very state Very state Blue Red White Total

8

10

23

5

Ι

	π	4	0	0	21				
	Ш	4	9	0					
	III	3	6	7	16				
	One ball in drawn from ea	ch box. What is tl	he probability that	they would be of t	he same colour?				
Solution:	Either the balls would be Blue or Red or White. Denoting Blue, Red and White balls by B, R and W								
	respectively and the box by	respectively and the box by lower suffix, the required probability is							
	$= P(B1 \cap B2 \cap B3) + P(R3)$	$= P(B1 \cap B2 \cap B3) + P(R1 \cap R2 \cap R3) + P(W1 \cap W2 \cap W3)$							
	$= P(B1) \times P(B2) \times P(B3) +$	$= P(B1) \times P(B2) \times P(B3) + P(R1) \times P(R2) \times P(R3) + P(W1) \times P(W2) \times P(W3)$							
	$= \frac{5}{23} X \frac{4}{21} X \frac{3}{16} + \frac{8}{23} X \frac{9}{21} X \frac{6}{16} + \frac{10}{23} X \frac{8}{21} X \frac{7}{16}$								
	$=\frac{60+432+560}{7728}$								
	$=\frac{1052}{7728}$								
Q 15	Mr. Roy is selected for thr	ee separate posts.	For the first post	, there are three ca	ndidates, for the				
	second, there are five candidates and for the third, there are 10 candidates. What is the probability								
	that Mr. Roy would be selected?								
Solution:	Denoting the three posts b	y A, B and C respe	ctively, we have						
	P(A) = 1/3, P(A) = 1/5 an	d P(C) = $1/10$							
	The probability that Mr. Ro	y would be select	ed (i.e. selected for	at least one post).					

NAHTA PROFESSIONAL CLASSSES **STATISTICS** $= P(A \cup B \cup C)$ $= 1 - P[(A \cup B \cup C)']$ $= 1 - P(A' \cap B' \cap C')$ (by De-Morgan's Law) $= 1 - P(A') \times P(B') \times P(C')$ (As A, B and C are independent, so are their complements) $= 1 - \left(1 - \frac{1}{3}\right) X \left(1 - \frac{1}{5}\right) X \left(1 - \frac{1}{10}\right) = \frac{13}{25}$ Q 16 There are two urns containing 5 red and 6 white balls and 3 red and 7 white balls respectively. If two balls are drawn from the first urn without replacement and transferred to the second urn and then a draw of another two balls is made from it, what is the probability that both the balls drawn are red? Solution:

Q 17	There are 3 boxes with the following composition :
	Box I : 7 Red + 5 White + 4 Blue balls
	Box II : 5 Red + 6 White + 3 Blue balls
	Box III : 4 Red + 3 White + 2 Blue balls
	One of the boxes is selected at random and a ball is drawn from it. What is the probability that the
	drawn ball is red?
Solution:	
	EXPECTED VALUE OF A RANDOM VARIABLE
Q 18	An unbiased coin is tossed three times. Find the expected value of the number of heads

	and also its standard deviation.						
	X :	0	1		2	3	1
	P :	$\frac{1}{8}$	$\frac{3}{8}$		$\frac{3}{8}$	$\frac{1}{8}$	
Solution:							
Q 19	A random variable	has the following	g probability disti	ribution:			
	X :	4	5	7	8	10	
	P :	0.15	0.20	0.40	0 0.15	0.10	
	Find E [x – E(x)]	¹² . Also obtain v(.	3x -4)				
Solution:							

Q 20	In a business venture, a man can make a profit of Rs. 50,000 or incur a loss of Rs. 20,000. The
	probabilities of making profit or incurring loss, from the past experience, are known to be 0.75 and
	0.25 respectively. What is his expected profit?
Solution:	If the profit is denoted by x, then we have the following probability distribution of x:
	X : Rs. 50,000 Rs. –20,000
	P : 0.75 0.25
	Thus his expected profit
	E(x) = p1x1 + p2x2
	= 0.75 Rs. 50,000 + 0.25 (Rs 20,000)
	= Rs. 32,500
Q 21	A random variable x has the following probability distribution :

I

	X :	0	1	2	3	4	5	6	7
	P(X) :	0	2k	3k	k	2k	k ²	7k ²	2k ² +k
	Find (i) th	e value of k							
	(ii) P(x <	3)							
	(iii) P(x ≥	4)							
	(iv) P(2 <	x ≤ <i>5)</i>							
Solution:									

	"PRACTICE & PRACTICE MAKES STATS PERFECT"
	<u>Set A – (Theory Question)</u>
1.	Initially, probability was a branch of
	(a) Physics (b) Statistics
	(c) Mathematics (d) Economics
2.	Two broad divisions of probability are
	(a) Subjective probability and objective probability
	(b) Deductive probability and non-deductive probability
	(c) Statistical probability and Mathematical probability
	(d) None of these.
3.	Subjective probability may be used in
	(a) Mathematics (b) Statistics
	(c) Management (d) Accountancy
4.	An experiment is known to be random if the results of the experiment
	(a) Can not be predicted
	(b) Can be predicted
	(c) Can be split into further experiments
	(d) Can be selected at random
5.	An event that can be split into further events is known as
	(a) Complex event (b) Mixed event

	(c) Simple event (d) Composite event
6.	Which of the following pairs of events are mutually exclusive?
	(a) A : The student reads in a school. B : He studies Philosophy.
	(b) A : Raju was born in India. B : He is a fine Engineer.
	(c) A : Ruma is 16 years old. B : She is a good singer.
	(d) A : Peter is under 15 years of age. B : Peter is a voter of Kolkata.
7.	If $P(A) = P(B)$, then
	(a) A and B are the same events
	(b) A and B must be same events
	(c) A and B may be different events
	(d) A and B are mutually exclusive events.
8.	If $P(A \cap B) = 0$, then the two events A and B are
	(a) Mutually exclusive (b) Exhaustive
	(c) Equally likely (d) Independent
9.	If for two events A and B, P(AUB) = 1, then A and B are
	(a) Mutually exclusive events
	(b) Equally likely events
	(c) Exhaustive events
	(d) Dependent events.
10.	If an unbiased coin is tossed once, then the two events Head and Tail are
	(a) Mutually exclusive (b) Exhaustive

(c) Equally likely (d) All these (a), (b) and (c).						
If $P(A) = P(B)$, then the two events A and B are						
(a) Independent (b) Dependent						
(c) Equally likely (d) Both (a) and (c).						
If for two events A and B, $P(A \cap B) \neq P(A) \ge P(B)$, then the two events A and B are						
(a) Independent (b) Dependent						
(c) Not equally likely (d) Not exhaustive.						
If $P(A/B) = P(A)$, then						
(a) A is independent of B (b) B is independent of A						
(c) B is dependent of A (d) Both (a) and (b).						
If two events A and B are independent, then						
(a) A and the complement of B are independent						
(b) B and the complement of A are independent						
(c) Complements of A and B are independent						
(d) All of these (a), (b) and (c).						
If two events A and B are independent, then						
(a) They can be mutually exclusive						
(b) They can not be mutually exclusive						
(c) They can not be exhaustive						
(d) Both (b) and (c).						
If two events A and B are mutually exclusive, then						

	(a) They are always independ	dent
	(b) They may be independen	t
	(c) They can not be independ	lent
	(d) They can not be equally li	ikely.
17.	If a coin is tossed twice, then	the events 'occurrence of one head', 'occurrence of 2 heads'
	and 'occurrence of no head' a	ire
	(a) Independent	(b) Equally likely
	(c) Not equally likely	(d) Both (a) and (b).
18.	The probability of an event ca	an assume any value between
	(a) – 1 and 1	(b) 0 and 1
	(c) – 1 and 0	(d) none of these
19.	If $P(A) = 0$, then the event A	
	(a) will never happen	(b) will always happen
	(c) may happen	(d) may not happen.
20.	If $P(A) = 1$, then the event A is	is known as
	(a) symmetric event	(b) dependent event
	(c) improbable event	(d) sure event
21.	If p : q are the odds in favour	of an event, then the probability of that event is
	(a) p/q	(b) p/p+q
	(c) q/p+q	(d) none of these
22.	If $P(A) = 5/9$, then the odds a	against the event A is

NA	HTA PROFESSIONAL CLAS	SSES STATISTICS
	(a) 5:9	(b) 5 : 4
	(c) 4 : 5	(d) 5 : 14
23.	If A, B and C are mutually exclusiv	ve and exhaustive events, then $P(A) + P(B) + P(C)$ equals to
	(a)1/3	(b) 1
_	(c) 0	(d) any value between 0 and 1.
24	If A denotes that a student reads i	in a school and B denotes that he plays cricket, then
	(a) $P(A \cap B) = 1$	(b) $P(A \cap B) = 1$
	(c) $P(A \cap B) = 0$	(d) $P(A) = P(B)$.
25.	P(B/A) is defined only when	
	(a) A is a sure event	(b) B is a sure event
	(c) A is not an impossible event	(d) B is an impossible event.
26.	P(A/B') is defined only when	
	(a) B is not a sure event	(b) B is a sure event
	(c) B is an impossible event	(d) B is not an impossible event
27.	For two events A and B, $P(A \cup B)$	= P(A) + P(B) only when
	(a) A and B are equally likely even	nts
	(b) A and B are exhaustive events	
	(c) A and B are mutually indepen	dent
	(d) A and B are mutually exclusiv	e.
28.	Addition Theorem of Probability	states that for any two events A and B,
	(a) $P(A \cup B) = P(A) + P(B)$	
	· ·	

NA	HTA PROFESSIONAL CLASSSES STATISTICS
	(b) $P(A \cup B) = P(A) + P(B) + P(A \cap B)$
	(c) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$(d) P(A \cup B) = P(A) \times P(B)$
29.	For any two events A and B:
	(a) $P(A) + P(B) > P(A \cap B)$ (b) $P(A) + P(B) < P(A \cap B)$
	(c) $P(A) + P(B) \ge P(A \cap B)$ (d) $P(A) \ge P(A \cap B)$
30.	For any two events A and B,
	(a) $P(A-B) = P(A) - P(B)$ (b) $P(A-B) = P(A) - P(A \cap B)$
	(c) $P(A-B) = P(B) - P(A \cap B)$ (d) $P(B-A) = P(B) + P(A \cap B)$.
31.	The limitations of the classical definition of probability is:
	(a) it is applicable when the total number of elementary events is finite
	(b) it is applicable if the elementary events are equally likely
	(c) it is applicable if the elementary events are mutually independent
	(d) (a) and (b).
32.	According to the statistical definition of probability, the probability of an event A is the
	(a) limiting value of the ratio of the no. of times the event A occurs to the number of times the
	experiment is repeated
	(b) the ratio of the frequency of the occurrences of A to the total frequency
	(c) the ratio of the frequency of the occurrences of A to the non-occurrence of A
	(d) the ratio of the favourable elementary events to A to the total number of elementary events.
33.	The Theorem of Compound Probability states that for any two events A and B.

TA PROFESSIONAL CLASS	SES STATISTICS
(a) $P(A \cap B) = P(A) \times P(B/A)$	(b) $P(A \cup B) = P(A) \times P(B/A)$
(c) $P(A \cap B) = P(A) \times P(B)$	(d) $P(A \cup B) = P(B) + P(B) - P(A \cap B)$.
If A and B are mutually exclusive ev	vents, then
(a) $P(A) = P(A-B)$.	(b) $P(B) = P(A-B)$.
(c) $P(A) = P(A \cap B)$.	(d) $P(B) = P(A \cap B)$.
If $P(A-B) = P(B-A)$, then the two e	vents A and B satisfy the condition
(a) $P(A) = P(B)$.	(b) $P(A) + P(B) = 1$
(c) $P(A \cap B) = 0$	(d) $P(A \cup B) = 1$
The number of conditions to be sat	isfied by three events A, B and C for complete independence is
(a) M2 (b) 3	(c) 4 (d) any number.
If two events A and B are independ	ent, then $P(A \cap B)$
(a) equals to P(A) + P(B)	(b) equals to P(A) x P(B)
(c) equals to P(A) x P(B/A)	(d) equals to P(B) x P(A/B).
Values of a random variable are	
(a) always positive numbers.	(b) always positive real numbers.
(c) real numbers.	(d) natural numbers.
Expected value of a random variable	le
(a) is always positive	(b) may be positive or negative
(c) may be positive or negative or z	zero (d) can never be zero.
If all the values taken by a random	variable are equal then
(a) its expected value is zero	
	(a) $P(A \cap B) = P(A) \times P(B/A)$ (c) $P(A \cap B) = P(A) \times P(B)$ If A and B are mutually exclusive e

	(b) its standard deviation is zero								
	(c) its standard deviation is positive								
	(d) its standard deviation is a real number.								
41.	If x and y are independent, then								
	(a) $E(xy) = E(x) \times E(y)$ (b) $E(xy) = E(x) + E(y)$								
	(c) $E(x - y) = E(x) + E(y)$ (d) $E(x - y) = E(x) + x E(y)$								
42.	If a random variable x assumes the values x1 , x2 , x3 , x4 with corresponding probabilities p1 , p2 , p3 ,								
	p4 then the expected value of x is								
	(a) $p1 + p2 + p3 + p4$								
	(b) x1 p1 + x2 p3 + x3 p2 + x4 p4								
	(c) p1 x1 + p2 x2 + p3 x3 + p4 x4								
	(d) none of these.								
43.	f(x), the probability mass function of a random variable x satisfies								
	(a) $f(x) > 0$ (b) $\sum_{x} f(x) = 1$								
	(c) both (a) and (b) (d) $f(x) \ge 0$ and $\sum_{x} f(x) = 1$								
44.	Variance of a random variable x is given by								
	(a) $E(x - \mu)^2$ (b) $E[x - E(x)]^2$ (c) $E(x^2 - 1)$ (d) (a) or (b)								
45.	If two random variables x and y are related by $y = 2 - 3x$, then the SD of y is given by								
	(a) -3 X SD of x (b) 3 X SD of x. (c) 9 X SD of x (d) 2 X SD of x.								
46.	Probability of getting a head when two unbiased coins are tossed simultaneously is								
	(a) 0.25 (b) 0.50 (c) 0.20 (d) 0.75								
	1								

NAH	TA PROFES	SIONAL CLASS	SES		STAT	ISTICS
47.	If an unbiased	coin is tossed twice, t	he probability of	obtaining	at least one tail is	
	(a) 0.25	(b) 0.50	(c) 0.7	75	(d) 1.00	
48.	If an unbiased	die is rolled once, the	odds in favour o	of getting a	point which is a mul	tiple of 3 is
	(a) 1:2	(b) 2:1	(c) 1	:3	(d) 3:1	
49.	A bag contains	s 15 one rupee coins, 2	5 two rupee coi	ns and 10 f	ive rupee coins. If a c	coin is selected at
	random from	the bag, then the prob	ability of not sel	ecting a on	e rupee coin is	
	(a) 0.30	(b) 0.70	(c) 0.	25	(d) 0.20	
50.	A, B, C are thre	ee mutually independe	ent with probabi	lities 0.3, 0	.2 and 0.4 respective	ely. What is
	$P(A \cap B \cap C)$?				
	(a) 0.400	(b) 0.240	(c) 0.0	24	(d) 0.500	
51.	If two letters a	are taken at random fr	om the word HC	ME, what i	s the Probability tha	t none of the letters
	would be vow	els?				
	(a) 1/6	(b) ½	(c)	1/3	(d) ¼	
52.	If a card is dra	wn at random from a	pack of 52 cards	, what is th	e chance of getting a	Spade or an ace?
	(a) 4/13	(b) 5/13	(0	c) 0.25	(d) 0.20	
53.	If x and y are i	random variables havi	ng expected valu	ies as 4.5 a	nd 2.5 respectively, t	then the expected
	value of (x–y)	is				
	(a) 2	(b) 7	(c) 6	(d) 0		
54.	If variance of a	a random variable x is	23, then what is	the varian	ce of 2x+10?	
	(a) 56	(b) 33	(c) 46		(d) 92	
55.	What is the pr	obability of having at l	least one 'six' fro	m 3 throw	s of a perfect die?	

NA	HTA PROFESS	IONAL CLASSSES	· •	STATISTICS			
	(a) 5/6	(b) (5/6) ³	(c) 1- (1/6)) ³ (d) 1 - (5/6) ³			
		Set B	<u>– (Practical Que</u>	stion)			
1.	Two balls are dra			balls at random. What is the probabil			
	that they would	l be of different colours?					
	(a) 35/66	(b) 30/66	(c) 12/66	(d) None of these			
2.	What is the char	nce of throwing at least 7	7 in a single cast with 2	dice?			
	(a) 5/12	(b) 7/12	(c) 1/4	(d) 17/36			
3.	What is the char	nce of getting at least on	e defective item if 3 ite	ms are drawn randomly from a lot			
	containing 6 ite	ms of which 2 are defect	ive item?				
	(a) 0.30	(b) 0.20	(c) 0.80	(d) 0.50			
4.	If two unbiased	dice are rolled together,	, what is the probability	of getting no difference of points?			
	(a) 1/2	(b) 1/3	(c) 1/5	(d) 1/6			
5.	If A, B and C are	e mutually exclusive inde	pendent and exhaustiv	e events then what is the probability			
	that they occur	simultaneously?					
	(a) 1	(b) 0.50	(c) 0	(d) any value between 0 and 1			
6.	There are 10 ba	lls numbered from 1 to 1	10 in a box. If one of the	em is selected at random, what is the			
	probability that	the number printed on t	the ball would be an od	d number greater that 4?			
	(a) 0.50	(b) 0.40	(c) 0.60	(d) 0.30			
7.	Following are th	he wages of 8 workers in	rupees:				
	50, 62, 40, 70, 4	5 56 32 45					

	If one of the workers is selected at random, what is the probability that his wage would be lower than							
	the average wage?							
	(a) 0.625	(b) 0.500	(c) 0.375	(d) 0.450				
8.	A, B and C are three r	nutually exclusive an	d exhaustive events such	h = 2 P(B) = 3P(B) = 3P(B)	(C). What			
	is P (B)?							
	(a) 6/11	(b) 3/11	(c) 1/6	(d) 1/3				
9.	For two events A and	B, P(B) = 0.3, P(A B)	put not B) = 0.4 and P (n)	ot A) = 0.6. The events A and $A = 0.6$	nd B are			
	(a) exhaustive	(b) indepe	ndent					
	(c) equally likely (d) mutually exclusive							
10.	A bag contains 12 bal	lls which are number	ed from 1 to 12. If a ball	is selected at random, what	t is the			
	probability that the n	number of the ball wil	ll be a multiple of 5 or 6 ?	?				
	(a) 0.30	(b) 0.25	(c) 0.20	(d) 1/3				
11.	Given that for two ev	ents A and B, P (A) =	3/5, P (B) = 2/3 and P ((A B) = 3/4, what is P (A/	′B)?			
	(a) 0.655	(b) 13/60	(c) 31/60	(d) 0.775				
12.	For two independent	events A and B, wha	t is P (A+B), given P(A) :	= 3/5 and P(B) $= 2/3?$				
	(a) 11/15	(b) 13/15	(c) 7/15	(d) 0.65				
13.	If $P(A) = p$ and $P(B)$) = q, then						
	(a) $P(A/B) \le p/q$		(b) $P(A/B) \le p/q$					
	(c) $P(A/B) \le q/p$		(d) None of these					
15.	If P $(\overline{A} \cup \overline{B}) = 5/6$, F	$P(A) = \frac{1}{2} \text{ and } P(B)$	= 2/3, , what is P (A \cup B)	?				
	(a) 1/3	(b) 5/6	(c) 2/3	(d) 4/9				

NAF	HIA PROFESSIC	ONAL CLASSSE	S	STATISTIC	S		
16.	If for two independ	dent events A and B,	$P(A \cup B) = 2/3 \text{ and } P$	(A) = 2/5, what is P (B)?			
	(a) 4/15	(b) 4/9	(c) 5/9	(d) 7/15			
17.	If P (A) = $2/3$, P (B) = $3/4$, P (A/B) = $2/3$, then what is P (B / A)?						
	(a) 1/3	(b) 2/3	(c) ¾	(d) ½			
18.	If $P(A) = a, P(B) =$	$=$ b and P (P (A \cap B)	= c then the expressio	n of P (A' \cap B') in terms of a,	b and		
	c is						
	(a) 1 – a – b – c	(b) a + b - c	c (c) 1 + a - 1	b – c (d) 1 – a – b –	+ c		
19.	For three events A	, B and C, the probat	oility that only A occur	is			
	(a) P (A)	(b) P (A ∪ B	∪ C) (c) P (A' ∩ 1	$B \cap C) \qquad (d) P (A \cap B'$	∩ C')		
20.	It is given that a fa	mily of 2 children ha	as a girl, what is the pro	bability that the other child i	s also a girl ?		
	(a) 0.50	(b) 0.75	(c) 1/3	(d) 2/3			
21.	Two coins are toss	ed simultaneously. V	What is the probability	that the second coin would s	how a tail		
	given that the first	coin has shown a he	ead?				
	(a) 0.50	(b) 0.25	(c) 0.75	(d) 0.125			
22	If a random variab	le x assumes the val	ues 0, 1 and 2 with pro	babilities 0.30, 0.50 and 0.20,	then its		
	expected value is						
	(a) 1.50	(b) 3	(c) 0.90	(d) 1			
23.	If two random var	iables x and y are rel	lated as $y = -3x + 4$ and	d standard deviation of x is 2,	then the		
	standard deviatior	ı of y is					
	(a) – 6	(b) 6	(c) 18	(d) 3.50			
24.	If 2x + 3y + 4 = 0	and $v(x) = 6$ then v	(y) is				

	(a) 8/3		(b) 9		(c)	- 9		(d) 6			
					ANS	SWERS					
	Set A										
	1. (c)	2.	(a)	3.	(c)	4.	(d)	5.	(d)	6.	(d)
	7. (c)	8.	(a)	9.	(c)	10.	(d)	<u>11</u> .	(c)	12.	(b)
	12. (d)	14 .	(d)	15.	(b)	1 6.	(c)	17.	(c)	18.	(b)
	19 . (a)	20.	(d)	21.	(b)	22.	(c)	23.	(b)	24.	(c)
	25. (c)	26.	(a)	27.	(d)	28.	(c)	29.	(c)	30.	(b)
	31. (d)	32.	(a)	33.	(a)	34.	(a)	35.	(a)	36.	(c)
	37. (b)	38.	(c)	39.	(c)	40	(b)	41.	(a)	42.	(c)
	43. (d)	44.	(d)	45.	(b)	46.	(b)	47.	(c)	48.	(a)
	49. (b) 55. (d)	50.	(c)	51.	(a)	52.	(a)	53.	(a)	54.	(d)
	Set B										
	1 . (a)	2.	(b)	3.	(c)	4.	(d)	5.	(c)	6.	(d)
	7. (b)	8.	(b)	9.	(d)	10.	(d)	11.	(d)	12.	(b)
	12. (a)	14.	(c)	15.	(b)	16.	(c)	17.	(d)	18.	(d)
	19. (c)	20.		<mark>21</mark> .	(c)	22.	(b)	23.	(a)		
			AD	DITIO	NAL (<u>)UESTI</u>	ION B	ANK			
1	What is the pr	robability	⁷ that a le	eap year	selected	at randor	n would	contain	53 Saturo	lays?	
	(a) 1/7				(b) 2/7					
	(c) 1/12				((d) ¼					

	$(a)\frac{\frac{364 X 363 X 362}{(365)^3}}{(365)^3}$		(b) $\frac{6 X 5 X 4}{7^3}$			
	(c) 1/365		(d) $(1/7)^3$			
3	A packet of 10 electronic components is known to include 3 defectives. If 4 components					
	are selected from	the packet at randor	n, what is the expected va	lue of the number of defective?		
	(a) 1.20	(b) 1.21	(c) 1.69	(d) 1.72		
		ANSWERS				
	1. (b)	2. (a)	3. (a)			

	"KAR LO PAST APNI MUTHI ME"							
		<u>Past E</u>	xam Question	<u>IS</u>				
Nov 06								
[1]	There are six	slips in a box and numb	ers 1,1,2, 2, 3, 3 ar	e written on these	slips. Two slips are taken			
	at random fro	om the box. The expecte	d values of the sun	ı of numbers on tl	ie two slips is:			
	(a) 5	(b) 3	(c) 4	(d) 7				
[2]	A letter is tak	en out at random from	the word RANGE a	nd another is take	n out from the word			
	PAGE. The probability that they are the same letters is:							
	(a) 1/20	(b) 3/20	(c) 3	3/5 (d) ¾			
[3]	An urn contai	ns 9 balls two of which	are red, three blue	and four black. Tl	nree balls are drawn at			
	random. The	probability that they ar	e of same colour is:					
	(a) $\frac{3}{27}$	(b) $\frac{20}{31}$	(c) $\frac{5}{84}$	(d) None				
Feb 07								
[5]	In a non - lear	o year, the probability o	f getting 53 Sunday	vs or 53 Tuesdays	or 53 Thursdays is :			
	(a) $\frac{4}{7}$	(b) $\frac{2}{7}$	(c) $\frac{3}{7}$	$(d)\frac{1}{7}$				
[6]	If A and B are	two events and P(A) =	$\frac{3}{8}$, P(B) = $\frac{1}{2}$, P(A \cap 2)	$B) = \frac{1}{4}, \text{ then the value}$	lue of $P(A' \cup B')$ is :			

NAH	TA PROFE	SSIONAL CLASS	SSES	STATISTICS						
	(a) $\frac{1}{4}$	(b) $\frac{3}{4}$	$(c)\frac{5}{8}$	$(d)\frac{5}{4}$						
[7]	The probabi	lity that there is at leas	st one error in an accou	ant statement prepared by A	is 0.3 and for					
	B and C, they	y are 0.4 and 0.45 resp	ectively. A, B and C pre	pared 20, 10 and 40 statem	ents					
	respectively. The expected number of correct statements in all is :									
	(a) 32 (b) 45 (c) 42 (d) 25									
May 07										
[8]	From a pack	From a pack of cards, two are drawn, the first being replaced before the second is drawn. The								
	chance that the first is a diamond and the second is king is :									
	(a) $\frac{1}{52}$	(b) $\frac{3}{2704}$	(c) $\frac{4}{13}$	$(d)\frac{3}{52}$						
[9]	The theory o	of compound probabili	ty states that for any tv	vo events A and B :						
	(a) $P(A \cap B)$	$P(A) \times P(B)$								
	(b) P (A∩ B)	$= P(A) \times P(B/A)$								
	(c) P (A∪ B)	$= P(A) \times P(B/A)$								
	(d) P(A∪B)	= P(A) + P(B) – P (A r	ו B)							
[10]	The probabi	lity of getting qualified	l in IIT- JEE and AIEEE	by a student are respectivel	$y\frac{1}{5}$ and $\frac{3}{5}$. The					
	probability t	hat the student gets qu	ualified for one of the t	hese tests is:						
	(a) $\frac{17}{25}$	(b) $\frac{22}{25}$	(c) $\frac{8}{25}$	(d) $\frac{3}{25}$						

[11]	Amitabh plays a game of tossing a dice. If the number less than 3 appears, he is getting Rs. a,							
	otherwise he	has to pay Rs. 10. If the	game is fair, find a :					
	(a) 25	(b) 20	(c) 22	(d) 18				
Aug 07								
[12]	Suppose E and	d F are two events of a r	andom experiment. If	the probability of occurrence of E is				
	1/5 and the p	robability of occurrence	e of F given E is 1/10, t	hen the probability of non- occurrenc	e			
	of at least one	of the events E and F is	:					
	(a) $\frac{1}{50}$	(b) $\frac{1}{25}$	(c) $\frac{13}{50}$	$(d)\frac{49}{50}$				
[13]	A bag contains	s 8 red and 5 white ball	s. Two successive drav	vs of 3 balls are made without				
	replacement.'	The probability that the	first draw will produc	e 3 white balls and second 3 red balls	s is:			
	(a) $\frac{6}{255}$	(b) $\frac{5}{548}$	(c) $\frac{7}{429}$	$(d)\frac{3}{233}$				
[14]	A box contain	s 12 electric lamps of w	hich 5 are defectives. A	A man selects three lamps at random.				
	What is the ex	pected number of defea	ctive lamps in his selec	tion ?				
	(a) 1.25	(b) 2.50	(c) 1.05	(d) 2.03				
Nov 07								
[15]	Three identica	al dice are rolled. The p	robability that the sam	e number will appear on each of them	ı is:			
	(a) 1/6	(b) 1/12	(c) 1/36	(d) 1				
[16]	Among the ex	aminees in an examinat	ion 30%, 35% and 459	% failed in Statistics, in Mathematics				

and in at least one of the subjects respectively. An examinee is selected at random. Find the						
probability that he failed in Mathematics only:						
(a) 0.245	(b) 0.25	(c)	0.254	(d) 0.5	55	
An article consists of t	wo parts A and I	B. The manuf	facturing pro	cess of each pa	art is such th	at
probability of defect ir	ı A is 0.08 and tł	nat B is 0.05.	What is the I	probability tha	it the asseml	oled
product will not have a	any defect?					
(a) 0.934	(b) 0.864	(c	:) 0.85	(d) 0.874	ł	
Daily demand for calc	lators is having	; the followin	g probability	/ distribution :		
Demand :	1	2	3	4	5	6
Probability :	0.10	0.15	0.20	0.25	0.18	0.12
Determine the varianc	e of the demand	1.				
(a) 2.54 (b	o) 2.93	(c) 2.22		(d) 2.19		
If 10 men, among who	m are A and B, s	stand in a row	v, what is the	e probability th	nat there wil	l be
exactly 3 men betweeı	ı A and B ?					
(a) 11/15	(b) 4/15	(c) 1	./15	(d) 2/15		
The probability of an ϵ	event can assum	e any value b	etween:			
(a) 0 and 1	(b) - 1 and 0	(c)) - 1 and 1	(d) No	one of these	
	probability that he fail(a) 0.245An article consists of trprobability of defect inproduct will not have at(a) 0.934Daily demand for calcuDemand :Probability :Determine the variance(a) 2.54(b) 10 men, among whoexactly 3 men betweer(a) 11/15The probability of an e	probability that he failed in Mathemat(a) 0.245(b) 0.25An article consists of two parts A and Iprobability of defect in A is 0.08 and thproduct will not have any defect?(a) 0.934(b) 0.864Daily demand for calculators is havingDemand :1Probability :0.10Determine the variance of the demand(a) 2.54(b) 2.93If 10 men, among whom are A and B, sexactly 3 men between A and B ?(a) 11/15(b) 4/15The probability of an event can assum	probability that he failed in Mathematics only:(a) 0.245(b) 0.25(c)An article consists of two parts A and B. The manufprobability of defect in A is 0.08 and that B is 0.05.product will not have any defect?(a) 0.934(b) 0.864(c)Daily demand for calculators is having the followinDemand :12Probability :0.100.15Determine the variance of the demand.(a) 2.54(b) 2.93(c) 2.22If 10 men, among whom are A and B, stand in a rowexactly 3 men between A and B ?(c) 1(a) 11/15(b) 4/15(c) 1The probability of an event can assume any value b	probability that he failed in Mathematics only: (a) 0.245 (b) 0.25 (c) 0.254 An article consists of two parts A and B. The manufacturing propability of defect in A is 0.08 and that B is 0.05. What is the product will not have any defect? (a) 0.934 (b) 0.864 (c) 0.85 Daily demand for calculators is having the following probability Demand : 1 1 2 3 Probability : 0.10 0.15 0.20 Determine the variance of the demand. (a) 2.54 (b) 2.93 (c) 2.22 If 10 men, among whom are A and B, stand in a row, what is the exactly 3 men between A and B? (a) 11/15 (b) 4/15 (c) 1/15	probability that he failed in Mathematics only: (a) 0.245 (b) 0.25 (c) 0.254 (d) 0.25 An article consists of two parts A and B. The manufacturing process of each p probability of defect in A is 0.08 and that B is 0.05. What is the probability that product will not have any defect? (a) 0.934 (b) 0.864 (c) 0.85 (d) 0.874 Daily demand for calculators is having the following probability distribution : Demand : 1 1 2 3 4 Probability : 0.10 0.15 0.20 0.25 Determine the variance of the demand. (a) 2.54 (b) 2.93 (c) 2.22 (d) 2.19 If 10 men, among whom are A and B, stand in a row, what is the probability the exactly 3 men between A and B? (a) 11/15 (b) 4/15 (c) 1/15 (d) 2/15 The probability of an event can assume any value between:	probability that he failed in Mathematics only: (a) 0.245 (b) 0.25 (c) 0.254 (d) 0.55 An article consists of two parts A and B. The manufacturing process of each part is such th probability of defect in A is 0.08 and that B is 0.05. What is the probability that the assemt product will not have any defect? (a) 0.934 (b) 0.864 (c) 0.85 (d) 0.874 Daily demand for calculators is having the following probability distribution : Demand : 1 2 3 4 5 Probability : 0.10 0.15 0.20 0.25 0.18 Determine the variance of the demand. (a) 2.54 (b) 2.93 (c) 2.22 (d) 2.19 If 10 men, among whom are A and B, stand in a row, what is the probability that there will exactly 3 men between A and B ? (a) 11/15 (b) 4/15 (c) 1/15 (d) 2/15 The probability of an event can assume any value between:

[21]	The odds are 9 : 5 against a person who is 50 years living till he is 70 and 8 : 6 against a person								
	who is 60 livi	who is 60 living till he is 80. Find the probability that at least one of them will be alive after 20 years:							
	(a) $\frac{11}{14}$	(b) $\frac{22}{49}$	$(c)\frac{31}{49}$	$(d)\frac{35}{49}$					
[22]	An urn contai	ns 6 white and 4 bl	ack balls. 3 balls ar	e drawn without replacen	nent. What is the				
	expected num	iber of black balls t	hat will be obtained	1?					
	(a) 6/5	(b) 1/5	(c) 7/5	(d) 4/5					
June 08									
[23]	If $P(A) = p$ and	d P (B) = q, then :							
	(a) $P(A / B) \le q / p$ (b) $P(A/B) \ge p/q$								
	(c) P (A / B) <u><</u>	≤ p / q	(d) P	$(A / B) \ge q / p$					
[24]	The probabili	ty that a trainee wi	ll remain with a cor	npany is 0.8. The probabil	lity that an employee				
	earns more th	an Rs. 20,000 per r	nonth is 0.4. The pi	obability that an employe	ee, who was a trainee				
	and remained	with the company	or who earns more	e than Rs. 20,000 per mon	th is 0.9. What is the				
	probability th	at an employee ear	ns more than Rs. 2	0,000 per month given tha	at he is a trainee, who				
	stayed with th	ne company?							
	(a) 5/8	(b) 3/8	(c) 1/8	(d) 7/8					
[25]	Find E (X ²) an	ud E (2X + 5).							

	(a) 6 and 7 respe	ectively	(b) 5	and 7 respectively				
	(c) 7 and 5 respe	ctively	(d) 7	and 6 respectively				
Dec 08								
[26]	The limiting rela	tive frequency o	f probability is :					
	(a) Axiomatic		(b) Classica	al				
	(c) Statistical		(d) Mathe	ematical				
[27]	If a probability d	If a probability density function is $f(x) = \begin{cases} 1 & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$ then find E (x)						
	(a) ∞	(b) 0	(c) 1	(d) - ∞				
	If:							
[28]	x :		-2	3	1			
	P(x):		1/3	1/2	1/6			
	then find E (2x +	5)						
	(a) 7	(b) 6	(c) 9	(d) 4				
June 09								
[29]	If A and B are two	o independent e	events and P(AUB) =	= 2/5; P(B) = 1/3. Find P(A).				
	(a) 2/9	(b) -1/3	(c) 2/1	.0 (d) 1/10				
[30]	A bag contains 12	2 balls of which	3 are red 5 balls are	drawn at random. Find the pi	robability that in			
	5 balls 3 are red.							

NAH	TA PROFESSION	AL CLASSSES		STATISTICS					
	(a) 3/132	(b) 5/396	(c) 1/36	(d) 1/22					
[31]	A random variable X	has the following prob	pability distribution.						
	x	0	1	2	3				
	P(x)	0	2K	ЗК	К				
	Then, P (x < 3) woul	d be:							
	(a) 1/6 (b) 1	1/3 (c) 2	c/3 (d) 5/6	5					
Dec 09									
[32]	P(A) = 2/3; P(B) =	3/5; P(A∪B) = 5/6. Fi	nd P (B/A)						
	(a) 11/20	(b) 13/20	(c) 13/18	(d) None					
[33]	If $P(AB) = P(A) \times P(B)$, then the events are:								
	(a) Independent events (b) Mutually exclusive events								
	(c) Exhaustive event	S	(d) Mutually inclus	sive events					
[34]	E (XY) is also known	as:							
	(a) E (X) + E (Y)	(b) E(X)E(Y)	(c) E (X) - E (Y)	(d) E (X) - 4	Е (Ү)				
[35]	In a bag, there were	5 white, 3 red, and 2 bl	lack balls. Three balls ar	e drawn at a time wh	at is the				
	probability that the	hree balls drawn are v	vhite?						
	(a) 1/12	(b) 1/24 (c)	1/120 (d)	None of these					
[36]	In how many ways c	an the letters of 'REGU	LATION' be arranged so) that the vowels com	e at odd				

	T									
	places?									
	(a) 1/252	(b) 1/144	(c) 144/252	(d) None of these						
June 10										
[37]	In a pack of pl	laying cards with two joke	ers probability of getting	, king of spade is						
	(a) 4/13	(b) 4/52	(c) 1/52	(d) 1/54						
[38]	Consider two	events A and B not mutu	ally exclusive, such that I	P(A) = 1/4, P(B) = 2/5, P(A * B) =						
	1/2, then P (A	$1/2$, then P (A* \overline{B}) is								
	(a) 3/7	(b) 2/10	(c) 1/10	(d) None of the above						
[39]	If x be the sun	n of two numbers obtaine	ed when two die are thro	wn simultaneously then $P(x \ge 7)$ is						
	(a) 5/12	(b) 7/12	(c) 11/15	(d) 3/8						
[40]	E (13x + 9) =									
	(a) 13x	(b) 13E(x)	(c) 13E(x) + 9	(d) 9						
Dec 10										
[41]	A dice is throw	wn once. What is the math	hematical expectation of	the number on the dice ?						
	(a) 16/6	(b) 13/2	(c) 3.5	(d) 4.5						
[42]	If $P(A/B) = P$	(A), then A and B are								
	(a) Mutually (exclusive events	(b) Dependen	it events						
	(c) Independe	ent events	(d) Composite events							
	<u>I</u>									

[43]	A bag contains 3 white and 5 black balls and second bag contains 4 white and 2 black balls. If one								
	ball is taken from each bag, the probability that both the balls are white is								
	(a) 1/3 (b) ¹ ⁄ ₄ (c) ¹ ⁄ ₂ (d) None of these								
[44]	The odds in favour of A solving a problem is 5:7and odds against B solving the same problem is								
	9:6. What is the probability that if both of them try, the problem will be solved?								
	(a) 117/180 (b) 181/200 (c) 147/180 (d) 119/180								
[45]	Consider:- Urn I: 2 white balls, 3 black balls								
	Urn II: 4 white balls, 6 black balls								
	One ball is randomly transferred from first to second Urn, then one ball is drawn from II Urn. The								
	probability that drawn ball is white is								
	(a) 22/65 (b) 22/46 (c) 22/55 (d) 21/45								
June 11									
[46]	If $P(A \cup B) = P(A)$, Find $P(A \cap B)$.								
	(a) $P(A).P(B)$ (b) $P(A) + P(B)$ (c) 0 (d) $P(B)$								
[47]	In how many ways a team of 5 can be made out of 7 Boys and 8 Girls, if 2 Girls are compulsory to								
	form a Team.								
	(a) 2,646 (b) 1,722 (c) 2,702 (d) 980								
[48]	A bag contains 5 Red balls, 4 Blue Balls and 'm' Green Balls. If the random probability of picking								

STATISTICS NAHTA PROFESSIONAL CLASSSES two green balls is 1/7. What is the no. of green Balls (m). (a) 5 (b) 7 (c) 6 (d) None of the above [49] The probability of Girl getting scholarship is 0.6 and the same probability for Boy is 0.8. Find the probability that at least one of the categories getting scholarship. (a) 0.32 (b) 0.44 (c) 0.92 (d) None of the above. [50] if 15 persons are to be seated around 2 round tables, one occupying 8 persons and another 7 persons. Find the number of ways in which they can be seated. $(a) \frac{15!}{18!}$ (b) ${}^{15}C_7 \frac{7!}{8!}$ (c) 7!.8! (d) 2.15C7 6! 7! [51] A coin is tossed 5 times, what is the probability that exactly 3 heads will occur. (a) $\frac{5}{16}$ (b) $\frac{1}{32}$ (c) $\frac{5}{36}$ $(d)\frac{3}{32}$ [52] Exactly 3 girls are to be selected from 5 Girls and 3 Boys. The probability of selecting 3 Girls will be $(a)\frac{5}{28}$ $(b)\frac{1}{56}$ $(c)\frac{15}{28}$ (d) None. **Dec 11** [53] Two unbiased dice are thrown. The Expected value of the sum of numbers on the upper side is; (a) 3.5 (b) 7 (c) 12 (d) 6 [54] One Card is drawn from pack of 52, what is the probability that it is a king or a queen? (c) 1/13 (a) 11/13 (b) 2/13 (d) None of these

[55]	In a packet of 500 pens, 50 are found to be defective. A pen is selected at random. Find the									
	probability th	probability that it is non defective.								
	(a) 8/9	(b) 7/8	(c) 9/10	(d) 2/3						
[56]	Four married couples have gathered in a room. Two persons are selected at random amongst									
	them, find the	e probability that selected	l persons are a gentlema	in and a lady but not a couple						
	(a) 1/7	(b) 3/7	(c) 1/8	(d) 3/8						
[57]	A team of 5 is to be selected from 8 boys and three girls. Find the probability that it includes two									
	particular girl	particular girls.								
	(a) 2/30	(b) 1/5	(c) 2/11	(d) 8/9						
June 12										
[58]	Let A and B tv	vo events in a sample spa	ace S such that P(A)							
	$=\frac{1}{2}; P(\overline{B}) = \frac{5}{8};$	$P(A \cup B) = \frac{3}{4}; Find P(\overline{A} \cap \overline{B})$	3)							
	(a) 3/4	(b) ¼	(c) 3/16	(d) None of these						
[59]	A card is drav	vn out of a standard pack	of 52 cards. What is the	probability of drawing a king	g or red					
	colour ?									
	(a) 1/4	(b) 4/13	(c) 7/13	(d) ½						
[60]	A player tosse	es two fair coins, he wins	Rs. 5 if 2 heads appear, 1	Rs. 2 if one head appears and	Rs. 1 if					
	no head occur	rs. Find his expected amo	ount of winning.							
0.441										

NAH	AHTA PROFESSIONAL CLASSSES			STATISTIC	:S				
	(a) 2.5	(b) 3.5	(c) 4.5	(d) 5.5					
[61]	Arun & Tarun	appear for an interview	for two vacancies. Tl	ne probability of Arun's selectio	on is 1/3				
	and that of Tai	run's selection is 1/5 Fir	nd the probability tha	t only one of them will be selec	ted.				
	(a) 2/5	(b) 4/5	(c) 6/5	(d) 8/5					
[62]	A copany employed 7 CA's, 6 MBA's and 3 Engineer's. In how many ways the company can form a								
	committee, if t	committee, if the committee has • two members of each type.							
	(a) 900	(b) 1,000	(c) 787	(d) 945					
Dec 12									
[63]	Two dice are t	hrown together. Find th	e probability of gettii	ng a multiple of 2 on one dice a	nd				
	multiple of 3 o	n the other.							
	(a) 2/3	(b) 1/6	(c) 1/3	(d) None of the at	oove.				
[64]	The odds again	nst A solving a certain p	roblem are 4 to 3 and	the odds in favour of B solving	g the				
	same problem	are 7 to 5.							
	What is the pr	obability that the proble	em will be solved if th	ey both try ?					
	(a) 15/21	(b) 16/21	(c) 17/21	(d) 13/21					
Dec 12									
[65]	Find the expec	ted value of the followin	ng probability distrib	ution					

Т

	x :	-20	-10	30	75	80			
	p(x):	3/20	1/5	1/2	1/10	1/20			
	(a) 20.5	(b) 21.5	(c) 22.5	(d) 2	24.5				
[66]	A bag contains 6 r	A bag contains 6 red balls and some blue balls. If the probability of drawing a blue ball form the							
	bag is twice that c	of a red ball, find the r	number of blue b	alls in the bag					
	(a) 10	(b) 12	(c) 14	(d) 16					
June 13									
[67]	The probability of selecting a sample of size 'n' out of a population of size N by simple random								
	sampling with replacement is:								
	(a) $1/N$ (b) $1/N^n$ (c) $1/N^n$ (d) $\frac{1}{N_c c_n n!}$								
[68]	A box contains 2 1	red, 3 green and 2 blu	ie balls. Two ball	s are drawn at r	random. What is t	the			
	probability that n	one of the balls draw	n is blue?						
	(a) 10/21	(b) 11/21	(c) 2/7	′ (d) 5/7				
[69]	The odds that a b	ook will be favourabl	y received by 3 in	ndependent rev	iewers are 5 to 2	,4 to 3 and			
	3 to 4 respectively	y. What is the probab	ility that out of 3	reviewers a ma	ajority will be fav	ourable?			
	$(a)\frac{209}{343}$	(b) $\frac{209}{434}$	(c) $\frac{209}{443}$	(0	1) $\frac{209}{350}$				
[70]	A player tosses 3	fair coins. He wins Rs	s. 5 if three heads	appear, Rs.3 if	two heads appea	r, Rs.1 if			
	one head occurs.	On the other hand, he	e losses Rs. 15 if 3	3 tails occur. Fin	nd expected gain	of the			

	player:						
	(a) 0.15	(b) 0.25	(c) 0.35	(d) 0.45		
[71]	Find the proba	bility of drawing a sp	ade on each of tw	o consecutive dra	ws from a well sh	nuffled	
	pack of cards, v	without replacement					
	(a) $\frac{2}{51}$	(b) $\frac{1}{221}$	(c) $\frac{4}{51}$	$(d)\frac{5}{51}$			
Dec 13							
[72]	If $P(A) = 0.45$,	P(B) = 0.35 and P(A8)	&B) = 0.25, then F	P(A/B) = ?			
	(a) 1.4	(b) 1.8	(c) 0.714	(d) 0.55	56		
[73]	The probability	y of a cricket team wi	nning match at Ka	inpur is 2/5 and I	nosing match at D	elhi is 1/7	
	what is the Pro	bability of the team v	vinning atleast on	e match?			
	(a) 3/35	(b) 32/35	(c) 18/35	5 (d) 1	.7/35		
[74]	Find the expec	ted value of the follow	ving probability d	istribution			
	X:	-20	-10	30	75	80	7
	P(x):	3/20	1/5	1⁄2	1/10	1/20	
	(a) 20.5	(b) 21.5	(c) 22	2.5 (d)	24.5		
Dec 13							
[75]	Two coins are	tossed simultaneously	y. Find the probab	oility of getting ex	actly are head.		
	(a) 3/4	(b) 2/3	(c) ¼	(d) ½	2		

June 14								
[76]	If a pair of dice is thrown then the probability that the sum of the digit is neither 7 nor 11 is .							
	(a) $\frac{1}{6}$ (b) $\frac{1}{18}$ (c) $\frac{2}{9}$ (d) $\frac{7}{9}$							
[77]	An urn contains 2 red and 1 green balls. Another urn contains 2 red and 2 green balls. An urn was							
	selected at random and then a ball was drawn from it. If it was found to be red then the probability							
	that it has been drawn from urn one is							
	(a) $\frac{4}{7}$ (b) $\frac{3}{7}$ (c) $\frac{2}{3}$ (d) $\frac{7}{12}$							
[78]	For any two events A ₁ , A ₂ let P.(A ₁) = $\frac{2}{3}$, P(A ₂) = $\frac{3}{8}$ and P(A ₁ \cap A ₂) = $\frac{1}{4}$ then A ₁ , A ₂ are:							
	(a) Mutually exclusive but not independent events							
	(b) Mutually exclusive and independent events							
	(c) Independent but not mutually exclusive							
	(d) None of these							
Dec 14								
[79]	An unbiased die is thrown twice. The probability of the sum of numbers obtained on the two faces							
	being divisible by 4 is:							
	(a) 7/36 (b) 1/3 (c) 11/36 (d) ¹ / ₄							
[80]	Let the distribution function of a random variable X be $F(X) = P(X X)$. Then $F(5) - F(2)$ is:							

NAH	TA PROFESSION	AL CLASSS	ES		STATISTICS		
	(a) P(2 < X < 5)	(b) P(2 X	< 5)	(c) P(2 X 5)	(d) P(2 < X 5)		
Dec 14							
[81]	A discrete random va	riable X takes th	ree values -1,	2 and 3 with	probabilities		
	$p(-1) = \frac{1}{3}, P(2) = \frac{1}$	$3) = \frac{1}{3}, \text{ then } \mathbb{E}(X)$	X[) is:				
	(a) 3/2 (b)	5/2	(c) 2		(d) 9/2		
June 15							
[82]	The sum of numbers of	obtained in thro	w of a dice twi	ce is S. Proba	bility of S will be maximum if S is		
	(a) 5 (b) 7	(c)	6	(d) 8			
[83]	An unbiased coin is to	ssed three time	s. The expecte	d value of the	e number of heads is		
	(a) 2.5 (ł	o) 1.0	(c) 1.5	(d) 2	2.0		
[84]	For two events A_1 and	A_2 , let $P(A_1) =$	$\frac{2}{3}$ and P(A ₂) =	$=\frac{3}{8}$ and P(A ₁)	$(A_2) = \frac{1}{4}$, then		
	(a) mutually exclusive	e but not indepe	ndent				
	(b) mutually exclusive and independent						
	(c) independent but n	ot mutually exc	lusive				
	(d) none of these						
[85]	From 6 positive and 8	negative numb	ers, 4 number:	s are chosen	at random without replacement		
	and are then multiplie	ed. The probabil	ity that the pro	oduct of the c	hosen numbers will be positive		
	number is						

NAHTA PROFESSIONAL CLASSSES **STATISTICS** (a) $\frac{409}{1001}$ (b) $\frac{70}{1001}$ $(c) \frac{505}{1001}$ $(d) \frac{420}{1001}$ **Dec 15** [86] If an unbaised die is rolled once, the odds in favour of getting a point which is multiple of 3 is: (a) 1:2 (b) 2:1 (c) 1:3 (d) 3:1 [87] A bag contains 15 one rupee coins, 25 two rupees coins and 10 five rupees coins, if a coin is selected at random then probability for not selecting a one rupee coin is: (a) 0.30 (b) 0.20 (c) 0.25 (d) 0.70 **Dec 15** [88] Three coins are tossed together, the probability of getting exactly two head is: $(a)\frac{5}{8}$ $(c)\frac{1}{8}$ $(b)\frac{3}{8}$ (d) None [89] If two letters are taken at random from the word "HOME", what is the probability that none of the letters would be vowels? $(a)\frac{1}{6}$ $(b)\frac{1}{2}$ $(c)\frac{1}{3}$ $(d)\frac{1}{4}$ June 16 [90] In a game, cards are thoroughly shuffled and distributed equally among four players. What is the probability that a specific player gets all the four kings? (a) $\frac{{}^{13}C_4 \times {}^{48}C_{13}}{{}^{52}C_{13}}$ (b) $\frac{{}^{4}C_{4} \times {}^{48}C_{9}}{{}^{52}C_{13}}$ $(C) \frac{{}^{13}C_4 \times {}^{52}C_4}{{}^{52}C_{12}}$ $(d) \frac{{}^{4}C_{4} \times {}^{39}C_{9}}{{}^{52}C_{13}}$ [91] A bag contains 4 Red and 5 Black balls. Another bag contains 5 Red and 3 Black balls. If one ball is

	drawn at random from each bag. Then the probability that one Red and one Black drawn is -						
	(a) $\frac{12}{72}$	(b) $\frac{25}{72}$	$(c)\frac{37}{72}$	$(d)\frac{13}{72}$	<u>3</u> 2		
[92]	$ lf P(A) = \frac{2}{3}, $	$P(B) = \frac{3}{5} \text{ and } P(A \cup B)$	$B) = \frac{5}{6} \text{ then } P\left(\frac{A}{B^1}\right)$) is			
	(a) $\frac{7}{12}$	(b) $\frac{5}{12}$	(c) $\frac{1}{4}$	$(d)\frac{1}{2}$			
[93]	If two unbia	ised dice are rolled, v	what is the proba'	bility of gettin _i	g points neither 3 nor 6?		
	(a) 0.25	(b) 0.50	(c) 0.7	5	(d) 0.80		
[94]	Two dice ar	e tossed. What is the	probability that	the total is div	isible by 3 or 4.		
	(a) $\frac{20}{36}$	(b) $\frac{21}{36}$	(c) $\frac{14}{36}$	(d) None of these.		
Dec 16							
[95]	If two event	ts A, B, P(A) = $\frac{1}{2}$, P (B)	$=\frac{1}{3}$ and P (A \cup J	$3) = \frac{2}{3} \text{ then P} (1)$	A ∩ B) is:		
	(a) $\frac{1}{4}$	(b) $\frac{1}{6}$	$(c)\frac{2}{3}$	(d) $\frac{1}{2}$			
Dec 16							
[96]	A bag contai	ins 6 white and 5 rec	l balls. One ball is	drawn. The p	robability that it is red is:		
	(a) $\frac{5}{11}$	(b) $\frac{6}{11}$	$(c)\frac{1}{11}$		(d) None of these		
[97]	For two eve	ents A, B let $P(A) = \frac{2}{3}$,	$P(B) = \frac{3}{8} \text{ and } P(A)$	$A \cap B) = \frac{1}{4}$ then	n A and B are:		
	(a) Mutually	y exclusive but not in	Idependent				
	(b) Indepen	ident but not mutuall	ly exclusive				

	(c) Mutually exclusive and independent							
	(d) None of these							
June 17								
[98]	Let A and B are two events with $P(A) = \frac{2}{3}$, $P(B) \frac{1}{4}$ and							
	$P(A \cap B) = \frac{1}{12}$, then $P(B/A)$ will be :							
	(a) 7/8 (b) 1/3 (c) 1/8 (d) 8/7							
[99]	What is the probability of having at least one 'SIX' from 3 throws of an unbaised die?							
	(a) $\frac{5}{8}$ (b) $\left(\frac{5}{6}\right)^3$ (c) $1 - \left(\frac{1}{6}\right)^3$ (d) $1 - \left(\frac{5}{6}\right)^3$							
[100]	For any two events A and B:							
	(a) $P(A - B) = P(A) - P(B)$ (b) $P(A - B) = P(A) - P(A \cap B)$							
	(c) $P(A - B) = P(B) - P(A \cap B)$ (d) $P(B - A) = P(B) + P(A \cap B)$							

STATISTICS

1	С	11	В	21	С	31	D	41	С	51	A	61	A	71	В	81	С	91	
2	В	12	D	22	A	32	В	42	С	52	A	62	D	72	С	82	В	92	
3	С	13	С	23	С	33	A	43	B	53	B	63	В	73	В	83	С	93	
4	Α	14	A	24	B	34	В	44	A	54	B	64	В	74	В	84	С	94	
5	С	15	С	25	A	35	A	45	С	55	С	65	В	75	D	85	В	95	
6	В	16	A	26	С	36	A	46	D	56	B	66	В	76	D	86	A	96	
7	С	17	D	27	С	37	D	47	С	57	С	67	В	77	С	87	D	97	
8	Α	18	С	28	A	38	D	48	С	58	В	68	A	78	С	88	В	98	
9	В	19	D	29	D	39	В	49	С	59	С	69	A	79	D	89	A	99	
	Α	20	D	30	D	40	С	50	D	60	A	70	В	80	D	90	В	100	-

ANSWERS

I

STUDENT NOTES

CH - 4	THEORITICAL DISTRIBUTION						
	Applications of Binomial Distribution						
Q 1	A coin is tossed 10 times. Assuming the coin to be unbiased, what is the probability of getting						
	(i) 4 heads?						
	(ii) at least 4 heads?						
	(iii) at most 3 heads?						
Solution:	We apply binomial distribution as the tossing are independent of each other. With every tossing, there						
	are just two outcomes either a head, which we call a success or a tail, which we call a failure and the						
	probability of a success (or failure) remains constant throughout.						
	Let X denotes the no. of heads. Then X follows binomial distribution with parameter $n = 8$ and						
	$p = 1/2$ (since the coin is unbiased). Hence $q = 1 - p = \frac{1}{2}$						
	The probability mass function of X is given by						
	$f(x) = {}^{n}cx p^{x} q^{n-x}$						
	$= {}^{10} \mathrm{cx} \cdot (1/2)^{\mathrm{x}} \cdot (1/2)^{10 \cdot \mathrm{x}}$						
	$=\frac{\frac{10}{c}}{2^{10}}$						
	$= {}^{10}$ cx / 1024 for x = 0, 1, 2,10						
	(i) probability of getting 4 heads						

	= f(4)						
	$= {}^{10}c4 / 1024$						
	= 210 / 1024						
	= 105 / 512						
	(ii) probability of getting at least 4 heads						
	$= P(X \ge 4)$						
	= P (X = 4) + P (X = 5) + P (X = 6) + P(X = 7) + P (X = 8)						
	$= {}^{10}c4 / 1024 + {}^{10}c5 / 1024 + {}^{10}c6 / 1024 + {}^{10}c7 / 1024 + {}^{10}c8 / 1024$						
	$=\frac{210+252+210+210+45}{1024}$						
	= 837/1024						
	(iii) probability of getting at most 3 heads						
	$= P(X \le 3)$						
	= P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3)						
	= f(0) + f(1) + f(2) + f(3)						
	$= {}^{10}c0 / 1024 + {}^{10}c1 / 1024 + {}^{10}c2 / 1024 + {}^{10}c3 / 1024$						
	$=\frac{1+10+45+120}{1024}$						
	= 176/1024						
	= 11/64						
Q 2	If 15 dates are selected at random, what is the probability of getting two Sundays?						
Solution:	If X denotes the number at Sundays, then it is obvious that X follows binomial distribution						
	with parameter $n = 15$ and $p = probability$ of a Sunday in a week $= 1/7$ and						
	q = 1 - p = 6 / 7.						

NA	hta professional classes	STATISTICS
	Then $f(x) = {}^{15}cx (1/7)^{x} (6/7)^{15-x}$.	
	for x = 0, 1, 2, 15.	
	Hence the probability of getting two Sundays	
	= f(2)	
	$= {}^{15}c^2 (1/7)^2 . (6/7)^{15-2}$	
	$=\frac{105 X 6^{13}}{7^{15}}$	
	≅ 0.29	
Q 3	Find the probability of a success for the binomial distribution satisf	ying the following relation
	4P(x = 4) = P(x = 2) and having the parameter n as six.	
Solution:		

Q 4	Find the binomial distribution for which mean and standard deviation are 6 and 2 respectively
Solution:	
Q 5	An experiment succeeds thrice as after it fails. If the experiment is repeated 5 times,
	what is the probability of having no success at all ?
Solution:	

T

Q 6	What is the mode of the distribution for which mean and SD are 10 and 5 respectively.
Solution:	As given np = 10 (1)
	And $\sqrt{npq} = \sqrt{5}$
	npq = 5(2)
	on solving (1) and (2), we get $n = 20$ and $p = \frac{1}{2}$
	Hence mode = Largest integer contained in $(n+1)p$
	= Largest integer contained in $(20+1) \times \frac{1}{2}$
	= Largest integer contained in 10.50
_	= 10.
Q 7	X and Y are 2 independent binomial variables with parameters 6 and ½ and 4 and 1/2 respectively,
	what is $P(x + y \ge 1)$?
Solution:	

	POISSON DISTRIBUTION
Q 8	Find the mean and standard deviation of x where x is a Poisson variate satisfying the condition
	P(x = 2) = P(x = 3).
Solution:	

The probability that a random variable x following Poisson distribution would assume a positive	
value is $(1 - e^{-2.7})$. What is the mode of the distribution?	
The standard deviation of a Poisson variate is 1.732. What is the probability that the variate lies	
between –2.3 to 3.68?	
Let x be a Poisson variate with parameter m.	
Then SD of x is \sqrt{m}	

NA	HTA PROFESSIONAL CLASSES	STATISTICS
	As given $\sqrt{m} = 1.732$	
	$m = (1.732)^2 = 3.$	
	The probability that x lies between –2.3 and 3.68	
	= P(-2.3 < x < 3.68)	
	= f(0) + f(1) + f(2) + f(3) (As x can assume 0, 1, 2, 3, 4)	
	$=\frac{e^{-3}.3^{0}}{0!}+\frac{e^{-3}.3^{1}}{1!}+\frac{e^{-3}.3^{2}}{2!}+\frac{e^{-3}.3^{3}}{3!}$	
	$= e^{-3}(1+3+9/2+27/6)$	
	$= 13e^{-3}$	
	$=\frac{13}{e^3}$	
	$=\frac{13}{(2.71828)^3} (as e = 2.71828)$	
	≅ 0.65	
Q 11	X is a Poisson variate satisfying the following relation:	
	P(X = 2) = 9P(X = 4) + 90P(X = 6). What is the standard dev	iation of X?
Solution:		

NORMAL OR GAUSSIAN DISTRIBUTION
For a random variable x, the probability density function is given by
$f(x) = \frac{e^{-(x-4)^2}}{\sqrt{\pi}} \qquad \qquad for -\infty < X < \infty$
Identify the distribution and find its mean and variance.
If the two quartiles of a normal distribution are 47.30 and 52.70 respectively, what is the mode of
the distribution? Also find the mean deviation about median of this distribution.
The 1st and 3rd quartiles of N (μ , σ^2) are given by (μ – 0.675 σ) and (μ + 0.675 σ) respectively.
As given,
$\mu - 0.675 \sigma = 47.30 \dots (1)$

NAI	HTA PROFESSIONAL CLASSES STATISTICS
	Adding these two equations, we get
	$2 \mu = 100 \text{ or } \mu = 50$
	Thus Mode = Median = Mean = 50. Also σ = 4.
	Also Mean deviation about median
	= mean deviation about mode
	= mean deviation about mean
	$\cong 0.80 \sigma$
	= 3.20
Q 14	Find the points of inflexion of the normal curve
	$f(x) = \frac{1}{4\sqrt{2\pi}} e^{-(X-10)^2/32}$ for $-\infty < X < \infty$
Solution:	
Q 15	X follows normal distribution with mean as 50 and variance as 100. What is $P(x \ge 60)$?
	Given Ø (1) = 0.8413
Solution:	

Q 16	If a random variable x follows normal distribution with mean as 120 and standard deviation as 40,
	what is the probability that P (120 $\leq x \leq$ 150 / x \geq 120)?
	Given that the area of the normal curve between $z = 0$ to $z = 0.75$ is 0.2734
Solution:	
Q 17	X is a normal variable with mean = 25 and SD 10. Find the value of b such that the probability of
	the interval [2 5, b] is 0.4772 given Ø (2) = 0.9772.
Solution:	

Q 18	In a sample of 500 workers of a factory, the mean wage and SD of wages are found to be 500
	and 48 respectively. Find the number of workers having wages:
	(i) more than 600
	(ii) less than 450
	(iii) between 548 and 600.
Solution:	Let X denote the wage of the workers in the factory. We assume that X is normally distributed
	with mean wage as 500 and standard deviation of wages as 48 respectively
	(i) Probability that a worker selected at random would have wage more than 600
	= P(X > 600)
	$= 1 - P (X \le 600)$
	$= 1 - P\left(\frac{X - 500}{48} \le \frac{600 - 500}{48}\right)$
	$= 1 - P (z \le 2.08)$
	$= 1 - \phi(2.08)$

NAHTA PROFESSIONAL (CLASSES	STATISTICS
= 1 – 0.9812 (From B	iometrika Table)	
= 0.0188		
Thus the number of w	vorkers having wages less the	an 600
$= 500 \times 0.0188$		
= 9.4		
≅ 9		
(ii) Probability of a w	orker having wage less than	450
= P(X < 450)		
$= P\left(\frac{X-500}{48} < \frac{450-500}{48}\right)$		
= P(z < -1.04)		
= Ø (- 1.04)		
= 1 - Ø (1.04)		
= 1 - 0.8508	(from Biometrika Table)	
= 0.1492		
Hence the number of	workers having wages less t	han 450
= 500 × 0.1492		
≅ 75		
(iii) Probability of a w	vorker having wage between	548 and 600.
= P (548 < x < 600)		
$= P\left(\frac{548-500}{48} < \frac{X-500}{48}\right)$	$< \frac{600-500}{48}$	
= P(1 < z < 2.08)		
$= \emptyset (2.08) - \emptyset (1)$		

NAI	HTA PROFESSIONAL CLASSES STATISTICS
	= 0.9812 – 0.8413 (consulting Biometrika)
	= 0.1399
	So the number of workers with wages between 548 and 600
	$= 500 \times 0.1399$
	≅ 70.
Q 19	The distribution of wages of a group of workers is known to be normal with mean 500 and SD
	100.If the wages of 100 workers in the group are less than 430, what is the total number of
	workers in the group?
Solution:	
Q 20	The mean height of 2000 students at a certain college is 165 cms and SD 9 cms. What is the
	probability that in a group of 5 students of that college, 3 or more students would have height
	more than 174 cm?
Solution:	Let X denote the height of the students of the college. We assume that X is normally distributed with

	mean as 165 cms and SD as 9 cms. If p denotes the probability that a student selected at random
	would have height more than 174 cms., then
	p = P(X > 174)
	$= 1 - P(X \le 174)$
	$= 1 - P\left(\frac{X - 165}{9} \le \frac{174 - 165}{9}\right)$
	$= 1 - P(z \le 1)$
	$= 1 - \emptyset(1)$
	= 1 - 0.8413
	= 0.1587
	If y denotes the number of students having height more than 174 cm. in a group of 5 students then
	$y \sim \beta$ (n, p) where n = 5 and p = 0.1587. Thus the probability that 3 or more students would be more
	than 174 cm.
	$= p(y \ge 3)$
	= p(y=3) + p(y=4) + p(y=5)
	$= 5c_3 (0.1587)^3 (0.8413)^2 + 5C_4 (0.1587)^4 x (0.8413) + 5C_5 (0.1587)^5$
	= 0.02829 + 0.002668 + 0.000100
	= 0.03106.
Q 21	The mean of a normal distribution is 500 and 16 per cent of the values are greater than 600. What
	is the standard deviation of the distribution?
	(Given that the area between $z = 0$ to $z = 1$ is 0.34)
Solution:	

Q 22	X and Y are independent normal variables with mean 100 and 80 respectively
	and standard deviation as 4 and 3 respectively. What is the distribution of $(x + y)$?
Solution:	
	"PRACTICE & PRACTICE MAKES STATS PERFECT"
	<u>Set A – (Theory Question)</u>

!	NAHTA PROFESSIONAL CLASSES	STATISTICS
1.	A theoretical probability distribution.	
	(a) does not exist.	(b) exists only in theory.
	(c) exists in real life	(d) both (b) and (c).
2.	Probability distribution may be	
	(a) discrete. (b) continuous.	(c) infinite (d) (a) or (b).
3.	An important discrete probability distrib	ution is
	(a) Poisson distribution.	(b) Normal distribution.
	(c) Cauchy distribution.	(d) Log normal distribution
4.	An important continuous probability dist	ribution
	(a) Binomial distribution.	(b) Poisson distribution .
	(c) Geometric distribution.	(d) Normal distribution
5.	Parameter is a characteristic of	
	(a) population.	(b) sample.
	(c) probability distribution .	(d) both (a) and (b).
6.	An example of a parameter is	
	(a) sample mean.	(b) population mean.
	(c) binomial distribution.	(d) sample size
7.	A trial is an attempt to	
	(a) make something possible.	
	(b) make something impossible.	
	(c) prosecute an offender in a court of lav	
	(d) produce an outcome which is neither	certain nor impossible
8.	The important characteristic(s) of Bernor	ulli trials

	(a) each trial is associated with just two possible outcomes									
	(b) trials are independent									
	(c) trials are infinite									
	(d) both (a) and (b).									
9.	The probability mass function of binomial distribution is given by									
	(a) $f(x) = p^{x} q^{n-x}$. (b) $f(x) = {}^{n}cx p^{x} q^{n-x}$.									
	(c) $f(x) = {}^{n}cx q^{x} p^{n-x}$ (d) $f(x) = {}^{n}cx p^{n-x} q^{x}$.									
10.	If x is a binomial variable with parameters n and p, then x can assume									
	(a) any value between 0 and n.									
	(b) any value between 0 and n, both inclusive.									
	(c) any whole number between 0 and n, both inclusive.									
	(d) any number between 0 and infinity.									
11.	A binomial distribution is									
	(a) never symmetrical (b) never positively skewed.									
	(c) never negatively skewed. (d) symmetrical when p = 0.5.									
12.	The mean of a binomial distribution with parameter n and p is									
_	(a) n (1- p). (b) np (1 - p) (c) np. (d) $\sqrt{np(1-p)}$									
13.	The variance of a binomial distribution with parameters n and p is									
	(a) $np^2(1-p)$ (b) $\sqrt{np(1-p)}$ (c) $nq(1-q)$. (d) $n^2p^2(1-p)^2$.									
14.	An example of a bi-parametric discrete probability distribution is									
	(a) binomial distribution (b) poisson distribution.									
	(c) normal distribution. (d) both (a) and (b)									
15.	For a binomial distribution, mean and mode									

	(a) are never equal. (b) are always equal.										
	(c) are equal when q = 0.50. (d) do not always exist.										
16.	The mean of binomial distribution is										
	(a) always more than its variance.										
	(b) always equal to its variance.										
	(c) always less than its variance										
	(d) always equal to its standard deviation.										
17.	For a binomial distribution, there may be										
	(a) one mode (b) two modes. (c) (a) (d) (a) or (b)										
18.	The maximum value of the variance of a binomial distribution with parameters n and p is										
	(a) n/2 (b) n/4 (c) np (1 – p). (d) 2n.										
19.	The method usually applied for fitting a binomial distribution is known as										
	(a) method of least square. (b) method of moments.										
	(c) method of probability distribution. (d) method of deviations										
20.	Which one is not a condition of Poisson model?										
	(a) the probability of having success in a small time interval is constant.										
	(b) the probability of having success more than one in a small time interval is very small.										
	(c) the probability of having success in a small interval is independent of time and also of										
	earlier success.										
	(d) the probability of having success in a small time interval (t, $t + dt$) is kt for a positive										
	constant k.										
21.	Which one is uniparametric distribution?										
	(a) Binomial. (b) Poisson (c) Normal. (d) Hyper geometric.										

1	NAHTA PROFESSIONAL CLASSES STATISTICS
22.	For a Poisson distribution,
	(a) mean and standard deviation are equal.
	(b) mean and variance are equal.
	(c) standard deviation and variance are equal
	(d) both (a) and (b)
23.	Poisson distribution may be
	(a) unimodal (b) bimodal. (c) Multi-modal. (d) (a) or (b).
24.	Poisson distribution is
	(a) always symmetric. (b) always positively skewed.
	(c) always negatively skewed (d) symmetric only when m = 2.
25.	A binomial distribution with parameters n and p can be approximated by a Poisson
	distribution with parameter m = np is
	(a) $n \to \infty$ (b) $p \to 0$.
	(c) $n \to \infty$ and $p \to 0$. (d) $p \to \infty$ and $p \to 0$ so that np remains finite.
26.	For Poisson fitting to an observed frequency distribution,
	(a) we equate the Poisson parameter to the mean of the frequency distribution.
	(b) we equate the Poisson parameter to the median of the distribution.
	(c) we equate the Poisson parameter to the mode of the distribution.
	(d) none of these
27.	The most important continuous probability distribution is known as
	(a) Binomial distribution. (b) Normal distribution .
	(c) Chi-square distribution. (d) Sampling distribution
28.	The probability density function of a normal variable x is given by
-	

	NAHTA PROFESSIONAL CLASSES	STATISTICS
_	(a) f(x) = $\frac{1}{\sigma\sqrt{2\pi}} e^{\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	for – $\infty < x < \infty$
	(b) f(x) = $\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	for – $\infty < x < \infty$
	(c) $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	for – $\infty < x < \infty$
	(d) none of these.	
29.	The total area of the normal curve is	
	(a) one.	(b) 50 per cent.
	(c) 0.50.	(d) any value between 0 and 1.
30.	The normal curve is	
	(a) Bell-shaped.	(b) U- shaped.
	(c) J-shaped.	(d) Inverted J-shaped
31.	The normal curve is	
	(a) positively skewed	(b) negatively skewed.
	(c) symmetrical.	(d) all these.
32.	Area of the normal curve	
	(a) between – ∞ to μ is 0.50.	(b) between μ to ∞ is 0.50.
	(c) between – ∞ to ∞ is 0.50.	(d) both (a) and (b).
33.	The cumulative distribution function	of a random variable X is given by
	(a) $F(x) = P(X \le x)$.	(b) $F(X) = P(X \le x)$.
	(c) $F(x) = P(X \ge x)$.	(d) $F(x) = P(X = x)$.
34.	The mean and mode of a normal distr	ribution
	(a) may be equal.	(b) may be different.
	(c) are always equal.	(d) (a) or (b).
	· · ·	

The mean deviation about median of a standard normal variate is											
The mean deviation about median of a standard normal variate is											
(a) 0.675σ . (b) 0.675 (c) 0.80σ	(d) 0.80.										
The quartile deviation of a normal distribution with mean 10 and SD 4	4 is										
(a) 0.675. (b) 67.50 (c) 2.70.	(d) 3.20.										
For a standard normal distribution, the points of inflexion are given by	У										
(a) $\mu - \sigma$ and $\mu + \sigma$. (b) $-\sigma$ and σ											
(c) -1 and 1. (d) 0 and 1.	(c) -1 and 1. (d) 0 and 1.										
The symbol $\emptyset(a)$ indicates the area of the standard normal curve betw	The symbol $\emptyset(a)$ indicates the area of the standard normal curve between										
(a) 0 to a. (b) a to ∞ (c) – ∞ to a.	(d) – ∞ to ∞										
The interval (μ - 3 σ , μ + 3 σ) covers											
(a) 95% area of a normal distribution.											
(b) 96% area of a normal distribution.											
(c) 99% area of a normal distribution.											
(d) all but 0.27% area of a normal distribution											
Number of misprints per page of a thick book follows											
(a) Normal distribution. (b) Poisson distrib	oution.										
(c) Binomial distribution. (d) Standard norm	al distribution.										
The results of ODI matches between India and Pakistan follows											
(a) Binomial distribution. (b) Poisson distrib	ution.										
(c) Normal distribution. (d) (b) or (c).											
The wage of workers of a factory follow											
(a) Binomial distribution (b) Poisson distribution	ation										
(c) Normal distribution (d) Chi-square distribution	ribution										

1	NAHTA PROFESSION	VAL CLASSES			STATISTICS							
43	If X and Y are tw	o independent normal r	andom variables	om variables, then the distribution of (X+Y) is								
	(a) normal.	(b) standard	l normal.	(c) T.	(d) chi-square.							
		<u>Set B -</u>	- (Practical Q	<u>)uestion</u>)	L							
1.	What is the stand	dard deviation of the nu	mber of recoveri	es among 4{	} patients when the							
	probability of re	probability of recovering is 0.75?										
	(a) 36.	(b) 81.	(c) 9.	(d)	3.							
2.	X is a binomial v	X is a binomial variable with n = 20. What is the mean of X if it is known that x is symmetric?										
	(a) 5.	(b) 10.	(c) 2.		(d) 8.							
3.	3. If X ~ B (n, p),	, what would be the grea	test value of the	variance of >	when n = 16?							
	(a) 2.	(b) 4	(c) 8.		(d) .√5							
4.	If x is a binomial	variate with parameter	15 and 1/3, wha	t is the value	e of mode of the dist	ribution?						
	(a) 5 and 6.	(b) 5	(c) 5.50.		(d) 6.							
5.	What is the num	ber of trials of a binomia	al distribution ha	ving mean a	nd SD as 3 and 1.5 r	espectively?						
	(a) 2.	(b) 4.	(c) 8.	(d	l) 12							
6.	What is the prob	oability of getting 3 heads	s if 6 unbiased cc	oins are toss	ed simultaneously?							
	(a) 0.50	(b) 0.25.	(c) 0.3125.		(d) 0.6875.							
7.	If the overall per	rcentage of success in an	exam is 60, wha	t is the prob	ability that out of a $arepsilon$	group of 4						
	students, at least	t one has passed?										
	(a) 0.6525.	(b) 0.9744	(c) 0.87(04.	(d) 0.0256.							
8.	What is the prob	oability of making 3 corre	ect guesses in 5 7	ſrue – False	answer type questio	ns?						
	(a) 0.3125	(b) 0.5676.	(c)	0.6875.	(d) 0.4325							
9.	If the standard d	leviation of a Poisson var	riate X is 2, what	is P (1.5 < X	X < 2.9)?							

	NAHTA PROFESSI	IONAL CLASSES		STATISTICS									
	(a) 0.231	(b) 0.158.	(c) 0.15	5 (d) 0.144.									
10.	If the mean o	If the mean of a Poisson variable X is 1, what is $P(X = \text{takes the value at least 1})$?											
	(a) 0.456	(b) 0.821	(c) 0.632	(d) 0.254.									
11.	If X ~ P (m)	If X \sim P (m) and its coefficient of variation is 50, what is the probability that X would assume o											
	non-zero valı	non-zero values?											
	(a) 0.018	(b) 0.982.	(c) 0.989.	(d) 0.976.									
12.	If 1.5 per cen	וt of items produced by ז	a manufacturing units a	are known to be defective, what is the									
	probability tł	probability that a sample of 200 items would contain no defective item?											
	(a) 0.05.	(b) 0.15.	(c) 0.20	(d) 0.22.									
13.	For a Poissor	n variate X, P (X = 1) = F	P(X = 2). What is the n	nean of X?									
	(a) 1.00	(a) 1.00 (b) 1.50 (c) 2.00. (d) 2.50											
14.	If 1 per cent o	of an airline's flights suf	fer a minor equipment	failure in an aircraft, what is the									
	probability tł	hat there will be exactly	two such failures in th	e next 100 such flights?									
	(a) 0.50	(b) 0.184.	(c) 0.265.	(d) 0.256.									
15.	If for a Poisso	on variable X, $f(2) = 3 f($	(4), what is the varianc	e of X?									
	(a) 2.	(b) 4.	(c) √2	(d) 3.									
18.	If the two qu;	artiles of N (μ , σ^2) are 1	4.6 and 25.4 respectiv	rely, what is the standard deviation of the									
	distribution?)											
	(a) 9.	(b) 6.	(c) 10.	(d) 8.									
19.	If the mean d	deviation of a normal var	riable is 16, what is its	quartile deviation?									
	(a) 10.00	(b) 13.50	(c) 15.00	(d) 12.05.									
20.	If the points (of inflexion of a normal	curve are 40 and 60 re	spectively, then its mean deviation is									
	(a) 40.	(b) 45.	(c) 50.	(d) 60									

NA	NAHTA PROFESSIONAL CLASSES							STATISTICS								
21.	If the quar	tile de	viation	of a n	ormal	curve i	is 4.05, then its mean deviation is									
	(a) 5.26			(b) 6.2	4.			(c)4	.24.			(d) 4.8	80			
22.	If the Ist q	uartile	and m	ean de	eviatio	n abou	t medi	an of a	norm	al disti	ributio	n are 1	.3.25 a	nd 8		
	respectively, then the mode of the distribution is															
	(a) 20			(b) 1	0.		((c) 15			(d)	12.				
23.	If the area of standard normal curve between $z = 0$ to $z = 1$ is 0.3413, then the value of \emptyset (1) is											5				
	(a) 0.5000															
24.													(X+Y)			
	If X and Y are 2 independent normal variables with mean as 10 and 12 and SD as 3 and 4, then (X+Y)															
	is normally distributed with															
	(a) mean =															
	(b) mean :	= 22 ai	nd SD =	= 25.												
	(c) mean =	= 22 ar	nd SD =	= 5.												
	(d) mean :	= 22 a	nd SD =	= 49												
							AN:	SWER	S							
	ANSW	ERS														
	Set : A															
	1. (d)	2.	(d)	3.	(a)	4.	(d)	5.	(a)	6.	(b)	7.	(d)	8.	(d)	
	9. (b)	10.	(c)	11.	(d)	12.	(c)	13.	(c)	14.	(a)	15.	(c)	16.	(a)	
	17. (c)	18.	(b)	19.	(b)	20.	(a)	21.	(b)	22.	(b)	23.	(d)	24.	(b)	
	25. (d)	26.	(a)	27.	(b)	28.	(a)	29.	(a)	30.	(a)	31.	(c)	32	(d)	
	33. (a)	34.	(c)	35.	(d)	36.	(c)	37.	(c)	38.	(c)	39.	(d)	40.	(b)	
	41 . (a)	42.	(c)	43.	(a)											

NAHTA PROFESSIONAL CLASSES

STATISTICS

	Set	: B															
	1.	(d)	2.	(b)	3.	(b)	4.	(b)	5.	(d)	6.	(c)	7.	(b)	8.	(a)	
	9.	(d)	10.	(c)	11.	(b)	12.	(a)	13.	(c)	14.	(b)	15.	(a)	16.	(c)	
	17.	(c)	18.	(d)	19.	(b)	20.	(a)	21.	(d)	22.	(a)	23.	(b)	24.	(c)	
																	_
																	-
						_											
			44 1										T	(—
				(AK	LO P	'AS I	APr		UTH	I ME	77				2		
				<u>P</u>	<mark>ast E</mark>	<u>ixam</u>	Que	stior	<u>IS</u>								
Nov 06															<u></u>		
[1]	Param	ieter i	is a cha	aracter	ristic o	f:											
	(a) Po	pulat	ion				((b) San	nple								
	(c) Pr	obabi	lity dis	stribut	ion		(d) Bot	h (a) &	ἐ(b)							
[2]	What	is the	proba	bility (of mak	ing 3 c	correct	t guess	es in 5	5 True-J	False a	inswer	c type c	questic	ons?		
	(a) 0.4	4156		(b)	0.32		((c) 0.312	25		(d)	0.523	5				
-[3]	The 1.	.Q.'s o	f army	' volun	ıteers i	n a giv	/en ye ;	a r are i	norma	lly dist	ribute	d with	Mean	= 110	und		
	Standa	ard D	eviatio	m = 1(0. The (army 1	wants '	to give	advar	nce trai	i ning t	ə 20%	-of tho:	se recr	uits w i	i th thc	÷
	highes	st scoi	r es. W l	hat is t	the low	rest 1 .	. Q scor	e acce	ptable	for the	e advai	nced ti	raining	;? The '	value c)f Z fo r	F

NA	AHTA PROFESSIONAL CLASSES STATISTICS
	the area 0.3 = 0.84.
	(a) 0.84 (b) 118.4 (c) 138.4 (d) 115.4
Feb 07	
[4]	The number of calls arriving at an internal switch board of an office is 96 per hour. Find the
	probability that there will be :
	(i) not more than 3 calls on the board,
	(ii) at least three calls in a minute on the board. [Given : $e^{-1.6} = 0.2019$]
	(a) 0.08 and 0.92 respectively (b) 0.19 and 0.92 respectively
	(c) 0.92 and 0.13 respectively (d) 0.92 & 0.08 respectively
[5]	For a normal distribution with mean 150 and S.D. 45; find Q, and Q_3 :
	(a) 119.35 and 190.65 respectively (b) 119.65 and 180.35 respectively
	(c) 180.35 and 119.65 respectively (d) 123.45 and 183.65 respectively
[6]	The probability density function of a normal variable x is given by:
	(a) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $0 < x < -\infty$
	(b) $f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < -\infty$
	(c) $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ for $-\infty < x < -\infty$
	(d) None of these

May 07						
[7]	The Interval (μ -3 δ , μ + 3 δ) covers:.					
	(a) 95% area of normal distribution					
	(b) 96% area of normal distribution					
	(c) 99% area of normal distribution					
	(d) All but 0.27% area of a normal distribution					
[8]	The overall percentage of failure in a certain examination is 0.30. What is the probability that out of					
	a group of 6 candidates at least 4 passed the examination ?					
	(a) 0.74 (b) 0.71 (c) 0.59 (d) 0.67					
[9]	A manufacturer, who produces medicine bottles, finds that 0.1 % of the bottles are defective. The					
	bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the					
	producer of bottles. Using Poisson distribution, find how many boxes will contains at least two					
	defectives: [Given: e ^{-0.5} = 0.6065]					
	(a) 7 (b) 13 (c) 9 (d) 11					
Aug 07						
[10]	The number of methods of fitting the norma! curve is :					
	(a) 4 (b)3 (c) 2 (d) 1					

Т

[11]	Suppose that weather records show that on an average 5 out of 31 days in October are rainy days.						
	Assuming a binomial distribution with each day of October as an independent trial, then the						
	probability tha	at the next October will	have at most three 1	rainy days is :			
	(a) 0.4403	(b) 0.2403	(c) 0.3403	3 (d) None			
[12]	If 5% of the fa	milies in Kolkata do no	ot use gas as a fuel, w	hat will be the probability of	selecting 10		
	families in a ra	ndom sample of 1 00 fa	amilies who do not u	se gas as fuel? [Given : e ⁻⁵ = 0	0.0067]		
	(a) 0.038	(b) 0.028	(c) 0.048	(d) 0.018			
[13]	If the 1 st quartile and Mean Deviation about median of a normal distribution are 13.25 and 8						
	respectively, then the mode of the distribution is :						
	(a) 20 (b) 10 (c) 15 (d) 23						
Nov 07							
[14]	If 15 dates are	selected at random, th	en the probability of	getting two Sundays is:			
	(a) 0.29	(b) 0.99	(c) 0.49	(d) 0.39			
[15]	if X is a Poisson variate with P (X = 0) = P (X = 1), then P (X = 2) =						
	(a) $\frac{1}{2e}$	(b) $\frac{e}{6}$	(c) $\frac{1}{2e}$	$(d)\frac{e}{3}$			
[16]	A sample of 10	0 dry battery cells test	ed to find the length	of life produced the followin	g results : $\overline{\mathbf{x}} =$		
	12 hours, $\sigma = 3$	3 hours. What percenta	age of battery cells ar	re expected to have life less th	nan 6 hours ?		

NAHTA PROFESSIONAL CLASSES			STATISTICS				
	[Area under the normal curve from $z = 0$ to $z = 2$ is 0.4772]						
	(a) 2.28%	(b) 2.56%	(c) 4.56%	(d) 1.93%			
Feb 08							
[17]	The method usua	lly applied for fitting a	binomial distribution	is known as:			
	(a) Method of pro	obability distribution	(b) Met	hod of deviations			
	(c) Method of mo	oments	(d) Met	hod of least squares.			
[18]	If X follows a normal distribution with $\mu = 50$ and $\sigma = 10$.						
	What is the value of $P\left(\frac{50 \le x \le 60}{x \ge 50}\right)$: [Area under the normal curve from $z = 0$ to $z = 1$ is 0.3413].						
	(a) 0.6826	(b) 0.7354	(c) 0.1983	(d) 0.5492			
[19]	In a certain manufacturing process, 5% of the tools produced turn out to be defective. Find the						
	probability that in a sample of 40 tools, atmost 2 will be defective : [Given : $e^{-2} = 0.135$]						
	(a) 0.555	(b) 0.932	(c) 0.785	(d) 0.675			
[20]	Examine the validity of the following:						
	Mean and standard Deviation of a binomial distribution are 10 and 4 respectively.						
	(a) Not valid (b) Valid (c) Both (a) & (b) (d) Neither (a) nor (b)						
June 08							
[21]	An experiment su	acceeds twice as often a	s it fails. What is the p	probability that in next five trials there			

NA	hta professio)NAL CLASSES			STATISTICS		
	will be at least	three successes ?					
	$(a)\frac{33}{81}$	(b) $\frac{46}{81}$	$(c)\frac{64}{81}$	(י	d) $\frac{25}{81}$		
[22]	The probability	y than a man aged 45 y	/ears will die v	vithin a yea	ar is 0.012. What is the probability th	nat	
	of 10 men, at le	east 9 will reach their 4	46 th birthday?	[Given : e ⁻⁰	0.12 = 0.88692]		
	(a) 0.0935	(b) 0.9934	(c) 0.9	335	(d) 0.9555		
[23]	For a certain no	ormal variate X, the m	ean is 12 and S	b.D. is 4. Fir	nd P (X \ge 20) : [Area under the norm	nal	
	curve from z =	= 0 to z = 2 is 0.4772]					
	(a) 0.5238	(b) 0.0472	(c) -	0.7272	(d) 0.0228		
[24]	In Poisson Dist	In Poisson Distribution, probability of success is very close to:					
	(a) -1	(b) 0	(c) 1		(d) None		
Dec 08						_	
[25]	If x and y are tv	vo independent standa	ard normal var	iables, the	en the distribution of $\frac{x}{y}$ is :		
	(a) Normal Dist	tribution	(b) Expone	ential Distr	ribution		
	(c) Couchy's Distribution (d) Binomial Distribution						
[26]	If X and Y are tv	wo independent randc	om variables sז	ich that X^	~ X^{2}_{m} and Y~ X^{2}_{n} , then the distributio)n	
	of $(x + y)$ is						
	(a) normal	(b) standard n	ıormal	(c) T	(d) Chi-square		

NA	NAHTA PROFESSIONAL CLASSES STATISTICS						
[27]	If the mean of a poisson variable X is 1, what is P (x = at least one)?						
	(a) 0.456	(b) 0.821	(c) 0.632	(d) 0.254			
[28]	What is the prol	oability of getting 3 he	eads if 6 unbiased coins	s are tossed simultaneously?			
	(a) 0.3125	(b) 0.25	(c) 0.6875	(d) 0.50			
June 09							
[29]	In a poisson dist	tribution $P(x = 0) = 1$	P (X = 2). Find E (x).				
	(a) √2	(b)2	(c) – 1	(d) 0			
Dec 09							
[30]	Shape of Normal Distribution Curve:						
	(a) Depends on its parameters						
	(b) Does not depend on its parameters						
	(c) Either (a) or (b)						
	(d) Neither (a) nor (b)						
[31]	For binomial distribution $E(x) = 2$, $V(x) = 4/3$. Find the value of n.						
	(a) 3	(b) 4	(c) 5	(d) 6			
[32]	What are the pa	rameters of binomial	distribution?				
	(a) n (b) p (c) Both n and p (d) None of these						

June 10					
[33]	The Variance of	standard normal distrib	ution is		
	(a) 1	(b) μ	(c) σ ²	(d) 0	
[34]	For a Poisson dis	stribution P $(x = 3) = 5$	P(x = 5), then S.D.	is	
	(a) 4	(b) 2	(c) 16	(d) √2	
[35]	For a Binomial d	istribution B (6, p), P(x	= 2) = 9p(x = 4), t	chen P is	
	(a) ½	(b) 1/3	(c) 10/13	(d) ¼	
[36]	In Binomial distr	ribution $n = 9$ and $P = 1$	/3, what is the valu	ue of variance:	
	(a) 8	(b) 4	(c) 2	(d) 16	
Dec 10					
[37]	If standard devia	ation of a poisson distrik	oution is 2, then its		
	(a) Mode is 2	(b) Mode is 4	e (c) Modes	are 3 and 4 (d) Modes are 4 a	and 5
[38]	The area under t	he Normal curve is			
	(a) 1	(b) 0	(c) 0.5	(d) -1	
[39]	For a normal dis	tribution N(μ,σ²),			
	P (μ-3σ < x < μ+	+3σ) is equal to			
	(a) 0.9973	(b) 0.9546	(c) 0.9899	(d) 0.9788	

If for a Binomial distribution B (n,p,) the mean $= 6$ and Variance $= 2$ then 'p' is					
(a) 2/3	(b) 1/3	(c) 3/5	(d) 1/4		
If the inflexion	points of a Normal Dist	tribution are 6 and 14. I	Find its Standard Deviation ?		
(a) 4	(b) 6	(c) 10	(d) 12.		
In a Binomial C	Distribution, if mean is k	<-times the variance, th	en the value of 'k' will be		
(a) p	(b) $\frac{1}{p}$	(c) 1 – P	$(d)\frac{1}{1-p}$		
If x ~ N (3,36) and y ~ N (5,64) are two independent Normal variate with their standard parameters					
of distribution, then if $(x + y) \sim N$ (8,A) also follows normal distribution. The value of A will be					
(a) 100	(b) 10	(c) 64	(d) 36		
The mean of Binomial distribution is 20 and Standard deviation is 4 then;					
(a) n = 100, p :	= 1/5, q = 4/5				
(b) n = 50, p =	: 2/5, q = 2/5				
(c) n = 100, p =	= 2/5, q = 4/5				
(d) n = 100, p	= 1/5, q = 3/5				
	 (a) 2/3 If the inflexion (a) 4 (a) 4 (a) p (a) p If x ~ N (3,36) of distribution, (a) 100 The mean of Bi (a) n = 100, p = (b) n = 50, p = (c) n = 100, p = 	(a) $2/3$ (b) $1/3$ If the inflexion points of a Normal Distribution, if mean is k(a) 4(b) 6In a Binomial Distribution, if mean is k(a) p(b) $\frac{1}{p}$ If x ~ N (3,36) and y ~ N (5,64) are twoof distribution, then if $(x + y) ~ N (8,A)$ (a) 100(b) 10	(a) $2/3$ (b) $1/3$ (c) $3/5$ If the inflexion points of a Normal Distribution are 6 and 14. If (a) 4 (b) 6 (c) 10 In a Binomial Distribution, if mean is k-times the variance, the (a) p (b) $\frac{1}{p}$ (c) $1 - P$ If $x \sim N$ (3,36) and $y \sim N$ (5,64) are two independent Normal of distribution, then if $(x + y) \sim N$ (8,A) also follows normal of (a) 100 (b) 10 (c) 64 The mean of Binomial distribution is 20 and Standard deviation (a) n = 100, p = $1/5$, q = $4/5$ (b) n = 50, p = $2/5$, q = $2/5$ (c) n = 100, p = $2/5$, q = $4/5$	(a) $2/3$ (b) $1/3$ (c) $3/5$ (d) $1/4$ If the inflexion points of a Normal Distribution are 6 and 14. Find its Standard Deviation ? (a) 4 (b) 6 (c) 10 (d) 12. In a Binomial Distribution, if mean is k-times the variance, then the value of 'k' will be? (a) p (b) $\frac{1}{p}$ (c) $1 - P$ (d) $\frac{1}{1-p}$ (a) p (b) $\frac{1}{p}$ (c) $1 - P$ (d) $\frac{1}{1-p}$ If x ~ N (3,36) and y ~ N (5,64) are two independent Normal variate with their standard p of distribution, then if (x + y) ~ N (8,A) also follows normal distribution. The value of A w (a) 100 (b) 10 (c) 64 (d) 36 The mean of Binomial distribution is 20 and Standard deviation is 4 then; (a) n = 100, p = 1/5, q = 4/5 (b) n = 50, p = 2/5, q = 2/5 (c) n = 100, p = 2/5, q = 4/5	

[45]	A Company has two cars which it hires out during the day. The number of Cars demanded in a day						
	has poison distribution	n with mean 1.5. Then perc	centage of days on which c	only one car was in			
	demand is equal to						
	(a) 23.26	(b) 33.47	(c) 44.62	(d) 46.40			
	[Given Exp (-1.5) = 0.2	2231]					
[46]	The binomial distribut	ion with mean 3 & varianc	re 2 is:				
	$(a)\left(\frac{2}{3}+\frac{1}{3}\right)^{2\to9}$	(a) $\left(\frac{2}{3} + \frac{1}{3}\right)^{2 \to 9}$ (b) $\left(\frac{2}{6} + \frac{1}{6}\right)^{2 \to 9}$ (c) $\left(\frac{2}{3} + \frac{1}{3}\right)^{2 \to 9}$ (d) $\left(\frac{2}{5} + \frac{1}{5}\right)^{2 \to 9}$					
June 12							
[47]	For binomial distribution						
	(a) Variance < Mean	(b) Variance = Mean	(c) Variance > Mean	n (d) None of the these			
[48]	If x is a Poisson variate and $E(x) = 1$, then $P(x > 1)$ is						
	(a) $1 - \frac{e^{-1}}{2}$	(b) $1 - e^{-1}$	(c) $1 - 2e^{-1}$	(d) $1 - \frac{5}{2}e$			
[49]	The mean and the variance of a random variable X having the probability density function						
	$P(X = x) = \exp \{-(x - 4)^2\} / \sqrt{\pi}, -\infty < x < \infty \text{ is:}$						
	(a) 4, $\frac{1}{2}$ ((b) 4, $\frac{1}{\sqrt{2}}$					
	(c) 2, 2 ((d) 2, $\frac{1}{2}$					
	1						

Dec 12						
[50]	In a Normal Distribution					
	(a) The first and second quartile are equidistant from median					
	(b) The second and third quartiles are equidistant from the median					
	(c) The first and third quartiles are equidistant from the median					
	(d) None of the above.					
[51]	If parameters of a binomial distribution are n and p then, this distribution tends to a Poisson					
	distribution when					
	(a) $n \to \infty, p \to 0$ (b) $p \to 0, np = \lambda$					
	(c) $n \to \infty$, $np = \lambda$ (d) $n \to \infty$, $p \to 0$, $np = \lambda$					
	where ' λ ' is a finite constant					
[52]	If a random variable x follows Poisson distribution such that $E(x) = 30$, then the variance of the distribution is					
	(a) 7 (b) 5 (c) 30 (d) 20					
[53]	In a normal distribution quartile deviation is 6, the standard deviation will be					
	(a) 4 (b) 9 (c) 7.5 (d) 6					
June 13						

[54]	The mode of the Binomial Distribution for which the mean is 4 and variance 3 is equal to?						
	(a) 4 (b) 4.25 (c) 4.5 (d) 4.1						
[55]	For Poisson Distribution:						
	(a) Mean and Standard Deviations are equal						
	(b) Mean and variance are equal						
	(c) Standard Deviation and variance are equal						
	(d) Both (a) and (b) are correct						
[56]	Which of the following is not a characteristic of a normal probability distribution?						
	(a) Mean of the normally distributed population lies at the centre of its normal curve.						
	(b) It is multi-modal						
	(c) The mean, median and mode are equal						
	(d) It is a symmetric curve						
[57]	An approximate relation between quartile deviation (QD) and standard deviation (S.D) of normal						
	distribution is:						
	(a) $5 \text{ QD} = 4 \text{ SD}$ (b) $4 \text{QD} = 5 \text{SD}$ (c) $2 \text{ QD} = 3 \text{ SD}$ (d) $3 \text{ QD} = 2 \text{ SD}$						
[58]	In a binomial Distribution with 5 independent trials, probability of 2 and 3 successes are 0.4362 and						
	0.2181 respectively. Parameter 'p' of the binomial distribution is:						

NA	NAHTA PROFESSIONAL CLASSES			STATISTICS		
	(a) 3/4	(b) 1/3	(c) 2/3	(d) ¼		
Dec 13						
[59]	In a certain F	oisson frequency dis	stribution, the prob	ability corresponding to two successes is half		
	the probabili	ty corresponding to	three successes. Th	e mean of the distribution is		
	(a) 6	(b) 12	(c) 3	(d) 2.45		
June14						
[60]	Mean and Va	riance of a binomial	variance are 4 and	$\frac{4}{3}$ respectively then P(x \ge 1) will be		
	$(a)\frac{728}{729}$	(b) $\frac{1}{729}$	$(c)\frac{723}{729}$	(d) None of the above.		
[61]	5,000 studen	ts were appeared in	an examination. Th	e mean of marks was 39.5 with a Standard		
	Deviation 12.5 marks. Assuming the distribution to be normal, find the number of students recorded					
	more than 60	0% marks. Given: Wh	aen Z = 1.64, Area o	of normal curve = 0.4495		
	(a) 1,000	(b) 505	(c) 252	(d) 2,227		
[62]	If a variate X	has, mean > varianc	e, then its distribut	ion will be		
	(a) Binomial	distribution	(b) Poisso	n distribution		
	(c) Normal d	istribution	(d) T-distr	ribution		
Dec 14						

[63]	If six coins are tossed simultaneously. The probability of obtaining exactly two heads are:						
	(a) 1/64 (b) 63/64 (c) 15/64 (d) None of these						
[64]	If x and y are two independent normal random variables, then the distribution of $\mathbf{x} + \mathbf{y}$ is:						
	(a) Normal (b) T-distribution (c) Chi-square (d) F-distribution						
[65]	For a normal distribution having mean = 2 and variance = 4, the fourth central moment μ_4 is:						
	(a) 16 (b) 32 (c) 48 (d) 64						
[66]	T-test can be used only when the sample has been taken from						
	(a) Binomial Population (b) Poisson Population						
	(c) Normal Population (d) Exponential Population						
[67]	For a binomial distribution with mean = 4 and variance = 3, the third central moment μ_3 is:						
	(a) 5/2 (b) 7/4 (c) 3/2 (d) 1/3						
June 15							
[68]	If x is a binomial variable with parameters n and p, then x can assume\						
	(a) any value between 0 and n						
	(b) any value between 0 and n, both inclusive						
	(c) any whole number between 0 and n, both inclusive						
	(d) any number between 0 and infinity						

NA	HTA PROFESSION	al classes		STATISTICS					
[69]	In	_ distribution, mean = v	rariance						
	(a) Normal	(b) Binomial	(c) Pois	sson (d) N	None				
[70]	Under a normal c	urve $\overline{\mathbf{x}} \pm 3\sigma$ covers							
	(a) 100% of the a	rea (item values)	(b) 99%	(c) 99.73%	(d) 99.37%				
Dec 15									
[71]	Y is a binomial va	riable with parameter 1	5 and $\frac{1}{3}$, then the va	alue of the mode of th	e distribution:				
	(a) 5	(b) 5 and 6	(c) 5.50	(d) 6					
[72]	Standard deviatio	n of binomial distributio	on is:						
	(a) \sqrt{np}	(b) (np) ²	(c) \sqrt{npq}	(d) (np	0q) ²				
[73]	The wages of wor	kers of factory follows:							
	(a) Binomial distr	ribution	(b) Poisson dist	ribution					
	(c) Normal distril	oution	(d) Chi-square d	istribution					
June 16									
[74]	The normal curve	is:							
	(a) Positively ske	wed (b) Negative	ely skewed	(c) Symmetrical	(d) All these				
[75]	For a Poisson var	iate X, P (X = 1) = P (X =	= 2), what is the m	ean of X ?					

NA	hta professio	onal classes		STATISTICS					
	(a) 1	(b) $\frac{3}{2}$	(c) 2		$(d)\frac{5}{2}$				
[76]		random variab 0. Then P (X \leq 15			distributio	n and	assumes	only tl	ne values
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$		(c) $\frac{2}{3}$	($(d)\frac{2}{5}$			
Dec 16									
[77]	If x and y are in	ndependent norr	nal variates w	vith Mean ar	nd Standar	d Devia	tion as μ1	and µ2 a	and σ_1
	and σ_2 respect	ively, then z = x-	⊦y also follow	rs normal di	stribution	with			
	(a) Mean = μ_1	+ μ_2 and S.D. = () respectively						
	(c) Mean = $\mu_1 + \mu_2$ and S.D. = $\sqrt{\sigma_1^2 + \sigma_2^2}$								
	(d) None of the	ese.							
[78]	A Poisson rand	lom variable has	$\mu_4 = 2$, its va	riance i.e. μ	2 is				
	(a) $\frac{2}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$		$(d)\frac{3}{2}$				
[79]	Name the distr	ribution which ha	as Mean = Va	riance					
	(a) Binomial	(b)	Poisson	(c) N	lormal	(d)) Chi-squa	re	
[80]	An example of	a bi-parametric	probability di	stribution:					
	(a) Binomial	(b) Pois	son	(c) Norm	al	(d) (a) and (b)		
June 17									

STATISTICS

	vincii o	t the ti	ollowi	ng is n	ot nos	sihle						
	If X ~ N (50,16), then which of the following is not possible:											
(a) $P(X > 60) = 0.30$	(a) $P(X > 60) = 0.30$						0) = 0.	50				
(c) $P(X < 60) = 0.40$					(d) P(X > 5	0) = 0	.50				
[82] If for a distribution me	If for a distribution mean = variance, then the distribution is said to be:											
(a) Normal	(b) E	Binom	ial		(c) Pc	oisson		(d) Nor	ne of t	he abo	ve.
[83] For a Binomial distribution	ition if	varian	ce = ([Mean])², the	n the v	values	of n a	nd p w	ill be:		
(a) 1 and $\frac{1}{2}$	(b) 2	and $\frac{1}{2}$			(c) 3	3 and	12		(d) 1	and 1		
	ANSWERS											
1 A 11 B	21	С	31	D	41	Α	51	D	61	C	71	Α
2 C 12 D	22	B	32	C	42	D	52	C	62	A	72	C
3 B 13 A	23	D	33	C	43	B	53	B	63	C	73	C
4 D 14 A	23	B	34	D	44	A	55	A	64	A	74	C
5 B 15 C	25	A	35	D	45	B	55	B	65	C	75	C
6 C 16 A	26	D	36	C	46	C	56	B	66	C	76	C
7 D 17 C	27	C	37	C	47	A	57	D	67	C	77	C
8 A 18 A	28	A	38	A	48	C	58	B	68	C	78	A
9 C 19 D	29	A	39	Α	49	A	59	A	69	C	79	B
10 C 20 A	30	A	40	Α	50	C	60	A	70	C	80	C
81 C												
82 C												
83 A												

STUDENT NOTES

СН - 5	CORRELATION & REGRESSION
	KARL PEARSON'S COEFFICIENT OF CORRELATION
Q 1.	Compute the correlation coefficient between x and y from the following data $n = 10$, $\sum XY = 220$,
	Σx ² = 200, Σy ² = 262, Σx = 40 and Σy = 50
Solution:	From the given data, we have by applying,
	$\mathbf{r} = \frac{\mathbf{n}\Sigma \mathbf{x}\mathbf{y} - \Sigma \mathbf{x} \times \Sigma \mathbf{y}}{\sqrt{\mathbf{n}\Sigma \mathbf{x}^{2} - (\Sigma \mathbf{x})^{2}} \times \sqrt{\mathbf{n}\Sigma \mathbf{y}^{2} - (\Sigma \mathbf{y})^{2}}}$
	$=\frac{10x200-40x50}{\sqrt{10x200-(40)^2X\sqrt{10x262-(50)^2}}}$
	$=\frac{2200-2000}{\sqrt{2000-1600X\sqrt{2620-2500}}}$
	$=\frac{200}{20 X 10.9545}$
	= 0.91
	Thus there is a good amount of positive correlation between the two variables x and y.
	Alternately , As given, $\bar{X} = \frac{\Sigma X}{n} = \frac{40}{10} = 4$
	$\bar{Y} = \frac{\Sigma Y}{n} = \frac{50}{10} = 5$
	$\operatorname{Cov}\left(\mathbf{x},\mathbf{y}\right) = \frac{\Sigma XY}{n} = -\bar{X}\bar{Y}$
	$=\frac{220}{10} - 4.5 = 2$
	$S_{x} = \sqrt{\frac{\Sigma X^{2}}{n}} - (\bar{X})^{2}$

	$=\sqrt{\frac{20}{10}}$	$\frac{0}{0} - 4^2$					
	Sy =	$=\sqrt{\frac{\Sigma Y i^1}{n} - (\bar{Y})^2}$					
	$=\sqrt{\frac{262}{10}-5^2}$						
	$=\sqrt{26.20-2}$	25 = 1.0954					
	Thus applying	formula, we ge	t				
	r =	$=\frac{cov(x,y)}{S_XS_y}$					
	=	$=\frac{2}{2X1.0954}=0.9$	1				
Q 2.	Find product m	noment correlat	ion coefficient	from the follo	wing informatio	<i>ו</i> אמ	
	x :	2	3	5	5	6	8
	<i>y</i> :	9	8	8	6	5	3
Solution:							

	<u>SPEARMAN's</u>	S RANK	CORRE	LATION	COEFFI	<u>CIENT</u>			
Q 3.	Compute the coe	fficient of	rank corre	lation betw	veen sales d	and adverti	sement exp	pressed in	
	thousands of rup	ees from ti	he followin	og data:					
	Sales :	90	85	68	75	82	80	95	70
	Advertisement:	7	6	2	3	4	5	8	1
Solution:									

Q 4.	Compute rank correla	tion fro	m the f	ollowing	data re	lating t	o ranks	given b	y two j	udges in	n a
	contest:										
	Serial No. of	1	2	3	4	5	6	7	8	9	10
	Candidate :										
	Rank by Judge A :	10	5	6	1	2	3	4	7	9	8
	Rank by Judge B :	5	6	9	2	8	7	3	4	10	1
Solution:	We directly apply for	mula ra	anks are	already	/ given.						
	Computation of Rank	Correla	ation Co	efficient	t betwee	en the ra	anks giv	en by 2	Judges		

	Serial No.	Ra	$inkbyA(x_{i})$	Rank b	у В (у _і)	$d_i = x_i - y$	'i	1	d ² _i
	1		10	5	5	5			25
	2		5	6	5	-1			1
	3		6	9)	-3			9
	4		1	2	2	-1			1
	5		2	8		-6			36
	6		3	5		-4			16
	7		4	3		1			1
	8		7	4		3			9
	9		8	1		-2			4
	10		9	1	L	8			64
	Total			-	_	0		1	166
	The rank corr	elation coe	efficient is given	by					
	$r_{\rm R} = 1 - \frac{6\sum d_2^i}{n(n^2 - 1)}$								
	$=1-\frac{6X166}{10(10^2-1)}$								
	= -0.006								
	The very low	value (alm	ost 0) indicates	that there is	hardly any	agreement be	tween tł	ne ranks	5
	given by the t	wo Judges	in the contest						
Q 5.	Compute the	coefficient	of rank correlat	ion between	Eco. marks	s and stats. Mo	arks as g	given be	elow:
	Eco Marks	80	56	50	48	50	62	6	50
	Stats Marks	90	75	75	65	65	50	6	55
Solution:									

Q 6.	For a group of 8 students, the sum of squares of differences in ranks for Mathematics and
	Statistics marks was found to be 50 what is the value of rank correlation coefficient?
Solution:	As given n = 8 and $\sum d_i^2$ = 50. Hence the rank correlation coefficient between marks in
	Mathematics and Statistics is given by
	$r_{\rm R} = 1 - \frac{6\sum d_2^i}{n(n^2 - 1)}$
	$=1-\frac{6 X 50}{8(8^2-1)}$
	= 0.40
Q 7.	For a number of towns, the coefficient of rank correlation between the people living below the
	poverty line and increase of population is 0.50. If the sum of squares of the differences in ranks

	awarded to these factors is 82.50, find the number of towns.
Solution:	
Q 8.	While computing rank correlation coefficient between profits and investment for 10 years of a
	firm,the difference in rank for a year was taken as 7 instead of 5 by mistake and the value of
	rank correlation coefficient was computed as 0.80. What would be the correct value of rank
	correlation coefficient after rectifying the mistake?
Solution:	

	CONCURR	ENT D	EVIATIO	<u>ON MET</u>	HOD				
9.	Find the coefficient of concurrent deviations from the following data.								
	Year : Price : Demand :	1990 25 35	1991 28 34	1992 30 35	1993 23 30	1994 35 29	1995 38 28	1996 39 26	1997 42 23
Solution:									
	REGRESS	ION AN	ALYSIS						
Q 10.	Find the two	regression	n equation	ns from the	e following a	lata:			
	x:	2	4		5	5	8		10
	<i>y</i> :	6	7		9	10	12	2	12

	Hence estimate y when x is 13 and estimate also x when y is 15.				
Solution:	Computation of Regression Equations				
	x _i	y _i	$x_i y_i$	x _i ²	y _i ²
	2	6	12	4	36
	4	7	28	16	49
	5	9	45	25	81
	5	10	50	25	100
	8	12	96	64	144
	10	12	120	100	144
	34	56	351	234	554
	On the basis of	the above table, we h	ave		
	$\bar{X} = \frac{\sum X_i}{n} = \frac{34}{6} = 5.6667$				
	$\bar{Y} = \frac{\Sigma Y_i}{n} = \frac{56}{6} = 9.3333$				
	cov (x, y) =	$=\frac{\sum X_i Y_i}{n} - \overline{X}\overline{Y}$			
	$=\frac{351}{6}-5$.6667 X 9.3333			
	= 58.50-52.8890				
	= 5.6110				
	S _x ² =	$=\frac{\sum X_i^2}{n} - \bar{X}^2$			
	$=\frac{234}{6}-(5.6667)^2$				
	= 39-32.2	1115			
	= 6.8885				
	S _Y ² =	$=\frac{\sum Y_i^2}{n} - \overline{Y}^2$			
	$=\frac{554}{6}$ - (9.3333))2			

	= 92.3333-87.110
	= 5.2228
-	The regression line of y on x is given by
3	y = a + bx
	Where $b^{\wedge} = \frac{COV(X,Y)}{S_X^2} = \frac{5.6110}{6.8885}$
	= 0.8145
ć	and $a^{*} = \overline{Y} - b\overline{X}$
	= 9.3333 - 0.8145 x 5.6667
	= 4.7178
r	Thus the estimated regression equation of y on x is
3	y = 4.7178 + 0.8145x
	When x = 13, the estimated value of y is given by $y^{*} = 4.7178 + 0.8145 \times 13 = 15.3063$
-	The regression line of x on y is given by
Σ	$x = a^{+} b^{+} y$
7	where $b^{A} = \frac{COV(X,Y)}{S_{Y}^{2}} = \frac{5.6110}{5.2228}$
	= 1.0743
ć	and $a^{*} = \overline{X} - b^{*} \overline{Y}$
-	$= 5.6667 - 1.0743 \times 9.3333$ $= -4.3601$
ŗ	Thus the estimated regression line of x on y is
Σ	x = -4.3601 + 1.0743y
	When $y = 15$, the estimate value of x is given by

NAH	NAHTA PROFESSIONAL CLASSES			STATISTICS		
	x^ = - 4.3601 -	+ 1.0743 × 15				
	= 11.75					
Q 11.	The following data relate to the mean and SD of the prices of two shares in a stock Exchange:					
	Share	Mean (in Rs.)	SD (in Rs.)			
	Company A	44	5.60			
	Company B	58	6,30			
	Coefficient of c	correlation betweer	n the share price	s = 0.48		
	Find the most	likely price of sha	re A correspondii	ng to a price of Rs. 60 of share B and also the		
	most likely pric	e of share B for a	a price of Rs. Si) of share A.		
Solution:						

NAHTA PROFESSIONAL (CLASSES
----------------------	---------

I

Q 12	The following data relate the expenditure or advertisement in thousands of rupees and the
	corresponding sales in lakhs of rupees.

]
	Expenditure on Ad	8	10	10	12	15	
	Sales :	18	20	22	25	28	
	Find an appropriate regres	sion equation.					
Solution:	Since sales (y) depend on	advertisemen	t (x), the appr	opriate regres	sion equation	is of y on x i.e.	of
	sales on advertisement. W	/e have, on the	e basis of the gi	ven data,			
	$n = 5$, $\sum x = 8 + 10 + 10 + 10$	2+15 = 55					
	$\sum y = 18 + 20 + 22 +$	25+28 = 113					
	$\sum xy = 8 \times 18 + 10 \times 10^{-1}$	20+10×22+1	2×25+15×28	= 1284			
	$\sum x^2 = 8^2 + 10^2 + 10^2$	$^{2}+12^{2}+15^{2}=$	633				
	$\therefore \mathbf{b} = \frac{\mathbf{n} \sum \times \mathbf{y} - \sum \mathbf{x} \times \mathbf{y}}{\mathbf{n} \sum \mathbf{x}^2 - (\sum \mathbf{x})^2}$	$\frac{\sum y}{\sum y}$					
	$=\frac{5X1284-55X113}{5X633-(55)^2}$						
_	$=\frac{205}{140}$						
	= 1.4643						
	a = $\overline{Y} - b\overline{X}$						
	$=\frac{113}{5}$ - 1.4643 X $\frac{55}{5}$						
	= 22.60 - 16.1073						
	= 6.4927						
	Thus, the regression line o	of y or x i.e. the	e regression lir	ne of sales on a	dvertisement	is given by	
	y = 6.4927 + 1.4643x						
Q 13.	If the relationship betwee	n two variable	es x and u is u	+ 3x = 10 an	d between tw	o other variable	es

	y and v is 2y + 5v = 25, and the regression coefficient of y on x is known as 0.80, what would
	be the regression coefficient of v on u?
Solution:	
Q 14	For the variables x and y, the regression equations are given as $7x - 3y - 18 = 0$ and $4x - y - 11$
	= 0 (i) Find the arithmetic means of x and y.
	(ii) Identify the regression equation of y on x.
	(iii) Compute the correlation coefficient between x and y.
	(iv) Given the variance of x is 9, find the SD of y.
Solution:	(i) Since the two lines of regression intersect at the point (\bar{X}, \bar{Y}) , replacing x and y by x and y

NAH	a professional classes	STATISTICS
	respectively in the given regression equations, we get	
	$7\overline{X}$ - $3\overline{Y}$ - 18 =0	
	And $4\overline{X} - \overline{Y} - 11 = 0$	
	Solving these two equations, we get $\overline{X} = 3$ and $\overline{Y} = 1$	
	Thus the arithmetic means of x and y are given by 3 and 1 respectively.	
	(ii) Let us assume that $7x - 3y - 18 = 0$ represents the regression line of	f y on x and $4x - y - 11 = 0$
	represents the regression line of x on y.	
	Now $7x - 3y - 18 = 0$	
	$y = (-6) + \frac{(7)}{3}x$	
	$\mathbf{b}_{\mathrm{yx}} = \frac{7}{3}$	
	Again $4x - y - 11 = 0$	
	$x = \frac{(11)}{4} + \frac{(1)}{4}y$ $b_{xy} = \frac{1}{4}$	
	Thus $r^2 = b^{yx} \times b^{xy}$	
	$=\frac{7}{3}X\frac{1}{4}$	
	$=\frac{7}{12} < 1$	
	Since $l r l \le 1 \Rightarrow r^2 \le 1$, our assumptions are correct. Thus, $7x - 3y - 18 =$	= 0 truly represents the
	regression line of y on x.	
	(iii) since $r^2 = 7 / 12$	
	$r = \sqrt{\frac{7}{12}}$ (We take the sign of r as positive since both the regression of t	on coefficients are positive)
	= 0.7638	
	(iv) byx $= r X \frac{S_y}{S_X}$	

	$\frac{7}{3} = 0.7638 \mathrm{X} \frac{S_y}{3}$ (Sx ² = 9 as given)
	$s_y = \frac{7}{0.7638} = 9.1647$
	<u>PROBABLE ERROR</u>
Q 15	Compute the Probable Error assuming the correlation coefficient of 0.8 from a sampleof 25 pairs
	of items.
Solution:	r = 0.8 ,n = 25
	$P.E. = 0.6745 \times SE$
	$= 0.6745 \times 0.07 = 0.0486$
Q 16	If $r = 0.7$; and $n = 64$ find out the probable error of the coefficient of correlation and determine
	the limits for the population correlation coefficient:
Solution:	

	"PRACTICE & PRACTICE MAKES STATS PERFECT"				
	<u>Set A – (Theory Question)</u>				
1.	Bivariate Data are the data collected for				
	(a) Two variables (b) More than two variables				
	(c) Two variables at the same point of time (d) Two variables at different points of time.				
2.	For a bivariate frequency table having $(p + q)$ classification the total number of cells is				
	(a) p (b) $p + q$ (c) q (d) pq				
3.	Some of the cell frequencies in a bivariate frequency table may be				
	(a) Negative (b) Zero (c) a or b (d) Non of these				
4.	For a p x q bivariate frequency table, the maximum number of marginal distributions is				
	(a) p (b) p + q (c) 1 (d) 2				
5.	For a p x q classification of bivariate data, the maximum number of conditional distributions is				
	(a) p (b) $p + q$ (c) pq (d) p or q				
6.	Correlation analysis aims at				
	(a) Predicting one variable for a given value of the other variable				
	(b) Establishing relation between two variables				
	(c) Measuring the extent of relation between two variables				
	(d) Both (b) and (c).				
7.	Regression analysis is concerned with				
	(a) Establishing a mathematical relationship between two variables				
	(b) Measuring the extent of association between two variables				
	(c) Predicting the value of the dependent variable for a given value of the independent variable				

	(d) Both (a) and (c).				
8.	What is spurious correlation?				
	(a) It is a bad relation between two variables.				
	(b) It is very low correlation between two variables.				
	(c) It is the correlation between two variables having no causal relation.				
	(d) It is a negative correlation				
9.	Scatter diagram is considered for measuring				
	(a) Linear relationship between two variables				
	(b) Curvilinear relationship between two variables				
	(c) Neither (a) nor (b)				
	(d) Both (a) and (b).				
10.	If the plotted points in a scatter diagram lie from upper left to lower right, then the correlation is				
	(a) Positive (b) Zero (c) Negative (d) None of these				
11.	If the plotted points in a scatter diagram are evenly distributed, then the correlation is				
	(a) Zero (b) Negative (c) Positive (d) (a) or (b).				
12.	If all the plotted points in a scatter diagram lie on a single line, then the correlation is				
	(a) Perfect positive (b) Perfect negative				
	(c) Both (a) and (b) (d) Either (a) or (b).				
13.	The correlation between shoe-size and intelligence is				
	(a) Zero (b) Positive (c) Negative (d) None of these.				
14.	The correlation between the speed of an automobile and the distance travelled by it after applying				
	the brakes is				
	(a) Negative (b) Zero (c) Positive (d) None of these				

TA PROFESSIONAL CLASSES	STATISTICS
Scatter diagram helps us to	
(a) Find the nature correlation between two variables	
(b) Compute the extent of correlation between two variables	
(c) Obtain the mathematical relationship between two variables	
(d) Both (a) and (c).	
Pearson's correlation coefficient is used for finding	
(a) Correlation for any type of relation	
(b) Correlation for linear relation only	
(c) Correlation for curvilinear relation only	
(d) Both (b) and (c).	
Product moment correlation coefficient is considered for	
(a) Finding the nature of correlation	
(b) Finding the amount of correlation	
(c) Both (a) and (b)	
(d) Either (a) and (b).	
If the value of correlation coefficient is positive, then the points in a scat	ter diagram tend to cluster
(a) From lower left corner to upper right corner	
(b) From lower left corner to lower right corner	
(c) From lower right corner to upper left corner	
(d) From lower right corner to upper right corner.	
When r = 1, all the points in a scatter diagram would lie	
(a) On a straight line directed from lower left to upper right	
(b) On a straight line directed from upper left to lower right	
	Scatter diagram helps us to (a) Find the nature correlation between two variables (b) Compute the extent of correlation between two variables (c) Obtain the mathematical relationship between two variables (d) Both (a) and (c). Pearson's correlation coefficient is used for finding (a) Correlation for any type of relation (b) Correlation for linear relation only (c) Correlation for curvilinear relation only (c) Correlation for curvilinear relation only (d) Both (b) and (c). Product moment correlation coefficient is considered for (a) Finding the nature of correlation (b) Finding the amount of correlation (c) Both (a) and (b) (d) Either (a) and (b). If the value of correlation coefficient is positive, then the points in a scatter (a) From lower left corner to upper right corner (b) From lower left corner to upper right corner (c) From lower right corner to upper right corner. When r = 1, all the points in a scatter diagram would lie (a) On a straight line directed from lower left to upper right

	(c) On a straight line
	(d) Both (a) and (b).
20.	Product moment correlation coefficient may be defined as the ratio of
	(a) The product of standard deviations of the two variables to the covariance between them
	(b) The covariance between the variables to the product of the variances of them
	(c) The covariance between the variables to the product of their standard deviations
	(d) Either (b) or (c).
21.	The covariance between two variables is
	(a) Strictly positive
	(b) Strictly negative
	(c) Always 0
	(d) Either positive or negative or zero
22.	The coefficient of correlation between two variables
	(a) Can have any unit.
	(b) Is expressed as the product of units of the two variables
	(c) Is a unit free measure
	(d) None of these.
23.	What are the limits of the correlation coefficient?
	(a) No limit (b) –1 and 1
	(c) 0 and 1, including the limits (d) –1 and 1, including the limits
24.	In case the correlation coefficient between two variables is 1, the relationship between the two
	variables would be
	(a) $y = a + bx$

N	IAHTA PROFESSIONAL CLASSES		STATISTICS
	(b) $y = a + bx, b > 0$		
	(c) y = a + bx, b < 0		
	(d) $y = a + bx$, both a and b being	positive.	
25.	If the relationship between two va	riables x and y in given by	y 2x + 3y + 4 = 0, then the value of the
	correlation coefficient between x a	and y is	
	(a) 0 (b) 1	(c) -1	(d) negative.
26.	For finding correlation between tw	vo attributes, we consider	[
	(a) Pearson's correlation coefficie	nt	
	(b) Scatter diagram		
	(c) Spearman's rank correlation c	oefficient	
	(d) Coefficient of concurrent devia	itions	
27.	For finding the degree of agreeme	nt about beauty between	two Judges in a Beauty Contest, we use
	(a) Scatter diagram		
	(b) Coefficient of rank correlation		
	(c) Coefficient of correlation		
	(d) Coefficient of concurrent devia	ition.	
28.	If there is a perfect disagreement	petween the marks in Geo	graphy and Statistics, then what would
	be the value of rank correlation co	efficient?	
	(a) Any value (b) O	nly 1 (c) Only –1	(d) (b) or (c)
29.	When we are not concerned with	the magnitude of the two	variables under discussion, we
	Consider		
	(a) Rank correlation coefficient		
	(b) Product moment correlation c	oefficient	

	NAHTA PROFESSIONAL CLASSES STATISTICS
	(c) Coefficient of concurrent deviation
	(d) (a) or (b) but not (c).
30.	What is the quickest method to find correlation between two variables?
	(a) Scatter diagram
	(b) Method of concurrent deviation
	(c) Method of rank correlation
	(d) Method of product moment correlation
31.	What are the limits of the coefficient of concurrent deviations?
	(a) No limit
	(b) Between –1 and 0, including the limiting values
	(c) Between 0 and 1, including the limiting values
	(d) Between –1 and 1, the limiting values inclusive
32.	If there are two variables x and y, then the number of regression equations could be
	(a) 1 (b) 2 (c) Any number (d) 3.
33.	Since Blood Pressure of a person depends on age, we need consider
	(a) The regression equation of Blood Pressure on age
	(b) The regression equation of age on Blood Pressure
	(c) Both (a) and (b)
	(d) Either (a) or (b).
34.	The method applied for deriving the regression equations is known as
	(a) Least squares (b) Concurrent deviation
	(c) Product moment (d) Normal equation.
35.	The difference between the observed value and the estimated value in regression analysis is known

NAHTA PROFESSIONAL	CLASSES
--------------------	---------

STATISTICS

	As			
	(a) Error	(b) Residue	(c) Deviation	(d) (a) or (b).
36.	The errors in case	of regression equati	ons are	
	(a) Positive	(b) Negative	(c) Zero	(d) All these.
37	The regression line	e of y on x is derived	by	
	(a) The minimisat	ion of vertical distan	ces in the scatter diagram	
	(b) The minimisat	ion of horizontal dis	tances in the scatter diagra	m
	(c) Both (a) and (b)		
	(d) (a) or (b).			
38.	The two lines of re	gression become ide	entical when	
	(a) r = 1	(b) r = -1	(c) r = 0	(d) (a) or (b).
39	What are the limit	s of the two regressi	on coefficients?	
	(a) No limit			
	(b) Must be positiv	7e		
	(c) One positive ar	nd the other negative	9	
	(d) Product of the	regression coefficie	nt must be numerically less	than unity.
40	The regression coe	efficients remain unc	changed due to a	
	(a) Shift of origin		(b) Shift of scale	
	(c) Both (a) and		(b) (d) (a) or (b).	
41	If the coefficient of	correlation betwee	n two variables is –0 9, ther	n the coefficient of determination
	Is			
	(a) 0.9	(b) 0.81	(c) 0.1	(d) 0.19.
42	If the coefficient of	correlation betwee	n two variables is 0.7 then t	he percentage of variation

N	NAHTA PROFESSION	IAL CLASSES		STATISTICS
	unaccounted for	or is		
	(a) 70%	(b) 30%	(c) 51%	(d) 49%
		<u>Set B</u>	<u> — (Practical Que</u>	<u>:stion)</u>
1.	If for two varial	ble x and y, the covaria	nce, variance of x and	variance of y are 40, 16 and 256
	respectively, wl	hat is the value of the co	orrelation coefficient?	
	(a) 0.01	(b) 0.625	(c) 0.4	(d) 0.5
2.	If $cov(x, y) = 15$	5, what restrictions sho	ould be put for the star	ndard deviations of x and y?
	(a) No restrictio	on		
	(b) The produc	ct of the standard deviat	tions should be more t	han 15.
	(c) The product	t of the standard deviat	tions should be less th	an 15.
	(d) The sum of	the standard deviations	s should be less than 1	.5
3.	If the covarianc	e between two variable	es is 20 and the varian	ce of one of the variables is 16, what
	would be the va	ariance of the other vari	'iable?	
	(a) More than 1	100	(b) More than 10)
	(c) Less than 10	0	(d) More than 1.2	25
4.	If $y = a + bx$, th	ien what is the coefficie	ent of correlation betw	een x and y?
	(a) 1		(b) -1	
	(c) 1 or –1 acco	ording as b > 0 or b < 0) (d) none of	these.
5.	If $r = 0.6$ then t	he coefficient of non-de	etermination is	
	(a) 0.4	(b) -0.6	(c) 0.36	(d) 0.64
6.	If $u + 5x = 6$ an	1d 3y - 7v = 20 and the	correlation coefficien	t between x and y is 0.58 then what

	NAHTA PROFESSIONA	AL CLASSES			STATISTICS	S
	would be the cor	rrelation coefficie	ent between u an	d v?		
	(a) 0.58	(b) -0.58	(c) -	0.84	(d) 0.84	
7.	If the relation be	etween x and u is	3x + 4u + 7 = 0	and the correlat	ion coefficient be	etween x and y is
	–0.6, then what i	is the correlation	coefficient betw	een u and y?		
	(a) -0.6	(b) 0.8	(c) 0.6	((d) -0.8	
8.	From the followi	ing data				
	x:	2	3	5	4	7
	у:	4	6	7	8	10
	Two coefficient	of correlation wa	s found to be 0.9	3. What is the co	orrelation betwee	n u and v
	as given below?					
	u:	-3	-2	0	-1	2
	v:	-4	-2	-1	0	2
	(a) -0.93	(b) 0.93	;	(c) 0.57	(d) -0.57	
9.	Referring to the	data presented i	n Q. No. 8, what v	vould be the corı	relation between	u and v?
	u: 10 15 v: -24 -3	5 25 20 36 -42 -48	35 -60			
	(a) -0.6	(b) 0.6	(c) -	0.93	(d) 0.93	
10.	If the sum of squ	ares of differenc	e of ranks, given	by two judges A	and B, of 8 stude	nts in 21, what
	is the value of ra	ank correlation co	pefficient?			
	(a) 0.7	(b) 0.65	(c)	0.75	(d) 0.8	
11.	If the rank corre	lation coefficient	: between marks	in management ;	and mathematics	s for a group of
	student in 0.6 ar	ıd the sum of squ	ares of the differ	ences in ranks ir	n 66, what is the r	number of
	students in the g	group?				

NA	AHTA PROF	Ession	AL CLA	SSES						STATISTIC	CS	
	(a) 10			(b) 9			(c) 8		((d) 11		
12.	While c	omputin	g rank c	orrelatio	on coeffic	cient bet	ween pr	ofit and	investn	nent for t	he last 6	years of
	a compa	any the c	lifferenc	e in ranl	c for a ye	ar was t	aken 3 iı	nstead o	of 4. Wha	at is the r	ectified 1	rank
	correlat	tion coef	ficient if	f it is kno	own that	the orig	nal valu	e of ran	k correl	ation coe	efficient v	vas 0.4?
	(a) 0.3			(b) 0.2			(c) 0.25			(d) 0.28		
13.	ر For 10	pairs of c	observat	ions, No	. of concu	urrent d	eviations	s was fo	und to b	e 4. Wha	t is the v	alue of
	the coe	efficient o	of concu	rrent dev	viation?							
	(a) $\sqrt{0.2}$	2		(b) −√().2	(c) 1/3		(d) -1/3		
14.	The coe	efficient o	of concu	rrent dev	viation fo	or p pair	s of obse	ervation	s was fo	ound to b	e 1/ √3 .	If the
	number	r of conc	urrent d	eviation	s was fou	ind to b	e 6, then	the valu	ue of p is	5		
	(a) 10			(b) 9			(c) 8		(d)) none of	these	
15.	What is	the valu	e of cor	relation	coefficie	nt due to	Pearson	n on the	basis of	f the follo	owing dat	ta:
	x:	-5	-4	-3	-2	-1	0	1	2	3	4	5
	y:	27	18	11	6	3	2	3	6	11	18	27
	(a) 1			(b) -1			(c) 0		(d) ·	-0.5		
16.	Followi	ng are tł	ne two n	ormal eq	luations	obtaine	l for der	iving th	e regres	sion line	of y and	x:
	5a + 10	b = 40										
	10a + 2	25b = 95										
	The reg	ression	line of y	on x is g	iven by							
	(a) 2x -	+ 3y = 5		(b) 2y -	+ 3x = 5		(c) y	= 2 + 3	X	(d) y	= 3 + 5	ζ
17.	If the re	egressior	line of	y on x an	id of x on	y are gi	ven by 2	x + 3y :	= -1 and	d 5x + 6y	v = -1 the	en the
	arithme	etic mear	ns of x ai	nd y are g	given by							

N	IAHTA PROFESSIONAL	. CLASSES		STATISTICS
	(a) (1, -1)	(b) (-1, 1)	(c) (-1, -1)	(d) (2, 3)
18.	Given the regressi	on equations as $3x + y$	y = 13 and $2x + 5y = 20$	0, which one is the regression
	equation of y on x?	?		
	(a) 1st equation		(b) 2nd equation	
	(c) both (a) and (b)	(d) none of these.	
19.	Given the followin	g equations: 2x – 3y =	10 and 3x + 4y = 15, v	which one is the regression equation
	of x on y ?			
	(a) 1st equation		(b) 2nd equation	
	(c) both the equati	ions	(d) none of these	
20.	If $u = 2x + 5$ and v	v = -3y - 6 and regress	sion coefficient of y on >	x is 2.4, what is the regression
	coefficient of v on	u?		
	(a) 3.6	(b) -3.6	(c) 2.4	(d) -2.4
21.	If $4y - 5x = 15$ is the second seco	he regression line of y	on x and the coefficient	t of correlation between x and y is
	0.75, what is the v	alue of the regression	coefficient of x on y?	
	(a) 0.45	(b) 0.9375	(c) 0.6	(d) none of these
22.	If the regression li	ne of y on x and that o	f x on y are given by y =	= -2x + 3 and $8x = -y + 3$
	respectively, what	is the coefficient of co	orrelation between x and	d y?
	(a) 0.5	(b) $-1/\sqrt{2}$	(c) -0.5	(d) none of these
23.	If the regression c	oefficient of y on x, the	e coefficient of correlation	on between x and y and variance of
	y are $-3/4,\sqrt{3}/2$ a	and 4 respectively, wha	at is the variance of x?	
	(a) $2/\sqrt{3}/2$	(b) 16/3	(c) 4/3	(d) 4
24.	If $y = 3x + 4$ is the	e regression line of y o	n x and the arithmetic n	nean of x is –1, what is the
	arithmetic mean o	of y?		
	I			

(a) 1		(b)) –1		(c)	7		(d) none	e of these	•	
					ANS	NERS					
					Se	t A					
 1.	(c)	2.	(d)	3.	(b)	4.	(d)	5.	(b)	6.	(0
7.	(d)	8.	(c)	9.	(d)	10.	(c)	11.	(a)	12.	(1
13.	(a)	14.	(a)	15.	(a)	16.	(b)	17.	(c)	18.	(
19.	(a)	20.	(c)	21.	(d)	22.	(c)	23.	(d)	24.	(
25.	(c)	26.	(c)	27.	(b)	28.	(c)	29.	(c)	30.	(
31.	(d)	32.	(b)	33.	(a)	34.	(a)	35.	(d)	36.	(
37.	(a)	38.	(d)	39.	(d)	40.	(a)	41.	(b)	42.	(
 Set B											
1.	(b)	2.	(b)	3.	(a)	4.	(c)	5.	(d)	6.	(b
7.	(c)	8.	(b)	9.	(c)	10.	(c)	11.	(a)	12.	(b
13.	(d)	14.	(a)	15.	(c)	16.	(c)	17.	(a)	18.	(b
19.	(d)	20.	(b)	21.	(a)	22.	(c)	23.	(b)	24.	(a

"KAR LO PAST APNI MUTHI ME"
"KAR LO PAST APNI MUTHI ME" Past Exam Questions
Past Exam Questions
Past Exam Questions The coefficient of correlation r between x and y when :
Past Exam Questions The coefficient of correlation r between x and y when : Cov (x, y) = -16.5, Var (x) = 2.89, Var (y) = 100 is :
Past Exam Questions Γ Free coefficient of correlation r between x and y when : $Cov (x, y) = -16.5, Var (x) = 2.89, Var (y) = 100$ is : $(a) -0.97$ $(b) 0.97$ $(c) 0.89$ $(d) -0.89$

NAH	NAHTA PROFESSIONAL CLASSES					STATISTICS					
[3]	For some bivariate data, the following results were obtained for the two variables x and y :										
	$\overline{x} = 53.2, \overline{y} = 27.9, b_{yx} = -1.5, b_{xy} = -0.2$										
	The most probable value of y when x = 60 is :										
	(a) 15.6	(b) 13.4	(c) 19.7		(d) 17.7						
Feb 07											
[4]	If the sum of squares of the rank difference in mathematics and physics marks of 10 students is 22,										
	then the coefficient of rank correlation is:										
	(a) 0.267	(b) 0.867	(c) 0.92		(d) None	9					
[5]	Two random variables have the regression lines $3x + 2y = 26$ and $6x + y = 31$. The coefficient of										
	correlation between x and y is :										
	(a) -0.25	(b) 0.5	(c) -0.5		(d) 0	.25					
May 07											
[6]	The coefficient of correlation between X and Y is 0.6. U and V are two variables defined as $U = \frac{x-3}{2}$,										
	$V = \frac{y-2}{3}$, then the coefficient of correlation between U and V is :										
	(a) 0.6	(b) 0.4	(c) 0.8		(d) 1						
[7]	For the followin	For the following data, the coefficient of rank correlation is :									
	Rank in Botany	/:		1	2	3	4	5			
	Rank in Chemi	stry		2	3	1	5	4			

FACULTY:CA MEGHA NAHTA

NAHTA PROFESSIONAL CLASSES			STATISTICS							
	(a) 0.93	(b) 0.4	(c) 0.6	(d) N	one					
[8]	The following data is given, based on 450 students for marks in Statistics and Economics at a certain									
	examination :									
	Mean marks in Stat	stics	= 40	Mean marks in Economics = 48						
	S.D. of marks (Statis	stics) :	= 12	Variance of marks (Economics) = 256						
	Sum of the products of deviations of marks from their respective mean = 42075									
	The average marks in Economics of candidates who obtained 50 marks in Statistics is:									
	(a) 45	(b) 54.5	(6) 54	(d) 47.5					
Aug 07										
[9]	For 10 pairs of observations, number of concurrent deviations was found to be 4. What is the value of the									
	coefficient of concurrent deviation?									
	(a) √0.2	(b) $^{1}/_{3}$	(c) -1	/3	(d) - √0.2					
[10]	If the covariance be	tween two variable	s is 20 and the v	ariance of one of the	variables is 16, what would be					
	the variance of the	other variable?								
	(a) More than 10	(b) More th	nan 100	(c) More than 1.25	(d) Less than 10					
Nov 07										
[11]	Assume 69 and 112	as the mean values	for X and Y rest	ectively.						
	$\Sigma dx = 47$, $\Sigma dx^2 = 1475$, $\Sigma dy = 108$, $\Sigma dy^2 = 3468$, $\Sigma dx dy = 2116$ and $N = 8$.									

Т

Where dx = X	- 69, dy = Y - 112. Then t	he value of r is :				
(a) 0.95	(b) 0.65	(c) 0.75	(d) 0.85			
In rank correl	ation, the association nee	d not be linear:				
(a) True	(b) False	(c) Partly True	(d) Partly False			
The lines of re	egression are as follows :					
5x - 145 = - 10	0y; 14y - 208 = - 8x. The r	nean values (x, y) is :				
(a) (12,5)	(b) (5,7)	(c) (7, 12)	(d) (5, 12)			
The coefficien	The coefficient of rank correlation of marks obtained by 10 students, in English and Economics was					
The coefficient of rank correlation of marks obtained by 10 students, in English and Economics was found to be 0.5. It was later discovered that the difference in ranks in the two subjects obtained by						
one student w	found to be 0.5. It was later discovered that the difference in ranks in the two subjects obtained by one student was wrongly taken as 3 instead of 7. The correct coefficient of rank correlation is:					
(a) 0.32	(b) 0.26	(c) 0.49	(d) 0.93			
Given the follo	owing data :					
$b_{xy} = 0.4 \& b_{yx}$	c = 1.6. The coefficient of c	determination is :				
(a) 0.74	(b) 0.42	(c) 0.58.	(d) 0.64			
The method a	pplied for deriving regres	sion equations is known a	5:			
(a) Concurren	nt deviation	(b) Product mome	nt			
(c) Least squa	ires	(d) Normal equation	on			
	 (a) 0.95 In rank correl (a) True (a) True The lines of ref 5x - 145 = - 10 (a) (12,5) The coefficient found to be 0. one student w (a) 0.32 Given the follo b_{xy} = 0.4 & b_{yx} (a) 0.74 The method a (a) Concurrent 	(a) 0.95 (b) 0.65 In rank correlation, the association nee(a) True(b) FalseThe lines of regression are as follows : $5x - 145 = -10y; 14y - 208 = -8x.$ The r(a) $(12,5)$ (b) $(5,7)$ The coefficient of rank correlation of mfound to be 0.5. It was later discoveredone student was wrongly taken as 3 ins(a) 0.32 (b) 0.26 Given the following data : $b_{xy} = 0.4 \& b_{yx} = 1.6.$ The coefficient of coefficient coefficient of coefficient coefficient of coefficient coeff	The lines of regression are as follows : $5x - 145 = -10y; 14y - 208 = -8x. The mean values (x, y) is :(a) (12,5) (b) (5,7) (c) (7,12)The coefficient of rank correlation of marks obtained by 10 studerfound to be 0.5. It was later discovered that the difference in rankone student was wrongly taken as 3 instead of 7. The correct coefficient of each of the following data :(a) 0.32 (b) 0.26 (c) 0.49Given the following data :b_{xy} = 0.4 \& b_{yx} = 1.6. The coefficient of determination is :(a) 0.74 (b) 0.42 (c) 0.58.The method applied for deriving regression equations is known as(a) Concurrent deviation$			

L

STATISTICS

June 08					
[17]	The coefficient of	correlation between x and y s	eries from the following	data :	
				X series	Y series
	Number of pairs	;	I		
	of observations			15	15
	Arithmetic Mear	ł		25	18
	Standard Deviat	ion		3.01	3.03
	Sum of the squar	res			
	of deviation				
	from mean			136	138
	Sum of the produc	ct of the deviations of x and y s	series from their respect	ive means = 122, is :	
	(a) 0.89	(b) 0.99	(c) 0.69	(d) 0.91	
[18]	If the lines of regr	ession in a bivariate distributi	on are given by x + 2y =	5 and 2x + 3y = 8, th	nen
	the coefficient of c	correlation is :			
	(a) 0.866	(b) -0.666	(c) 0.667	(d) -0.866	
[19]	If the correlation o	coefficient between two varial	ples is 1, then the two lin	es of regressions are	:
	(a) Parallel	(b) At right angles	(c) Coincident	(d) None of	these
Dec 08					
[20]	If the sum of squa	re of differences of rank is 50	and number of items is 8	3 then what is the	
	value of rank corr	elation coefficient.			
	(a) 0.59	(b) 0.40	(c) 0.36	(d) 0.63	

FACULTY:CA MEGHA NAHTA

NAH	ita professiona	L CLASSES			STATISTICS			
[21]	If coefficient of cor	rrelation between x and y	7 is 0.46. Find coeffi	cient of correlatio	on between x and $\frac{y}{2}$			
	(a) 0. 46	(b) 0.92	(c) -0.46	(d) -	0.92			
[22]	Given the regressi	on equations as 3x + y =	13 and $2x + 5y = 2$	20. Find regressio	on equation of y on x.			
	(a) $3x + y = 13$	(b) $2X + y = 20$	(c) 3x -	+ 5y = 13	(d) $2x + 5y = 20$			
[23]	The coefficient of o	correlation is significant i	if:					
	(a) r > 5 P. E	(b) r < 6 P. E	(c) r ≥ 6 P. E	(d)) r = 6P.E			
June 09								
[24]	The two regression	he two regression equations are :						
	2x + 3y + 18 = 0							
	x + 2y - 25 = 0							
	find the value of y	if x = 9						
	(a) - 8	(b) 8	(c) - 12	(d)) 0			
[25]	The correlation co	efficient between x and y	<i>is-</i> 1/2. The value	of ^b xy = - 1/8. Fin	ıd by x.			
	(a) -2	(b) -4	(c) 0	(d) 2				
[26]	Ranks of two	characteristics by t	wo judges are in re	verse order then f	find the value of			
	Spearman rank co	rrelation co-efficient,						
	(a) - 1	(b) 0	(c) 1	(d) 0.75				

Τ

[27]	Which of the following regression equations represent regression line of Y on X :						
	7x + 2y + 15 = 0, 2x + 5y + 10 = 0						
	(a) $7x + 2y + 15 = 0$ (b) $2x + 5y + 10 = 0$						
	(c) Both (a) and (b) (d) None of these						
Dec 09							
[28]	the rank correlation co-efficient between marks in Management and Mathematics for a group of						
	students is 0.6 and the sum of the squares of the difference in ranks is 66. Then what is the						
	number of students in the group?						
	(a) 9 (b) 10 (c) 11 (d) 12						
[29]	Correlation coefficient between X and Y will be negative when:-						
	(a) X and Y are decreasing - (b) X is increasing, Y is decreasing						
	(c) X and Y are increasing (d) None of these						
[30]	The two regression lines are $7x - 3y - 18 = 0$ and $4x - y - 11 = 0$. Find the values of b_{yx} and b_{xy}						
	(a) 7/3, 1/4 (b) -7/3,-1/4 (c) -3/7,-1/4 (d) None of these.						
June 10							
[31]	If 'P' is the simple correlation coefficient, the quantity P ² is known as:						
	(a) Coefficient of determination (b) Coefficient of Non-determination						
	(c) Coefficient of alienation (d) None of the above.						

[32]	of the regression Coefficient	s is greater than t	he correlatior	n coefficient		
	(a) Combined mean	(b) Harr	nonic mean			
	(c) Geometric mean	(d) Arith	metic mean.			
[33]	the correlation coefficient between x and y is r, then					
	between U = $\frac{x-5}{10}$ and V = $\frac{y-7}{2}$ is					
	(a) r (b) -r (c) (r-5)/2 (d) (r -7)/10					
[34]	If the two lines of regression are x + 2	If the two lines of regression are x + 2y -5 =0 and 2x + 3y - 8 = 0				
	The regression line of y on x is					
	(a) $x + 2y - 5 = 0$ (b) $2x + 3y - 8 = 0$					
	(c) Any of the two line (d) None of the two lines.					
Dec 10						
[35]	If the sum of the product of deviations	of x and y series f	from their mea	nns is zero, the	en the	
	coefficient of correlation will be					
	(a) 1 (b) -1	(c) 0	(d) N	one of these		
[36]	ranks of five participants given by two	judges are				
		А	В	С	D	E
	Judge 1	1	2	3	4	5
	Judge 2	5	4	3	2	1

NAH	ITA PROFESSIONAI	l CLASSES			STATISTICS			
	Rank correlation co	efficient between r	ranks will be					
	(a) 1	(b) 0	(c) -1	(d) 1/2	2			
[37]	Regression coefficie	ent are						
	(a) dependent of ch	lange of origin and	of scale.					
	(b) independent of	both change of oris	gin and. of scale.					
	(c) dependent of ch	ange of origin but 1	not of scale.					
	(d) independent of	change of origin bu	ut not of scale					
[38]	Given : $\overline{\mathbf{x}} = 16$, $\sigma \mathbf{x} =$	ven : $\overline{\mathbf{x}} = 16$, $\sigma \mathbf{x} = 4.8$						
	\overline{y} - 20 , $\sigma y = 9.6$	\overline{y} - 20 , $\sigma y = 9.6$						
	the coefficient of co	rrelation between	x and y is 0.6. Wha	t will be the regressio	on coefficient of 'x' on 'y'?			
	(a) 0.03	(b) 0.3	(c) 0.2	(d) 0.05				
[39]	If the two lines of re	egression are x + 2 ⁻	y -5 =0 and 2x + 3	3y - 8 = 0. The regressi	ion line of y on x is			
	(a) x+2y-5=0	(b) 2x+3	3y-8=0 (c) A	Any of the two line	(d) None of the two lines.			
June 11								
[40]	The covariance bet	ween two variables	3 X and Y is 8.4 and	their variances are 2!	5 and 36 respectively.			
	Calculate Karl Pears	son's coefficient of	correlation betwee	n them.				
	(a) 0.82	(b) 0.28	(c) 0.01	(d) 0.09				
[41]	For a bivariate data	ו, two times of regr	ession are 40x -18y	y = 214 and 8x -10y +	- 66 = 0, then			

d 17						
pectively.						
a) Change of Origin Only b) Change of scale Only						
- X = 35 and						
d 8						

NAH	ta professio	onal classes		STATISTICS					
	respectively a	nd Co- efficient of co-1	elation between X and	Y is 0.8. Find the Reg	ression coefficient of Y on X.				
	(a) 0.78	(b) 1.28	(c) 6.8	(d) 0.	32				
June 12									
[47]	The regression	n lines are 8x - 10y +	66 = 0 and 40x - 18y =	214, the correlation	coefficient between 'x'				
	and 'y' is :								
	(a) 1	(b) 0.6	(c) - 0.6	(d) -1					
[48]	The coefficien	ne coefficient of correlation between two variables x and y is the simple of the two regression							
	coefficients.	coefficients.							
	(a) Arithmetic	c Mean	(b) Geometric	Mean					
	(c) Harmonic	Mean	(d) None of the a	above.					
[49]	If 2 variables a	are uncorrelated, their	r regression lines are:						
	(a) Parallel	(b) Perpen	dicular (c) C	oincident (d)) Inclined at 45 degrees.				
[50]	If the covariar	nce between variables	X and Y is 25 and varia	nce of X and Y are res	spectively 36 and 25,				
	then the coeff	icient of correlation is							
	(a) 0.409	(b) 0.416	(c) 0.833	(d) 0.0277					
[51]	If x̄, ȳ denote t	he arithmetic means,	σ_x , σ_y denotes, the stand	lard deviations, b _{xy} , t	o _{yx} denote the				
	regression coe	efficients of the variab	les 'x' and 'y' respective	ely, then the point of i	intersection of regression				

NAH	TA PROFESSIO	ONAL CLASSES		STATISTICS			
	lines x on y &	y on x is					
	(a) (x̄, ȳ)	(b) (σ _x , σ _y)	(c) (b _{xy} , b _{yx})	(d) $(\sigma_{x^{2}}, \sigma_{y^{2}})$			
Dec 12							
[52]	In Spearman'	s Correlation Coefficien	nt, the sum of the difference	ces of ranks between two variables			
	shall be						
	(a) 0	(b) 1	(c) -1	(d) None of the above.			
[53]	For certain x	and y series which are o	correlated, the two lines c	of regression are			
	5x - 6y + 9 = 0 & 15x - 8y - 130 = 0						
	The correlation coefficient is						
	(a) 4/5	(b) ³ ⁄ ₄	(c) 2/3	(d) ½			
[54]	The Coefficier	nt of correlation betwee	en x and y series is -0.38.'	The linear relation between x & u and y & v are			
	3x + 5v = 3a	nd $-8x - 7v = 44$, what i	is the coefficient of correl	ation between u & v?			
	(a) 0.38	(b) -0.38	(c) 0.40	(d) None of the above.			
[55]	If $y = 18x + 5$	is the regression line c	of y on x value of b_{xy} is				
	(a) 5/18	(b) 18	(c) 5	(d) 1/18			
June 13							
[56]	If 'r' be the Ka	urls Pearson's coefficier	nt of correlation in a bivar	riate distribution then the two regression lines			
	are at right ar	ngle if:					

NA	HTA PROFESSIONAL CLASS	SES	ST.	ATISTICS			
	(a) $r = \pm 1$						
	(b) r = 0						
	(c) $r = \pm$ any finite value wh	hose numerical value is le	ess than 1				
	(d) None of these						
[57]	If the regression equations a	are 8x-3y+50 = 0 and 14	4x-7y-60=0 and standard de	eviation of y is 1.			
	The coefficient of correlation	n is					
	(a) 2 (b) 1	(c) 0.87	7 (d) -0.87				
[58]	The coefficient of correlatio	The coefficient of correlation between two variables x and y is 0.28. Their covariance is 7.6. If the					
	variance of x is 9, then the s ^r	variance of x is 9, then the standard deviation of y is:					
	(a) 8.048 (b)	9.048 (c) 1	10.048 (d) 11.048	8			
[59]	Two variables x and y are re	elated according to 4x + 3	3y = 7. Then x and y are:				
	(a) Positively correlated.	(b) Nega	atively correlated.				
	(c) Correlation is zero.	(d) Non	e of these.				
[60]	Determine the coefficient of	correlation between x ar	nd y series:				
	Particulars		x Series	y Series			
	No. of items		15	15			
	Arithmetic mean		25	18			
	Sum of sq. of						

Т

	deviation of mean 136	138						
	Sum of product of deviation of x and y series from mean = 122							
	(a) -0.89 (b) 0.89 (c) 0.69. (d) - 0.69							
Dec 13								
[61]	Price and Demand is the example for							
	(a) No correlation (b) Positive correlation (c) Negative (d) N	lone of the above						
[62]	If mean of x and y variables is 20 and 40 respectively and the regression coefficient	t of y on x is 1.608,						
	then the regression line of y on x is							
	(a) $y = 1.608x + 7.84$ (b) $y = 1.5x + 4.84$							
	(c) $y = 1.608x + 4.84$ (d) $y = 1.56x + 7.84$							
[63]	When the value of correlation coefficient is +1 or -1, then the two regression lines	will						
	(a) have 30° angle between them							
	, (b) have 45° angle between them.							
	(c) coincide.							
	(d) be perpendicular to each other							
June 14								
[64]	Two regression lines for a bivariate data are: $2x-5y+6=0$ and $5x - 4y + 3 = 0$. Then	1 the						
	coefficient of correlation should be:							

NAH	ta professio	DNAL CLASSES			STATISTICS	
	(a) $\frac{-2\sqrt{2}}{5}$	(b) $\frac{2}{5}$	(c	$)\frac{-2\sqrt{2}}{5}$	$(d)\frac{\sqrt{2}}{5}$	
[65]	When each inc	lividual gets the exact	ly opposite rank b	y the two Judges,	then the rank correlation	
	will be	·				
	(a) 0	(b) -1	(c) +1	$(d)\frac{1}{2}$		
[66]	If the mean of	the two variables 'x' a	nd 'y' are 3 and 1 i	espectively, The	n the equation of two	
	regression line	es are				
	(a) 5x+7y-22:	=0, 6x+2y-20=0		(b) 5x+7y-22=0	6x+2y+20=0	
	(c) 5x+7y+22	e=0, 6x+2y-20=0	(d) 5x+7y+22=(), 6x+2y+20=0	
[67]	The equation o	of two lines of regress	ion for 'x' and 'y' a	re 5x=22+y and	64x = 24 + 45y then the	
	value of regre	ssion coefficient of 'y'	on 'x' will be	<u> .</u> .		
	(a) 5	(b) $\frac{1}{5}$	(c) $\frac{64}{45}$	(0	$()\frac{45}{64}$	
Dec 14						
[68]	If the correlati	on coefficient betwee	n two variables is	zero, then the lin	es of regression are:	
	(a) Parallel	(b) Perpe	endicular	(c) Coincide	(d) None of these	
[69]	If the value of	correlation coefficien	t between x & y is	l, then the value	of correlation	
	coefficient bet	ween x - 2 and $\frac{-y}{2} + 1$	is:			
	(a) 1	(b) -1	(c) -1	./2	(d) ½	

L

[70]	The equations of two regression lines are $x + y = 6$ and $x + 2y = 10$, then the value of correlation								
	coefficient between x a	ind y is:							
	(a) -1/2	(b) +1/2	(c) -1/√2	(d)	$)+1/\sqrt{2}$				
June 15									
[71]	Two regression lines are								
	16x - 20y + 132 = 0 &	80x - 36y - 428 = 0							
	The value of the correl	ation coefficient is							
	(a) 0.6 (b) -0.6	(c) 0.54	(d) 0.45					
[72]	When the correlation o	coefficient r is equal t	$x_0 + 1$, all the points	s in a scatter dia	agram would be				
	(a) On a straight line d	irected from upper le	eft to lower right						
	(b) On a straight line d	irected from lower le	eft to upper right						
	(c) On a straight line								
	(d) Both (a) and (b)								
Dec 15									
[73]	Out of following which	is correct?							
	(a) $b_{yx} = r \frac{\sigma_x}{\sigma_y}$	(b) $b_{yx} = r \frac{\sigma_y}{\sigma_x}$	(c) b _y	$\sigma_{\rm X} = \frac{\pi . \Sigma {\rm xy}}{\sigma_{\rm X}}$	(d) $b_{yx} = \frac{\pi \Sigma}{\sigma_y}$	<u>xy</u> ,			
[74]	In case of "Insurance C	ompanies" profits an	id the number of cl	aims they have	to pay				
	there is corre	lation:							

NAH	TA PROFESSIONA	al Classes		ST.	ATISTICS
	(a) Positive	(b) Negative	(c) No correlation	(d) None	of the above
June 16					
[75]	Two regression ec	quations are as follow	'S:		
	Regression equati	ion of. x on y : 5x - y =	: 22		
	Regression equati	ion of y on x : 64x - 45	y = 24		
	What will be the n	nean of x and y?			
	(a) $\overline{\mathbf{x}} = 8$, $\overline{\mathbf{y}} = 6$	(b) $\overline{\mathbf{x}} = 6$, $\overline{\mathbf{y}}$	$= 6 \qquad (c) \overline{x} = 6$	$5, \overline{y} = 8$ (d) \overline{x}	$= 8$, $\overline{y} = 8$
[76]	If the coefficient o	f correlation between	n X and Y variables is +(0.90 then what will	be the coefficient
	of determination?	,			
	(a) 0.30	(b) 0.81	(c) 0.94	(d) None of these	e
[77]	The two lines of re	egression become ide	ntical when		
	(a) r = 1	(b) r = - 1	(c) r = 0	(d) (a) c	or (b)
[78]	r = 0.6, then the c	coefficient of determin	iation is.		
	(a) 0.4	b) -0.6	(c) 0.36	(d) 0.64	
Dec 16					
[79]	The two regressio	on lines passing throug	gh		
	(a) Represent mea	ans (b) Rej	present S.Ds	(c) (a) and (b)	(d) None of these.
[80]	Out of the followin	ng the one which effec	cts the regression coeff	icient is	

NAH	TA PROFESSIONAL (CLASSES		STATISTICS				
	(a) Change of origin o	nly						
	(β) Change of scale or	ıly						
	(c) Change of scale an	ıd origin both						
	(d) Neither change in	origin nor change of s	scale					
[81]	The regression equati	ion x and y is $3x + 2y$	= 100, the value of b					
	(a) $-\frac{2}{3}$	(b) $\frac{100}{3}$	(c) $\frac{3}{2}$	$(d)\frac{2}{3}$				
[82]	In a beauty contest th	ere were 10 competit	ors. Rank of these ca	indidates are assigned by two judges				
	A and B. The sum of squares of differences of ranks is 44. The value of rank correlation is:							
	(a) 0.70	(b) 0.73	(c) 0.80	(d) 0.60				
June 17								
[83]	The coefficient of corr	relation between the t	emperature of envir	conment and power consumption is				
	always:							
	(a) Positive	(b) Negative	(c) Zero	(d) Equal to 1				
[84]	If two regression line:	s are x + y = 1 and x -	y = 1 then mean val	ues of x and y will be:				
	(a) 0 and 1	(b) 1 and 1	(c) 1 and 0	(d) -1 and -1				
[85]	The coefficient of corr	relation between x and	d y is 0.6. If x and y v	ralues are multiplied by -1, then the				
		· · · · · · · · · · · · · · · · · · ·						

coefficient of correlation will be:

(a)) 0.6		(b) -0.	6		(c)	$\frac{1}{0.6}$			(d) 1 -	0.6				
															_
															_
								WFR							
	Α	11	Α	21	Α	31	ANS	WER 41	RS B	51	Α	61	C	71	
						31	A	41	В						
1		11	A	21	A					51	A	61 62	C	71	
	C					31	A	41	В						_
2	C D	12	A	22	D	31 32	A D	41 42	B	52	D	62	Α	72	_
2	C D B	12 13	A D	22 23	D	31 32 33	A D A	41 42 43	B A B	52 53	D C	62 63	A C	72 73	
2 3 4 5	C D B C	12 13 14 15	A D B D	22 23 24 25	D C B A	31 32 33 34 35	A D A C C	41 42 43 44 45	B A B A C	52 53 54 55	D C B D	62 63 64 65	A C C B	72 73 74 75	
2 3 4	C D B C A	12 13 14 15 16	A D B	22 23 24	D C B A A	31 32 33 34 35 36	A D A C	41 42 43 44	B A B A C B	52 53 54	D C B D B	62 63 64	A C C B A	72 73 74	
2 3 4 5	C D B C A	12 13 14 15	A D B D	22 23 24 25	D C B A	31 32 33 34 35	A D A C C	41 42 43 44 45	B A B A C	52 53 54 55	D C B D	62 63 64 65	A C C B	72 73 74 75	

Т

	9	С	19	C	29	В	39		49	В	59	В	69	B	79	Α
	10	В	20	В	30	Α	40	В	50	С	60	В	70	С	80	В
	Ans 3	9 .: Ple	ase re	fer 20	10 - June	e [34]						1	1	1		
	81	82	83	84	85											
	A	В	А	С	А											
		1	<u>.</u>	1												
							ст			TES						
							<u>31</u>			<u> 1123</u>						

CH - 6		UNIT I - INDEX NUMBER								
Eg. 1	Compute Fisher's Ideal Index from the following data:									
	Base Year Current Year									
	Commoditie	25	Pric		Quantit	ty 🛛	Price		Quantity	
	А		4		3		6		2	
	B		5 7		4 2		6 9		4 2	
	D		2		3		1		5	
	Show how it satisfies the time and factor reversal tests									
Solution:	Commodities P		Q_0	P ₁	<i>Q</i> ₁	P_0Q_0	P_1Q_0	P_0Q_1	P_1Q_1	
	А	4	3	6	2	12	18	8	12	
	В	5	4	6	4	20	24	20	24	
	С	7	2	9	2	14	18	14	18	
	D	2	3	1	5	6	3	10	5	
						52	63	52	59	
	Ideal Index: P 01			$\frac{1}{2} X 100 = 1.1^{2}$						
	Time Reversal Te	st:								
	P01 X P10	$=\sqrt{\frac{63}{52}}$	$X \frac{59}{52} X \frac{52}{59}$	$X\frac{52}{63} = \sqrt{1}$	= 1					
	Time Reversal Te	st is sat	isfied.							
	Factor Reversal T	est:								
	P01 X P01 = $\sqrt{\frac{63}{52}}$	$X \frac{59}{52} X \frac{59}{52}$	$\frac{52}{59}X\frac{52}{63} = 1$	$\sqrt{\frac{59}{52}X\frac{59}{52}} =$	59 52					
	Since, $\frac{\sum P_1 Q_1}{\sum P_0 Q_0}$ is also	equal (co 59/52	the Factor	Reversal	Test is satis	sfied.			

	"PRACTICE & PRACTICE MAKES STATS PERFECT"									
	<u>Set A – (Theory Question)</u>	ľ								
	Choose the most appropriate option (a) (b) (c) or (d).									
1.	A series of numerical figures which show the relative position is called									
	a) index number b) relative number c) absolute number	d) none								
2.	Index number for the base period is always taken as									
	a) 200 b) 50 c) 1 d) 100									
3.	play a very important part in the construction of index numbers.									
	a) weights b) classes c) estimations d) n	one								
4.	is particularly suitable for the construction of index numbers.									
	a) H.M. b) A.M. c) G.M. d) non	ie								
5.	Index numbers show changes rather than absolute amounts of change.									
	a) relative b) percentage c) both d) non	e								
6.	The makes index numbers time-reversible.									
	a) A.M. b) G.M. c) H.M. d) nor	ne								
7.	Price relative is equal to									
	a) $\frac{\text{Price in the given year } \times 100}{\text{Price in the base year}}$ b) $\frac{\text{Price in the year base year } \times 100}{\text{Price in the given year}}$									
	c) Price in the given year X 100 d) Price in the base year X 100									
8.	Index number is equal to									
	a) sum of price relatives b) average of the price relatives									
	c) product of price relative d) none									
9.	The of group indices given the General Index									
	a) H.M. b) G.M. c) A.M. d) none									
10.	Circular Test is one of the tests of									
	a) index numbers b) hypothesis c) both d) non	e								

11.	is an extension of ti	me reversal test						
	a) Factor Reversal test	b) Circular test	c) both	d) none				
12.	Weighted G.M. of relative form	nula satisfytes	t					
	a) Time Reversal Test	b) Circular test	c) Factor Revers	al Test d) none				
13.	Factor Reversal test is satisfie	d by						
	a) Fisher's Ideal Index	b) Laspeyres Index	c) Paasch	es Index d) none				
14.	Laspeyre's formula does not s	atisfy						
	a) Factor Reversal Test	b) Time R	eversal Test					
	c) Circular Test	d) all the a	bove					
15.	A ratio or an average of ratios expressed as a percentage is called							
	a) a relative number	b) an absolu	ıte number					
	c) an index number	d) none						
16.	The value at the base time per	riod serves as the star	ndard point of comp	arison				
	a) false b) tru	ie c) bo	th d) no	one				
17.	An index time series is a list o	f numbers for	two or more periods	s of time				
	a) index b) abso	lute c) r	elative d	l) none				
18.	Index numbers are often cons	tructed from the						
	a) frequency b)	class c) s	ample	d) none				
19.	is a point of reference	in comparing various	data describing ind	ividual behaviour.				
	a) Sample b) Bas	e period c)	Estimation	d) none				
20.	The ratio of price of single cor	nmodity in a given pe	eriod to its price in t	he preceding year price is				
	called the							

	(a) base period	(b) price ratio	(c) relative	price	(d) none					
21.		dity prices in the currer nmodity prices in the ba								
	a) Relative Price		b) Simple Aggre	gative Price In	dex					
	c) both		d) None							
22.	Chain index is equ	ual to								
	a) $\frac{\text{link relative of }}{}$	current year × chain index 100	x of the current year							
	b) link relative of previous year × chain index of the current year 100									
	c) link relative of current year × chain index of the previous year									
	-	100								
	d) the relative of	previous year × chain ind 100	ex of the previous year							
23.	P ₀₁ is the index fo	r time								
	(a) 1 on 0	(b) 0 on 1	(c) 1 on 1	(d) 0 on	0					
24.	P_{10} is the index fo	r time								
	(a) 1 on 0	(b) 0 on 1	(c) 1 on 1	(d) 0 on 0						
25.	When the produc	t of price index and the o	quantity index is equa	al to the corres	ponding value					
	index then the test that holds is									
	(a) Unit Test	(b) Time Reversal	Гest (c) Factor Re	versal Test	(d) none holds					
26.	The formula shou	ld be independent of the	e unit in which or for	which price an	d quantities are					
	quoted in									
	(a) Unit Test	(b) Time Reversal T	est c) Factor I	Reversal Test	(d) none					
27.	Laspeyre's metho	d and Paasche's method	do not satisfy							
	(a) Unit Test	(b) Time Reversal T	est c) Factor I	Reversal Test	(d) b & c					

STATISTICS

28.	The purpose determines the type of index number to use
	(a) yes (b) no (c) may be (d) may not be
29.	The index number is a special type of average
	(a) false (b) true (c) both (d) none
30.	The choice of suitable base period is at best temporary solution
	(a) true (b) false (c) both (d) none
31.	Fisher's Ideal Formula for calculating index numbers satisfies the tests
	(a) Unit Test (b) Factor Reversal Test (c) both (d) none
32.	Fisher's Ideal Formula dose not satisfy test
	(a) Unit Test (b) Circular Test (c) Time Reversal Test (d) none
33.	satisfies circular test
	a) G.M. of price relatives or the weighted aggregate with fixed weights
	b) A.M. of price relatives or the weighted aggregate with fixed weights
	c) H.M. of price relatives or the weighted aggregate with fixed weights
	d) none
34.	Laspeyre's and Paasche's method time reversal test
	(a) satisfy (b) do not satisfy (c) are (d) are not
35.	There is no such thing as unweighted index numbers
	(a) false (b) true (c) both (d) none
36.	Theoretically, G.M. is the best average in the construction of index numbers but in practice,
	mostly the A.M. is used
	(a) false (b) true (c) both (d) none
37	Laspeyre's or Paasche's or the Fisher's ideal index do not satisfy
	(a) Time Reversal Test (b) Unit Test (c) Circular Test (d) none
38.	is concerned with the measurement of price changes over a period of years, when it is
	desirable to shift the base
	(a) Unit Test (b) Circular Test (c) Time Reversal Test (d) none

FACULTY:CA MEGHA NAHTA

39.	The test of	shifting the	base is called										
	(a) Unit Te	est	(b) Time R	eversal Test	(c) Cir	cular Test	(d) no	one					
40.	The formu	la for conver	sion to currei	nt value									
	a) Def	a) Deflated value = $\frac{\text{Price Index of the current year}}{\text{previous value}}$											
	b) Def	lated value =	Price Index of t	he current year									
		c) Deflated value $\frac{\text{Price Index of the previous year}}{\text{previous value}}$											
			provide										
	d) Def	lated value =	Price Index of t	he previous year us value									
41.	Shifted pri	ce Index = $\frac{1}{Pr}$	Or: rice Index of the y	iginal Price ×100 year on which it h	as to be shifted								
	(a) True) false	(c) botl		(d) none							
42.	The number	er of test of A	dequacy is										
	(a) 2	(b)	5	(c) 3	(d) 4							
43.	We use pri	ce index nun	nbers										
	(a) To mea	sure and cor	npare prices		(b) to measu	re prices							
	(c) to com	pare prices		(d) none								
44.	Simple aggregate of quantities is a type of												
	(a) Quanti	ty control	(b) Qua	ntity indices	(c) b	oth	(d) none						
		ANSWERS											
	1. (a)	2. (d)	3. (a)	4. (c)	5. (b)	6. (b)	7. (a)	8.					
	9. (c)	10 . (a)	11. (b)	12. (a)	13. (a)	14. (d)	15. (c)	16.					
	17. (a)	18. (c)	19. (b)	20. (c)	21. (b)	22. (c)	23. (a)	24.					
	25. (c)	26. (a)	27. (d)	28. (a)	29. (b)	30. (a)	31. (c)	32.					
	33. (a)	34. (b)	35. (a)	36. (b)	37. (c)	38. (b)	39. (c)	40.					
	41. (a)	42. (d)	43. (a)	44. (b)									

T

	ADDITIONAL QUESTION BANK
1	Each of the following statements is either True or False write your choice of the answer by writing T
	for True
	(a) Index Numbers are the signs and guideposts along the business highway that indicate to the
	businessman how he should drive or manage
	(b) "For Construction index number, the best method on theoretical ground is not the best
	method from practical point of view".
	(c) Weighting index numbers makes them less representative.
	(d) Fisher's index number is not an ideal index number.
2	Each of the following statements is either True or False. Write your choice of the answer
	by writing F for false.
	(a) Geometric mean is the most appropriate average to be used for constructing an index number.
	(b) Weighted average of relatives and weighted aggregative methods render the same result.
	(c) "Fisher's Ideal Index Number is a compromise between two well known indices – not a right
	compromise, economically speaking".
	(d) "Like all statistical tools, index numbers must be used with great caution".
3	The best average for constructing an index numbers is
	(a) Arithmetic Mean (b) Harmonic Mean
	(c) Geometric Mean (d) None of these.
4	The time reversal test is satisfied by
	(a) Fisher's index number. (b) Paasche's index number.
	(c) Laspeyre's index number. (d) None of these.
5	The factor reversal test is satisfied by

	(a) Simple aggregative index number.	(b) Paasche's index number.	
	(c) Laspeyre's index number.	(d) None of these.	
6	The circular test is satisfied by		
	(a) Fisher's index number.	(b) Paasche's index number.	
	(c) Laspeyre's index number.	(d) None of these	
7	Fisher's index number is based on		
	(a) The Arithmetic mean of Laspeyre's and Paas	sche's index numbers	
	(b) The Median of Laspeyre's and Paasche's ind	lex numbers	
	(c) the Mode of Laspeyre's and Paasche's index	numbers.	
	(d) None of these.		
8	Paaschee's index is based on		
	(a) Base year quantities.	(b) Current year quantities	
	(c) Average of current and base year.	(d) None of these	
9	Fisher's ideal index number is		
	(a) The Median of Laspeyre's and Paasche's ind	ex numbers	
	(b) The Arithmetic Mean of Laspeyre's and Paas	sche's index numbers	
	(c) The Geometric Mean of Laspeyre's and Paas	che's index numbers	
	(d) None of these.		
10	Price-relative is expressed in term of		
	(a) $P = \frac{P_n}{P_o}$ (b) $P = \frac{P_o}{P_n}$	(c) $P = \frac{P_n}{P_o} \times 100$	(d) $P = \frac{P_o}{P_n} \times 100$
11	Paasehe's index number is expressed in terms o	of :	
	(a) $\frac{\sum P_n q_n}{\sum P_o q_n}$ (b) $\frac{\sum P_o q_o}{\sum P_n q_n}$	(c) $\frac{\sum P_n q_n}{\sum P_o q_n} \times 100$	(d) $\frac{\sum P_n q_o}{\sum P_o q_o} \times 100$
12	Time reversal Test is satisfied by following inde	ex number formula is	
	(a) Laspeyre's Index number		

	(b) Simple Arithmetic Mean of price relative formula					
	(c) Marshall-Edge worth formula.					
	(d) None of these					
13	Cost of Living Index number (C. L. I.) is expressed in terms of :					
	(a) $\frac{\sum P_n q_o}{\sum P_o q_o} \times 100$ (b) $\frac{\sum P_n q_n}{\sum P_o q_o}$ (c) $\frac{\sum P_o q_n}{\sum P_n q_n} \times 100$ (d) None of these.					
14	If the ratio between Laspeyre's index number and Paasche's Index number is 28 : 27. Then					
	the missing figure in the following table P is :					
	(a) 7 (b) 4 (c) 3 (d) 9					
15	If the prices of all commodities in a place have increased 1.25 times in comparison to the base					
	period, the index number of prices of that place now is					
	(a) 125 (b) 150 (c) 225 (d) None of these.					
16	If the index number of prices at a place in 1994 is 250 with 1984 as base year, then the					
	prices have increased on average by					
	(a) 250% (b) 150% (c) 350% (d) None of these.					
17	If the prices of all commodities in a place have decreased 35% over the base period prices,					
	then the index number of prices of that place is now					
	(a) 35 (b) 135 (c) 65 (d) None of these					
18	Link relative index number is expressed for period n is					
	(a) $\frac{P_n}{P_{n+1}}$ (b) $\frac{P_0}{P_{n-1}}$ (c) $\frac{P_n}{P_{n-1}} \times 100$ (d) None of these.					
19	Fisher's Ideal Index number is expressed in terms of :					
	(a) $(P_{on})^{F} = \sqrt{Laspeyre's Index \times (Paasche's Index)}$					
	(b) (P _{on}) ^F = Laspeyre's Index X Paasche's Index					
	(c) $(P_{on})^{F} = \sqrt{Marshall Edge worth Index \times Paasche's}$					
	(d) None of these.					
20	Factor Reversal Test According to Fisher is $P_{01} \times Q_{01} =$					

	(b) $\frac{\sum P_n q_n}{\sum P_o q_o}$ (b)	$\frac{\sum P_n q_n}{\sum P_o q_o}$	(c) $\frac{\sum P_o q_n}{\sum P_n q_n}$	(d) None of these	e.				
21	Marshall-edge worth Index formula after interchange of p and q is expressed in terms of :								
	(a) $\frac{\sum q_n (p_0 + p_n)}{\sum q_0 (p_0 + p_n)}$	(b)	$\frac{\sum P_n(q_0 + q_n)}{\sum q P_0(q_0 + q_n)}$						
	(c) $\frac{\sum P_0(q_0 + q_n)}{\sum P_n(P_0 + P_n)}$	(d) I	None of these.						
22	If $\sum P_n q_n = 249$, $\sum P_o q_o = 150$), Paasche's Index N	umber = 150 and D	robiseh and Bowely'	S				
	Index number = 145, then	the Fisher's Ideal Ind	dex Number is						
	(a) 75 (b) 60	(c) 145.9	97 (6	d) None of these.					
23	Consumer Price index nur	mber for the year 195	57 was 313 with 194	0 as the base year 96	the				
	Average Monthly wages i	n 1957 of the worker	s into factory be Rs	. 160/- their real wag	es is				
	(a) Rs. 48.40 (b) R	s. 51.12	(c) Rs. 40.30	(d) None of thes	se.				
24	If $\sum P_0 q_0 = 3500$, $\sum P_n q_0 = 3850$, then the Cost of living Index (C.L.I.) for 1950 w.r. to base 1960 is								
	(a) 110 (b) 90	(c) 10	00 (d) None of these.					
25	From the following table b	by the method of rela	atives using Arithm	etic mean the price I	index number is				
	Commodity	Wheat	Milk	Fish	Sugar				
	Base Price	5	8	25	6				
	Current Price	7	10	32	12				
	(a) 140.35 (b) 148.95	(c) 140.75	(d) None of th	ese.				
	From the Q.No. 26 to 29 each of the following statements is either True or False with your								
	choice of the answer by writing F for False.								
26	(a) Base year quantities are	e taken as weights ir	Laspeyre's price I	ndex number.					
	(b) Fisher's ideal index is e	equal to the Arithme	tic mean of Laspey	re's and Paasche's in	dex numbers.				
	(c) Laspeyre's index numb	er formula does not	satisfy time revers	al test.					
	(d) None of these.								
27	(a) Current year quantities	s are taken as weight	s in Paasche's price	e index number.					

	(b) Edge worth Marshall's index number formula satisfies Time, Reversal Test.					
	(c) The Arithmetic mean of Laspeyre's and Paasche's index numbers is called Bowely's index no.					
	(d) None of these.					
28	(a) Current year prices are taken as weights in Paasche's quantity index number.					
	(b) Fisher's Ideal Index formula satisfies factor Reversal Test.					
	(c) The sum of the quantities of the base period and current period is taken as weights in					
	Laspeyre's index number.					
	(d) None of these					
29	(a) Simple Aggregative and simple Geometric mean of price relatives formula satisfy circular Test.					
	(b) Base year prices are taken as weights in Laspeyre's quantity index numbers.					
	(c) Fisher's Ideal Index formula obeys time reversal and factor reversal tests.					
	(d) None of these.					
30	In 1980, the net monthly income of the employee was Rs. 800/- p. m. The consumer price					
	index number was 160 in 1980. It rises to 200 in 1984. If he has to be rightly compensated.					
	The additional D. A. to be paid to the employee is					
	(a) Rs. 175/- (b) Rs. 185/- (c) Rs. 200/- (d) Rs. 125.					
31	The simple Aggregative formula and weighted aggregative formula satisfy is					
	(a) Factor Reversal Test (b) Circular Test					
	(c) Unit Test (d) None of these.					
32	"Fisher's Ideal Index is the only formula which satisfies"					
	(a) Time Reversal Test (b) Circular Test					
	(c) Factor Reversal Test (d) a & c.					
33	"Neither Laspeyre's formula nor Paasche's formula obeys" :					
	(a) Time Reversal and factor Reversal Tests of index numbers					
	(b) Unit Test and circular Tests of index number.					
	(c) Time Reversal and Unit Test of index number.					
	(d) None of these.					
34	Bowley's index number is 150. Fisher's index number is 149.95. Paasche's index number is					

35	With the base year 19	60 the C I I in	1972 stood at 250. x wa	as getting a monthly	v Salary of Bs 500				
			maintain his standard						
	extra allowances of	1)72. III 1)72 to							
			() 5 200/	(1)	6.1				
0.6		(b) Rs. 500/-	(c) Rs. 300/-	(d) none o	of these				
36	From the following d	ata base year :-							
	Commodity	Ba	se Year	Curre	nt Year				
		Price	Quantity	Price	Quantity				
	А	4	3	6	2				
	В	5	4	6	4				
	С	7	2	9	2				
	D	2	3	1	5				
	Fisher's Ideal Index is	5							
		115.43	(c) 118.35	(d) 116.48					
37	Which statement is Fa								
	(a) The choice of suita	able base period	is at best a temporary s	solution.					
		•	1 2						
	(b) The index number is a special type of average.								
	(c) Those is no such thing as unweighted index numbers								
	(d) Theoretically, geometric mean is the best average in the construction of index numbersbut in practice, mostly the arithmetic mean is used.								
38									
50	Factor Reversal Test is expressed in terms of								
	(a) $\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}$	(b) $\frac{\sum P_1 Q_1}{\sum P_0 Q_0} \times \frac{\sum P_1}{\sum P_0}$	$\frac{P_1Q_1}{P_0Q_1}$ (c) $\frac{\Sigma}{\Sigma_1}$	$\frac{P_1Q_1}{Q_0P_1}$ (d)	$\frac{\Sigma Q_1 P_0}{\Sigma Q_0 P_0} \times \frac{\Sigma P_1 Q_1}{\Sigma Q_0 P_1}$				
39	Circular Test is satisf	ied by							
	(a) Laspeyre's Index	number							
	(b) Paasche's Index n	umber							
	(c) The simple geome	tric mean of pric	e relatives and the wei	ghted aggregative	with fixed weigh				
	(d) None of these	1		<u> </u>	0				
	(-)								

	Crewe		147-1-1-4	Index Muscher			
	Group		Weight	Index Number			
	Food		35	425			
	Cloth		15	235			
	Power & Fuel		20	215			
	Rent & Rates		8	115			
	Miscellaneous		22	150			
	The general Index number is						
	(a) 270 (b) 269.2	(c) 268.5	(d) 272.5				
41	From the following data with 1	From the following data with 1966 as base year					
	Commodity	Qu	antity Units	Values (₹)			
	А		100	500			
	В		80	320			
	C		60	150			
	D		30	360			
	The price per unit of commodity A in 1966 is						
	(a) Rs. 5 (b) Rs. 6	(c) Rs. 4	(d) Rs. 12				
42	The index number in whole sale prices is 152 for August 1999 compared to August 1998.						
	During the year there is net increase in prices of whole sale commodities to the extent of						
	(a) 45% (b) 35%	(c) 52%	(d) 48%				
43	The value Index is expressed in terms of						
	(a) $\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0} \times 100$ (b) $\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}$ (c) $\frac{\Sigma P_0 Q_0}{\Sigma P_1 Q_1} \times 100$ (d) $\frac{\Sigma P_0 Q_1 \times \Sigma P_1 Q_1}{\Sigma P_0 Q_0 \times \Sigma P_1 Q_0}$						
44	Purchasing Power of Money is						
	(a) Reciprocal of price index number.						
	(b) Equal to price index number.						
	(c) Unequal to price index num	lber					
	(d) None of these.						
45	The price level of a country in a	a certain year ha	s increased 25% ove	r the base period. The index no is			
	(a) 25 (b) 125		(c) 225	(d) 2500			

46	The index n	umber of prices at a	a place in 1998 is 355	5 with 1991	as base. This means			
	(a) There has been on the average a 255% increase in prices.							
	(b) There ha	s been on the avera	age a 355% increase	n price.				
	(c) There has	s been on the avera	ge a 250% increase i	n price.				
	(d) None of	these.						
47	If the price c	of all commodities i	in a place have incre	ased 125 ti	mes in comparison to the			
	base period	prices, then the inc	lex number of prices	for the pla	ace is now			
	(a) 100	(b) 125	(c) 225	(d) N	one of the above			
48	The wholesa	lle price index nur	ber or agricultural o	commoditi	es in a given region at a given			
	date is 280. 7	The percentage inc	rease in prices of ag	ricultural c	ommodities over the base year is :			
	(a) 380	(b) 280	(c) 180	(d) 80			
49	If now the p	rices of all the com	modities in a place l	nave been o	lecreased by 85% over the			
	base period prices, then the index number of prices for the place is now (index number of prices of							
	base period = 100)							
	(a) 100	(b) 135	(c) 65	(0	l) None of these.			
50.	From the da	ta given below						
	Commo	odity	Price Relativ	/e	Weight			
	А		125		5			
	В		67		2			
	C		250		3			
	Then the suitable index number is							
	(a) 150.9	(b) 155.8	(c) 145.8		(d) None of these.			
51	Bowley's Inc	dex number is expr	ressed in the form of	:				
	(a) Lasper	(a) $\frac{\text{Laspeyre's index + Paasche's index}}{2}$						
	(b) Laspey	zre's index × Pa 2	asche's index					
	(c) $\frac{\text{Laspeyre's index - Paasche's index}}{2}$							

	(d) None of these.						
52	From the following data						
	Commodity	Base Price	Current Pricet				
	Rice	35	42				
	Wheat	30	35				
	Pulse	40	38				
	Fish	107	120				
	The simple Aggregative In	dex is					
	(a) 115.8 (b) 110.	8 (c) 112.5	(d) 113.4				
53	With regard to Laspeyre's	and Paasche's price index numbe	rs, it is maintained that "If the				
	prices of all the goods char	ge in the same ratio, the two indi	ces will be equal for them the				
	weighting system is irrelevant; or if the quantities of all the goods change in the same ratio,						
	they will be equal, for them the two weighting systems are the same relatively". Then the above						
	statements satisfy.						
	(a) Laspeyre's Price index ≠ Paasche's Price Index.						
	(b) Laspeyre's Price Index = Paasche's Price Index.						
	(c) Laspeyre's Price Index may be equal Paasche's Price Index.						
	(d) None of these.						
54	The quantity Index number using Fisher's formula satisfies :						
	(a) Unit Test	(a) Unit Test (b) Factor Reversal Test.					
	(c) Circular Test. (d) Time Reversal Test.						
55	For constructing consumer price Index is used :						
	(a) Marshall Edge worth M	ethod. (b) Paasc	he's Method.				
	(c) Dorbish and Bowley's N	lethod. (d) Laspe	eyre's Method.				
56	The cost of living Index (C.	L.I.) is always :					
	(a) Weighted index	(b) Price Ind	lex.				
	(c) Quantity Index.	(d) None of	these.				
57	The Time Reversal Test is r	not satisfied to :					
	(a) Fisher's ideal Index.	(b) Marshall	Edge worth Method.				

	(c) Laspeyre's and Pa	asche Method.	(d) None o	f these.					
58	Given below are the	data on prices of	some consumer goo	ds and the weight	s attached to				
	the various items Co	mpute price inde	x number for the yea	ar 1985 (Base 1984	= 100)				
	Items	Unit	1984	1985	Weight				
	Wheat	Kg.	0.50	0.75	2				
	Milk	Litre	0.60	0.75	5				
	Egg	Dozen	2.00	2.40	4				
	Sugar	Kg.	1.80	2.10	8				
	Shoes	Pair	8.00	10.00	1				
	Then weighted avera	ge of price Relati	ve Index is :						
	(a) 125.43	(b) 123.3	(c) 124.53	(d) 124.52					
59	The Factor Reversal T	Test is as represer	nted symbolically is	:					
	(a) $P_{o1} \times Q_{o1} = \frac{\sum P_1 Q_1}{\sum P_0 Q_0}$								
60	If the 1970 index with	If the 1970 index with base 1965 is 200 and 1965 index with base 1960 is 150, the index 1970							
	on base 1960 will be :	on base 1960 will be :							
	(a) 700 (k	o) 300	(c) 500	(d) 600					
61	Circular Test is not m	Circular Test is not met by :							
	(a) The simple Geometric mean of price relatives								
	(b) The weighted aggregative with fixed weights.								
	(c) Laspeyre's or Paas	(c) Laspeyre's or Paasche's or the fisher's Ideal index.							
	(d) None of these.								
62	From the following d	From the following data							
	Commodity	Base	e Year	Ct	urrent Year				
		Price	Quantity	Price	Quantity				
	А	4	3	6	2				
	_	5	4	6	4				
	В								
	B	7	2	9	2				
	B C D	7 2	2 3	9	2 5				

	(a) $\frac{59}{52}$	(b) $\frac{49}{47}$	(c) $\frac{41}{53}$	(d) $\frac{47}{53}$				
63	The value index	x is equal to :						
	(a) The total su	m of the values	of a given year mul	iplied by the su	Im of the values of the base year.			
	(b) The total su	m of the values	of a given year Divi	ded by the sum	of the values of the base year.			
	(c) The total sur	m of the values	of a given year plus	by the sum of t	he values of the base year.			
	(d) None of the	ese.						
64	Time Reversal	Test is represent	ted symbolically by	:				
	(a) P01 x P10	(b) P	$P_{01} \ge P_{10} = 1$	(c) P01 x P10≠1	(d) None of these.			
65	In 1996 the ave	rage price of a c	commodity was 20%	more than in 19	995 but 20% less than in 1994;			
	and more over	and more over it was 50% more than in 1997 to price relatives using 1995 as base (1995 price						
	relative 100) Reduce the data is :							
	(a) 150, 100, 120	(a) 150, 100, 120, 80 for (1994–97) (b) 135, 100, 125, 87 for (1994–97)						
	(c) 140, 100, 120	(c) 140, 100, 120, 80 for (1994–97) (d) None of these.						
66	From the follow	ving data						
	Comr	nodities	Base 192 Price	22	Current Year 1934 Price			
		А	6		10			
		В	2		2			
		С	4		6			
		D	11	L	12			
		E	8		12			
	The price index	x number for the	e year 1934 is :					
	() 140	(b) 145	(c) 147	(4	d) None of these.			
	(a) 140	(0) 145		X	/			

	Commodi	ties	Base Price 1964			Current Price 1968		
	Rice		36			54		
	Pulse		30			50		
	Fish			130		155	5	
	Potato			40		35		
	Oil			110		110)	
	The index number b	y unweighted	l methods :					
	(a) 116.8 (b)) 117.25	(c) 115.35	;	(d) 119.37			
68	The Bowley's Price i	ndex number	is represente	d in terms of	:			
	(a) A.M. of Laspeyre	's and Paasch	e's Price inde	x number.				
	(b) G.M. of Laspeyre's and Paasche's Price index number.							
	(c) A.M. of Laspeyre's and Walsh's price index number.							
	(d) None of these.							
69	Fisher's price index	Fisher's price index number equal is :						
	(a) G.M. of Kelly's price index number and Paasche's price index number.							
	(b) G.M. of Laspeyre's and Paasche's Price index number.							
	(c) G.M. of Bowley's price index number and Paasche's price index number.							
	(d) None of these.							
70	The price index num	ber using sim	ple G.M. of t	ne n relatives	is given by	/ :		
71	The price of a number of commodities are given below in the current year 1975 and base year 1970.							
	Commodities	А	В	С	D	E	F	
	Base Price	45	60	20	50	85	120	
	Current Price	55	70	30	75	90	130	
	For 1975 with base 1	970 by the Me	ethod of price	relatives usi	ng Geomet	rical mean, the	price index	
	(a) 125.3 (l	o) 124.3	(c) 128.8	(0	d) None of	these.		
72	From the following	data						

	-									
	Group	А	В	С	D	E	F			
	Group Index	120	132	98	115	108	95			
	Weight	6	3	4	2	1	4			
	The general Index I is	given by :								
	(a) 111.3	(b) 113.45		(c) 117.25	(d) 114.75				
73	The price of a commo	dity increase	s from Rs. 5 p	er unit in 199	90 to Rs. 7.50	per unit in 19	95 and the			
	quantity consumed d	ecreases from	n 120 units in	1990 to 90 ur	nits in 1995. T	The price and	quantity			
	in 1995 are 150% and	75% respecti	vely of the co	rresponding	price and qu	antity in 1990).			
	Therefore, the produc	t of the price	ratio and qu	antity ratio is	;; ;;					
	(a) 1.8	(b) 1.125	(0) 1.75	(d) N	one of these				
74	Test whether the inde	x number du		, 						
	Test whether the index number due to Walsh give by :									
	$I = \frac{\sum P_1 \sqrt{Q_0 Q_1}}{\sum P_0 \sqrt{Q_0 Q_1}} \times 100 \text{ Satisfies is :-}$									
	(a) Time reversal Test. (b) Factor reversal Test.									
	(c) Circular Test.		(d)	None of thes	e.					
75.	From the following da	ata								
	Group		Weight				Number 52–53 = 100			
	Food		50			241				
	Clothing		2			21				
		3				21				
	Fuel and Light			3		2	21 204			
	Fuel and Light Rent			3 16						
	-					2	04			
	Rent	ex numbers i	is :	16		2	.04 256			
	Rent Miscellaneous The Cost of living ind	ex numbers i 23.91	is : (c) 225.32	16 29	d) None of th	2	.04 .56			
76	Rent Miscellaneous The Cost of living ind	23.91	(c) 225.32	16 29 ((,	2 1 ese.	204 256 79			
76	Rent Miscellaneous The Cost of living ind (a) 224.5 (b) 2 Consumer price index	23.91 < number goe	(c) 225.32 es up from 11	16 29 (0 0 to 200 and	the Salary of	2 1 ese. a worker is a	256 79 lso raised			
76	Rent Miscellaneous The Cost of living ind (a) 224.5 (b) 2	23.91 < number goo . Therefore, i	(c) 225.32 es up from 11 n real terms,	16 29 (0 0 to 200 and	the Salary of	2 1 ese. a worker is a	256 79 lso raised			

77	The prices of a c	commodity in th	ne year 1975 and 1	1980 were 2	5 and 30 respecti	vely taking 1980 as base	
	year the price re	elative is :					
	(a) 109.78	(b) 110.25	(c) 113.25		(d) None of these		
78	The average pri	ce of certain cor	nmodities in 1980) was Rs. 60	and the average	price of the same	
	commodities in	1982 was Rs. 12	0. Therefore, the	increase in 1	1982 on the basis	of 1980 was 100%. 80	
			as base is: using				
			by 60% using 198				
			by 50% using 198				
			by 90% using 198				
			by 90 % using 196	2 as Dase.			
70	(d) None of the			1. (1. 1			
79			mbers are also us			process of	
	(a) Deflating of	Index number.	(ł	o) Splicing o	of Index number.		
	(c) Base shifting	5.	(d) None of tl	nese.		
80	From the follow	ving data					
	Comm	odities	А	В	С	D	
	1992 Base	Price	3	5	4	1	
	4000	Quantity	18	6	20	14	
	1993 Current	Price Quantity	4	4 5 15 9		3	
	Year	Quantity	15	,	26	15	
	The Passche pri	ce Index numbe	er is :				
	(a) 146.41	(b) 148.25	5 (c) 1	44.25	(d) None of these.		
81	From the follow	ving data					
	Commodit		Base Year		Cur	rent Year	
	Continuoun	y Pri		antity	Price	Quantity	
	А	7		17	13	25	
	В	6		23	7	25	
	С	1		14	13	15	
	D	4		10	8	8	
	The Marshall E	dge Worth Inde	x number is :				

STATISTICS

	(a) 148.25	(b) 144.19	(c) 147.25	(d) No	one of these.					
82	The circular Tes	t is an extension of								
	(a) The time rev	ersal Test.	(b) The	e factor reversal	Test.					
	(c) The unit Test		(d) No	ne of these.						
83	Circular test, an	index constructed	for the year 'x' on	he base year 'y	' and for the yea	r 'y' on the ba				
	year 'z' should y equalis	rield the same resul	lt as an index cons	ructed for 'x' or	n base year 'z' i.e	e. $\mathbf{I}_{01} \times \mathbf{I}_{12} \times \mathbf{I}_{20}$				
	(a) 3 (b	o) 2 (c)	1 (d)	None of these.						
84	In 1976 the aver	age price of a comn	nodity was 20% m	ore than that in	1975 but 20% les	s than that				
	in 1974 and mor	e over it was 50% r	nore than that in 1	977. The price re	elatives using 19	75 as				
	base year (1975	price relative = 100)) then the reduce d	ate is :						
	(a) 8,.75	(b) 150,80	(c) 75,125	(d) No	ne of these.					
85	Time Reversal T	est is represented b	by symbolically is :							
	(a) $P_{01} \times Q_{01} = 1$		(b) $I_{01} \times I_{10} = 1$							
	(c) I01 x I12 x I23 x	$I_{(n-1)n} \times I_{n0} = 1$	(d) None of thes	e.						
86		ommodity in the ye	ears 1975 and 1980	were 25 and 30	respectively, tal	king 1975 as				
	base year the pr					-				
) 122 (0	l) None of these	2.					
87	From the follow	ing data	,	,						
	Veee	1000	1002	1005	1007	1007				
	Year Link Inde	1992 ex 100	1993 103	1995 105	1996 112	1997 108				
	(Base 1992 = 100) for the years 1993–97. The construction of chain index is :									
	(a) 103, 100.94, 1		· · · · · · · · · · · · · · · · · · ·) 103, 108.15, 12	1.3, 130.82					
	(c) 107, 100.25, 1			None of these						
88	During a certain	period the cost of	living index numb	er goes up from	110 to 200 and t	he				
	salary of a work	er is also raised fro	m Rs. 330 to Rs. 500	. The worker d	oes not get really	⁷ gain.				
	Then the real wa	ages decreased by :								
	(a) Rs. 45.45	(b) Rs. 43.25	(c) Rs.	100	(d) None of	f these				

FACULTY:CA MEGHA NAHTA

	in 1985 is 250 with 1980 as base year. If the has to be rightly compensated then, 7th dearness
	allowances to be paid to the employee is :
	(a) Rs. 4.800.00 (b) Rs. 4,700.00 (c) Rs. 4,500.0 (d) None of these.
90	Net Monthly income of an employee was Rs. 800 in 1980. The consumer price Index number
	was 160 in 1980. It is rises to 200 in 1984. If he has to be rightly compensated. The additional
	dearness allowance to be paid to the employee is :
	(a) Rs. 240 (b) Rs. 275 (c) Rs. 250 (d) None of these.
91	When the cost of Tobacco was increased by 50%, a certain hardened smoker, who
	maintained his formal scale of consumption, said that the rise had increased his cost of
	living by 5%. Before the change in price, the percentage of his cost of living was due to
	buying Tobacco is
	(a) 15% (b) 8% (c) 10% (d) None of these.
92	If the price index for the year, say 1960 be 110.3 and the price index for the year, say 1950
	be 98.4, then the purchasing power of money (Rupees) of 1950 will in 1960 is
	(a) Rs. 1.12 (b) Rs. 1.25 (c) Rs. 1.37 (d) None of these.
93	If $\sum P_0 Q_0 = 1360$, $\sum P_n Q_0 = 1900$, $\sum P_0 Q_n = 1344$, $\sum P_n Q_n = 1880$ then the Laspeyre's Index number
94	
74	The consumer price Index for April 1985 was 125. The food price index was 120 and
	other items index was 135. The percentage of the total weight of the index is
	(a) 66.67 (b) 68.28 (c) 90.25 (d) None of these
95	The total value of retained imports into India in 1960 was Rs. 71.5 million per month. The
	corresponding total for 1967 was Rs. 87.6 million per month. The index of volume of retained
	imports in 1967 composed with 1960 (= 100) was 62.0. The price index for retained inputs
	for 1967 our 1960 as base is
	(a) 198.61 (b) 197.61 (c) 198.25 (d) None of these.
96	During the certain period the C.L.I. goes up from 110 to 200 and the Salary of a worker is
	also raised from 330 to 500, then the real terms is
	(a) Loss by Rs. 50 (b) Loss by 75 (c) Loss by Rs. 90 (d) None of these.

T

97	From the following data				
	Commodities	Q,	Po	Q,	P,
	А	2	2	6	18
	В	5	5	2	2
	С	7	7	4	24
	Then the fisher's quantity	y index number is			
	(a) 87.34 (b) 85.2	24 (c) 87.2	5 (d) Nor	ne of these	
98	From the following data				
	Then index numbers from	n G. M. Method is :			
	(a) 181.66 (b) 18	5.25 (c) 18	31.75 (d)	None of these	
99	Using the following data				
	Commodity	Base Yea	r	Curren	t Year
	, F		Quantity	Price	Quantity
	х	4	10	6	15
	Y	6	15	4	20
	Z	8	5	10	4
	the Paasche's formula for	r index is :			
	(a) 125.38 (b) 147	.25 (c) 129.8	3 (d)	None of these	
100	Group index number is r	epresented by			
	(a) Price Relative for Price Relative for the p	the year revious year			
	(b) $\frac{\Sigma(\operatorname{PriceRelative} \times w)}{\Sigma w}$				
	(c) $\frac{\sum (\Pr \text{ ice } \operatorname{Re lative} \times w)}{\sum w} \times w$	100			
	(d) None of these.				

1. (a) 2. (c) 3. (c) 4. (a) 5. (a) 6. (d) 7. (d) 8. (b) 9. (c) 10. (c) 11. (c) 12. (c) 13. (a) 14. (b) 15. (c) 16. (b) 17. (c) 18. (c) 19. (a) 20. (b) 21. (a) 22. (d) 23. (b) 24. (a) 25. (b) 26. (b) 27. (d) 28. (c) 29. (d) 30. (c) 31. (b) 32. (d) 33. (a) 34. (a) 35. (b) 36. (a) 37. (c) 38. (a) 39. (c) 40. (b) 41. (a) 42. (c) 43. (a) 44. (a) 45. (b) 46. (a) 47. (c) 48. (c) 49. (c) 50. (a) 51. (a) 52. (b) 53. (b) 54. (d) 55. (d) 56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b)	6. (d)7. (d)8. (b)9. (c)10. (c)11. (c)12. (c)13. (a)14. (b)15. (c)16. (b)17. (c)18. (c)19. (a)20. (b)21. (a)22. (d)23. (b)24. (a)25. (b)26. (b)27. (d)28. (c)29. (d)30. (c)31. (b)32. (d)33. (a)34. (a)35. (b)36. (a)37. (c)38. (a)39. (c)40. (b)41. (a)42. (c)43. (a)44. (a)45. (b)46. (a)47. (c)48. (c)49. (c)50. (a)51. (a)52. (b)53. (b)54. (d)55. (d)56. (a)57. (c)58. (b)59. (a)60. (b)61. (c)62. (a)63. (b)64. (b)65. (a)66. (d)67. (a)68. (a)69. (b)70. (b)71. (b)72. (a)73. (b)74. (a)75. (d)76. (b)77. (d)78. (b)79. (a)80. (a)81. (b)82. (a)83. (c)89. (c)90. (a)91. (c)92. (a)93. (b)94. (a)95. (b)96. (a)97. (a)98. (a)99. (d)100. (b)				A	NSWER	S			
11. (c)12. (c)13. (a)14. (b)15. (c)16. (b)17. (c)18. (c)19. (a)20. (b)21. (a)22. (d)23. (b)24. (a)25. (b)26. (b)27. (d)28. (c)29. (d)30. (c)31. (b)32. (d)33. (a)34. (a)35. (b)36. (a)37. (c)38. (a)39. (c)40. (b)41. (a)42. (c)43. (a)44. (a)45. (b)46. (a)47. (c)48. (c)49. (c)50. (a)51. (a)52. (b)53. (b)54. (d)55. (d)56. (a)57. (c)58. (b)59. (a)60. (b)61. (c)62. (a)63. (b)64. (b)65. (a)66. (d)67. (a)68. (a)69. (b)70. (b)71. (b)72. (a)73. (b)74. (a)75. (d)76. (b)77. (d)78. (b)79. (a)80. (a)81. (b)82. (a)83. (c)89. (c)90. (a)91. (c)92. (a)93. (b)94. (a)95. (b)96. (a)97. (a)98. (a)99. (d)100. (b)	11. (c)12. (c)13. (a)14. (b)15. (c)16. (b)17. (c)18. (c)19. (a)20. (b)21. (a)22. (d)23. (b)24. (a)25. (b)26. (b)27. (d)28. (c)29. (d)30. (c)31. (b)32. (d)33. (a)34. (a)35. (b)36. (a)37. (c)38. (a)39. (c)40. (b)41. (a)42. (c)43. (a)44. (a)45. (b)46. (a)47. (c)48. (c)49. (c)50. (a)51. (a)52. (b)53. (b)54. (d)55. (d)56. (a)57. (c)58. (b)59. (a)60. (b)61. (c)62. (a)63. (b)64. (b)65. (a)66. (d)67. (a)68. (a)69. (b)70. (b)71. (b)72. (a)73. (b)74. (a)75. (d)76. (b)77. (d)78. (b)79. (a)80. (a)81. (b)82. (a)83. (c)89. (c)90. (a)91. (c)92. (a)93. (b)94. (a)95. (b)96. (a)97. (a)98. (a)99. (d)100. (b)	1. (a)	2.	(c)	3.	(c)	4.	(a)	5.	(a)
16. (b)17. (c)18. (c)19. (a)20. (b)21. (a)22. (d)23. (b)24. (a)25. (b)26. (b)27. (d)28. (c)29. (d)30. (c)31. (b)32. (d)33. (a)34. (a)35. (b)36. (a)37. (c)38. (a)39. (c)40. (b)41. (a)42. (c)43. (a)44. (a)45. (b)46. (a)47. (c)48. (c)49. (c)50. (a)51. (a)52. (b)53. (b)54. (d)55. (d)56. (a)57. (c)58. (b)59. (a)60. (b)61. (c)62. (a)63. (b)64. (b)65. (a)66. (d)67. (a)68. (a)69. (b)70. (b)71. (b)72. (a)73. (b)74. (a)75. (d)76. (b)77. (d)78. (b)79. (a)80. (a)81. (b)82. (a)83. (c)89. (c)90. (a)91. (c)92. (a)93. (b)94. (a)95. (b)96. (a)97. (a)98. (a)99. (d)100. (b)	16. (b)17. (c)18. (c)19. (a)20. (b)21. (a)22. (d)23. (b)24. (a)25. (b)26. (b)27. (d)28. (c)29. (d)30. (c)31. (b)32. (d)33. (a)34. (a)35. (b)36. (a)37. (c)38. (a)39. (c)40. (b)41. (a)42. (c)43. (a)44. (a)45. (b)46. (a)47. (c)48. (c)49. (c)50. (a)51. (a)52. (b)53. (b)54. (d)55. (d)56. (a)57. (c)58. (b)59. (a)60. (b)61. (c)62. (a)63. (b)64. (b)65. (a)66. (d)67. (a)68. (a)69. (b)70. (b)71. (b)72. (a)73. (b)74. (a)75. (d)76. (b)77. (d)78. (b)79. (a)80. (a)81. (b)82. (a)83. (c)89. (c)90. (a)91. (c)92. (a)93. (b)94. (a)95. (b)96. (a)97. (a)98. (a)99. (d)100. (b)	6. (d)	7.	(d)	8.	(b)	9.	(c)	10.	(c)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	11. (c)	12.	(c)	13.	(a)	14.	(b)	15.	(c)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	16. (b)	17.	(c)	18.	(c)	19.	(a)	20.	(b)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21. (a)							25.	(b)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26. (b)	27.	(d)	28.	(c)	29.	(d)	30.	(c)
41. (a) 42. (c) 43. (a) 44. (a) 45. (b) 46. (a) 47. (c) 48. (c) 49. (c) 50. (a) 51. (a) 52. (b) 53. (b) 54. (d) 55. (d) 56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	41. (a) 42. (c) 43. (a) 44. (a) 45. (b) 46. (a) 47. (c) 48. (c) 49. (c) 50. (a) 51. (a) 52. (b) 53. (b) 54. (d) 55. (d) 56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	31. (b)	32.	(d)	33.	(a)	34.	(a)	35.	(b)
46. (a) 47. (c) 48. (c) 49. (c) 50. (a) 51. (a) 52. (b) 53. (b) 54. (d) 55. (d) 56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	46. (a) $47.$ (c) $48.$ (c) $49.$ (c) $50.$ (a) $51.$ (a) $52.$ (b) $53.$ (b) $54.$ (d) $55.$ (d) $56.$ (a) $57.$ (c) $58.$ (b) $59.$ (a) $60.$ (b) $61.$ (c) $62.$ (a) $63.$ (b) $64.$ (b) $65.$ (a) $66.$ (d) $67.$ (a) $68.$ (a) $69.$ (b) $70.$ (b) $71.$ (b) $72.$ (a) $73.$ (b) $74.$ (a) $75.$ (d) $76.$ (b) $77.$ (d) $78.$ (b) $79.$ (a) $80.$ (a) $81.$ (b) $82.$ (a) $83.$ (c) $89.$ (c) $90.$ (a) $91.$ (c) $92.$ (a) $93.$ (b) $94.$ (a) $95.$ (b) $96.$ (a) $97.$ (a) $98.$ (a) $99.$ (d) $100.$ (b)	36. (a)	37.	(c)	38.	(a)	39.	(c)	40.	(b)
51. (a) 52. (b) 53. (b) 54. (d) 55. (d) 56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	51. (a) 52. (b) 53. (b) 54. (d) 55. (d) 56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	41 . (a)	42.	(c)	43.	(a)	44.	(a)	45.	(b)
56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	56. (a) 57. (c) 58. (b) 59. (a) 60. (b) 61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	4 6. (a)	47.	(c)	48.	(c)	49.	(c)	50.	(a)
61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	61. (c) 62. (a) 63. (b) 64. (b) 65. (a) 66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	51. (a)	52.	(b)	53.	(b)	54.	(d)	55.	(d)
66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	66. (d) 67. (a) 68. (a) 69. (b) 70. (b) 71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	56. (a)	57.	(c)	58.	(b)	59.	(a)	60.	(b)
71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	71. (b) 72. (a) 73. (b) 74. (a) 75. (d) 76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	61. (c)	62.	(a)	63.	(b)	64.	(b)	65.	(a)
76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	76. (b) 77. (d) 78. (b) 79. (a) 80. (a) 81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	66. (d)	67.	(a)	68.	(a)	69.	(b)	70.	(b)
81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	81. (b) 82. (a) 83. (c) 84. (b) 85. (b) 86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	71. (b)	72.	(a)	73.	(b)	74.	(a)	75.	(d)
86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	86. (a) 87. (b) 88. (c) 89. (c) 90. (a) 91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	76. (b)	77.	(d)	78.	(b)	79.	(a)	80.	(a)
91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	91. (c) 92. (a) 93. (b) 94. (a) 95. (b) 96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	81. (b)	82.	(a)	83.	(c)	84.	(b)	85.	(b)
96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	96. (a) 97. (a) 98. (a) 99. (d) 100. (b)	86. (a)	87.	(b)	88.	(c)	89.	(c)	90.	(a)
		91. (c)	92.	(a)	93.	(b)	94.	(a)	95.	(b)
		96. (a)	97.	(a)	98.	(a)	99.	(d)	100.	(b)
					וחווד	INT N	OTES			

CH - 6		UN	IT II -	TIME	SERI	ES				
	<u>GRAPHICAL M</u>	<u>IETHO</u>	D							
Q 1.	The following are	figures o	f a Sale	for the l	ast nine	years. De	etermine	the tren	d by line	
	by the freehand me	ethod.								
	Year	2000	2001	2002	2003	2004	2005	2006	2007	2008
	Sale in lac Units	75	95	115	65	120	100	150	135	175
	The trend line draw since the freehand of predictions.	9 115 01 2002 7n by the	2003 2 Y		2006 20 d can be o	extended				
	METHODS OF SEM	I AVERA	GES: Un	der this r	nethod tl	he whole	time ser	ies data i	S	
	classified into two e									
	even number of yea the middle year of t									
	each side of the mic									
	value correspondin These two points an									

	required trend line									
2.	Fit a trend line to	the followi	ng data by	the metho	d of Semi-	averages.				
	Year	2000	2001	2002	2003	2004	2005	2006		
	Sale in lac Units	100	105	115	110	120	105	115		
Solution	Since the data cons	ist of sever	Years, the	middle yea	ar shall be l	eft out and	an average	of the		
	first three years an	d last three	shall be ol	otained. Th	e average o	f first three	years is $\frac{10}{10}$	$\frac{0+105+115}{3}$		
				$\frac{320}{3}$						
	or 106.67 and the a	verage of l	ast three ye	ears $\frac{120+105}{3}$	$\frac{5+115}{3}$ or $\frac{340}{3}$	or 133.33				
	125 SLIN 120 115 100 100 95 90 2000 2001	2002	2003 200 YEAR	120 105 04 2005	115					
	MOVING AVERAGE	METHOD:	A moving	average is a	an average	(Arithmeti	c mean) of f	fixed		
	number of items (known as periods) which moves through a series by dropping the first item									
	the previously averaged group and adding the next item in each successive average. The value									
	computed is considered the trend value for the unit of time falling at the centre of the period									
	used in the calculation of the average.									
	In case the period	is odd: If th	e period of	moving av	erage is od	d for instan	ice for comp	outing 3		
	Yearly moving aver	age, the va	lue of 1st, 2	2nd and 3rc	l years are	added up a	nd arithme	tic mean is		
	found out and the a	nswer is p	aced again	st the 2nd	year; then v	value of 2nd	l, 3rd and 4	th years u		
	are added and arith	imetic mea	n is derive	d and this a	verage is p	laced again	st 3rd year	(i.e. the		
	middle of 2nd, 3rd	and 4th) ar	nd so on.							
	In case of even nu	mber of ye	ars: If the p	eriod of mo	oving avera	ge is even f	or instance	for		

arithmeti period of taking a t	c mean is a given tii	ver is place placed aga me series	ainst mide	dle of 3rd	& 4th year	. As this v	vould not			
period of taking a t	a given tii							coincide v	vith a	
taking a t		me series	an attemp	t is made	, 1					
	wo neriod			is made	to synchro	onise then	n with the	original d	lata by	
		l average o	of the mov	ving avera	ges and pl	acing the	n in betwo	een the pe	eriods.	
correspor	iding time	e This tech	nnique is c	called cent	ring& the	correspo	nding mov	ving avera	ges are	
called mo	ving aver	age centre	ed.							
The wave	s of certa	in factoru	workers	are aiven a	as helow.	Usino 3 u	parlu movi	no overane	e indica	
						using 2 ge		ing average		
the trend	in wages									
Year	2004	2005	2006	2007	2008	2009	2010	2011	2012	
Wages	1200	1500	1400	1750	1800	1700	1600	1500	1750	
I			1	1				1		
Table: Cal	culation of	of Trend V	alues by r	nethod of	3 yearly M	loving Av	erage			
Year		Wages				-				
2004		1200			-	,	a	verage i.e.	. trenta	
2005					4100)		1366.6	7	
2006		1400	0		4650			1550		
2007		1750	0		4950			1650		
2008		1800	0		5250			1750		
2009		1700	0		5100			1700		
2010		1600	0					1600		
2011		1500	0		4850			1616.67		
2011	<u> </u>	1750			-			-		
	The wages the trend Year Wages Table: Cal 2004 2005 2006 2007 2008 2009	The wages of certa the trend in wages Year 2004 Wages 1200 Table: Calculation of 2004 0 Year 0 Year 0 2004 0 2004 0 2005 0 2006 0 2007 0 2008 0 2009 0	The wages of certain factory the trend in wages Year 2004 2005 Wages 1200 1500 Table: Calculation of Trend V Year Wag 2004 1200 2005 1500 Year Wag 2004 1200 2005 1500 2006 1400 2007 1750 2008 1800 2009 1700	Year 2004 2005 2006 Wages 1200 1500 1400 Table: Calculation of Trend Values by r Year Wages 2004 1200 2004 1200 1500 1400 2004 1200 1500 1400 2005 1500 1500 1500 2006 1400 1200 1500 2005 1500 1500 1500 2006 1400 1200 1500 2005 1500 1500 1500 2008 1800 1800 1800 2009 1700 1700 1700	The wages of certain factory workers are given of the trend in wages Year 2004 2005 2006 2007 Wages 1200 1500 1400 1750 Table: Calculation of Trend Values by method of 2007 Year Wages 3 2004 1200 1400 1750 Year Wages 3 3 2004 1200 1500 1400 1750 2005 1500 1 <th1< th=""> 1 <th1< th=""></th1<></th1<>	Year 2004 2005 2006 2007 2008 Wages 1200 1500 1400 1750 1800 Year 2004 2005 2006 2007 2008 Wages 1200 1500 1400 1750 1800 Table: Calculation of Trend Values by method of 3 yearly M Year Wages 3 yearly m 2004 1200 - - 2005 1500 4100 - 2006 1400 4650 - 2007 1750 4950 - 2008 1800 5250 - 2009 1700 5100 -	The wages of certain factory workers are given as below. Using 3 ye the trend in wages Year 2004 2005 2006 2007 2008 2009 Wages 1200 1500 1400 1750 1800 1700 Table: Calculation of Trend Values by method of 3 yearly Moving Ave Year Wages 3 yearly moving totals 2004 1200 - - 2005 1500 4100 - 2006 1400 4650 - 2007 1750 4950 - 2008 1800 5250 - 2009 1700 5100 -	The wages of certain factory workers are given as below. Using 3 yearly movie the trend in wages Year 2004 2005 2006 2007 2008 2009 2010 Wages 1200 1500 1400 1750 1800 1700 1600 Table: Calculation of Trend Values by method of 3 yearly moving Average Year Wages 3 yearly moving Average 2004 1200 - 2005 3 yearly moving Average 3 yearly moving Average<	Year 2004 2005 2006 2007 2008 2009 2010 2011 Wages 1200 1500 1400 1750 1800 1700 1600 1500 Year Wages 1200 1500 1400 1750 1800 1700 1600 1500 Table: Calculation of Trend Values by method of 3 yearly moving Average Year Wages 3 yearly moving average i.e. 2004 1200 - - - - - - - 2005 1500 4100 1366.6 2006 1500 1500 4100 1366.6 2006 1500 1650 1500 1500 1650 1500 1650 1650 1750 1750 1750	

	Year	2005	2006	2008	2009	2010	2011	2012
	Wages	1150	1250 1	320 1400	1300	1320	1500	170
on	(First Metl	nod):						
			year Centred M	oving Average				
	Year	Wages	4 yearly moving	2 year moving	total	4 year	rly moving	
	(1)	(2)	total (3)	of col. 3 (centre	ed) (4)	average cen		
	2005	1,150	_	_		0	_	_
	2006	1,250	_				_	
	2000	1,200	5,120					
	2007	1 220	5,120	10.200		1	002.75	
	2007	1,320	E 050	10,390		1,	,298.75	
		1.400	5,270	10.210		-	226.25	
	2008	1,400	/ -	10,610		1,	,326.25	
			5,340					
	2009	1,300		10,860		1,	,357.50	
			5,520					
	2010	1,320		11,340		1,	,417.50	
			5,820					
	2011	1,500						
	2012	1,700						
	Second Me	thod:						
			Centred Moving	Average				
			Centred Moving 4 yearly movin total (3)		tota	ar moving al of col. 4 atered) (5)	4 year c moving (col.	
	Calculation Year 2005	Wages	4 yearly movin	ng 4 yearly movi	tota	al of col. 4	moving	averag
	Calculation Year	n of 4 year Wages	4 yearly movin total (3) 	ng 4 yearly movi average (4) –	tota	nl of col. 4 ntered) (5) – –	moving	averag
	Calculation Year 2005 2006	n of 4 year Wages 1,150 1,250	4 yearly movin	ng 4 yearly movi	tota (cer	nl of col. 4 ntered) (5) - - -	moving (col.	averag . 5/2)
	Calculation Year 2005	Wages	4 yearly movin total (3) 	ng 4 yearly movi average (4) – 1,280	tota (cer	nl of col. 4 ntered) (5) – –	moving (col. - 1,29	averag . 5/2) - - - - 98.75
	Calculation Year 2005 2006 2007	n of 4 year Wages 1,150 1,250 1,320	4 yearly movin total (3) 	ng 4 yearly movi average (4) –	2 tota	nl of col. 4 ntered) (5) - - 2,597.75 -	moving (col. - 1,29	averag . 5/2) - - - - 98.75 -
	Calculation Year 2005 2006	n of 4 year Wages 1,150 1,250	4 yearly movin total (3) - 5,120 5,270	ng 4 yearly movi average (4) - 1,280 1,317.5	2 tota	nl of col. 4 ntered) (5) - - 2,597.75 - 2,652.5	moving (col. - 1,29	averag . 5/2) - - - - 98.75
_	Calculation Year 2005 2006 2007 2008	n of 4 year Wages 1,150 1,250 1,320 1,400	4 yearly movin total (3) 	ng 4 yearly movi average (4) – 1,280	2 tota	nl of col. 4 ntered) (5) - - 2,597.75 - 2,652.5 -	moving (col. – 1,29 1,32	averag . 5/2) - - - 98.75 - 26.25 -
	Calculation Year 2005 2006 2007	n of 4 year Wages 1,150 1,250 1,320	4 yearly movin total (3) - - 5,120 5,270 5,340	ng 4 yearly movi average (4) - - 1,280 1,317.5 1,335	2 tota	nl of col. 4 ntered) (5) - - 2,597.75 - 2,652.5	moving (col. – 1,29 1,32	averag . 5/2) - - - - 98.75 -
	Calculation Year 2005 2006 2007 2008 2009	n of 4 year Wages 1,150 1,250 1,320 1,400 1,300	4 yearly movin total (3) - 5,120 5,270	ng 4 yearly movi average (4) - 1,280 1,317.5	2 tota	al of col. 4 atered) (5) - - 2,597.75 - 2,652.5 - 2,715	moving (col. – 1,29 1,32 1,35	averag . 5/2) - - - - - - - - - - - - - - - - - - -
	Calculation Year 2005 2006 2007 2008	n of 4 year Wages 1,150 1,250 1,320 1,400	4 yearly movin total (3) - - 5,120 5,270 5,340 5,520	ng 4 yearly movi average (4) - - 1,280 1,317.5 1,335 1,380	2 tota	nl of col. 4 ntered) (5) - - 2,597.75 - 2,652.5 -	moving (col. - 1,29 1,32 1,35 1,35	averag . 5/2) - - - - - - - - - - - - - - - - - - -
	Calculation Year 2005 2006 2007 2008 2009	n of 4 year Wages 1,150 1,250 1,320 1,400 1,300	4 yearly movin total (3) - - 5,120 5,270 5,340	ng 4 yearly movi average (4) - - 1,280 1,317.5 1,335	2 tota	al of col. 4 atered) (5) - - 2,597.75 - 2,652.5 - 2,715	moving (col. - 1,29 1,32 1,35 1,35	averag . 5/2) - - - - - - - - - - - - - - - - - - -

	Calculate f	ïve yearly	moving	averages	for the f	following	data.				
	Year	2003	2004	2005	2006	2007	2008	2009	2010	2011	201
	Value	123	140	110	98	104	133	95	105	150	13
	Table: Com	Table: Computation of Five Yearly Moving Averages Year Value ('000 ₹) 5 yearly moving totals ('000 ₹) 2003 123 - 2004 140 - 2005 110 575 2006 98 585 2007 104 540 2008 133 535 2009 95 587 2010 105 618 2011 150 - 2012 135 -									
		putation	Value			early mo		als	5 yearly 1	moving a ('000 ₹)	veraş
	2003		123			-	-			-	
	2004		140			-	-			-	
	2005		110			57	75			115	
	2006		98			58	35			117	
	2007		104			54	ŧ0			108	
	2008		133			53	35			107	
	2009		95			58	37			117.4	
	2010		105			61	18			123.6	
	2011		150			-	-			-	
	2012		135			-	-			-	
	LEAST S The method best fit to a The regress	d of least time ser	squares ies data.	as studie						the trend	lineo
	where Y =	predicted	d value of	the depe	endent va	ariable					
	a = Y axis intercept or the height of the line above origin (i.e. when X b = slope of the regression line (it gives the rate of change in Y for a g								0, Y = a)		
									en change	in X) (wl	hen l
	b = slope o	of the reg	ession li	rds, when b is negative, the slope is downwards) $X =$ independen							
						ative, the		downw			
-		the slope	is upwar	ds, when		ative, the		downw			
-	Is positive	the slope /hich is ti	is upwar me in thi	ds, when s case)	ı b is neg		slope is		ards) X =	independ	lent

	To simplif	fy the o	calculati	ions, i	if the mid poin	t of th	ne time	series is taker	n as origin, the	en the	
	negative v	values	in the f	irst h	alf of the serie	s bala	ince ou	t the positive	values in the s	econd half so	
	that $\Sigma x =$	0. In tl	his case	the a	bove two norn	nal eq	uation	s will be as fol	lows -		
	$\Sigma Y = na$										
	$\Sigma XY = b\Sigma X$	X ²									
	In such a d	case th	ne value	s of a	and b can be c	alcula	ated as	under -			
	Since ΣY =	= na,									
	Since ΣXY		ζ2								
	$\mathbf{b} = \frac{\sum XY}{EX^2}; a$	$\mathbf{a} = \frac{\sum Y}{n}$									
Q 6.	Fit a stra	ight lii	ne trena	l to t	he following d	ata by	y Least	t Square Metho	od and estima	te the sale	
	for the ye	ar 201	2.								
	Year		200	5	2006	20	07	2008	2009	2010	
	Sale (in'00	00s)	70		80	9)6	100	95	114	
Solution:	Table: Calculatio		on of tre	end lii	ne						
	Year		ales Y	D	eviations from 2007.5			eviations blied by 2 (X)	X ²	ХҮ	
	2005		70		-2.5			-5	25	-350	
	2006		80		-1.5			-3	9	-240	
	2007		96		5		-1		1	-96	
	2008	1	00		+.5			+1	1	100	
	2009		95		+1.5			+3	9	285	
	2010 114 +2.5 +5				+2.5			+5	25	570	
		$\Sigma Y = 555$ $\Sigma X^2 = 70$ $\Sigma XY = 2$									
		<u> </u>									
	<u>N = 6</u>	ΣΥ	- 555								
	N = 6			iline t	trend is Yo = a	+ bX	<u> </u>				
	N = 6 Equation	of the	straight		trend is Yo = a = $\frac{269}{70}$ = 3.843	+ bX	<u> </u>				

	For 2012,	X = 9										
	Y2012 = 9)2.5 + 3.843 × 9	9 = 92.5 + 34.5	37								
	= 126.59 ((in '000 Rs.)										
Q 7.	Fit a strai	ght line trend t	to the following	data and est	imate the likely	profit for the year 2012.						
	Alco colcu	late the trend v	ualuac									
Calastian				1								
Solution:	Table: Cal	culation of Tren	id and Trend Va	lues								
	Year	Profit Y	Deviation from 2006	X ²	ХҮ	Trend Values (Y _c = a + bX)						
			Х			[Yc= 76 + 4.85X]						
	2003	60	-3	9	-180	76 + 4.85 (-3) = 61.45						
	2004	70	-2	4	-144	76 + 4.85 (-2) = 66.30						
	2005	75	-1	1	-75	76 + 4.85 (-1) = 70.15						
	2006	65	0	0	0	76 + 4.85 (0) = 76						
	2007	80	1	1	80	76 + 4.85(1) = 80.85						
	2008	85	2	4	170	76 + 4.85 (2) = 85.70						
	2009	95	3	9	285	76 + 4.85 (3) = 90.55						
	$\Sigma y = 532 \qquad \Sigma X^2 = 28 \qquad \Sigma X Y = 136$											
	N = 7	N = 7										
	The equation for straight line trend is $Yc = a + bX$											
	Where											
	$a = \frac{\Sigma Y}{N} = \frac{555}{6} = 92.5$											
	$b = \frac{\Sigma X}{\Sigma X^2} = \frac{269}{70} = 3.843$											
	_ The trend	equation $Yc = 9$	92.5 + 3.843.X									
	2012, x =	6 (2012 - 2006)) $Yc = 76 + 4.85$	5(6) = 76 + 2	9.10							
	= 1	05.10										
	The estimation	ated profit for t	he year 2012 is	Rs. 105.10 la	khs.							
Example:	Calculate .	Seasonal Indice	s for each quart	er from the t	following percen	tages of whole sale price						
	indices to	their moving a	veraoes.									

	Year					Qu	ıarter				
			I		I	Ι		III		IV	
	2003		-			-		11.0		11.0	
	2004		12.5		13	3.5		15.5		14.5	
	2005		16.8		15	5.2		13.1		15.3	
	2006		11.2		11	L.O		12.4		13.2	
	2007		10.5		13	3.3		-			
Solution	Year					(Desantan				
Jointhon	Iedr		Quarter I II III							Γ	7
	Quarterly Total		51.0			53.0		52.0		54	
	Quarterly Iotar Quarterly Avera	000	12.75		-	.3.25		13.0		13	
	Average of the Qu	_						15.0		15	.0
	Average of the Qu	larterly	Average	$S = -\frac{1}{4}$	-= 13.12	5					
	Year		Quarter								
			Ι		II			III		IV	
	Seasonal Indic	es	12.75×10	00	13.25×100		1	13.0×100		13.5×100	
			13.125	_	13.1	125	-	13.125		13.125	
		:	=97.143		=100	.952	=	97.143		=102	857
		are calc	ulated by	<i>i</i> conve	erting the	respect	ive quar	terlv ave	erages o	n the ba	sis th
	Seasonal Indices		alatea by	conre		respece	ive quui	corry ave	or ages o		510 011
	Seasonal Indices										
	Seasonal Indices the average of the		rly avera	age = 1	00						
Q 9.		e quarte				the follow	wing dat	ta, using	weights	: I, I, 3 ,	2
Q 9.	the average of the Calculate 5- year	e quarte				the follow	wing dat	ta, using	weights	: I, I, 3,	2
Q 9.	the average of the	e quarte				the follow	wing dat	ta, using	weights	: I, I, 3,	2
Q 9.	the average of the Calculate 5- year	e quarte				the follow	wing dat	ta, using 7	weights	; <i>I, I, 3,</i> 9	
Q 9.	the average of the <i>Calculate 5- year</i>	e quarte [•] weighte	ed movin	g avera	nges for t						2 1(97

T

Solution	N/ T	<u>а</u> 1 и		E N				
olution	Year I 1	Sales II 40		5- Year Weighted	Average	IV		
	2	33						
		55	1					
	3	72	$\frac{1}{8}(4)$	0×1+33×1+72×3-	$+81\times2+76\times1)$	= 65.8		
	4	81	$\frac{1}{-}(3)$	= 71.00				
			8 `	3×1+72×1+81×3+	,			
	5	76	$\frac{1}{8}(7$	= 76.00				
		68	1(8	1×1+76×1+68×3+	01~2+87~1)	79.750		
	6	68	$\frac{-8}{8}$	1×1+70×1+08×3+	+91×2+87×1)	= 78.750		
	7	91	$\frac{1}{8}(7$	= 86.125				
	8	87	$\frac{1}{8}(6)$	= 89.125				
	9	98						
	10	97						
Q 10.	Assuming	no trend, ca	lculate Season	al variation indices	for the following data.			
	N/			0	te de Dete			
	Year		01		rterly Data	01		
	2013		Q1 3.7	Q2	Q3 3.3	Q4 3.5		
	2013		3.7	4.1	3.5	3.5		
	2014		4.0	4.1	3.3	3.1		
	2015		3.3	4.1	4.0	4.0		

Qua Qua Avera Q 11. Calcul Percer 20 20 20 20 20 20 20 20 20 20 20 20 20	ar		, , , , , , , , , , , , , , , , , , ,	<i>lowing rati</i> S	$5 = \frac{14.9}{4} = 3$		3 5 3 0 2 5	ues expr	Q4 3.5 3.6 3.1 4.0 14.2 3.55
Qua Qua Avera Q 11. Calcul Percer 20 20 20 20 20 20 20 20 20 20 20 20 20	ge of Quarterly Average ge of Quarterly A ate the Seasonal ntage ear	3.7 4.0 3.3 14.7 3.67 verages = 3.6 Indices from	7 7 75 .675+4.125+ 4	3.9 4.1 4.4 16.5 4.125 +3.55+3.55 = lowing rati	$5 = \frac{14.9}{4} = 3$	3.6 3.3 4.0 14. 3.5 .725	5 3 0 2 5	ues expr	3.6 3.1 4.0 14.2 3.55
Qua Qua Avera Q 11. Calcul Percev 20 20 20 20 20 20 20 20 20 20 20 20 20	ge of Quarterly Average ge of Quarterly A ate the Seasonal ntage ear	4.0 3.3 14.7 3.67 verages = 3.6 Indices from	7 7 25 .675+4.125+ 4	4.1 4.4 16.5 4.125 +3.55+3.55 =	$5 = \frac{14.9}{4} = 3$	3.3 4.0 14. 3.5 .725	3 0 2 5	ues expr	3.1 4.0 14.2 3.55
Qua Qua Avera Q 11. Calcul Perceu 20 20 20 20 20 20 20 20 20 20 20 20 20	ge of Quarterly Average ge of Quarterly A ate the Seasonal ntage ear	3.3 14.7 3.67 verages = 3.6 Indices from	6 7 25 .675+4.125+ 4	4.4 16.5 4.125 +3.55+3.55 = lowing rati	$\frac{14.9}{4} = 3$	4.0 14. 3.5 .725	0 2 5	ues expr	4.0 14.2 3.55
Qua Qua Avera Q 11. Calcul Perceu 20 20 20 20 20 20 20 20 20 20 20 20 20	ge of Quarterly Average ge of Quarterly A ate the Seasonal ntage ear	14.7 3.673 averages = $\frac{3.6}{1000}$ Indices from Summer -	7 /5 .675+4.125+ 4	16.5 4.125 +3.55+3.55 = lowing rati	5 5 = $\frac{14.9}{4} = 3$ io to mo	14. 3.5 .725	2 5	ues expr	14.2 3.55
Qua Qua Avera Q 11. Calcul Perceu 20 20 20 20 20 20 20 20 20 20 20 20 20	ge of Quarterly Average ge of Quarterly A ate the Seasonal ntage ear	3.67 Averages = $\frac{3.6}{1000}$ Indices from Summer –	.675+4.125+ 4	4.125 +3.55+3.55 = lowing rati	5 = 14.9 = 3 io to mo	3.5 .725	5	ues expr	3.55
Q 11. Calcul Q 11. Calcul Percev 200 200 200 200 201 201 2010 2010 2010	ge of Quarterly A ate the Seasonal ntage ear 009 010	verages = ^{3.6} Indices from Summer	.675+4.125+ 4	+3.55+3.55 lowing rati	= $\frac{14.9}{4}$ = 3	.725		ues expr	
Q 11. Calcul Percev 20 20 20 20 20 20 20 20 20 20 20 20 20	ate the Seasonal ntage ear 009 010	Indices from Summer –		<i>lowing rati</i> S	io to mo		ages vali	ues expr	essed in
Solution: Year 2009 2010 20	ear (1009)	Summer –	n the foll	S		ving avera	ages val	ues expr	essed in
Solution: Year 2009 2010 2010 2010 2010 2010 2011 Total Avera Cons	ear (1009)	-			easons				
20 20 20 20 20 20 2009 2010 2011 Total Avera Cons	009 010	-			easons				
20 20 20 20 20 2009 2010 2011 Total Avera Cons	009 010	-							
Solution: Year 2009 2010 2010 2011 Total Avera Cons	010				Rain			Win	ıter
Solution: Year 2009 2010 2011 Total Avera Cons		96.18		101.75				107	.14
Solution: Year 2009 2010 2011 Total Aver Cons	11			92.30				114	.00
Year 2009 2010 2011 Total Aver Cons		92.45			95.20			118	.18
Year 2009 2010 2011 Total Aver Cons									
Year 2009 2010 2011 Total Aver Cons				Sa	asons				
2010 2011 Total Aver Cons		S	Summer		Rain	W	inter	-	
2010 2011 Total Aver Cons		0	_		01.75		07.14		
2011 Total Aver Cons			96.18		92.30		14.00		
Total Aver Cons			92.45.		95.20		18.18		
Cons			188.63		89.25	339.832			
	age		94.315	90	6.417	113.107		3	03.839
Corre	tructed Seasonal I	Index	93.127	95	5.202	11	1.682		
	ction Factor = $\frac{3}{303}$	$\frac{300}{3.839} = 0.987$	74						
Q 12. From	the following dat	ta, calculate t	the trend	l values, us	sing Fou	r yearly n	noving a	werage.	
Years		2009	2010	2011	2012	2013	2014	2015	2016
Valu	s 2008		1036	673	588	696	1116	738	663

Solution :	Year	Values	4 Yearly Moving Totals (a)	2 Period Moving Total of (a)	4 Yearly Moving Averages			
	2008	506	-	-	-			
	2009	620	-	-	-			
	2010	1036	2835	5752	719.0			
	2011 673 2917 5910 738.8 2012 588 2993 6066 758.3							
	2012	758.3						
	2013	696	3073	6211	776.4			
	2014	1116	3138	6311	793.9			
	2015	738 663	3213	_	_			
	"PRACTICE & PRACTICE MAKES STATS PERFECT" <u>Set A – (Theory Question)</u>							
	"PRAC	TICE &			ст"			
				<u>eory Question)</u>	ст"			
1.	Choose th	e most app	<u>Set A – (The</u> ropriate option (a) or (b)	<u>eory Question)</u>	y			
1.	Choose th	e most app y set of data	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance	eory Question) or (c) or (d). with their time of occurrer	nce is called:			
	Choose th An orderl (a) Arithr	e most app y set of data netic series	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri	eory Question) or (c) or (d). with their time of occurrer	nce is called:			
1. 2.	Choose th An orderl (a) Arithr	e most app y set of data	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri	eory Question) or (c) or (d). with their time of occurrer	nce is called:			
	Choose th An orderl (a) Arithr A time ser	e most app y set of data netic series	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of:	eory Question) or (c) or (d). with their time of occurrer	nce is called:			
	Choose th An orderl (a) Arithr A time ser (a) Short-	e most app y set of data netic series ries consist	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of:	cory Question) or (c) or (d). with their time of occurrer es (c) Geometric ser	nce is called:			
	Choose th An orderl (a) Arithr A time ser (a) Short- (c) Irregu	e most app y set of data netic series ries consist term variat lar variatio	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of:	2ory Question) or (c) or (d). with their time of occurrentes (c) Geometric ser	nce is called:			
2.	Choose th An orderly (a) Arithm A time sen (a) Short- (c) Irregu The graph	e most app y set of data netic series ries consist term variat lar variatio	Set A – (The ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of: tions (t ns (d ries is called:	20ry Question) or (c) or (d). with their time of occurrer es (c) Geometric ser b) Long-term variations d) All of the above	nce is called: ies (d) Time series			
2.	Choose th An orderl (a) Arithr A time ser (a) Short- (c) Irregu The graph (a) Histog	e most app y set of data netic series ries consist term variat lar variatio n of time sen gram	<u>Set A – (The</u> ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of: tions (b ns (d	2ory Question) or (c) or (d). with their time of occurrentes (c) Geometric ser	nce is called:			
2. 3.	Choose th An orderl (a) Arithr A time ser (a) Short- (c) Irregu The graph (a) Histog	e most app y set of data netic series ries consist term variatio lar variatio n of time ser gram	Set A – (The ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of: tions (t ns (d ries is called: (b) Straight line measured by:	20ry Question) or (c) or (d). with their time of occurrer es (c) Geometric ser b) Long-term variations d) All of the above	nce is called: ies (d) Time series			
2. 3.	Choose th An orderly (a) Arithm A time sen (a) Short- (c) Irregu The graph (a) Histog Secular tr	e most app y set of data netic series ries consist term variatio lar variatio n of time ser gram end can be nethods	Set A – (The ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of: tions (t ns (d ries is called: (b) Straight line measured by: (b) Thr	<pre>eory Question) or (c) or (d). with their time of occurrer es (c) Geometric ser b) Long-term variations d) All of the above</pre>	nce is called: ies (d) Time series			
2. 3.	Choose th An orderly (a) Arithm A time sen (a) Short- (c) Irregu The graph (a) Histog Secular tr (a) Two n (d) Five n	e most app y set of data netic series ries consist term variatio lar variatio n of time ser gram rend can be nethods nethods	Set A – (The ropriate option (a) or (b) a arranged in accordance (b) Harmonic seri s of: tions (t ns (d ries is called: (b) Straight line measured by: (b) Thr	<pre>eory Question) or (c) or (d). with their time of occurrer es (c) Geometric ser b) Long-term variations d) All of the above</pre>	nce is called: ies (d) Time series			

	(b) Trend is linear						
	(c) Time series consists of even number of values						
	(d) None of them						
6.	Increase in the number of patients in the hospital due to heat stroke is:						
	a) Secular trend (b) Irregular variation						
	(c) Seasonal variation (d) Cyclical variation						
7.	The systematic components of time series which follow regular pattern of variations are called:						
	(a) Signal (b) Noise						
	(c) Additive model (d) Multiplicative model						
8.	The unsystematic sequence which follows irregular pattern of variations is called:						
	(a) Noise (b) Signal (c) Linear (d) Non-linear						
9.	In time series seasonal variations can occur within a period of:						
	(a) Four years (b) Three years (c) One year (d) Nine years						
10.	Wheat crops badly damaged on account of rains is:						
	(a) Cyclical movement (b) Random movement						
	(c) Secular trend (d) Seasonal movement						
11.	The method of moving average is used to find the:						
	(a) Secular trend (b) Seasonal variation						
	(c) Cyclical variation (d) Irregular variation						
12.	Most frequency used mathematical model of a time series is:						
	(a) Additive model (b) Mixed model						
	(c) Multiplicative model (d) Regression						
13.	A time series consists of:						
	(a) No mathematical model (b) One mathematical model						
	(c) Two mathematical models (d) Three mathematical models						
14.	In semi-averages method, we decide the data into:						
	(a) Two parts (b) Two equal parts (c) Three parts (d) Difficult to tell						
15.	Moving average method is used for measurement of trend when:						

	(a) Trend is linear		(b) Trend is non-linear						
	(c) Trend is curvi linea	r	(d) None of them						
16.	When the trend is of ex	ponential type, the mo	ving averages are to be cor	nputed by using:					
	(a) Arithmetic mean		(b) Geometric mean						
	(c) Harmonic mean		(d) Weighted mean						
17.	The long term trend of a time series graph appears to be:								
	(a) Straight-line	(b) Upward						
	(c) Downward	ward (d) Parabolic curve or third degree curve							
18.	Indicate which of the fo	ollowing an example of	seasonal variations is:						
	(a) Death rate decreas	ed due to advance in sc	ence						
	(b) The sale of air condition increases during summer(c) Recovery in business								
	(d) Sudden causes by wars								
19.	The most commonly used mathematical method for measuring the trend is:								
	(a) Moving average me	ethod	(b) Semi average method						
	(c) Method of least squ	lares	(d) None of them						
20.	A trend is the better fit	ted trend for which the	sum of squares of residua	ls is:					
	(a) Maximum	(b) Minimum	(c) Positive (d) Negative					
21.	Decomposition of time	series is called:							
	(a) Historigram (b) Analysis of time series								
	(c) Histogram	(d) De	trending						
22.	The fire in a factory is a	an example of:							
	(a) Secular trend	(b) Sea	sonal movements						
	(c) Cyclical variations (d) Irregular variations								
23.	Increased demand of a	dmission in the subject	of computer in Uttar Prade	esh is:					
	(a) Secular trend	(b) Cyclical trend	(c) Seasonal trend	(d) Irregular trend					
24.			and political disturbances						
	(a) Trend	(b) Seasonal	(c) Cyclical	(d) Irregular					

25.	The general pattern of increase or decrease in economics or social phenomena is shown by:						
	(a) Seasonal trend (b) Cyclical trend (c) Secular trend (d) Irregular trend						
26.	In moving average method, we cannot find the trend values of some:						
	(a) Middle periods (b) End periods						
	(c) Starting periods (d) Between extreme periods						
27.	Moving-averages:						
	(a) Give the trend in a straight line (b) Measure the seasonal variations						
	(c) Smooth-out the time series (d) None of them						
28.	The rise and fall of a time series over periods longer than one year is called:						
	(a) Secular trend (b) Seasonal variation						
	(c) Cyclical variation (d) Irregular variations						
29.	A time series has:						
	(a) Two Components (b) Three Components						
	(c) Four Components (d) Five Components						
30.	The multiplicative time series model is:						
	(a) $Y = T + S + C + I$ (b) $Y = TSCI$ (c) $Y = a + bx$ (d) $y = a + bx + C x 2$						
31.	The additive model of Time Series						
	(a) $Y = T + S + C + I$ (b) $Y = TSCI$ (c) $Y = a + bx$ (d) $y = a + bx + C x2$						
32.	A pattern that is repeated throughout a time series and has a recurrence period of at most one						
	year is called:						
	(a) Cyclical variation (b) Irregular variation						
	(c) Seasonal variation (d) Long term variation						
33.	If an annual time series consisting of even number of years is coded, then each coded interval is						
	equal to:						
	(a) Half year (b) One year						
	(c) Both (a) and (b) (d) Two years						
34.	In semi averages method, if the number of values is odd then we drop:						

STATISTICS

	(a) First value (b) Last value					c) Middle value			(d) Middle two values			
35.	The trend values in freehand curve method are obtained by:											
	(a) Equation of straight line					(b) Graph						
	(c) Second degree parabola						ne above					
		ANSWERS										
	SET - A											
	1. (d)	2. (d)	3. (c)	4. (c)	5. (b)	6. (c)	7. (a)	8. (a)	9. (c)	10 . (b		
	11. (a)	12. (c)	13. (c)	14. (b)	15. (a)	16. (d)	17. (b)	18. (c)	19. (b)	20. (b		
	21 . (d)	22. (d)	23. (b)	24. (d)	25. (b)	26. (c)	27. (c)	28. (c)	29. (c)	30. (b		
	31. (a)	32. (c)	33. (c)	34. (c)	35. (b)							
	"KAR LO PAST APNI MUTHI ME"											
			Po	i <mark>st Exa</mark> r	n Quest	tions						
Nov 06									y			
[1]	The number of test of Adequacy is :											
	(a) 2 (b) 3 (c) 4											
	(a) 2	(b) 3	(0	c) 4		(d) 5					
[2]	(a) 2 The consur							g data is :				
[2]	The consur		ndex for 20		basis of 20	05 from th		g data is :	Prices in	1		
[2]	The consur	ner price ii	ndex for 20)06 on the	basis of 20	05 from th	ie followin	g data is :	Prices in	1		
[2]	The consur	ner price ii	ndex for 20	006 on the Quantities	basis of 20	05 from th	ie followin	g data is :	Prices in 2006	n		
[2]	The consur	ner price ii	ndex for 20	006 on the Quantities onsumed i	basis of 20	05 from th	ne followin Price in	g data is :		1		
[2]	The consur	ner price in nodities	ndex for 20	006 on the Quantities onsumed i 2005	basis of 20	05 from th	ne followin Price in 2005	g data is :	2006	1		
[2]	The consur	ner price in nodities	ndex for 20	006 on the Quantities onsumed i 2005 6	basis of 20	05 from th	ne followin Price in 2005 5.75	g data is :	2006 6.00W	n		
[2]	The consur	ner price in nodities A B	ndex for 20	Quantities Quantities onsumed i 2005 6 6	basis of 20	05 from th	Price in 2005 5.75 5.00	g data is :	2006 6.00W 8.00	1		
[2]	The consur	ner price in nodities A B C	ndex for 20	2006 on the Quantities onsumed i 2005 6 6 6 1	basis of 20	05 from th	ne followin Price in 2005 5.75 5.00 6.00	g data is :	2006 6.00W 8.00 9.00	n		

FACULTY:CA MEGHA NAHTA

NAHTA PROFESSIONAL CLASSES **STATISTICS** (a) 128.77 (b)108.77 (c) 138.77 (d) 118.77 [3] Suppose a business executive was earning Rs. 2,050 in the base period, what should be his salary in the current period if his standard of living is to remain the same? Given $\Sigma W = 25$ and $\Sigma IW = 3544$: (c) Rs. 2106 (a) Rs. 2096 (b) Rs.2906 (d) Rs. 2306 Feb 07 [4] Bowley's index number is expressed in terms of: (a) $\frac{\text{Laspeyre's} + \text{Paasche's}}{2}$ 2 (b) $\frac{\text{Laspeyre's} \times \text{Paasche's}}{2}$ 2 (c) $\frac{\text{Laspeyre's - Paasche's}}{\text{Laspeyre's - Paasche's}}$ (d) None of these [5] Fisher's ideal formula for calculating index number satisfies the _____: (a) Unit Test (b) Factor Reversal Test (c) Both (a) & (b) (d) None of these [6] Calculate the Fisher ideal index from the following data : Price (Rs.) Quantity ('000 kg.) 2004 Commodity 2004 2005 2005 9.3 90 Rice 4.5 100 Wheat 6.4 3.7 11 10 5 3 Pulse 5.1 2.7 (a) 49.13 (b) 48.13 (c) 84.13 (d) 46.12

May 07 [7]

Circular Test is satisfied by :

	(a) Paasche's Index Numbe	(a) Paasche's Index Number.								
	(b) The simple geometric m	nean of price rel	atives an	d the v	veighted agg	regative with	n fixed weights			
	(c) Laspeyre's Index Numbe	er								
	(d) None of these									
[8]	From the following data :									
	Group:	А	В	С	D	E	F			
	Group Index :	120	132	98	115	108	95			
	Weight:	6	3	4	2	1	4			
	The general index is given by :									
	(a) 113.54 (b) 115.30 (c) 117.92 (d) 111.30						30			
Aug 07										
[9]	Cost of living index numbers are also used to find real wages by the process of:									
	(a) Base shifting		(b) S	plicing	of index nu	nbers				
	(c) Deflating of index numb	ers	(d) N	one of	these					
[10]	The prices of a commodity i	in the year 1975	5 and 198	30 were	e 25 and 30 r	espectively.	Taking 1980 as			
	the base year the price relat	tive is:								
	(a) 113.25 (b) 8	33.33	(c) 1	09.78		(d) None				
[11]	From the following data									
	Base Year				Cu	rrent Year				
	Commodity	Price		Quanti	ty	Price	Quantity			
	А	7		17		13	25			
	В	6,		23		7	25			

	С	11	14	13		15			
	D	4	10	8		8			
	The Marshal Edgewort	h index number is :							
	(a) 144.19	(b) 143.91	(c) 4900	(d) 1	140.31				
Nov 07									
[12]	Net monthly salary of a	in employee was Rs. 3	3,000 in 1980. Th	e consumer pric	e index numb	er in			
	1985 is 250 with 1980	as base year. If he ha	s to be rightly cor	npensated, then	the Dearness	Allowance			
	be paid to the employee is:								
	(a) Rs. 4,200	(b) Rs. 4,500	(c) Rs	4,900	(d) Rs. 7,500				
[13]	P ₁₀ is the index for time :								
	(a) 0 on 1	(b) 1 on 0	(c) 1 on 1	L (d) 0 on 0				
Feb 08									
[14]	An enquiry into the budgets of middle class families in a village gave the following information :								
	Expenses on:	Food	Rent	Clothing	Fuel	Others			
	Weight	30%	15%	20%	10%	25%			
	Price in 987:	100	20	70	20	40			
	Price in 2005:	90	20	60	10	55			
	Σ PW = 10101.5, Σ W log P = 199.494. The price index number based on Weighted Arithmetic Mean								
	of price relatives is :								
	(a) 111.015	(b) 101.015	(c) 0.0	197	(d) None				

	Price index of the year of	Price Index on which it has to be shifte	d									
	(a) True (b) False (c) Partly True (d) Partly False											
[16]	Given the following information											
	Commodity	2	000		2003							
		Price	Quantity	price	Quantity							
	А	2	74	3	82							
	В	5	125	4	140							
	C	7	40	6	33							
	Which of the followin	g is true :										
	(a) Marshall Edgeworth index for 2003 is 105.13											
	(b) Fisher's index for 2003 is 90.15.											
	(c) Marshall Edgeworth Index Number is good approximation to Fisher's Index Number											
	(d) None of these											
une 08												
[17]	Laspeyare's and Paasche's Method Time Reversal Test:											
	(a) Do not satisfy	(b) Satisfy	(c) Depends on th	ie case (d) Can't say.							
[18]	Chain index is equal to :											
	$(a) \frac{\begin{array}{c} \text{link relative of current year } \times \\ 100 \end{array}}{\begin{array}{c} \text{link relative of current year } \times \\ \text{(b)} \frac{\begin{array}{c} \text{chain index of the current year } \\ 100 \end{array}}{\begin{array}{c} \text{link relative of current year } \end{array}}$											
	link relative of previor (C) chain index of the curr 100		(d) None of these									
[19]	In 2004 for working c	lass people wheat wa	as selling at an average j	price of Rs. 16 pe	er 20 kg, cloth							
	at Rs. 2 per meter, ho				In 2004 for working class people wheat was selling at an average price of Rs. 16 per 20 kg, cloth							

_	wheat rose by Rs. 4 per 20 Kg, house rent by Rs. 15 per house and other items doubled in price. The							
	working class cost of	living index for	the year 2005 (v	vith 2004 as bas	e) was 160. By how much did cloth			
	rose in price during t	he period :						
	(a) 1.28 (b) 0.99	(c) 1.73	(d) 1.3	0			
[20]	The ratio of price of the single commodity in a given period to its price in another period is called :							
	(a) Price Ratio	(b) Price R	lelative	(c) Base Period	(d) None of these			
Dec 08								
[21]	Consumer Price Inde	x Number goes ι	1p from 100 to 2	00 and salary of	f a worker is also raised			
	from 300 to 500							
	(a) 300 (b) 250 (c) 600 (d) 350							
[22]	Using following data,	find Paasche's I	ndex Number					
	Base Ye	ar		Curr	ent Year			
	Commodities	Price	Quantity	Price	Quantity			
	А	5	25	6	30			
	В	3	8	4	10			
	С	2	10	3	8			
	D	10	4	3	5			
	(a) 109.21	(b) 105.28	(c) 12	10.32	(d) 120.21			
[23]	The Circular Test is k	nown as :						
	(a) $P_{01} \times P_{12} \times P_{20} = 1$	l	(b) $P_{12} \times P_0$	$_{1}$ P20 = 1				
	(c) $P_{20} \times P_{12} P_{01} = 1$		(d) $P_{02} \times P_{21}$	$P_{12} = 1$				
June 09								

[24]	Fisher's Index is based on :-									
	(a) Arithmetic Mean of Laspeyre and Paasche									
	(b) Geometric Mean of Laspeyre and Paasche									
	(c) Harmonic Mean of Laspeyre and Paasche									
	(d) Median of Laspeyre and Paasche.									
[25]	In Passche's index, weights are based on :									
	(a) Current year quantities (b) Base year quantities.									
	(c) Weighted average prices (d) None of these									
[26]	Fisher's Ideal Index does not satisfy:									
	(a) Time Reversal Test (b) Factor Reversal Test									
	(c) Unit Test (d) Circular test									
[27]	$P_{01}Q_{01} = \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}$ which of following test satisfies the above?									
	(a) Time Reversal Test (b) Factor Reversal Test									
	(c) Circular Test (d) None of these									
Dec 09										
[28]	Time reversal & factor reversal are:									
	(a) Quantity Index (b) Ideal Index (c) Price Index (d) Test of Consistency									
[29]	In Laspeyeres Index Number are used as weights?									
	(a) Base year price (b) Current year price									
	(c) Base year quantities (d) Current year quantities									
June 10										

[30]	In the data group Bowley's and Laspeyre's index number is as follows. Bowley's index number = 150,											
	Laspeyre's index number = 180 then Paasche's index number is											
	(a) 120	(b) 30	(c) 165	(d) None o	f these							
[31]	Consumer price in	dex is commonly kno	wn as									
	(a) Chain Based in	dex	(b) Ideal index									
	(c) Wholesale pric	e index	(d) Cost of living index	x								
[32	Find the paasche's index number for prices from the following data taking 1970 as the base year.											
	Commodity		1970		1975							
		Price	Commodity	Price	Commodity							
	А	1	6 5	3	5 5							
	В	3		8								
	С	4	8	10	6							
	(a) 261.36	(b) 265.48	(c) 274.32	(d) 282	2							
[33]	The life expectanc	y, E of male is o linear	function of time (year).	It is given that in	1980 the life							
	expectancy was 70 years and in 2000 it was 75 years. Make a prediction of life expectancy in 2012.											
	(a) 78	(b) 80	(c) 82	(c) 82 (d) 84								
Dec 10												
[34]	If Laspeyre's index	number is 90 and Pa	aasche's index number is	160, then Fisher'	s index number wil							
	(a) 144	(b) 120	(c) 125	(d) None	of these							
une 11												
[35]	Wholesale Price In	dex (WPI) is given b	y:									
	(a) Marshall-Edge	worth Index	(b) Laspeyre's	Index								

	(c) Paasche's Index (d) None of the above.										
[36]	Fisher's Ideal index is obtained by :										
	(a) Arithmetic Mean of Laspeyre's & Paasche's index										
	(b) Geometric Mean of Laspeyre	(b) Geometric Mean of Laspeyre's & Paasche's index									
	(c) Sum of Laspeyre's & Paasche's index.										
	(d) None of the above.	(d) None of the above.									
[37]	The index number of prices at a	place in the year 2008 is 225 wi	th 2004 as the base year then there is								
	(a) average 125% increase in pr	rices. (b) average	e 225% increase in prices.								
	(c) average 100% increase in pr	rices. (d) None	of the above.								
ec 11											
	The simple index number for the current year using simple aggregative method for the following										
[38]	The simple index number for th	e current year using simple aggr	egative method for the following								
[38]	The simple index number for the data is	e current year using simple aggr	egative method for the following								
[38]		e current year using simple aggr Year	egative method for the following Current year								
[38]	data is										
[38]	data is Commodity	Year	Current year								
[38]	data is Commodity	Year price	Current year price								
[38]	data is Commodity Base	Year price (P ₀)	Current year price (P1)								
[38]	data is Commodity Base Wheat	Year price (P ₀) 80	Current year price (P1) 100								
[38]	data is Commodity Base Wheat Rice	Year price (P_0) 80 100	Current year price (P1) 100 150								
[38]	data is Commodity Base Wheat Rice Gram	Year price (Po) 80 100 120 200	Current year price (P1) 100 150 250								
[38]	data is Commodity Base Wheat Rice Gram Pulses	Year price (P_0) 80 100 120 200 50 (c) 240	Current year price (P1) 100 150 250 300								

L

[40]	If the prices of all commodities in a place has increased 20% in comparison to the base period prices,										
	then the index numbe	r of prices for the	place is now								
	(a) 100 (b) 120 (c) 20 (d) 150										
June 12											
[41]	If $\sum P_0 Q_0 = 116$, $\sum P_0 Q_1$	$= 140, \Sigma P_1 Q_0 = 9$	P7, ∑P ₁ Q ₁ = 117								
	then Fisher's ideal ind	ex number is	·								
	(a) 184 (b) 83.59 (c) 119.66 (d) 120										
[42]	Find the Paasche's Inc	lex number for pri	ces from the following da	ta taking 1970	as the base year.						
	Com-modity 1970 1975										
		Price	Commodity	price	Commodity						
	А	1	6	3	5						
	В	3	5	8	5						
	С	4	8	10	6						
	(a) 261.36	(b) 265.48	(c) 274.32	(d) 282							
Dec 12											
[43]	If Fisher's index = 150) and Paasche's In	dex = 144, then Laspeyre	's index is	·						
	(a) 147 (b) 156.25	(c) 104.17	(d) 138							
[44]	Net monthly salary of	an employee was	Rs. 3,000. The consumer	price index nun	ıber in 1985 is 250 with						
	1980 as base year. If h	e has to be rightly	compensated then the ad	ditional dearn	ess allowance to be paid						
	to the employee is:										
	(a) Rs. 4,000	(b) Rs. 4,80	00 (c) Rs. 5,5	500	(d) Rs. 4,500						
June13											

[45]	Time reversal test is satisfied by:											
	(a) Fisher's formula (b) Laspeyre's formula											
	(c) Paasche's formula (d) Dorbish formula											
[46]	In year 2005 the	In year 2005 the wholesale price index number is 286 with 1995 as base year, then how much the price										
	have increased ir	have increased in 2005 in comparison to 1995?										
	(a) 286% (b) 386% (c) 86% (d) 186%											
[47]	Bowley's index =	150, Laspeyer's	index = 180,	then Paasche's in	ndex =							
	(a) 120	(b) 30	(c) 1	65	(d) None of thes	е						
Dec 13												
[48]	An index time se	ries is a list of	numb	er of two or more	e period of time, wl	nere each ind	ex					
	number employs	the same base y	can									
	(a) Index	(b) Absol	ute	(c) Relative	(d)	Sample						
[49]	The index numbe	er for the year 20	12 taking 20	11 as the base yea	ar from the data gi	ven below by	using					
	simple average o	of price relative n	nethod is.									
	Commodity		А	В	C	D	E					
	Price in 2011		115	108	95	80	90					
	Price in 2012		125	117	108	95	95					
	(a) 112	(b) 117	(0	c) 120	(d) 111							
[50]	What is the form	ula for calculatin	g the deflated	l value?								
	(a) Current value	Price index of c	current year									
	(b) (Current valu	e/Price index of	current year) × 100								

	(c) Price index cf current year/Current value
	(d) (Current value/Price index of last year) × 100
June 14	
[51]	Circular test is satisfied by which index number?
	(a) Laspeyre's (b) Paasche's (c) Fisher's (d) None of the above
[52]	Fisher's Index Number is of Laspeyre's and Paasche's Index Number
	(a) A.M. (b) G.M. (c) H.M. (d) None of the above.
[53]	Which of the following statements is true?
	(a) Paasche's Index Number is based on base year quantity
	(b) Fisher's Index Number satisfies the circular test
	(c) Arithmetic Mean is the most appropriate average for constructi π the Index Number.
	(d) Splicing means constructing one continuous series from two different indices on the basis of common
	base.
[54]	Monthly salary of an employee was Rs. 10,000 in the year 2000 and it was increased to Rs. 20,000 in year
	2013 while the consumer price Index No. is 240 in year 2013 with the base year 2000. What should be
	his salary in comparison of consumer price index in the year 2013?
	(a) Rs. 20,000 (b) Rs. 16,000 (c) Rs. 24,000 (d) None of the above
Dec 14	
[55]	If $\sum P_1 Q_0 = 1180$, $\sum P_0 Q_0 = 1170$, $\sum P_1 Q_1 = 1064$, $\sum P_0 Q_1 = 1100$. The Fisher's Ideal Index is:
	a) 96.73 (b) 98.795 (c) 98.77 (d) 100.86
[56]	If the price of a commodity in a place have decreased by 30% over the base period prices, then the index

	number of that pl	ace is:		
	(a) 30	(b) 60	(c) 70	(d) 80
June 15				
[57]	Factor reversal te	est is expressed in term	s of	
	$(a)\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0}$	(b) $\frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_0} \times \frac{\Sigma P_1 Q_1}{\Sigma P_0 Q_1}$	$(c)\frac{\Sigma P_1 Q_1}{\Sigma Q_0 P_1}$	$(d) \frac{\Sigma Q_1 P_0}{\Sigma Q_0 P_0} \times \frac{\Sigma P_1 Q_1}{\Sigma Q_0 P_1}$
[58]	If with an increas	e of 10% in prices, the	rise in wages is 20% then	the real wage has increased by
	(a) 20%	(b) 10%	(c) Less than 10%	(d) More than 10%
[59]	play a vo	ery important role in th	e construction of index nu	imbers.
	(a) Weights	(b) Classes	(c) Estimations	(d) None
Dec 15				
[60]	Consumer price i	ndex number for the ye	ar 1977, was 313, with 19	60 as the base year, and was 96 for th
	year 1960. The av	verage monthly wages i	n 1977 of the workers int	o factory be Rs. 160, their real wages
	(a) Rs. 48.40	(b) Rs. 51.12	(c) Rs. 40.30	(d) None of the above
June 16				
[61]	Purchasing powe	r of money is		
	(a) Reciprocal of	price index number	(b) Equal to pri	ce index number
	(c) Unequal to pr	ice index number	(d) None of thes	e
[62]	$If \sum P_0 Q_0 = 1360,$	$\sum P_n Q_0 = 1900, \sum P_0 Q_n =$	$= 1344, \Sigma P_n Q_n = 1880, $ the	n the Laspeyre's Index Number is
[62]	If $\sum P_0 Q_0 = 1360$, (a) 0.71	$\sum P_n Q_0 = 1900, \sum P_0 Q_n =$ (b) 1.39		n the Laspeyre's Index Number is (d) none.
[62]	(a) 0.71	(b) 1.39	(c) 1.76 (

	additional monthly salary to be paid to him?										
	(a) Rs. 14,400 (b	o) Rs. 38,400	(c) Rs. 7,200 (d) None of these								
[64]	The suitable index number for the comparison of changes in price level of every year is (a) Fixed Base Index Number (b) Fisher's Ideal Index Number										
	(c) Chain Base Index Number (d) Both (a) and (c)										
Dec 16											
[65]	Following is the data conce	rning to commoditi	es A, B, C and D in	the base period	ر 1992 and current						
	1993.										
		Base	Year 1992	Curre	ent Year 1993						
	Commodities	Price	Quantity	Price	Quantity						
	А	3	18	4	15						
	В	5	6	5	9						
	С	4	20	6	26						
	D	1	14	3	15						
	The Paasche's price index n	umber is:									
	(a) 148.25	(b) 146.41	(c) 144.25	(d) N	one of these						
[66]	Which method satisfy time	reversal test?									
	(a) Laspeyer's method	(b)) Paasche's metho	d							
	(c) Fishers method (d) None of these.										
	(c) Fishers method	(d									
[67]	(c) Fishers method Index number are the) None of these.								
[67]) None of these. (a) and (b)	(d) None of	these.						

[68]	The monthly income of an employee was Rs. 8,000 in 2014. The consumer price index															
	numb	er was	160 in 2	2014, w	hich ro	se to 20	0 in 20	17. If he	e has to	be righ	tly com	pensat	ed, the a	additional		
	dearness allowance to be paid to him in 2017 would be:															
	(a) Rs. 2,400 (b) Rs. 2,750 (c) Rs. 2,500 (d) None of these.															
[69]	If Laspeyre's index number (L) and Paasche's index number (P) are known, then one can compute															
	Fishei	Fisher's index number (F) by:														
	(a) $F = LP$ (b) $\sqrt{F} = LP$ (c) $F = \frac{1}{LP}$ (d) $F^2 = LP$															
[70]	Fishei	Fisher's index number does not satisfy:														
	(a) Ur	(a) Unit Test (b) Circular Test (c) Time reversal test (d) Factor reversal test.														
							AN	SWI	ER							
	1	С	11	Α	21	В	31	D	41	В	51	D	61	Α		
	2	D	12	В	22	В	32	Α	42	Α	52	В	62	В		
	3	В	13	Α	23	Α	33	Α	43	43 B 53 C 63 A						
	4	Α	14	В	24	В	34	В	44	D	54	С	64	С		
	5	С	15	Α	25	Α	35	В	45	Α	55	С	65	В		
	6	Α	16	С	26	D	36	В	46	D	56	С	66	С		
	7	В	17	Α	27	В	37	Α	47	Α	57	Α	67	С		
	8	D	18	В	28	D	38	D	48	Α	58	Α	68	D		
	9	С	19	D	29	С	39	С	49	D	59	Α	69	D		

	10	В	20	В	30	Α	40	В	50	A	60	В	70	В]
			1		1	<u>UNI</u>	r II T	IME	SER	I <u>ES</u>				I	
Dec 12															
[1]	The ter	ndency	of trenc	l to inci	ease or	decrea	ase or s	tagnate	over a	long pe	riod of	time is	called		
	(a) Per	a) Periodic Variation (b) Cyclic Variation													
	(c) Sec	ular Tr	end				(d) Rai	ndom V	ariatior	1					
[2]	The tre	end equ	ation fo	r annua	al sale o	of a proo	duct is `	<i>ĭ</i> =120∙	+36× v	vith Yea	ır 1990	as orig	in. The	annual	
	sales fo	or year	1992 w	ill be-											
	(a) 156	6	(b) 192		(c) 1	120		(d) N	one of t	he abov	ve			
June 13															
[3]	The tee	chnique	of estir	nating	the prol	bable v	alue of	phenom	ienon a	t a futu	re date	is calle	d:		
	(a) Inte	erpolati	on		(b) Ext	trapola	tion	(c) Fore	casting		(d)	Probab	oility	
Dec 14															
[4]	Which	n of the	followi	ng is a g	general	form of	f Expon	ential ti	end?						
	(a) y =	a + bt		(b)) $y_t = a$	× b ^t		(c) y	v = a - 1	b	(0	l) $y_t = a$	a + bt +	ct ²	
June 15															
[5]	Which	of the f	ollowin	g is fore	ecasting	g on the	basis c	of past d	ata?						
	(a) Tre	end proj	ection				(b) Index	numbe	r					
	(c) Bot	h trend	and In	dex nur	nber		(d) Corre	lation.						
June 16															

[6]	"Occurren	"Occurrence of floods" falls under which type of variation?											
	(a) Season	al Variatio	n		(b) Simple Variation								
	(c) Cyclic V				(d) Random Variation.								
Dec 16	(c) cyclic v												
[7]	How the da	ata is arran	ged in a Ti	me Series A	analysis?								
	(a) In desc	ending ord	er of their	magnitude	(b) Arranged abruptly								
	(c) Arrange	ed chronol	ogically		(d) In ascending order of their magnitude.								
	ANSWE	RS											
	1	С	6	D									
	2	В	7	С									
	3	С											
	4	В	_										
	5	В											

STUDENT NOTES

NUMBER SERIES, CODING DECODING & ODD **MAN OUT** NUMBER SERIES A. Ex. 1 Find the missing term of the series 2, 7, 16, _____, 46, 67, 92 Here the terms of the series are +5, +9, +13, +17, +21, +25... Sol: Thus, 2 + 5 = 6; and 7 + 9 = 16 ... So missing term = 16 + 13 = 29Ex. 2 Find the wrong terms of the series 9, 29, 65, 126, 217, 344 $2^{3}+1$, $3^{3}+1$, $4^{3}+1$,.... Sol: Here 29 is wrong term of series Ex.3 Find the missing term of the series 1,9, 25, 49, 81, 121, The given terms of the series are consists square of consecutive odd number 1², 3², 5², 7², Sol: So missing value = $13^2 = 169$ ALPHABET SERIES В. Ex. 4 Find the next term of the series BKS, DJT, FIU, HHV? In each term, the first letter is moved two steps forward, the second letter one step backward and third Sol: letter one step forward to obtain the corresponding letter of the next term. So the missing term is JGW.

LOGICAL REASONING

Ex.5 aab,, aaa, bba, (a) baa (b) abb (c) bab (d) aab	
(a) baa (b) abb (c) bab (d) aab	
Sol: 1) The first blank space should be lled in by 'b' so that we have two a's by two b's.	
2) The second blank place should be either `a', so that we have three a's followed by three b's.	
3) The last space must be spelled in by 'a'.	
4) Thus we have two possible answers – 'baa'and 'bba'.	
5) But only 'baa'appers in the alternatives.	
So the answer (a) is correct.	
CODING AND DECODING	
Type 1: Letter Coding	
Ex.6 If in a certain language MYSTIFY is coded as NZTUJGZ, how is MENESIS coded in that languag	e?
Sol: Clearly, each letter in the word MYSTIFY is moved one step forward to obtain the corresponding	etter of
the code.	
MYSTIFY +1↓ NZTUJGZ	
So, in MENESIS, N will be coded as O, E as F, M as N and so on. Thus, the code becomes NFOFTJT.	
Ex.7 If TAP is coded as SZO, then how is FRIEND coded?	
Sol: Clearly each letter in the word TAP is moved one step backward to obtain the corresponding letter	r of the
Code	

NAH	TA PROFES	SIONAL	CLASSES				LOGI	CAL REASC	NING
		ZO							
		1↑ AP							
			will be coded	as E. R as () . I as G, E a	s D, N as M a	nd D as C. So	o. the code b	ecomes
		u <u>21.2,</u> _			() 1 40 4,		nu 2 uz	<i>,</i>	
	EQGDMC.								
Ex.8	In a certai	in code, M	IENTION is u	written as L	.NEITNO. H	ow is PRESE	NT written	in that code	?
Sol:	Clearly, to	obtain the	e code, the	rst letter o	f the word I	MENTION is 1	moved one s	tep backwa	rd and the
	remaining	letters ar	e.						
	Reversed i	n order, t	aking two at	a time. So, i	in PRESENT	r, P will be co	ded as O, an	d the seque	nce of the
	remaining	letter in t	he code wou	ıld be ERES'	TN. Thus th	e code becon	nes OEREST	N. Hence, Tł	ne answer is
	OERESTN.								
Ex.9	If in a cert	tain langu	lage CARRON	1 is coded a	as BZQQNL	, which word	l will be cod	ed as HORS	E?
Sol:	Each letter	of the wo	ord is one ste	ep ahead of	the corresp	onding letter	r of the code		
	BZQQI	NL		но	RSE				
				11					
	CARR	ОМ		ΙP	STF				
	So, H is coo	ded as I, O	as P, R as S,	S as T and I	E as F. HOR	SE is coded a	IPSTF.		
	<u> Type 2: N</u>	lumber (<u>Coding</u>						
Ex.10	If in a cert code?	tain langu	age A is coa	led as I, B	is coded as	2, and so or	n, how is Ald	CCI is coded	' in that
Sol:	As given th	ne letters a	are coded as						
	A	<u>B</u>	<u>C</u>	D	<u> </u>	F	G	<u> </u>	<u> </u>
	1	2	3	4	5	6	7	8	9

	So in AICCI, A is coded as 1, I as 9,and C as 3. Thus, AICCI is coded as 19339.										
Ex11	If PAINT is coded as 74128 and EXCEL is coded as 93596, then how would you encode ANCIENT ?										
Sol:	Clearly, in the given code, the alphabets are coded as follows:										
	Р	А	I	N	Т	Е		Х		C	L
	7	4	1	2	8	9		3		5	6
	So, in ANCI correct	ENT, A is co	oded as 4, N	is coded as	s 2, C as 5, I	I is code	ed as 3,	E as 9, an	d T as	8. Henc	e, the
	code is 425	1928.									
Ex12	In a certair	n code, 2 is	coded as P	, 3 as N, 4	1 as Q, 5 a	ns R, 4 d	as A ai	nd 6 as B	. How	is 4239	599 coded in
	that code?										
Sol:	Clearly as g	given, 4 as A	A, 2 as P, 3 as	s N and 5 is	coded as I	R, 9 as Ç). So, 42	23599 is c	oded a	as APNR	QQ.
	ODD MAN OUT										
Ex13	January, M	ay, July, No	ovember								
	(a) January	7	(b) May		(c) July		((d) Novem	ıber		
Sol:	All the mo	nths above	are 31 days	, whereas ,	, Novembe	r 30 day	/S				
	Answer: (d)									
Ex14	10, 14, 16, 1	8, 23, 24 0	and 26								
	(a) 26	(b)) 17	(c) 2	23	(0	ł) 9				
Sol:	Each of the	above seri	es are even i	number, ex	cept 23.						
	Answer: (c)									
Ex15	6, 9, 15, 21	, 24, 26, 3	0								

NA	HTA PROFESSI	onal classes		LOGICAL RE/	ASONING
	(a) 9	(b) 26	(c) 24	(d) 30	
Sol:	All are multi	ples of 3, except 26, a	nswer (b)		
	Answer: (b)				
Ex16	1, 5, 14, 30, 3	51, 55, 91			
	(a) 5	(b) 55	(c) 51	(d) 91	
Sol:	Each pattern	is 12, 12 + 22, 12 + 2	22 + 32, 12 + 22 + 32 + 4	2, 12 + 22 + 32 + 42+ 52, 1	2 +
	22 + 32 + 42	2 +52 + 62			
	But 51, is not	t of the form.			
	Answer: (c)				
Ex17	16, 25, 36, 6	2, 144, 196, 225			
	(a) 36	(b) 62	(c) 196	(d) 144	
Sol:	Each of the n	umber except 62, is a	perfect square.		
	Answer: (b)				
		"LOGIC HAI	ј јана, са на	I WAHA"	
	Choose the	most appropriate (a)	or (b) or (c) or (d).		y
1)	6, 11, 21, 36,	56?			

NA	HTA PROFESS	Sional classes		LOGICAL REASONING
	(a) 42	(b) 51	(c) 81	(d) 91
2)	10 , 100, 200	0, 310 ?		
	(a) 400	(b) 410	(c) 420	(d) 430
3)	11, 13, 17, 1	.9, 23, 25, 29		
	(a) 33	(b) 27	(c) 31	(d) 49
4)	6, 12, 21, 33	.?		
	(a) 33	(b) 38	(c) 40	(d) 48
5)	2, 5, 9, 14, ? ,	, 27		
	(a) 20	(b) 16	(c) 18	(d) 24
6)	6, 11, 21, ? ,	56, 81		
	(a) 42	(b) 36	(c) 91	(d) 51
7)	10, 18, 28, 4	0, 54, ?, 88		
	(a) 70	(b) 86	(c) 87	(d) 98
8)	120, 99, ?, 63	3, 48, 35		
	(a) 80	(b) 36	(c) 45	(d) 40
9)	22, 24, 28, 3	6, ? , 84		
	(a) 44	(b) 52	(c) 38	(d) 54
10)	4832, 5840,	, 6848, 7856 ?		
	(a) 8864	(b) 8815	(c) 8846	(d) 8887
11)	10, 100, 200), 310, 430 ?		
	(a) 560	(b) 540	(c) 550	(d) 590

NA	HTA PROFESS	SIONAL CLASSES		LOGICAL REASON	IING
12)	28, 33, 31, 3	6, 34 ?			
	(a) 38	(b) 39	(c) 40	(d) 42	
13)	120, 80, 40,	45, ?, 5			
	(a) 15	(b) 20	(c) 25	(d) 30	
14)	2, 15, 41, 80,	, 132 ?			
	(a) 184	(b) 144	(c) 186	(d) 197	
15)	6, 17, 39, ?, 1	116			
	(a) 72	(b) 75	(c) 85	(d) 80	
16)	1, 4, 10, 22, 3	?, 94			
	(a) 46	(b) 48	(c) 49	(d) 47	
17)	4, 9, 25, 49,	? , 169, 289, 361			
	(a) 120	(b) 121	(c) 122	(d) 164	
18)	4, 12, 36, ? ,	324			
	(a) 107	(b) 109	(c) 108	(d) 110	
19)	1, 1, 4, 8 , 9,	?, 16, 64			
	(a) 27	(b) 28	(c) 32	(d) 40	
20)	5760, 960, 1	.92, ? 16, 8			
	(a) 47	(b) 48	(c) 52	(d) 50	
21)	1, 2, 6, 7, 21,	, 22, 66, ? , 201			
	(a) 69	(b) 68	(c) 67	(d) 69	

NAF	ITA PROFESSIC	NAL CLASSES		L	OGICAL REASONING
22)	48, 24, 96 , ? 1	92			
	(a) 48	(b) 47	(c) 44	(d) 54	
23)	165, 195, 255,	, 285, ?, 435			
	(a) 345	(b) 390	(c) 335	(d) 395	5
24)	2, 3, 3, 5, 10, 1	.3, 39, ?, 172, 177			
	(a) 42	(b) 44	(c) 43	(d) 40	
25)	7, 26, 63, 124,	215, ?, 511			
	(a) 342	(b) 343	(c) 441	(d) 421	
26)	3, 7, 15, 31, ? 1	127			
	(a) 62	(b) 63	(c) 64	(d) 65	
27)	8, 28, 116, 584	1, ?			
	(a) 1752	(b) 3502	(c) 350	4 ((d) 3508
28)	6, 13, 28, 59, ?	·			
	(a) 122	(b) 114	(c) 113	(d)	112
29)	2, 7, 27, 107, 4	27,?			
	(a) 1707	(b) 4027	(c) 420	7 (d	l) 1207
30)	5, 2, 7, 9, 16, 2	5, 41, 40, 26, ?			
	(a) 65	(b) 66	(c) 6	7 ((d) 68
31)	In a certain la	nguage, MADRAS is	coded NBESBT, how	DELHI is coded in th	at code?
	(a) EMMJI	(b) EFMIJ	i (c) EMFIJ	(d) JIFEM

NA	HTA PROFESSIONA	al classes		LOGICAL REASONING
32)	If RAMAN is writt	ten as 12325 and DINESF	H as 675489 how HAMAM i	is written?
	(a) 92323	(b) 92233	(c) 93233	(d) 93292
33)	If RED is coded as	s 6720 then GREEN woul	d be coded as	
	(a) 9207716	(b) 167129	(c) 1677209	9 (d) 1672091
34)	If $A = 1$, FAT = 27	7, FAITH = ?		
	(a) 44	(b) 45	(c) 46	(d) 36
35)	If BROTHER is co	oded 2456784, SISTER co	ded as 919684, what is cod	ded for BORBERS?
	(a) 2542889	(b) 2542898	(c) 2454889	(d) 2524889
36)	If DELHI is coded	173541 and CALCUTTA a	as 82589662, How can CAL	JCUT be coded?
	(a) 5279431	(b) 5978213	(c) 8251896	(d) 8543962
37)	If CLOCK is coded	1 34235 and TIME is 867	9, what will be code of MOT	TEL?
	(a) 72894	(b) 77684	(c) 72964	(d) 27894
38)	If PALE is coded a	as 2134 and EARTH is co	ded as 41590, how is PEAR	RL is code?
	(a) 29530	(b) 24153	(c) 25430	(d) 254313
39)	If LOSE is coded a	as 1357 and GAIN is code	ed as 2468, what do gure	e 82146 stands for?
	(a) NGLAI	(b) NGLIA	(c) GNLIA	(d) GNLIA
40)	If MEKLF is coded	d as 91782 and LLLJK as	88867, how can IHJED is co	oded as?
	(a) 97854	(b) 64512	(c) 54610	(d) 75632
41)	If in a certain cod	le language NAME is writ	tten as 4258 then what is co	oded as MEAN ?
	(a) 2458	(b) 5842	(c) 8524	(d) 5824

NA	HTA PROFESSIONA	AL CLASSES		LOGICAL REASONING
42)	If GOLD is written	n as IQNF, how WIND can	be written as code?	
	(a) YKPF	(b) VHCM	(c) XJOE	(d) DNIW
43)	If ROSE is written	as TQUG, how BISCUIT c	can be written in that code?	?
	(a) DKUEWKV	(b) CJTDVJU	(c) DKVEWKV	(d) DKUEWKY
	LETTER: C Z N V F	R S W F D		
	CODE DIGIT: 8 6 4	4729351		
	(Q. No. 44-46) In e the	each of the following que	stions nd out the correct	tly coded alternative from amongst
	given four alterna	atives (a), (b), (c), (d).		
44)	ZDRCVF			
	(a) 612875	(b) 619875	(c) 612845	(d) 612835
45)	WNCSZV			
	(a) 348267	(b) 318267	(c) 348957	(d) 348967
46)	RDNFVS			
	(a) 21679	(b) 216549	(c) 214579	(d) 218579
47)	If DELHI is coded	as CCIDD, how would you	u encode BOMBAY?	
	(a) AJMTVT	(b) AMJXVS	(c) MJXVSU	(d) WXYZAX
48)	In a certain code, I that	RIPPLE is written as 613	382 and LIFE is written as	8192. How is PILLER written in
	code?			
	(a) 318826	(b) 318286	(c) 618826	(d) 338816

NAH	TA PROFESS	SIONAL C	CLASSES					LOGIC	AL REAS	ONING	
49)	If PALAM co	ould be giv	ven the co	de numbe	r 43, what	code num	ber can be	e given to	SANTACR	UZ?	
	(a) 123 (b) 85 (c) 120						(d) 1	125			
	Directions:	Directions: The number in each question below is to be coded in the following code:									
	Digit	7	2	1	5	3	9	8	6	4	
	Letter	W	L	М	S	I	N	D	J	В	
50)	184632										
	(a) MDJBSI		(b)	MDJBIL		(c) MDJ	BWL	(d) MDBJII		
51)	I n a certain	I n a certain code '256' means 'you are good', '637' means 'we are bad' and '358' means 'good and bad'.									
	Which of the following represents 'and' in that code?										
	(a) 2		(b) 5		(c) 8		(d) 3				
	Directions:	Find odd	man out o	f the follow	wing (52-6	60):					
52)	3, 5, 7, 15, 1	7, 19									
	(a) 15		(b) 17		(c) 19		(d) 7				
53)	10, 14, 16, 1	18, 23, 24,	26								
	(a) 26		(b) 23		(c) 24		(d) 18				
54)	1, 4, 9, 16, 2	4, 25, 36									
	(a) 9	((b) 24		(c) 25		(d) 36)			
55)	41, 43, 47, 5	53, 61, 71,	73, 75								
	(a) 75	((b) 73		(c) 71		(d) 53				

NA		onal classes		LOGICAL REASONING	
56)	16, 25, 36, 73	3, 144, 196, 225			
	(a) 36	(b) 73	(c) 196	(d) 225	
57)	1, 4, 9, 16, 19,	, 36, 49			
	(a) 19	(b) 9	(c) 49	(d) 16	
58)	1, 5, 14, 30, 49	9, 55, 91			
	(a) 49	(b) 30	(c) 55	(d) 91	
59)	835, 734, 642	2, 751, 853, 981, 532			
	(a) 751	(b) 853	(c) 98	081 (d) 532	
60)	4, 5, 7, 10, 14,	, 18, 25, 32			
	(a) 7	(b) 14	(c) 18	(d) 33	
61)	52, 51, 48, 43,	5, 34, 27, 16			
	(a) 27	(b) 34	(c) 43	(d) 48	_
					_
					_
					_

	1. (c)	2. (d)	3. (с)	4 . (d)	5. (a)	6. (b)	7. (a)	8. (a)	9. (b)	10. (a)
	11. (a)	12. (b)	13. (a)	14. (d)	15. (a)	16. (a)	17. (b)	18. (c)	19. (a)	20. (b
	21. (c)	22. (a)	23. (a)	24. (c)	25. (b)	26. (b)	27. (d)	28. (a)	29. (a)	30. (b)
	31. (b)	32. (a)	33. (c)	34. (a)	35. (a)	36. (c)	37. (a)	38. (b)	39. (a)	40. (c)
	41. (d)	42 . (a)	4 3. (a)	44 . (a)	45. (d)	46. (c)	47. (a)	48. (m)	4 9. (a)	50. (d)
	51. (c)	52. (a)	53. (b)	54. (b)	55. (a)	56. (b)	57. (a)	58. (a)	59. (a)	60. (c)
	61. (b)									
					STUDEN	<u>T NOTES</u>				
\perp					JIODEN					

CH - 2	DIRECTION TEST
1.	A man starts from a point and walks 2 km towards North, turns towards his right and walks 2 km, turns
	right again and walks. What is the direction now be is facing?
	(a) South
	(b) South-East
	(c) North
	(d) West
Sol:	Ans: (a) The diagram given below helpful solving the questions and Direction Test. South.
2.	Ramu walks 5 kms starting from his house towards west then turns right and walks 3 km. Thereafter she
	takes left turn and walks 2 km. Further, she turn left and walks 3 km. Finally, she turns right and walks
	3 kms. In what direction she is now from her house?
	(a) West
	1. Sol:

		LOGIC HAI JA	aha, ca hai wa	ана"			
	Choose the appropriate answer (a) or (b) or (c) or (d)						
1.	Mohan starts from point A and walks 1 km towards south, turns left and walks 1km. Then he turns left						
	again and wal	ks 1 km. Now he is facing.					
	(a) East	(b) West	(c) North	(d) South-west			
2.	Suresh starts	from a point, walks 2 miles	s towards south, turns right	and walks 11/2 miles, turns left and			
	walks ½ miles	and then he turns back. W	Vhat is the direction he is fa	icing now?			
	(a) East	(b) West	(c) South	(d) North			
3.	A man starts f	rom a point, walks 4 miles	towards north and turns le	eft and walks 6 miles, turns right and			
	walks for 3 miles and again turns right and walks 4 miles and takes rest for 30 minutes. He gets up and						
	walks straight 2 miles in the same direction and turns right and walks one mile. What is the direction he is						
	facing?						
	(a) North	(b) South	(c) South-east	(d) West			
4.	Arun started f	rom point A and walked 1	0 km East to point B, then t	urned to North and walked 3 km to			
	point C and th to	en turned West and walke	d 12 kms to point D, then a	gain turned South and walked 3 kms			
	point E. In wh	ich direction is he from his	s straight point?				
	(a) East	(b) South	(c) West	(d) North			
5.	A starts from a	a point and walks 5 kms no	orth, then turns left and wa	lks 3 kms. Then again turns left and			
	walks 5 km. Po	oint out the direction in wl	hich he is going now.				

NAH	TA PROFESSIONA	al classes		LOGIC	CAL REASONING
	(a) North	(b) South	(c) East	(d) West	
6.	A rat run 20 towa 5	irds East and turns to r	right runs 10 and turr	ns to right runs 9 an	d again turns to left runs
	and then turns to	left runs 12 and finally	v turns to left and rus	n 6. Now what dire	ction is the rat facing?
	(a) East	(b) North	(c) West	(d) Sout	h
7.	A driver left his v	illage and drove North	for 20 km, after whic	h he stopped for br	eakfast. Then he turned
	left and drove and	other 30 km, when he s	stopped for lunch. Aft	er some rest, he aga	ain turned left and drove
	20 kms before sto	opping for evening tea.	Once more he turned	l left and drove 30 k	xms to reach the town
	where he had sup	oper. After evening tea	in which direction di	d he drive?	
	(a) West	(b) East	(c) North	(d) Sout	h
8.	A man is facing Ea	ast, then he turns left a	nd goes 10 m, then tu	Irns right and goes	5 m then goes 5 m to the
	South and from th	nere 5 m to West. In wl	nich direction is be fr	om his original plac	e?
	(a) East	(b) West	(c) North	(d) Sou	th
9.	From her home P and	rerna wishes to go to s	chool. From home sh	e goes towards Nor	th and then turns left
	then turns right, a with	and finally she turns le	ft and reaches school	. In which direction	her school is situated
	respect to her ho	me?			
	(a) North-East	(b) North-V	West (c) Se	outh-East	(d) South-West
10.	A child walks 25 f He	feet towards North, tur	ms right and walks 4() feet, turns right ag	ain and walks 45 feet.
	then turns left an	d walks 20 feet. He tur	ns left again walks 20) feet. Finally, he tur	ns to his left to walks
	another 20 feet. I	n which direction is th	e child from his starti	ng point?	
	(a) North	(b) South	(c) West	(d) East	

NAF	ITA PROFESSIONAL	CLASSES		LOGICAL REASONING
11.	Raju facing North ai km	nd moves 20 km, then he t	urned to his right and mov	es 20 km and then he moves 10
	in North-East, then	he turned to his right and	moves 20 km and then he t	curned to his right and moves 20
	km and again he tur	rned to his left and moves	20 km. Now in which direc	tion Rahu is facing?
	(a) South-East	(b) North-East	(c) South-West	(d) North-West
12.	K is a place which is	located 2 km away in the	north-west direction from	the capital P. R is another place
	that is located 2 km	away in the south-west di	rection from K. M is anothe	er place and that is located 2 km
	away in the north-w west	vest direction from R. T is	yet another place that is loo	cated 2 km away in the south-
	direction from M. Ir	which direction is T locat	red in relation to P?	
	(a) South-west	(b) North-west	(c) West	(d) North
13.	Babu is Rahim's nei Rahim's	ghbour and his house is 20	00 meters away in the nort	h-west direction. Joseph is
	neighbour and his h	ouse is located 200 meter	away in the south-west di	rection. Gopal is Joseph's
	neighbour and he st	tays 200 meters away in th	ne south-east direction. Roy	<i>i</i> is Gopal's neighbour and his
	house is located 200) meters away in the		
	north-east directior	n. Then where is the position	on of Roys' house in relatio	n to Babu's ?
	(a) South-east	(b) south-west	(c) North	(d) North-east
14.	A tourist drives 10 l	km towards west and turn	s to left and takes a drive o	f another 4 km. He then drives
	towards east anothe and	er 4 km and then turns to l	his right and drives 5 km . A	Afterwards he turns to his left
	travels 6 km. In whi	ch direction is je from the	starting point?	
	(a) North	(b) East	(c) West	(d) South
15.	A man started walk	ing West. He turned right,	then right again and finally	turned left. Towards which

NAF	ITA PROFESSION	al classes		LOGI	CAL REASONING
	direction was he	walking now?			
	(a) North	(b) South	(c) West	(d) E	ast
16.	One evening, Raj to	a started to walk towa	rd the Sun. After walkin	g a while, he turr	ned to his right and again
	his right. After w	alking a while, he agai	n turned right. In which	direction is he fa	acing?
	(a) South	(b) East	(c) West	(d) North	
17.	Five boys A, B, C, E	F, E, are sitting in a pa	rk in a circle. A is facing	South-West, D is	s facing South-East, B and
	are right opposit facing?	e A and D respectively	and C is equidistant be	tween D and B. W	/hich direction is C
	(a) West	(b) South	(c) North	(d) Eas	st
18.	If a man on a mo again	ped starts from a point	t and rides 4 km South t	hen turns left and	d rides 2 km and turn
	to the right to rid	le to go more towards	which direction is he m	oving?	
	(a) North	(b) West	(c) East	(d) South	
19.	A man starts fror	n a point, walk 8 km to	owards North, turns righ	nt and walks 12 k	m, turns left and walks 7
	km turns and wa	lks 20 km towards Sou	uth, turns right and wall	ks 12 km. In whic	h direction is he from the
	starting point?				
	(a) North	(b) South	(c) West	(d) East	
20.	Daily in the morr Bara	ning the shadow of Gol	Gumbaz falls on Bara K	aman and in the	evening the shadow of
	Kaman falls on G	ol Gumbaz exactly. So	in which direction is Go	l Gumbaz to Bara	Kaman?
	(a) Easter side	(b) Wester	n side (c) No	orthern side	(d) Southern side
21.	Ashok went 8 km	n South and turned We	est and walked 3 km aga	in he turned Nor	th and walked 5 kms. He

NA	NAHTA PROFESSIONAL CLASSES LOGICAL REASONING							
	took a final turn t	to East and walked 3	3 kms . In which direction	was Ashok from the starting point?				
	(a) East	(b) North	(c) West	(d) South				
22.	If X stands on his	head with his face t	towards south, to which di	s south, to which direction will his left hand point ?				
	(a) East	(b) West	(c) North	(d) South				
23.	I drove East for 5	miles then drove N	orth 3 miles, then turned t	to my left and drove for 2 miles and again				
	turned to my left. Which direction am I going now?							
	(a) South	(b) North	(c) West	(d) North-west				
24.	If A stands on his	head with his face t	towards north. In which di	rection will his left hand point ?				
	(a) North-East	(b) North	(c) East	(d) North-West				
25.	A car travelling fr	com south covers a (distance of 8 km, then turn	s right and runs another 9 kms and again				
	turns to the right	and was stopped. V	Which direction does it face	e now?				
	(a) South	(b) North	(c) West	(d) East				
26.	A taxi driver com and	menced his journey	/ from a point and drove 10) km toward north and turned to his left				
	drove another 5 l	km. After waiting to	meet a friend here, he tur	ned to his right and continued to drive				
	another 10 km. H	e has covered a dist	tance of 25 km so far, but i	n which direction would he be now?				
	(a) South	(b) North	(c) East	(d) South-east				
27.	A walks 3 kms no	orthward and then h	ne turns left and goes 2 km	. He again turns left and goes 3 km. He				
	turns right and w	valks straight. In wh	ich direction is he walking	now?				
	(a) East	(b) West	(c) North	(d) South				
28.	Á walks southear	ds, then turns right	, then left and then right. In	n which direction is he from the starting				
	point?							

NAF	NAHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
	(a) South	(b) East	(c) West	(d) North		
29.	A man starts fi again	rom a point, walks 15 r	neters towards East, t	curns left and walks 10 meters, turns right		
	and walks. To	wards which direction	is he now waking?			
	(a) North	(b) East	(c) West	(d) South		
30.	A boy starts w	alking towards West, h	ie turns right and agai	in he turns right and then turns left at last.		
	Towards whic	h direction is he walki	ng now?			
	(a) West	(b) North	(c) South	(d) East		
31.	I stand with m ?	y right hand extended	side-ways towards Sc	outh. Towards which direction will my back be		
	(a) North	(b) West	(c) East	(d) South		
32.	If a person mo	ves 4 km towards wes	t, then turns right and	moves 3 km and then turns right and moves 6		
	km, which is th	ne directions in which	he is now moving ?			
	(a) East	(b) West	(c) North	(d) Sout		
33.	If Mohan sees	the rising sun behind t	he temple and the set	ting sun behind the railway station from his		
	house, what is	the direction of the ter	mple from the railway	station?		
	(a) South	(b) North	(c) East	(d) West		
34.	Laxman went covered	15 km to North then he	e turned West and cov	vered 10 kms. Then he turned south and		
	5 kms. Finally	turning to East he cove	ered 10 kms. In which	direction he is from his house?		
	(a) East	(b) West	(c) North	(d) South		
35.	A man starts fi right	rom a point, walks 4 m	iles North, turns to hi	s right and walks 2 miles, again turns to his		
	and walks 2 m	iles, again turns to his	right and walks 2 mile	es. In which direction would he be now?		

NA	NAHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
	(a) North	(b) South	(c) East	(d) West		
36.	I started walkir	ng down a road in the n	norning facing the Sun.	After walking for sometime I turned to my		
	left. Then I turr	ned to my right. In whic	h direction was I going	; then ?		
	(a) East	(b) West	(c) North	(d) South		
37.	Lakshmi walke one	d 2 furlongs north fron	1 her house and took a	turn to left and continued to walk another		
	kilometre and f	finally she turned left a	nd reached the school.	Which direction is she facing now?		
	(a) West	(b) North	(c) South	(d) North		
38.	You are going s direction	straight, first eastwards	, then turn to the right	, then right again, then left. In which		
	would you be g	joing now?				
	(a) East	(b) West	(c) South	(d) East		
39.	If Ahmed trave each	ls towards North from	his house, then to left,	then to South covering equal distances in		
	direction to rea	ach Sohan's house, in w	hich direction is Ahme	d's house now?		
	(a) East	(b) South	(c) North	(d) West		
40.	You go North, t	urn right, then right ag	ain and then go to the l	eft. In which direction are you now?		
	(a) South	(b) East	(c) West	(d) North		
41.	Roopa starts fr	om a point and walks 1	5 meter towards west,	turns left and walks 12 meter, turns right		
	again and walk	s. What is the direction	she is now facing?			
	(a) South	(b) West	(c) East	(d) North		
42.	A man starts hi walks 3	s journey facing the su	n early morning. He th	en turns right and walks 2 km. He then		
	km after turnin	ıg right again. Which is	the direction he is faci	ng now?		

NAH	TA PROFESSION	al Classes			LOGICAL REA	SONING
	(a) North-East	(b) North	(c) West	(d) South	
43.	Roy walks 2 km t Then	o East, then turns Nort	h-West and wa	llks 3 km. Then he	turns South and	walks 5 km.
	again he turns W from	est and walks 2 km. Fir	hally he turns N	lorth and walks 6	km. In which dir	ection, is he
	the starting point	t?				
	(a) South-West	(b) South-F	East	(c) North-West	(d) Nort	th-East
44.	Seeta starts from	a point, walks 2 km to	wards north, tı	ırns towards her r	ight and walks 2	2 km, turns right
	again and walks.	What is the direction s	he is facing nov	N?		
	(a) East	(b) West	(c) South	(d) N	orth	
45.	Shyam was facing he	g East. He walked 5 km	forward and t	nen after turning t	o his right walke	ed 3 km. Again
	turned to his righ time?	nt and walked 4 km. Aft	er this he turn	ed back. Which dir	ection was he fa	cing at that
	(a) East	(b) West	(c) North	(d) :	South	
46.	Raju is standing f turns	facing north. He goes 30) meters ahead	and turns left and	l goes for 15 me	ters. Now he
	right and goes for	r 50 meters and finally	turns to his rig	ht and walks. In w	which direction is	s he heading?
	(a) North	(b) East	(c) South	(d) W	est	
47.	Sanmitra starts f	rom his house and wall	ks 3 km toward	ls north. Then he t	urns right and w	alks 2 km and
	then turns right a	and walks 5 km, then tu	Irns right and V	valks 2 km and the	en again turns ri	ght and walks 2
	km. Which direct	ion is he facing now?				
	(a) North	(b) South	(c) We	st (d) East	
48.	Raju is Ramu's ne and	eighbour and he stays 1	00 meters awa	ay towards southe	ast. Venu is Raju	's neighbour

NA	HTA PROFESSIONAL CLASSES			LOGICAL REASONING			
	he stays 100 mete	rs away towards sou	thwest. Khader is Ve	t. Khader is Venu's neighbour and he stays 100 meters away			
	towards, north-we	est. Then where is the	e position of Khader	's home in relatior	n to Ramu's?		
	(a) South-East	(b) South-	West (c	e) North-West	(d) East		
49.	Ramesh walked 3	km, towards West ar	nd turned to his left	and walked 2 km.	He, then turned to his right		
	and walked 3 km.	Finally, he turned to	his right again and v	walked another 2 l	km. In which direction is		
	Ramesh from his starting point now?						
	(a) East	(b) West	(c) North	(d) South			
50.	Deepa starts walk	ing north towards an	d after a while she t	curns to her right. A	After walking some distance,		
	she turns to his left and walks a distance of 1 km. She then urns to her left again. In which direction she						
	moving now?						
	(a) North	(b) West	(c) East	(d) South			
51.	Raman starts wall	king in the morning fa	acing the Sun. After	sometime, he turn	ed to the left later again he		
	turned to his left.	At what direction is F	Raman moving now?	,			
	(a) East	(b) West	(c) South	(d) North	1		
52.	A starts walking to	owards North turns l	eft, again turns left,	turns right, again t	curns right once again turns		
	left. In which dire	ction is A walking nov	w?				
	(a) East	(b) South	(c) West	(d) Sout	th-West		
53.	X walks southwar	ds and then turns rig	ht, then left and the	n right,. In which d	lirection is he moving now?		
	(a) South	(b) North	(c) West	(d) So	outh-West		
54.	A man started to v	valk East. After movi	ng a distance, he tur	med to his right. Al	fter moving a distance, he		
	turned to his right	again. After moving	a little he turned in	the end to his left.	In which direction was he		
	1						

(a) North	(b) South	(c) East		
			(d) We	st
		ANSWERS	5	
1. (c)	2. (d)	3. (b)	4 . (c)	5. (b
6. (b)	7. (b)	8. (c)	9. (b)	10. (d
11. (a)	12. (c)	13. (a)	14. (d)	1 5. (a
16. (a)	17. (d)	18. (d)	19. (b)	20. (a
21. (d)	22. (b)	23. (a)	24. (c)	2 5. (a
26. (b)	27. (b)	28. (a)	29. (b)	30. (b
31. (b)	32. (a)	33. (c)	34. (c)	35. (a
36. (a)	37. (đ)	38. (c)	39. (a)	40 . (b
41. (b)	42. (c)	43. (c)	44. (c)	4 5. (a
46. (b)	4 7. (a)	48.	49 . (b)	<mark>50. (</mark> b
51. (b)	52. (a)	53. (c)	54. (b)	

ſ

CH - 3	SEATING ARRANGEMENT			
Ex. 1:	Four Children's are sitting in arrow. A is occupying seat next to B but not next to C. If C is not sitting			
	next to D? Who is occupying seat next to adjacent to D.			
	(a) B (b) B and A (c) Impossible to tell (d) A			
Sol.::	(d) The arrangements as per given information is possible only if C is sitting next to B and D is sitting next			
	to A.			
	Therefore, two possible arrangements are C, B, A, D, or D, A, B, C Clearly, only A is sitting adjacent to D:			
Ex. 2:	P, Q, R, S, T, U, V and W are sitting in a row facing North.			
	(i) P is fourth to the right of T			
	(ii) W is fourth to the left of S			
	(iii) R and U, which are not at the ends, are neighbours of Q and T respectively.			
	(iv) W is next to the left of P and P is the neighbour of Q, who are sitting at the extreme ends\			
Sol.::	From information			
	(i) we get that there are three persons between P and TXXXP.			
	In the information (iv), it is given that W is next to the left of P and Q is the neighbour of P. Using the information with (i), we get TXXWPQ.			
	By the information (ii), TXXWPQXS By the information (iii),			
	T U V W P Q R S			
	So, T and S are sitting at the extreme ends.			

NAH	ITA PROFESSIONAL CLASSES		LOGICA	AL REASONING
Ex. 3:	There are Five houses P, Q , R, S, T	. P is right of Q	and T is left of R and right	of P . Q is right of S.
	Which house in the middle.			
	(a) P T	(b) Q	(c) R	(d)
Sol.::	According to the question the house S Q P T Therefore, house P is middle.	s can be arranged R	as follows.	
Ex. 6:	Friends are sitting on a bench. A is one	to the left of B	but on the right of C, D is a	to the right of B but
	the left of E. Who are at the extrem	mes?		
	(a) A, B (b) A, D		(c) C, E	(d) B, D
Sol.::	Arrangements according to the ques		Right	
Ex. 7:	In a college party, 5 girls are sitting to) in a row. F is to	the left of M and to the ri	ght of O. R is sitting
	the right of N but to the left of O.	Who is sitting in	the middle?	
	(a) 0 (b) R		(c) P	(d) M
Sol.::	 (a) arrangements of the question as Left N R O Therefore, O is sitting in the middle. 	P M	Right	
Ex. 8:	Five boys A, B, C, D and E are star	nding in a row. D	is on the right of E, B is on	the left of E but on
	the right of A. D is one the left of middle?	C, who is standin	g on the extreme right. Who	o is standing in the

NAF	AHTA PROFESSIONAL CLASSES		LOGICAL REASONING	
	(a) B	(b) C	(c) D	(d) E
Sol.::	The sequence of Left End A A There E is standi	B E D	Right C	
Ex. 9:	(Q Nos. 1 to 3)	Study the following Questi	ion carefully and answer the given que	stions.
	Four ladies & A,	B, C and D and Four Gent	tlemen E, F, G and H are sitting in a c	circle around a table
	facing each othe	Υ.		
	II. C, who I sittin	or gentlemen are sitting si ng between G and E, is fac D and A and facing G. ight of B.		
	(1) Who is sittin	g left of A?		
	(a) E	(b) F	(c) G	(d) H
	(2) E is facing	whom?		
	(a) F	(b) B	(c) G	(d) H
	(3) Who is imm	ediate neighbour of B?		
	(a) G and H H	(b) E and F	(c) E and H	(d) F and
Sol.::	On the basis of gi	ven information in the que	estion, the seating arrangements of the	persons are as follows.
	1) (b) Clearly , F	is sitting left of A.		

NAF	TA PROFESSIONAL CLASSES LOGICAL REASONING
	2) (d) Clearly E is facing H.
	3) (a) G and H are neighbours of B.
Ex. 10:	Eight persons A, B, C, D, E, F, G and H are sitting around the circle as given in the Figure. They are
	facing the direction opposite to centre. If they move upto three places anti-clockwise, then. North West a West a F South
	(a) B will face west (b) E will face East (c) H will face North-West (d) A will face South
Sol.::	Following Seating arrangement is formed from the given in formation.
	West G F South Original Clearly B will Face west
Ex. 11:	Five People A, B, C, D and E are seated about a round table. Every chair is spaced equidistant from adjacent
	chairs. I. C is seated next to A . II. A is seated two seats from D. III. B is not seated next to A.
	Which of the following must be true? I. D is seated next to B.

NAH	TA PROFESSIONAL CLASSES LOGICAL REASONING
	II. E is seated next to A.
	Select the correct from the options given below:
	(a) Only I (b) Only II (c) Both I and II (d) Neither I nor II
Sol.::	According to the given information there are possible Seating arrangements.
	From the above arrangements. It is clear that D is seated next to B . Also E is next to A. Clearly both
	statements I and II are true
Ex. 12:	Study the following Question carefully and answer the given questions.
	Eight friends A, B, C, D,E, G and H are sitting in a circle facing the centre, not necessarily in the same
	order. D sits third to the left of A. E sits to the immediate right of A. B is third to left of D. G is to
	second the right of B. C is neighbour of B. C is third to left of H.
	 I) Who amongst the following is sitting exactly between F and D? (a) C (b) E (c) H (d) A
	2) Three of the following four are alike in a certain way based on the information given above and so form a group. Which is does not belong to that group.

NAHTA PROFI	essional classes		LOGICAL REASONING		
(a) DC DF	(b) AH	(c) EF	(d)		
	amongst the following second t (b) B	to the left of H? (c) A	(d) None of these		
() ()()	and a Callender and house				
4) Who a (a) CA	amongst the following are imme (b) AF	ediate neighbours of G? (c) DC	(d) DF		
	amongst the following is sitting				
(a) F	(b) B	(c) H	(d) C		
Sol.:: Arrangen	nents according to the question	n is as follows			
2) (d)	early H is sitting exactly F and I DGC AFH EAF C r Skipped Skipped Nom O, CB does not belong to the gro	none B nember is skipped in between			
3) (d) Cle	early, H is sitting exactly betwee	en F and D			
4) (c) Cle	early D and C immediate neighb	oours of G			
5) (d) Cle	early, C is sitting third to the rig	ght of A			

LOGICAL REASONING

	"LR HAI JAHA, CA HAI WAHA"
	Choose the appropriate answer (a) or (b) or (c) or (d)
1.	Five boys A, B, C, D and E are sitting in a row A is to the right of B and E is to the left of B but to the right
	of C. A is to the left of D. Who is second from the left end? (U.P.B.Ed 2013)
	(a) D (b) A (c) E (d) B
2.	There are five different houses, A to E, in a row. A is to the right of B and E is to the left of C and right of
	A, B is to the right of D. Which of the houses is in the middle?
	(a) A (b) B (c) C (d) D
3.	Five friends P, Q, R, S and T are sitting in a row facing North. Here, S is between T and Q and Q is to the
	immediate left of R. P is to the immediate left of T. Who is in the middle?
	(a) S (b) T (c) Q (d) R
4.	Six children A, B, C, D, E and F are standing in a row. B is between F and D. E is between A and C. A does not
	stand next to eight F or D. C does not stand next to D. F is between which of the following pairs of children?
	(a) B and E (b) B and C (c) B and D (d) B and A
5.	There are eight books kept one over the other. Two books are on Organisation Behaviour, two books on
	TQM, three books on Industrial Relations and one book is on Economics. Counting from the top, the
	second, fifth and sixth books are on Industrial Relations. Two books on Industrial Relations are between
	two books on TQM. One book of Industrial Relations is between two books on Organizational Behaviour
	while the book above the book of Economics is a book of TQM. Which book is the last book from the top?

NAH	TA PROFESSIONAL CLASSES LOGICAL REASONING
	(a) Economics (b) TQM (c) Industrial Relations (d) Organizational Behaviour
6.	Five boys are standing in a row facing East. Pavan is left of Tavan, Vipin and Chavan to the left of Nakul.
	Chavan is between Tavan and Vipin. Vipin is fourth from the left, then how far is Tavan to the right?
	(a) First (b) Second (c) Third (d) Fourth
7.	Six persons M, N, O, P, Q and R are sitting in two row with three persons in each row. Both the row are in
	front of each other. Q is not at the end of any row. P is second the left of R. O is the neighbour of Q and
	diagonally opposite to P. N is the neighbour of R. Who is in front N?
	(a) R (b) Q (c) P (d) M
8.	Six persons A, B, C, D, E and F are sitting in two row, three in each row.
	(I) E is not at the end of any row
	(II) D is second to the left of F
	(III) C, the neighbor of E, is sitting diagonally opposite
	(IV) B is the neighbor of F.
	Which of the following are in one of the two rows?
	(a) D, B and F (b) C, E and B (c) A, E and F (d) F, B
	Direction (Q.No.9): Read the following information carefully and answer that question that follows.
	Five boys A1, A2, A3, A4 and A5 are sitting in a stair in the following way.
	I. A5 is above A1 II. A4 is under A2

NA	TA PROFESSIONAL CLASSES LOGICAL REASONING
	III. A2 is under A1 IV. A4 is between A2 and A3.
9.	Who is at the lowest position of the stair?
	(a) A1 (b) A3 (c) A5 (d) A2
10.	Five children are sitting in a row. S is sitting next to P but not T. K is sitting next to R, who is sitting on the
	extreme left and T is not sitting next to K. Who is/are adjacent to S?
	(a) K and P (b) R and P (c) Only P (d) P and T
11.	Five senior citizens are living in a multi-storeyed building. Mr. Muan lives in a feat above Mr.
	Ashokan, Mr. Lokesh in a feat below Mr. Gaurav, Mr. Ashokan lives in a feat below Mr. Gaurav
	and Mr. Rakesh lives in a feat below Mr. Lokesh. Who lives in the topmost feat? (MAT 2013).
	(a) Mr. Lokesh (b) Mr. Gaurav (c) Mr. Muan (d) Mr. Rakesh
12.	In a gathering seven members are sitting in a row. 'C' is sitting left to 'B' but on the right to 'D'.
	'A' is sitting right to 'B', 'F; is sitting right to 'E' but left to 'D'. 'H' is sitting left to 'E'. Find the
	person sitting in the middle.
	(a) C (b) D (c) E (d) F
	Directions (No: 13-17): Study the following information carefully to answer the given questions. A to H are
	seated in straight line facing North. C sits fourth left of G. D sits second to right of G.
	Only two people sit between D and A. B and F are immediate neighbours of each other. B is not an
	immediate neighbour of A. H is not neighbour of D.

NAF	ITA PROFESSIONAL CL/	ASSES		LC	dgical reasoning		
13.	Who amongst the follow	wing sits exactly	y in the middl	e of the persons who sit	t fifth from the left and the		
	person who sit sixth fro	om the right?					
	(a) C (b) H	(c) E	(d) F				
14.	Who amongst the follow	wing sits third t	o the right of	С?			
	(a) B (b) F	(c) A	(d) E				
15.	Which of the following represents persons seated at the two extreme ends of the line?						
	(a) C, D (b) A, B	(c) B, G	(d) D, H				
16.	What is the position of H with respect to F?						
	(a) Third to the left (b) Immediate right (c) Second to right (d) Fourth to left						
17.	How many persons are seated between A and E?						
	(a) One (b) Two	(c) Three	(d) Four				
	Directions (Q. No. 18-22)						
	 Study the following information carefully to answer the given questions. Ten students are A to J are sitting in a row facing west. I. B and F are not sitting on either of the edges. II. G is sitting left of D and H is sitting to the right of J. III. There are four persons between E and A. IV. I is the north of B and F is the south of D. V. J is between A and D and G is in E and F. VI. There are two persons between H and C. 						
18.	Who is sitting at the sev	venth place cou	nting from le	ìt?			
	(a) H (b) C	(c) J	(d) Either				
19.	Who among the followi	ng is defnitely s	sitting at one	of the ends?			

NAF	ITA PROFESS	IONAL CLAS	SES	LOGICAL REASONING			
	(a) C	(b) H	(c) E	(d) Cannot be	edetermined		
20.	Who are im	mediate neigh	bours of I?				
	(a) BC	(b) E	BH	(c) AH	(d) Cannot determined		
21.	Who is sittii	ng second left	of D?				
	(a) G	(b) F	(c) E	(d) J			
22.	If G and A in	terchange the	eir positions, th	ien who become	e the immediate neighbours of E?		
	(a) G and F	(b) Only F	(c) Only A	(d) J and H			
	Directions (Q. Nos. 23-24) Read the following information carefully and then answer the questions that						
	follow. A group of singers, facing the audience, are standing in line on the stage as follows. I. D is not right to C II. F is not standing beside G. III. B is not left of F IV. E is not left of A V. C and B have one person between E and F VI. There are two persons H and C.						
23.	Who is on th	ne Second extr	eme right?				
	(a) D	(b) F	(c) G	(d) E			
24.	If we start c	ounting from	the left, on wh	ich number is B	?		
	(a) 1st	(b) 2 nd	(c) 3 rd	(d) 5 th			
	Directions (Q. No. 25- 27)	: Study the foll	lowing informat	ion carefully to answer the given questions.		
	Eight perso	ns P to W are s	sitting in front	of one another	in two rows. Each row has four persons. P is		

NAHTA PROFESSIONAL CLASSES LOGICAL REASONING between U and V and facing North. Q, who is to the immediate left of M is facing W. R is between T and M and W is to the immediate right of V. 25. Who is sitting in front of R? (a) U (b) Q (c) V (d) P 26. Who is to the immediate right of R? (a) M (b) U (c) M or T (d) None of these 27. In which of the following pairs, persons are sitting in front of each other? (a) MV (b) RV (c) TV (d) UR Four girls A, B, C, D are sitting around a circle facing the centre. B and C infront of each other, which of 28. the following is de nitely true? (a) A and D infront of each other (b) A is not between B and C (c) D is left of C (d) A is left of C ANSWERS 2. 3. 7. 1. 4. (b) 5. 6. (d) (c) (a) (a) (a) (b) 8. 9. 12. (b) 10. (d) 11. (b) 13. (d) 14. (a) (c) (c) 15. 17. 18. 19. 20. 21. (d) 16. (a) (d) (d) (a) (c) (a) 22. 23. 24. 25. 27. 28. (c) (b) (d) (d) 26. (d) (a) (a)

CH - 4		BLOOD RELATIO	DNS				
1.	A is B's daughter, B	s is C's mother. D is C's brothe	er. How is D related to A?				
	(a) Father	(b) Grandfather	(c) Brother	d) Son			
Sol:	A is daughter B. B is mother of C Therefore, D is Son of I	В					
2.	P is Q's brother. R is	Q's mother. S is R's father. T	is S's mother. How is P rela	ated to T			
	(a) Grand-daughter	(b) Great grandson	(c) Grandson	(d) Grandmother			
Sol:	P is brother of Q . Therefore, P is a male. R is mother of P and Q and R is daughter of S. S is Son of T. S is grandfather of P.						
3	A is B's brother. C is	D's father. E is B's mother. F	A and D are brothers. How is	s E related to C			
	(a) Sister	(b) Sister-in-law	c) Niece	(d) Wife			
Sol:	A is brother of B . Ther C is father of D. Theref E is mother of B. There A and D are brothers. Therefore, D is male.	fore, C is male. efore, E is Female.					
	Explanation: (i) A and B are brother (ii) C is the father of A, (iii) C is the mother of (iv) E is wife of C	A, B and D					
4.	A is the sister of B. E	B is the brother of C. C is the	son of D. How is D related	to A?			
	(a) Mother	(b) Daughter	(c) Son	(d) Uncle			
Sol:	B is brother of C C is son of D. A is the sister of B and	1 C.					

NAF	TA PROFESSIONAL	CLASSES	LOG	ICAL REASONING			
	According to the opt	tions given, we are left with no	choice. But selection option	(a) is correct.			
5.	B is the brother of	A. whose only sister is mother	of C. D is maternal grandn	nother of C. How is A			
	related to D?						
	(a) Daughter-in-law	(b) Daughter	(c) Aunt	(d) Nephew			
Sol:	Although sex of A is not mentioned clearly in the question. On the basis of information given is A is daughter of B.						
6.	A and B are sisters. R and S are brothers. A's daughter is R's sister. What is B's relation to S?						
	(a) Mother	(b) Grandmother	(c) Sister	(d) Aunt			
Sol:	A's daughter R and S B is sister of A. B is a						
7.	E is the sister of B. A is the father of C. B is the son of C. How is A related to E?						
	(a) Grandfather grandfather	(b) Grand-daughter	(c) Father	(d) Great-			
Sol:	B is the Son of C and E is sister of B. Therefore, A is Gran	Grandson C and Grandson A. dfather of E.					
8.	Given that: A is the mother of	В.					
	C is the son of A.						
	D is the brother of						
	E is the daughter of	• В.					
	Who is grandmother	of D?					
	(a) A	(b) B	(c) C	(d) D			
Sol:	E is the daughter of Grandmother of D.	B and D is brother of E. Theref	ore B is son A and A is moth	er of B. Thus A, is			
9.	A is D' brother. D is	s B's father. B and C are siste	ers. How is A related to C?				
	(a) Son	(b) Grandson	(c) Father	d) Uncle			

	(a) Grandfather	b) Daughter	(c) Grandmother	(d) Granddaughter		
Sol:	D is Father of C and B i Thus, A is grandfather o					
11.	 (i) F is the brother of (ii) G is the daughter of (iii) K is the sister of (iv) G is the brother of 	of A. F. F C.				
	Who is the uncle of G?	(b) C	(c) K	(d) F		
Sol:	G is A and F is brother	of A.				
12.	A is father of C and D is son of B. E is brother of A. If C is sister of D how is B related to E?					
	(a) Sister-in-law law	b) Sister	(c) Brother	(d) Brother-in-		
Sol:	C and D Children of A a B is mother of C and D. Therefore, B is Sister-in					
13.	C is wife of B. E is the to D?	e son of C .A is the bro	ther of B and father of D. Wha	t is the relationship of		
	(a) Mother	(b) Sister	(c) Brother	(d) Cousir		
Sol:	E is son of B and C. A is uncle of E and Fath Therefore E is cousin of					
14.	M is the son of P. Q is	the grand-daughter of	O, who is the husband of P. He	ow is M related to O?		
<u>т</u> г.						

NA	HTA PROFESSIONAL (LOGICAL REASONING		
15.	X and Y are brothers R?	s. R is the father of	Y. S is the brothe	r of T and mo	ternal uncle of X. What is T to
	(a) Mother	(b) Wife	c) Sist	ter	(d) Brother
Sol:	R is the Father of X a S is the maternal unc Considering the optic	le of X and Y.			
	"L	OGIC HAI JA	HA, CA HAI	Waha"	
	Choose the appropri	ate answer (a) or (b) or (c) or (d)		
1.	A is B's brother. C is	A's mother. D is C's	father, E is B's son	. How is D rela	ted to A?
	(a) Son (b) Gra	andson (c) G	randfather	(d) Great	Grandfather
2.	As is B's brother. C	s A's father. D is C's	sister and E is D's 1	nother. How is	s B related to E?
	(a) Grand-daughter	(b) G	reat grands daught	er	
	(c) Grandaunt	(d) D	aughter		
3.	A is B's Sister. C is E	's Mother. D is C's F	ather. E is D's Moth	er. Then how	is A related to D?
	(a) Grandmother	(b) Grandfather	(c) Daughter	(d) Grand	s-daughter
4.	A is the father of B. between C and E?	C is the daughter of	B. D is the brother	of B. E is the so	on of A. What is the relationship
	(a) Brother and sist	er (b) Cousins	(c) Niece and	d uncle	(d) Uncle and aunt
5.	If P is the husband o	of Q and R is the mot	ther of S and Q. Wh	at is R to P?	

NA	HTA PROFESSION	al classes	LOGICAL REASONING				
	(a) Mother	(b) Sister	(c) Aunt	(d) Mother-in-law			
6.	P and Q are brothers. R and S are sister. P's son is S's brother. How is Q related to R?						
	(a) Uncle	(b) Brother	(c) Father	(d) Grandfather			
7.	X is the husban	d of Y. W is the daughte	r of X. Z is husband o	of W. N is the daughter of Z. What is the			
	relationship of N to Y?						
	(a) Cousin	(b) Niece	(c) Daughter	(d) Grand-daughter			
8.	A reads a book	and find the name of th	e author familiar. Th	e author 'B' is the paternal uncle of C.			
	C is the daughte	er of A. How is B related	l to A?				
	(a) Brother	(b) Sister	(c) Father	(d) Uncle			
9.	A's mother is si	ster of B and she has a	daughter C who is 21	years old. How is B related to D?			
	(a) Uncle	(b) Maternal Uncle	e (c) Niece	(d) Daughter			
10.	A is B's brother	. C is A's mother. D is C'	s father. F is A's son.	How is F related to D?			
	(a) Son	(b) Grandson	(c) Grand-grands	on (d) Grand-daughter			
11.	A is B's brother	. C is A's mother. D is C'	s father. E is B's son.	How is B related to D?			
	(a) Son (b)) Grand-daughter	(c) Grandfather	(d) Great grandfather			
12.	A is B's brother	. C is A's mother. D is C'	s father. F a is A's so	n. How is B related to F's child?			
	(a) Aunt (b)) Cousin (c) Nephew	v (d) Grandi	Tather			
13.	A is B's daughte	er. B is C's mother. D is (C's brother. How is D	related to A?			
	(a) Father (b)) Grandfather (c) I	Brother (d)	Son			
14.	A is D's brother	. D is B's father. B and (Care sisters. How is (C related to A?			
	(a) Cousin	(b) Niece	(c) Aunt	(d) Nephew			
	(a) Cousiii						

ther						
ther						
A and B are sisters. A is mother of D. D has a daughter C who is married to F. G is the husband of A. How is						
C related to D?						
R and S are brothers. X is the sister of Y and X is mother of R. What is Y to S?						
Who is						
E, which						

NAH	TA PROFESSIONAL CLASSES LOGICAL REASONING						
	(c) D is the cousin of A (d) B and D are brother						
23.	P is the father of T. T is the daughter of M. M is the daughter of K. What is P to K?						
	(a) Father (b) Father-in-law (c) Brother (d) Son-in-law						
24.	A and B are brothers. E is the daughter of F. F is the wife of B. What is the relation of E to A?						
	(a) Sister (b) Daughter (c) Niece (d) Daughter						
25.	M and F are a married couple. A and B are sisters. A is the sister of F. Who is B to M?						
	(a) Sister (b) Sister-in-law (c) Niece (d) Daughter						
26.	If A is the mother of D. B is not the son of C. C is the father of D, D is the sister of B, then how is A related to						
	B?						
	(a) Mother (b) Brother (c) Step son (d) Sister						
27.	A and B are brother and sister respectively. C is A's father. D is C's sister and E is D's mother. How is B						
	related to E?						
	(a) Grand-daughter (b) Great grand-daughter (c) Aunt (d) Daughter						
28.	Q is the son of P. X is the daughter of Q. R is the aunty (Bua) of X and L is the son of R, then what is L to P?						
	(a) Grandson (b) Grand-daughter (c) Daughter (d) Nephew						
29.	P and Q are brothers. R and S are sisters. P's son is S's brother. How is Q related to R?						
	(a) Uncle (b) Brother (c) Father (d) Grandfather						
30.	A and B are the young ones of C. If C is the mother of B but A is not the daughter of C, then what is the						
	relationship between C and A?						
	(a) Nephew and Aunty (b) Brother and Sister (c) Mother and son (d) Niece and Aunty						
31.	A is the mother of D and sister of B. B has a daughter C who is married to F. G is the husband of A. How is G						

NAF	TA PROFESSIONAL	CLASSES		LOGICAL REASONING		
	related to D?					
	(a) Uncle	(b) Husband	(c) Son	(d) Father		
32.	Pointing towards A	A, B said "your mothe	er is the younger siste	er of my mother". How is A related to B?		
	(a) Uncle	(b) Cousin	(c) Nephew	(d) Fathe		
33.	A is B's wife's husb	oand's brother. C and	l D are sisters of B. Ho	ow is A related to C?		
	(a) Brother	(b) Sister-in-law	(c) Wife	(d) Sister		
34.	A and B are brothe	ers. C and D are sister	rs. A's son is D's broth	her. How is B related to C?		
	(a) Father	(b) Brother	(c) Uncle	(d) Son		
35.	A is B's sister. C is I	B's mother. D is C's fa	ather. E is D's mother	r. Then how is A related to D?		
	(a) Grandmother	(b) Grandfather	(c) Daughter	(d) Grand-daughter		
36.	P, Q, R, S, T, U are 6 to	members of a family	in which there are tv	wo married couples. T, a teacher is married		
	a doctor who is mot	ther of R and U. Q the	e lawyer is married to	o P. P has one son and one grandson. Of the		
	two married ladies one is a housewife. There is also one student and one male engineer in the family.					
	Which of the follow	ing is true about the	grand-daughter of th	e family?		
	(a) She is a lawyer	· (b) She is an	n engineer (c) Sl	he is a student (d) She is a doctor		
37.	Six members of a fa	amily namely A, B, C,	, D, E and F are travel	lling together. 'B' is the son of C but C is not		
	mother of B. A and B.	C are married coupl	e. E is the brother of	C. D is the daughter of A. F is the brother of		
	How many male m	nembers are there in t	the family?			
	(a) 3 (b) 2	(c) 4	(d) 1			
38.	A's mother is sister	r of B and has a daug	hter C. How can A be	e related to B from among the following?		

NAH	TA PROFESSION	al classe	ES		LOGICAL REASONING
	(a) Niece (b) Uncle	(c) Daughter	(d) Father	
39.	Rajiv is the bro	ther of Atul	. Sonia is the si	ster of Sunil. Atul is	s the son of Sonia. How is Rajiv related to
	Sonia?				
	(a) Nephew	(b) Soi	n (c) Bro	other (d) F	ather
40.	Sita is the niece is	e of Ashok. A	Ashok's mother	r is Lakshmi. Kalyar	ni is Lakhshmi's mother. Kalyani's husband
	Gopal. Parvathi	is the moth	ner-in-law of G	opal. How is Sita re	lated to Gopal?
	(a) Great grand	lson's daugł	nter	(b) Gopal's Sita's fa	ither
	(c) Sita is Gopa	l's great gra	nd-daughter	(d) Grand niece	
41.	Seema is the da only	ughter-in-la	aw of Sudhir a	nd sister-in-law of I	Ramesh. Mohan is the son of Sudhir and
	brother of Ram	esh. Find th	e relation betw	ween Seema and Mo	bhan.
	(a) Sister-in-lav	N	(b) Aunt	(c) Cousin	(d) Wife
42.	Suresh introduce mother".	es a man as	"He is the son	of the woman who	is the mother of the husband of my
	How is Suresh re	elated to the	e man?		
	(a) Uncle	(b) Soi	n	(c) Cousin	(d) Grandson
43.	Pointing to a lacis	dy in a phot	ograph. Meera	ı said. "Her father's	only son's wife is my mother-in-law "How
	Meera's husbar	nd related to	o that lady in th	ne photo?	
	(a) Nephew	(b) Un	cle	(c) Son	(d) Father
44.	Pointing to a ph related	iotograph V	/ikas said "She	is the daughter of n	ny grandfather's only son". How is the
	to Vikas in the _l	photograph	?		
	(a) Father	(b) Bro	other	(c) Sister	(d) Mothe
	1				

NAH	ITA PROFESSIONAL CLASSES LOGICAL REASONING						
45.	Suresh's sister is the wife of Ram. Ram is Rani's brother. Ram's father is Madhur. Sheetal is Ram's						
	grandmother. Rema is Sheetal is daughter-in-law. Rohit is Rani's brother's son. Who is Rohit to						
	Suresh?						
	(a) Brother-in-law (b) Son (c) Brother (d) Nephew						
46.	Vinod introduces Vishal as the son of the only brother of his father's wife. How is Vinod related to Vishal?						
	(a) Cousin (b) Brother (c) Son (d) Uncle						
47.	Among her children, Ganga's favourites are Ram and Rekha. Rekha is the mother of Sharat, who is loved						
	most by his uncle Mithun. The head of the family is Ram Lal, who is succeeded by his sons Gopal and						
	Mohan. Gopal and Ganga have been married for 35 years and have 3 children. What is the relation						
	between Mithun and Mohan?						
	(a) Uncle (b) Son (c) Brother (d) Nephew and uncle						
48.	Rahul and Robin are brothers. Promod is Rohin's father. Sheela is Pramod's sister. Prema is Promod's						
	niece. Shubha is Sheela's grand-daughter. How is Rahul related to Shubha?						
	(a) Brother (b) Cousin (c) Uncle (d) Nephew						
49.	Preeti has a son, named Arun. Ram is Preeti's brother. Neeta too has a daughter named Reema. Neeta is						
	Ram's sister. What is Arun's relationship to Reema?						
	(a) Brother (b) Nephew (c) Cousin (d) Uncle						
50.	There are 2 firm stars. One is the father of the other's son. What is the relationship of the two with each						
	other?						
	(a) Grandfather and Grandson (b) Grandfather and son (c) Husband and wife (d) Father and Son						
51.	Ramu's mother said to Ramu,"My mother has a son whose son is Achyut". How is Achyu relation to Ramu?						

NAH	ta professional	l classes		LOGICAL REASONING		
	(a) Uncle	(b) Cousin	(c) Brother	(d) Nephew		
52.	Ravi's father has a	a son Rohit who has a	ın aunt Laxmi who ha	as a husband Rao whose father-in-law is		
	Mohan. What is the relation of Mohan to Ravi?					
	(a) Nephew	(b) Grandfather	(c) Son	(d) Uncle		
53.	Vijay says, Anand	a's mother is the only	v daughter of my mot	her". How is Ananda relation to Vijay?		
	(a) Brother	(b) Father	(c) Nephew	(d) Grandfather		
54.	Introducing a ma related	n, a woman said, "His	wife is the only daug	hter of my mother." How is the woman		
	with the man?					
	(a) Sister-in-law	(b) Wife	(c) Aunt	(d) Mother-in-law		
55.	A prisoner introd is	uced a boy who came	e to visit him to the ja	ilor as "Brothers and sisters I have none, he		
	my father's son's	son". Who is the boy?	,			
	(a) Nephew	(b) Son	(c) Cousin	(d) Uncle		
			ANSWERS			

NAHTA PROFESSIONAL CLASSES

1. (c)	2. (a)	3. (d)	4. (c)
5. (d)	6. (a)	7. (d)	8. (a)
9. (b)	10. (c)	11. (b)	12. (d)
13. (c)	14. (b)	15. (c)	16. (d)
17. (b)	18. (a)	19. (a)	20. (a)
21. (a)	22. (a)	23. (d)	24. (c)
25. (b)	26. (a)	27. (a)	28. (a)
29. (a)	30. (c)	31. (d)	32. (b)
33. (a)	34. (c)	35. (d)	36. (c)
37. (c)	38. (a)	39. (b)	40. (c)
41. (d)	42. (b)	4 3. (a)	44. (c)
45. (d)	46. (a)	47. (d)	48. (c)
49. (c)	50. (d)	51. (b)	52. (b)
53. (c)	54. (b)	55. (b)	

STUDENT NOTES

CH - 5	SYLLOGISM
Ex.1	Statements I All A's are C's II All D's are C's
	Conclusion I All D's are C's II. Some D's are not A's
	(a) Only I follows
	(b) Only II follows
	(c) Both I and II follows
	(d) None follows
Sol:	(a) Now, taking conclusion I, it is clear that all D's are also C's but taking conclusion II, we cannot
	say that some D's are not A's because from Statement I it is clear that all D's are A's.
	Hence, only Conclusion I follows.

"LOGIC HAI JAHA, CA HAI WAHA"

	Directions (Qs. 1 - 25) : Each of the following questions contains two statements followed by two
	conclusions numbered I and II. You have to consider the two statements to be true, even if they seen to be
	at variance at the commonly known facts. You have to decide which of the given conclusions definitely
	follows from the given statements.
	Give answer (a) if only I follows; (b) if only conclusion II follows; (c) if either I or II follows; (d) if
	neither I nor II follows and (e) if both I and II follow.
1.	Statement: Some Chairs are glasses. All trees are Chairs.
	Conclusions: I. Some trees are glasses II. Some glasses are trees.
2.	Statement: No man is a lion. Ram is a man.
	Conclusions: I. Ram is not a lion. II. All men are not Ram.
3.	Statement: All boys are Fathers. All Fathers are Mothers.
	Conclusions: I. All Fathers are boys. II. All boys are Mothers.
4.	Statement: All pens are cups. All cups are bowls.
	Conclusions: I. All pens are bowls. II. All cups are pots.
5.	Statement: All students are boys. No boy is dull

NAH	HTA PROFESSIONAL CLASSES	LOGICAL REASONING
	Conclusions: I. There are no girls in the class II. No student is dull.	
6.	Statement: Some cats are kittens. All Rats are kittens.	
	Conclusions : I. Some cats are Rats. II. Some Rats are cats.	
7.	Statement: All names are dogs. No dogs are foxes.	
	Conclusions : I. All names are foxes. II. No dogs are names.	
8.	Statement: All pens are dogs. Some pens are lights.	
	Conclusions : I. Some dogs are lights. II. Some lights are not dogs	
9.	Statement: Some animals are clouds. Horse is a animal.	
	Conclusions: I. Some clouds are animal. II. Hen is not a cloud.	
10.	Statement: All tables are rats. Some Rats are chairs.	
	Conclusions : I. All rats are tables II. Some chairs are not rats.	
11.	Statement: All tigers are birds. Some birds are cows.	
	Conclusions : I. Some cows are birds. II. Some tigers are cows.	
12.	Statemen t: All papers are pens. All pens are erasers.	
	Conclusions : I. Some erases are papers. II. Some pens are no papers.	
13.	Statement: Some trees are monkeys. Some ships are trees.	
	Conclusions : I. Some Monkeys are ships. II. Some trees are neither ships nor monkeys.	
14.	Statement: All glasses are mirrors.	

NAHTA PROFESSIONAL CLASSES

	Some mirrors are Black.
	Conclusions : I. All mirrors are glasses. II. Some glasses are black.
15.	Statement: Some dogs are monkeys. No monkey is black.
	Conclusions : I. Some dogs are black. II. Some monkeys are dogs.
16.	Statement: All roads are poles. No poles are Bungalows.
	Conclusions : I. Some roads are Bungalows. II. Some Bungalows are poles.
17.	Statement: Many actors are directors. All Directors are dancers.
	Conclusions : I. Some actors are dancers. II. No director is an actor.
18.	Statement: Only dogs are animals. No historian is an animal.
	Conclusions : I. Some dogs are not historians. II. Some historians are not dogs.
19.	Statement: Some chairs are caps. No cap is red.
	Conclusions: I. Some caps are chairs. II. No Chair is red.
20.	Statement: Some cups are belts. No belt is black.
	Conclusions : I. Some cups are black. II. Some cups are not black.
21.	Statement: Some girls are flowers. Some flowers are books.
	Conclusions : I. Some girls are books. II. No books are girls.
22.	Statement: Some files are rats. All animals are rats.
	Conclusions : I. All files are rats. II. Some rats are animals.

NA	hta profes	<u>sional Cl</u>	ASSES			LOO	GICAL REAS	ONING
23.	Statement:	All crickete Rajesh is ta						
	Conclusions : I. Rajesh is a cricketer. II. Rajesh is not cricketer.							
24.	Statement: Some cats are cows. All cows are horses.							
	Conclusion		orses are cats. ats are horses.					
25.	Statement:		s are hard wo s are superstit					
	Conclusion		ntists are supe erstitious are r					
		^						
		ANSW	ERS					
		1. (d)	2. 🗨)	3. (b)	4. Ø)	5. (e)		
		6. (d)	7. (d)	8. (a)	9. (a)	10. (b)		
		11. (a) 16. (d)	12. (a)	13. (2) 18. (a)	14. (d) 19. (a)	15. (b) 20. (b)		
		21. (c)	22. (b)	23. (c)	24. (e)	20. (B) 25. (e)		

	<u>CHAPTER I</u>						
	NUMBER SERIES, CODING DECODING & ODD MAN OUT						
	ADDITIONAL QUESTIONS						
	"MORE REA	SONING YO	u find, mor	E EASY WILL BE	T <u>HE</u>		
		М	YSTERY OF C	CA JOURNERY"		y	
1.	A B C D E F G H I	J K L M N O P Q	R S T U V W X Y Z.				
	In the alphabet g	given above, whi	ch is 13 th letter to	the left of 8 th letter from	n your right?		
	(a) E	(b) F	(c) U	(d) H			
	Ans.: (b)						
2.	There are two le	etters in the wor	d 'SCIENTIFIC' suc	ch that the number of le	tters betweer	them is the sa	me
	as the number of letters between them in the alphabet. The letter which comes later in the alphabet is your						: is
	answer. If no suc	ch pair of letters	is possible, then y	our answer is 'X'.			
	(a) E	(b) C	(c) I	(d)X			
	Ans.: (a)						
3.	How many pairs	of two letters of	the word 'INDUC'	TIVE' are there, which h	nave as many	letters between	1

NAF	ITA PROFESSIO	onal classes		LOGICAL REASONING			
	them in the w	ord as in the alpha	bet?				
	(a) None	(b) 3	(c) 1	(d) 4			
	Ans.: (c)						
4.	If the followir	ng series is written	in reverse order, the	n which will be 12 th letter to the rig	ght of 10 th letter		
	from your right?						
	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z						
	(a) X	(b) U	(c) V	(d) None of these			
	Ans.: (a)						
5.	If in the follo	wing series all the l	etters at the even pla	ces are deleted and the order of del	eting begins from		
	B, then which	will be the third le	etter to the left of 5 th	letter from your right?			
	A B C D E F G	H I J K L M N O P Q	R S T U V W X Y Z				
	(a) I	(b) W	(c) M	(d) None of these			
	Ans.: (d)						
6.	If in the follow so	wing series the lett	ers at the even place	s are denoted by lower letters as b	for B, d for D and		
	on then how	will the next month	n of November be wr	itten?			

NAH	ITA PROFESSIO	VAL CLASSES		LOGICAL REASONING			
	A B C D E F G H	I J K L M N O P (Q R S T U V W X Y Z				
	(a) DECEMbEr	(b) deCeMber	(c) dEcEMbER	(d) dECEMbEr		
	Ans.: (d)						
7.	In the following series which is the 9 th letter to the left of 7 th letter from your left?						
	A B C D E F G H I J K L M N O P Q R S T U V W X Y Z						
	(a) K	(b) 0	(c) P	(d) None of these			
	Ans.: (c)						
8.	Which is the 7 th	letter to the rig	ht of 9 th letter from	your right in the following serie	s?		
	A B C D E F G H	I J K L M N O P (Q R S T U V W X Y Z				
	(a) Y	(b) L	(c) J	(d) None of these			
	Ans.: (d)						
9.	Which is the 10	th letter to the le	eft of 15 ^{lh} letter from	your right in the following seri	es?		
	A B C D E F G H	I J K L M N O P (Q R S T U V W X Y Z				
	(a) U	(b) B	(c) V	(d) None of these			
	Ans.: (b)						
10.	If the first and	sixth letters of t	he word 'CREDENTL	ALS' were interchanged, also th	е		

NAH	HTA PROFESS	SIONAL CLASSES		LOGICAL REASONING		
	second and	seventh letters and	so on, which of the follow	ring would be 8 th letter from your right?		
	(a) A	(b) T	(c) D	(d) None of these		
	Ans.: (a)					
11.	If the first and 11 th letters of the word 'DISTURBANCE' were interchanged, also the second and 10 th letter					
	and so on, which would be the 7 th letter from your right?					
	(a) R	(b) B	(c) A	(d) None of these		
	Ans.: (b)					
12.	If with the f	îirst, fourth, fifth and	eighth letters of the wor	d 'LAUREATE' a meaningful word can be formed,		
	which woul	d be the first letter o	f that word? If no meanin	ngful word is possible then X is the answer and if		
	more than c	one, words are possil	ole then M is the answer.			
	(a) X	(b) E	(c) M	(d) None of these		
	Ans.: (c)					
13.	If with the s	econd, fourth, sixth a	and 10 th letters of the wo	rd 'SHOPKEEPER' a meaningful word can be		
	formed, wh	ich would be the last	letter of that word? If no	meaningful word is possible then 'X' is the		
	answer and	if more than one, we	ords can be formed, then	the answer is 'M'.		

NA		SIONAL CLASSES	LOGICAL REASONING		
	(a) M	(b) X	(c) P	(d) None of these	
	Ans.: (b)				
14.	If with the f	irst, fifth, eighth and f	10 th letters of the word	'HOMOGENEOUS' a meaningful word can be	
	formed, whi	ich would be the first	letter of that word? If n	o meaningful word can be formed then the answe	
	is 'X' and if I	more than one, words	s can be formed then 'M	I' is the answer.	
	(a) H	(b) X	(c) M	(d) None of these	
	Ans.: (a)				
15.	Two letters	of the word 'YESTER	DAY' have as many lett	ers between them in the word as in the alphabet	
	The letter w	vhich comes earlier in	the alphabet. The lette	er which comes earlier in the alphabet is your	
	answer. If n	o such pair is there, t	hen your answer will b	e 'XT	
	(a) R	(b)S	(c) X	(d) M	
	Ans.: (a)				
16.	Which one o	of the following numb	oers is different from th	ie rest?	
	(a) 13	(b) 21	(c) 17	(d) 19	
	Ans.: (b)				
17.	Which one o	of the following group	os of letters is different	from the rest?	
	(a) NP	(b) PR	(c) US	(d) EG	

NA	HTA PROFESSION	NAL CLASSES		LOGICAL REASONING		
	Ans.: (c)					
	Directions — Ir	n each of the questions f	from 18 to 29, which one	of the alternatives is different		
	from the rest?					
18.	(a) 4-7	(b) 7-16	(c) 17-36	(d) 16-32		
	Ans.: (d)					
19.	(a) 51-28	(b) 37-62	(c) 81-104	(d) 99-76		
	Ans.: (b)					
20.	(a) 111-11	(b) 15-105	(c) 7-91	(d) 3-81		
	Ans.: (a)					
21.	(a) 63, 18	(b) 29,46	(c) 47,34	(d)28, 41		
	Ans.: (c)					
22.	(a) 9-27	(b) 15-45	(c) 10-30	(d) 20-60		
	Ans.: (a)					
23.	(a) 10-45	(b) 20-85	(c) 40-180	(d) 60-270		
	Ans.: (b)					
24.	(a) 2437	(b) 2419	(c) 5407	(d) 1459		
	Ans.: (d)					
25.	(a) 2547	(b) 3456	(c) 3715	(d) 5678		

NAH	ITA PROFESSIO			LOGICAL REASONING
	Ans.: (c)			
26.	(a) 15-40	(b) 18-56	(c) 24-76	(d) 12-28
	Ans.: (b)			
27.	(a) 6-36	(b) 5-25	(c) 7-49	(d)3-9
	Ans.: (a)			
28.	(a) 9-40	(b) 20-95	(c) 17-80	(d) 16-78
	Ans.: (b)			
29.	(a) 200	(b) 500	(c) 700	(d) 600
	Ans.: (d)			
	Directions— Ir	n each of the question:	s from 30 to 41, which	letters group is different from the rest?
30.	(a) MNW	(b) OPY	(c) JKT	(d)GHO
	Ans.: (d)			
31.	(a) FRY	(b) HAN	(c) CUT	(d) DOT
	Ans.: (a)			
32.	(a) TEAM	(b) THAN	(c) TATA	(d) TILE
	Ans.: (c)			
33.	(a) KMPTZ	(b) DFIMR	(c) HJN	MQV (d) ACFJO
	Ans.: (a)			

NAF	HTA PROFESSION			LOGICAL REASONING		
34.	(a) CROTON	(b) CRUSH		(c) CRIMP	((d) CRINGE
	Ans.: (a)					
35.	(a) CORDIAL	(b) CORIA	ANDER	(c) (CORDATE	
	Ans.: (c)					
36.	(a) CRY	(b) JOY	(c) FRY	((l) TRY	
	Ans.: (b)					
37.	(a) FAMOUS	(b) FRUCTU	IOUS	(c) FAN	NCIED	(d) FAVOUR
	Ans.: (b)					
38.	(a) GLARY	(b) GLAZE		(c) GLARE		(d) GLADE
	Ans.: (a)					
39.	(a) GILD	(b) GIFT	(c) GIM	IP	(d) GIBE	
	Ans.: (d)					
40.	(a) NOM	(b) BCA	(c) JIH		(d) RSQ	
	Ans.: (c)					
41.	(a) MQT	(b)ADG	(c) HKN		(d)RUX	
	Ans.: (a)					
	Directions— In	each of the following	; questions !	find out the oc	ld one.	
42.	(a) Flower	(b) Stem		(c) Branch		(d) Roots
	1					

NAF	ITA PROFESSIONAL C	LASSES	LOGICAL REASONING		
	Ans.: (d)				
43.	(a) Day	(b) Week	(c) Time (d) Month	
	Ans.: (c)				
44.	(a) College-students		(b) Hospital-patient		
	(c) Bus stand-driver		(d) Stadium-viewer		
	Ans.: (c)				
45.	Find the odd word out	:			
	(a) Cotton	(b) Terene	(c) Silk	(d) Wool	
	Ans.: (b)				
46.	Which one is different	from the rest?			
	(a) Sparrow	(b) Chicken	(c) Pigeon	(d) Owl	
	Ans.: (b)				
	Directions— (47-53)	In each of the following	questions find the word or	r pair of words which is different	
	from the other three v	vords or pairs of words.			
47.	(a) Shirt-Dress	(b) Boy-Girl	(c) Book-Library	d) Table-Furniture	
	Ans.: (b)				
48.	(a) Mango-Fruit	(b) Rice-Corn	(c) Student-Clas	s (d) Tomato-Potato	
	Ans.: (d)				

NA	HTA PROFESSIONA	AL CLASSES		LOGICAL REASONING
49.	(a) Sweet-Sour	(b) Unhappy-Sad	(c) In-Out	(d) Up-Down
	Ans.: (b)			
50.	(a) Lake	(b) Brook	(c) Stream	(d) River
	Ans.: (a)			
51.	(a) Light-heavy	(b) Broad-Wide	(c) Big-Large	e (d) Tiny-Small
	Ans.: (a)			
52.	(a) Unique	(b) Peerless	(c) Common place	(d) Unequalled
	Ans.: (c)			
53.	(a) Cover-Page	(b) Circle-Radius	(c) Chair-Leg	(d) Flower-Petal
	Ans.: (a).			
54.	If in a certain code	e 'MANISH' is written as 'NZM	IRHS', then how will 'RAN	IJITA' be written in the same code?
	(a) IZMQRGZ	(b) IZMPRGZ	(c) IZMQRHZ	(d) IZMQRIZ
	Ans.: (a)			
55.	If in a certain code	e 'CANDLE' is written as 'FD(QGOH' then how will 'MIN	IUTE' be written in the same code?
	(a) PQLHXW	(b) PHWQLX	(c) PLQHWX	(d)PLOXWH
	Ans.: (d)			
56.	If 'THRASH' is coc	led as 'UGSZTG', then how w	ill 'HEAD' be coded?	
	(a) IECD	(b)GDZC (c) ID	BC (d)GDBC	

HTA PROFESSION	AL CLASSES		LOGICAL REASONING
Ans.: (c)			
If 'TOMB' is code	ed as 'MBOR', then how w	/ill 'GOAL' be coded?	
(a) ALOG	(b) ALOE	(c) LOAG	(d)EALO
Ans.: (b)			
If 'CAMERA' is cc	oded as 'CMRCMR', then h	iow will 'CHAPRA' be	e coded?
(a) CARCAR	(b) CARHPA	(c) HPACAR	(d) RACRAC
Ans.: (a)			
If 'GOAL' is code	d as 'HPBM' and 'FROCK'	is coded as 'GSPTU t	hen • how will 'LOFAR' be coded?
(a) MPGZO	(b)MNEBS	(c) MPGBS'	(d)MPEBR
Ans.: (c)			
If TORCH' is code	ed as 'SXILG' then how wi	ill 'MANUAL' be code	ed?
(a) OBFMZN	(b) OZEOZN	(c) OZFMZN	(d)NZFMZK
Ans.: (c)			
If 'INSURE' is coc	ded as 951395, then how	will 'PATRIOT be co	ded?
(a) 7129962	(b) 7129962	(c) 7129	962 (d) 7129962
Ans.: (c)			
If TAME' is code	d as 'SULA' and 'NIDUS' a	s 'MACOR' then how	will EMOTIONS' be coded?
(a) ALISEIMR	(b) DLNSHNM	R (c)	ALISEIOR (d) ANIUEIOT
	Ans.: (c) If 'TOMB' is code (a) ALOG Ans.: (b) Ans.: (b) If 'CAMERA' is code (a) CARCAR (a) MPGZO (a) MPGZO (a) OBFMZN (a) OBFMZN (a) 7129962 Ans.: (c) If 'TAME' is code (a) 7129962	If 'TOMB' is coded as 'MBOR', then how we (a) ALOG (b) ALOE Ans:: (b) If 'CAMERA' is coded as 'CMRCMR', then how (a) CARCAR (b) CARHPA (a) CARCAR (b) CARHPA Ans:: (a) If 'GOAL' is coded as 'HPBM' and 'FROCK' i (a) MPGZO (b) MNEBS Ans:: (c) If TORCH' is coded as 'SXILG' then how wi (a) OBFMZN (b) OZEOZN Ans:: (c) If 'INSURE' is coded as 951395, then how wi (a) 7129962 (b) 7129962 If TAME' is coded as 'SULA' and 'NIDUS' as	Ans.: (c) If 'TOMB' is coded as 'MBOR', then how will 'GOAL' be coded? (a) ALOG (b) ALOE (c) LOAG Ans.: (b) If 'CAMERA' is coded as 'CMRCMR', then how will 'CHAPRA' be (a) CARCAR (b) CARHPA (c) HPACAR (a) CARCAR (b) CARHPA (c) HPACAR Ans.: (a) (c) MPGZO (b) MNEBS (c) MPGBS' Ans.: (c) (c) OZFMZN (c) OZFMZN (a) OBFMZN (b) OZEOZN (c) OZFMZN Ans.: (c) (c) 7129962 (c) 7129 If 'INSURE' is coded as 'SULA' and 'NIDUS' as 'MACOR' then how (c) 7129

NA	-ITA PROFESSIO	NAL CLASSES		LOGICAL REASONING	
	Ans.: (a)				
63.	If 'BEAR' is cod	led as 'FISH', 'FISH' as 'CRO)W', 'CROW' as 'DOG	' 'DOG' as 'ELEPHANT and 'ELEPHANT	
	as 'ASS', then w	vho can not remain alive in	other place than w	ater?	
	(a) FISH ,	(b) ELEPHANT	(c) DOG	(d) CROW	
	Ans.: (d)				
64.	. 'Vehicle' is co	ded as 'Book', 'Book' as 'Flo	ower', 'Flower' as 'Sv	veet' 'Sweet' as 'House', 'House' as 'Menta	1
	Hospital', and '	Mental Hospital' as Temple	e', then where is tre	asure of huge amount of knowledge hidde	en?
	(a) Book	(b) Sweet	(c) Vehicle	(d) Flower	
	Ans.: (d)				
65.	If in a certain c	ode '493' means 'Friendsh	ip difficult challenge	e', '961', means, 'Struggle difficult Exam., a	nd
	'178' means 'Ez	xam believable subject', th	en which digit is use	ed for 'believable'?	
	(a) 7 or 8	(b) 7 or 9	(c) 8	(d) 8 or 1	
	Ans.: (a)				
66.	How many M's	are there in the following	letter series which a	are not immediately preceded by H but	
	immediately fo	ollowed by R? HPMXTMRH	MRCKMHPTLMRNU	S	
	(a) 3	(b) 5	(c) 1	(d) 2	
	Ans.: (d)				
67.	In the followin the	g number series how man	y times have 2, 3 an	d 8 come together in such a way that 2 is	; in

AHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
middle and	3 and 8 are at extreme por	sitions?			
2452382	2 3 4 6 7 3 2 8 8 2 34 5 6 8	23628328			
(a) 3	(b) 2	(c) More than 4	(d) 4		
Ans.: (c)					
In the follov	ving series how many time	es an odd number is fol	lowed by two consecutive even numbers?		
4 2 3 2 5 4 2	2 5 3 2 6 4 3 5 7 2 8 6 7 9 4	54296132			
(a) 4	(b) More than 4	(c) 2	(d) 3		
Ans.: (a)					
In the follov	ving number series, how n	nany such 8's are there	which are divisible by its just preceding		
number but	not divisible by its just fo	llowing number?			
2843285	548267858248268	2486782			
(a) 2	(b) 3	(c) 1	(d) None of these		
Ans.: (a)					
In the follov	ving number series how m	any such 5's are there v	which are neither preceded by 3 nor followed		
by 7?					
2753457	7 6 3 5 2 1 2 5 4 6 5 9 3 5 7	5			
(a) 4	(b) 5	(c) 3	(d) 2		
	middle and 2 2 4 5 2 3 8 2 (a) 3 Ans.: (c) In the follow 4 2 3 2 5 4 2 (a) 4 Ans.: (a) In the follow number but 2 8 4 3 2 8 5 (a) 2 Ans.: (a) In the follow by 7? 2 7 5 3 4 5 7	middle and 3 and 8 are at extreme pose 2 4 5 2 3 8 2 3 4 6 7 3 2 8 8 2 34 5 6 8 3 (a) 3 (b) 2 Ans.: (c) In the following series how many time 4 2 3 2 5 4 2 5 3 2 6 4 3 5 7 2 8 6 7 9 4 (a) 4 (b) More than 4 Ans.: (a) In the following number series, how m number but not divisible by its just fol 2 8 4 3 2 8 5 4 8 2 6 7 8 5 8 2 4 8 2 6 8 (a) 2 (b) 3 Ans.: (a) In the following number series how max by 7? 2 7 5 3 4 5 7 6 3 5 2 1 2 5 4 6 5 9 3 5 7	middle and 3 and 8 are at extreme positions? 2 4 5 2 3 8 2 3 4 6 7 3 2 8 8 2 34 5 6 8 2 3 6 2 8 3 2 8 (a) 3 (b) 2 (c) More than 4 Ans.: (c) In the following series how many times an odd number is fol 4 2 3 2 5 4 2 5 3 2 6 4 3 5 7 2 8 6 7 9 4 5 4 2 9 6 1 3 2 (a) 4 (b) More than 4 (a) 4 (b) More than 4 (c) 2 Ans.: (a) In the following number series, how many such 8's are there number but not divisible by its just following number? 2 8 4 3 2 8 5 4 8 2 6 7 8 5 8 2 4 8 2 6 8 2 4 8 6 7 8 2 (a) 2 (b) 3 (c) 1 Ans.: (a) In the following number series how many such 5's are there with a series how many		

NAF	ITA PROFESS	SIONAL CLASSES		LOGICAL REASONING			
71.	How many such odd digits are there in the given series which are followed by an odd digit?						
	(a) 4	(b) 6	(c) More than 6	(d) 3			
	Ans.: (b)						
72.	How many such even digits are there in the given series which are preceded by an odd number and						
	followed by	an even number?					
	(a) 1	(b)2	(c) 4	(d) 3			
	Ans.: (d)						
73.	How many digit?	such odd digits are	there in the given series v	which are preceded and followed by any e	ven		
	(a) 4	(b) 2	(c) 5	(d) 3			
	Ans.: (a)						
74.	How many s	such groups of 3 digit	ts are there in the followin	g number series in which middle digit is an	l		
	even numbe	er while atleast one o	f the two remaining digits	is an odd number?			
	3432423	3 5 1 7 2 5 9 6 4 3 5 8	21465674				
	(a) 6	(b) 5	(c) 4	(d) More than 6			
	Ans.: (d)						
75.	In the follov	ving number series h	low many such groups of 4	, 5 and 9 are there in which prime number	of		
	these three	digits must be in the	middle? 4596945749567	49543594495549			
	(a) 3	(b) 4	(c) 2	(d) More than 4			

NA	AHTA PROFESSIONAL CLASSES			LOGICAL REASONING			
	Ans.: (c)						
76.	In the follow	In the following letter series how many such groups of L, S and W are there in which W should be the					
	middle of th	e group?					
	MLWSAL	S W N B Q W S L W P	L S N O L W T R W S L				
	(a) 2	(b) 3	(c) 4	(d) None of these			
	Ans.: (d)						
77.	How many s	uch H's are in the ser	ries, which are preced	ed by P and followed by E?			
	P H C R Q P I	Н Е Т Р Н L Н С Р Е Н	P S R Q E H P H C P H				
	(a) 2	(b) 3	(c) 1	(d) 4			
	Ans.: (c)						
78.	How many X	's are in the followin	g series which are pre	ceded by E and followed by N?			
	PEXRTNE	E X L R E N X U P E X '	ΓΑΧΓΕΧΙΝΕΧ				
	(a) 2	(b) 3	(c) 1	(d) None of these			
	Ans.: (d)						
79.	In the follow	ring series which num	nber will replace the q	uestion mark: 4,32, 16, 128,64,?			
	(a) 612	(b) 512	(c) 362	(d) 412			
	Ans.: (b)						
80.	In the follow	ring series, which nur	mber will replace the o	question mark:			

NA	HTA PROFESSIO	NAL CLASSES		LOGICAL REASONING
	2, 5, 12, 39, 160	0, 805, ?		
	(a) 4936	(b) 4930	(c) 4830	(d) 4836
	Ans.: (d)			
81.	In the followin;	g series, which number	• will replace the questi	on mark: 23, 29,31,37,41,43,?
	(a) 45	(b) 53	(c) 47	(d) 49
	Ans.: (c)			
82.	In the following	g series which number	will replace the questio	on mark?
	0, 6,24, 60, 120), 210,?		
	(a) 336	(b) 343	(c) 300	(d) 332
	Ans.: (a)			
83.	Q1F, S2E, U6D,	, W21C, ?		
	(a) Y66B	(b) Y88B	(c) 288B	(d) Y44B
	Ans.: (b)			
84.	3F, 6G, 111, 18	L,?		
	(a) 210	(b) 25N	(c) 27Q	(d) 27P
	Ans.: (d)			
85.	CFL, EIK, GLJ, I	OI, ?		
	(a) KRH	(b)KRJ	(c) JRH	(d)KQH

AHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
Ans.: (a)					
BF, CH, ?, HO,	LT.				
(a) EM	(b) EK	(c) FJ	(d) EL		
Ans.: (b)					
XDA, WED, VF	G, UGJ, THM, ?				
(a) JRQ	(b) QKN	(c) PLO	(d) SIP		
Ans.: (d)					
In the followir	ng letter-series some le	tters are missing. The n	nissing letters are given in th	e proper sequence	
as one of the a	alternatives. Find the c	orrect alternative.			
ab—abcab—a	ıbc—bca—c				
(a) abac	(b)bcac	(c) ccab	(d) bbac		
Ans.: (c)					
Directions: (8 series.	9 - 96) In each of the q	uestions find out the gr	roup of letters in place of qu	estion in the letter	
EIO, JOU, OUA	.,?				
(a) UAI	(b) UAE	(c) AEI	(d) EIO		
Ans.: (b)					
EFI, FGJ, GHK,	?, 1JM				
	Ans.: (a) BF, CH, ?, HO, (a) EM (a) EM Ans.: (b) XDA, WED, VF (a) JRQ Ans.: (d) In the followin as one of the a (a) abac (a) abac Ans.: (c) Directions: (8) series. (a) UAI Ans.: (b)	Ans.: (a) BF, CH, ?, HO, LT. (a) EM (b) EK Ans.: (b) XDA, WED, VFG, UGJ, THM, ? (a) JRQ (b) QKN Ans.: (d) In the following letter-series some let as one of the alternatives. Find the c (a) abac (b) bcac (a) abac (b) bcac Ans.: (c) In each of the q Series. (b) UAE	Ans.: (a) BF, CH, ?, HO, LT. (a) EM (b) EK (c) FJ Ans.: (b) XDA, WED, VFG, UGJ, THM, ? (a) JRQ (b) QKN (c) PLO (a) JRQ (b) QKN (c) PLO (c) Ans.: (d) In the following letter-series some letters are missing. The nere as one of the alternatives. Find the correct alternative. (c) Cab ab—abcab—abc—bca—c (c) ccab (c) Ans.: (c) Directions: (89 - 96) In each of the questions find out the gr series. (c) AEI Ans.: (b) (b) UAE (c) AEI	Ans.: (a) BF, CH, ?, HO, LT. (a) EM (b) EK (c) FJ (d) EL Ans.: (b) XDA, WED, VFG, UGJ, THM, ? (a) JRQ (b) QKN (c) PLO (d) SIP Ans.: (d) In the following letter-series some letters are missing. The missing letters are given in th as one of the alternatives. Find the correct alternative. ab—abcab—abc—bca—c (a) abac (b)bcac (c) ccab (d) bbac Ans.: (c) Directions: (89 - 96) In each of the questions find out the group of letters in place of questries. EIO, JOU, OUA,? (a) UA1 (b) UAE (c) AEI (d) EIO Ans.: (b)	

NA	NAHTA PROFESSIONAL CLASSES			LOGICAL REASON	ING
	Ans.: (a)				
91.	PNR, QKQ, SHO, V	VEL, ZBH, ?			
	(a) EZC	(b)EYC	(c) DYB	(d)FZB	
	Ans.: (b)				
92.	ISR, 2UO, 5WL, 10	.6YI, ?			
	(a) 49AF	(b) 33BG	(c) 65AF	(d) 65AG	
	Ans.: (c)				
93.	A2E, B7D, D17B,	G37Y, ?			
	(a) K87V	(b) K67U	(c) R57U	(d) K77U	
	Ans.: (d)				
94.	BOM, D1L, G1J, K				
	(a) Q4C	(b) P5C	(c) P3C	(d) P3B	
	Ans.: (c)				
95.	$\frac{1}{R'}\frac{3}{0'}\frac{5}{K'}\frac{9}{F'}\frac{13}{Z'}?$				
	(a) $\frac{19}{s}$	(b) $\frac{20}{T}$	(c) $\frac{19}{T}$	$(d)\frac{21}{R}$	
	Ans.: (a)				
96.	$\frac{4}{z'}\frac{11}{W'}\frac{25}{Q'}\frac{46}{H'}$?				
	(a) $\frac{67}{W}$	(b) $\frac{74}{V}$	(c) $\frac{60}{U}$	$(d)\frac{81}{V}$	

NAF	HTA PROFESSION.	IAL CLASSES		LOGICAL REASONING		
	Ans.: (b)					
	Directions: (97-	104) In the following se	ries find the number in pla	ace of question mark?		
97.	25, 22, 30, ?, 35.					
	(a) 27	(b) 26	(c) 28	(d) 29		
	Ans.: (a)					
98.	8, 13, 18, 11, 16,	,21, 16, 21, 26, ?, ?, ?				
	(a) 28,33,38	(b) 23, 28, 33	(c) 22,27,32	(d) 21,26, 31		
	Ans.: (b)					
99.	3, 5, 6, 8,11,13,?					
	(a) 17	(b) 18	(c) 15	(d) 20		
	Ans.: (b)					
100.	2, 4, 12, 6, 12, 36	5, 18, 36, 108, ?				
	(a) 72	(b) 54	(c) 90	(d) 108		
	Ans.: (b)					
101.	2,7,15,26,40,57,?	?				
	(a) 80	(b) 81	(c) 75	(d) 77		
	Ans.: (d)					
102.	11,5, 20, 12, ? ,26	6, 74, 54.				

NA	HTA PROFESSIO	NAL CLASSES	LOGICAL REASONING	
	(a) 30	(b) 38	(c) 48	(d) 28
	Ans.: (b)			
103.	1,4, 7, 10, ?, 16,	ı, 19, ?		
	(a) 13,22	(b) 11, 22	(c) 13,21	(d) 13, 23
	Ans.: (a)			
104.	5, 13, ?, 109, 32	25, 973.		
	(a) 39	(b) 36	(c) 37	(d) 35
	Ans.: (c)			
	1			
	+			
	+			

	<u>CHAPTER 2</u> <u>DIRECTION SENSE TEST</u>				
	"MORE REAS	ONING YOU FIND,	MORE EASY WILL	BE <u>THE</u>	
		MYSTERY OF	CA JOURNERY"		
	ADDITIONAL QU	<u>ESTIONS</u>			
1.	If South-East becomes North and South becomes North-East and all the rest directions are changed in the same				
	manner, the what	will be the direction for W	est?		
	(a) North-East	(b) North-West	(c) South-East	(d) South-West	
2.	I walk 30 metres in this	North-West direction from	n my house and then 30 m	etres in South-west direction. After	
	I walk 30 metres ir	n South-East direction. No	w, I turn to my house, in w	vhat direction am I going?	
	(a) North-East	(b) North-West	(c) South-East	(d) South-West	
3.	Mohan was facing turned to	east. He walked 4 km forw	rard and then after turning	g to his right walked 3 km. Again he	
	his right and walke	ed 4 km. After this he turn	ed back. Which direction v	was he facing at that time?	
	(a) East	(b) West	(c) North	(d) South	
4.	A man walks 1 km	to East and then he turns	to South and walks 5 km	Again he turns to East and	
	walks 2 km. After this he turns to North and walks 9 km. Now, how far is he from his starting point?				

NAF	AHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
	(a) 3 km.	(b) 4 km.	(c) 5 km.	(d) 7 km.		
5.	If Rahim moves he turns to	20 metres in East direct	ion and then turns to his le	eft and then moves 15 metres and then		
	his right and mo from starting	oves 25 metres. After thi	is he turns to his right and	l moves 15 metres. Now, how jar is he		
	point ?					
	(a) 40 metres	(b) 50 metr	es (c) 25 met	res (d) 45 metres		
6.	A cyclist goes 30 20 km.	km to North and then tu	urning to East he goes 40 k	m. Again he turns to his right and goes		
	After this he tur	ns to his right and goes 4	40 km. How far is from his	starting point ?		
	(a) 40	(b) 50	(c) 25	(d) 10		
7.	A man faces tow	ards north. Turning to h	is right, he walks 25 metre	es. He then turns to his left and		
	walks 30 metres metres.	s. Next, he moves 25 me	etres to his right. He then	turns to his right again and walks 55		
	Finally, he turns	to the right and moves 4	40 metres. In which direct	ion is he from his starting point ?		
	(a) South-West	(b) South	(c) North-west	(d) South-East		
8.	A man leaves fro	om his office for his home	e. He walks towards East. A	After moving a distance of 20 metres,		
	he turns South and walks 10 metres. Then he walks 35 metres towards the west and further 5 metres towards the					
	North He then tu	urns towards east and w	alks 15 metres. What is th	e straight distance (in metres)		
	between his init	ial and final position?				

NAH	HTA PROFESSIONAL C	CLASSES		LOGICAL REASONING		
	(a) 0	(b) 5 (c)) 10	(d) 11		
9.	A, B, C and D are stan	ding on the four corners	of a square field as sh	own in the figure below:		
	A starts crossing the field diagonally. After walking half the distance, he turns right, walks some					
	distance and turns lef	ft. Which direction is A fa	cing now?			
		c				
	(a) North-East	(b) South-West	(c) South-E	ast (d) North-West		
10.	Kunal walks 10 km to	wards north. From there	, he walks 6 km towar	ds South. Then he walks 3 km towards		
	east. How far and in v	vhich direction is he witl	n reference to his star	ting point?		
	(a) 5 km, West	(b) 5 km, North-Ea	st (c) 7 km,	East (d) 7 km, south-East		
11.	Rohan walks a distan	ce of 3 km towards nortl	n, then turns to his left	t and walks 2 km. He again turns		
	left and walks for 3 k	m. At this point he turns	to his left and walks fo	or 3 km. How many kilometres		
	is he from the starting	g point?				
	(a) 1 km.	(b) 2 km.	(c) 3 km.	(d) 4 km.		
12.	One morning Udai an	d Vishal were talking to	each other face to face	e at a crossing. If Vishal's		
	shadow was exactly t	o the left of Udai, which	direction was Udai fac	cing?		

NA	NAHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
	(a) East	(b) West	(c) North	(d) South		
13.	Rahul put his timepiece on the table in such a way that at 6 P.M. hour hand points to North. In which direction the					
	minute hand will	point at 9.15 P.M. ?				
	(a) South-East	(b) South	(c) North	(d) West		
14.	Y is in the East of	X which is in the North	of Z. If P is in the South c	of Z, then in which direction of Y, is P?		
	(a) North	(b) South	(c) South-East	(d) None of these		
15.	A direction pole w	vas situated on the cros	sing. Due to an accident	the pole turned in such a manner		
	that the pointer w	hich was showing East	, started showing South.	One traveller went to wrong direction		
	thinking to be We	st. In what direction ac	tually he was traveling?			
	(a) East	(b) South-West	(c) North	(d) South		
16.	If South-East becc	omes North, North-East	becomes West and so or	n. What will West become?		
	(a) North-East	(b) North-West	(c) South-East	(d) South-West		
17.	A boy rode his bic	cycle Northward, then t	urned left and rode 1 km	and again turned left and rode 2 km.		
	He found himself	1 km. west of his starti	ng point. How far did he	ride northward initially?		
	(a) 1 km.	(b) 2 km.	(c) 3 km.	(d) 5 km.		
18.	A man walks 5 kr walks 5 km.	n toward south and the	en turns to the right. Afte	er walking 3 km he turns to the left and		
	Now in which dire	ection is he from the sta	arting place			
	(a) West	(b) South	(c) North-East	(d) South-West		

ITA PROFESSIONA	l Classes		LOGICAL REASONING		
K is 40 metres Sou	th-West of L. If M is 40	metres South-East of L, the	en M is in which direction of K?		
(a) East	(b) West	(c) North-East	(d) South		
Rasik walked 20 m	ı towards north. Then l	ne turned right and walks 3	30 m. Then he turns right and walks		
35 m. Then he turr	ns left and walks 15 m.	Finally he turns left and wa	alks 15 m. In which direction and how		
many metres is he from the starting position					
(a) 15 m West	(b) 30 m Eas	t (c) 30 m West	t (d) 45 m East		
One evening before sunset Rekha and Hema were talking to each other face to face. If Hema's shadow					
was exactly to the	right of Hema, which d	irection was Rekha facing?			
(a) North	(b) South	(c) East	(d) Data is inadequate		
Two cars start from	n the opposite places o	f a main road, 150 km apai	rt. First car runs for 25 km and takes		
a right turn and th	en runs 15 km. It then	turns left and then runs for	another 25 km and then takes the		
direction back to r only	each the main road. In	the mean time, due to mir	nor break down the other car has run		
35 km along the m	ain road. What would l	be the distance between tw	vo cars at this point?		
(a) 65 km.	(b) 75 km.	(c) 80 km.	(d) 85 km.		
Starting from the p	ooint X, Jayant walked 2	15 m towards west. He turr	ned left and walked 20 m. He then		
turned left and wa	lked 15 m. After this he	e turned to his right and wa	alked 12 m. How far and in which		
directions is now J	ayant from X?				
(a) 32 m, South	(b) 47 m, Eas	t (c) 42 m, Nortl	n (d) 27 m, South		
	K is 40 metres Sou(a) EastRasik walked 20 m35 m. Then he turrmany metres is he(a) 15 m West(a) 15 m WestOne evening beforwas exactly to the(a) NorthTwo cars start froma right turn and thdirection back to ronly35 km along the m(a) 65 km.turned left and wadirections is now J	(a) East(b) WestRasik walked 20 m towards north. Then I35 m. Then he turns left and walks 15 m.many metres is he from the starting position(a) 15 m West(b) 30 m East(a) 15 m West(b) 30 m EastOne evening before sunset Rekha and Hewas exactly to the right of Hema, which d(a) North(b) SouthTwo cars start from the opposite places ofa right turn and then runs 15 km. It thendirection back to reach the main road. In only35 km along the main road. What would 1(a) 65 km.(b) 75 km.Starting from the point X, Jayant walked 1urned left and walked 15 m. After this hedirections is now Jayant from X?	K is 40 metres South-West of L. If M is 40 metres South-East of L, th (a) East (b) West (c) North-East Rasik walked 20 m towards north. Then he turned right and walks 3 35 m. Then he turns left and walks 15 m. Finally he turns left and walks 15 m. Finally he turns left and walks 15 m. West (a) 15 m West (b) 30 m East (c) 30 m West (a) 15 m West (b) 30 m East (c) 30 m West One evening before sunset Rekha and Hema were talking to each ot was exactly to the right of Hema, which direction was Rekha facing? (a) North (b) South (c) East Two cars start from the opposite places of a main road, 150 km apar a right turn and then runs 15 km. It then turns left and then runs for direction back to reach the main road. In the mean time, due to min only 35 km along the main road. What would be the distance between tw (a) 65 km. (b) 75 km. (c) 80 km. Starting from the point X, Jayant walked 15 m towards west. He turne turned left and walked 15 m. After this he turned to his right and ward		

NAF	AHTA PROFESSIONAL CLASSES			LOGICAL REASONING		
24.	A man walks 2	2 km towards North. The	n he turns to East	and walks 10 km	. After this he turns to Nort	h
	and walks 3 ki	m. Again he turns toward	ls East and walks	2 km. How far is	he from the starting point?	
	(a) 10 km.	(b)13km.	(c) 15 k	.m. (d	None of these	
25.	Some boys are	e sitting in three rows all	facing North sucl	n that A is in the r	niddle row. P is just to the r	ight
	of A but in the	same row. Q is just behi	nd of P while R is	in the North of A	In which direction of R is Q	<u>)</u> ?
	(a) South	(b) South-West	(c) N	orth-East	(d) South-East	
26.	The length an finally	d breadth of a room are	8 m and 6 m res	pectively. A cat r	uns along all the four walls	and
	along a diagonal order to catch a rat. How much total distance is covered by the cat?					
	(a) 10	(b) 14	(c) 38	(d) 48		
27.	P started from	his house towards west.	After walking a d	istance of 25 m. H	e turned to the right and wa	ılked
	10 m. He then 30 m. In	again turned to the right	and walked 15 n	n. After this he is	to turn right at 135°and to c	over
	which directio	on should he go?				
	(a) West	(b) South	(c) Soı	ith-West	(d) South-East	
28.	One morning a	after sunrise, Vimal start	ed to walk. Durin	g this walking he	met Stephen who was comi	ng
	from opposite direction	e direction. Vimal watch	that the shadow	of Stephen to the	right of him (Vimal). To W	⁷ hich
	Vimal was faci	ing?				
	(a) East	(b) West	(c) South	(d)	Data inadequate	

NAF	ITA PROFESSIONA	al Classes		L	ogical reasoning
29.	X started to walk	straight towards sout	h. After walking 5 m	he turned to th	e left and walked 3 m. After
	this he turned to the right and walked 5 m. Now to which direction X is facing?				
	(a) North-East	(b) South	(c) North	(d) So	uth-West
30.	If A x B means A i	s to the south of B; A +	B means A is to the	north of B; A %	B means A is to the east of
	B; A - B means A i	s to the west of B; the	n in P % Q + R - S, S i	s in which dired	ction with respect to Q?
	(a) South-West	(b) South-Ea	st (c) N	orth-East	(d) North-West
31.	One morning Suja	ata started to walk tow	vards the Sun. After o	covering some o	listance she turned to right
	then again to the right and after covering some distance she again turns to the right. Now in which direction				
	is she facing?				
	(a) North	(b) South	(c) North-Ea	st	(d) South-West
32.	Golu started from	his house towards No	orth. After covering a	a distance of 8 k	m. he turned towards left and
	covered a distanc	e of 6 km. What is the	shortest distance no	ow from his hou	se?
	(a) 10 km.	(b)16km.	(c) 14km.	(0	d) 2 km.
33.	Hemant in order	to go to University star	rted from his house	in the east and o	came to a crossing. The road to
	the left ends in a	theatre, straight ahead	l is the hospital. In w	hich direction i	s the University?
	(a) North	(b) South	(c) East	(d)	West
34.	Reena walked fro	m A to B in the East 10) feet. Then she turn	ed to the right a	and walked 3 feet. Again she
	turned to the righ	at and walked 14 feet.	How far is she from	A?	

NAF	HTA PROFESSIONAL CLASSES			LOGICAL REASONING
	(a) 4 feet	(b) 5 feet	(c) 24 feet	(d) 27 feet
35.	After walking 6	km, I turned to the rigl	nt and then walked 2	km. After then I turned to the left and walked
	10 km. In the e	nd, I was moving towar	ds the North. From w	hich direction did I start my journey?
	(a) North	(b) South	(c) East	(d) West
36.	One morning a right	fter sunrise, Suresh wa	s standing facing a po	ble. The shadow of the pole fell exactly to his
	To which direc	tion was he facing?		
	(a) East	(b) South	(c) West	(d) Data is inadequate
37.	Ravi left home right	and cycled 10 km towa	rds South, then turned	l right and cycled 5 km and then again turned
	and cycled 10 l to reach his ho		left and cycled 10 kn	n. How many kilometers will he have to cycle
	(a) 10 km.	(b)15km.	(c) 20 km.	(d) 25 km.
38.	A child went 90) m in the East to look fo	r his father, then he tu	rned right and went 20 m. After this he turned
	right and after	going 30 m he reached	to his uncle's house. H	lis father was not there. From there he went
	100 m to his no	orth and met his father.	How far did he meet l	nis father from the starting point?
	(a) 80 m	(b) 100 m	(c) 140 m	(d) 260 m
39.	Umesh directly	went from P, to Q whicl	h is 9 feet distant. The	n he turns to the right and walked 4 feet. After
	this he turned	to the right and walked	a distance which is eq	ual from P to Q. Finally he turned to the
	right and walke	ed 3 feet. How far is he i	now from P?	

NAF	ITA PROFESSION	AL CLASSES	LOGICAL REASONING		
	(a) 6 feet	(b) 5 feet	(c) 1 fee	t	(d) 0 feet
40.	Amit started wal	lking positioning his b	ack towards th	e sun. After some	time, he turned left, then turned
	right and toward	ls the left again. In wh	ich direction is	he going now?	
	(a) North or Sou	th (b) Ea	st or West	(c) North or W	est (d) South or West
41.	Four friends A, B	B, C and D live in a sam	e locality. The	house of B is in the	e east of A's house but in the north
	of C's house. The	house of C is in the w	est of D's hous	e. D's house is in w	which direction of A's house?
	(a) South-East	(b) North-Ea	st (c)	East	(d) Data is inadequate
42.	Rohit walked 25	m towards south. The	en he turned to	his left and walke	d 20 m. He then turned to his left
	and walked 25 n point	n. He again turned to I	his right and w	alked 15 m. At wh	at distance is he from the starting
	and in which dir	ection?			
	(a) 35 m East	(b) 35 m Nor	th	(c) 30 m West	(d) 45 m East
43.	One morning aft	er sunrise Nivedita an	d Niharika we	e talking to each o	other face to face at Dalphin
	crossing. If Niha	rika's shadow was exa	ictly to the righ	t of Nivedita, Whic	ch direction Niharika was facing ?
	(a) North	(b) South	(c) Ea	st (d) Data is inadequate
44.	Radha moves toy of	wards South-East a dis	stance of 7 km,	then she moves to	wards West and travels a distance
	14 km. From her	e she moves towards	North-West a d	listance of 7 km ar	nd finally she moves a
	distance of 4 km	towards east. How fa	r is she now fro	om the starting po	int?
	(a) 3 km.	(b) 4 km.	(c) 10	km.	(d) 11 km.

NAF	ITA PROFESSIO	ONAL CLASSES		LOGICAL REASONING				
45.	From his hous	se, Lokesh went 15 km. to	the North. Then he tu	med west and covered 10 km. Then he tu	rned			
	south and cov house?	vered 5 krn. Finally turnin	ng to the east, he cove	ered 10 km. In which direction is he from	n his			
	(a) East	(b) West	(c) North	(d) South				
46.	Sachin walks	20 km towards North. He	e turns left and walks 4	40 km. He again turns left and walks 20 l	km.			
	Finally he mo	ves 20 km. after turning t	to the left. How far is h	e from his starting position.				
	(a) 20 km.	(b) 30 km.	(c) 50 km.	(d) 60 km.				
47.	Shyam walks	5 km towards East and th	nen turns left and wall	ts 6 km. Again he turns right and walks 9	9 km.			
	Finally he turns to his right and walks 6 km. How far is he from the starting point?							
	(a) 26 km.	(b) 21 km.	(c) 14 km.	(d) 9 km.				
48.	Sundar runs 2	20 m towards East and tu	rns to right and runs 1	0 m. Then he turns to the right and runs	; 9 m.			
	Again he turn	s to right and runs 5 m. A	fter this he turns to le	ft and runs 12 m and finally he turns to	right			
	and 6 m. Now	v to which direction is Sur	ndar facing?					
	(a) East	(b) West	(c) North	(d) South				
49.	Village Q is to of	the North of the village I	P. The village R is in th	e East of Village Q. The village S is to th	e left			
	the village P.	In which direction is the v	village S with respect t	o village R?				
	(a) West	(b) South-West	(c) South	(d) North-West				

NAHTA PROFESSIONAL CLASSES

				A1	NSWER	3			
1	С	11	А	21	В	31	А	41	А
2	Α	12	С	22	Α	32	Α	42	Α
3	Α	13	D	23	Α	33	Α	43	Α
4	С	14	D	24	В	34	В	44	С
5	D	15	С	25	D	35	В	45	С
6	D	16	С	26	С	36	В	46	Α
7	D	17	В	27	С	37	В	47	С
8	В	18	D	28	С	38	В	48	С
9	D	19	Α	29	В	39	С	49	В
10	В	20	D	30	В	40	Α		

ANSWERS

	<u>CHAPTER 3</u> <u>SEATING ARRANGEMENTS</u>									
	ADDITION	IAL QUESTION								
	"MORE	REASONING YO	DU FIND, M	10RE EAS	Y WILL	BE <u>THE</u>				
		MYST	ERY OF C	A JOURNE	RY"			y		
1.	A. Eleven st	cudents, A, B, C, D, E,	F, G, H, I, J and	K, are sitting	in the firs	st row of the clas	s facing	, the teacher.		
	B. D who is	to the immediate let	ft of F is secon	d to the right	of C.					
	C. A is the second to the right of E, who is at one of the ends.									
	D. J is the immediate neighbour of A and B and third to the left of G.									
	E. H is to th	e immediate left of I) and third to	the right of I. V	Who is sit	ting in the middl	le of the	row?		
	(a) A	(b) B	(c) Н	(d) I					
2.	Siva, Satish,	, Amar and Praveen	are playing ca	rds. Amar is t	o the righ	t is to the right o	f Satish	who is to		
	the right of	Siva. Who is to the r	ight of Amar?							
	(a) Satish	(b) Amar		(c) Prave	en	(d) Shiva				
3.	A, R, P, X, S a	and Z are sitting in a	row Sand Z ar	e in the Centr	e. A and P	are at the ends.	A is sitt	ing to the left		
	of A. Who is	s to the right of P?								
	(a) A	(b) X	(c) S	(d) Z						
4.	A, B, C, D an	nd E are sitting On a	bench. A is sitt	ing next to B,	C is sittin	g next to D, D is a	not sitti	ng with F		

NAF	ITA PROFESSIONAL CLASSES		LOGICAL REASONING				
	who is on the left end of the benc	h. C is on the second p	osition from the right. A is to t	he right of B and E			
	A and C are sitting together. In wi	hich position A is sittir	ıg?				
	(a) Between B and D (b) B C and F	etween B and C	(c) Between F and D	(d) Between			
	Q.5-8						
	(a) P, Q, R, S, T, U, V and W are sit	ting round the circle a	nd are facing the centre:				
	(b) P is second to the right of T w	ho is the neighbour of	R and V.				
	(c) S is not the neighbour of P.						
	(d) V is the neighbour of U.						
	(e) Q is not between S and W. W i	s not between U and S					
5.	Which two of the following are no	ot neighbours ?					
	(a) RV (b),UV	(c) RP	(d) QW				
6.	Which one is immediate right to t	the V ?					
	(a) P (b) U	(c) R	(d) T				
7.	Which of the following is correct	?					
	(a) P is to the immediate right of	Q (b)	R is between U and V				
	(c) Q is to the immediate left of W	/ (d)	U is between W and S				
8.	What is the position of S ?						
	(a) Between U and V	(b) S	econd to the right of P				
	(c) To the immediate right of W	(d) D	ata inadequate.				
	(c) To the immediate right of W	(d) D	ata inadequate.				

	Q. 9-12 Five girls are sitting on a bench to be photographed. Seema is to the left of Rani and to the right of Bindu.								
	Mary is to the ri	ght of Rani. Reeta is be	tween Rani and Mar	*y.					
9.	Who is sitting in	nmediate right to Reeta	n?						
	(a) Bindu	(b) Rani	(c) Mary	(d) Seema	1				
10.	Who is in the m	iddle of the photograph	1?						
	(a) Bindu	(b) Rani	(c) Reeta	(d) Seema					
11.	Who is second f	rom the right ?							
	(a) Mary	(b) Rani	(c) Reeta	(d) Bindu					
12.	Who is second f	rom the left in photogra	aph ?						
	(a) Reeta	(b) Mary	(c) Bindu	(d) Seema					
	Q.13-16 Six frie and	nds are sitting in a circ	le and are facing the	e centre of the circle. De	eepa is between Prakash				
	Pankaj. Priti is b	oetween Mukesh and La	ılit. Prakash and Mu	kesh are opposite to ea	ach other.				
13.	Who is sitting ri	ght to Prakash ?							
	(a) Mukesh	(b) Deepa	(c) Pankaj	(d) Lalit					
14.	Who is just righ	t to Pankaj ?							
	(a) Deepa	(b) Lalit	(c) Prakash	(d) Priti					
15.	Who are the nei	ghbours of Mukesh?							
	(a) Prakash and	Deepa (b) Deep	a and Priti	(c) Priti and Pankaj	(d) Lalit and Priti				

NAF	ITA PROFESS	IONAL CLASSES			LOGICAL REASC	DNING
16.	Who is sittin	g opposite to Prit	?			
	(a) Prakash	(b) Dec	ера	(c) Pankaj	(d) Lalit	
	Q.17-20 Six facing the	friends P, Q, R, S,	T and U are sitti	ng around the hex	agonal table each at one c	orner and are
	centre of the	e hexagonal. P is se	econd to the left o	of U. Q is neighbour	r of R and S. T is second to	the left of S.
17.	Which one is	s sitting opposite t	o P ?			
	(a) R	(b) Q	(c) T	(d) S		
18.	Who is the fo	ourth person to th	e left of Q?			
	(a) P	(b) U	(c) R	(d) Data	inadequate	
19.	Who are the	neighbours of P?				
	(a) U andP	(b) T and R	(c) U and R	(d) Data inadeq	uate	
20.	Which one is	s sitting opposite t	o T?			
	(a) R	(b) Q	(c) Cannot be	e determined	(d) S	
	Q 21-25. Dir	ections to Solve				
	a. A ,B, C, D a	nd E are five men	sitting in a line f	acing to south - wh	ile M, N, O, P and Q are fiv	e ladies
	sitting in a so	econd line paralle	to the first line a	and are facing to N	orth.	
	b. B who is ju	ust next to the left	of D, is opposite	to Q.		

NA	AHTA PROFESSIONAL CLASSES			LOGICAL REASONING			
	c. C and N a	are diagonally oppo	site to each other.				
	d. E is oppo	osite to 0 who is jus	t next right of M.				
	e. P who is	just to the left of Q,	is opposite to D.				
	f. M is at on	ne end of the line.					
21.	Who is sitti	ing third to the righ	t of O?				
	(a) Q	(b) N	(c) M	(d) Data inadequate			
22.	If B shifts to	o the place of E, E s	hifts to the place o	f Q, and Q shifts to the place of B, then who will be the			
	second to t	he left of the persor	n opposite to O ?				
	(a) Q	(b) P	(c) E	(d) D			
23.	Which of th	ne following pair is	diagonally opposit	te to each other?			
	(a) EQ	(b) BO	(c) AN	(d) AM			
24.	If O and P, A	A and E and B and () interchange theii	r positions, then who will be the second person to the			
	right of the	person who is opp	osite to the persor	n second of the right of P?			
	(a) D	(b) A	(c)E	(d)0			
25.	In the origi	nal arrangement w	ho is sitting just or	pposite to N?			
	(a) B	(b) A	(c) C	(d) D			
	Q 26-29 . D	irections to slove					
	a. A, B, C, D, E, F and G are sitting in a row facing North:						

NAI	HTA PROFESSIONAL CLA	ASSES		LOGICAL REASONING
	b. F is to the immediate	right of E.		
	c. E is 4 th to the right of (G		
	d. C is the neighbour of I	B and D.		
	e. Person who is third to	o the left of D is at one c	of ends.	
26.	Who are to the left of C?	,		
	(a) Only B	(b) G, B and D	(c) G and B	(d) D, E.F and A
27.	Which of the following s	statement is not true?		
	(a) E is to the immediate	e left of D	(b) A is at one	e of the ends
	(c) G is to the immediate	e left of B	(d) F is second	d to the right of D
28.	Who are the neighbours	s of B?		
	(a) C and D	(b) C and G	(c) G and F	(d) C and E
29.	What is the position of A	A?		
	(a) Between E and D	(b) Extreme left	(c) Centre	(d) Extreme right
	Q.30-34: Each of these of	questions are based on	the information give	n below:
	1. 8 persons E, F, G, H, I,	J, K and L are seated ar	ound a square table-1	two on each side.
	2. There are 3 ladies wh	io are not seated next to	o each other.	
	3. J is between L and F.			

	VAL CLASSES			LOGICAL REASONING				
4. G is between	I and F.							
5. H, a lady member is second to the left of J.								
6. F, a male men	nber is seated (opposite to E, a	lady member.					
7. There is a lady	y member betv	ween F and I.						
Who among the	following is to	the immediate	left of F?					
(a) G	(b) I	(c) J	(d) H					
What is true abo	out J and K?							
(a) J is male, K is	s female		(b) J is female, K is male					
(c) Both are fem	nale		(d) Both are male					
How many pers	ons are seated	between K and	F?					
(a) 1	(b)2	(c) 3	(d)4					
Who among the	following are	three lady mem	bers?					
(a) E, H and J	(b) E,	F and G	(c) E, H and G	(d) C, H and J				
Who among the	following is se	eated between E	and H?					
(a) F	(b) l.	(c) K	(d) Cannot be de	etermined				
Q.35-38 . Directi	ions to slove							
In a class there a	are seven stude	ents (including b	ooys and girls) A, B, C, D, E, I	F and G. They sit on three benches				
	 5. H, a lady mem 6. F, a male mem 7. There is a lady Who among the (a) G (a) J is male, K is (c) Both are fem How many perss (a) 1 Who among the (a) E, H and J Who among the (a) F Q.35-38. Direct 	6. F, a male member is seated of 7. There is a lady member bety Who among the following is to (a) G (b) I What is true about J and K? (a) J is male, K is female (c) Both are female How many persons are seated (a) 1 (b) 2 Who among the following are fo	 5. H, a lady member is second to the left of J. 6. F, a male member is seated opposite to E, a l 7. There is a lady member between F and I. Who among the following is to the immediate (a) G (b) I (c) J What is true about J and K? (a) J is male, K is female (c) Both are female How many persons are seated between K and (a) 1 (b) 2 (c) 3 Who among the following is seated between E (a) E, H and J (b) E, F and G (a) F (b) 1. (c) K 	5. H, a lady member is second to the left of J. 6. F, a male member is seated opposite to E, a lady member. 7. There is a lady member between F and I. Who among the following is to the immediate left of F? (a) G (b) I (c) J (d) H What is true about J and K? (a) J is male, K is female (b) J is female, K is male (c) Both are female (d) Both are male How many persons are seated between K and F? (a) 1 (b) 2 (c) 3 (d) 4 Who among the following are three lady members? (a) E, H and J (b) E, F and G (c) E, H and G Who among the following is seated between E and H? (a) F (b) I. (c) K (d) Cannot be dettedted to the detted to				

NAF	ITA PROFESSI	onal classes		LOGICAL REASONING				
	I, II and III. S	uch that at least tw	o students on each	bench and at least one girl on each bench. C who is a				
	girl student,	does not sit with A	E and D. F the boy	student sits with only B. A sits on the bench I with				
	his best friends. G sits on the bench III. E is the brother of C.							
35.	How many gi	irls are there out of	these 7 students ?					
	(a) 3	(b) 3 or 4	(c) 4	(d) Data inadequate				
36.	Which of the	following is the gr	oup of girls ?					
	(a) BAC	(b)BFC	(c) BCD	(d) CDF				
37.	Who sits wit	h C ?						
	(a) B	(b) D	(c) G	(d)E				
38.	On which be	nch there are three	students ?					
	(a) Bench I	(b) Bencl	n II (c) Ben	nch III (d) Bench I or II				
	Q 39-42 . Six	girls are sitting in a	circle facing to the	e centre of the circle. They are P, Q, R, S, T and V. T is not				
	between Q ai	nd S but some othe	r one. P is next to th	he left of V. R is 4 th to the right of P.				
39.	Which of the	following stateme	nt is not true?					
	(a) S is just n	ext to the right to I	{	(b) T is just next to the right of V				
	(c) R is secor	nd to the left of T		(d) P is second to the right of R				
40.	If P and R int	erchange their pos	itions then which o	of the following pair will sit together?				

NAH	HTA PROFESSIONAL CLASSES			LOGICAL REASONING		
	(a) RT	(b) PV	(c) VT	(d) QV		
41.	What is the	position of T?				
	(a) Just next	t to the right of Q		(b) Second to the left of	Р	
	(c) Between	ı Q and R		(d) To the immediate rig	ght of V	
42.	Which one i	is sitting just right to) the V?			
	(a) P	(b) T	(c) R	(d) S/Q		
	Q.43-47: Ei	ght friends H, J, K, L,	, M, N, 0 and P are s	sitting around a circular	table facing the centre but	
	not necessa	rily in the same orde	er. There are five fe	emales in the group of fri	ends. No two male persons are	
	immediate	neighbours of each c	other. N sits third t	o the right of P, who sits	second to the right of his wife.	
	J sits second	l to the right of her l	usband H, who is	not an immediate neighb	oour of P's wife. K is not	
	an immedia	te neighbour of P, M	i sits second to the	right of her husband. 0 i	s not an immediate neighbour	
	of J. L sits se	econd to the right of	N, who is not a ma	le.		
43.	Who among	g the following sits e	xactly between tw	o males?		
	(a)M	(b)0	(c)J	(d)N	(e) K	
44.	Who is wife	of P?				
	(a) K	(b) 0	(c) L ((d) N (e) None of	f these	
45.	In which of	the following pairs i	s the second perso	on second to the right of t	he first person?	

between							
diate							
Q.48-52: A, B, C, D, E, F and G are sitting in a straight line facing North. There is only one person between F and C. E sits between A and D. There are only two persons between E and G. F sits on the immediate Ieft of A, who sits in the middle of the row How many persons are there between E & F? (a) 1 (b) 2 (c) 3 (d) 4 Who among the following sit at the extreme ends of the row? (a) 0, F (b) C, C (c) B, C (d) None of these Who among the following sits on the immediate right of D? (a) G (b) E (c) F (d) B Who among the following sits third to the right of A ? (a) C (b) G (c) B (d) E							

	(a) B is se	econd to the right	: of A.	(b) B is fourth t	to the left of G.					
	(c) B sits a	at the extreme rig	ght.	(d) B sits	s at the extreme le	ft.				
	Q.53-57:	Instructions to So	olve							
	(1) P, 0, R, S, T, U and V are sitting on a wall and all of them are facing West.									
_	(2) s iè on	(2) s iè on the immediate left of P.								
	(3) T is at	(3) T is at an extreme end and has Q as his neighbour.								
	(4) V is be	etween Q and U.								
	(5) S is sit	tting third from tl	he north end.							
53.	Who is sit	tting to the left of	f S ?							
	(a) Q	(b)U	(c)T	(d)R						
54.	Which of 1	the following pai	rs of people are	sitting at the extre	eme ends?					
	(a) QV	(b) PR	(c) TP	(d) ST	(e) VP					
55.	Name the	person who sho	uld change place	s with IR such tha	at he gets the fourt	h place from the South end?				
	(a)P	(b)S	(c) Q	(d) T	(e)U					
56.	Immediat	ely between whi	ch of the followin	ng pairs of people	e S is sitting?					
	(a) UR	(b) PQ	(c) VP	(d) TU	(e)RV					
57.	Which of 1	the conditions gi	ven above are no	ot required to find	d out the place in v	vhich P is sitting?				

NA	HTA PROFE	essional clas	SES	LOGICAL REASONING						
	(a) I	(b) II	(c) IV	(d) Il	ll (e).	All required				
	Q.58-62:	: K, P, T, C, N, O, L	and J are standing	g in a row fa	icing north, b	ut not necess;	arily in the same order.			
	Only N is	between C and	0 whereas only L	is between (0 and J. T and	K are P's nei	ghbours. Neither T			
	nor C is at the extreme end of the row. J is to the right of T but not necessarily on the immediate right									
	k	P T.	C N	D	L J					
58.	Who amc	ong the following	g are neighbour?							
	(a) T,K	(b)) T,C (c)) N,L	(d) K,J	(e) L, T				
59.	Which of	the following is	true?							
	(a) N is o	on the immediate	right of D.	(b) K	is not at eith	ner of the extre	eme end.			
	(c) P is be	etween K and T.		(d) T is at o	ne of the extre	eme end.	(e) None of these.			
60.	Which of	the following de	efines the position	ı of D ?						
	(a) D is se	econd to the left	of J.	(b) !	P is second to	o the right of L	۰د			
	(c) D is at	t one of the extre	eme ends	(d) D is the	neighbour of	С.	(e) None of these.			
61.	Which ot	the following pa	airs is the neighbo	our of N?						
	(a) D, L	(b)) C,T (c)	:) T,L	(d) C,D	(e) None c	of these			
62.	Which of	the following pa	airs is at the extre	me ends of	the row?					
	(a) ,J,P	(b) K, P	(c) K,J	(d) C	Can't be detern	mined	(e) None of these			

L

	Q.63-67: Directions: Twelve girl students L, M, N, O, P. Q, A, 5, T, U, V. and W are sitting in a row facing east.								
	0 is third to the right at M and T is sitting near L. Six girl students are sitting between Wand 0.								
	A is fourth to the right of 0 and S is fifth to the left of P. who is eight to the right of W L is sitting on sixth								
	place from the right end. U is not near to A and S. V is sitting on the fourth place to the left of L.								
63.	Who is the two girl students sitting at the two ends?								
	(a) W and N (b) W and R (c) V and O (d) O and Q								
64.	Find out the names of two girl students sitting near to Q?								
	(a) T and V (b) N and S (c) VandU (d) SandT								
65.	Who is sitting at fifth to the left of U?								
	(a) Q (b) S (c) T (d) R								
66.	Who is second to right of L?								
	(a)S (b)P (c)U (d)V								
67.	Which of the following statements are true?								
	(a) More the one statements is true.								
	(b) There are six girl students sitting between N and 0.								
	(c) U is second to the right of 0.								
	(d) M is sitting at fourth place to the right of T.								

NA	hta profes	SIONAL CLASS	SES			LOGICAL R	EASONING				
	Q.68-72: D	Directions: A, B, O	C, D, E, F and H	are sitting in a	straight line	e but not necessaril	y in the same order				
	Two of the	m are facing sou	ıth. C sits secor	nd to the right	of E. A sits s	econd to the left of	F, who sits third				
	to the left of H. H is facing south. B sits third to the right of C, who is third from left. 6 and face opposite directions.										
68.	Who among the following sits between F and B?										
	(a)D	(b)E	(c)H	(d) C	(e)	None of these					
69.	Who amon	g the following	sits third to the	e right of F?							
	(a) E	(b) C	(c) B	(d) A	(e)	None of these					
70.	Which of th	ne following pai	rs sits on the e	xtreme ends of	f the row?						
	(a) F,D	(b) /	A,E (c) H,B	(d) D,H	(e) None of thes	se				
71.	Four of the	following five a	ire alike in a ce	rtain way and	so form a gi	oup. Which is the c	one that does not				
	belong to t	he group?									
	(a) AD	(b) B,D	(c) FED	(d) C,D	(e)I	ł,E					
72.	Who amon	g the following	sits second to t	he left of E?							
	(a) D	(b)C	(c)	(d).B	(e) None o	f these					
	Q.73-77: D necessarily		n friends I', O, R	e, S. T, U and V	are standinį	g in a straight line fa	acing north but not				
	in the same	e order.									
	• U stands	• U stands second from the left end of the line.									

NA	TA PROFESSIO	ONAL CLASSES			LOGICAL REASONING					
	• Only two pe	ersons stands bet	ween U and T.							
	• Only one person stands between P and P.									
		rd to the left of R or U is an immedi		Ś.						
73.	Which of the following is TRUE regarding 0?									
	(a) P stands s	econd to the left	of 0.	(b) S is one of	b) S is one of the immediate neighbour of 0.					
	(c) Only one person stands between Q and T. (d) Q stands at one of the extreme ends of the line.									
	(e) V stands second to the right of 0.									
74.	Four of the following five form a group as per the given arrangement. Which of the following does not									
	belong to tha	t group?								
	(a) RO	(b) IP	(c) VT	(d) UV	(e) PS					
75.	What is the p	osition of V with	respect to U?							
	(a) Immediat	e left (b) Second to the r	ight						
	(c) Third to tl	he right	(d) Immedia	ate right (e) Second	to the left					
76.	Which of the	following pairs st	and at the extrer	ne ends of the line (o) 0, P					
	(a) Q, S	(b) Q, P	(c) Q,T	(d) V, S	(e) V. P					
77.	Which of the	following represe	ents the position	of R from the left en	d o the line ?					
	(a) Fifth	(b) First	(c) Sixth	(d) Fourth	(e) Second					

NAF	ITA PROFESSIONAL CLASSES LOGICAL REASONING										
	Q.78-82: Direction:										
	I. A, B, C, D, E, F, G, and H are sitting in a row facing North.										
	II. A is fourth to the right of E.										
	III. H is fourth to the left of D.										
	IV. C and F, who are not at the ends are neighbours of B and E, respectively.										
	V. H is next to the left of A and A is the neighbour of B.										
78.	What is the position of F?										
	(a) Next to the right of E. (b) Next to the right of G.										
	(c) Sixth to the right of D (d) Between G and H, (e) None of these.										
79.	Which of the following statements is not true?										
	(a) G is the neighbour of H and F. (b) B is next to the right of A.										
	(c) E is at left end. (d) D is next to the right of B. (e) None of these.										
80.	Who is/are the neighbour/(s) of D?										
	(a) F alone. (b) C alone. (c) BandC. (d) Cannot be determined.										
	(e) None of these.										
81.	Which of the following statements is not true?										
	(a) H is second to the right of F. (b) E is fourth to the left of A.										
	(c) D is fourth to the right of H. (d) None of these. (e) Cannot be determined.										

		tting a	t the e	ends?													
(a) Ea	andC.		(b) F an	d D.		(c) (and I).	(d) No	ne of	these.	(e)	Canno	t be d	eterm	ine
ANSWERS																	
1	D	11	С	21	В	31	D	41	D	51	В	61	D	71	E	81	E
2	С	12	D	22	Α	32	С	42	В	52	С	62	С	72	Α	82	Ľ
3	В	13	D	23	D	33	С	43	В	53	В	63	В	73	С		
4	В	14	Α	24	В	34	С	44	A	54	С	64	D	74	С		
5	Α	15	С	25	В	35	В	45	A	55	E	65	A	75	A		
6	D	16	В	26	С	36	С	46	D	56	Α	66	В	76	D		
7	С	17	D	27	Α	37	С	47	С	57	E	67	С	77			
8	С	18	Α	28	B	38	Α	48	Α	58	В	68	В	78	A		
9	С	19	B	29	D	39	С	49	С	59	Α	69	С	79	D		
10	В	20	B	30	C	40	С	50	В	60	Α	70	D	80	В		

	<u>CHAPTER 4</u> <u>BLOOD RELATIONS</u>									
	ADDITIONAL QUESTIONS									
	"MORE REASONING YOU FIND, MORE EASY WILL BE <u>THE</u>									
	MYSTERY OF CA JOURNERY"									
1.	Pointing to a lady in the photograph, Monika said, "Her son's father is the son-in-law of my mother"									
	How is Monika related to the lady?									
	(a) Aunt (b) Sister (c) Mother (d) Cousin									
2.	Amit introduced Akash of the son of the only brother of his father's wife. How is Akash related to Amit?									
	(a) Cousin (b) Son (c) Uncle (d) Son-in-law									
3.	Pointing to a man in a photograph, Sania said, "His mother's only daughter is my mother", How is Sania									
	related to that man ?									
	(a) Nephew (b) Sister (c) Wife (d) Niece									
4.	Poloting to a woman, Rajesh said, "She is the daughter of the only child of my grandmother":									
	How is the woman related to Rajesh?									
	(a) Sister (b) Niece (c) Cousin (d) Brother									
5.	K and L are brothers. M and N are sisters K's son is N's brother. How isL related to M? -									
	(a) Father (b) Brother (c) Grandfather (d) Uncle									

NAF	ITA PROFESSIONAL CLASSES LOGICAL REASONING								
6.	Pointing to a photograph of a boy Suresh said, "He is the son of the only son of my mother'. How is Suresh								
	related to that boy?								
	(a) Brother (b) Uncle (c) Cousin (d) Father								
7.	If A is the brother at B, B is the sister of C, and C is the lather of ID, how ID is related to A.								
	(a) Nephew (b) Sister (c) Nephew (d) Can't say								
8.	If A + B means A is the brother of B, A - B means A is the sister of B, and A x B means A is the father of								
	B. Which of the following means that C is the son of M								
	(a) M-NXC+F (b) F- C+NxM (c) N+M-FxC (d) MxN-C+F								
9.	Introducing a boy, a girl said, "He is the son of the dapghter of the lather of my uncle." How is the boy related to the girl?								
	(a) Brother (b) Nephew (c) Uncle (d) Son-in-law								
10.	Pointing to a photograph Lata says, "He is the son of the only son of my grandfather". How is the man in the								
	photograph related to Lata ?								
	(a) Brother (b) Uncle (c) Cousin (d) Data is inadequate								
11.	It A + B means A is the brother of B. Ax B means A is the son of B and A % B means B is the								
	daughter of A then which of the following means M is the maternal uncle of N?								
	(a) M+OxN (b) M%QxN+P (c) M+O%N (d) None of these								
12.	If D is the brother of B how B is related to C. To answer this question which of the statements is/are necessary?								
	1. The son of V is the grandson of C.								

NAH	TA PROFESSION	al classes			LOGICAL REASONING						
	2. B is the sister	of ID.									
	(a) Only 1 required	(b) Only 2	(c) Eith	er 1 or 2	(d) 1 and 2 both are						
13.	If A + B means A	is the father of B. A B mea	ans A is the bro	other B. A% B mea	nns A is the wife of B and Ax B						
	means A is the mother of B, which of the following shows that M is the maternal grandmother of T?										
	(a) MxN%S+T	(b) MxN-S%T		(c) MxS-N%T	(d) MxNxS%T						
14.	Pointing to a pho	otograph. Bajpai said, "He	is the son of th	e only daughter o	f the lather of my brother" How						
	Bajpai is related to the man in the photograph?										
	(a) Nephew	(b) Brother	(c) Father	(d) Maternal uncl	e						
15.	Deepak said to N	itin, "That boy playing wit	th the football	is the younger of t	he two brothers of the daughter						
	of my father's wi	fe", How is the boy playin	g football rela	ted to Deepak?							
	(a) Son	(b) Brother	(c) Cousin	u (d)	Brother-in-law						
16.	Pointing a photo	graph X said to his friend	Y, "she is the o	only daughter of th	ne father of my mother",						
	How X is related	to the person of photogra	aph?								
	(a) Daughter	(b) Son -	(c) Nephew	(d) Canno	t be decided						
17.	Veeha who is the sister-in-law of Ashok is the daughter-in-law of Kalyani. Dheeraj is the father of Sudeep										
	who is the only b	prother of Ashok. How Kal	lyani is related	l to Ashok?							
	(a) Mother-in-la	w (b) Aunt	(c) Wife	(d)	None of these						
18.	If A + B means A	is the sister pf B, Ax B me	ans A is the w	ife of B, A % B mea	ans A is the father of B and						
	A - B means A is	the brother of B. Which of	f the following	means T is the da	ughter of P?						

NAF	ITA PROFESSIONAL	CLASSES		LOGICAL REASONING					
	(a) PxQ%R+S-T	(b) PxQ%R-T+S	(c) PxQ%R+T-S	(d) PxQ%R+S+T					
19.	Pointing to a woma	n, Abhijit said, "Her gran	d daughter is the only da	ughter of my brother", How is the					
	woman related to A	bhijit?							
	(a) Sister	(b) Grandmother	(c) Mother-in-law	(d) Mother					
20.	Amit said "This girl is the wife of the grandson of my mother", How is Amit related to the girl?								
	(a) Brother	(b) Grandfather	(c) Husband	(d) Father-in-law					
21.	Pointing toward a n	nan, a woman said "His n	nother is the only daughte	er of my mother". How is the					
	woman related to tl	ne man?							
	(a) Mother	(b) Grandmother	(c) Sister .	(d) Daughter					
22.	If P \$ Q means P is t	he brother of 0. P # 0 me	ans P is the mother of Q p	o * Q means P is the daughter					
	of Q in A # B \$ C * D	, who is the father?							
	(a) D (b)C	(c) B	(d) Data is inadequa	ate					
23.	Introducing Sonia, A	Aamir saysr"She is the wi	ife of only nephew ot ui b	rother of my mother".					
	How Sonia is relate	d to Aamir 2							
	(a) Wife	(b) Sister (c) Si	ster-in-law (d) Data is in	adequate					
24.	If A + B means A is t	he brother of B. A % B m	neans A is the father B and	d A x B means A is the sister of 8.					
	Which of the follow	ing means M the uncle of	f P?						
	(a) M%NXP	(b) NxP%M	(c) M+S%R%P (d) M	+K%TXP					
25.	Pointing of Vaman,	Madhav said, "I am the o	nly son of one of the sons	of his father", How is Vaman related					

NA	HTA PROFESSIONA	al classes		LOGICAL REASONING	<u> </u>
	to Madhav?				
	(a) Nephew	(b) Uncle	(c) Father or uncle	(d) Father	
26.	Introducing a wor is	man. Shashank said "	she is the mother of th	e only daughter of my son"., How that	: woman
	related to Shasha	ink?			
	(a) Daughter	(b) Sister-in-law	(c) Wife	(d) Daughter-in-Law	
27.	If A + B means B i	is the brother of A. A	x B means B is the hus	band of A, A -B means A is the mother	r of B
	and A % B means	A is the father of B. V	Which of the following	shows that 0 is the grand mother of	Т?
	(a) Q-P-t-R%T	(b) PxQ%	R-T (c) Px	:0%R+T (d) P+Q%R-	Т
28.	Pointing to a pho	tograph. Anjali said, "	'He is the son of the or	nly son of my grand father" How is the	e
	man in photograj	ph related to Anjali?			
	(a) Brother	(b) Uncle	(c) Son	(d) Data is inadequate	
29.	Pointing to a per person	·son, Deepak said, "H	lis only brother is the	father of my daughter's father", Ho	w is the
	related to Deepal	k?			
	(a) Father	(b) Grandfather	(c) Uncle	(d) Brother-in-law	
30.	P is the mother o	f K. K is the sister of I	D. D is the father of J. H	ow is P related to J ?	
	(a) Mother	(b) Grandmother	r (c) Aunt	(d) Data is inadequate	
31.	If P \$ Q means P i	s the father of Q. P #(Q means P is the moth،	er of Q and P * Q means of P is the sist	ter of Q
-	then N # L \$ P * Q) shows which of the	relation of Q to N?		
	(a) Grandson	(b) Nephew	(c) Grand daught	er (d) Data is inadequate	

NAF	ITA PROFESSIONAL	CLASSES		LOGIC	al reasoning			
32.	If A \$ B means A is t	the brother of B. A @	B means A is the w	rife of B, A # B means A	is the daughter of B			
	and A * B means A i	s the father of B. Wh	ich of the following	indicates that U is the	father-in-law of P?			
	(a) P @ Q\$T#U*W	(b) P @ W \$ Q*T #	U (c) P @ Q\$	W*T#U (d)	P @ Q \$ T # W*U			
33.	Introducing a man, a woman said "He is the only son of the mother of my mother?', How is the woman							
	related to the man?							
	(a) Mother	(b) Sister	(c) Niece	(d) Maternal aunt				
34.	Pointing to Gopi, Na to Gopi?	aini says "I am the da	ughter ot the only s	son of his grandfather"	. How Naini is related			
	(a) Niece	(b) Daughter	(c) Sister	(d) Cannot be det	ermined			
35.	A's son B is married with C whose sister D is married to E the brother of B. How D is related to A?							
	(a) Sister	(b) Daughter-in-la	w (c) Sister-i	n-jaw (i	d) Cousin			
36.	Pointing to a lady a	person said. "The so	n of her only broth	er js the brother of my	wife". How is the lady			
	related to the perso	on?						
	(a) Maternal aunt these	(b) Grand m	nother (c) S	ister of Father-in-law	(d) None of			
37.	1. B 5 D means 8 is	the father of D.						
	2. B 9 D means-B is	the sister of D.						
	3. B 4 D means B is	the brother of D.						
	4. B 3 Dmeans B is the wife of D.							
	Which of the follow	ing means F is the m	other of K?					
	(a) F 3 M 5 K	(b) F 5 M 3 K	(c) F 9 M 4 N	1 3 K (d) F 3 M 5	5 N 3 K			

NAH	ita professiona	l Classes		LC	OGICAL REASONING
38.	A \$ B means A is tl	ne father of B. A # B	means A sis the si	ster of B, A * B mean	s A is the daughter of B and A
	@ B means A is th	e brother of B. Whic	ch of the following	indicates that M is t	he wife of Q?
	(a) Q \$ R # T@M	(b) Q \$ R	@T#M (c) Q \$ R * T # M	(d) Q \$ A @ T * M
39.	If A \$ B means A i D means	s the brother of B, B	3 * C means B is th	e son of C, C @ D me	eans C is the wife of D and A #
	A is the son of D, H	low related to A?			
	(a) Maternal grand	dmother (b) Aunt (c)	Maternal aunt	(d) Mother
40.	Pointing to a girl S	andeep said, "she is	the daughter of the	e only sister of my fa	ther." How is Sandeep related
	to the girl?				
	(a) Uncle	(b) Cousin	(c) Father	(d) Grand fa	ther
41.	Pointing to a boy i	n the photograph R	eena said, "He is th	ne only the only child	d of my grandfather".
	How Reena related	d to that boy?			
	(a) Mother	(b) Sister	(c) Aunt	(d) Cannot b	oe determined
42.	1. A * B means A is	s the sisterof B.			
	2. A \$ B means B is	s the mother of A.			
	3. A + B means A is	s the brother of B			
	4. A = B means B is	s the fatherof A			
	Which of the follow	wing means M is the	e maternal uncle o	f N?	
	(a) M=P+Q*N	(b) N+P=Q*M	(c) N*P\$Q*	М	(d) None of these
43.	If M x N means M : N	is the daughter of N	, M + N means M is	s the father of N. M 9	% N means M is the mother of

NAF	HTA PROFESSIONAL	_ CLASSES		LOGICAL REASONING			
	and M - N means M	is the brother then F	°% Q + А - Т х К іл	ndicates	which relation of P to K?		
	(a) Daughter-in-law	v (b) Sister-ir	n-law (c) A	Aunt	(d) None of these		
44.	If P + Q means P is t	the brother of Q, P x () means P is the fa	ather of n	no P - Q means P is the sister o	f Q, which	
	of the following rela	ations ws that I is the	e niece of K?				
	(a) K+Y+Z-1	(b) K + Y x I – Z	(c) Z- I :	x Y+K	(d) KxY+l-Z		
45.	Pointing towards a	girl, Abhisek says "T	his girl is the dau	ghter of c	only a child of my father". Wha	at is the	
	relation of Abhisek'	's wife to that girl?					
	(a) Daughter	(b) Mother	(c) Ant		(d) Sister-in-law		
46.	P & Q are brothers,	, Rand S are sister. P's	s son is S's brothe	r. How is	Q related to R?		
	(a) Uncle	(b) Brother	(c) Father	(d) Grand father		
47.	A is B's brother. C is	s A's mother. D is C's	father. F is A's so	n How is	B related to F's child?		
	(a) Aunt	(b) Cousin	(c) Nephew	(ď) Grandfather		
48.	A and B are brother	rs. E is the daughter o	ofF. F is the wife o	f B. What	t is the relation of E to A?		
	(a) Sister	(b) Daughter	(c) Niece	(d) Daughter in law		
49.	A is B's wife's husba	and's brother. C and I	D are sisters of B.	How A is	s related to C?		
	(a) Brother	(b) Sister-in-law	(c) Wife	(d) Sister		
50.	Vinod introduces V	'ishal as the son of th	e only brother of l	his fatheı	r's wife. How is Vinod related	to Vishal?	
	(a) Cousin	(b) Brother	(c) Son	(d) Uncle		
51.	Pointing out a man	receiving th prize, m	ienu said, "He is tł	1e brothe	er of my uncle's daughter". Wh	10 is the	
	man to menu ?						
	·						

NAH	ITA PROFESSIONA	al Classes		LOGICAL REASONING				
	(a) Son	(b) Brother-in-law	c) Ne	phew	(d) Cousin			
52.	Pointing to a pict Sumit	ure, Sumit said, she is t	he mother of my	son's wife's. d	aughter. Hov	w is lady related to the		
	(a) Uncle	(b) Cousin	(c) Daught	er-in-law	(d)	None of these		
53.	Introducing a boy boy?	y, a girl said, "He is the	only son of my	mother's moth	er". How is	the girl related to that		
	(a) Aunt	(b) Niece	(c) Sister	(d) Mo	ther			
54.	There are two co K: U	uples in a family.,K has	s two children. M	is wife of 0 w	i,o is brothe	r of B. F is daughter of		
	is sister of 5, who is son of 0. T is son of B, who is a male. How M is related to K?							
	(a) Sister	(b) Sister-in-law	(c) Bro	other	(d) N	one of these		
55.	There are two co K.	uple in a family. K has	two children. M	is. wife of 0, w	ho is brothe	r of B. F is daughter of		
	U is sister of 5, w	ho is son of 0. T is son c	of B, who is a ma	le. How is U re	lated to T?			
	(a) Mother	(b) Brother	(c) Sister	(d) Cou	ısin			
	Q.56-58: Directic K, who is a	ons: A is the father of P,	who is a son-in-	law of M and S	is the moth	er of G. S is a sister of		
	brother-in-law of	P and H is the daughte	er ofT, who is a g	rand mother o	f G?			
56.	How is G related	to P?						
	(a) Son determined	(b) Daughter	(c) Grandson	(d) Grand da	ughter	(e) Cannot be		
57.	If M is a female, tl	hen how is H related to	5?					

NA	hta profess	SIONAL CLASSES		LOGICAL REASONING			
	(a) Sister	(b) Sister-in-lav	v (c) Niece	(d) Cannot be determined	(e) None of these		
58.	If K married	l to N, then how is	N related to M?				
	(a) Son-in-la	aw	(b) Daughte	r-in-law			
	(c) Mother-	in-law (c	l) Father-in-law	(e) None of th	nese		
59.	U 1	bhotograph, 'Sheela related to Sheela?		nly son of my grandfather's or	nly son. How is the boy in the		
	(a) Brother	(b) Cous	in (c) Son	(d) Cannot be determined	(e) None of these		
60.	Pointing a g	irl, Prasan said, sh	e is the only grand	ddaughter of my wife's grandf	father's only child. How is the		
	girl relate to) Prasan?					
	(a) Sister	(b) Niece	e (c) Daughter	(d) Cannot be determined	(e) None of these.		
61.	P is the siste	er of Q. R is the fat	ner of S, who is th	e brother of Q. R married to T	T. How is Q related to T?		
	(a) Son	(t) Daughter	(c) Either son or c	daughter		
	(d) Data ina	idequate (e	e) None of these				
62.	G is the fath M	er ol K, who is the	brother of B. K m	narried to U. B is the daughter	r of C D is the father of U and		
	is the only s	on of D. How is U	elated to C?				
	(a) Daughte	er (b) Daughter-in-la	W			
	(c) Grand da	aughter (o	l) Son-in-law	(e) None of t	hese		
63.	K married to	o S. P is a brother o	of B. S is a mother	of N, who is a brother of B. H	ow is B related to K?		
	(a) Son		(b) Daughte	r (c) Either	son or daughter		
	(d) None of	these	(e) Data inadequ	uate			

NAH	ITA PROFESSIONAL	_ CLASSES		LOGICAL REASONING					
64.	Pointing to a girl, M to Mala?	Iala said, 'she is the	grand daughter o	of my grandfather's only son'.	How is the girl related				
	(a) Niece	(b) Sister							
	(c) Daughter	(d) Cannot be de	termined	(e) None of these					
65.	Pointing a boy, Rar	n said, 'He is the on	ly son of my grai	nd father's son'. How is the bo	oy related to Ram?				
	(a) Brother	(b) Son (c)	Cousin	(d) Data inadequate	(e) None of these				
	Q.66-67: Directions: There are seven members A, C, D, E, F, G and H in a family. There are two fathers,								
	one mother two sisters and four brothers. E is the sister-in-law of D. G is a daughter of C. F is the brother of E.								
	A is a grandfather o	ther of G. E is a mother of H?							
66	How is H related to	o A?							
	(a) Grandson	(b) Grand daugh	ter (c) Son	(d) Cannot be determined	(e) None of these				
67.	How many male m	embers in the famil	y?						
	(a) 4 (b) 5	6 (c) 3	(d) Data ina	dequate (e) None of these					
	Q.68-70: Directions; M is the grandson of G. D is the husband of G. K. is married to the son of S. T have two children								
	of different gender child	. E is the daughter o	of K's brother N i	s brother-in-law of the son o	f S. G has one only one				
	D is the father of N								
68.	How N is related to) D?							

NAH		onal classes		LOGICAL REASONING			
	(a) Son	(b) Son-in-law	v (c) Grandson	(d) Brother	(e) Father		
69.	If Q is marrie	d to N, then how is Q r	related to M?				
	(a) Father determined	(b) Mother (c) Sister	(d) Grand mother	(e) Cannot be		
70.	If U is the sor	n of T, then how is U re	elated to N ?				
	(a) Brother	(b) Uncle	(c) Cousin	(d) Brother-in-law	(e) Data inadequate		
	Q.71-73: Dir mother of	ections: A family cons	sists of six members	P, Q, R, X, Y and Z. Q is	s the son of R but R is not the		
	Q, P and R ar	e married couple.Y is	the brother of A. X is	the daughter of P and	l Z is the brother of P.		
71.	Who is the b	rother-in-law of A?					
	(a) P	(b) Z	(c) Y	(d) X	(e) Q		
72.	How many fe	male members are the	ere in the family?				
	(a) One	(b) Two	(c) Three	(d) Four	(e) Five		
73.	Which of the	se is a pair of brothers	?				
	(a) P and X	(b) Pand Z	(c) Q and X	(d) A and Y	(e) None of these		
	Q.74-75: Dir F. A and E	ections: There are six	children taking part	in an eassy competit	ion, namely A, B, C, D, E, and		
	are brothers.	F and D are the sister	of E. C is the only so	n of A's uncle. B and D) are the brother of father.		
74.	How is D rela	ited to A?					
	(a) Uncle	(b) Sister ((c) Niece	(d) Cousin	(e) None of these		

NA	HTA PROFESSIONA	l Classes			LOGICAL REASONING					
75.	How many male c	ompetitors are the	ere?							
	(a)6 (b)5	5 (c)4	(d)	3	(e) 2					
	Q.76-78: Directio	ns: PXQ means P is	s brother of Q.							
	P ÷ Q means Q is r	nother of P.								
	P - Q means P is fa	ther of Q.								
	P + Q means Q is s	ister of P.								
76.	Which of the following means M is the daughter of T?									
	(a) M + N ÷ J - T these	(b) T- J x R + M	(c) M – J :	x T ÷ K	(d) M + W x R ÷ T	(e) None of				
77.	How is K related t	o R in the expressi	on R ÷ T + K?							
	(a) Daughter	(b) Sister	(c) Niece	(d) Cannot be	edejermined					
78.	Which of the follo	wing means D us g	randfather of W	?						
	(a) D – K x T - W	(b) D ÷ 1	K x T ÷ W							
	(c) D – K x T ÷ W	(D) D ÷	K x T – W	(e) None of th	iese					
79.	How is F related to	o H?								
	(a) Son-in-law	(b) Daughter-in-l	aw						
	(c) Father-in-law	(d) Grar	nd daughter	(e) Niece						
80	How is C related t	oE?								
	(a) Father	(b) Son	(c) Mother	(d) Co	usin (e) (Frand father				

NAHTA PROFESSIONAL CLASSES

1	В	11	D	21	A	31	D	41	В	51	D	61	С	71	
2	Α	12	D	22	Α	32	Α	42	D	52	С	62	В	72	В
3	D	13	Α	23	A	33	С	43	A	53	В	63	С	73	D
4	Α	14	D	24	D	34	С	44	В	54	В	64	С	74	В
5	D	15	В	25	С	35	В	45	D	55	D	65	Α	75	D
6	D	16	В	26	D	36	С	46	Α	56	Е	66	Α	76	В
7	С	17	D	27	A	37	A	47	D	57	В	67	В	77	D
8	D	18	В	28	Α	38	D	48	С	58	В	68	Α	78	Α
9	Α	19	D	29	C	39	D	49	A	59	A	69	В	79	В
10	Α	20	D	30	В	40	В	50	Α	60	С	70	D	80	Α

	<u>CHAPTER 5</u>						
	<u>SYLLOGISM</u>						
	ADDITIONAL QUESTIONS						
	"MORE REASONING YOU FIND, MORE EASY WILL BE THE						
	MYSTERY OF CA JOURNERY"						
	Direction to Solve						
	A. If only (1) Conclusion foNows.						
	B. If only (2) Conclusion follows.						
	C. It either (1) or (2) follows.						
	D. It neither (1) nor (2) follows.						
	E. It both (1) and (2) follows						
1.	Statements: Some actors are Singers. All the Singers are dancers						
	Conclusion: (1) Some actors are dancers. (2) No Singer is actor						
2	Statements: All the harmoniums are instruments. All the instruments are flutes.						
	Conclusions: (1) All flutes are instruments (2) All the harmoniums are flutes						
3.	Statements: Some mangoes are yellow. Some lemons are mangoes.						

NAH	ita professional classes	LOGICAL REASONING
	Conclusions: (1) Some Mangoes are green (2) Lemon is a yellow.	
4.	Statements: Some antsare parrots. All the parrotsare apples.	
	Conclusions: (1) All the apples are parrots. (2) Some ants are apples.	
5.	Statements: Some papers are pen. All the pencils are pens.	
	Conclusions: (1) Some pens are pencils. (2) Some pens are papers.	
6.	Statements: All the actors are girls. All the girls are beautiful.	
	Conclusions: (1) All the actors are beautifuL (2) Some girls are actors.	
7.	Statements: All the windows are doors. No door is a wail.	
	C onclusions: (1) Some windows are walls. (2) No wall is a door.	
8.	Statements: All cups are books. All books are shirts.	
	Conclusions: (1) Some cups are' not shirts. (2) Some shirts are cups.	
9.	Statements: Some Cows are Crows. Some Crows are elephants.	
	Conclusions: (1) Some Cows are elephants. (2) All Crows are elephants.	
10.	Statements: All the Pencils are Pens. All the pens are inks.	
	Conclusions (1) All the pencils are inks. (2) Some inks are pencils	
11.	Statements: Some dogs are bats. Some bats are cats.	
	Conclusions: (1) Some dogs are Cats. (2) Some Cats are dogs.	

HTA PROFESSIONAL CLASSES LOGICAL REASONING
Statements: All the trucks are flies. Some Scooters are flies.
Conclusions: (1) All the trucks are Scooters. (2) Some Scooters are trucks.
Statements: All buildings are Chalks. No chalk. is toffee.
Conclusions: (1) No building is toffee (2) All chalks are buildings.
Statements: All cars are cats. All fans are cats.
Conclusions: (1) All cars are tans. (2) Some fans are cars.
Statements: All lions are dogs. All dogs are rat. No lions are tiger.
Conclusions: (1) No rat is a tiger (2) Some dogs being tiger is a possibiity.
Statements: Some red are blue. Ally yellow are blue. No blue are orange.
Conclusions: (1) All blue being red is a possibility (2) Some yellow are yellow is a possibility.
Statements: All orange are green. No blue is green. All green are red.
Conclusions: (1) No blue is orange (2) All red being orange is a possibility.
Statements: All Monkey are rat. Some rat are lion. No lion is a dog.
Conclusions: (1) All Monkey being lion is a possibility. (2) No dog is a Rat
Statements: No dollar is yen. Some yen are franc. All rupee are dollar.
Conclusions: (1) No dollar is franc. (2) No yen is rupee.
Statements: All pen are eraser. All eraser are pencil. Some eraser are scale.
Conclusions: (1) All scale being pencil is a possibility.

NAF	TA PROFESSIONAL CLASSES LOGICAL REASONING
	(2) No eraser is a scale
21.	Statements: No table is bench. All bench are chair. Some chair are huts.
	Conclusions: (1) No table is chair. (2) Some bench are huts.
22.	Statements: Some image are picture. Some picture are photo. Some photo are clip.
	Conclusions: (1) All image are clip (2) Some clip are picture.
23.	Statements: All apple are grapes. Some apple are Mango. No mango is banana.
	Conclusions: (1) All banana being apple is a possibility. (2) All grapes being oanana is a possibility.
24.	Statements: All Png are bmp. Some bmp are jpg. All gif are jpg.
	Conclusions: (1) Some bmp are gif (2) Some jpg are png.
25.	Statements: Some chairs are bags. All trees are chairs.
	Conclusions: (1) Some trees are bags. (2) Some bags are trees.
26.	Statements: No man is a lion. Ram is a man.
	Conclusions: (1) Ram is not a lion. (2) All men are not ram.
27.	Statements: No tiger is a lion. Shiva is a tiger.
	Conclusions: (1) Shiva is not a lion. (2) All tigers are not Shiva.
28.	Statements: All glasses are mirrors. Some mirrors are black.
	Conclusions: I: All mirrors are glasses II: Some glasses are black.

29. Statement: Some dogs are monkeys. No monkey is black. Conclusions: I: Some dogs are black 1. II: Some monkeys are dogs --Statement: Many actors are directors. All directors are dancers. 30. **Conclusions:** I : Some actors are dancers II: No director is an actor. 31. Statement: All roads are poles. No poles are Bungalows. **Conclusion:** Some roads are Bunoalows Some Bungalows are poles. 32. Statement: Only dogs are animals. No historian is an animals Conclusion: I: Some dogs are not historian. II: Some historians are not dogs. 33. Statement: Some chairs are caps. No cap is red. **Conclusion:** I: Some caps are chairs II: No chair is red. 34. Statement: Some cups are belt. No belt is black. **Conclusion:** I: Some cups are blacks. II: Some cups are not black 35. Statement: Some girls are flowers. Some flowers are books. **Conclusions:** I: Some girls are books II: No books are girls Statement: Some tiles are rats. All animals are rats. 36. **Conclusion:** I: All files are rats. II: Some rats are animals. 37. Statements: All Men are women. All women are children is young. **Conclusion:** I: Some children are men.

NAHTA PROFESSIONAL CLASSES

LOGICAL REASONING

NAHTA PROFESSIONAL CLASSES

LOGICAL REASONING

	II: No men is young.
38.	Statement: Some Pots are Mats . All Mats are cats. No cat is Rat.
	Conclusion: I: No rat is pot II: Some rats are not mats.
39.	Statement: Some pens are slots. Some slats are not pencils. All pencils are Erasers.
	Conclusion : I: Some pencil are not slats II: Some erasers are pens.
40.	Statement: Some Bottles are lids. Some lids are flat. Some flat are round.
	Conclusion: I Some flat are lid. II: Some round are not bottles
41.	Statement; All letters are vowels. Some vowels are words. No word is consonant.
	Conclusion: I: All consonant being vowels is a possibility. Il No letter is consonants
42.	Statement: All the bags are handles. All the handles are dips. All the clips are gaps.
	Conclusion; I: All the clips are bags. II: All the handles are gaps.
43.	Statements; All trucks are aeroplanes. Some scooters are aeroplanes.
	Conclusions: (1) All trucks are Scooters. (2) Some aeroplanes are trucks.
44.	Statements: All baskets are marbles. Some marbles are sticks. No stick is garden
	Conclusions: (I) Some Gardens are basket. (II) No Garden is basket.
45.	Statements: All keys are staplers. All staplers are blades. Some blades are eraser. Erasers are Sharpeners.
	Conclusions: (i) Some sharpeners are keys. (ii) Al keys are blades.
46.	Statements: Some cats are dogs. All rats are dogs.

NAF	TA PROFESSIONAL CLASSES LOGICAL REASONING
	Conclusion: (1) Some cats are Rats (2) Some rats are Cats.
47.	Statement: Some chairs are hats. No hat is red.
	Conclusions: (1) Some hats are chairs. (2) No chair is red.
48.	Statement: Some cups are laptop. No laptop is black.
	Conclusions: (1) Some cups are black. (2) Some cups are not black.
49.	Statements: Some dogs are cows. No cow is black.
	Conclusions: (1) Some dogs are black. (2) Some cows are dogs
50.	Statements: All papers are copies. All copies are erasers.
	Conclusions: (i) Some erasers are papers. (ii) Some copies are no papers.
51.	Statement: Some ships are Monkeys. Some boats are ships.
	Conclusions: (1) Some monkeys are boats. (2) Some ships are neither boat nor monkey.
52.	Statements: All sportsman are hardworking. No sportsman are superstitiors
	Conclusions: (1) No sportsman are superstitions (2) All superstitions are not sportsman
53.	Statement: All cricketer are hardworking. No cricketer are superstitions.
	Conclusions: (1) No cricketer are superstitions. (2) All superstitions are not cricketer.
54.	Statement: Some mirrors are glasses. All trees are mirrors.
	Conclusions: (1) Some trees are glasses (2) Some glasses are trees.

NA	HTA PROFESSIONAL CLASSES LOGICAL REASONING
55.	Statement: All player are hardworking. No player are superstitions. Conclusion:
	Conclusions: (1) No players are superstitions. (2) All superstitions are not players
56.	Statements: All roads are villages. No villages are Bungalows
_	Conclusions: (1) Some roads are Bungalows.
	(2) Some Bungalows are villages
57.	Statements: Many actors are producers. All producers are dancers.
	Conclusions: (1) Some actors are dancers. (2) No producer is an actor. Full download
58.	Statements: Many actors are Comedians. All comedians are dancers.
	Conclusions: (1) Some actors are dancers (2) No comedian is an actor
59.	Statement: All cricketers are tall. Rajeshwar is falls.
	Conclusions: (1) Rajeshwar is a cricketer (2) Rajeshwar is not cricketer
60.	Statement: All players are fall. Sachin is fall
	Conclusions: (i) Sachin is a player (ii) Sachin is not player.
61.	Statement: No man is a zebra. Ram is a man.
	Conclusions: (1) Ram is not a zebra (2) All men are not Ram
62.	Statement: All Sportsman are strong. Rajesh is strong.
	Conclusions: (i) Rajesh is a sportsman (ii) Rajesh is not sportsman
63.	Statements: Some leaders are singers. All the singers are dar

NAF	ITA PROFESSIONAL CLASSES	LOGICAL REASONING
	Conclusions: (1) Some leaders are dancers (2) No singer is leader.	
64.	Statement: Some actors are musician. All the Musicians are dance	
	Conclusions: (1) Some actors are dancers. (2) No Musician is actor.	
65.	Statement: All the harmoniums are Desktop. All the Desktops are flutes	S
	Conclusion; (1) All the flutes are Desktop. (2) All the harmoniums are flutes	
66.	Statement; All the guitars are instruments. All the instruments are flute	es.
	Conclusions: (1) All the flutes are instruments (2) All the guitars are flutes.	
67.	Statement: Some Bananas are yeflow. Some tixo are Bananas.	
	Conclusions: (1) Some Bananas are green (2) Tixo is a yellow	
68.	Statements; Some ants are elephants. All the elephants are apples.	
	Conclusions: (1) All the apples are elephants (2) Some ants are apples.	
69.	Statement: Some papers are pens. All sharpeners are pen.	
	Conclusion: (1) Some pens are sharpeners. (2) Some pens are papers.	
70.	Statement: Some papers are books. All the pencils are books.	
	Conclusions: (1) Some books are pencils. (2) Some books are papers.	
71.	Statement: All the actors are girls. All the girls are intelligent.	
	Conclusion: (1) All the actors are intelligent. (2) Some girls are actors.	

72. Statement: All the windows are woods. No wood is a wall. walls. Conclusion: (1) Some windows are (2) No wall is a wood 73. Statement: All cups are bats. All bats are shirts. Conclusion: (1) Some cups are not shirts. (2) Some shirts are cups. 74. Statement: Some cows are silvers. Some silvers are elephants. 75. Statements: All the pencils are lephants (2) All silvers are elephants. 75. Statements: All the pencils are boxes. All the boxes are inks Conclusions: (1) All the pencils are inks. (2) Some cats are dogs 76. Statements: Some dogs are rats. Some rats are cats. Conclusions: (1) Some cats are dogs 77. Statements: Some tigers are bats. Some bats are oats. Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. 77. Statements: Some tigers are cats. (2) Some cats are tigers. 77. Statements: Some tigers are cats. (2) Some cats are tigers. 77. Statements: Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. 78. Statements: A are tigers. 77. Statements: Some tigers are cats. (2) Some cats are tigers. 77. Statements: Some tigers are cats. (2) Some cats are tigers. 77. Statements: Some tigers are cats. (2) Some cats are tigers.	NAH	HTA PR	OFESS	SIONA	L CLA	SSES							LO	GICAI	REAS	SONIN	G	
(2) No wall is a wood73.Statement: All cups are bats. All bats are shirts. (2) Some shirts are cups.Conclusion: (1) Some cups are not shirts. (2) Some shirts are cups.74.Statement: Some cows are elephants (2) All silvers are elephants (2) All silvers are elephantsConclusion: (1) Some cows are elephants (2) All silvers are elephants (2) All silvers are elephants75.Statements: All the pencils are boxes. All the boxes are inksConclusions: (1) All the pencils are inks. (2) Some inks are pencils.76.Statements: Some dogs are rats. Some rats are cats.Conclusions: (1) Some dogs are cats. (2) Some cats are dogs77.Statements: Some dogs are cats. (2) Some cats are dogs77.Statements: Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions	72.	State	ment:	All the	windo	ows are	e wood	ls. No v	vood i	s a wal	l. wall:	s.						
Statement: All cups are bats: All bats are shirts.Conclusion: (1) Some cups are not shirts. (2) Some shirts are cups.74. Statement: Some cows are silvers. Some silvers are elephants(2) All silvers are elephants (2) All silvers are elephants75. Statements: All the pencils are boxes. All the boxes are inksConclusions: (1) Some cows are elephants(2) Some inks are pencils.75. Statements: All the pencils are boxes. All the boxes are inks(2) Some inks are pencils.76. Statements: Some dogs are rats. Some rats are cats.Conclusions: (1) Some dogs are cats. (2) Some cats are dogs77. Statements: Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are cats. (2) Some cats are tigers.ANSIDERSImage: All the dot		Conc																
(2) Some shirts are cups.(2) Some shirts are cups.74.Statement: Some cows are silvers. Some silvers are elephants.Conclusion: (1) Some cows are elephants75.Statements: All the pencils are boxes. All the boxes are inksConclusions: (1) All the pencils are inks. (2) Some inks are pencils.76.Statements: Some dogs are rats. Some rats are cats.Conclusions: (1) All the pencils are inks. (2) Some inks are pencils.76.Statements: Some dogs are rats. Some rats are cats.Conclusions: (1) Some dogs are cats. (2) Some cats are dogs77.Statements: Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are cats. (2) Some cats are tigers.ANSWERSANSWERSImage: All the boxes are tigers.77.Statements: Some tigers are cats. (2) Some cats are tigers.ANSWERSImage: All the boxes are tigers.ANSWERSImage: All the boxes are tigers.Image: All the boxes are tigers.Image: All the boxes are tigers.Image: All the boxes are tigers.Statements: Some tigers are cats. (2) Some cats are tigers.Image: All the boxes are tigers.Image: All the boxes are tigers.Image: All the boxes are tigers.Im	73.	State	ment:	All cup	os are l	oats. Al	lbats	are shi	rts.									
Conclusion: (1) Some cows are elephants (2) All silvers are elephants75. Statements: All the pencils are boxes. All the boxes are inksConclusions: (1) All the pencils are inks. (2) Some inks are pencils.76. Statements: Some dogs are rats. Some rats are cats.Conclusions: (1) Some dogs are rats. Some rats are cats.Conclusions: (1) Some dogs are cats. (2) Some cats are dogs77. Statements: Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are bats. Some bats are oats.Conclusions: (1) Some tigers are cats. (2) Some cats are tigers.ANSWERSImage: All the boxes are tigers.ANSWERSImage: All the boxes are tigers.ANSWERSImage: All the boxes are tigers.ANSWERS		Conc				-		irts.										
(2) All silvers are elephants 75. Statements: All the pencils are boxes. All the boxes are inks 75. Conclusions: (1) All the pencils are inks. (2) Some inks are pencils. 76. Statements: Some dogs are rats. Some rats are cats. (2) Some cats are dogs 77. Statements: Some tigers are bats. Some bats are oats. (2) Some cats are dogs 77. Statements: Some tigers are cats. (2) Some cats are tigers. 77. Statements: Some tigers are cats. (2) Some cats are tigers. ANSWERS ANSWERS I A II D 21 D 31 D 41 A 51 D 61 A 71 E 2 B 12 D 22 D 32 A 42 B 52 E 62 C 72 B 3 D 13 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B 14 D 24 D 34 B 44 B 54 D 64 A 74 D	74.	State	ment:	Some	cows a	re silve	ers. So	me silv	vers ar	e eleph	iants.							
Image: Some of the series of		Conc					-											
(2) Some inks are pencils. (2) Some inks are pencils. Generates: Some dogs are rats. Some rats are cats. Conclusions: (1) Some dogs are cats. (2) Some cats are dogs 77. Statements: Some tigers are bats. Some bats are oats. Conclusions: (1) Some tigers are cats. (2) Some cats are dogs Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS Image: Answer cats. (2) Some cats are tigers. Answers Answers Image: Answer cats. (2) Some cats are tigers. Answers	75.	State	ments	s: All th	e penc	ils are	boxes.	All the	e boxe	s are in	ks							
Image: Conclusions: (1) Some dogs are cats. (2) Some cats are dogs 77. Statements: Some tigers are bats. Some bats are oats. Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS Image: Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS Image: Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS Image: Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS Image: Conclusion cats are tigers. Image: Conclusion cats are tigers. Image: Conclusion cats are tigers. ANSWERS Image: Conclusion cats are tigers. Image: Conclusion cats are tigers. <th colspas<="" td=""><td></td><td>Conc</td><td>lusion</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td>Conc</td> <td>lusion</td> <td></td>		Conc	lusion														
(2) Some cats are dogs 77. Statements: Some tigers are bats. Some bats are oats. Conclusions: (1) Some tigers are cats. (2) Some cats are tigers are cats. (2) Some cats are tigers are oats. Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS Image: Another tigers are cats. (2) Some cats are tigers. ANSWERS Image: Another tigers are cats. (2) Some cats are tigers. ANSWERS Image: Another tigers are cats. (2) Some cats are tigers. ANSWERS Image: Another tigers are cats. Image: Another tigers are cats. (2) Some cats are tigers. ANSWERS Image: Another tigers are cats. (1) A (1) D 61 A 71 E Image: Another tigers Image: Another tigers Image: Another tigers Imag	76.	State	ments	s: Some	e dogs a	are rat	s. Som	e rats a	are cat	s.								
Conclusions: (1) Some tigers are cats. (2) Some cats are tigers. ANSWERS I A II D 2I D 3I D 4I A 5I D 6I A 7I E 2 B I2 D 22 D 32 A 42 B 52 E 62 C 72 B 3 D I3 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B I4 D 24 D 34 B 44 B 54 D 64 A 74 D		Conc	lusion															
(2) Some cats are tigers. (2) Some cats are tigers. ANSWERS ANSWERS 1 A II D 2I D 3I D 4I A 5I D 6I A 7I E 2 B I2 D 22 D 32 A 42 B 52 E 62 C 72 B 3 D I3 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B I4 D 24 D 34 B 44 B 54 D 64 A 74 D	77.	State	ments	s: Some	e tigers	are ba	ts. Sor	ne bats	s are o	ats.								
I A II D 2I D 3I D 4I A 5I D 6I A 7I E 2 B I2 D 22 D 32 A 42 B 52 E 62 C 72 B 3 D I3 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B I4 D 24 D 34 B 44 B 54 D 64 A 74 D		Conc	lusion			-												
I A II D 2I D 3I D 4I A 5I D 6I A 7I E 2 B I2 D 22 D 32 A 42 B 52 E 62 C 72 B 3 D I3 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B I4 D 24 D 34 B 44 B 54 D 64 A 74 D		ANSWERS																
2 B 12 D 22 D 32 A 42 B 52 E 62 C 72 B 3 D 13 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B 14 D 24 D 34 B 44 B 54 D 64 A 74 D																		
3 D 13 A 23 A 33 A 43 B 53 E 63 A 73 B 4 B 14 D 24 D 34 B 44 B 54 D 64 A 74 D		1	A	11	D	21	D	31	D	41	A	51	D	61	A	71	E	
4 B 14 D 24 D 34 B 44 B 54 D 64 A 74 D																		
											-							
											-		-					
6 E 16 A 26 A 36 B 46 D 56 D 66 B 76 D											-							
7 B 17 E 27 A 37 E 47 A 57 A 67 D 77 D											A		-					

NAHTA PROFESSIONAL CLASSES

LOGICAL REASONING

														 	_
8	В	18	A	28	D	38	В	48	В	58	A	68	B		
9	D	19	В	29	В	39	D	49	В	59	С	69	Ε		
10	Ε	20	A	30	A	40	A	50	A	60	С	70	Ε		_
															_
														 	_
														 	_
 														 	_
														 	_
														 	_
														 	_
														 	-
														 	_