CA Test Series Achieving Excellence Together.

NOIE'S

Business Mathematics, Logical
Reasoning and Statistics
100 Important questions

OA Final Inter IPCO Foundation India's \#1 Trusted Test Series

Thousands Dream's comes true with CA Test Series

CA FOUNDATION

BUSINESS MATHEMATICS, LOGICAL REASONING AND STATISTICS

ANSWERS TO MCQs

Answers:

1. A

Explanation:

Let the income of A and B be $3 x$ and $2 x$

Expenditure of A and B be $5 y$ and $3 y$

Then, $3 x-5 y=1500$ \qquad
$2 x-3 y=1500$
(ii)

By solving i and ii we get
$X=3000$ and $y=1500$

Hence, B's income $=2 x=2 \times 3000=$ Rs 6000
2. C
3. A

Explanation:

Here, $A: B: C=1 / 4: 1 / 5: 1 / 6=15: 12: 10 / 60=15: 12: 10$

A's share $=407 * 15 / 37=$ Rs. 165

B's share $=407^{*} 12 / 37=$ Rs. 132

C's share $=407^{*} 10 / 37=$ Rs. 110
4. C
5. A
6. C
7. C
8. A

Explanation:

Let starting salary be x and annual increment be y

Then, $x+4 y=1500$ \qquad 1 and $x+10 y=18002$

By solving $1 \& 2$ we get $x=1300=$ starting salary and $y=50=$ annual increment

9. B

Explanation:

Let coordinates of C be (x, y)
centroid $=\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3 / 3, \mathrm{Y} 1+\mathrm{Y} 2+\mathrm{Y} 3 / 3$

Then, $5+(-1)+x / 3=2,6+4+y / 3=3$
$4+x=6,10+y=9$
$x=2, y=-1$

Coordinates of C are $(2,-1)$
10. B
11. C
12. B
13. A

Explanation:

Since a is a positive number therefore its reciprocal i.e. $1 / a$ will also be positive

Since b is a negative number therefore its reciprocal i.e. $1 / b$ will also be negative

So, we can conclude that $1 / a$ is $>1 / b$
14. B
15. D

Explanation:

Let experience person = x units work per day

Fresh one = y units work per day

Therefore, $7 x+5 y \geq 35$
16. B
17. B
18. C
19. A

Explanation:

The number of triangles that can be formed from a set of 12 points $=12 C 3$ since 7 points are on the same line, therefore no triangle can be formed from these points i.e. number of triangles = $12 C 3-7 C 3=220-35=185$
20. A

Explanation:

There are two cases possible:

CASE 1:- When mathematics part-II is borrowed (i.e it means part-I has also been borrowed)

Number of ways $=6 C 1=6$ ways

CASE 2:-when mathematics part-II is not borrowed (i.e. 33 books are to be selected out of 7)

Number of ways $=7 \mathrm{C} 3=35$ ways

Hence, total number of ways $=35+6=41$ ways
21. A

Explanation:

$$
6 \operatorname{Pr}=24 \times 6 \operatorname{Cr} 6!(6-r)!=24 \times 6!r!\times(6-r)!4!=24 r!r!=244!r!=4!r=4
$$

22. A

Explanation:

No. of ways of drawing 3 balls at a time $=120$ ways

No. of ways of drawing 3 white balls out of 5 white balls $=10$ ways

Total no . of ways $=$ favourable cases/total no. of cases $=10 / 129=1 / 12$
23. B

Explanation:

Total no. of 2 digits that can be formed $=9 \times 8=72$

Total no. of 3 digits that can be formed $=9 \times 8 \times 7=504$

Total no. of 1 digits that can be formed $=9$

Total numbers that can be formed $=9+72+504=585$
24. C

Explanation:

Since 2 particular books are to be kept always at the first and last place, so if we fix places, the remaining 5 books can be arranged in 5! Ways

Those, 2 books can also change their places in 2 ! ways

The total number of arrangements are $=5!\times 2!=120 \times 2=240$ ways
25. B

Explanation:

CASE I $\mathrm{P}=\mathrm{Rs} 1400, \mathrm{~T}=3 \mathrm{Yrs}, \mathrm{R}=\mathrm{X} \%$
$\mathrm{SI}=\mathrm{PRT} / 100=1400 \times \mathrm{X} \times 3 / 100=42 \mathrm{X}$

CASE II $\quad \mathrm{P}=\mathrm{Rs} 1800, \mathrm{~T}=3 \mathrm{Yrs}, \mathrm{R}=\mathrm{X} \%$
$\mathrm{SI}=\mathrm{PRT} / 100=1800 \times \times \times 3 / 100=54 \mathrm{X}$

Given, case I - case II = 80
$54 X-42 X=80$
$X=80 / 12=6.67 \%=R$

26. A

Explanation:

Purchase cost of machine at present $=$ Rs 8100

Present value of the lease rental $=a / i[(1+i) n-1 /(1+i) n]=2000 / 0.18[(1+0.18) 5-1 /(1+$ $0.18) 5]=11111 \times 0.5629=$ Rs. 6254.34 (aprox)
27. B
28. B

Explanation:

CASE I $\mathrm{P}=\mathrm{Rs} 1400, \mathrm{~T}=3 \mathrm{Yrs}, \mathrm{R}=\mathrm{X} \%$
$\mathrm{SI}=\mathrm{PRT} / 100=1400 \times \mathrm{X} \times 3 / 100=42 \mathrm{X}$
CASE II $P=R s 1800, T=3 Y r s, R=X \%$
$\mathrm{SI}=\mathrm{PRT} / 100=1800 \times \mathrm{X} \times 3 / 100=54 \mathrm{X}$
Given, case I - case II = 80
$54 X-42 X=80$
$X=80 / 12=6.67 \%=R$
29. B

Explanation:

Given say principal P

SI $=4 / 9 \mathrm{P}$
$T=R$

SI = PRT/100
$4 / 9 \mathrm{P}=\mathrm{P} \times \mathrm{R} \times \mathrm{T} / 100$
$R=20 / 3 \%$
30. B

Explanation:

$$
\begin{aligned}
& A=P[1+r t / 100] \\
& 10000=8000[1+r \times 2 / 100] \\
& 10000 / 8000=100+2 r / 100
\end{aligned}
$$

$$
2 r=125-100
$$

$$
R=25 / 2=12.5 \% \text { p.a. }
$$

Let the amount which will become Rs 6875 be P. then,
$6875=p[1+12.5 \times 3 / 100]$
$6875=\mathrm{p}[100+37.5 / 100]$
$\mathrm{p}=6875 \times 100 / 1375$
$p=R s .5000$

31. A

32. B

Explanation:

Here, $\mathrm{a}=200, \mathrm{~d}=25$ and $\mathrm{Sn}=9450$ Assume that the contract time is over run for n days. Then $\mathrm{Sn}=\mathrm{n} 2[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] 9450=\mathrm{n} 2[2 \times 200+(\mathrm{n}-1) 25] 18900=\mathrm{n}[400+25 \mathrm{n}-25] 18900=\mathrm{n}(375+$ $25 n) 18900=375 n+25 n 225 n 2+375 n-18900=0 n 2+15 n-756=0 n 2+36 n-21 n-756=$ $0 n(n+36)-21(n+36)=0(n-21)(n+36)=0 n=21$ or $n=-36$ hence, no. of days can't be negative so $\mathrm{n}=21$ days

33. A

Explanation:

Let the first terms of G.P be a, then its second term =a-2

Common ratio i.e. $r=a-2 / a$

Sum of infinity=50
$a / 1-r=50$
$a / 1-(a-2) / a=50$
$a / a-a+2 / a=50$
$a=10$
$r=10-2 / 10=8 / 10=4 / 5$

Therefore, the required series is $10,8,32 / 5$........
34. A
35. C

Explanation:

Given, $S n=2 n 2+5 n S n-1=2(n-1) 2+5(n-1)$
$=2 n 2+2-4 n+5 n-5$
$=2 n 2+n-3 n t h$ term $(T n)=S n-S n-1$
$=(2 n 2+5 n)-(2 n 2+n-3)$
$=4 n+3$
36. A
37. B
38. A

Explanation:

$A=\{1,2,3\}$ and $B=\{6,4,7\}$
Relation $R=\{(2,4)(3,6)\}$ will be function from A to B.
39. D

Explanation:

Let photography $=P$
Music $=\mathrm{M}$
Swimming $=S$
$n($ PUMUS $=200, n(M)=100, n(P)=70, n(S)=40$
$n(M \cap P)=40, n(M \cap S)=30, n(P \cap S)=20$
$n(P \cap M \cap S)=10$
$n\left(P \cap M^{\prime} \cap S^{\prime}\right)=n(P)-n(P \cap M)-n(P \cap S)+n(P \cap M \cap S)$
$=70-40-20+10=80-60=20$
40. C

Explanation:
$\mathrm{F}: \mathrm{A} \rightarrow \mathrm{B} \quad 2 \rightarrow 4-2 \rightarrow 4 \quad 3 \rightarrow 9-3 \rightarrow 9$ many one function from A onto B
41. A

Explanation:

If $A=\{1,2,3,4\}$
$B=\{2,4,6,8\}$
When $f: A \rightarrow B, f=\{(1,2),(2,4),(3,6),(4,8)\} f-1$ implies $f: B \rightarrow A f-1=\{(2,1),(4,2),(6,3),(8,4)\}$
42. D

Explanation:

$n(N U R U T)=n(N)+n(R)+n(T)-n(N \cap R)-n(N \cap T)-n(R \cap T)+n(N \cap R \cap T)$
$=200+100+40-50-25-20+5$
$=250$

No. of companies not using any media
$=n(S)-n($ NURUT $)$
$=300-250$
$=50$
43. D

Explanations:

H is sister of G and G is child of D.

So Hand G children of D.
J is aunt of H .

So J can be wife of D's brother C or J can be sister of D's wife.

In both cases J will be sister in law of D.
44. B

Explanation:

B and A are husband wife, who have 2 children of same sex. A is mother of D who is father of G. This means both children are males. D is brother of C, so C and D both are sons of A and B. D also has two children $-G$ and H. If B is grandfather of E then C must be father of E.
45. B

Explanation:

B, C, and D are certainly males H and J are females. Gender of E and G not known.
46. D
47. A
48. B
49. D

Explanation:

$73,57,49,44,43,42$
$73-57=16$
$57-49=8$
$49-45=4$
$45-43=2$
$43-42=1$

Differences between the consecutive numbers are in Geometric Progression (G.P)

Hence, 44 is the wrong number.
50. A

Explanation:
$21-16=5$
$31-21=10$
$48-31=17$
$74-48=26 ; 10-5=5 ; 17-10=7 ; 26-17=9$
51. B

Explanation:

$1 \times 1=1$
$1 \times 2=2$
$2 \times 3=6$
$6 \times 4=24$
$24 \times 5=120$ not 96
$120 \times 6=720$

52. A

Explanation:

$11+1^{2}+1=13$
$13+2^{2}+1=18$
$18+4^{2}+1=35 \ldots \ldots$.
53. B

Explanation:

54. A

Explanation:

The movements of the girl are as shown in Fig. (A to B, B to C, C to D, D to A). Clearly, she is finally moving in the direction DA i.e. North east.

55. A

Explanation:

According to the question, the direction diagram is as follows

$\mathrm{S}=$ Starting point, $\mathrm{T}=$ Finishing point
$A S=B C=25 m$
$\mathrm{AB}=\mathrm{SC}=50 \mathrm{~m}$
$C T=60 \mathrm{~m}$

Required distance, $\mathrm{ST}=\mathrm{CT}-\mathrm{SC}=60-50=10 \mathrm{~m}$

Clearly, at point T, Mahesh is 10 m West from S .
56. A

Explanation:

Required distance $=P Q=150-(25+25+35)=65 \mathrm{~km}$
57. D

Explanation:

According to the question, the direction diagram is as follows
$\mathrm{A}=$ Original position, $\mathrm{E}=$ Finishing point
$B C=20, A B=15 \mathrm{~m}, A C=E D=5 \mathrm{~m}, C D=A E=10 \mathrm{~m}$

Clearly, at finishing point E , Anoop is 10 m East from original position A .

Directions (Q. 58-62):

c
58. B
59. C
60. A
61. D
62. D

Direction (Q 63-67):

ROW 1	S	P	U	R	T	Q	Facing south
ROW 2	K	L	M	N	O	J	Facing north

63. C

Explanation:

In the south facing row, S and Q are sitting at the extreme ends of the row.
64. B

Explanation:

O is sitting immediate right of N
65. C

Explanation:

P and R are the immediate neighbours of U.
66. D

Explanation:

L and N are interchanges their position hence, P faces N .
67. D

Explanation:

First person is sitting immediate right of second person in all the option except option d).
68. B
69. A
70. C
71. B
72. C
73. D
74. C
75. B
76. C
77. D
78. C
79. D
80. A

Explanation:

From 1 to 16, there are 4 numbers which are multiple of 4

1st 2 are multiple of 4 , and one any other number from ($16-4$) $=12$ tickets
$4 \mathrm{c} 2 * 12 \mathrm{c} 1 / 16 \mathrm{c} 3=72 / 560$

2nd all are multiples of 4 .
$4 c 3 / 16 c 3=4 / 560$

Add both $72 / 560+4 / 560 .=76 / 560=19 / 140$
81. D

Explanation:

Prob. of 1 st winning $=2 / 7$, so not winning
$=1-2 / 7=5 / 7$

Prob. of 2 nd winning $=3 / 5$, so not winning
$=1-3 / 5=2 / 5$

So required prob. $=2 / 7 * 2 / 5+3 / 5 * 5 / 7=19 / 35$
82. C

Explanation:

$P(A)=3 / 5$ and $P(B)=4 / 5$. Now they are contradicting means one is telling truth and other telling the lie. So,

Probability $=(3 / 5)^{*}(1 / 5)+(2 / 5)^{*}(4 / 5)$
$=3 / 25+8 / 25=11 / 25$

83. B

Explanation:

Total possibility $=5 * 4 * 3 * 2$

Favourable outcomes $=2 * 4 * 3 * 2$ (to be divisible by 5 unit digit can be filled with only 0 or 5 , so only two possibilities are there, then the remaining can be filled in 4,3 and 2 ways respectively)

So probability $=2 / 5$
84. B
85. A
86. B
87. A
88. C
89. B
90. B
91. B
92. A
93. A
94. B
95. C
96. C
97. B
98. A
99. B
100. B

