

STATISTICAL DESCRIPTION OF DATA

• Introduction of Statistics:-

The word statistics has been derived from the word.

Latin - Status

Italian - Statista

German - Statistik

French - Statistique

Each of which means a political state.

• Meaning (Definition) of statistics:-

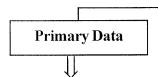
- i) Singular Sense: (Method)
- ii) Plural Sense: (Data)

(i) Singular Sense:-

Scientific method that is employed for collecting; analysing and presenting data, Leading finally to drawing statistical inferences

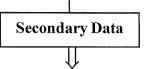
(ii) Plural Sense:- Data qualitative as well as quantitative.

• Application of Statistics:-


- (i) Economics
- (ii) Business Managements
- (iii) Industry
- (iv) Commerce

Limitations of Statistics:-

- 1. Do not study qualitative phenomenon such as Beauty, Honesty, poverty etc.
- 2. It deals with groups and not with individuals.
- 3. Statistical laws are not exact. Statistical results are true only on averages.
- 4. It can be missued.



Collection of Data:-

1. Interview method

- (i) Personal Interview
 - (a) Best method
 - (b) Costly and time consuming
- (ii) Indirect interview
 - (a) Rail Accident
 - (b) Not reliables
- (iii) Telephonic Interview
 - (a) quick and Non expensive)
 - (b) non-responses is maximum
- 2. Mailed questionnaire method:
 - (a) Covers wide area
 - (b) Amount of non-respones is maximum
- 3. Observation method:-
 - (a) Best method
 - (b) time consuming
 - (c) Labourious,
 - (d) Covers only a small area
- 4. Questionnaire sent by enumerators:-
 - (a) More reliable
 - (b) costly and time consuming

1. International Sources:-

WHO, ILO, IMF, World Bank etc.

2. Government Sources:-

CSO, Indian Agricultural statistices by ministry of food and agriculture etc.

3. Private and quasi government

sources:-

ISI, ICAR, NCERT etc.

4. Unpublished Sources:-

Various research

institutes, researchers etc.

Classification (Organisation) of Data

- i) Chronological or temporal or Time Series Data:
- ii) Geographical or spatial Series Data
- (iii) Qualitative or Ordinal Data
- (iv) Quantitative or Cardinal Data.
- Note:- (i) Qualitative or quantitative data belongs to frequency group.
 - (ii) Time series data and geographical data belong to non-frequency group.
 - (iii) Qualitative data is known as attribute.

Eg.:- Nationality, drinking habit, beauty, intelligence, etc.

Mode of Presentation of Data

- (i) Textual presentation
- (ii) Tabular presentation
- (iii) Diagrammatic presentation.

(i) Textual presentation:-

This method comprises presenting data with the help of paragraph or a number of pragraphs. The official report of an enquiry commission is usually made by textual presentation.

(ii) Tabular Presentation: -

Tabulation may be defined as logical and systematic arrangement of statistical data in rows and columns. It is designed to simplify the presentation of data for the purposes of analysis and statistical inferences.

Main parts of a table - (Five Parts):-

- (a) Caption:- upper part of the table, describing the columns and sub-columns, if any.
- (b) **Box-head:-** The entire upper part of the table which includes columns and sub-column numbers, unit of measurement along with caption.
- (c) Stub:- The left part of the table providing the description of the rows.
- (d) **Body:-** Main part of the table that contains the numerical figures.
- (e) **Footnotes & Sources:** Should be shown at the bottom part of the table.

Table Title & No.

Stub		Captions	
(Row-Heading)	Column Heading	Column Heading	Column Heading
Row-Heading Row-Heading Row-Heading	Nu	merical Informa	ntion

Footnotes and Sources:

Note:

Tabular method is the best method of presentation of data

(iii) Diagrammatic presentation of data:-

Most attractive representation of statistical data is provided by charts, diagrams and pictures.

• Diagrammatic representation of data:-

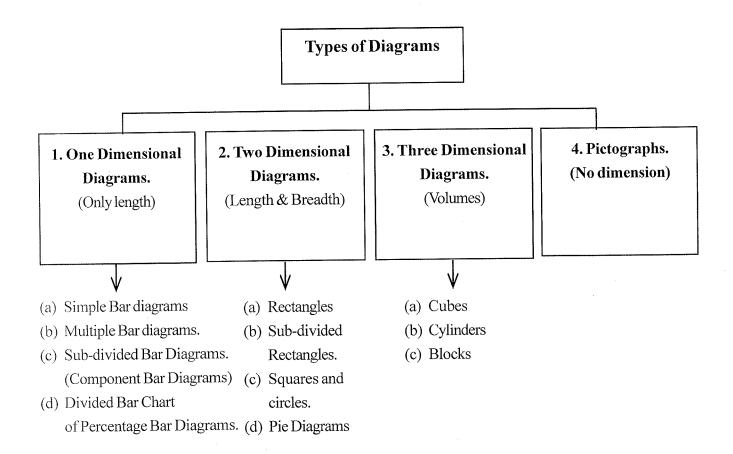
- (i) It is used for both the educated section and uneducated section of the society.
- (ii) Any hidden trend present in the given data can be noticed only in this mode of represents.
- (iii) Compared to tabulation, this is less accurate.

• Types of diagrams:-

- 1. Line Diagram or Historiagram
- 2. Bar Diagram
- 3. Pie Chart
- I. <u>Line Diagram:</u> When the data vary over time. We take recourse to line diagram. In a simple line diagram, we plot each pair of values of (t, y_t). It representing the time series at the time point t in the t-y_t plane. The plotted points are then joined successively by line segments and the resulting chart is known as line-diagram.
 - When time series exhibit a wide range of fluctuation, we think of logarithmic or ratio chart.
 - We use multiple line chart for representing two or more related time series data expressed in the same unit.
 - We use multiple-axis chart in somewhat similar situations if the variables are expressed in different units.

II Bar Diagrams:

- (i) Horizontal Bar Diagram: Used for qualitative data or data varying over space.
- (ii) Vertical Bar Diagram: Used for quantitative data or time-series data.
- (iii) Multiple or Grouped Bar Diagrams:- Used to compare related series.
- (iv) **Component or Sub-divided Bar Diagrams:-** Used for representing data divided into a number of components.
- (v) **Divided Bar Charts or Percentage Bar Diagrams:-** For comparing different components of a variable and also the relating of the component to the whole.


Note:- For this situation, we may also use Pie chart or Pie diagram or circle diagram.

III. Pie Chart:-

Pie chart is a circular diagram whose area is proportionately divided among the various components of a given variable.

- In order to make the data easily understandable, we tabulate the data in the form of tables or charts.
 - A table has three columns.
 - (1) Variable
- (2) Tally marks
- (3) Frequency
- I. Variable: Any character which can vary from one individual to another is called a variable. For e.g. age, income, height, intelligence etc.
- II. Tally:- It is a method of keeping count in blocks of five. For example. 1 = I, 2 = II, 3 = III; 4 = IIII; 5 IIII; 6 = IIIII ... and so on.
- III. **Frequency:** The number of times an observation occurs in the given data is called the frequency of the observation.

SCRUTINY OF DATA

Since the statistical analyses are made only on the basis of data, it is necessary to check whether the data under consideration are accurate as well as consistence. No hard and fast rules can be recommended for the scrutiny of data. One must apply his intelligence, patience and experience while scrutinising the given information.

Errors in data may creep in while writing or copying the answer on the part of the enumerator. A keen observer can easily detect that type of error. Again, there may be two or more series of figures which are in some way or other related to each other. If the data for all the series are provided, they may be checked for internal consistency. As an example, if the data for population, area and density for some places are given, then we may verify whether they are internally consistent by examining whether the relation.

Frequency Distribution:-

A frequency distribution is the arrangement of the given data in the form of a table showing frequency with which each variable occurs.

Some statistical Terms:-

- (i) Range:- It is the difference between the Largest and the smallest number in the given data.
- (ii) Class:- If the observations of a series are divided into groups and groups are bounded by limits, then each group is called a class.
- (iii) Class Limit: The end values of a class are called the class limit.
 - (a) Lower Class Limit:- The smaller value of the two limits is called the lower class limit. (LCL)
 - (b) Upper Class Limit:- The higher value of the same is called the upper limit of the class.
- (iv) Class Interval: The difference between the lower Limit and upper Limit of the class is known as class interval. I = U L.
 - i.e. Range of a class is called its class interval.
- (v) Class Boundaries (Actual Class Limit): The class boundaries are the limits up to which the two limits, (actual) of each class may be extended to fill up the gap that exists between the classes.
 - (a) Lower Class Boundary:- Lower Class Limit $\frac{1}{2}$ of the gap LCB = LCL $\frac{D}{2D}$ (b) Upper Class Boundary:- Upper Class Limit + $\frac{1}{2}$ of the gap UCB = UCL + $\frac{D}{2D}$
 - (b) Upper Class Boundary:- Upper Class Limit $+\frac{1}{2}$ of the gap UCB = UCL $+\frac{D}{2}$ where D is the difference between the LCL of the next class interval and UCL of the given class interval.
- (vi) Class-mark or Mid Point or Mid Value: The central value of the class interval is called the mid point or mid-value or class mark.

 Mid Point or class mark = $\frac{LCL+UCL}{2}$ or $\frac{LCB+UCB}{2}$
- (vii) **Inclusive Series:-** When the class-intervals are so fixed that the upper Limit of the class is included in that class, it is known as inclusive method of classification. e.g. 0-5, 6-10, 11-15, 16-20.
- (viii) Exclusive Series:- In this series the upper limit of one class is the lower limit of the other class. The common point of the two classes is included in the higher class. For e.g. 10-15, 15-20, 20-25 represent a continuous series. 15 is included in the class 15-20.
- **Note:-** For overlapping classification or mutually exclusive classification the class boundaries coincide with the class limits.

Conversion of a discontinuous series into continuous series:-

(Inclusive series to exclusive series).

Step 1 Adjustment factor:-=

 $\frac{1}{2}$ [Lower limit of second class - Upper limit of the first class].

Step 2

Inclusive Form Exclusive Form
$$11-20$$
 $10.5-20.5$ $21-30$ $20.5-30.5$

- Cumulative frequency distribution:- Cumulative frequency corresponding to a class is the sum of all the frequencies upto and including that class. Cumulative frequency series are of two types:-
 - (i) less than type
- (ii) More than type.
- Number of classes:-

No. of classes =
$$\frac{\text{Range}}{\text{Class Size}}$$

• Frequency density of a class interval:-

Relative Frequency:-

Relative Frequency =
$$\frac{\text{Class Frequency}}{\text{Total frequency}}$$

Percentage Frequency:-

Percentage Frequency =
$$\frac{\text{Class Frequency}}{\text{Total frequency}} \times 100.$$

Graph of Frequency distribution:-

1. Histogram: (Area diagram) (Most Commonlly used).

A Histogram is a graph containing a set of rectangles, each being constructed to represent the size of the class interval by its width and the frequency in each class-interval by its height.

The area of each rectangle is proportional to the frequency in the respective class-interval and the total area of the histogram is proportional to the total frequency.

- **Note:** (i) When the class-intervals are unequal the heights of rectangles are made proportional not to the class frequencies, but to the frequency densities.
 - (ii) In construction of histogram the class intervals should be in exclusive form.
 - (iii) We can find mode graphically by histogram.
- 2. **Frequency Polygon:-** If we mark the mid-points of the top horizontal sides of the rectangles in a histogram and join them by straight lines, the figure so formed is called a frequency polygon.

A frequency polygon is useful in comparing two or more frequency distribution.

Frequency polygon can be drawn in two ways:

- (a) By preparing histogram first.
- (b) Direct method.

3. Cumulative frequency curve or ogive:-

A graph which represents the data of a cumulative frequency distribution is called ogive curve. Ogive is a line diagram.

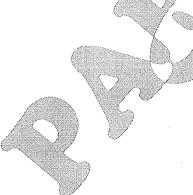
There are two types of ogives:-

- (i) Less than ogive:- If the cumulative frequencies are plotted at the upper limit of the class interval, it is a less than ogive.
- (ii) More than ogive: Cumulative frequencies are plotted against the lower class boundaries of the respective class, intervals.

Note: Median can be obtained from ogive

4. **Frequency Curve:**- A frequency curve is drawn by smoothing the frequency polygon. It is smoothed in such a way that the sharp turns are avoided.

A frequency curve can be regard as a limiting form of frequency polygon or histogram.


There exist four type of frequency curves:-

- (i) **Bell Shaped Curves:** Most of the commonly used distributions are bell shaped curves. The distribution of height, marks, profit etc. belongs to this category. On a bell shaped curves, the frequency starting from a rather low value gradually reaches the maximum value and then gradually decreases to reach its lowest value at the other extremity frequency is maximum at central part.
- (ii) **U-Shaped Curve:** Frequency is minimum near the central part and the frequency reaches maximum at the two extremities.
- (iii) **J-Shaped Curve:** J shape curves starts with minimum frequency at one extremity and reaches maximum at other extremity.
- (iv) Mixed Curve:- Combination of above curve is known as mixed curves.

False Base Line:- The false base line graph technique is useful from two point of views:-

(i) To magnify the minor fluctuation in time series data.

(ii) To economic the space.

Exercise - I

1.	Which of the following	statements is false ?[SM]					
	(a) Statistics is derived from the Latin word 'Status'						
	(b) Statistics is derived fr	om the Italian word 'Statista'	•				
	(c) Statistics is derived fr	om the French word 'Statistik	ζ'				
	(d) None of these						
2.	Statistics is defined in	terms of numerical data in	the [SM]				
	(a) Singular sense	(b) Plural sense	(c) Either (a) or (b)	(d) Both (a) and (b)			
3.	Statistics is applied in[SM]					
	(a) Economics	(b) Business management	nt (c) Commerce and ir	ndustry (d) All these			
4.	Statistics is concerned	with[SM]					
	(a) Qualitative informat	ion (b) Quantitative infor	mation (c) (a) or (b)	(d) Both (a) and (b)			
5.	An attribute is [SM]						
	(a) A qualitative characte	ristic	(b) A quantitative characteristic				
	(c) A measurable charact	teristic	(d) All these				
6.	Nationality of a stude	nt is [SM]					
	(a) An attribute	(b) A continuous variable	(c) A discrete variable	(d) (a) or (c)			
7.	Drinking habit of a pe	erson is [SM]					
	(a) An attribute	(b) A variable	(c) A discrete variable	(d) A continuous variable			
8.	Data collected on relig	gion from the census repor	ts are[SM]				
	(a) Primary data	(b) Secondary data	(c) Sample data	(d) (a) or (b)			
9.	The data collected on	the height of a group of	students after recordi	ng their heights with a			
	measuring tape are[S	M]					
	(a) Primary data	(b) Secondary data	(c) Discrete data	(d) Continuous data			
10.	The primary data are	collected by [SM]	•				
	(a) Interview method	(b) Observation method	(c) Questionnarie met	hod (d) All these			
11.	The quickest method	to collect primary data is [SM]				
	(a) Personal interview	(b) Indirect inteview	(c) Telephone intervie	w (d) By observation			
12.	The best method to co	ollect data , in case of a nat	cural calamity is [SM]				
	(a) Personal interview	(b) Indirect interview (c)	Questionnaire method (d)	Direct observation method			
13.	In case of a rail accide	ent , the appropriate metho	od of data collection is	by			
	(a) Personal interview	(b) Direct interview	(c) Indirect interview	(d) All these			

Which method of data collection covers the widest area ?[SM] 14.

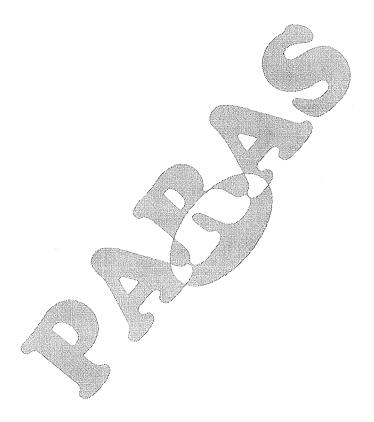
(a) Telephone interview method

(b) Mailed questionnaire method

(c) Direct interview method

(d) All these

The amount of non-responses is maximum in [SM] 15.


- (a) Mailed questionnaire method (b) Interview method (c) Observation method
- (d) All these

Some important sources of secondary data are [SM] 16.

- (a) International and Government sources
- (b) International and primary sources

(c) Private and primary sources

(d) Government sources

Exercise - II

1. Internal consistency of the collected data can be che			checked whe	n[SM]			
	(a) Internal data are giv	/en	(b) Externa	(b) External data are given			
	(c) Two or more series	are given	(d) A numb	er of related serie	s are given		
2.	The accuracy and co	onsistency of data car	n be verified b	oy [SM]			
	(a) Internal checking	(b) External	checking	(c) Scurtiny	(d) Both (a) and (b)		
3.	The mode of present	ation of data are[SN	1]				
	(a) Textual, tabulation	and diagrammatic	(b) Tabular	, internal and exte	ernal		
	(c) Textual, tabular and	d internal	(d) Tabular	, textual and exte	rnal		
4.	The best method of 1	presentation of data	is [SM]				
	(a) Textual	(b) Tabular	(c) I	Diagrammatic	(d) (b) and (c)		
5.	The most attractive	method of data pres	entation is [SI	M]			
	(a) Tabular	(b) Textual	(c) I	Diagrammatic	(d) (a) or (b)		
6.	For tabulation, 'cap	tion' is [SM]					
	(a) The upper part of the table						
	(b) The lower part of the table						
	(c) The main part of the table						
	(d) The upper part of a table that describes the column and sub-column.						
7.	'Stub' of a table is tl	ne [SM]			e.		
	(a) Left part of the table describig the columns						
	(b) Right part of the table describing the columns						
	(c) Right part of the table describing the rows						
	(d) Left part of the tab	le describing the rows					
8.	The entire upper pa	rt of a table is know	n as[SM]				
	(a) Caption	(b) Stub	(c)	Box head	(d) Body		
9.	The unit of measure	ment in tabulation is	shown in [SN	1]			
	(a) Box head	(b) Body	(c)	Caption	(d) Stub		
10.	In tabulation source	e of the data , if any ,	is shown in th	ie [SM]			
	(a) Footnote	(b) Body	(c)	Stub	(d) Caption		
11.	Which of the following	ing statements is unti	rue for tabula	tion ?[SM]			
	(a) Statistical analysis	of data requires tabulat	tion				
	(b) It facilitates compa	arison between rows ar	nd not columns				
	(c) Complicated data						
	(d) Diagrammatic repr	resentation of data requ	iires tabulation				

12.	Hidden trend, i	f any , in the da	ata can be noticed	in [SM]				
	(a) Textual presen	ntation (b) Tab	ulation (c) Diagram	matic representation	(d) All these			
13.	Classification is	of [SM]						
	(a) four	(b) three	e (c) tv	vo	(d) five kinds.			
14.	The most accur	ate mode of da	ta presentation is	[SM]				
	(a) Diagrammati	c method	(b) Tabulation	(c) Textual presentation	n (d) None of these			
15.	The chart that u	ises logarithm	of the variable is l	known as [SM]				
	(a) Line chart		(b) Ratio chart	(c) Multiple line chart	(d)Component line char			
16.	Multiple line ch	art is applied f	for [SM]					
	(a) Showing mult	iple charts						
	(b) Two or more	related time seri	es when the variable	es are expressed in the sar	ne unit			
	(c) Two or more	elated times ser	ies when the variabl	es are expressed in differen	ent unit			
	(d) Multiple varia	tions in the time	series					
17.	Multiple axis line chart is considered when [SM]							
	(a) There is more than one time series (b) The units of the variables are different							
	(c) (a) or (b) (d) (a) and (b)							
18.	Horizontal bar							
	(a) Qualitative d	ata (b) I	Data varying over ti	me (c) Data varying ove	er space (d) (a) or (c)			
19.	Vertical bar dia	gram is applia	ble when [SM]	3335				
	(a) The data are o	qualitative	(b) 7	The data are quantitative				
	(c) When the dat	a vary over time	(d)	(a) or (c)				
20.	Divided bar cha	art is consider	ed for [SM]					
	(a) Comparing different components of a variable							
	(b) The relation of different components to the whole							
	(c) (a) or (b)		(d)	(a) and (b)				
21.	In order to com	ipare two or m	ore related series	, we consider[SM]				
	(a) Multiple bar	chart (b)	Grouped bar chart	(c) (a) or (b)	(d) (a) and (b)			
22.	Pie-diagram is	used for[SM]						
	(a) Comparing d	ifferent compon	ents and their relation	n to the total				
	(b) Nepresenting	g qualitative data	in a circle					
	(c) Representing	quantitative dat	a in circle					
	(d) (b) or (c)							

23.	A frequency dist	ribut	ion[SM]							
	(a) Arranges obser	vatio	ns in an increas	sing or	der					
	(b) Arranges obser	(b) Arranges observations in terms of a number of groups								
	(c) Relaters to mea	asural	ole characterist	ic						
	(d) All of these									
24.	The frequency d	istril	oution of a con	tinuo	us varial	ble is k	nown as	[SM]		
	(a) Grouped frequ	ency	distribution (b) Simp	ole freque	ency dis	tribution	n (c) (a	a) or (b)	(d) (a) or (b)
25.	The distribution	of sł	nares is an exa	mple	of the fro	equenc	y distrik	oution o	f [SM]	
	(a) A discrete vari	able	(b) A continu	ious va	riable		(c) Ar	attribut	e	(d) (a) or (c)
26.	The distribution	of p	rofits of a blue	e-chip	compan	y relat	es to [SN	1]		
	(a) Discrete varial	ble	(b) Continuo	us var	iable		(c)At	tributes	(0	d) (a) or (b).
27.	Cost of sugar in	a mo	onth under th	e head	ls Raw I	Materi	als , lab	our , di	rect pro	oduction and
	others were 12	, 20	, 35 and 23 u	ınits r	espectiv	ely . V	Vhat is	the diff	erence	between the
	central angles for the largest and smallest components of the cost of sugar ?[SM]									
	(a) 72°		(b) 48°		(c) 5	6°			(d) 92	2°
28.	The number of accidents for seven days in a locality are given below:									
	No. of accidents	:	0	1	2	3	4	5	6	
	Frequency	:	15	19	22	31	9	3	2	
	What is the num	ber	of cases when	3 or le	ess accid	ents o	curred	?[SM]		
	(a) 56		(b) 6		(c) 6	8			(d) 8'	7
29.	The following da	ata r	elate to the inc	comes	of 86 pe	rsons :				
	Income in Rs.	:	500-9	99	1000	-1499	1500	-1999	2000-	-2499
	No. of persons	:	15	5		28	;	36		7
	What is the perc	centa	ges of person	s earn	ing mor	e than	Rs. 150	0 ?[SM]	l	
	(a) 50		(b) 45		(c) 4	0			(d) 60	0
30.	The following da	ata r	elate to the ma	arks of	f a group	of stu	dents :			
	Marks	:	Below 10	Be	elow 20	Bel	low 30	Belo	ow 40	Below 50
	No. of students	:	15		38		65	į	84	100
	How many stude	ents ș	got marks mo	re tha	n 30 ?[S]	M] .				
	(a) 65		(b) 50		(c) 3	5		7	(d) 4.	3

P	ARAS II	NSTITUTE OF CO	MMERCE	2931111	-14.17-
31.	Find the number	of observations betw	veen 250 and 300 t	from the followi	ng data :[SM]
	Value	: More than 200	More than 250	More than 30	More than 350
	No. of observation	ons: 56	38	15	0
	(a) 56	(b) 23	(c) 15		(d) 8
32.	Graph is a [SM]				
	(a) Line diagaram	(b) Bar diagram	(c) Pie diagr	am	(d) Pictogram
33.	Details are shown	by [SM]			
	(a) Charts	(b) Tabular pres	sentation	(c) both	(d) none
34.	The relationship l	between two variabl	es are shown in [S	SM]	
	(a) Pictogram	(b) Histogram	(c) E	Bar diagram	(d) Line diagram
35.	In general the nu	mber of types of tab	ulation are [SM]		
	(a) two	(b) three	(c) o	one	(d) four
36.	A table has p	arts[SM]		2/1/	
	(a) four	(b) two	(c) f	ive	(d) none

Exercise - III

1.	The curve obtained by	y joining the points	, whose x	-coordinates are th	e upper limits of the		
	class-intervals and y-c	oordinates are corr	espondin	g cumulative frequ	encies is called.[SM]		
	(a) Ogive	(b) Histogram	(c) Freq	juency Polygon	(d) Frequency Curve		
2.	Mutually inclusive c	lassification is us	ually mea	ant for [SM]			
	(a) A discrete variable	(b) A continuous	variable	(c) An attribute	(d) All these		
3.	Mutually exclusive	classification is us	ually me	ant for [SM]			
	(a) A discrete variable	(b) A continuous	variable	(c) An attribute	(d) Any of these.		
4.	The LCL is [SM]						
	(a) An upper limit	(b) A lower limit	t	(c) (a) and	(b) (d) (A) or (b)		
5.	The UCB is [SM]						
	(a) An upper limit to	UCL (b) A lower l	imit to L(CL (c) Both (a) as	nd (b) (d) (a) or (b)		
6.	An Ogive can be prep	ared in	different	ways.[SM]			
	(a) 2	(b) 3		(c) 4	(d) none.		
7.	For a particular clas	ss boundary, the l	ess than	cumulative frequ	ency and more than		
	cumulative frequenc	ey add up to [SM]					
	(a) Total frequency		(b) Fift	(b) Fifty per cent of the total frequency			
	(c) (a) or (b)		(d) Non	(d) None of these			
8.	Frequency density co	rresponding to a cla	ıss interva	s interval is the ratio of[SM]			
	(a) Class frequency to the	ne total frequency	(b) Clas	b) Class frequency to the class length			
	(c) Class frequency to the	ne class frequency	(d) Clas	ss frequency to the cu	mulative frequency		
9.	Relative frequency fo	r a particular class[SM]				
	(a) Lies between 0 and	1	(b) Lies between 0 and 1, both inclusive				
	(c) Lies between -1 and	10	(d) Lies between -1 to 1.				
10.	Mode of a distribution	ı can be obtained fr	om[SM]				
	(a) Histogram (b) Less than type ogi	ives (c) More than type og	ives (d) None of these		
11.	Median of a distributi	on can be obtained	from[SM]]			
	(a) Frequency polygon	(b) Histogram	(c) L	ess than type ogives	(d) None of these		
12.	A comparison among	the class frequenci	es is possi	ble only in [SM]			
	(a) Frequency polygon	(b) Histogram		(c) Ogives	(d) (a) or (b)		
13.	Frequency curve is a l	imiting form of [SM	1]				
	(a) Frequency polygon	(b) Histogram		(c) (a) or (b)	(d) (a) and (b)		

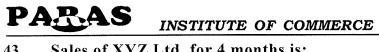
14.	Most of the commonly	y used frequen	cy curves a	re[SM]		
	(a) Mixed	(b) Inverte	ed J-shaped	(c) U-shape	ed	(d) Bell-shaped
15.	The distribution of j	profits of a co	mpany foll	ows[SM]		
	(a) J-shaped frequenc	y curve	(b) U	U-shaped freq	uency cur	ve
	(c) Bell-shaped freque	ency curve	(d) A	Any of these.		
16.	Out of 1000 persons	, 25 per cent	were indus	trial worker	s and the i	est were agricultuta
	worker. 300 persons	enjoyed wor	ld cup mate	ches world c	up matche	es on TV. 30 perent o
	the people who had i	not watched w	orld cup m	atches were	industrial	workers. What is the
	number of agricultu	ral workers w	ho had enj	oyed world o	cup match	es on TV ?[SM]
	(a) 260	(b) 240		(c) 230		(d) 250
17.	A sample study of the	e people of an	area revea	led that tota	l number	of women were 40%
	and the percentage			\ \ \		
	coffee drinker was 2				Carried I	
	(a) 10	(b) 15	1	(c) 18		(d) 20
18.	In Histogram, the	` '	n [SM]		7	()
10.	(a) overlapping	(b) non-ov	7	(c) both		(d) none
19.	For overlapping cla	• •		` / / / / /	oundary a	` '
17.	(a) same	(b) not sai	N.	(c) zero	Junuary a	(d) none
20.	For the overlapping				mark of t	` ,
۵0.		(b) 0	/ / / 50	(c) 10	markord	(d) none
21	(a) 5 For the non-overlapp		9 20-39 4		mark of t	` ,
21.	(a) 0	(b) 19	<i>9,72</i> 0-37, 1	(c) 9.5	illaik oi t	(d) none
22.	Class :	0-10	10-20	20-30	30-40	40-50
44.	Frequency:	5	8	15	6	4
	For the class 20-30, c				v	·
	(a) 20	(b) 13	1	(c) 15		(d) 28
23.	The number of erro		are[SM]	(1)		(4)
	(a) one	(b) two		(c) three		(d) four
24.	The number of "Fre	equency distri	bution" is	[SM]		
	(a) two	(b)one		(c) five		(d) four
25.	(Class frequency) /	(Width of the	e class) is d	efined as [SI	M]	
	(a) Frequency density	y (b) Freque	ncy distrib	ution (c)	both	(d) none
26.	Tally marks determ	ines[SM]				
	(a) class width	(b) class b	oundary	(c) class li	mit	(d) class frequency

27.	Diagrammatic represe	ntation of the cum	ulative irequ	ency distribution	
	(a)Frequency Polygon	(b) Ogive	(c)	Histogram	(d) none
28.	To find the number o	of observations l	ess than any	given value[SM]
	(a) Single frequency dis	stribution	(b) Group	ed frequency distr	ibution
	(c) Cumulative frequen	cy distribution	(d) none i	s used	
29.	An area diagram is [SM]			
	(a) Histogram	(b)Frequency	Polygon	(c) Ogive	(d) none
30.	When all classes hav	e a common wid	th[SM]		
	(a) Pie Chart	(b) Frequency	y Polygon	(c) Both	(d) none is used
31.	An approximate idea	a of the shape of	frequency o	curve is given by	[SM]
	(a) Ogive	(b) Frequency Po	olygon	(c) both	(d) none
32.	Ogive is a [SM]				
	(a) line diagram	(b) Bar diagram	ı	(c) both	(d) none
33.	The value exactly at th	ne middle of a clas	s interval is	called[SM]	
	(a) class mark	(b) mid value		(c) both	(d) none
34.	The graphical repres	sentation of a cur	nulative fre	quency distribut	ion is called[SM]
	(a) Histogram	(b) Ogive		(c) both	(d) none
35.	The most common form	of diagrammatic r	epresentation	of a grouped frequ	ency distribution is[SM
	(a) Ogive	(b) Histogram	ı ((c) Frequency Poly	ygon (d) none
36.	Vertical bar chart m	ay appear somev	vhat a like[S	SM]	
	(a) Histogram	(b) Frequency	y Polygon	(c) Both	(d) none
37.	The number of types	s of cumulative f	requency is	[SM]	
	(a) one	(b) two		(c) three	(d) four
38.	Classes with zero f	requencies are	called[SM]		
	(a) Negative class	(b) empty cl	ass	(c) class	(d) none
39.	For determining the	e class frequenci	es it is nece	ssary that these	classes are[SM]
	(a) mutually exclusive	e (b) not mutua	lly exclusive	(c) independ	ent (d) none
40.	The number of observ	ations falling with	in a class is c	alled[SM]	
	(a) density	(b) frequency		(c) both	(d) none
41.	Difference between	the lower and th	e upper clas	ss boundaries is	[SM]
	(a) width	(b) size		(c) both	(d) none

42.	In the construction of a f	frequency distribution, it is	is generally preferable to hav	e classes of [SM]
	(a) equal width	(b) unequal width	(c) maximum	(d) none
43.	Frequency density is	used in the constructio	on of [SM]	
	(a) Histogram	(b) (Ogive	
	(c) Frequency Polygon	(d) r	none when the classes are of	unequal width.
44.	"Cumulative Freque	ncy" refers to the [SM]		
	(a) less - than type	(b) more-than type	(c) both	(d) none
45.	Upper limit of any cl	ass is from the	e lower limit of the next cl	lass[SM]
	(a) same	(b) different	(c) both	(d) none
46.	Upper boundary of an	ny class coincides with t	he lower boundary of the i	next class.[SM]
	(a) true	(b) false	(c) both	(d) none
47.	Excepting the first ar	nd the last, all other cl	ass boundaries lie midwa	y between the
	upper limit of a class	and the lower limit of	the next higher class.[SM	
	(a) true	(b) false	(c) both	(d) none
48.	A representative value	of the class interval for t	he calculation of mean , stan	dard deviation,
	mean deviation etc. is	[SM]		
	(a) class interval	(b) class limit	(c) class mark	(d) none
49.	For the construction o	f grouped frequency dist	tribution from ungrouped d	lata we use[SM]
-	(a) class limit	(b) class boundaries	(c) class width	(d) none
50.	When one end of a c	lass is not specified,th	ne class is called [SM]	
	(a) closed-end class	(b) open-end class	(c) both	(d) none
51.	Class limit should be	considered to be the r	eal limits for the class int	erval.[SM]
	(a) true	(b) false	(c) both	(d) none
52.	Difference between t		um value of a given data i	
	(a) width	(b) size	(c) range	(d) none
53.	_		width then the heights of	the rectangles
		I to the frequency dens		(1)
	(a) true	(b) false	(c) both	(d) none
54.			hts of the rectangles in His	stogram will be
	numerically equal to		(-) 141-	(d) none
	(a) class frequencies	(b) class boundaries	(c) both	(d) none
55.			ve no space in between [SM	(d) none
	(a) true	(b) false	(c) both	(a) none

56.	Histogram emphasizes the widths of rectangles between the class boundaries.[SM]						
	(a) false	(b) true	(c) both	(d) none			
57.	To find the mo	de graphically[SM]					
	(a) Ogive	(b) Frequency Polygon	(c) Histogram	(d) none may be used			
58.	When the widt	th of all classes is same, frequ	ency polygon has	not the same area as the			
	Histogram.[SM	1]					
	(a) True	(b) false	(c) both	(d) none			
59.	For obtaining	frequency polygon we join the	successive points	whose abscissa represent			
	the correspond	ding class frequency	[SM]				
	(a) True	(b) false	(c) both	(d) none			
60.	The breadth o	f the rectangle is equal to the	length of the class	s-interval in[SM]			
	(a) Ogive	(b) Histogram	(c) both	(d) none			

Que	estion	Bank
-----	--------	------


1.	The quickest method to collect primary	[N-06]	
	(a) Personal interview	(b) Indirect interview	
	(c) Mailed Questionnaire Method	(d) Telephonic Interview	
2.	Which of the following statement is true	2?	[N-06]
	(a) Statistics is derived from the French word	l'Statistik'	
	(b) Statistics is derived from the Italian word	'Statista'	
	(c) Statistics is derived from the latin word 'S	tatistique' (d) None of the	ese
3.	In indirect oral investigation:		[J-08]
	(a) Data is not capable of numerical expressi	on	
	(b) Not possible or desirable to approach info	formant directly	
	(c) Data is collected from the books		
	(d) None of these		
4.	Which of the following is a statistical da	ata?	[D-08]
	(a) Ram is 50 years old		
	(b) Height of Ram is 5'6" and of Shyam and	Hari is 5'3" and 5'4" respectively	
	(c) Height of Ram is 5'6" and weight is 90kg		
	(d) Sale of A was more than B and C.		
5.	Nationality of a person is:		[D-09]
	(a) Discrete variable (b) An attribute	(c) Continuous variabl	e (d) None
6.	The data obtained by the internet are		[D-10]
	(a) Primary data (b) Secondary da	ata (c) Both (a) and (b)	(d) None of these
7.	In tabulation, source of data, if any, is s	shown in the:	[F-07]
	(a) Stub (b) Body	(c) Caption	(d) Footnote
8.	Divided bar chart is good for:		[F-07]
	(a) Comparing various components of a vari	able (b)Relating the different com	ponents to the whole
	(c) (a) and (b)	(d) (a) or (b)	
9.	A table has parts:	•	[A-07]
	(a) Four (b) Two	(c) Five	(d) None
10.	Cost of sugar in a month under the head	ds raw materials, labour, direc	t production and others
	were 12,20,35 and 23 units respectively,	what is the difference between t	he central angles for the
	largest and smallest components of the	cost of sugar?	
-	(a) 72° (b) 48°	(c) 56°	(d) 92°

11.	Circular - diagrams	are always:				[J-08]
	(a) One-dimensional	(b) Two-dimension	onal	(c) Three-dimension	onal (d)Cart	ograms
12.	The column heading	s of a table are know	wn as:			[J-08]
	(a) Body	(b) Stub		(c) Box - head	(d)	Caption
13.	Some important sou	rces of secondary da	ata are	•		[J-08]
	(a) International and Go	overnment sources	(b) Inter	rnational and prim	ary sources	
	(c) Private and primary	sources	(d) Gov	rernment sources		
14.	Arrange the dimensi	ons of diagram; Pie	, Cubic ar	nd Simple bar di	agram.	[D-09]
	(a) 1,2,3	(b) 2,1,3		(c) 2,3,1	(d) 3,2,1,	
15.	The most appropriat	e diagram to repres	ent the dat	ta relating to the	monthly expend	liture on
	different items by a	family is				[D-10]
	(a) Histogram	(b) Pie-diagram	(c) Fred	quency polygon	(d) Line gr	raph
16.	The Choronological	classification of dat	a are clas	sified on the basi	is of:	[J-11]
	(a) Attributes	(b) Area	(c) Tim	e	(d) Class I	nterval
17.	Arrange the following	g dimension wise: pic	e-diagram	, bar-diagram and	d cubic diagram	. [J-11]
	(a) 1,2,3	(b) 3,1,2 ·	(c) $3,2,$	1	(d) 2,1,3	
18.	Which of the followi	ng is not a two dime	ensional d	iagram?		[D-11]
	(a) Square diagram	(b) Line diagram	(c) Rec	tangular diagram	(d) Pie-ch	art
19.	A pie diagram is use	d to represent the f	ollowing d	lata :		[J-13]
	Source:	Customs	Excise	Income Tax	Wealth T	ax
	Revenue in Million r	rs. 120	180	240	180	
	The central angles in	the pie diagram corr	esponding	to income tax and	ł wealth tax res _l	ectively:
	(a) (120°, 90°)	(b) (90°, 120°)		(c) $(60^{\circ}, 120^{\circ})$	(d) (90°, 6	50°)
20.	The most appropria	te diagram to repre	sent the fi	ve - year plan ou	tlay of India in	different
	economic sectors is	:				[D-14]
	(a) Pie diagram	(b) Histogram	(c) Lin	e-Graph (d	d) Frequency Po	lygon
21.	100 persons are class	sified into male/fem	ale and gi	raduate/non- gra	duate classes.	Γhis data
	classification is:					[D-14]
	(a) Cardinal data	(b) Ordinal data	(c) Spa	ntial Series data	(d) Temporal	data

22.	The number of o	bservatior	ıs betv	ween 150 a	nd 20	00 based	on th	ie follow	ing data	a is:	[J-15]
	Value		More than 100			re than 1	50	More th	an 200	More	e than 250
•	Number of Obser	rvation		70		63		2	28		05
	(a) 46		b) 35			(c) 28			((d) 23	
23.	Number of accide	ents 0	1	2	3	4	5	6	7		[J-15]
	Frequency	12	9 ·	11 1	.3	8	9	6	3		
	In how many case	es 4 or mo	re acc	idents occi	ur?						
	(a) 32	((b) 41			(c) 26				(d) 1	8
24.	Classification is	of	ki	nds:			,				[D-15]
	(a) One	(b) two	•		(c) thre	e C			(d) f	our
25.	Find the number	of observ	ation	between 2	50 an	d 300 fro	m th	e follow	ing data	ı :	[D-15]
	Value mo	ore than 20	00	more t	han 2	50	M . 7	Г. 300		M.T	7. 350
	No. of obs	56	4		38	$\setminus \bigcirc$		/ 15			0
	(a) 56		(b) 23			(c) 15				(d) 8	3
26.	Data collected or	n religion	from 1	the census	repo	rts are:					[J-16]
	(a) Primary data	. ((b) Sec	condary da	ta	(c) San	nple	data	(d) (a) or (b))
27.	In collection of d	ata which	of the	e following	ginte	rview me	ethod	ls:			[D-16]
	(a) Personal intervi	ew method	1	$\langle \nabla_{A} \rangle$	(b) T	elephone i	nterv	riew meth	od		
	(c) Published data			15	(d) (a	a) and (b)					
28.	Profits made by	XYZ Ban	k in d	ifferent ye	ars r	efer to :					[D-16]
	(a) An attribute	(b) A	discre	te variable	(c)) A contin	uous	variable	(d) N	one of	these
29.	Mode of present	ation data	ı 🥒								[D-16]
	(a) Textual present	tation (b)	Tabula	ation	(c) Oral pr	esent	tation	(d) (a) and (b)
30.	The following da	ita relates	to the	e income o	f 90 _l	persons:					[N-06]
	Income in Rs.	1500-19	99	2000-2499	25	500-2999	300	00-3499			
	No. of Persons	13		32		20		25			
	What is the perc	entage of j	persor	ıs earning	more	e than Rs	. 2,50	00?			
	(a) 45	(b) 50			(c) 52			(d) 5:	5	
31.	Relative frequen	cy for a p	articu	ılar class li	ies be	etween:					[M-07]
	(a) 0 and 1 (1	b) 0 and 1,	both i	nclusive		(c) -1 a	and ()	(d) -1	and 1	

P	ARAS IN	STITUTE OF	COMMERCE			-14.26-
32.	Find the number o	f observations be	etween 350 and	400 from the followi	ng data:	[M-07]
	Value:	More than	More than	More than	More than	
		200	350	400	450	
	No. of observation	ıs: 48	25	12	0	
	(a) 13	(b) 15		(c) 17	(d) 19	
33.	When the width of a	ll classes is same, fro	equency polygon	has not the same area a	as the histogram	:[M-07]
	(a) False	(b) True		(c) Both	(d) None	
34.	The graphical rep	resentation of a c	umulative freq	uency distribution is	called:	[M-07]
	(a) Histogram	(b) Ogiv	re	(c) Both	(d) None	
35.	Frequency density	y corresponding	to a class inter	val is the ratio of:		[A-07]
	(a) Class Frequency	to the Total Frequ	uency	(b) Class Frequency	to the Class Le	ngth
	(c) Class Length to th	e class Frequency		(d) Class Frequency to	the cumulative Fi	equency
36.	An area diagram	is;				[N-07]
	(a) Histogram	(b) Ogiv	re	(c) Frequency Polyg	on (d)None of	these
37.	The lower class b	oundary is:				[F-08]
	(a) An upper limit to	lower class limit		(b) A lower limit to lo	ower class limit	
	(c) Both (a) & (b)			(d) None of these		
38.	The distribution	of profits of a co	mpany follows:	:		[F-08]
	(a) J - shaped frequ	ency curve		(b) U - shaped frequ	ency curve	
	(c) Bell - shaped fre	equency curve		(d) Any of these		
39.	Out of 1000 perso	ons, 25 per cent	were industria	l workers and the r	est were agric	ultural
	workers. 300 pers	sons enjoyed wor	ld cup matches	on T.V. 30 per cent	of the people w	ho had
	not watched world	d cup matches we	re industrial w	orkers. What is the n	umber of agric	cultural
	workers who had	enjoyed world c	up matches on '	ΓV?		[F-08]
	(a) 230	(b) 25	50	(c) 240	(d)	260
40.	Median of a distr	ibution can be o	btained from:			[F-08]
	(a) Histogram	(b) Frequence	cy polygon	(c) less than type og	ives (d) None	of these
41.	From the followin	g data find the n	umber class int	ervals if class length	is given as 5.	[D-08]
	73,72,65,41,54,80	,50,46,49,53.				
	(a) 6	(b)	5	(c) 7	(d)	8
42.	The method of r	epresenting Ho	ousehold Exp	enditure is:		[D-08]
	(a) Histogram	(b) Pie	e Diagram	(c) Line Diagram	(d)	0give

43.	Sales of XYZ Ltd. for 4	months is:			[D-08]
	Months	Sales			
	Jan.	10,000			
	Feb.	15,000			
	May	18,000			
	April	9,000			
	The above data represe	ents:			
	(a) Discrete	(b) Continuous	(c) Individual	(d) None of	these
44.	Mid value are also call	ed			[J-09]
	(a) Lower limit	(b) Upper limit	(c) Class mark	(d) None	
45.	Less than type ogive an	d more than ogive	meet at a point known	as:	[J-09]
	(a) Mean	(b) Medians	(c) Mode	(d) None	
46.	Histogram is used to fi	nd			[D-09]
	(a) Mean	(b) Median	(c) Mode	(d) None of	these
47.	If we plot less than and mor	e than type frequency d	istribution then the graph	plotted is	[D-09]
	(a) Histogram	(b) Frequency curv	ve (c) Øgive	(d) None of	these
48.	Using Ogive curve we	can determine			[J-10]
	(a) Median	(b) Quartile	(c) Both (a) and (b)	(d) None	
49.	With the help of histog	ram one can find			[J-10]
	(a) Mean	(b) Median	(c) Mode	(d) First Qu	artile
50.	Mode can be obtained	from			[D-10]
	(a) Frequency polygon	(b) Histogram	(c) Ogive	(d) All of the	above
51.	When the two curves o	f ogive intersect, the	e point of intersection	provides:	[J-11]
	(a) First Quartile	(b) Second Quart	ile (c) Third Quartile	(d) Mode.	
52.	Frequency Density can	be termed as:			[J-11]
	(a) Class frequency to the	cumulative frequency	7		
	(b) Class frequency to the	e total frequency			
	(c) Class frequency to the	class length			
	(d) Class length to the cla	ss frequency.			

53.	The frequency of class 20-30 in the following data is							
	Class	0-10	0-20	0-30	0-40	0-50		
	CF	5	13	28	34	38		
	(a) 5		(b) 28		(c) 15	(d) 13		
54.	The Graphical 1	representa	tion by whic	ch medi	an is calculated	is called	[D -11]	
	(a) Ogive Curve	(b) Frequency (Curve	(c) Line diagram	d) Histogra	m	
55.	From which gra	phical rep	resentation,	, we can	ı calculate parti	tion values?	[J-12]	
	(a) Lorenz curve	(b)) Ogive curve	;	(c) Histogram	(d) None of the	above.	
56.	Cost of Sugar in	a month u	ınder the hea	ads raw	materials, labo	ur, direct produ	ction and	
	others were 12,2	0,35 & 23	units respect	ively. T	he difference be	tween their cent	ral angles	
	for the largest &	& smallest	components	of the	cost of Sugar is	[J-12]		
	(a) 92°	(b)) 72°		(c) 48°	(d) 56°		
57.	An exclusive se	ries is?					[D-12]	
	(a) In which, both	upper and	lower limits	are not i	ncluded in class f	frequency		
	(b) In which lowe	er limit is no	ot included in	class fre	equency			
	(c) In which uppe	r limit is no	ot included in	class fre	equency			
	(d) None of these							
58.						, 56, 44, 56, 71, 0		
	50, 55, 49, 63 and	45 If we as	sume class ler	ngth as 5	s, the number of c	lass intervals will	be:[D-12]	
	(a) 5	`	9) 6		(c) 7	(d) 8		
59.	Difference between	en the max	kimum and m		value of a given of		[D-13]	
	(a) Width	(b) Size		(c) Range	(d) Class		
60.	If class intervals	is 10-14, 1	5-19, 20-24,	then th	e first class is		[D-13]	
	(a) 10 - 15	`	o) 9.5 - 14.5		(c) 10.5 - 15.5	` '		
61.	The difference be	etween the	upper and lo	wer limi	it of a class is call	ed	[D-13]	
	(a) Class Interval	(b) Mid Value		(c) Class bounda	ry (d) Frequenc	су	
62.	There were 200 6	employees i	in an office in	which 1	50 were married	. total male empl	oyees were	
	160 out of which I	120 were m	arried. what w	vas the n	umber of female t	unmarried employ	ees?[J-14]	
	(a) 30	(b) 10		(c) 40	(d) 50		
63.	"The less than O	give" is a:					[J-14]	
	(a) U-Shaped Cur	rve (1	o) J-Shaped C	urve	(c) S-Shaped	(d) Bell Shaped	Curve	

PA	BAS	INSTITUTE OF COMM	ERCE	-14.29-
64.	The following d	lata relates to the marks o	f a group of students.	[J-14]
	Marks	No. of Students		
	More than 70%	07		
	More than 60%	18		
	More than 50%	6 40		
	More than 40%	60		
	More than 30%	75		
	More than 20%	6 100		
	How many stud	lents have got marks less t	han 50%?	
	(a) 60	(b) 82	(c) 40	(d) 53
65.	To draw Histog	gram, the frequency distri	bution should be:	[J-14]
	(a) Inclusive typ	be (b) Exclusive type	(c) Inclusive and Exclusi	ve type (d) None of these.
66.	If the fluctuati	ons in the observed value	are very small as comp	ared to the size of the item,
	it is presented	by:		[D-14]
	(a) Z chart	(b) Ogive curve	(c) False base line	(d) Control Chart
67.	` '	g a histogram, the class-int	ervals of a frequency disti	ribution must be. [D-14]
	(a) equal	(b) unequal	(c) equal or unequal	(d) None of these
68.	The curve obta	ined by joining the points,	whose x-coordinates are	the upper limits of the class-
	intervals and y	coordinates are the correspo	onding cumulative frequer	ncies is called [J-15]
	(a) Ogive	(b) Histogram	(c) Frequency Polygon	(d) Frequency Curve
69.	Histogram is u	sed for the presentation of	the following type of ser	ies. [J-15]
	(a) Time series	(b) Continuous freque	ncy series (c) Discrete s	eries (d) Individual series
70.	The perpendicula	ar line drawn from the intersect	ion of two ogives which touch	nes atpoint in X-axis. [J-15]
	(a) Median	(b) Mode	(c) Third quartile	(d) First quartile
71.	Which is most c	common diagrammatic repr	esentation for grouped fro	
	(a) Histogram	(b) Ogive	(c) Both (a) and (b)	(d) None of these
72.	The chart that	use Logarithm of the vari	iable is known as:	[D-15]
	(a) Line Chart	(b) Ratio chart	(c) Multiple line chart	(d) Component line chart
73.	For constructin	g a histogram the class inter	vals of a frequency distrib	oution must be of the following
	type:			[D-15]
	(a) Equal	(b) Unequal	(c) Equal or Unequal	(d) None of these

74.	The intersection po	The intersection point of less than ogive and more than ogive gives										
	(a) Mean	(b) Me	ode		(c) Medi	an		(d) None				
75.	Which of the follow	ing diagr	am is ap _l	propri	iate to repr	esent	the various	heads in total cos	t? [J-17]			
	(a) Bar graph	(b) Pie	chart		(c) Multi	ple lii	ne chart	(d) Scatter pl	.ot			
76.	Frequency density	correspo	onding t	o a cla	iss interva	l is tł	ne ratio of _	: [J-17] [D-17]			
	(a) Class frequency t	o the class	s length									
	(b) Class frequency t	o the tota	l frequen	су								
	(c) Class length to the	e class fre	quency									
	(d) Class frequency to	o the cum	ulative fr	equen	cy							
77.	Stub of a table is th	ie:						!	[D-17]			
	(a) Right part of the t	able desci	ribing the	colun	nns							
	(b) Left part to the tal	ble descri	bing the	colum	ns							
	(c) Right part of the t	able desc	ribing the	e row								
	(d) Left part of the ta	ble descr	ibing the	rows								
78.	Pie diagram is used	d for : (J-	18)									
	(a) Comparing differ	rent comp	onents a	nd thei	r relation to	the t	otal					
	(b) Representing qua	ıntitative o	late in cir	cle								
	(c) Representing qua	litative da	ite in a cii	rcle								
	(d) Either (b) or (c)											
79.	Find the number of	f observa	tions be	tween	250-300 f	rom t	the following	g data:(J-18)				
	Value	More th	nan 200	1	e than 250		re than 300	More than 350				
	No of observation	56		38		15		0]			
	(a) 38		(b) 23		((c) 15	;	(d) None the	above			
80.	The graphical repr	esentatio	on of me	dian c	an be foun	d by	using:(J-18))				
	(a) Frequency polygo	on	(b) His	togran	1 ((c) O	gives	(d) Frequenc	ey curve			
81.	The followings free	quency di	stributio	on (N-	18)							
		X :	12	17	24	36	45					
		F :	2	5	3	8	9					
	is Classified as											
	(a) Continuous distril	bution			(b) Disci	rete d	istribution					
	(c) Cumulative frequency	ency distr	ibution		(d) None	e of tl	nese					
82.	Histogram is usefu	ıl to dete	rmine gr	aphic	ally the va	ılue o	of (N-18)					
	(a) Arithmetic mean		(b) Me	dian	((c) M	lode	(d) None of	the above			

83.	Data are said	to be		_ if the	e invest	igatoı	himself i	is respon	sible fo	or the coll	ection of the
	data.(N-18)						•				
	(a) Primary da	nta					(b) Sec	condary d	ata		
	(c) Mixed of p	orimary a	nd secon	dary da	ıta		(d) No	ne of the	above		
84.	A suitable gr	aph for	represen	ting th	ne porti	oning	g of total i	nto sub p	arts in	statistics	is(N-18)
	(a) A Pie char	t	1	(b) A pi	ictograp	h	(c)An	ogive		(d) Histog	ram
85.	The number	of times	a partic	ular it	ems oc	curs i	n a class i	interval i	s called	d its(N-18)
	(a) Mean			(b) Fre	quency	(0) Cumula	tive frequ	iency	(d) None	of the above
86.	An ogive is a	graphic	al repre	sentati	ion of(I	N-18)					
	(a) Cumulativ						(b) A fi	requency (distribu	tion	
	(c) Ungroupe	_					(d) No	ne of the	above		
87.	Class:	0-10	10-20	20-30	30-40	40-5	60		5)		
	Frequency:	4	6	20	8	3					
	For the class	s 20-30 c	umulativ	ve freq	uency	is(N-1	8) \				
	(A) 10			(b) 26			(c) 30			(d) 41	
88.	` '	is conti	nuous. [J					X			
	(a) Open end	ed	_	(b) Exc	clusive		(c) Cl	ose ended		(d) Unequ	
89.	Which of the	e followii	n g graph (b) Hist			r cum (c) (ulative fr FM	equency	aistrib (d) A.N	ution ([J- A	19]
90.	(a) Ogives Histogram i	s used fo	` '		00000000000000000000000000000000000000		J.1V1		(4) / 1.1.	,1	
	(a) Mode	3 43 5 44 2 4	(b) Mea			(c) F	irst Quart	ile	(d) No	ne	
91.	Ogive grapł	is used	for findi	ng [J-1	[9] 📿		e 11		/ 1\ > T		
0.5	(a) Mean	1 1.	(b) Mo	V-0000000000		(c) I	Median		(d) No	ne	
92.	Histogram (a) Ellipse	can be sn	own as p (b) Rec			(c) I	Hyperbola	l	(d) Cir	rcle	
93.	Histogram	is used	· ' '(00000	60000000 0 0000	tion of				serie	s. [N-19]	
	(a) Time Se		-				ntinuous				
	(c) Discrete				(d) Ind	ividual S	eries			
94.	The graph	ical rep	resenta	tion o	f cumu	ılativ	e freque	ncy dist	ributi	on is call	ed- [N-19]
	(a) Histogra		(b) Pie (quency F			(d) Ogiv	
	<u></u>							I	1		
	No. of	0	1	2		3	4	5	6	7	
95.	Accidents										_
	Frequency	36	27	33	3	29	24	27	18	9	

In how many cases 4 or more accidents occur? [N-19]

(a) 96

(b) 133

(c) 78

(d) 54

INSTITUTE OF COMMERCE

96.	The difference between upper limit and lower limit of a class is called:[N-19]											
	(a) Cl	ass Interval	(b) Class	Boundaries (c) Mid-V	Value 💮	(d) Frequ	ency				
97.	Swee	tness of a swee	et dish is	s- [N-20]								
	(a)	An attribute		(b)	A dis	crete variable						
	(c)	A continuous	variable	(d)	A var	iable						
98.	Five:	auditors of you	r firm h	ad reported the	eir inco	omes. You co	mputed tl	ieir avera	ge and o	b		
	taine	d Rs. 67,000 pe	r month (f all the								
	audit	tors of your fir		s	tatistics.	•						
								•		[N-20]		
	(a)	Descriptive	(b)	Inferential	(c)	Detailed	(d)	Non de	tailed			
99.	Statis	stics cannot de	al with _		data	a. [N-20]						
	(a)	Quantitative	(b)	Qualitative	(c)	Textual	(d)	Attribut	e ·			
100.	The	numbers of tim	es city h	ad mild, medii	ım and	d heavy rain	s, respecti	Attribute ively are 17,10 and 5,				
	whic	h of the followi	ng repr	esent it? [N-20]								
	(a)	(17,10,5)	(b)	Quantitative		(c) Co	ntinuous	(d)	Average			
101.	Whe	n data are class	sified ac	cording to one	criteri	ion, then it is	called		_classifi	cation		
										[N-20]		
	(a)	Quantitative	(b)	Qualitative	(c)	Simple	(d)	Factore	ed			
102.	A cri	cketer's run sc	cores of	last ten test ma	tches	are availabl	e. Statistic	es cannot	be used	to		
	find	the [N-20]										
	(a)	Least score	(b)	Largest score	(c)	Best score	(d)	Mediar	score			
103.	Cens	us reports use	d as a so	ource of data i	s	data. []	N-20]					
	(a)	Primary	(b)	Secondary	(c)	Organized	(d)	Confide	ential			

	[CH-14][STATISTICAL DESCRIPTION OF DATA]													
				EXERC	ISE -I									
1	С		5	a	9	a		13	С					
2	b		6	a	10	d		14	b					
3	d		7	a	11	С	-	15	a					
4	d		8	b	12	a		16	a					
				EXERC	ISE -II	~~~~	<u></u>							
1														
2	c	10	a	18	d	26	b	34	d					
3	a	11	b	19	b	27	d	35	a					
4	b	12	С	20	· d	28	d	36	С					
5	С	13	a	21	С	29	a							
6	d	14	b	22	a	30	C \							
7	d	15	b	23	d	31	b							
8	с	16	b	24	a	32 🤇	á							
				EXERC	ISE -III	- /								
1	a	13	С	25	a 🔪	37	b	49	a					
2	a	14	d	26	d	38	b	50	b					
3	b	15	С	27	b	39	a	51	b					
4	b	16	a	28	C	40	b	52	С					
5	a	17	b	29	a	/41	С	53	a					
6	a	18	a 🍆	30	b	42	a	54	a					
7	a	19	a	31	b	43	a	55	a					
8	b	20	a	32	a	44	С	56	b					
9	a	21	, с	33	С	45	С	57	С					
10	a	22	\d /	34	b	46	a	58	b					
11	С	23	b	35	b	47	a	59	b					
12	b	24	a	36	a	48	С	60	b					

				QUESTIC	ON BANK				
1	d	21	b	41	d	61	a	81	b
2	b	22	b	42	b	62	b	82	c
3	b	23	С	43	С	63	b	83	a
4	b	24	d	44	С	64	a	84	a
5	b	25	b	45	b	65	b	85	b
6	b	26	b	46	С	66	С	86	a
7	d	27	d	47	С	67	a	87	С
8	С	28	С	48	С	68	a	88	b
9	С	29	d	49	С	69	b	89	a
10	d	30	b	50	b	70	a	90	a
11	b	31	a	51	b	71	a	91	С
12	d	32	a	52	С	72	b	92	b
13	a	33	a	53	С	73	a	93	b
14	С	34	b	54	a	74	С	94	d
15	b	35	b	55	b	75	b	95	С
16	С	36	a	56	a	76	a	96	a
17	d	37	b	57	С	77	d	97	a
18	b	38	С	58	b	78	a	98	b
19	a	39	d	59	С	79	b	99	b
20	a	40	С	60	b	80	С	100	b
								101	С
								102	С
								103	b

PARAS	Space For Notes	-14.35-
	Space For Notes	
	7	
.		
	VANA	
		,

PARAS	INSTITUTE OF COMMERCE	-14.36-
	INSTITUTE OF COMMERCE Space For Notes	
,		
		A STATE OF THE STA
		AND THE RESERVE OF THE PERSON