

CORRELATION & REGRESSION

Correlation:

Correlation analysis is a statistical technique used to measure the degree and direction of relationship between the variables.

if
$$y = f(x)$$
 $x = independent y = dependent.$

Types of correlation: (i) (Positive and Negative correlation)

x	у	Types of correlation
Increase	Increase	Positive
Decrease	Decrease	Positive
Increase	Decrease	Negative
Decrease	Increase	Negative
Increase	No change	No correlation
Decrease	No change	No correlation

- (ii) Simple correlation: When only two variables are studied, it is a case of simple correlation.
- (iii) Multiple correlation: When three or more variables are studied, it is a case of multiple correlation.
- (iv) Partial multiple correlation: In partial multiple correlation one studies three or more variables but considers only two variables to be influencing each other and effect of other variables being held constant.
- (v) **Total multiple correlation:-** In total multiple correlation one studies three or more variables without encluding the effect of any variable held as constant.
- (vi) **Linear Correlation:-** If the amount of change in one variable bears a constant ratio to the amount of change in the other variable, then correlation is said to be linear.
- (vii) Non Linear (Curvilinear) Correlation:- If the amount of change in one variable does not bear a constant ratio to the amount of change in the other variable, then correlation is said to be non-linear. If such variables are plotted on a graph, the point would fall on a curve and not on a straight line.

Univariate Data:- When there is only one variable.

Bivariate frequency distribution:- When two or more variables are considered at the same time of point,

known as bivariate frequency distribution.

Bivariate frequency table:-

Age in Years(x)/weight y in Kg.	40-45	45-50	45-50 50-55		60-65
45-50	2	5	8	3	0
50-55	1	3	6	10	2
55-60	0	2	5	12	1

Note: We can obtain two types of univariate distributions which are known as

- (i) Marginal distribution
- (ii) Conditional distribution

Marginal Frequency Distribution for x.

X	40-45	45-50	50-55	55-60	60-65
У	3	10	19	25	3

(Marginal Frequency Distribution for y.

X	40-45	50-55	55-60
у	18	22	20

(Conditional frequency distribution for age x when weight y is between 55-60.

X	40-45	45-50	50-55	55-60	60-65	
у	0	2	5	12	1	

Note: If there are m classification for x and n classification for y, there would be altogether (m+n) conditional distribution.

Multi Variate: When more than two variable at the some point of time.

Cavariance:-

(i)
$$\operatorname{cov}(x, y) = \frac{\sum (x - \overline{x})(y - \overline{y})}{n}$$

(ii)
$$\operatorname{cov}(x, y) = \frac{\sum xy}{n} - \frac{\sum x}{n} \cdot \frac{\sum y}{n}$$

(iii)
$$cov(x, y) = E(x, y) - E(x) E(y)$$
.

Measures of Correlation

- (i) Scatter diagram
- (ii) Karl pearson's product moment correlation coefficient
- (iii) Spearman's rank correlation coefficient
- (iv) Coefficient of concurrent deviations.

(I) Scatter Diagram method:

II Karl Pearson's Product Moment Correlation Coefficient:-

Best method for finding correlation between two variables provided the relationship between the two variables is linear. Correlation coefficient = r or ρ (x, y).

1.
$$r = \frac{\text{cov}(x, y)}{S_x S_y} = \frac{\Sigma(x - \overline{x})(y - \overline{y})}{NS_x S_y}$$
 $S_x = \text{S.D. of x}$ $S_y = \text{S.D of y.}$ $N = \text{No of obs pairs.}$

2.
$$r = \frac{N\Sigma xy - \Sigma x\Sigma y}{\sqrt{N\Sigma x^2 - (\Sigma x)^2}\sqrt{N\Sigma y^2 - (\Sigma y)^2}}$$

3.
$$r = \frac{N\Sigma dx dy - \Sigma dx \ \Sigma dy}{\sqrt{N\Sigma dx^2 - (\Sigma dx)^2} \sqrt{N\Sigma dy^2 - (\Sigma dy)^2}}$$
 Where $dx = X - A$, $A = Assumed mean of x -series$.
 $dy = Y - B$, $B = Assumed mean of y - series$.

4.
$$r = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}}$$
 where $x = x - \overline{x}$: $y = y - \overline{y}$ or $r = \frac{\sum xy}{NS_x S_y}$

Properties of correlation coefficient:-

- (i) The coefficient of correlation is a unit free measure.
- (ii) The coefficient of correlation remains invariant under a change of origin and/or scale of the variables under consideration depending on the sign of scale factors.

$$u = \frac{x - a}{b} \qquad v = \frac{y - c}{d}$$
$$r_{xy} = \frac{bd}{|b||d|} r_{uv}.$$

(iii) The coefficient of correlation always lies between -1 and 1, including both the limiting values. $-1 \le r \le 1$

Probable Error in Correlation:-

P.E. =
$$0.6745 \times \frac{(1-r^2)}{\sqrt{n}} = \frac{2}{3} \times \frac{1-r^2}{\sqrt{n}}$$

n = No of pairs of observation; r = coefficient of correlation

Properties of Probable Error:-

- (i) If $r < 6 \times P.E$. then it is not significant
- (ii) If $r \ge 6 \times P.E$. then it is significant.
- (iii) Limit of correlation coefficient $P = r \pm P$, E. P = Correlation coefficient of population.
- (iv) Probable error is never negative.

Standard Error: - S.E = $\frac{1-r^2}{\sqrt{n}}$.

Coefficient of determination: It is the square of the coefficient of correlation i.e. r² where r is the coefficient of correlation.

Coefficient of determination = Explained variance Total Variance

$$\textbf{Coefficient of Non-determination} = \frac{\text{Unexplained variance}}{\text{Total Variance}}$$

i.e. $K^2 = 1 - r^2$ Where $K^2 =$ coefficient of non-determination,

Coefficient of Alienation:- $\sqrt{1-r^2}$

Limit of Standard Error = $r \pm 3$ S.E

$$r = \frac{LSE + USE}{2}$$
 LSE = Lower Standard error; USE = Upper Standard error.

III Spearman's Rank Correlation Coefficeint:-

It is also known as Ranking method, Rank difference method or qualitative or attribute method of correlation.

$$r_R = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)}$$
; $d_i = x_i - y_i$ represent the difference in ranks; $n = No$. of individuals.

In case of tied Ranks:- $r_R = 1 - \frac{6\left[\sum d_i^2 + \frac{\sum (t_j^3 - t_j)}{12}\right]}{n(n^2 - 1)}$ Where t_j represents the jth tie length

(i)
$$-1 \le r_{_{\rm R}} \le 1$$
 (ii)

(i) $-1 \le r_R \le 1$ (ii) Suitable for qualitative data.

IV Concurrent Deviation method:-

$$r_c = \pm \sqrt{\pm \frac{(2c - m)}{m}}$$
 C=No of concurrent deviation (No. of +ve sign in the product of deviation column) $m = \text{total No. of pairs of deviation.}$

If (2c - m) > 0 we take the +ve sign both inside and outside the radical sign. (2c-m) < 0 we take -ve sign both inside and outside the radical sign.

 $-1 \le r_c \le 1$ Note: (i)

- Suitable for large n. (ii)
- If all concurrent deviation are +ve then perfect the correlation i.e. if c = n then r = 1. (iii)
- If all concurrent deviations are -ve then perfect -ve correlation i.e. c = 0 then r = -1. (iv)
- No. of +ve concurrent deviation = No. of -ve concurrent deviation then r = 0. (v)
- If No. of +veconcurrent deviation > No. of -ve concurrent deviation then r will be +ve other-(vi) wise -ve

Spurious correlation: (Non-Sense Correlation):- It is the correlation between two variables having no casual relationship.

If
$$u = \frac{x - a}{h}$$
 $v = \frac{y - b}{k}$

Cov(x, y) = h.k. cov(u, v).

- (i) Covariace has no range whereas correlation coefficient has a range $-1 \le r \le 1$
- (ii) The correlation and covariance for any two independent variable is always zero.

Some Examples of positive correlation are:

- (i) Age of applicants for life insurance and the premium of insurance.
- (ii) Production of pig iron and soot content in Durgapur.
- (iii) The ages of husbands and wives.
- (iv) Years of education and income.
- (v) Amount of rainfall and yield of crop.
- (vi) Age and income of employed persons.
- (vii) Speed of an automobile and the distance required to stop the car often applying brakes.
- (viii) Sale of cold drinks and day temperature.

Some Examples of Negative correlation are:-

- (i) Unemployment index and purchasing power of the common man.
- (ii) Prices and Demand for goods under normal times.
- (iii) 'Insurance companies' profits and no. of claims they have to pay.
- (iv) Sale of woolen garments and day temperature.
- (v) Production and price per unit.

Regression Analysis:-

By regression, we mean average relationship between two or more variables. One of these variables, is called the dependent or explained variable and other variable independent or explaining variable. If the explaining variables are two or more then two it will be called multiple regression analysis.

Difference between correlation and regression:-

Correlation

Regression

- Correlation measures degree and direction
 of relationship between the variables.
- 2. It is relative measure
- 3. It is independent of change of both origin and scale
- 4. It is independent of units of measurement.
- 5. Any is symmetric i.e. $r_{xy} = r_{yx}$. r_{xy} , r_{xy} are correlation coefficient.

- 1. Regression measures the nature and extent of average relationship between two or more variables in terms of original units of data.
- 2. It is absolute measure
- 3. It is independent of origin and not scale.
- 4. It is not independent of units of measurement.
- 5. b_{xy} is not symmetric $b_{xy} \neq b_{yx}$. b_{xy} and b_{yx} are regression coefficient.

Regression Lines:-

(i) Regression Line of X on Y.

X = a + b Y.; X = Dependent variable Y = Independent Variable.

Note: This line gives the probable value of X for any given value of Y.

Another way:

$$X - \overline{X} = b_{xy}(Y - \overline{y}); X - \overline{X} = r \frac{\sigma_x}{\sigma_y}(Y - \overline{Y})$$
 where $r = \text{coefficient of correlation between x and y}$

(ii) Regression Line of y on x.

Y = a + b X; X = Independent variable Y = dependent variable

Note: This line gives the probable value of y for any given value of x.

Another way:-

Y-
$$\frac{1}{y} = b_{yx}(X - \overline{X})$$
; Y- $\frac{1}{y} = r \cdot \frac{\sigma_y}{\sigma_x}(X - \overline{X})$ where $r = \text{coefficient of correlation between X and Y}$.

Properties of Linear regression:-

- (i) $b_{yx} \cdot b_{xy} = r^2 \text{ i.e. } r = \sqrt{b_{yx} \cdot b_{xy}}$
- (ii) r, b_{yy} and b_{xy} all have the same sign.
- (iii) If the correlation coefficient r is zero, the regression coefficient b_{yx} and b_{xy} are also zero.
- (iv) Regression lines always intersect at their means.
- (v) The angle between the two regression lines depends on the correlation coefficient (r).

Value of r.	Angle between Regression lines
(a) if $r = 0$	Regression lines are prependicular to each other.
(b) if $r = +1$ or -1	regression line coincide (Become identical)

Note:-As value of r increases numerically from 0 to 1, the angle between regression equation decreases from 90° to 0° .

i.e. the farther the two regression lines are from each other, the lesser is the degree of correlation.

(vi) The value of x or y can be estimated from linear equation if $r \neq 0$.

Properties of Regression coefficients:-

- (i) Both regression coefficient have the same signs, i.e. either they will be positive or negative.
- (ii) If one of the regression coefficients is greater than unity, the other must be less than unity.
- (iii) A.M. > r i.e. Arithmetic mean of regression coefficient is greater than correlation coefficient.
- (iv) r is G.M. of regression coefficient.

i.e.
$$r = \pm \sqrt{b_{xy} \cdot b_{yx}}$$

- (v) If regression coefficient have +ve sign, r will also be positive and if regression coefficient have a -ve sign, r will also be negative.
- (vi) If $b_{xy} = b_{yx}$ then $r = b_{xy} = b_{yx}$.
- (vii) If $\sigma_x = \sigma_y$ then $r = b_{xy} = b_{yx}$.
- (viii) If $u = \frac{x-q}{p}$ and; $v = \frac{y-b}{q}$ then $b_{yx} = \frac{q}{p} \times b_{vu}$; and $b_{xy} = \frac{p}{q} \times b_{uv}$
- (ix) For regression Line Y on X

 Σ Y - Y_c = 0 and Σ (Y - Y_c)² is least where Y is observed value and Y_c is estimated value. Y - Y_c is known as error or residue or vertical deviation & it may be positive or negative or O.

For regression Line X on Y. $\Sigma (X - X_c) = 0 \text{ and } \Sigma (X - X_c)^2 = \text{Least. } X - X_c = \text{Error or Residue Horizontal deviation}$ Error may be positive or Negative or Zero

1.	If $cov(x, y) = 15$, what restrictions should be put for the standard deviations of x and y ?[SM]									
	` '	o restric								
	(b) The product of the standard deviations should be more than 15									
	(c) The product of the standard deviations should be less than 15									
	()					n should be le				
2.	Wha	t is the	coeffici		orrelat	_	following data?			
	X	1		2		3	4	5		
	у:	8		6		7	5	5	(4) 0.00	
	(a)0.7		*		(b) -0.7		(c) -0.85		(d) 0.82	
3. .	If for two variable x and y, the convariance, variance of x and variance of y are 40, 16 and 256									
	_		, what				ion coefficient ?	[SM]	(4) 0 =	
	(a) 0.				(b) 0.62	2.5	(c)0.4		(d) 0.5	
4.	From the following data[SM]									
	X:	2	3	5	4	7				
	y:	4	6	7	8	10	0.00 777	,		
	Two coefficient of correlation was found to be 0.93. What is the correlation between u and v as given below?									
	-			0		•				
	u:	-3	-2	0	-1	2				
	v:	-4	-2	-1	0	2	() 0.57		(1) 0.57	
_	(a) -0.93 (b) 0.93 (c) 0.57 (d) -0.57 Referring to the data presented in Q.No. 4, what would be the correlation between u and v?									
5.			o the da		ented II				ation between u and	1 V ?
	u:	10		15		25	20	35	C) (I)	
	V.	-24		-36	4 > 0	-42	-48	-60[-	
	(a) -((b) 0.		(c) -0.93		(d) 0.93	rcon act
6.			ient of co	rrelatio				e coeffici	ent of determination i	s[SM]
	(a) 0.			_	(b) 0		(c) 0.1		(d) 0.19	. •
7.					tion be	etween two v	ariables is 0.7 th	en the p	percentage of variat	tion
			d for is	[SM]	4 > 0	00/	(> 510/		(1) 400/	
	(a) 70				(b) 3		(c) 51%		(d) 49%	. 47
8.								ce of or	e of the variables	ıs 16,
				varianc		e other varia		4.0	(1) > 1	
									(d) More than 1.2	25
9.	If r=	= 0.6 th	en the co	oefficie:		on-determin				
	(a) 0				(b) -		(c) 0.36		(d) 0.64	
10.								etween	x and y is 0.58 then	ı what
			e correl	lation c		ent between	1			
	(a) 0	.58			(b) ·	-0.58	(c) -0.84		(d) 0.84	
										•

From the data given below, calculate coefficient of correlation and interpret it:

 \boldsymbol{X} Y 8 8 Number of items 69 68 Mean 44 36 Sum of squares of deviations from mean 24 Sum of products of deviations of X and Y-series = (a) r = 0.603, PE = 0.15 (b) r = 0.703, PE = 0.15 (c) r = 0.803, PE = 0.17(d) r = 0.903, PE = 0.19

No. of pairs of observation of X and Y-series = 100012.

Standard deviation of X-series = 4.5

Standard deviation of Y-series = 3.6

Summation of product of corresponding deviations from respective means of X and Y-series = 4800.

Calculate coefficient of correlation between X and Y

(a)
$$r = 0.289$$

(b)
$$r = 0.296$$

(c)
$$r = 0.278$$

(d)
$$r = 0.267$$

If the covariance between X and Y-series is +6 and variance of X and Y-series are respectively 13. 6 and 6.8, find the coefficient of correlation between them.

(a)
$$r = 0.246$$

(b)
$$r = 0.757$$

(c)
$$r = 0.939$$

(d)
$$r = 0.838$$

Find the coefficient of correlation between X and Y if covariance between X and Y variables 14. is 10 and the variance of X and Y are respectively 16 and 9.

(a)
$$r = 0.36$$

(b)
$$r = 0.55$$

(c)
$$r = 0.74$$

(d)
$$r = 0.83$$

The coefficient correlation between two variables X and Y is -.75 and their covariance is -15. 15. If variance of X is 25, find the second moment about mean of Y-series.

(a) 16

(b) 17

(c) 18

(d) 19

The coefficient correlation between two variables X and Y is $\pm .8$ and their covariance is ± 40 . 16. If the variance of X-series is 16, find the standard deviation of Y-series.

(a) 15.2

(b) 17.3

(c) 22.4

(d) 12.5

Find P.E if r = +.8 and N = 25. 17.

(a)
$$PE = 0.1487$$

(b)
$$PE = 0.0486$$

(c)
$$PE = 0.2488$$

(d)
$$PE = 0.3489$$

18.	Find r if P.E. of 10 ob	servat	on is .0	7.							
	(a) 0.75		(b) 0.6	54		(c) 0.	.82		(d) 0	.73	
19.	Find out the limit if r	=.6 ar	nd N = 1	l 6.							
	(a) 0.492 to 0.708		(b) 0.3	595 to 0	.605	(c) ().395 to	o 0.606	(d) 0).195 to	0.509
20.	For what value of N, the coefficient of correlation equal to +0.6 will be significant.										
	(a) $N = 16$		(b) N	= 17		(c) N =	18	(d	N = 1	9	
21.	While computing rank company the difference coefficient if it is know (a) 0.3	e in ran	k for a y	ear was jinal val	taken:	3 instead	of 4. W	hat is the	rectifie	ed rank o	correlation
22.	Eight contestants in a manner: Serial Number	a music	cal cont	est wer	e rank	ed by tw	o judg	ges A and	l B in t	he follo	wing
	of the contestants:	1	2	3	4	5	6	7	8		
	Rank by Judge A:	7	6	2	4	5	3	1	8		
	Rank by Judge B:	5	4	6	3	8	2	1	7		
	The rank correlation	coeffi	cient is	[SM]							
	(a) 0.65		(b) 0.0	53		(c) 0.60			(d) 0	.57	
23.	Following are the marks of 10 students in Botany and Zoology:										
	Serial No.:	1	2	3	4	5	6	7	8	9	10
	Marks in Botany:	58	43	50	19	28	24	77	34	29	75
	Marks in Zoology:	62	63	79	56	65	54	70	59	55	69
	The coefficient of rar	ık corr	elation	betwee	n mar	ks in Bo	tany a	nd Zool	ogy is [SM]	
	(a) 0.65		(b) 0.	70		(c) 0.72	2		(d) 0	.75	
24.	What is the value of Ra	nk corr	elation o	coefficie	nt betw	een the fo	ollowin	g marks i	in Physi	ics and (Chemistry:
	Roll No.:	1	2	3	4	5	6				
	Marks in Physics:	25	30	46	30	55	80				
	Marks in Chemistry:	30	25	50	40	50	78[S	SM]			
	(a) 0.782		(b) 0.3	85		(c) 0.3	89		(d) 0	.857	
25.	For 10 pairs of obser	vations	s , No. o	f concu	rrent	deviatio	ns was	found t	o be 4.	What is	s the value
	of the coefficient of co	oncurr	ent dev	iation ?	[SM]						
	(a) $\sqrt{0.2}$		(b)	$\sqrt{0.2}$	$\frac{1}{2}$ (c) 1/3 (d) -1		1/3				
26.	The coefficient of con	curre	ıt devia	tion for	· p pai	rs of obs	ervati	ons was :	found 1	to be 1/	$\sqrt{3}$. If the
	number of concurrer										, .
	(a) 10		(b)9			(c) 8		•	•	one of th	nese
	•					` '			. /		

 $(d)\sqrt{2}$

(b) 0.43

(a) -1

27.	What is the coefficient of concurrent deviations for the following data:											
	Supply:	68	43	38	78	66	83	38	23	83	63	53
	Demand:	65	60	55	61	35	75	45	40	85	80	85[SM]
	(a) 0.82			(b) 0.83	5		(c) 0.	89		(d) -	0.81	
28.	What is th	ie coeffic	ient of co	ncurren	t devi	ations f	for the f	ollowi	ng data	ì:		
	Year:	1996	1997	1998	3	1999	2000	2	001	2002	200	03
	Price:	35	38	40		33	45		48	49	52	2
	Domand	36	35	31		36	30		29	27	2.4	4 ISMI

(c) 0.5

Exercise - II

Given the following data: [SM] 1.

Variable:

X

Mean:

80

98

Variance:

4

9

Coefficient of correlation = 0.6

What is the most likely value of y when x = 90?

(a) 90

(b) 103

(c) 104

(d) 107

Given below the information about the capital employed and profit earned by a company over 2. the last twenty five years:

Capital employed (000 Rs)

62

Mean

SD

5

(000 Rs)Profit earned

25

6

Correlation coefficient between capital employed and profit = 0.92. The sum of the Regression coefficient for the above data would be : [SM]

(a) 1.871

(b) 2.358

(c) 1.968

(d)2.346

In case the correlation coefficient between two variables is 1, the relationship between the two 3. variables would be [SM]

(a) y = a + bx

(b) y = a + bx, b > 0

(c) y = a + bx, b < 0

(d) y = a + bx, both a and b being positive.

If the relationship between two variables x and y in given by 2x + 3y + 4 = 0, then the value of the 4. correlation coefficient between x and y is [SM]

(a) 0

(b) 1

(c) -1

(d) negative

You are given below the following information about advertisement and sales. 5.

> Adv. Expenditure (X) (Rs. crores)

Sales (Y)

20

(Rs. crores)

Mean S.D.

5

120 25

Correlation coefficient, r = +0.8

- Calculate the two regression equations. (i)
- Find the likely sales when advertisement expenditure is Rs. 25 crores. (ii)
- What should be the advertisement budget if the company wants to attain sales target (iii) of Rs. 150 crores?

(a) x=0.8+0.16y, y=40+4x, 140cr., 24.8cr.

(b)
$$x = 0.9 + 0.76y$$
, $y = 54 + 4x$, 240cr., 35.8cr.

(c)
$$x = 0.6 + 0.74y$$
, $y = 64 + 4x$, 340cr., 14.8cr. (d) $x = 0.7 + 0.75$, $y = 63 + 4x$, 341cr., 15.8cr.

(d)
$$x = 0.7 + 0.75$$
, $y = 63 + 4x$, 341cr., 15.8cr.

6.	Given:	X-series	<i>Y</i> -series					
	Mean	6	13					
	Standard Deviation	2.45	2.61					
	Sum of the product of deviation from Mean of X and Y -series is 30 and number of items is 5.							
	(i) Obtain the two regres	ssion equations.						
	(ii) Estimate the value of	X, when $Y = 10$						
	(a) $r = 0.938$, $X_C = -5.44 + 0.8$	88y, Y = 0.999x + 7	(b) $r = 0.838, \Sigma$	$X_{\rm C} = 5.44 - 0.87$ y, $Y = x + 8$				
	(c) $r = 0.738$, $X_C = -4.44 + 0.8$	86y,Y = 0.9x + 7 (d) $r = 0.638, X_0$	$_{c} = -3.44 + 0.85$ y, $Y = x$				
7.	Given:		X-series	Y-series				
	Mean		18	100				
	Standard Deviation		14	20				
	Coefficient of correlation be	tween X and Y-series	=+.8					
	(A) Find the most probabl	le value of Y if X is 70 $rac{1}{2}$	ind most proba	ble value of X if Y is 90.				
	(a) $Y = 359.44$, $X = 14.2$	(b	Y = 259.44, X	= 16.3				
	(c) $Y = 459.44$, $X = 15.1$	(d)	Y = 159.44, X	= 12.4				
8.	If the line $Y = 13 - 3X / 2$ is	the regression equati	on of y on x the	en b_{yx} is				
	2	-2	3	_3				
	(a) $\frac{2}{3}$	(b) $\frac{2}{3}$	$\frac{3}{2}$	(d) $\frac{-3}{2}$				
		10/3/		_				
9.	The line $X = 31/6 - Y/6$ is the	regression equation	of					
	` ') X on Y	(c) both	(d) we can not say				
10.	If x and y satisfy the relation		value of r is					
		(b)-1	(c) +1	(d) none				
11.	2 10 1			of correlation between x and y				
	is 0.75, what is the value of t							
		o) 0.9375		(d) none of these				
12.	If the regression line of y on							
	respectively, what is the coe			· " "				
		$-1/\sqrt{2}$						
13.	If the regression coefficient of	fy on x, the coefficien	it of correlation	between x and y and variance				
	of v are $-3/4$, $-\frac{\sqrt{3}}{2}$ and 4 re	spectively , what is the	he variance of	x 2[SM]				
•	of y are -3/4, $-\frac{\sqrt{3}}{2}$ and 4 re (a) $2/\sqrt{3/2}$	(b) 16/3	(c) 4/3	(d) 5				
14.				e mean of x is -1, what is the				
-	arithmetic mean of y ?[SM]			Street to the transfer to the				
		(b) -1	(c) 7	(d) none of these				
		• • •	• •					

- The two lines of regression are given by 8x + 10y = 25 and 16x +5y = 12 respectively.

 If the variance of x is 25, what is the standard devaiation of y ?[SM]

 (a) 16

 (b) 8

 (c) 64

 (d) 4
- 16. The difference between the observed value and the estimated value in regression analysis is known as
- (a) Error (b) Residue (c) Deviation (d) (a) or (b)

 17. For certain data Y = 1.3 X and X = 0.7 Y are the two regression equations. Compute the coefficient of correlation between X and Y.
 - (a) r = .852 (b) r = .753 (c) r = .954 (d) r = .655
- 18. For certain data, 4 Y = 9 X + 15 and 25 X = 6 Y + 7 are two regression equations. Find the mean values and coefficient of correlation.
 - (a) $\overline{X} = 1.57$, $\overline{Y} = 3.53$, r = 0.431 (b) $\overline{X} = 2.57$, $\overline{Y} = 9.53$, r = 0.734
 - (c) $\overline{X} = 4.57$, $\overline{Y} = 5.53$, r = 0.532 (d) $\overline{X} = 3.57$, $\overline{Y} = 8.53$, r = 0.633
- 19. The two regression equations between X and Y are $12 \times 15 \times 99 = 0$ and $60 \times 27 \times 321$. The standard deviation of X is 6.

Calculate:

- (a) the mean value of X and Y,
- (b) the coefficient of correlation between X and Y, and
- (c) standard deviation of Y.
- (a) $\overline{X} = 13$, $\overline{Y} = 17$, r = 0.6, $\sigma_y = 8$ (b) $\overline{X} = 11$, $\overline{Y} = 20$, r = 0.3, $\sigma_y = 8$
- (c) $\overline{X} = 15$, $\overline{Y} = 14$, r = 0.7, $\sigma_y = 8$ (d) $\overline{X} = 15$, $\overline{Y} = 19$, r = 0.1, $\sigma_y = 8$
- 20. For certain data of X and Y series, the equations of regression of y on X and X on Y are 6 Y = 5 X + 90 and 15 X = 8 Y + 130 respectively. The standard deviation of X is 4. Find out \overline{X} , \overline{Y} , r and σ_y .
 - (a) $\overline{X} = 30$, $\overline{Y} = 40$, r = 0.667, $\sigma_y = 5$ (b) $\overline{X} = 30$, $\overline{Y} = 42$, r = 0.567, $\sigma_y = 3$
 - (c) $\overline{X} = 30$, $\overline{Y} = 43$, r = 0.467, $\sigma_y = 2$ (d) $\overline{X} = 30$, $\overline{Y} = 43$, r = 0.367, $\sigma_y = 1$

INSTITUTE OF COMMERCE

Exercise - III

1.	Bivariate Data are the data collected for [SM]										
	(a) Two variables		(b) More than two variables								
	(c) Two variables at the	*			different point						
2.	For a bivariate frequ	ency table having (p	+q) class	sification th	e total numb	er of cells is [SM]					
*	(a) p	(b) $p + q$		(c) q		(d) pq					
3.	Some of cell the freq	Some of cell the frequencies in a bivariate frequency table may be [SM]									
	(a) Negative	(b) Zero		(c) a or b	(d)	none of these					
4.	For a p \times q bivariate frequency table , the maximum number of marginal distribution is [SM]										
	(a) p	(b) $p + q$		(c) 1	(d)	2					
5.	For a $p\times q$ classification of bivariate data , the maximum number of conditional distributions is [SM]										
	(a) p	(b) $p + q$		(c) pq	(d)) p or q					
6.	Correlation analysis	aims at [SM]									
	(a) Predicting one variable for a given value of the other variable										
	(b) Establishing relation	(b) Establishing relation between two variables									
	(c) Measuring the extent of relation between two variables										
	(d) Both (b) and (c)			V .							
7.	When high values of	one variable are ass	ociated w	ith high val	ues of the oth	er & low values of					
	one variable are asso	ciated with low valu	ies of ano	ther, then tl	ney are said t	o be[SM]					
	(a) positively correlated	d (b) directly c	orrelated	(c) both	(d)	none					
8.	If high values of one tend to low values of the other, they are said to be[SM]										
	(a) negatively correlate	d (b) inversely	correlated	(c) both	(d)	none					
9.	Correlation coefficie	nt between two vari	ables is a 1	neasure of t	their linear re	elationship .[SM]					
	(a) true	(b) false	(c) bo	th	(d) none						
10.	Correlation coefficier	nt is dependent of the	choice of l	ooth origin &	& the scale of o	observations.[SM]					
	(a) True	(b) false		(c) both	(d)	none					
11.	Correlation coefficie	nt is a pure number.	[SM]								
	(a) true	(b) false	(c) both	L	(d) none						
12.	Correlation coefficie	ent isof t	he units o	f measurem	ent.[SM]						
	(a) dependent	(b) independe	ent(c) both	l	(d) none						
13.	The value of correlat	tion coefficient lies b	etween[S	M]							
	(a) -1 and $+1$			(b) -1 and 0							
	(c) 0 and 1 Inclusive of	of these two values		(d) none.							
14.	Correlation coefficie	nt can be found out b	y[SM]								
	(a) Scatter Diagram	(b) Rank Me	thod	(c) both	(d)	none.					

15.	Covariance measures	_variations of t	wo variables.[S	SM]							
	(a) joint (b) sin	ngle	(c) both	(d)	none						
16.	In calculating the Karl Pearson's coefficient of correlation it is necessary that the data should										
	be of numerical measurem	be of numerical measurements. The statement is [SM]									
	(a) valid	(b) not valid		(c) both	(d) none						
17.	Rank correlation coefficie	Rank correlation coefficient lies between[SM]									
	(a) 0 to 1		(b) -1 t	to +1 inclusiv	ve of these value						
	(c) -1 to 0		(d) bot	th							
18.	A coefficient near +1 indicates tendency for the larger values of one variable to be associated										
	with the larger values of th	ne other.[SM]									
	(a) true (b) fa	lse	(c) both		(d) none						
19.	In rank correlation coefficient the association need not be linear.[SM]										
	(a) true (b) fa	llse	(c) both		(d) none						
20.	In rank correlation coefficient only an ascending/descending relationship is required.[SM]										
	(a) false	(b) true	(c) both		(d) none						
21.	Great advantage of	_is that it can be	e used to rank a	attributes w	hich can not be expressed						
	by way of numerical value	.[SM]									
	(a) concurrent correlation	(b) regression	(c) rank corr	elation	(d) none						
22.	The sum of the difference	of rank is.[SM]									
	(a) 1	(b) -1	(c) 0		(d) none.						
23.	Correlation methods are used to study the relationship between two time series of data which are										
	recorded annually, monthly, weekly, daily and so on.[SM]										
	(a) True	(b) false	(c) bo	th	(d) none						
24.	Age of Applicants for life i	nsurance and th	e premium of i	insurance - c	correlation is[SM]						
	(a) positive	(b) negative	(c) zei	ro	(d) none						
25.	"Unemployment index and	the purchasing p	ower of the con	nmon man''_	Correlation is[SM]						
	(a) positive	(b) negative	(c) zei	ro	(d) none						
26.	Production of pig iron and	soot content in	Durgapur - Co	rrelations a	re [SM]						
	(a) positive	(b) negative	(c) zei	ro	(d) none						
27.	"Demand for goods and th	ieir prices unde	r normal times	***	_Correlation is[SM]						
	(a) positive	(b) negative	(c) zei	ro	(d) none						
28.	is a relative me	easure of associa	ation between 1	two or more	e variables.[SM]						
	(a) Coefficient of correlation	(b) Coefficien	nt of regression	(c) both	(d) none						
29.	The square of coefficient of	of correlation 'r'	is called the c	oefficient of	[SM]						
	(a) determination	(b) regression	(c) bo	th	(d) none						

30.	Simple correlation is	called[SM]			
	(a) linear correlation	(b) nonlinear of	correlation (c) both	(d) none	
31.	A scatter diagram inc	licates the type of cor	relation between	two variables.[SM]	
	(a) true	(b) false	(c) both	(d) none	
32.	If the pattern of point	s (or dots) on the scat	ter diagram shows	a linear path diagonally	across the
	graph paper from the	bottom left- hand co	rner to the top rig	ht, correlation will be[SM	[]
•	(a) negative	(b) zero	(c) positiv	re (d) none	
33.	The correlation coeff	icient being +1 if the	slope of the straig	tht line in a scatter diagra	am is[SM
	(a) positive	(b) negative	(c) zero	(d) none	
34.	The correlation coeff	icient being -1 if the	slope of the straig	ht line in a scatter diagra	m is[SM]
	(a) positive	(b) negative	(c) zero	(d) none	
35.	The more scattered tl	ne points are around	a straight line in a	scattered diagram the	is the
	correlation coefficien	t.[SM]			
	(a) zero	(b) more	(c) less	(d) none	
36.	If the values of y are	not affected by chang	ges in the values o	x, the variables are said	to be[SM
	(a) correlated	(b) uncorrelat	ed (c) both	(d) zero	
37.	If the amount of char	ige in one variable te	ends to bear a cons	stant ratio to the amount	of change
	in the other variable	then correlation is s	aid to be[SM]		
	(a) non linear	(b) linear	(c) both	(d) none	
38.	Variance may be pos	itive, negative or zer	o.[SM]		
	(a) true	(b) false	(c) both	(d) none	
39.	Covariance may be p	oositive, negative or 2	zero.[SM]		
	(a) true	(b) false	(c) both	(d) none	
40.	Correlation coefficie	nt between x and y =	correlation coeffi	cient between u and v[SN	A]
	(a) true	(b) false	(c) both	(d) none	
41.	In case ' The ages of	husbands and wives		correlation is[SM]	
	(a) positive	(b) negative	(c) zero	(d) none	
42.	In case 'Insurance co	ompanies' profits an	d the no of claims	they have to pay "[SM]	
	(a) positive correlation	(b) negative c	orrelation (c) no co	rrelation (d) none	
43.	In case 'Years of edu	cation and income'	[SM]		•
	(a) positive correlation	(b) negative correlati	on (c) no correl	ation (d) none	
44.	In case 'Amount of r	ainfall and yield of cı	op' [SM]		
	(a) positive correlation	(b) negative correlation	on (c) no co	rrelation (d) none	
45.	For calculation of co	rrelation coefficient,	a change of origin	is[SM]	
	(a) not possible	(b) possible	(c) both	(d) none	

46.	In case of employ	ed persons 'Age and income	e' correlation is[SM	
	(a) positive (b) negative		(c) zero	(d) none
47.	In case 'Speed of	an automobile and the dista	nce required to stop	p the car often applying
	brakes' - correlat	ion is[SM]		
	(a) positive	(b) negative	(c) zero	(d) none
48.	In case 'Sale of w	oolen garments and day tem	iperature' correl	ation is[SM]
	(a) positive	(b) negative	(c) zero	(d) none
49.	In case 'Sale of co	ld drinks and day temperat	ure'co	orrelation is
	(a) positive	(b) negative	(c) zero	(d) none
50.	In case of 'Produc	ction and price per unit' - co	rrelation is[SM]	
	(a) positive	(b) negative	(c) zero	(d) none
51.	Co-variance mea	sures the joint variations of	two variables.[SM]	
	(a) true	(b) false (c	e) both	(d) none
52.	The minimum va	lue of correlation coefficient	t is[SM]	
	(a) 0	(b) -2	(c) 1	(d) -1
53.	The maximum va	alue of correlation coefficien	it is[SM]	
	(a) 0	(b) 2	(c) 1	(d) -1
54.	In Method of Cor	ncurrent Deviations, only the	e directions of chang	ge (Positive direction / Negative
	direction) in the	variables are taken into acco	ount for calculation	of[SM]
	(a) coefficient of S	.D (b) coefficient of regress	ion. (c) coefficient	of correlation (d) none
55.	A coefficient near	·+1 indicates tendency for the	e larger values of one	e variable to be associated with
	the larger values	of the other.		
	(a) True	(b) False	(c) Both (a) and	(b) (d) None of these
56.	If the value of cor	relation coefficient is positive	e, then the points in a	scatter diagram tend to cluster.
	(a) From lower lef	t corner to upper right corner.		
	(b) From lower rig	tht corner to upper left corner.		
	(c) From lower lef	t corner to lower right corner.		
	(d) From lower rig	tht corner to upper right corner		
57.	Product moment	t correlation coefficient may	be defined as the ra	atio of:
	(a) The covariance	e between the variables to the p	product of the varianc	e of them.
	(b) The product of	standard deviations of the two	variables to the cova	ariance between them.
	(c) The covariance	e between the variables to the p	product of their standa	ard deviations.
	(d) Either (b) or (c	e).		

PARAS

58.	The coefficient of corr	elation between two	variables						
	(a) Is expressed as the p	(a) Is expressed as the product of units of the two variables.							
	(b) Can have any unit.	(b) Can have any unit.							
	(c) Is a unit free measur	e.							
	(d) None of these								
59.	In case the correlation	coefficient between	two variab	les is 1, then the	relationship between the				
	two variables would b	e:							
	(a) $y = a + bx, b < 0$		(b) $y = a$	+bx, b > 0					
	(c) $y = a + bx$		· · •	a + bx, both and	b being positive.				
60.	For finding correlatio	n between two attrik	-						
00.	(a) Scatter diagram			on's correlation co	efficient				
	(c) Spearman's rank cor	relation coefficient	` /	cient of concurren					
61.	· · · · -		/		variables are said to be:				
01.		(b) Uncorrela	V	e) Both (a) and (b)					
<i>(</i> 2	(a) correlated	· /							
62.	Whatever may be the								
	(a) Negative only	(b) Positive o		o) zero only	(d) none of these				
63.	The covariance betwe	/							
	() ()	(b) Strictly positive	(c) alway	` ′	ositive or negative or zero				
64.	A scatter diagram ind		· · · · · · · · · · · · · · · · · · ·						
. 	(a) True	(b) False	/ / (e) Both (a) and (b)	(d) None of these				
65.	Scatter diagram help (a) Find the direction of	· · · · · · · · · · · · · · · · · · ·	wo variable	c c					
	(b) Obtain the mathema								
	(c) Compute the extent								
	(d) Both (a) and (c).								
66.	` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	a scatter diagram li	e from upp	er left to lower rig	ght, then the correlation is				
	(a) zero	(b) Positive		c) negative	(d) none fo these				
67. ¹	If the pattern of point	s (or dots) on the sca	tter diagra	m shows a linear	path diagonally across the				
	graph paper from the	bottom left-hand c	orner to th	e top right, corre	lation will be:				
	(a) negative	(b) zero	(0	c) positive	(d) none of these				
68.	If the plotted points is	n a scatter diagram	are evenly (distributed, then	the correlation is:				
	(a) zero	(b) positive	(c) negati	ve (d)	(a) or (b)				
69.	If all the plotted poin	ts in a scatter diagra	am lie on a	single line, then t	he correlation is:				
	(a) perfect positive	(b) Perfect no	egative (c) both (a) and (b)	(d) Either (a) or (b)				

70.	When $r = 1$, all the point (a) on a straight line direct		_					
	(b) on a straight line.							
	(c) on a straight line direc	ted form upper left	t to lower right.					
	(d) both (a) and (b)	11						
71.	The correlation coeffic	ient being –1 if tl	he slope of the straight	line in a scatt	ter diagram is:			
	(a) positive	(b) negative			none of these			
72.	The correlation coeffic	ient being +1 if t	he slope of the straight	line in a scat	ter diagram is:			
	(a) Positive	(b) negative			none of these			
73.	Maximum value of ran	k correlation coe	efficient is:					
	(a) 0	(b) +1	(c)-1	(d)	None of these			
74.	In rank correlation the	association need	l not be linear.					
	(a) False	(b) True	(c) Both (a)	and (b) (d)	none of these			
75.	When $r = 0$, then cov ($(\mathbf{x},\mathbf{y}) =$						
	(a) 0	(b)-1	(c) +1	(d)	none of these			
76.	Correlation coeffficien	t isof the	units of measurement.					
	(a) independent (b) dependent	(c) Both (a) and (b)	(d) none of	fthese			
77.	For covariance the nur	nber of variate v	alues in the two given d	listributions s	hould be:			
,	(a) unequal		(b) e	equal				
	(c) any number in one an	d any number in th	ne other. (d) 1	none of these				
78.	What is spurious corre	elation ?[SM]						
	(a) It is a bad relation bet	ween two variable	es					
	(b) It is very low correlation between two variables							
	(c) It is the correlation be	tween two variable	es having no causal relati	on				
	(d) It is a negative correla	ation						
79.	Pearson's correlation	coefficient is used	l for finding[SM]					
	(a) Correlation for any ty	pe of relation	(b) Correlat	ion for linear re	elation only			
	(c) Correlation for curvil	near relation only	(d) Both (b)	and (c)				
80.	Product moment corre	elation coefficient	t is considered for[SM]					
	(a) Finding the nature of	correlation	(b) Finding	the amount of c	correlation			
	(c) Both (a) and (b)		(d) Either (a	a) and (b)				
81.	is concerned	with the measur	ement of the "strength	of association	" between variables.			
	(a) correlation (b) regression	(c) both	(d) none			
82.	Karl Pearson's coeffic	ient is defined fr	om					
	(a) ungrouped data (Lir	near) (b) grou	uped data (Non-Linear)	(c) both	(d) none			

Scatter diagram is considered for measuring[SM]

(a) Linear relationship between two variables

(c) Neither (a) nor (b)

90.

(b) Curvillinear relationship between two variables

(d) Both (a) and (b)

1.	Regression analysis	is concerned with[S	M]			
	(a) Establishing a mathe					
	(b) Measuring the external	nt of association betwe	een two v	rariables		
	(c) Predicting the value	of the dependent vari	able for a	given va	lue of the ind	ependent variable
	(d) Both (a) and (c)					
2.	gives th	e mathematical rela	tionship	of the v	ariables.[SN	M]
	(a) correlation	(b) regression		(c) bot	h	(d) none
3.	The lines of regression	on passes through th	ne points	, bearin	g no. of poin	ts on both sides.[SM]
	(a) equal	(b) unequal		(c) zero	0	(d) none
4.	Under Algebraic Me	thod we get line	ear equa	tions .[S]	M]	
	(a) one	(b) two		(c) thre	ee	(d) none
5.	In linear equations Y	$V = \mathbf{a} + \mathbf{b} \mathbf{X}$ and $\mathbf{X} = \mathbf{a}$	+ bY 'a'	is the[SN	/ []	
	(a) intercept of the line	(b) slope	(c) bo	oth		(d) none
6.	In linear equations Y	$C = \mathbf{a} + \mathbf{b}\mathbf{X}$ and $\mathbf{X} = \mathbf{a}$	+ bY ' b	' is the[S	SM]	
	(a) intercept of the line	(b) slope of t	the line		(c) both	(d) none
7.	The regression equa	tions Y = a + bX and	1X = a +	bY are l	based on the	e method of [SM]
	(a) greatest squares	(b) least squ	ares		(c) both	(d) none
8.	The line $Y = a + bX$	represents the regre	ssion eq	uation of	f[SM]	
	(a) Y on X	(b) X on Y			(c) both	(d) none
9.	The line $X = a + bY$	represents the regre	ession eq	uation o	f[SM]	
	(a) Y on X	(b) X on Y			(c) both	(d) none
10.	Two regression lines	s always intersect at	the mea	ns.[SM]		
	(a) true	(b) false			(c) both	(d) none
11.	r, b _{xy} , b _{yx} all have	sign.[SM]				
	(a) different	(b) same			(c) both	(d) none
12.	The regression coeff	ficients are zero if r	is equal	to[SM]		
	(a) 2	(b) -1			(c) 1	(d) 0
13.	The regression lines	are identical if r is	equal to	[SM]		
	(a) +1	(b) -1			(c) +2	(d) 0

Pa<u>r</u>as

14.	The regression lines are pe	erpendicular to each other i	f r is equal to[S]	M]
	(a) 0	(b) +1	(c) -1	(d) + 1
15.	Feature of Least Square re	egression lines are :- The su	m of the deviat	ions at the Y's or the X's
	from their regression lines	are zero.[SM]		
	(a) true	(b) false	(c) both	(d) none
16.	The coefficient of determin	nation is defined by the form	nula[SM]	
r	(a) $r^2 = 1 - \frac{\text{unexplained variance}}{\text{total variance}}$	(b) $r^2 = \frac{\text{explained variance}}{\text{total variance}}$	(c) both	(d) none
17.	The relation $r_{xy} = cov(x,y)$	$\sigma_x \sigma_y$ is [SM]		
	(a) true (b) fa	llse (c)	both	(d) none
18.	Two regression lines coinci	ide when		
	(a) r = 0	(b) $r = 2$	(c) $r = +1$	(d) none
19.	Neither y nor x can be estim	ated by a linear function of t	he other variabl	e when r is equal to[SM]
	(a) + 1	(b) - 1	(c) 0	(d) none
20.	When $r = 0$ then $cov(x,y)$	is equal to[SM]		
	(a) + 1	(b) 1	(c) 0	(d) none
21.	b _{xy} is called regression coe	fficient of [SM]		
	(a) x on y	(b) y on x	(c) both	(d) none
22.	b _{yx} is called regression coe	fficient of[SM]		
	(a) x on y	(b) y on x	(c) both	(d) none
23.	The slopes of the regression	on line of y on x is[SM]		
	(a) b _{yx}	(b) b _{xy}	$(c) b_{xx}$	(d) b_{yy}
24.	The slopes of the regression	on line of x on y is[SM]		
	(a) b _{yx}	(b) b _{xy}	(c) $1/b_{xy}$	(d) $1/b_{yx}$
25.	The angle between the reg	gression lines depends on[S	M]	
	(a) correlation coefficient	(b) regression coefficient	(c) both	(d) none
26.	If x and y satisfy the relat	ionship $y = -5 + 7x$, the valu	e of r is[SM]	
	(a) 0	(b) - 1	(c) + 1	(d) none
27.	If b _{yx} and b _{xy} are negative,	ris[SM]		
	(a) positive	(b) negative	(c) zero	(d) none
28.	Correlation coefficient r li	e between the regression co	efficients b _{yx} an	$\mathbf{d}\mathbf{b}_{\mathrm{xyl}}\mathbf{SM}$
	(a) true	(b) false	(c) both	(d) none

PARAS

29.	Since the correlation coeffice must[SM]	ient r cannot be greater	than 1 numerically, the p	roduct of the regression
	(a) not exceed 1	(b) exceed 1	(c) be zero	(d) none
30.	The correlation coefficien	t r is theof the t	wo regression coefficier	nts b _{yx} and b _{xy[} SM]
	(a) A.M	(b) G.M	(c) H.M	(d) none
31.	Which is true?[SM]			
	(a) $b_{yx} = r \frac{\sigma_x}{\sigma_y}$	(b) $b_{yx} = r \frac{\sigma_y}{\sigma_x}$	(c) $b_{yx} = r \frac{\sigma_{xy}}{\sigma_x}$	(d) $b_{yx} = r \frac{\sigma_{yy}}{\sigma_x}$
32.	The correlation coefficien	t lies between[SM]		
	(a) -1 and +1 inclusive of the	ese two value (b) 0	0 and + 1 (c) -1 and	(d) none
33.	r_{12} is the correlation coeff	icient between[SM]		
	(a) x_1 and x_2	(b) x_2 and x_1	(c) x_1 and x_3	(d) x2 and x3
34.	r_{12} is the same as $r_{21}[SM]$			
	(a) true (b) f	false (c) b	ooth (d) no	ne
35.	When $r = 0$, the regression	on coefficients are[SM	ij	
	(a) 0	(b) 1	(c) -1	(d) none
36.	If these are two variables	x and y, then the num	ber of regression equat	ions could be:
	(a) 2	(b) 1	(c) Any number	(d) 3
37.	The method applied for d	eriving the regression	equations is known as:	
	(a) Concurrent deviation	(b) Least squares	(c) Product moment	(d) Normal equation.
38.	What are the limits of the	two regression coeffic	cients?	
	(a) Must be positive		(b) No limit.	
	(c) One positive and the oth	er negative.	(d) Both positive or be	oth negative
39.	Two regression lines coin	cide when:		
	(a) r = 0	(b) $r = 2$	(c) $r = +1$	(d) None of these
40.	The two lines of regression	n become identical wh	nen:	
	(a) $r = 1$	(b) $r = -1$	(c) r = 0	(d) (a) or (b)
41.	The difference between the	observed value and the	estimated value in regres	sion analysis is known as:
	(a) residue	(b) error	(c) deviation	(d) Either (a) or (b)
42.	The regression lines are p	perpendicular to each	other if r is equal to:	
	(a) 0	(b) +1	(c)-1	(d) 1
43.	Two regression lines alw	ays intersect at the me	eans.	
	(a) True	(b) False	(c) Both (a) and (b)	(d) None of these

44.	The regression	line of v	on x is	derived by
44.	THE LEGICOSION	HILL OF A	UIIAIS	derived by

- (a) The minimisation of vertical distances in the diagram.
- (b) The minimisation of horizontal distances in the scatter diagram.
- (c) both (a) and (b)
- (d) None of these

45. The line of regression x on y is given by:

(a)
$$x - \overline{x} = r(\sigma_x / \sigma_y)(y - \overline{y})$$

(b)
$$y - \overline{y} = r(\sigma_x / \sigma_y)(x - \overline{x})$$

(c)
$$(x-\overline{x}) = r(\sigma_y/\sigma_x)(y-\overline{y})$$

(d) None

46. The line of regression of y on x is given by:

(a)
$$(x-\overline{x}) = r(\sigma_y / \sigma_x)(y-\overline{y})$$

(b)
$$(y - \overline{y}) = r(\sigma_y / \sigma_x)(x - \overline{x})$$

(c)
$$(y-\overline{y}) = r(\sigma_x/\sigma_y)(x-\overline{x})$$

(d) None of these

47. Coefficient of correlation is:

- (a) G.M. of the coefficient of regression.
- (b) A.M. of the coefficient of regression.
- (c) H.M. of the coefficient of regression.
- (d) Product of G.M. and A.M. of the regression coefficients.

48. If the two lines of regression for a bivariate data coincide, then:

- (a) The two variates are independent.
- (b) There is a perfect correlation between the two variates.
- (c) There is not a perfect positive correlation between the two variables.
- (d) None of these

49. The statistical method, which helps us to estimate or predict the unkown value of one variable from the known value of the related variables, is called:

- (a) Correlation
- (b) Scatter diagram
- (c) Regression

(d) Dispersion.

50. Which of the following statements is not true

- (a) The regression lines are drawn by applying the principal of least squares.
- (b) The correlation: $r = b_{xy} \times b_{yx}$
- (c) b_{xy} and b_{yx} must be both either positive or negative.
- (d) The sign of r is the same as that of b_{xy} or b_{yx} .

51. Slope of regression line of Y on X is:

(a)
$$\frac{1}{b_{yx}}$$

(b) b_{vx}

(c)
$$\frac{Cov(X,Y)}{\sigma_x}$$

(d) None of these

52. If the angle between two lines of regression is 90° , then it represents

(a) perfect positive correlation

(b) Perfect negative correlation

(c) no linear correlation

(d) None of these

53. Since Blood Pressure of a person depends on age, we need consider

- (a) The regression equation of Blood Presure on age
- (b) The regression equation of age on Blood Presure
- (c) Both (a) and (b)
- (d) Either (a) and (b)

		Qı	iestion Bank			
1.	The coefficient of co	orrelation r betwe	en x and y when:		(N-0	(6)
	Cov(x, y) = -16.5, V					
	(a) -0.97	(b) 0.97	(c) 0.89	(d	l) -0.89	
2.	Take 200 and 150 a	respectively as the	e assumed mean	for x and y ser	ies of 11 value	es, then dx
	= x - 200, dy = Y -	- ,		•		
	The value of r is:			5 5 5	(N-	
	(a) 0.77	(b) 0.9	(c) 0.92		(d) 0.82	
3.	The coefficient of c	orrelation betwee	n x and y is 0.6 U	and V are two	variables defin	ed as
	$U = \frac{x-3}{2}, V = \frac{y-2}{3}$ th	nen the coefficien	t of correlation b	oetween U, V a	nd is:	(M-07)
	(a) 0.6	(b) 0.4	(c) 0.8	(d) 1	l	
4.	If the covariance be	etween two variabl	les is 20 and the va	ariance of one o	f the variables	is 16, what
	would be the varia		eratutum.			(A-07)
	(a) More than 10	(b) More than	V	More than 1.25	(d) Less that	` '
5.	Assume 69 and 112	as the mean value	es for X and Y res	spectively.	(N-0) 7)
	$\sum dx = 47, \sum dx^2 =$	1475, $\sum dy = 108$,	$\sum dy^2 = 3468, \sum$	dx dy = 2116 ar	nd N = 8	
	Where $dx = X - 69$,	dy = Y - 112. Ther	the value of r is	;		
	(a) 0.95	(b) 0.65	(c)	0.75	(d) 0.85	
6.	The coefficient of c	correlation betwee	en x and y <u>series f</u>	rom the followin	ng data: (J-0	8)
			X Series	Y Series		
	No. of pairs of obse	ervations	15	15		
	Arithmetic Mean		25	18		
	Standard Deviation	l	3.01	3.03		
	Sum of the squares	of deviation from	mean 136	138		

Sum of the product of the deviations of x and y series form their respective means = 122, is:

(a) 0.89

(b) 0.99

(c) 0.69

(d) 0.91

INSTITUTE OF COMMERCE

7.	The coefficient of co	(D-08)		
	(a) $r > 5$ P. E	(b) r≤6 P.E	(c) $r \ge 6 P. E$	(d) $r = 6 P. E$
8.	Correlation coefficie	ent between X and Y wil	be negative when:-	(D-09)
	(a) X and Y are decrea	asing	(b) X is increasing, Y is decr	reasing
	(c) X and Y are increase	sing	(d) None of these	
9.	If 'r' is the simple co	rrelation coefficient, th	e quantity _p 2 is known a	as: (J-10)
	(a) Coefficient of deter	mination	(b) Coefficient of Non-deter	rmination
	(c) Coefficient of alien	ation	(d) None of the above	
10.	If the correlation co	oefficient between x and	ly is r, then between U=	$\frac{x-5}{10}$, $V = \frac{y-7}{2}$ is (J-10)
	(a) r	(b) -r	(c) (r-5)/2	(d) (r-7)/10
11.	If the sum of the proceedicient of correla		x and y series from the	ir means is zero, then the (D-10)
	(a) 1	(b) -1	(c) 0	(d) None of these
12.	•	een two variables X and son's coefficient of corr		s are 25 and 36 respectively. (J-11)
	(a) 0.82	(b) 0.28	(c) 0.01	(d) 0.09
13.		tween variables X and fficient of correlation is		X and Y are respectively 36 (J-12)
	(a) 0.409	(b) 0.416	(c) 0.833	(d) 0.0277
14.	u and y & v are 3x+5 u & v is:	5u=3 and -8y-7v=44 resp	ectively. Then the coeffic	near relations between x & ient of correlation between (D-12)
	(a) 0.38	(b) -0.38	(c) 0.40	(d) None
1.5	The coefficient of ac	mulation between two	uovioblos v and vis 0.29 '	Thorogonyanianaa is 76 If
15.			•	There covariance is 7.6. If
15.		orrelation between two 9, then the standard do (b) 9.048	•	There covariance is 7.6 . If (J-13) (d) 11.048
15. 16.	the variance of x is	9, then the standard do (b) 9.048	eviation of y is:	(J-13)

(a) -1

(D-13)Determine the coefficient of correlation between x and y series: Sum of product deviation of x and y series from mean = 122**Y-Series** X-Series 15 Number of items 15 18 25 Arithmetic mean Sum of Square of 138 136 deviation of mean (c) 0.69(d) -0.69(b) 0.89(a) -0.89If the value of correlation coefficient between x & y is 1. then the value of correlation coefficient 18. between x - 2 and $\frac{-y}{2}$ + 1 is (D-14)(c) -1/2(d) $\frac{1}{2}$ (a) 1 If the sum of squares of the rank difference in mathematics and physics marks of 10 students is 19. (F-07)22, then the coefficient of rank correlation is: (c) 0.92(d) None (a) 0267 (b) 0.867 For the following data, the coefficient of rank correlation is: (M-07)20. 2 3 Rank in Botany: 1 3 Rank in Chemistry 2 (c) 0.6(d) None (b) 0.4(a) 0.93In rank correlation, the association need not be linear (Mathematical): (N-07)21. (b) False (c) Partly True (d) Partly False (a) True The coefficient of rank correlation of marks obtained by 10 students, in English and Economics 22. was found to be 0.5. It was later discovered that the difference in ranks in the two subjects obtained by one students was wrongly taken as 3 instead of 7. The correct coefficient of rank (F-08)correlation is: (d) 0.93(b) 0.26(c) 0.49(a) 0.32If the sum of square of differences of rank is 50 and number of items is 8 then what is the value 23. (D-08)of rank correlation coefficient. (b) 0.40(c) 0.36(d) 0.63(a) 0.59Ranks of two ____ characteristics by two judges are in reverse order then find the value of 24. (J-09)Spearman rank correlation co-efficient.

(b) 0

(c) 1

(d) 0.75

The ranks o	of five p	articipa	nts giv	en by tw	vo judges ar	re	(D-10)
Participants	S						
	A	В	C	D	E		
Judge 1	1	2	3	4	5		
Judge 2	5	4	3	2	1		
Rank corre	lation c	oefficie	nt betw	veen rar	ıks will be :		
(a) 1				(b) 0		(c) -1	(d) ½
Three comp	petitors	in a con	itest are	e ranked	d by two jud	ges in the order 1,2,3	and 2,3,1 respectively.
Calculate th	he Spea	rman's	rank c	orrelati	on coefficier	nt. (J-11)
(a) -0.5				(b) -(0.8	(c) 0.5	(d) 0.8
When each	individ	ual gets	the exa	etly op	posite rank l	by the two judges, the	en the rank correlation
	•			4		() . .	(J-11)
		_				` '	(d) 1/2.
	$.9, b_{yx} = .$	-1.5, b _{xy} =	=-0.2. I				(d) 17.7
(a) 15.6					(0) 13.4	(C) 19.7	(d) 17.7
			en, bas	ed on 45	50 students	for marks in Statisti	ics and Economics at a (M-07)
Mean marl	ks in Sta	atistics			= 40		
Mean marl	ks in Ec	onomic	es.		= 48		
S.D. of man	rks (Sta	tistics)			= 12		
Variance of	f marks	(Econo	mics)		= 256		
Sum of the	produc	cts of de	viation	s of ma	rks from the	eir respective mean :	= 42075
The averag	ge mark	ks in eco	nomics	s of cano	didates who	obtained 50 marks	in Statistics is:
(a) 45				(b)	54.5	(c) 54	(d) 47.5
The metho	d applic	ed of de	riving	regressi	ion equation	ıs is knows as:	(F-08)
(a) Concurr							
	Judge 1 Judge 2 Rank corre (a) 1 Three comp Calculate the (a) -0.5 When each will be (a) 0 For some the 53.2, $\overline{y} = 27$ (a) 15.6 The follow certain exam Mean mark Mean mark Mean mark S.D. of mark Variance of Sum of the The average (a) 45	Participants A Judge 1 1 Judge 2 5 Rank correlation of (a) 1 Three competitors Calculate the Speat (a) -0.5 When each individe will be (a) 0 For some bivariate 53.2, \(\overline{y}\) = 27.9, \(\overline{b}\)_yx = (a) 15.6 The following data certain examination Mean marks in St. Mean marks in Ed. S.D. of marks (State Variance of marks) Sum of the production of the prod	Participants A B Judge 1 1 2 Judge 2 5 4 Rank correlation coefficie (a) 1 Three competitors in a concalculate the Spearman's (a) -0.5 When each individual gets will be (a) 0 For some bivariate data, 153.2, \(\overline{y}\) = 27.9, \(\overline{b}\)_yx = -1.5, \(\overline{b}\)_xy (a) 15.6 The following data is give certain examination: Mean marks in Statistics Mean marks in Statistics Mean marks (Statistics) Variance of marks (Economic Sum of the products of details are concalculated at the statistics) The average marks in economic sum of the products of details are concalculated at the statistics.	Participants A B C Judge 1 1 2 3 Judge 2 5 4 3 Rank correlation coefficient betw (a) 1 Three competitors in a contest are Calculate the Spearman's rank ce (a) -0.5 When each individual gets the examill be (a) 0 For some bivariate data, the follo 53.2, $\overline{y} = 27.9$, $b_{yx} = -1.5$, $b_{xy} = -0.2$. T (a) 15.6 The following data is given, base certain examination: Mean marks in Statistics Mean marks in Economics S.D. of marks (Statistics) Variance of marks (Economics) Sum of the products of deviation The average marks in economics (a) 45	Participants A B C D Judge 1 1 2 3 4 Judge 2 5 4 3 2 Rank correlation coefficient between ran (a) 1 (b) 0 Three competitors in a contest are ranked Calculate the Spearman's rank correlation (a) -0.5 (b) -0.5 When each individual gets the exactly opposite between rank correlation (a) 0 (b) -1 For some bivariate data, the following reconstruction of the products of deviations of mathematical marks in Statistics Mean marks (Statistics) Variance of marks (Economics) Sum of the products of deviations of mathematical marks in economics of cancer (a) 45 (b) 6	Participants A B C D E Judge 1 1 2 3 4 5 Judge 2 5 4 3 2 1 Rank correlation coefficient between ranks will be: (a) 1 (b) 0 Three competitors in a contest are ranked by two judy Calculate the Spearman's rank correlation coefficient (a) -0.5 (b) -0.8 When each individual gets the exactly opposite rank will be (a) 0 (b) -1 For some bivariate data, the following results were 53.2, $\overline{y} = 27.9$, $b_{yx} = -1.5$, $b_{xy} = -0.2$. The most probable variate (a) 15.6 (b) 13.4 The following data is given, based on 450 students certain examination: Mean marks in Statistics = 40 Mean marks in Economics = 48 S.D. of marks (Statistics) = 12 Variance of marks (Economics) = 256 Sum of the products of deviations of marks from the The average marks in economics of candidates who (a) 45	Judge 1 1 2 3 4 5 Judge 2 5 4 3 2 1 Rank correlation coefficient between ranks will be: (a) 1 (b) 0 (c) -1 Three competitors in a contest are ranked by two judges in the order 1,2,3 Calculate the Spearman's rank correlation coefficient. (J-11 (a) -0.5 (b) -0.8 (c) 0.5 When each individual gets the exactly opposite rank by the two judges, the will be (a) 0 (b) -1 (c) +1 For some bivariate data, the following results were obtained for the two 53.2, $\overline{y} = 27.9$, $b_{yx} = -1.5$, $b_{xy} = -0.2$. The most probable value of y when $x = 60$ is: (a) 15.6 (b) 13.4 (c) 19.7 The following data is given, based on 450 students for marks in Statistic certain examination: Mean marks in Statistics = 40 Mean marks in Statistics = 48 S.D. of marks (Statistics) = 12 Variance of marks (Economics) = 256 Sum of the products of deviations of marks from their respective means. The average marks in economics of candidates who obtained 50 marks.

(b) 8

P	ARAS	INSTITUTE OF CO
31.	Given:	$\overline{x} = 16$, $\sigma_x = 4.8$
•		$\overline{y} = 20$, $\sigma_y = 9.6$
	The coefficient	of correlation between x
	(a) 0.03	(b) 0.3
32.	•	lent variable and X is I nd Co- efficient of co-rela -11)

(a) - 8

Find the value of y if x = 9

33.

34.

35.

36.

37.

38.

$\overline{y} = 2$	20 , $\sigma_{y} = 9.6$		
The coefficient of correlation	on between x and y is 0.6.	What will be the regression	on coefficient of 'x' on 'y'?
(a) 0.03	(b) 0.3	(c) 0.2	(d) 0.05
If Y is dependent variab respectively and Co- effic of Y on X : (D-11)			
(a) 0.78	(b) 1.28	(c) 6.8	(d) 0.32
Two random variables hof correlation between x (a) -0.25	and y is:		(F-07)
(a) -0.25 The lines of regression a	are as follows; 5x - 145	=-10y; $14y-208=-8x$	(N-07)
The mean value $(\overline{x}, \overline{y})$ is	(
(a) (12, 5)	(b) (5,7)	(c) (7,12)	(d) (5,12)
If the lines of regression	2 400	ribution are given by	
8, then the coefficient	of correlation is:	y	(J-08)
(a) 0.866	(b) -0.666	(c) 0.667	(d) -0.866
If the correlation coefficien	nt between two variables	is 1, then the two lines of re	egressions are: (J-08)
(a) Parallel	(b) At right angles	(c) Coincident	(d) None of these
Given the regression equa	tions as $3x + y = 13$ and $2x$	x + 5y = 20. Find regression	n equation of y on x.(D-08)
(a) $3x + y = 13$	(b) $2x + y = 20$	(c) $3x + 5y = 13$	(d) $2x + 5y = 20$
The two regression equa	ations are:		(J-09)
2x + 3y + 18 = 0			
X + 2y - 25 = 0			

(c) -12

(d) 0

39.	The correlation coeff	icient between x and y	$\sqrt{\text{is} - \frac{1}{2}}$. The value of b_{xy}	=-1/8 Find b _{yx} . (J-09)
	(a) -2	(b) -4	(c) 0	(d) 2
40.	Which of the following	ng regression equation	s represent regression lin	e of Y on X: (D-09)
	7x + 2y + 15 = 0, 2x + 15	-5y + 10 = 0		
	(a) $7x + 2y + 15 = 0$	(b) $2x + 5y + 10 =$	0 (c) Both (a) and (b)	(d) None of these
41.	The two regression line	es are $7x - 3y - 18 = 0$ an	d 4x - y - 11 = 0 Find the va	lues of b_{yx} and b_{xy} (D-09)
	(a) $7/3$, $\frac{1}{4}$	(b) -7/3, -1/4	(c) -3/7, -1/4	(d) None of these
42.	of the regres	ssion coefficients is gr	eater than the correlation	coefficient (J-10)
	(a) Combined mean	(b) Harmonic mean	(c) Geometric mean	n (d)Arithmetic mean
43.	If two lines of regres	sion are $x + 2y - 5 = 0$	and $2x + 3y - 8 = 0$.	(J-10)
	The regression line o	f y on x is		
	(a) $x + 2y - 5 = 0$	(b) $2x + 3y - 8 = 0$	(c) Any of the two lines	(d) None of the two lines
44.	Regression coefficien	nt are		(D-10)
	(a) dependent of chang	e of origin and of scale		
	(b) Independent of both	n change of origin and of	f scale.	
	(c) Dependent of chang	ge of origin but not of sca	ale.	
	(d) Independent of char	nge of origin but not of s	cale	
45.	If the two lines of reg	gression are x+2y - 5 =	= 0 and $2x + 3y - 8 = 0$	(D-10)
	The regression line of	of y on x is		
	(a) $x+2y - 5 = 0$	(b) $2x + 3y - 8 = 0$	(c) Any of the two line	(d)None of the two lines.
46.	For a bivariate data,	two lines of regressio	n are 40x - 18y = 214 and	8x - 10y + 66 = 0, then find
	the values of \overline{x} and	$\overline{\mathbf{y}}$		(J-11)
	(a) 17 and 13	(b) 13 and 17	(c) 13 and -17	(d) -13 and 17

PARAS

4 7 .	Out of the following wh	ich one affects the	e regression co-efficie	ent.	(D-11)
	(a) Change of Origin Only		(b) Change	of scale Only	
	(c) Change of scale & orig	gin both	(d) Neither (Change of origin no	r change of scale
48.	For a bivariate data, the 35 and l0X - Y = 70, then				vely 2.5Y - X =
	(a) 0.2	(b) - 0.2	(c) 0.5	(d) - 0.	5
49.	If one of regression coe	fficient is	_unity, the other mus	t be unit	y. (D-11)
	(a) more than, more then	(b) Less than,	Less then (c) more that	an, less than (d) Pos	sitive, Negative
50.	If the regression line coefficient between '		+ 66 = 0 and 40x	-18y = 214, th	e correlation (J-12)
	(a) 1	(b) 0.6	(c) -0.6	(d) -1	
51.	The coefficient of corre regression coefficients.		vo variables x and y is	s the simple	of the two (J-12)
	(a) Arithmetic Mean	(b) Geometric	Mean (c) Harmo	nic Mean (d) No	ne of the above.
52.	If 2 variables are uncor	related, their reg	ression lines are:		(J-12)
	(a) Parallel	(b) Perpendic	ular (c) Coincide	ent (d)Inclined	l at 45 degrees.
53.	If \overline{x} , \overline{y} denote the arithmeter \overline{x}				
	regression coefficients regression lines x on y	A VIII VIII VIII VIII VIII VIII VIII VI		, then the point of	(J-12)
			$(c) (b_{xy}, b_{yx})$	(d) $(\sigma_{x}^{2}, \sigma_{y}^{2})$	
54.	If $y = 18x+5$ is the regr				
	(a) $\frac{5}{18}$ (b)	o) 18	(c) 5	(d) $\frac{1}{18}$	
55.	For certain x and y ser	ies which are cor	related, the two lines	of regression are	5x - 6y + 9 = 0
	15x - 8y + 130 = 0. The			(D-12)	
	(a) 4/5	b) 3/4	(c) $2/3$	(d) 1/2	
56.	If the regression equati	ions are 8x-3y+50	= 0 and $14x-7y-60 = 0$	0 and standard de	viation of y is 1.
	The coefficient of corre	elation is =	•••••		(J-13)
	(a) 2	b) 1	(c) 0.87	(d) -0.87	

P	A.P.AS	INSTITUTE OF COM	MERCE		-18.36-
57.		and y are related accord		hen x and y are :	(J-13)
	(a) Positively corr	related (b) Negatively co	orrelated (c) Corrre	lation is zero (d)	None of these
58.	If mean of X and	l Y variables is 20 and 4	0 respectively and t	the regression coef	fficient V on V i
		egression line of Y on X		(D-13	
	(a) $Y = 1.608 X +$	-7.84 (b) $Y = 1.56 X +$	4.84 (c) $Y = 1.608$	3X + 4.84 (d) Y	= 1.56 X + 7.84
59.		f correlation coefficient is le between them	(b) have 45° ang		, ,
60.	Two regression	lines for a bivariate da relation should be:			
	(a) $\frac{-2\sqrt{2}}{5}$	(b) $\frac{2}{5}$	(c) $\frac{+2\sqrt{2}}{5}$	(d) $\frac{\sqrt{2}}{5}$	
61.	If the means of t	he two variables 'x' and	'y' are 3 and 1 resp	ectively. Then the	equation of two
	regression lines	are			(J-14)
	(a) $5x + 7y - 22 =$	= 0, 6x + 2y - 20 = 0	(b) $5x + 7y - 22 =$	= 0, 6x + 2y + 20 =	0
	(c) $5x + 7y + 22 =$	= 0, 6x + 2y - 20 = 0	(d) $5x + 7y + 22$	= 0, 6x + 2y + 20 =	: 0
62.	The equation of t	wo lines of regression fo	or 'x' and 'y' and 642	x = 24 + 45y are 5x	= 22 + y then the
	value of regression	on coefficient of 'y' on 'z	x' will be		(J-14)
	(a) 5	(b) 1/5	(c) 64/45	(d) 45/64	
63.	If the correlation	coefficient between two	variables is zero, the	n the lines of regre	ssion are: (D-14)
	(a) Parallel	(b) Perpendicular	(c) Coincide	(d) None of th	nese
64.	The equations of	two regression lines are	$\mathbf{x} + \mathbf{y} = 6 \text{ and } \mathbf{x} + 2\mathbf{y}$	= 10, then the valu	ie of correlation
	coefficient betwe	een x and y is:			(D-14)
	(a) - 1/2	(b) + 1/2	(c) $-1/\sqrt{2}$	(d) $+1/\sqrt{2}$	
65.	In case 'Insuranc	e Companies' Profits a	nd the no. of claims	they have to pay"	: [D-15]
	(a) Positive correla	ation (b) Negative co	orrelation (c) No	correlation (d) N	one of these
66.	If the coefficient o	f correlation between X a	and Y variables is +0	.90 then what will b	e the coefficient
	of determination?	•			[J-16]
	(a) 0.30	(b) 0.81	(c) 0.94	(d) None of the	ese
67.	If $r = 0.6$, then the	e coefficient of determin	ation is.		[J-16]
	(a) 0.4	(b) -0.6	(c) 0.36	(d) 0.6	4

68.	In a beauty contest	there were 10 competit	ors. Rank of these	candidates are a	ssigned by two judges
	A and B. The sum	of squares of difference	es of ranks is44. Th	ie value of rank c	correlation is : [D-16]
	(a) 0.70	(b) 0.73	(c) 0.86	0 (d) 0.60
69.	When r = 1, all the	e points in a scatter dia	gram would lie:		[J-15]
	(a) On a straight line	e directed from lower lef	t to upper right.		
	(b) On a straight line	e.			
	(c) On a straight line	e directed from upper lef	to lower right.		
	(d) Both (a) and (b))			
70.	The two regression	on lines are			[J-15]
	16x - 20y + 132 = 0) and 80x - 30y - 428 =	0, the value of co	orrelation coeffic	cient is
	(a) 0.6	(b) -0.6	(c) 0.5	4 ((d) 0.45
71.	Two regression ed	quations are as follows	:		[J-16]
	Regression equat	ion of x on $y : 5x - y =$	22		
	Regression equat	ion of y on x : 64x - 45	6y = 24		
	What will be the	nean of x and y?			
	(a) $\overline{x} = 8 \overline{y} = 6$	(b) $\overline{x} = 6$, $\overline{y} = 6$	$\int (c) \ \overline{x}$	$=6, \ \overline{y}=8$	(d) $\overline{x} = 8$, $\overline{y} = 8$
72.	The two lines of	regression become i	dentical when		[J-16]
	(a) $r = 1$	(b) $r = -1$	(c) r =	= 0 (d) (a) of	or (b)
73.	The two regression	n lines passing throug	h		[D-16]
	(a) Paragont soos	(b) Represent S	S.Ds (c) (a) :	and (h)	(d) None of these
	(a) Represent mear	(b) Represent k	5.DS (C) (a)	and (0)	(d) None of these
74.	Out of the follow	wing the one which e	ffects the regres	ssion coefficien	t is [D-16]
	(a) Change of orig	gin only	(b) Change o	f scale only	
	(c) Change of sca	le and origin both	(d) Neither cl	hange in origin n	or change of scale
75.	Correlation between	een temperature and p	ower consumption	n is	[J-17]
	(a) Positive	(b) Negative	(c) Zero	(d) None	
76.	Coefficient of co	rrelation between X &	& Y is 0.6. If both	1 X and Y are m	ultiplied by -1. Then
	resultant coeffici	ent of correlation is			[J-17]
	(a) 0 6	(b) -0.6	(c) 1/0.6	(d) None	

77.	If the two regression	n lines are $x + y = 1$ are	$\mathbf{nd} \ \mathbf{x} - \mathbf{y} = 1 \ \mathbf{then} \ \overline{x}$	and \overline{y} ar	e [J-17]
	(a) 1, 0	(b) 0, 1	(c) 1, 1	(d) None	
78.	If $r = 0.6$ then the co	efficient of non-deter	mination is:		[D-17]
	(a) 0.4	(b) -0.6	(c) 0.36	(d) 0.64	
79.	If there is a constan	t increase in the serie	s then the obtained	l graph is:	[D-17]
	(a) Convex	(b) Concave	(c) Parabola	(d) Stra	aight Line from left to right
80.	The correlation coef	fficient is the	of the two regressi	on coefficie	nts b_{yx} and b_{xy} : [D-17]
	(a) AM	(b) GM	(c) HM	(d) None o	of these
81.	Regression coefficie	ents are independent	of	:	[D-17]
	(a) Change of origin	(b) Change of scale	(c) Both (a) and (b) (d) No	one of these
82.	5y = 9x - 22 & 20x = 9y	+350 are two regression	ı lines. Find the corre	lation coeffici	ient between x & y: [D-17]
	(a) 0.9	(b) 0.1	(c) -0.9	(d) -0.1	
83.	If r = 0.58, correlati	on coefficient of u = -	5x + 3 and v = y + 1	2 is	: (J-18)
	(a) 0.58	(b) -0.58	(c) 0.62	(d) No	one the above
84.	If the sum of squares	s of deviations of ranks	s of 8 students is 50 t	then the ran	k correlation coefficient
	is:(J-18))			
	(a) 0.40	(b) 0.45	(c) 0.5		(d) 0.8
85.	Regression lines are	e parallel then r = :(J-	-18)		
	(a) ± 1	(b) $-1/2$	(c) 0		(d) None the above
86.	The two line of regr	ession intersect at the	e point (N-18)		
	(a) Mean	(b) Mode	(c) Media	ın	(d) None of these
87.	If the two lines of re	egression are $x + 2y$ -	5 = 0 and 2x + 3y - 3y	8 = 0, then	the regression line of
	y on x is(N-18)				
	(a) $x + 2y - 5 = 0$	(b) $2x + 3y -$	8 = 0 (c) $x + 1$	2y = 0	(d) 2x + 3y = 0
88.	If the two regression	lines are 3X = Y and 8 Y	Y = 6X, then the valu	ie of correlat	ion coefficient is(N-18)
	(a) 0.5	(b) -0.5	(c) 0.75		(d) -0.80
89.	The regression coef	ficient is independen	t of the change of (N-18)	
	(a) Scale	(b) Origin	(c) Scale	and Origin b	ooth (d) None of these
90.	If the correlation co	efficient between the v	ariables X and Y is	0.5, then the	e correlation coefficient
	between the variabl	les 2x-4 and 3-2y is(N	-18)		,
	(a) 1	(b) 0.5	(c) -0.5		(d) 0

Given the following series: [J-19]

X	10	13	12	15	8	15
Υ	12	16	18	16	7	18

The rank correlation coefficient r =

(a)
$$1 - \frac{6\Sigma d^3 + \sum_{i=0}^{2} \frac{m_2(m_2^3 - 1)}{12}}{m(n^2 - 1)}$$

(b)
$$1 - \frac{6\left[\sum d_i^2 + \sum_{i=1}^3 \frac{m_i (m_i^2 - 1)}{12}\right]}{n(n^2 - 1)}$$

(c)
$$1 - \frac{6\Sigma d^2 + \sum_{i=1}^{2} \frac{m_i (m_1^2 - 1)}{12}}{n(n^2 - 1)}$$

(d)
$$1 - 6\Sigma d^2 + \sum_{i=1}^{3} \frac{m_i \frac{m_i^2 - 1}{12}}{n(n^2 - 1)}$$

- Find the probable error if $r = \frac{2}{\sqrt{10}}$ and n = 36.[J-19]92.
- (b) 0.06745
- (c) 0.5287
- (d) None
- If the regression line of y on X is given by Y=x+2 and Karlpearson's coefficient of correlation is 0.5 93.

then
$$\frac{\sigma_{y}^{2}}{\sigma_{x}^{2}} =$$
____[J-19]

(d) None

- A.M. of regression coefficient is [J-19] 94.
 - (a) Equal to r
- (b) Greater then or equal to r
- (c) Half of r
- (d) None of these
- If the equation of the two regression line are $2x-3y \neq 0$ and 4y-5x = 8 then the correlation coefficient 95. between x and y is equal to [N-19]
- (b) $\sqrt{\frac{8}{15}}$ (c) $\sqrt{\frac{6}{15}}$
- (d) $\sqrt{\frac{1}{15}}$

Find the correlation coefficient [N-19] 96.

X54321

Y12345

- (a) 1
- (b) -1
- (c) 0

- (d) None of these
- If scatter diagram from a line move from lower to left to upper right corner then the correlation is. 97.

[N-19]

(a) Perfect Positive

(b) Perfect negative

(c) Simple Positive

- (d) No correlation
- Consider to regression line 3x+2y=26, 6x+y=31 find correlation coefficient between x and y [N-19] 98.
 - (a) 0.5
- (b) -0.5
- (c) 0.25
- (d) -0.25

99.		relation 3-5y is		cient be	tween x	and y i	s 0.5 the	n Find the co	rrelation	coefficient between 2x-
	(a) 0.5	5		(b) -0.5	i	(c) 2.5	((d) -2.5	
100.	Scatt	er diagi	ram do	es not h	elp us t	o [N-20]			
	(a)	Identi	fy whet	her vari	ables are	correla	ted or no	t		
	(b)		ne type o							
	(c)	detern	nine the	linear o	r nonline	ear type		4		
	(d)	find th	ne nume	rical val	ue of the	correlat	tion coeff	icient		
101.	Whic	h of the	follow	ing is s	purious	correl	ation ? [N-20]		
	(a)	Negat	ive corr	elation						
	(b)	Corre	lation b	etween?	2 variabl	es havir	ng no cau	sal relation		
	(c)	Bad re	elation b	etween	2 variab	oles				
	(d)	Very l	low corr	elation	between	2 varia	bles			
102.		·	are	used wl	nen one	wants	to visual	ly examine th	ie relatio	onship between two vari
	ables	. [N-20	1							
	(a)	-	raphs	(b)	pie cł	narts	(c)	Line charts	(d)	Scatter plots
103.		covaria	nce bet	ween tv	vo varia	ble in	[N-20]			
	(a)		ly postiti			(b)	Strictl	y negative		
	(c)	Alwa	vs zero			(d)	Eithe	positive or ne	gative or	zero
104.	À pa	rtially l	egible v	vorking	g sheet f	or the o	calculati	on of rank co	rrelation	coefficient revealed
	that	the coef	fficient	of Ran	k corre	lation i	s 1/3 and	l the sum of s	quared o	lifferences of ranks is
							? [N-20]			
	(a)	9	(b)	8	(c)	7	(d)	6		
	()	-	` /		` '					

		[CH	18] [C	orrelat	ion & R	egress	ion]		
		·····	•	EXERO		<u> </u>			
1	b	7	С	13	С	19	a	25	d
2	С	8	a	14	d	20	d	26	a
3	b	9	d	15	a	21	b	27	С
4	b	10	b	16	d	22	d	28	a
5	С	11	a	17	b	23	С		
6	b	12	b	18	С	24	d		
				EXERC	ISE - II		······································		
1	d	5	a	9	b	13	b	17	c
2	a	6	a	10	С	14	a	18	b
3	b	7	d	11	a	15	b	19	a
4	С	8	d	12	С	16	d	20	a
				EXERC	ISE - III				
1	С	23	a	45	Ь	67	С	89	b
2	d	24	a	46	a	68	a	90	d
3	b	25	b	47	a	69/	d		
4	ď	26	a	48	b	70	a		
5	b	27	b	49	a	71	b		
6	d	28	a	50	\(\frac{b}{b}\)	72	a		
7	С	29	a 🥢	51	a	73	b		
8	С	30	a/ (52	√ ď	. 74	b		
9	·a	31	a	53	¢	75	a		
10	b	32	c	54	/c	76	a		
11	a	33 🥢	a	55	/ a	77	b		
12	b	34	b	56	a	78	С		
13	a	35	(C/)	57	С	79	b		
14	c	36	\ b	58	С	80	С		
15	a /	37	b	59	b	81	a		
16	a	38	b	60	С	82	a		
17	b	39	a	61	b	. 83	a		
18	a	40	a	62	b	84	С		
19	a	41	a	63	d	85	a		
20	b	42	b	64	a	86	b		
21	С	43	a	65	a	87	b		·
22	С	44	a	66	С	88	С		

EXERCISE-IV 1		HO	H3	INSTIT	UTE OF	COMME	RCE				-10.42-
2 b 13 a 24 b 35 a 46 b 3 d 14 a 25 a 36 a 47 a 4 b 15 a 26 c 37 b 48 b 5 a 16 c 27 b 38 d 49 c 6 b 17 a 28 a 39 c 50 b 7 b 18 c 29 a 40 d 51 b 8 a 19 c 30 b 41 d 52 c 9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 64 c 85 a 2 c 23 b						EXER	CISE-IV				
3		1	d	12	d	23	а	34	а	45	a
4 b 15 a 26 c 37 b 48 b 5 a 16 c 27 b 38 d 49 c 6 b 17 a 28 a 39 c 50 b 7 b 18 c 29 a 40 d 51 b 8 a 19 c 30 b 41 d 52 c 9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 53 a 11 b 22 b 33 a 44 a 53 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a		2	b	13	а	24	b	35	а	46	b
5 a 16 c 27 b 38 d 49 c 6 b 17 a 28 a 39 c 50 b 7 b 18 c 29 a 40 d 51 b 8 a 19 c 30 b 41 d 52 c 9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 44 a		3	d	14	а	25	а	36	a	47	а
6 b 17 a 28 a 39 c 50 b 7 b 18 c 29 a 40 d 51 b 8 a 19 c 30 b 41 d 52 c 9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 31 b 11 b 22 b 33 a 44 a 45 a 66 b 87 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 55 c 76 a 97 a 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d		4	b	15	а	26	С	37	b	48	b
7 b 18 c 29 a 40 d 51 b 8 a 19 c 30 b 41 d 52 c 9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 31 b 11 b 22 b 33 a 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d		5	а	16	С	27	b	38	d	49	
8 a 19 c 30 b 41 d 52 c 9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 11 b 22 b 33 a 44 a 11 b 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 11 c 32 b 53 a 74 b 95 b 11 c 32 b 53 a 74 b 95 b 11 c 32 b 53 a 74 b 99 b 11 c 32 b 53 a 74 b 99 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d		6	b	17	а	28	а	39	С	50	b
9 b 20 c 31 b 42 a 53 a 10 a 21 a 32 a 43 a 11 b 22 b 33 a 44 a 1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d		7	b	18	С	29	а	40	d	51	b
10 a 21 a 32 a 43 a		8	a	19	С	30	b	41	d		С
QUESTION BANK 1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 <td></td> <td>9</td> <td>b</td> <td>20</td> <td>С</td> <td>31</td> <td>b</td> <td>42</td> <td>a</td> <td>53</td> <td>a</td>		9	b	20	С	31	b	42	a	53	a
QUESTION BANK 1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b		10	а	21	a	32	а	43	а		
1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b		11	b	22	b	33	а	44	а		
1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b											
1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b											
1 a 22 b 43 a 64 c 85 a 2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b							.,.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
2 c 23 b 44 d 65 b 86 a 3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a	Γ	<u> </u>				QUESTIO	N BANK		.,		
3 a 24 a 45 a 66 b 87 a 4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55		1	a	22	b	43	a	64	С	85	a
4 b 25 c 46 b 67 c 88 a 5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c <td>ľ</td> <td>2</td> <td>С</td> <td>23</td> <td>b</td> <td>44</td> <td>d</td> <td>65</td> <td>b</td> <td>86</td> <td>a</td>	ľ	2	С	23	b	44	d	65	b	86	a
5 a 26 a 47 b 68 b 89 b 6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c <td>ľ</td> <td>3</td> <td>a</td> <td>24</td> <td>a</td> <td>45</td> <td>a</td> <td>66</td> <td>b</td> <td>87</td> <td>a</td>	ľ	3	a	24	a	45	a	66	b	87	a
6 a 27 b 48 a 69 a 90 c 7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b </td <td></td> <td>4</td> <td>b</td> <td>25</td> <td>c</td> <td>46</td> <td>b</td> <td>67</td> <td>c</td> <td>88</td> <td>a</td>		4	b	25	c	46	b	67	c	88	a
7 c 28 d 49 c 70 c 91 b 8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a<	ľ	5	a	26	a	47	b	68	b	89	b
8 b 29 b 50 b 71 c 92 b 9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59		6	a	27	b	48	a ·	69	a	90	С
9 a 30 c 51 b 72 d 93 c 10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 <t< td=""><td></td><td>7</td><td>С</td><td>28</td><td>d</td><td>49</td><td>С</td><td>70</td><td>С</td><td>91</td><td>b</td></t<>		7	С	28	d	49	С	70	С	91	b
10 a 31 b 52 b 73 a 94 b 11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d	Ī	8	b	29	b	50	b	71	C	92	b
11 c 32 b 53 a 74 b 95 b 12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d	Ī	9	a	30	С	51	b	72	d	93	С
12 b 33 c 54 d 75 a 96 b 13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d	ľ	10 .	a	31	b	52	b	73	a	94	b
13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d		11	С	32	b	53	a	74	b	95	b
13 c 34 d 55 c 76 a 97 a 14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d		12	b	33	С	54	d	75	a	96	b
14 b 35 d 56 c 77 d 98 b 15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d	1						С	76	a	97	a
15 b 36 c 57 b 78 d 99 b 16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d	ļ		b	35	d	56	С	77	d	98	b
16 c 37 d 58 a 79 d 100 d 17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d	Ì		b	36	С	57	b	78	d	99	b
17 b 38 b 59 c 80 b 101 b 18 b 39 a 60 c 81 a 102 d					d	58	a	79	d	100	d
18 b 39 a 60 c 81 a 102 d						59	С	80	b	101	b
					a	60	С	81	a	102	d
			b	40	b	61	a	82	a	103	d

62

63

C

b

41

42

C

a

d

20

21

83

84

b

104

a

PARAS

Ì	Space For Notes
	•
-	

PARAS	INSTITUTE OF COMMERCE Space For Notes	-18.44-
	Space For Notes	
	· · · · · · · · · · · · · · · · · · ·	
		<u> </u>