

Additional Question Bank

1.	A coin is tossed	three times. What is th	e probability of getti	ng:[SM]	
	(i) 2 heads				
	(ii) at least 2 head	s.			
	(a) 5/8, 3/2	(b) 3/8, 1/2	(c) 1/8, 3/8	(d) None	
2.	Two dice are thr	own simultaneously. F	ind the probability th	at the sum of points on the two	dice
	would be 7 or m	ore. [SM]			
	(a) 7/12	(b) 6/12	(c) 5/12	(d) None	
3.	What is the chan	ce of picking a spade or	an ace not of spade fro	m a pack of 52 cards? [SM]	
	(a) 3/13	(b) 2/13	(c) 4\lambda13	(d) None	
4.	Find the probab	oility that a four digit n	umber comprising the	digits 2, 5, 6 and 7 would be	
	divisible by 4. [S	SM]			
	(a) 5/3 (b	o) 2/3 (c) 4/3	(d) None		
5.	Given $P(A) = 1/2$	P(AB) = 1/3, P(AB) = 1/3	1/4, the value of P (A-	-B) is[SM]	
	(a) 3/4	(b) 7/12	(c) 5/6	(d) 1/6	
6.	Given P(A)=1/2	P(B)=1/3, P(AB)=1	/4 , the value of P (A/I	B) is[SM]	
	(a)1/2	(b)1/6	(c) 2/3	(d) 3/4	
7.	A card is drown	from each of two well-	-shuffled packs of car	ds.The probability that at leas	t
	one of them is a	n ace is[SM]			
	(a) 1/69	(b) 25/169	(c) 2/13	(d) none	
8.	If $P(A) = 1/4$, $P(A) = 1/4$	(B)=2/5, $P(A+B)=1/2$	then P(AB)is equal t	o[SM]	
	(a) 3/4	(b) 2/20	(c) 13/20	(d) 3/20	
9.	If events A and	B are independent and	d P(A) = 2/3, P(B) = 3/3	5 then P(A+B)is equal to [SM]	
	(a) 13/15	(b) 6/15	(c) 1/15	(d) none	

10.	Which of the following set of function define a probability space on $S = \{a_1, a_2, a_3\}[SM]$								
	(a) $P(a_1) = 1/3$, $P(a_2) = 1$, $P(a_3) = 1/4$ (b) $P(a_1) = 1/3$, $P(a_2) = 1/6$, $P(a_3) = 1/2$								
	(c) $P(a_1) = P(a_2)$	=2/3, P(a ₃)=	= 1/4,		(d)	None			
11.	If $P(a_1) = 0$, $P(a_2) = 0$	$a_2 = 1/3, P($	$(a_3) = 2/3$	then $S = {$	[a ₁ , a ₂ , a ₃]	is a prob	ability sp	ace[SM]	
	(a) true	(b) f			c) both	2	(d) none		
12.	The following o	lata relate	to the dis	tribution (of wages o	of a group	of worker	rs: [SM]	
	Wages in Rs.	50-60	60-70	70-80	80-90	90-100	100-110	110-120	
	No. of workers:	15	23	36	42	17	12	5	
	If a worker is sel	lected at ran	dom fron	the entire	group of v	vorkers, w	hat is the p	robability that	ŧ
	(a) his wage wor	uld be less t	han Rs. 50	?					
	(b) his wage wor	uld be less t	han Rs. 80)?					
	(c) his wage wor	(c) his wage would be more than Rs. 100?							
	(d) his wages would be between Rs. 70 and Rs. 100?								
	(a) 0, 37/75, 17/150, 19/30 (b) 0, 37/75, 17/150, 20/30								
	(c) 0, 37/75, 18/	/150, 19/30			(g)	None.			
13.	Three events A, B and C are mutually exclusive, exhaustive and equally likely. What is the								sthe
	probability of the complementary event of A? [SM]								
	(a) 4/3	(b) 1/3	(c) 2/3	3 4	d) None				
14.	A coin is tossed	l thrice. W	hat is the	probabili	ty of getti	ng 2 or m	ore heads	? [SM]	
	(a) 0.51	(b)	0)50	(c) 0.52		(d) None	e	
15.	Probability of §	getting a he	ad when	two unbias	sed coins a	are tossed	simultane	ously is [SM]	
	(a) 0.25	(b)	0.50	(c) 0.20		(d) 0.75		
16.	If an unbiased	coin is toss	sed twice,	the proba	ability of o	obtaining	at least or	ne tail is [SM]	
	(a) 0.25	(b)	0.50	(c) 0.75		(d) 1.00		
17.	If an unbiased	coin is tosse	d three tin	nes, what i	s the prob	ability of g	etting mo	re that one hea	d? [SM]
	(a) 1/8	(b) 3/8	(c) 1/2	2 (d) 1/3				
18.	Four digits 1, 2	2, 4 and 6 a	re selecte	d at rando	m to forn	n a four di	git numb	er. What is the	e
	probability tha	at the numl	oer so for	med, woul	d be divis	ible by 4?	[SM]		
	(a) 1/2	(b) 1/5	(c) 1/4	4 ((d) 1/3				

19.	A number is s	selected from the first 25 na	atural numbers. Wl	nat is the probability that it would				
	be divisible b	oy 4 or 7? [SM]						
	(a) 9/25	(b) 8/25	(c) 7/25	(d) None				
20.	A number is	selected at random from th	e first 1000 natural	numbers. What is the probability				
	that it would	be a multiple of 5 or 9? [Si	M]					
	(a) 0.29	(b) 0.28	(c) 0.27	(d) None				
21.	The probabil	ity that an Accountant's jo	b applicant has a B	. Com. Degree is 0.85, that he is a C.	A			
	is 0.30 and th	at he is both B. Com. and	CA is 0.25 out of 50	0 applicants, how				
	many would	be B. Com. or CA? [SM]						
	(a) 451	(b) 449 (c) 450	(d) None					
22.	If P(A-B) = 1	If $P(A-B) = 1/5$, $P(A) = 1/3$ and $P(B) = 1/2$, what is the probability that out of the two events A						
	and B, only B	would occur? [SM]						
	(a) 11/30	(b) 12/30	(c) 13/30	(d) None				
23.	There are thi	ree persons A, B and C hay	ving different ages.	The probability that A survives				
	another 5 year	ars is 0.80, B survives ano	ther 5 years is 0.60	and C survives another 5 years is				
				rs is 0.46, B and C survive another				
	years is 0.32 a	nd A and C survive another	r 5 years 0.48. The pr	robability that all these three persor	ıs			
	survive anoth	ner 5 years is 0.26. Find the	probability that at	least one of them survives another	5			
	years. [SM]	(0) 12						
	(a) .9	(b) .5 (c) .7	(d) None					
24.	If a card is di	rawn at random from a pac	ck of 52 cards, what	is the chance of getting a Spade or a	n			
	ace? [SM]							
	(a) 4/13	(b) 5/13	(c) 0.25	(d) 0.20 53.				
25.	A bag contain	ns 12 balls which are numb	pered from 1 to 12. I	f a ball is selected at random, what	is			
	the probabili	ity that the number of the l	ball will be a multip	le of 5 or 6 ? [SM]				
	(a) 0.30	(b) 0.25	(c) 0.20	(d) 1/3				
26.	If two unbiase	ed dice are rolled, what is the p	probability of getting					
	(a) 0.25	(b) 0.50	(c) 0.75	(d) 0.80				

27.	If $P(A) = 3/8$, $P(B)$	= 1/3 and $P(AB) = 1$	then P(A ^C) is equal to	[SM]	e)
	(a) 5/8	(b) 3/8	(c) 1/8	(d) none	
28.	If $P(A) = 3/8$, $P(B)$	$= 1/3$ then $P(B)^C$ is e	qual to[SM]		
	(a) 1	(b) 1/3	(c) 2/3	(d) none	
29.	If $P(A) = 3/8$, $P(B)$	= 1/3 and P(AB)= 1/4	4 then P(A + B)is[SM	[]	
	(a) 13/24	(b) 11/24	(c) 17/24	(d) none	
30.	If $P(A) = 1/5$, $P(B)$	= 1/2 and A and B ar	e mutually exclusive	then P(AB) is [SM]	
	(a) 7/10	(b) 3/10	(c) 1/5	(d) none	
31.	If $P(A) = 7/8$ then	(P(A ^c) is equal to[SN	[]		
	(a) 1	(b) 0	(c) 7/8	(d) 1/8	
32.	A man can kill a b	oird once in three sho	ots.The probabilities	that a bird is not killed i	s [SM]
	(a) 1/3	(b) 2/3	(c) 1	(d) 0	
33.	If on an average 9	ships out of 10 retu	rn safely to a port, th	e probability of one ship	returns
	safely is[SM])	
	(a) 1/10	(b) 8/10	(c) 9/10	(d) none	
34.	If on an average 9	9 ships out of 10 retu	rn safely to a port, th	e probability of one shi	p does not
	reach safely is[S]	M]			
	(a) 1/10	(b) 8/10	(c) 9/10	(d) none	
35.	If $P(A) = 1/4$, $P(B)$	$S) = 1/2, P(A \cup B) = 5$	$5/8$, then P $(A \cap B)$ is		
	(a) 3/8	(b) 1/8	(c) 2/8	(d) 5/8	
36.	Two dice are rolle	ed simultaneously. T	he probability that th	e sum of the two number	rs on the
	dice is a prime nu	ımber is:			
	(a) 7/12	(b) 5/12	(c) 1/2	(d) 1/12	
37.	When two dice an	re thrown the probab	oility of getting 10 or	11 is:	
	(a) 7/36	(b) 5/36	(c) 5/18	(d) 7/16	
38.	The probability o	of choosing at randon	a number that is div	isible by 6 or 8 form amo	ng 1 to 90 is
	(a) 1/6	(b) 11/90	(c) 1/30	(d) 23/90	
39.	Two unbiased six	faced dice are throv	vn. The probability t	nat the sum of the numb	ers on faces
	of them is a prim	e number greater th	an 5 is:		
	(a) 1/6	(b) 1/4	(c) 2/9	(d) 4/9	

40.	Two dice are th	rown at a time Find the	probability that the su	m of the numbers on them is 6.
	(a) 5/36	(b) 1/5	(c) 2/3	(d) 1/3
41.	The probability	of getting a total score of	7 when two unbiased d	ice are thrown simultaneously is:
	(a) $\frac{7}{36}$	(b) $\frac{29}{36}$	(c) $\frac{1}{6}$	(d) $\frac{5}{6}$
42.	A coin is tossed	l 3 times. The probabilit	•	and tail 2 times is:
	(a) $\frac{1}{8}$	(b) $\frac{1}{4}$	(c) $\frac{3}{8}$	(d) $\frac{1}{2}$
43.	One of the two	mutually exhaustive ev	ents A and B must occ	ur. If $P(A) = 2/3 P(B)$, the odds i
	favour of B are	e:		
	(a) 1:2	(b) 2:1	(c) 2:3	(d) 3:2
44.	The probabilit	ies of two events A and H	3 are 0.25 and 0.40 res	pectively. The probability that
	both A and B o	ccur is 0.15. The probab	ility that neither Anor	Boccours is:
	(a) 0.35	(b) 0.65	(c) 0.5	(d) 0.75
45.	A bag contains	5 black balls, 4 white b	alls and 3 red balls. If	ball is selected at random, the
	probability tha	nt it is either red or black	is:	
	(a) 1/3	(b) 1/4	(c) 5/12	(d) 2/3
46.	A card is draw	n from a pack of 100 car	ds numbered 1 to 100.	The probability of drawing a
	number which	is a square is:		
	(a) 1/5	(b) 2/5	(c) 1/10	(d) None of these
47.	The probabilit	y that a man will live 10	more years is 1/4 and t	he probability that his wife will
	live 10 more ye	ears is 1/3. Then, the pro	bability that neither v	vill be alive in 10 years is:
	(a) 5/12	(6) 1/2	(c) 7/12	(d) 11/12
48.	If three dice ar	e thrown simultaneousl	y then the probability	of getting a score of 5 is
	(a) 5/216	(b) 1/6	(c) 1/36	(d) 1/72
49.	Three identical	dice are rolled. The proba	bility that the same num	ber will appear on each of them is:
	(a) 1/6	(b) 1/36	(c) 1/18	(d) 3/28
50.	Two dice are th	rown together. The proba	ability that at least one v	vill show its digit greater than 3 is:
	(a) 1/4	(b) 3/4	(c) 1/2	(d) 1/8
51.	If E is an even	t, then $P(\overline{E})$ is equal to		
	(a) P(E)	(b) $1 - P(E)$	(c)-P(E)	(d) $1 + P(E)$
52.	A card is draw	n at random from a well	shuffled pack of 52 car	rds. The probability of getting a

	heart or a diamo	ond is:		
	(a) 1/26	(b) 1/2	(c) 3/13	(d) 1
53.	If there are 3. ch	nildren in a family, th	en probability that there	is a one girl in the family is:
	(a) 2/3	(b) 1/3	(c) 3/28	(d) 3/8
54.	If the probabilit	y of a horse A winnin	g a race is 1/6 and the pro	bability of a horse B winning
	the same race is	1/4. What is the prob	ability that none of them	will win?
	(a) 5/12	(b) 5/8	(c) 1/12	(d) None of these
55.	The chance of g	etting 7 or 11 in a thr	row of 2 dice is:	
	(a) 7/9	(b) 5/9	(c) 2/9	(d) None of these
56.	Two dice are thi	rown together. The pr	obability of the event tha	t the sum of numbers shown in
	greater than 5 is	s:		
	(a) 13/18	(b) 15/18	(c) 1	(d) None of these
57.	Probability of th	rowing an odd numb	er with an ordinary six fa	ced dice is:
	(a) 1/2	(b) 1	(c)-1/2	(d) 0.
58.	Three coins are	tossed together. The	probabiltly of getting ex	actly two heads is
	(a) 5/8	(b) 3/8	(c) 1/8	(d) None of these
59.	The probability	of getting a number b	etween 1 and 100 which is	s divisible by 1 and itself only is
	(a) 25/100	(b) 25/98	(c) 24/99	(d) 24/98
60.	A card is drawn	at random from a pa	cket of 100 cards number	red 1 to 100. The probability o
	drawing a numl	oer which is a square	is:	
	(a) 10/100	(b) 9/100	(c) 2/100	(d) 50/100
61.	A number is cho	osen at random amon	g the first 120 natural nu	mbers. The probability of the
	number chosen	being a multiple of 5	or 15 is:	
	(a) 1/8	(b) 1/7	(c) 1/6	(d) 1/5
62.	With the unusu	al notations $P(\overline{A})=3$	$/4$, $P(B) = p$, $P(A \cup B) = 1$	1/3, Also. A, B are mutually
	exclusive event	s. Then, p =		
	(a) 1/12	(b) 1/4	(c) 1/2	(d) 2/3
63.	In a family, the	re are 3 children. Wh	at is the probability that t	he family has no male child
	assuming that t	he chances of a child	being a male or female a	re equal ?
	(a) 1/8	(b) 7/8	(c) 3/8	(d) 2/3
64	A salesman has	a 60% chance of mal	king a sale to each custon	ner. The behaviour of successiv

	customers is in	ndependent. If two custo	mers A and B enter,	what probability that the salesman
	will make a sa	ale to A or B?		
	(a) 0.36	(b) 0.84	(c) 0.96	(d) 0.74
65.	What is the pr	robability that a non-lear	year should have 5	3 Mondays?
	(a) 6/7	(b) 1/7	(c) 2/7	(d) 5/7
66.	A number is se	lected from 1, 2, 30at ran	ndom. The probability	y that the number selected is prime is:
	(a) 1/10	(b) 1/15	(c) 11/30	(d) 1/3
67.	When a coin i	s tossed three times, the	probability of gettin	g exactly one tail or two tails or:
	(a) 5/8	(b) 3/4	(c) 7/8	(d) 2/6
68.	If $P(A) = 1/4$,	$P(B) = 1/2; P(A \cup B) = 5A$	/8, then $P(A \cap B)$ is	:
	(a) 3/8	(b) 1/8	(c) 2/8	(d) 5/8
69.	When two dic	e are thrown, the probab	ility of getting equal	numbers is:
	(a) 3/36	(b) 1/36	(c) 6/36	(d) None of these
70.	Three integers	s are chosen at random w	vithout replacement	from the first 20 natural numbers.
	The probabili	ty that the product is eye	n is:	
	(a) $2/19$	(b) 14/19	(c) 15/19	(d) 17/19
71.	If a card is draw	wn at random from a pack	of 52 cards, what is t	he chance of getting a spade or an ace
	(a) 4/13	(b) 5/13	(c) 0.25	(d) 0.20
72.	Probability of	getting a head when two	unbiased coins are	tossed simultaneously is:
	(a) 0.25	(b) 0.50	(c) 0.20	(b) 0.72
73.	If an unbiased	l die is rolled once, the od	ds in favour of gettin	g a point which is a multiple of 3 is:
	(a) 1:2	(b) 2;1	(c) 1:3	(d) 3:1
74.	When two unl	biased coins are tossed. T	The probability of ob	taining 2 heads is:
	(a) 0	(b) 1/4	(c) 3/4	(d) 1/2
75.	What is the ch	nance of throwing at leas	t 7 in a single cast w	ith 2 dice?
	(a) 5/12	(b) 7/12	(c) 1/4	(d) 17/36
76.	A bag contain	s 12 balls which are num	bered from 1 to 12.	If a ball is selected at random, wha
	is the probabi	lity that the number of th	ne ball will be a mult	iple of 5 or 6?
	(a) 0.30	(b) 0.25	(c) 0.20	(d) 1/3

Four digits 1, 2, 4 and 6 are selected at random to form a four digit number. What is the probability

	mai me number s	o iormea, would be	iivisible by 4:		
	(a) 1/2	(b) 1/5	(c) 1/4	(d) 1/3	
78.	If two unbiased d	ice are rolled, what i	s the probability of gettin	g points neither 6 nor 9?	
	(a) 0.25	(b) 0.50	(c) 0.75	(d) 0.80	
79.	Mr. Roy is selecte	d for three separate	posts. For the first post,	there are three candidates,	
	for the second, th	ere are five candida	tes and for the third, the	e are 10 candidates.	
	What is the proba	ability that Mr. Roy	would be selected? [SM]		
	(a) 12/25	(b) 13/25	(c) 11/25	(d) None	
80.	The independent p	robabilities that the th	ree sections of a costing depa	artment will encounter a com	puter
	error are 0.2, 0.3	and 0.1 per week resp	pectively what is the prob	ability that there would be	[SM]
	(i) at least one com	puter error per week?			
	(ii) one and only or	ne computer error per	week?		
	(a) 0.50, 0.40	(b) 0.50, 0.41	(c) 0.51, 0.40	(d) None	
81.	If for two indepen	dent events A and B,	$P(A \cup B) = 2/3$ and $P(A)$	= 2/5, what is P(B)? [SM]	
	(a) 4/15	(b) 4/9	(d) 7/15		
82.	For three events	A, B and C, the prob	ability that only A occur	is [SM]	
	(a) P (A)	(b) P(A∪B∪0	(c) $P(A \cap B \cap C)$	(d) $P(A \cap B' \cap C')$	
83.	The probability the	hat a card drawn at i	andom from the pack of	playing cards may be eithe	ra
	queen or an ace i	s[SM]			
	(a) 2/13	(b) 11/13	(c) 9/13	(d) none	
84.	The chance of ge	tting 7 or 11 in a thro	ow of 2 dice is [SM]		
	(a) 7/9	(b) 5/9	(c) 2/9	(d) none	
85.	Two students wor	rk independently on	a problem. The probabili	ty that the first one will sol	ve it
	is 3/4 and the prol	bability that the seco	nd one will solve it is 2/3. T	The probability that the pro	blem
	is solved is:				
	(a) 11/12	(b) 7/12	(c) 5/12	(d) 1/12	
86.	A and B are mutual	lly exclusive events with	$P(A)=1/2 P(B)$ and $(A \cup B)$)=S, the sample space. Then	P(A)=
	(a) $2/3$	(b) 1/3	(c) 1/4	(d) 3/4	
87.	A problem in exa	mination is given to	3 students A, B and C wl	nen chances of sloving it ar	'e

	6:5. The changes	s that neither A nor B o	ccurs is:	
	(a) 52/77	(b) 25/77	(c) 10/77	(d) 12/77
99.	The probability tha	t the events (independent)	A and B occur are 0.2 and 0.5	respectively. The probability
	that both A and B	occur simultaneously i	is 0.15. The probability tha	nt neither Anor Boccurs is
	(a) 0.55	(b) 0.5	(c) 0.45	(d) 0.35
100.	If the probability	for A to fail in an exam	ination is 0.2 and that for l	B is 0.3, then the probabili
	that either A fails	or B fails is:		
	(a) 0.5	(b) 0.44	(c) 0.06	(d) None of these
101.	The odds in favou	ır of one student passir	ng a test are 3:7. The odds	against another student
	passing it are 3:5	. The probability that	both pass is:	
	(a) 5/16	(b) 21/80	(c) 9/80	(d) 3/16
102.	The odds in favou	ır of one student passir	ng a test are 3: 7. The odds	s against another student
	passing at are 3:5	5. The probability that	both fail is:	
	(a) 7/16	(b) 21/80	(c) 9/80	(d) 3/16
103.	Find the odds aga	inst drawing 2 red ball	s from a bag containing 3 r	ed and 2 voilet balls.
	(a) 3:7	(b) 7:3	(c) 2:1	(d) 3:2
104.	Let A and B be two	o events, such that P(A)	$= 0.3 \text{ and } P(A \cup \overline{B}) = 0.8,$	If A and B are independen
	events, then P(B)	=		
	(a) 5/7	(b) 2/7	(c) 1/2	(d) None of these
105.			particular persons togethe	er, out of n persons seated
	round a circular ta	(b) (n-2):2		
	(a) $2: (n-3)$	(b) $(n-2):2$	(c) $2: (n-2)$	(d)(n-3):2
106.	If A and B are two	events, such that P (A	(A) = 1/2 and P(B) = 2/3, the	en
	(a) $P(A \cup B) \ge 2$	/3 (b) $P(A \cup B) \le 2$	/3 (c) $P(A \cup B) \ge 1/2$	(d) $P(A \cup B) \le 1/2$
107.	The probability the	hat a student passes a p	ohysics test is 2/3 and the p	probability that he passes
	both a physics tes	t and an English Test i	s 14/45. The probability tl	nat he passes at least one
	test is 4/5. What is	s the probability that h	ne passes the English Test?	
	(a) 4/9	(b) 1/20	(c) 4/5	(d) 2/6
108.	The odds against	A solving a problem ar	e 8 to 6 and odds in favou	r of B solving the same

Paras

			~~~ ~ ~~	02 002					
	problem a	re 14 to 10	). What is t	he probab	ility the if b	oth of them t	ry the pi	roblem, it will be solv	ed?
	(a) 31/32		(b) 16/2	1	(c) 5/2	1 .		(d) 1/32	
09.	A, B, C are	e three m	utually inc	dependen	t with prob	abilities 0.3,	0.2 and	0.4 respectively. Wl	ıat
	is $P(A \cap B)$	$\cap C$ )?							
	(a) 0.400		(b) 0.24	0	(c) 0.0	24		(d) 0.500.	
10.	For three	events A,	B and C,	he probal	bility that o	nly A occur	is:		
	(a) P (A)		(b) P (A	$(\cup B \cup C)$	(c) P(2	$A' \cap B \cap C$		(d) $P(A \cap B' \cap C')$	
11.	Rupesh is	known to	hit a targ	et in 5 out	of 9 shots w	hereas Dav	id is kno	own to hit the same ta	arge
	in 6 out of	11 shots.	What is th	e probabi	lity that the	target woul	d be hit	once they both try?	[SM
	(a) 76/99		(b) 78/9	9	(c) 79/	99	(d) N	None	
12.	A pair of c	lice is thr	own toget	her and th			The second	is noted to be 10. W	hat i
					: <del></del> -	the point 4?			
	(a) 2/3	(b) 1		(c) 4/3	(d) No				
13.	,	2.00			\ \	10	other e	vent is 3 : 7. Find th	e
				10	ents occurs				Ì,
	(a) 27/50	iy illat oli	(b) 26/5		(c) 28/		(d) N	None	
			(1)			/	(u) 1	None	
14.	There are	three bo	xes with th	e followin	ng composi	tions : [SM]			
	Colour	Blue	Red	White	Total				
	Box	5	8						
	I			10	23				
	III	3	9	8 7	21 16				

One ball in drawn from each box. What is the probability that they would be of the same colour?

(a) 1051/7728 (b) 1050/7728 (c) 1052/7728 (d) None

115. Two balls are drawn from a bag containing 5 white and 7 black balls at random. What is the probability that they would be of different colours? [SM]

- (a) 35/66
- (b) 30/66
- (c) 12/66
- (d) None of these

116. The odds in favour of one student passing a test are 3:7. The odds against another student



	passing at are	5.5.1 he probability tha	r norm bass is[SMI]					
	(a) 7/16	(b) 21/80	(c) 9/80	(d) 3/16				
117.	The odds in fa	vour of one student pas	sing a test are 3:7.Th	e odds against another	student			
	passing at are	3:5. The probability tha	nt both fail is[SM]					
	(a) 7/16	(b) 21/80	(c) 9/80	(d) 3/16				
118.	If the probabi	lity of a horse A winning	a race is 1/6 and the	probability of a horse B	winning			
	the same race	is 1/4 , what is the proba	ability that one of the	horses will win[SM]				
	(a) 1/3	(b) 7/12	(c) 1/12	(d) none				
119.	If the probabil	lity of a horse A winning	a race is 1/6 and the p	robability of a horse B w	inning the			
	same race is 1	/4 , What is the probabil	ity that none of them	will win[SM]	*			
	(a) 5/12	(b) 5/8	(c) 1/12	(d) none				
120.	A salesman h	as 80 percent chances o	of making a sale to	each customer. The bel	naviour of			
	succesive customer is assumed to be independent. If 2 customers A and B enter, what is the							
	probability tl	hat salesman will make	a sale to A or B?					
	(a) 24/25	(b) 23/25	(0) 21/25	(d) None				
121.	The probabili	ty that A can solve a pro	blem is 2/3 and that	B can solve is 3/4. If bot	h of them			
	attempt the pi	roblem, what is the prob	ability that the probl	em get solved?				
	(a) 11/12	(b) 7/12	(b) 5/12	(d) 9/12.				
122.	A and B are e	vents and $P(A) = 0.4$ , $P$	$(A \cup B) = 0.7$ . If A ar	d B are independent, th	nen P (B) is:			
	(a) 0.2	(b) 0,3	(c) 0.4					
123.	The probabili	ty of getting qualified in	IIT JEE and AIEEE	by a student are respec	tively 1/5			
	and 3/5. The p	probability that the stud	ent gets qualified fo	r at least one of these tes	sts is:			
	(a) 3/25	(b) 17/25	(c) 22/2	5 (d) 8/25				
124.	The probabili	ty that A speaks truth is	4/5, while this proba	bility for B is 3/4. The pr	obability			
	that they cont	radict each other when	asked to speak on a	fact is:				
	(a) 7/20	(b) 1/5	(c) 3/20	(d) 4/5				
125	Cover halls on	o drawn simultan oously	from a hag containin	s 5 white and 6 green hal	ls The			



(a)  $\frac{7}{11}C_{7}$ 

130.

131.

132.

133.

(a) 15/16.

(a) 1/20

(a) 3/5

probability of drawing 3 white and 4 green balls is

126.	In a class, 30% of the	students offered MAT	HEMATICS, 20% o	ffered BIOLOGY and 1	0%
	offered both, If a student	is selected at random, wha	t is the probability that h	e has offered MATHEMAT	ICS
	or BIOLOGY?				
	(a) 1/3	(b) 2/3	(c) 2/5	(d) 3/5	
127.	A Speaks truth in 75%	cases and B speaks tru	th in 80% cases. The p	proability that they contra	adict
	each other in a stater	nent is:			
	(a) 7/20	(b) 13/20	(c) 3/5	(d) 2/5	
128.	If $P(A) = \frac{2}{3}$ , $P(B) = \frac{2}{3}$	$\frac{3}{5} \text{ and } P(A \cup B) = \frac{5}{6} \text{ the}$	en $P\left(\frac{A}{p!}\right)$ is		
	,	,	(B)		
	(a) $\frac{7}{12}$	(b) $\frac{5}{12}$	(c)	(d) $\frac{1}{2}$	
	12	12	45	2	
129.	There are 6 positive and	8 negative numbers. Fou	r numbers are selected	at random without replace	men
	and multiplied. Find	the probability that the	product is positive.		
	(a) $\frac{420}{1001}$	(b) $\frac{409}{1001}$	(c) $\frac{70}{1001}$	(d) $\frac{505}{1001}$	
	^(a) 1001	1001	$\frac{(c)}{1001}$	1001	
		A DOMESTIC OF THE PARTY OF THE			

(c) 1/4

An urn contains 3 white and 3 red balls. Balls are taken out one by one at random from the urn

(c) 9/120

3 mangoes and 3 apples are in a box. If 2 fruits are chosen at random, the proability that one

(c) 1/36

There are four letters and four envelops bearing addresses at random. The proability that the

and kept in a row. The chance that the balls are alternatively of different colours is:

The probability of having at least one tail in 4 throws with a coin is:

(b) 1/10

(b) 5/6

(b) 1/16

is a mango and the other is an apple is:

(b)  $\frac{{}^{5}C_{3} + {}^{6}C_{4}}{{}^{11}C_{7}}$  (c)  $\frac{{}^{5}C_{2} \cdot {}^{6}C_{2}}{{}^{11}C_{7}}$  (d)  $\frac{{}^{6}C_{3} \cdot {}^{5}C_{4}}{{}^{11}C_{7}}$ 

(d) 1.

(d) None of these

(d) None of these

(d) None of these



	INSTITU	TE OF COM	MERCE	3	-16.14-
	letters are placed in	n correct enve	elops is:		
	(a) 23/24	(b) 9/24	(c) 1/16	(d) 1/24	
134.	From a well shuffled pack of	f playing cards	, two cards are drawn	one by one witho	ut replacement.
	The probability that both a	are aces is:			
	(a) 2/13	(b) 1/51	(c) 1/221	(d) N	Ione of these
135.	An urn contains 9 balls two	of which are	red, three blue and fo	our black. Three	balls are drawn
	at random. The probabilit	y that they are	e of same colour is :		
	(a) 5/84	(b) 3/9	(c) 3/7	(d) 7	/17
136.	From a pack of cards, two	are drawn, th	e first being replaced	before the secon	nd is drawn. The
	chance that the first is a di	amond and th			
	(a) 13/4	(b) 4/13	(9) 1/52	(d) 1	/104
137.	Let A and B be two independent	ndent events.	The probability that	both A and B oc	cur is 1/2 and the
	probability the neither A n	or B occurs is	1/2. The respective p	robabilities of A	and B are:
	(a) 1/6 and 1/2	(b) 1/2 and	1/6 (c) 1/3 and	l 1/4 or 1/4 and 1/	(d) None
138.	From a pack of cards two c	ards are draw	n successfully at ran	dom without rep	lacement. Find
	the chance that the first is	a king and th	e second is a queen.		
	(a) 1/663	(b) 4/663	(c) 2/663	(d) N	Ione of these
139.	Three electric lamps are fi	tted in a room	.3 bulbs are chosen a	at random from 2	20 bulbs having
	16 good bulbs. The probab	oility that the	room is lighted is		
	(a) 282/285	(b) 283/285	(c) 284/28	5 (d) 2	81/285
140.	A five figure number is for	med by the dia	gits 4, 5, 6, 7, 8 (no dig	it being repeated	in any number).
	Find the probability that the	he number for	med is divisible by 5.		
	(a) 1/5	(b) 4/5	(c) 1/30	(d) 1	/336
141.	A speaks truth in 80% case	es and B in 70°	% cases. The probabi	lity that they will	l contradict each
	other in a single event is:				
	(a) 0.12	(b) 0.38	(c) 0.36	(b) (	).40
142.	Two balls are drawn form a b	ag containing 5	5 white and 7 black balls	s at random. What	is the probability

that they would be of different colours?

(a) 35/66

143.

(b) 30/66

(c) 12/66

Tom speaks truth in 30% cases and Dick speaks truth in 25% cases. What is the probability



that th	hey would contradict each	other?						
	(a) 0.35	(b) 0.400	(c) 0.925	(d) 0.075				
144.	A, B, C are three mutua	lly independent with <b>p</b>	probabilities 0.3 , 0.2 a	nd 0.4 respectively. What				
	$P(A \cap B \cap C)$ ?							
	(a) 0.400	(b) 0.240	(c) 0.024	(d) 0.500				
145.	If events A and B are inc	dependent and P(A) =	2/3, $P(B) = 3/5$ then 3	P(A+B) is equal to (SM)				
	(a) 13/15	(b) 6/15	(c) 1/15	(d) none				
146.	6. If $P(A) = 3/8$ , $P(B) = 1/3$ and $P(AB) = 1/4$ then $P(A+B)$ is							
	(a) 13/24	(b) 11/24	(c) 17/24	(d) none				
147.	What is the probability t	hat 4 children selected	l at random would hav	ve different birthdays?				
	(a) $\frac{364 \times 363 \times 362}{(365)^3}$	(b) $\frac{6 \times 5 \times 4}{7^3}$	(c) 1/365	(d) $(1/7)^3$				
148.	There are two boxes containing 5 white and 6 blue balls and 3 white and 7 blue balls resectively							
	If one of the boxes is selected at random and a ball is drawn from it, then the probability that							
	the ball is blue is:		3					
	(a) 115/227	(b) 83/250	(c) 137/220	(d) 127/250				
149.	Let A and B be the events	with $P(A)=1/3$ , $P(B)=$	= 1/4 and P(AB)= 1/12 t	hen P(A/B) is equal to [SM				
	(a)1/3	(b)1/4	(c) 3/4	(d) 2/3				
150.	Let A and B be the events	with $P(A) = 2/3$ , $P(B) =$	1/4 and P(AB)= 1/12 tl	hen P(B/A) is equal to[SM]				
	(a) 7/8	(b) 1/3	(c) 1/8	(d) none				
151.	A family has 2 children. The	probability that both of t	hem are boys if it is know	n that one of them is a boy[SM				
	(a) 1	(b) 1/2	(c) 3/4	(d) none				
152.	The Probability of the o	ccurrence of a number	r greater then 2 in a th	row of a die if it is known				
	that only even numbers	can occur is[SM]						
	(a) 1/3	(b) 1/2	(c) 2/3	(d) none				
153.	A player has 7 cards in l	nand of which 5 are re	d and of these five 2 a	re kings. A card is drawn				
	at random. The probabi	ility that it is a king, it	being known that it is	red is[SM]				
	(a) 2/5	(b) 3/5	(c) 4/5	(d) none				
154.	In a class 40 % students	read Mathematics, 25	5 % Biology and 15 %	both Mathematics and				

Biology. One student is select at random. The probability that he reads Mathematics if it is



	known that he reads Biol	logy is[SM]					
	(a) 2/5	(b) 3/5	(c) 4/5	(d) none			
155.	In a class 40 % students i	read Mathematics, 25	5 % Biology and 15 %	% both Mathematics and			
	Biology. One student is so	elect at random.The	probability that he r	eads Biology if he reads			
	Mathematics[SM]						
	(a) 7/8	(b) 1/8	(c) 3/8	(d) none			
156.	A bag X contains 2 white	and 3 black balls and	d another bag Y cont	ains 4 white and 2 black			
	balls. One bag is selected	at random and a bal	l is drawn from it. T	hen the probability for the			
	ball chosen be white is to						
	(a) 2/15	(b) 7/15	(0) 8/15	(d) 14/15			
157.	Suppose E and F are two	events of a random ex	xperiment. If the pro	bability of occurrence of E is			
	1/5 and the probability of occurrence of F given E is 1/10, then the probability of non-occurrence						
	of at least one of the events E and F is:						
	(a) 1/18	(b) 1/2	(e) 49/50	(d) 1/50			
158.	A and B are events, such	that P $(A \cup B) = 3/4$ ,	$P(A \cap B) = 1/4, P($	$\overline{A}_1 = 2/3$ , then $P(\overline{A} \cap B)$ is:			
	(a) 5/12	(b) 3/8	(c) 5/8	(d) 1/4			
159.	Three letters are written	to different persons a	and addresses on the	envelops are also written.			
	Without looking at the addresses, the letters are put into the envelops; the probability that						
	letters go into right enve	lops is:					
	(a) 1/27	(b) 1/6	(c) 1/9	(d) 1/8			
160.	The probability that a marksman will hit a target is given as 1/5. Then, the proability of at						
	least one hit in 10. shots	is		(4)10			
	(a) $\frac{1}{5^{10}}$	(b) $1 - \left(\frac{4}{5}\right)^{10}$	(c) $1-\frac{1}{5^{10}}$	(d) $\left(\frac{4}{5}\right)$			
161.	If $P(A \cap B) = 0.15$ , $P(B)$	C ) = 0.10, then P ( $A/$	(B) is	(3)			
	(a) 1/3	(b) 1/4	(c) 1/5	(d) 1/6			
162.	An urn contains 7 green	and 5 yellow balls. To	wo balls are drawn a	t a time. The probability that			
	both balls are of same co	olour is:					
	(a) 1/33	(b) 5/33	(c) 7/22	(d) 31/66			
163	A and B are two events s	uch that $P(A) = 1/3$ . P	P(B) = 1/4, P(A+B) =	1/2, then P (B/A) is equal to			

	(a) 1/4	(b) 1/3	(c) 1/2	(d) None of these			
164.	The probability of the occ	currence of a numbe	r greater then 2 in a tl	nrow of a dice if it is known			
	that only even nos. can oc	cur is:					
	(a) 1/3	(b) 1/2	(c) 2/3	(d) None of these			
165.	A player has 7 cards in ha	and of which 5 are re	ed and of these five 2 a	are kings. A card is drawn			
	at random. The probabili	ty that it is a king, it	being known that it is	red is:			
	(a) 2/5	(b) 3/5	(c) 4/5	(d) None of these			
166.	If $P(E) = 0.3$ , $P(F) = 0.2$	and $P(E \cup F) = 0.4$ ,	$\mathbf{P}\left(\overline{E}\cup F\right)^{c}=$				
	(a) 0.4	(b) 0.3	(c) 0.2	(d) 0.1			
167.	A bag contains 3 white, 3 k	olack and 2 red balls.	One by one, 3 balls ar	e drawn without replacing			
	them. For only the third b	oall to be red, The pr	obability is:				
	(a) 5/28	(b) 3/28	(c) 3/56	(d) 1/28			
168.	6 boys and 6 girls sit in row at random. The probability that all the girls sit together is:						
	(a) 1/432	(b) 12/431	(c) 1/132	(d) None of these			
169.	Seven boys and six girls sit in a row at random. Find the probability that no two boys and no						
	two girls sit together.						
	(a) 7/132	(b) 5/264	(c) 1/1716	(d) None of these			
170.	The letters of the word FAILURE are arranged at random. Find the probability that the consonants						
	may occupy odd positions						
	(a) 1/210	(b) 4/35	(c) 6/35	(d) None of these			
171.	If two events A and B are	such that $P(\overline{A}) = 0.3$	$P(B) = 0.4 \text{ and } P(A \cap A)$	$\overline{B}$ ) = 0.5, then $P(B/\overline{A} \cup \overline{B})$			
	(a) 1/3	(b) 1/4	(c) 1/2	(d) 1/5			
172.	The letters of the word UNIVERSITY are arranged at random. Find the probability for I's not						
	come together.						
	(a) 9/10	(b) 1/10	(c) 1/5	(d) 4/5			
173.	A single letter is selected at ra	andom from the word	PROBABILITY'. The	probability that it is a vowel is			
	(a) 3/11	(b) 4/11	(c) 2/11	(d) 0.			
174.	For a student, the probab	ility of getting pass i	n one paper is 75% an	d the probability of getting			



	pass in anomer paper is	oo 70. The probability	ty for the student to pa	ass in one paper (or the
	two papers) only is:			
	(a) 3/10	(b) 13/20	(c) 11/20	(d) 9/20
175.	What is the probability t	hat four S's appear o	consecutively in the wo	ord MISSISSIPPI assuming
	that the letters are arran	ged at random?		
	(a) 8/165	(b) 4/165	(c) 2/33	(d) None of these
176.	3 Students are chosen at	random from a clas	s consisting of 12 boys	s and 4 girls. Find the
	probability for 3 chosen	students to be boys.		
	(a) 11/28	(b) 17/28	(c) 1/28	(d) 4/28
177.	A, B stood along with 10	others in a row. The	proability of the event	of always having 3 persons
	between A and B is:			
	(a) 2/33	(b) 1/132	(c) 2/15	(d) 8/33
178.	The letters of the word AR	TICLE are arranged	at random. Find the pr	obability that the consonants
	may occupy odd places.			
	(a) 1/840	(b) 1/210	(e) 1/35	(d) None of these
179.	The letters of the word S	UCCESS are arran	ged at random. The pr	obability that the vowels
	occupy even places is:	C D		
	(a) 1/6	(5)1/7	(c) 1/5	(d) 2/5
180.	Six boys and six girls sit	in a row only. The p	robability that the bo	ys and girls sit alternately is:
	(a) 1/132	(b) 1/462	(c) 1/480	(d) 1/12
181.	The letters of the word	TRIANGLE' are ar	ranged at random. Fin	d the probability that the
	word so formed starts w	ith T and ends with	R	
	(a) 2/8!	(b) 6/8!	(c) 1/28	(d) 1/56
182.	Urn A contains 6 red and	d 4 black balls and u	rn B contains 4 red ar	nd 6 black balls. One ball is
	drawn at random from u	ırn A and placed in u	rn B. Then one ball is	drawn at random from urn B
	and placed in urn A. If on	e ball is now drawn fo	orm urn A, the probabi	lity that it is found to be red is:
	(a) 32/55	(b) 42/55	(c) 36/55	(d) none of these
183.	A bag contains 5 red, 3	black balls and a sec	ond bag contains 4 re	d and 5 black balls. One of

the bags is chosen at random and a draw of two balls is made from it. Find the chance that one



	is red and th	e other is black	۷.				
	(a) 15/56		(b) 5/18	(c) 275	5/504	(d) 229/504.	
184.	There are tv	vo boxes. In the	first box, th	ere are 4 white, 5	black balls.	In the second be	ox, there
	are 5 white.	4 black balls. A	ball at rando	m is drawn from	the first box	and transferred	to the
	second box.	Then, if a ball is	drawn at ran	dom from the sec	ond box, find	l the probabilitty	for the
	drawn ball to	o be white.					
	(a) 2/81		(b) 59/90	(c) 49/	/90	(d) 41/90.	
185.	Two coins an	re tossed simult	aneously. Wh	nat is the probabi	lity that the	second coin wou	ld show
	a tail given t	hat the first co	in has shown	a head?			
	(a) 0.50		(b) 0.25	(6) 0.7	75	(d) 0.	125
186.	A committee	e of 7 members	is to be forme	ed from a group o	comprising 8	gentlemen and	
	ladies. Wha	t is the probabi	lity that the c	ommittee would	comprise: [S	M]	
	(i) 2 ladies,						
	(ii) at least 2	2 ladies.		JAN.			
	(a) 141/429,	391/429	(b) 142/429	(c) 14	0/429, 392/42	29 (d) No	one
187.	In a group o	of 20 males and	15 females,	2 males and 8 fe	males are se	rvice holders. W	/hat
	is the proba	bility that a per	son selected	at random from t	the group is a	service holder g	given that
	the selected	person is a ma	ile? [SM]				
	(a) 0.60	(b) 0,	61	(c) 0.62	(d) ?	None	
188.	A lot of 10 el	ectronic compo	nents is know	n to include 3 defe	ective parts. I	f a sample of 4 co	mponents
	is selected at	t random from	the lot, what i	s the probability	that this sam	ple does not con	tain more
	than one de	efectives? [SM]			*		
	(a) $2/4$	(b) 2/3	(c) 2/5	(d) None			
189.	There are tv	vo urns contain	ing 5 red and	l 6 white balls and	d 3 red and 7	white balls resp	ectively. If
	two balls are	drawn from the	first urn with	out replacement an	ıd transferred	to the second ur	n and then
	a draw of and	other two balls is	made from it, v	what is the probabil	lity that both t	he balls drawn are	red? [SM]
	(a) 66/726	(b) 6'	7/726	(c) 65/726	(d)	None	. 4
			y San				2 24 8 -



190.	There are 3 boxes with the following composition: [SM]							
	Box I: 7 Red + 5 White + 4 Blue balls							
	Box II: 5 Red + 6 White + 3 Blue balls							
	Box III: 4 Red + 3	White + 2 Blue balls	=					
	One of the boxes is se	elected at random an	d a ball is drawn from i	t. What is the probability				
	that the drawn ball i	s red?						
	(a) 1239/3024	(b) 1249/3024	(c) 1229/3024	(d) None				
191.	What is the chance	of getting at least one	e defective item if 3 ite	ns are drawn randomly fr	om a			
	lot containing 6 items of which 2 are defective item? [SM]							
	(a) 0.30	(b) 0.20	(c) 0.80	(d) 0.50				
192.	If A, B and C are mut	tually exclusive indep	endent and exhaustive e	vents then what is the proba	bility			
	that they occur simultaneously? [SM]							
	(a) 1	(b) 0.50	(c) 0 (d) a	ny value between 0 and 1				
193.	If $P(A) = p$ and $P(I)$	B) = q, then [SM]						
	(a) $P(A/B) \ge p/q$	(b) P(A/B)≤p/q	(c) $P(A/B) \leq q/p$	(d) None of these				
194.	If $P(\overline{A} \cup \overline{B}) = 5/6$ , 1	$P(A) = \frac{1}{2}$ and $P(\overline{B})$	= $2/3$ , what is $P(A \cup A)$	B)?[SM]				
	(a) 1/3 (b) 5/	6 (c) 2/3	(d) 4/9					
195.	If variance of a ran	odm variable x is 23	, then what is the varia	ance of $2x+10$ ?				
	(a) 56	(b) 33)	(c) 46	(d) 92				
196.	If $x$ and $y$ are range	dom variables havin	g expected values as 4.	5 and 2.5 respectively, the	n the			
	expected value of (	expected value of $(x-y)$ is						
	(a) 2	(b) 7	(c) 6	(d) 0				
197.	There are 3 black a	nd 2 white balls in a	box. Two balls are take	en at random from it. The				
	expected number of white balls is:							
	(a) 1/5	(b) 4/5	(c) 3/5	(d) 2/5				
198.	There are 10 electri	c bulbs in a box in wl	hich 3 are defective bul	bs. If 3 bulbs are selected a	t			
	random from the bo	ox, then the expected	number of defective b	ulbs is:				
	(a) 0.7	(b) 0.9	(c) 0.6	(d) 0.5				



199.	Two coins are tossed simultaneously. A person receives Rs. 8 for each head and looses Rs. 10							
	for each tail. The expected valu	for each tail. The expected value of the amount gained by him (in rupees) is:						
	(a) 2 (b)	)-2 (c) 3	(d)-4					
200.	A player tosses 3 fair coins. He	wins Rs. 5 if 3 heads appear, Rs	3. 3 if 2 heads appear, Re 1 if 1					
	head appears. On the other hand	he losses Rs. 15 if 3 tails appear. H	is expected gain (in rupees) is:					
	(a) 0.15 (b)	) 0.25 (c) -0.25	(d) -0.15					
201.	Two tickets are taken at rando	m from 5 tickets numbers 1 to 5.	The expected value of the					
	sum obtained on the two tickets	s is:						
	(a) 5 (b	(c) 6	(d) 7					
202.	There are 8 screws in a packet	of which 2 are defective. If 2 scr	ews are taken at random then					
	the expected number of defect	ive screws is:						
	(a) 0.5 (b)	0) 0.3 (c) 0.05	(d) 0.6					
203.	A random variable has the follo	wing probability distribution: [Si	MI]					
	X 4 5 P 0.15 0.20	7 8 10 0.40 0.15 0.10						
	Find E $[x-E(x)]^2$ . Also obtain v							
	(a) 27.36 (b) 26.36		(d) None					
204.	If two random variables x and	y are related by $y = 2 - 3x$ , then	the SD of y is given by [SM]					
	(a) $-3 \times SD \text{ of } x$ (b) $3 \times SD \times S$	$D \text{ of } x$ (c) $9 \times SD \text{ of } x$	(d) $2 \times SD$ of x.					
205.	If x and y are random variable	es having expected values as 4.5 a	and 2.5 respectively, then					
	the expected value of (x-y) is	SM						
	(a) 2 (b) 7	(c) 6	(d) 0 54.					
206.	If variance of a random variab	ole x is 23, then what is the varian	nce of 2x+10? [SM]					
	(a) 56 (b) 33	(c) 46	(d) 92					
207.	If two random variables x and	y are related as $y = -3x + 4$ and s	standard deviation of x is					
	2, then the standard deviation	of y is [SM]						
	(a) $-6$ (b) $6$	(c) 18	(d) 3.50					
208.	If $2x + 3y + 4 = 0$ and $v(x) = 6$	then v (y) is [SM]						
	(a) 8/3 (b) 9	(c) $-9$ (d) 6						
209.	The expected number of head	in 100 tosses of an unbiased coin	ı is[SM]					
	(a) 100 (b) 50	(c) 25	(d) none					

210. The expected value of X, the sum of the scores, when two dice are rolled is [SM]

(a) 9

(b) 8

(c) 6

(d)7

211. The probability of winning of a person is 6/11 and at a result he gets Rs. 77/-. The expectation of this person is [SM]

(a) Rs. 35/-

(b) Rs. 42/-

(c) Rs. 58/-

(d) none





			Additi	ional Q	uestion	Bank			
1	b	44	С	87	a	130	a	173	b
2	a ·	45	d	88	a	131	b	174	d
3	С	46	С	89	b	132	a	175	b
4	d	47	b	90	С	133	d	176	a
5	b	48	С	91	b	134	С	177	С
6	d	49	b	92	d	135	a	178	С
7	b	50	b	93	b	136	С	179	b
8	d	51	b	94	С	137	С	180	b
9	a	52	b	95	b	138	b	181	d
10	b	53	d	96	b	139	С	182	a
11	a	54	b	97	d	140	a	183	С
12	a	55	С	98	b	141	b	184	С
13	С	56	a	99	С	142	a	185	a
14	b	57	a	100	b	143	b	186	С
15	b	58	b	101	d /	144	С	187	a
16	C	59	b	102	b (	145	a	188	b
17	C	60	a	103	b	146	b	189	С
18	d	61	d	104	b_	147	a	190	b
19	a	62	a	105	d	148	С	191	С
20	a	63	a	106	<b>a</b> )	149	a	192	С
21	С	64	b	107	a	150	С	193	b
22	a	65	b	108	<b>b</b>	151	d	194	С
23	a	66	d	109/	c	152	С	195	d
24	a	67	b	110	_d /	153	a	196	a
25	d	68	b	111	) c /	154	b	197	b
26	С	69	( c	112	a	155	С	198	b
27	a	70	d	113	a	156	С	199	b
28	С	71	a	114	С	157	С	200	b
29	b	72	<b>b</b>	115	a	158	a	201	С
30	d	73	) a	116	d	159	b	202	a
31	d	74	b	117	b	160	b	203	a
32	b	75	Ь	118	a	161	d	204	b
33	c	76	d	119	b	162	d	205	a
34	a	77	d	120	a	163	a	206	d
35	b	78	С	121	a	164	С	207	b
36	b	79	b	122	d	165	a	208	a
37	b	80	a	123	b	166	С	209	b
38	d	81	b	124	a	167	b	210	d
39	С	82	d	125	c	168	С	211	b
40	a	83	a	126	c	169	С		
41	c	84	c	127	a	170	b		
42	c	85	a	128	a	171	b		
14	d	86	b	129	d	172	d	-	



Space For Notes

	Space For Notes
2	
-	



## THEORETICAL DISTRIBUTIONS OF DATA

In a hinamial distribution						
in a binomial distributio	on, the probability o	f a success p = 1/6 and it	s variance is 5/12. The			
number of sucesses n is	•					
(a) 5	(b) 3	(c) 7	(d) 2.			
A binomial distribution h	as its mean 9 and the	number of sucesses n = 1	2. The standard deviation			
of the distribution is:						
(a) 3/2	(b) 7/2	(c) 1/2	(d) 11/2			
The sum and product of th	e mean and variance	of a binomial distribution	are 24 and 128 respectively			
Then, the value of n is:		5/				
(a) 32	(b) 22	(c) 27	(d) 35			
In a binomial distribution,	the sum and product o	of the mean and variance a	re 25/3 and 50/3 respectively			
The value of n is:	1) 19	9 H-1				
(a) 12	(b) 15	(c) 17	(d) 19			
A die is thrown 5 times. Ge	etting a number 5 on t	the die is considered a suc	cess. Then, the probability			
of zero success is:						
(a) $(5/6)^5$	(b) (1/6) ⁵	(c) $1 - (1/6)^5$	(d) None of these			
In a binomial distribution $p = 0.1$ and $n = 500$ . its standard deviation is:						
(a) 6.71	(b) 5.71	(c) 6.92	(d) 5.92			
Three percent of a given	lot of manufactured	l parts are defective. Wi	hat is the probability that			
in a sample of four items none will be defective?						
(a) $(0.97)^4$	(b) $(0.03)^4$	(c) $1 - (0.97)^4$	(d) none of these			
A student obtained the following answer to a certain problem given to him.						
Mean = 2.4; Variance = 3	3.2 for a binomial di	stribution. the result is				
(a) constant	(b) inconsistant (	(c) data incomplete (d)	none of these			
Four coins are tossed sim	nultaneously. What	is the probability of get	ting 2 heads and 2 tails?			
(a) 7/8	(b) 5/8	(c) 3/8	(d) 1/8			
	(a) 5 A binomial distribution here of the distribution is: (a) 3/2 The sum and product of the Then, the value of n is: (a) 32 In a binomial distribution, the value of n is: (a) 12 A die is thrown 5 times. George of zero success is: (a) (5/6) ⁵ In a binomial distribution (a) 6.71 Three percent of a given in a sample of four items (a) (0.97) ⁴ A student obtained the form the student obtained the form a sample of	A binomial distribution has its mean 9 and the of the distribution is:  (a) 3/2  (b) 7/2  The sum and product of the mean and variance Then, the value of n is:  (a) 32  (b) 22  In a binomial distribution, the sum and product of the value of n is:  (a) 12  (b) 15  A die is thrown 5 times. Getting a number 5 on of zero success is:  (a) (5/6) ⁵ (b) (1/6) ⁵ In a binomial distribution p = 0.1 and n = 500  (a) 6.71  (b) 5.71  Three percent of a given lot of manufactured in a sample of four items none will be defect (a) (0.97) ⁴ (b) (0.03) ⁴ A student obtained the following answer to a Mean = 2.4; Variance = 3.2 for a binomial dia (a) constant  (b) inconsistant (b) inconsistant (b) inconsistant (c)	(a) 5 (b) 3 (c) 7  A binomial distribution has its mean 9 and the number of sucesses n = 1 of the distribution is:  (a) 3/2 (b) 7/2 (c) 1/2  The sum and product of the mean and variance of a binomial distribution Then, the value of n is:  (a) 32 (b) 22 (c) 27  In a binomial distribution, the sum and product of the mean and variance at The value of n is:  (a) 12 (b) 15 (c) 17  A die is thrown 5 times. Getting a number 5 on the die is considered a suc of zero success is:  (a) (5/6) ⁵ (b) (1/6) ⁵ (c) 1 - (1/6) ⁵ In a binomial distribution p = 0.1 and n = 500. its standard deviation (a) 6.71 (b) 5.71 (c) 6.92  Three percent of a given lot of manufactured parts are defective. We in a sample of four items none will be defective?  (a) (0.97) ⁴ (b) (0.03) ⁴ (c) 1 - (0.97) ⁴ A student obtained the following answer to a certain problem given to Mean = 2.4; Variance = 3.2 for a binomial distribution, the result is:  (a) constant (b) inconsistant (c) data incomplete (d). Four coins are tossed simultaneously. What is the probability of get			

10.	Four coins are tossed simultaneously. The probability of getting at lest one head is:						
	(a) 15/16	(b) 1/16	(c) 13/16	(d) 7/16			
11.	The mean of a binomial distribution is 12 and its standard deviation is 2, then the value of n is:						
	(a) 10	(b) 12	(c) 18	(d) 16			
12.	The mean of a binomia	al distribution is 40 and	standard deviation is	6. The value of n and q is			
	(a) (400, 0.1)	(b) (400, 0.9)	(c)(200, 0.9)	(d) (200, 0.1).			
13.	If the standard deviati	on of the binomial distr	ribution (q # p)16 is 2, th	e mean is:			
	(a) 6	(b) 8	(c) 10	(d) None of these			
14.	An experiment succee	ds twice as often as it fa	ils. Find the probabili	ty that in the next 6 trial			
	there will be at least 5	successes					
	(a) 496/729	(b) 250/729	(c) 256/729	(d) none of these			
15.	If the mean and variar	nce of binomial a distrib	outon are 15/14 and 15	/16 respectively. The			
	number of trials is:						
	(a) 5	(b) 4	(c) 16	(d) 20.			
16.	A binomial random variable satisfies the relation $9P(X=4) = P(X=2)$ for $n=6$ . The value of						
	the parameter p is:						
	(a) 1/6	(b) 1/5	(c) 1/3	(d) 1/8			
17.	An experiment succee	ds thrice as after it fails	s. If the experiment is	repeated 5 times, what is			
	the probability of having; no success at all?						
	(a) 1/824	(b) 1/924	(c) 1/1024	(d) 1/1124			
18.	7 coins are tossed 128 times. The distribution function of the binomial is:						
	(a) $^{128}C_x$	(b) ${}^{7}C_{x}$	(c) $^{128}C_7$	(d) none of these			
19.	The mean of a binomial distribution is 4 and its standard deviation is $\sqrt{3}$ . The value of p is:						
	(a) 0.5	(b) 0.25	(c) 0.75	(d) 0.6			
20.	The probability of get	ting at least two heads v	when tossing a coin thi	ee times is:			
	(a) 1/2	(b) 1/4	(c) 1/8	(d) 3/8			
21.	The incidence of occup	pational disease in an in	dustry is such that the	workmen have a 10%			
	chance of suffering from	n it. What is the probabili	ty that out of 5 workmen	,3 or more will contract			
	the disease?						
	(a) 0.0076	(b) 0.0086	(c) 0.0081	(d) 0.0091			

22.	Find the probability of a success for the binomial distribution satisfying the following relation					
	4 P(x=4) = P(x=2) and having the other parameter as six.					
	(a) 1/3	(b) 2/3	(c) 1/4	(d) 3/4		
23.	A fair coin is tossed	a fixed number of times. ]	If the probability of gett	ing 7 heads is equal to that o		
ž.		robability of getting 2 he				
	(a) 105/2 ¹⁵	(b) $2/2^{15}$	(c) 105/2 ¹⁴	(d) none of these		
24.	If the mean and the	variance of a binomial va	riate X are 2 and 1 respe	ectively, then the probability		
		e greater than 1 is equal				
	(a) 5/16	(b) 3/16	(c) 11/16	(d) 13/16		
25.	Probabilitty of hap	pening of an event in an	experiment is 0.4. If th	e experiment is repeated 3		
				ng of the event atleast once.		
	(a) 98/125	(b) 27/125	(c) 99/125	(d) 26/125		
26.	Six coins are tossed	once and getting a tail of	the coin is considered	a success. The probability		
	of getting exactly 4		5/1	1		
	(a) 5/32	(b) 27/32	(c) 15/64	(d) 49/64		
27.	The probability that bomb dropped from a plane stirkes the target is 1/5. The probability out					
		ed at least 2 bombs strik				
	(a) 0.345	(b) 0.246	(c) 0.543	(d) 0.426		
28.	In a binomial distri	bution, $n = 400$ , $p = 1/5$ . In	ts standard deviation is	:		
	(a) $\sqrt[10]{2}$	(b) 1/800	(c) 4	(d) 8.		
29.	6 dice are thrown 729 times. How many times do you expect atleast 4 dice to show a 4 or 5.					
	(a) 233	(b) 73	(c) 72	(d) 61		
30.	When 7 coins are to	ossed, the probability of a	getting exactly 3 heads	4 .5		
	(a) 35/128	(b) 93/128	(c) 7/128	(d) 21/128		
31.	In a binomial distri	bution, mean is 5 and var	iances is 4. Then, the n			
	(a) 20	(b) 30	(c) 25	(d) 35		
32.	A random variable	X takes the values –1, 0, 1	l. Its mean is 0.6. If P (X	(X = 0) = 0.2, then $P(X = 1) =$		
	(a) 0.5	(b) 0.7	(c) 0.6	(d) 0.8		
33.	In a binomial distri	bution, n = 20, q = 0.75. It	3 6	No.		
	(a) 5	(b) 15	(c) 3	(d) none of these		

35. 36.	What would be the pr (a) 16/81 What is the probabilit (a) 0.50	obability that X assum (b) 17/81 y of getting 3 heads if 6	(c) 47/243	(d) 46/243		
36.	(a) 16/81  What is the probabilit (a) 0.50	(b) 17/81	(c) 47/243	(d) 46/243		
36.	(a) 0.50	y of getting 3 heads if 6		(u) TU/273		
	(a) 0.50		unbiased coins are tos	sed simultaneously?		
		(b) 0.25	(c) 0.3125	(d) 0.6875		
NI NI NI	X is a binomial variab	le with $n = 20$ . What is	the mean of X if it is kn	own that X is symmetirc?		
152573111	(a) 5	(b) 10	(c) 2	(d) 8		
37.	If X is a binomial varial	ole with parameter 15 an	d 1/3, what is the value of	of mode of the distribution		
	(a) 5 and 6	(b) 5	(c) 5.50	(d) 6		
38.	If $X \sim B$ $(n, p)$ . What	would be the least valu		Manager and		
	(a) 2	(b) 4	(c) 8	(d) $\sqrt{5}$		
39.	In a binomial distributi	on consisting of 5 indep				
	In a binomial distribution consisting of 5 independent trials, the prababilities of 1 and 2 sucesses are 0.4096 and 0.2048 respectively. The value of the parameter P is:					
	(a) 0.2	(b) 0.3	(c) 0.4	(d) 0.5		
40.	In an experiment the success is twice that of failure. If the experiment is repeated 6 times, the					
	probability that at least 4 times favourable is:					
	(a) 64/779	(b) 192/779	(c) 240/779	(d) 496/729		
41.	6 unbiased coins are to			0		
	(a) 7/32	(b) 11/32	(c) 27/32	(d) 21/32		
42.	The mean and variance			32. 2		
	The mean and variance of random variable X having binomial distribution are 4 and 2 respectively. Then, P(X>6) is:					
	(a) 9/256	(b) 7/256	(c) 19/256	(4) 21/256		
43.	The probability of gett		0.8 . 5	(d) 21/256		
	(a) 15/60	(b) 15/64		(Data)		
14.			(c) 13/64	(d) 10/64		
	The probability of a ma		/4. If he fires 7 times, th	e probability of hitting		
	the target at least twice	18:				
	(a) $1 - \left(\frac{5}{2}\right) \left(\frac{3}{4}\right)^6$	(b) $1 - \frac{15}{2} \left(\frac{3}{4}\right)^6$	(b) 1 5 25	(d) $1 - \left(\frac{3}{3}\right)^6$		

45.	A fair die is tossed 8 tin	nes. The probability th	at a third six is observe	ed on the eighth throw is:		
	(a) $\frac{{}^{7}C_{2} \times 5^{5}}{6^{6}}$	(b) $\frac{7C_2 \times 5^3}{6^7}$	(c) $\frac{C_2 \times 5^3}{6^8}$	ed on the eighth throw is: (d) None of these		
46.		N. 100		nd the probability that he		
	hits the target at least	4 times.				
	(a) 81/256	(b) 81/28	(c) 5/128	(d) none of these		
47.	An unbiased coin is toss	sed n times. Let X deno	te the number of times	head occurs. If $P(X=4)$ , I		
	(X = 5), P(X = 6) are in	A.P., then n=				
	(a) 7 only	(b) 14 only	(c) 7, 10 only	(d) 7, 14 only		
48.	If $x$ denotes the number	er of sixes in four cons	ecutive throws of a dice	e, then $P_{x} = 4$ is:		
	(a) 1/1296	(b) 4/6	(c) 1	(d) 1295/1296		
49.	If the mean of a binomi	al distribution is 25, th	en its standard deviati	on lies in the intervel		
	(a) $[0, 5)$	(b) (0, 5]	(c) [0, 25)	(d) (0,25]		
50.	Five unbiased coins are tossed simultaneously. If the probability of getting at most n heads is 0.5.					
	The value of n is:					
	(a) 1	(b) 3	(c) 2.	(d) 4		
51.	The probability of havi	ng a atleast one tail in	five throws with a coin	is:		
	(a) 31/32	(b) 1/32	(c) 1/5	(d) 1		
52.	In eight throws of a die 1 or 3 is considered a success. Then, the standard deviation of sucess is:					
	(a) 16/9	(b) 8/3	(c) 4/3	(d) 2/3		
53.	A die is thrown 100 tim	es. If getting an even n	umber is considered a s	uccess, then the variance		
	of the number of suces	ses is:				
	(a) 50	(b) 25	(c) 10	(d) 100		
54.	A die is tossed 5 times. Getting an odd number is considered a success. Then, the variance of					
	distribution of number	of sucesses is:		*		
	(a) 8/3	(b) 3/8	(c) 4/5	(d) 5/4		
55.	8 coins are tossed simultaneously. The chance that head on at least five of them is:					
	(a) ${}^{8}C_{5}$	(b) ${}^{8}C_{5}\left(\frac{1}{2}\right)^{8}$	(c) $\frac{93}{256}$	(d) none of these		
56.	The average % of failu			ity that out of a group of 6		
	candidates, at least 4 p	ass in the examination	is:			
	(a) 0.545	(b) 0.445	(c) 0.345	(d) 0.645		

The odds in favour of A winning a game of chess against B are 5: 2. If three games are to be

played, then the probablity of odds in favour of A's winning at least one game is:

	(a) 225/343	(b) 325/343	(c) 325/326	(d) 341/343			
58.	3% of a given lot of ma	nufactured parts are defe	ctive. The probability t	hat in a sample of four items			
	none be defective is:						
	(a) 0.825	(b) 0.855	(c) 0.885	(d) 0.785			
59.	A sample of 10 pieces	was examined out of a la	arge consignment whi	ch has 5% defective pieces.			
	Give the probability of 1 defective in the sample of 10.						
	(a) ${}^{10}C_1(0.85)(0.95)^7$	(b) ${}^{10}C_1(0.05)(0.95)^9$	(c) (0.05)(0.95)	7 (d) $(0.05)(0.95)^{9}$			
60.	In tossing 10 coins, tl	ne probability of getting	exactly 5 heads is:				
	(a) 9/28	(b) 63/256	(0) 1/2	(d) 193/256			
61.	The binomial distribu	ution with mean 20 and 8	.D. 4 is:				
	(a) $\left(\frac{1}{5} + \frac{4}{5}\right)^{100}$	(b) $\left(\frac{4}{5} + \frac{1}{5}\right)^{100}$	(c) $\left(\frac{4}{5} + \frac{1}{5}\right)^{50}$	(d) none of these			
62.		Then, the value of n is:					
	(a) 200	(b) 300	(c) 400	(d) 250			
63.	The binomial distrib	ution whose mean is 6 an	d variance 4 is:				
	(a) $\left(\frac{1}{3} - \frac{2}{3}\right)^{18}$	(b) $\left(\frac{1}{3} + \frac{2}{3}\right)^{18}$	(c) $\left(\frac{2}{3} - \frac{1}{3}\right)^{18}$	(d) None of these			
64.	The mode of the distribution for which mean = 10 and S.D. = $\sqrt{5}$ is:						
	(a) 10	(b) 11	(c) 9	(d) 12			
65.	The probability that a marksman will hit a target is given as 1/5. Then, the probability of at						
	least one hit in 10 shots is:						
	(a) $1/5^{10}$	(b) $1 - (4/5)^{10}$	(c) $1 - 1/5^{10}$	(d) $(4/5)^{10}$			
66.	The mean of the binomial distribution is given by:						
	(a) 1 – np	(b) 1-nq	(c) $1 + pq$	(d) np			
67.	If mean of a binomial distribution is 3 and its variance is 3/2, then number of trials is:						
	(a)6	(b) 2	(c) 12	(d) None of these			
68.	Out of 1,000 families of	Out of 1,000 families of 3 children each, how many families would you expect to have two boys and					
	one girl assuming tha	nt boys and girls are equa	ally likely?				
	(a) 275	(b) 175	(c) 375	(d) 475.			
	75		¥2				

69.	A sample of 10 pieces was examined out of a large consignment which has 5% defective pieces.					
	Give the probability of 1 defective in the sample of 10.					
	(a) ${}^{10}C_1(0.85)(0.85)$	95) ⁷ (b) ${}^{10}C_1(0.05)(0.95)^9$	(c) $(0.05)(0.95)^7$	(d) (0.05)(0.95) ⁹		
70.		ins, the probability of getting				
	(a) 9/28	(b) 63/256	(c) 1/2	(d) 193/256		
71.	The binomial di	stribution with mean 20 and S	S.D. 4 is:			
	(a) $\left(\frac{1}{5} + \frac{4}{5}\right)^{100}$	(b) $\left(\frac{4}{5} + \frac{1}{5}\right)$	$\left(\frac{1}{5}\right)^{100}$ (c) $\left(\frac{4}{5}\right)^{100}$	$\left(\frac{1}{5}\right)^{50}$ (d) none of these		
72.		omial distribution is 80 and s	standard deviation 8. T	hen, the value of n is:		
	(a) 200	(b) 300	(c) 400	(d) 250		
73.	The binomial di	stribution whose mean is 6 ar	d variance 4 is:			
	(a) $\left(\frac{1}{3} - \frac{2}{3}\right)^{1}$	(b) $\left(\frac{1}{3} + \frac{2}{3}\right)^{18}$	(c) $\left(\frac{2}{2} - \frac{1}{2}\right)^{18}$	(d) None of these		
74.		distribution for which mean				
	(a) 10	(b) 11	(c) 9	(d) 12		
75.	The probability	that a marksman will hit a ta	rget is given as 1/5. Th	en, the probability of at		
	least one hit in 1	0 shots is:				
	(a) $1/5^{10}$	(b) $1 - (4/5)^{10}$	(c) $1 - 1/5^{10}$	(d) $(4/5)^{10}$		
76.	The mean of the	binomial distribution is given	ı by:			
	(a) $1 - np$	(b) 1–nq	(c) $1 + pq$	(d) np		
77.	If mean of a binomial distribution is 3 and its variance is 3/2, then number of trials is:					
	(a)6	(b) 2	(c) 12	(d) None of these		
78.	Out of 1,000 families of 3 children each, how many families would you expect to have two boys					
	and one girl assuming that boys and girls are equally likely?					
	(a) 275	(b) 175	(c) 375	(d) 475.		
79.	A die is thrown th	nree times. Getting a 5 or 6 is c	onsidered a success. Th	en, the probability of three		
	successes will be	<b>:</b>				
	(a) 1/27	(b) 26/27	(c) 2/9	(d) none of these		
80.	A die is thrown 4	times, Probability of getting	almost two 6 is:			
	(a) 0.984	(b) 0.721	(c) 0.802	(d) 0.621		
81.	The mean and S.	D. of a binomial distribution	are respectively 10 and	2. Then, the value of q is:		
	(a) 1	(b) 0.8	(c) 0.6	(d) 0.4		

82.	The probability that a person will hit a target in shooting practice is 0.3. If he shoots 10 times,						
	then the probability of his shooting the target is:						
	(a) 1	(b) $1-(0.7)^{10}$	(c) $(0.7)^{10}$	(d) $(0.3)^{10}$			
83.	If X denotes the nun	nber of sixes in four cons	ecutive throws of a di	e, then $P(X=4)$ is:			
	(a) 1/1296	(b) 4/6	(c) 1	(d) 1295/1296			
84.	The mean number of	of 'sixes' in two tosses of a	ı die is:				
	(a) 1/2	(b) 1/3	(c) 1/4	(d) 1.			
85.	If $x$ and $y$ are two inde	ependent binomial variables	s with parameters 6 and	1/2 and 4 and 1/2 respectively			
	what is p $(x + y \ge 1)$	?					
	(a) 1023/1024	(b) 923/102	(c) 823/1024	(d) none of these			
86.	If in a binomial distr	ribution $n = 4$ , $P(X = 0) =$	16/81, them P (X = 4)	is:			
	(a) 3/8	(b) 1/27	(c) 1/81	(d) 1/16			
87.							
	(a) 0.29	(b) 0.39	(6) 0.49	(d) 0.23			
88.	In a box containing 1	00 bulbs, 10 are defective	. What is the probabil	ity that out of a sample of 5			
	bulbs none is defecti	ve?					
	(a) 10 ⁻⁵	(b) (1/2) ⁵	$(c) (9/10)^5$	(d) 9/10.			
89.	If the overall percent	If the overall percentage of success in an examiantion is 60, what is the probability that out of a					
	group of 4 students, at least one has passed?						
	(a) 0.6525	(b) 0.9744	(c) 0.8704	(d) 0.0256			
90.	If it is known tha the	probability of a missile h	itting a target is 1/8, v	what is the probability that			
	out of 10 missiles fired, at least 2 will hit the target?						
	(a) 0.4258	(b) 0.3968	(c) 0.5238	(d) 0.3611			
91.	If 5% of the electric	bulbs manufactured by a	company are defective	ve, use Poisson distribution			
	to find the probability that in a sample of 100 bulbs, 5 bulbs will be defective. [Given: $e^5 = 0.007$ ]						
	(a) 0.1823	(b) 0.1723	(c) 0.1623	(d) 0.1923			
92.	If a random variable	X follows Poisson distrik	oution, such that P (X	= 1) = P(X = 2), then the			
	mean of the distribut	tion is:					
	(a) 1	(b) 2	(c) 3	(d) 4.			

93.	If X is a Poisson variate	with parameter $m = $	1, then P $(3 < X < 5)$ ,	[Given: $e^{-1} = 0.36783$ ] is:		
	(a) 0.01233	(b) 0.01333	(c) 0.01533	(d) 0.2		
94.	If 5% of the families in D	elhi do not use gas as	a fuel, what will be tl	he probability of selecting 10		
	families in a random san	nple of 100 families w	vho do not use gas as	a fuel? You may assume		
	Poisson distribution. [Gi	iven: $e^{-5} = 0.0067$ ]				
	(a) 0.018	(b) 0.028	(c) 0.038	(d) 0.008		
95.	If the probability of gettin	ng a defective transist	or in a consignment i	s 0.01, find the mean and		
	standard deviation of the	number of defective	transistors in a large	e, consignment of 900		
	transistors?					
	(a)(4,2)	(b) (9, 3)	(b) (4, 2)	(d)(2,3)		
96.	It is known from past exp	erience that in a certa	nin plant there are on	the average 4 industrial		
	accidents per month. Then	n, the probability that	in a given year there v	vill be less than 4 accidents.		
	[Given: $e^{-4} = 0.0183$ ]					
	(a) 0.3332	(b) 0.4332	(c) 0.5332	(d) 0.632		
97.	If 2% of electric bulbs manufactured by a certain company are defective, find the probability					
	that in a sample of 200 bulbs less than 2 bulbs are defective. [Given: $e^{-4} = 0.0183$ ]					
	(a) 0.082	(b) 0.072	(c) 0.092	(d) 0.062		
98.	If a random variable X has a Poisson distribution, such that $P(X=1) = P(X=2)$ , its mean and					
	variance are:					
	(a) 1, 1	(b) 2, 2	(c) $2\sqrt{3}$	(d) 2, 4.		
99.	A random variable X has Poisson distribution with mean 2. Then , $P(X > 1.5)$ equals					
	(a) $\frac{2}{e^2}$	(b) 0	(c) $1 - \frac{3}{e^2}$	(d) $\frac{3}{a^2}$		
100.	If X is a random Poisson	variate, such that $lpha$	= P(X = 1) = P(X =	2), then $P(X = 4)$ is:		
	(a) $2\alpha$	(b) $\alpha/3$	(c) $\alpha e^{-2}$	(d) $\alpha e^2$		
101.	If the mean of a Poisson's	distribution is $\lambda$ , th	en is standard with r	nean m is:		
	(a) λ	(b) $\lambda 2$	(c) √ <i>λ</i>	(d) $\frac{1}{\lambda}$		
102.	If the mean of a Poisson	variable X is 1, what	is $P(X = at lest one)$	?		
	(a) 0.456	(b) 0.821	(c) 0.632	(d) 0.254		
103.	If the standard deviation	of a Poisson variate	X is 2, what is P (1.5<	<x<2.9)?< td=""></x<2.9)?<>		
	(a) 0.231	(b) 0.158	(c) 0.15	(d) 8e ⁻⁴		
	W					

A car hire firm has 2 cars which is hired out everyday. The number of demands per day for a car

follows Poisson distribution with mean 1.20. What is the proportion of days on which some demand

	is refused? (Given e ^{1.20} =	3.32)				
	(a) 0.25	(b) 0.3012	(c) 0.12	(d) 0.03		
105.	The standard deviation of	$\hat{x}$ where $x$ is a Po	oisson variate satisfy	ing the condition $P(X=2) = P$		
	(X = 3) is:		¥			
	(a) $\sqrt{3}$	(b) 2	(c) $\sqrt{5}$	(d) 1.5		
106.	The probability that a rand	dom variable X follo	wing Poisson distribu	tion would assume a positive		
	value $(1 - e^{-27})$ . The mode	of the distribution i	is:			
	(a) 2	(b) 3	(c) 4	(d) 1		
107.	The standard deviation of	a Poisson variate is	1.732. What is the pr	obability that the variate lies		
	between -2.3 to 3.68?					
	(a) 0.65	(b) 0.75	(c) 0.55	(d) 0.45		
108.	A discrete random varial	ole X follows Poisson	n distribution. The v	alue of P ( $X \le 2/PX \ge 1$ ).		
	[Given E (X) = $2.20$ and e	$e^{-2.20} = 0.1108$ is:				
	(a) 0.58	(b) 0.48	(c) 0.68	(d) 0.38		
109.	If 2 % of electric bulbs ma	anufactured by a co	mpany are known to	be defective, what is the		
	probability that a sample o	f 150 electric blubs ta	ken from the product	tion process of that comapny		
	would contain more than	2 defective bulbs?				
	(a) 0.48	(b) 0.58	(c) 0.68	(d) 0.42		
110.	The manufacturer of a cen	ntrain electric compo	onent is certain that 2	% of his product is defective.		
	He sells the components in	n boxes of 120 and g	guarantees that not n	nore than two % in any box		
	will be defective. Find the	probability that a b	ox, selected at rando	om, would fail to meet the		
	guarantee? Given that e-2	$^{2.40} = 0.0907$				
	(a) 0.48	(b) 0.58	(c) 0.78	(d) 0.40.		
111.	In a certain factory turnin	g out blades, there is	a 0.2% probability	for any blade to be defective.		
	Blades are supplied in packets of 10. Using Poisson distribution, find the approximate number					
	of packets containing, one	of packets containing, one defective blade in a consignment of 20,000 packets:				
	[Given: $e^{-0.02} = 0.9802$ ] is					
	(a) 392	(b) 292	(c) 492	(d) 592		

112.	If 2% of electric bu	lbs manufactured by a ce	rtian company are de	fective, then the probability			
	that in a sample of 200 bulbs more than 3 bulbs are defective. [Given: $e^{-4} = 0.0183$ ]						
	(a) 0.5669	(b) 0.4669	(c) 0.6469	(d) 0.7219			
113.	The probability tha	at at most 5 defective bolt	s will be found in a bo	x of 200 bolts, if it is known			
	that 2% of such bo	olts are expected to be de	fective. [Take $e^{-4} = 0.0$	0183]			
	(a) 0.6845	(b) 0.5845	(c) 0.7845	(d) 0.5672			
114.	The probability tha	t a man aged 45 years will d	lie within a year is 0.012	2. what is the probability			
	that of 10 such mer	n at least 9 will reach thei	r 46 th birthday ? [Gi	$ven: e^{-0.12} = 0.88692]$			
	(a) 0.954	(b) 0.994	(c) 0.924	(d) 0.914			
115.	The number of acc	idents in a year attributed	l to taxi drivers in a lo	cality follows Poisson			
	distribution with a	n average 2. Out of 500 ta	xi direvers of that are:	a, what is the number of			
	drivers with at leas	t 3 accidents in a year?					
	(a) 162	(b) 180	(c) 201	(d) 190			
116.	A book contains 100 misprints distributed randomly throughout its 100 pages. what is the probability						
	that a page. What is the probability that a page observed at random contains at least two misprints.						
	Assume Poisson dis	tribution.					
	(a) 0.264	(b) 0.364	(c) 0.164	(d) 0.274			
117.	It is given that 3% o	f electric bulbs manufactu	red by a company are	defective. Using the Poisson			
	approximation, the probability that a sample of 100 bulbs will contain exactly one defective is						
	(a) 0.25	(b) 0.15	(c) 0.26	(d) 0.36			
118.	It is known from pa	ast experience that in a ce	rtain plant there are o	on the average 4 accidents			
	per month. The probability that in a given year there will be less than 4 accidents is:						
	(a) 0.334	(b) 0.434	(c) 0.534	(d) 0.234			
119.	If the two quartiles of N $(\mu, \sigma^2)$ are 14.6 and 25.4 respectively, what is the standard deviation of						
	the distribution?						
	(a) 9	(b) 6	(c) 10	(d) 8			
120.	If the quartile deviation of a normal curve is 4.05, then its mean deviation is:						
	(a) 5.26	(b) 6.24	(c) 4.24	(d) 4.86			
121.	If the mean deviation	on of a normal variable is	16, what is the quarti	le deviation ?			
	(a) 10.00	(b) 13.34	(c) 15.00	(d) 12.05			

(a) 2.050

122.	If the 1st quartile and	mean deviation about media	n of a normal distribution	n are 13.25 and 8 respectively,						
	then the mode of the	e distribution is:								
	(a) 20	(b) 10	(c) 15	(d) 12						
123.	If X and Y are 2 ind	ependent normal variabl	es with mean as 10 an	d 12 and S.D. as 3 and 4,						
	then (X+Y) is normally distributed with									
	(a) mean = $22$ and $S$ .	D. = 7	(b) mean = $22$ ar	nd S.D. = 25						
	(c) mean $=$ 22 and S.	D. = 5	(d) mean $= 22$ ar	100  md S.D. = 49						
124.	If the two quartiles of	f a normal distribution are	47.30 and 52.70 respec	ctively, The mean deviation						
	about median of thi	s distribution is :								
	(a) 3.20	(b) 2.40	(c) 0.80	(d) 4.20						
125.				20 and standard deviation						
	40, what is the prob	ability that $P(X \le 150 / X)$	( > 120) ? Given that th	ne area of the normal curve						
	between $Z = 0$ to $Z = 0$	= 0.3734.								
	(a) 0.65	(b) 0.75	(c) 0.55	(d) 0.85						
126.	A sample of 100 dry	battery cells tested to find	the length of life prod	luced the follwoing results						
	$\overline{X}$ = 12, hours, $\sigma$ =3 hours. Assuming the data to be normally distributed, what percentage									
	of battery cells are	expected to have life less	than 6 hours.							
	(a) 2.1%	(b) 2.28%	(c) 3.28%	(d) 4.28%						
127.	Find the probability	that the standard norma	l variate lies between	0 to 1.5.						
	(a) 0.5332	(b) 0.4332	(c) 0.332	(d) 0.632						
128.	Find the area under	the nomal curve for $Z = 1$	1.64							
	(a) 0.4484	(b) 0.5484	(c) 0.6484	(d) 0.3484						
129.	Find the area to the	right of $Z = 0.25$								
	(a) 0.3013	(b) 0.4013	(c) 0.5023	(d) 0.6023						
130.	A sample of 100 dry	battery cells tested to find	the lenght of life prod	uced the following results						
	$\overline{X}$ = 12 hours, $\sigma$ = 3 hours, Assuming the data to be normally distributed, what percentage of									
	battery cells are exp	ected to have life more tl	han 15 hours.							
	(a) 15.87%	(b) 15.27%	(c) 14.87%	(d) 16.87%						
131.	If the weekly wages	of 5000 workers in a facto	ory follows normal dis	tribution with mean and						
	S.D. as Rs. 700 and	Rs. 50 respectively, what	is the expected numb	er of workers with wages						
	between Rs. 660 an	d Rs. 720?								

(b) 2.200

(c) 2.218

(d) 2,300

132.	In a sample of 120 worl	kers in a factory the mo	ean and standard devi	ation of wages were Rs. 11.35
	and Rs. 3.03 respectiv	ely. Find the percenta	ge of workers getttin	g wages between Rs. 9 and
	Rs. 17 in the whole fac	tory assuming that the	e wages are normally	distributed
	(a) 70.1	(b) 75.1	(c) 60.1	(d) 65.1
133.	If the standard deviati	on of the binomial dis		the mean is:
	(a) 6	(b) 8	(c) 10	(d) None of these
134.	An experiment succeed	ds twice as often as it f		ility that in the next 6 trials.
	there will be at least 5	successes.		mity that in the next o triais,
	(a) 496/729	(b) 250/729	(c) 256/729	(d) none of these
135.	If the mean and variance	ce of binomial a distrib	uton are 15/14 and 15/	/16 respectively. The number
	of trials is:			T
	(a) 5	(b) 4	(c) 16	(d) 20.
136.	A binomial random var	riable satisfies the rela	ation $9P(X=4) = P(X$	= 2) for $n = 6$ . The value of
	the parameter p is:			, , , , , , , , , , , , , , , , , , , ,
	(a) 1/6	(b) 1/5	(c) 1/3	(d) 1/8
137.	An experiment succeeds	s thrice as after it fails	. If the experiment is a	repeated 5 times, what is the
	probability of having; n	o success at all?		T
	(a) 1/824	(b) 1/924	(c) 1/1024	(d) 1/1124
138.	7 coins are tossed 128 ti	mes. The distribution	2 (5)	
	(a) $^{128}C_x$	(b) $^{7}C_{x}$		(d) none of these
139.	The mean of a binomial			is $\sqrt{3}$ . The value of p is:
	(a) 0.5	(b) 0.25	(c) 0.75	(d) 0.6
140.	The probability of getting	ng at least two heads v	vhen tossing a coin th	
	(a) 1/2	(b) 1/4	(c) 1/8	(d) 3/8
141.	The incidence of occupa	tional disease in an in	dustry is such that th	
	chance of suffering from	it. What is the probabi	ility that out of 5 work	men, 3 or more will contract
	the disease?			, - or more want continue
	(a) 0.0076	(b) 0.0086	(c) 0.0081	(d) 0.0091
142.	Find the probability of a s	success for the binomia	al distribution satisfyir	ng the following relation 4 P
	(x=4)=P(x=2) and h	aving the other parar	neter as six.	O STATE OF THE STA
	(a) 1/3	(b) 2/3	(c) 1/4	(d) 3/4
				(-)

143.	A fair coin is tosse	d a fixed number of times.	If the probability of gett	ing 7 heads is equal to					
		en the probability of gettin		1					
	(a) 105/2 ¹⁵	(b) 2/2 ¹⁵	(c) 105/2 ¹⁴	(d) none of these					
144.	If the mean and the	variance of a binomial vari	iate X are 2 and 1 respectiv						
		e greater than 1 is equal t							
	(a) 5/16	(b) 3/16	(c) 11/16	(d) 13/16					
145.	Probabilitty of hap	pening of an event in an exp	eriment is 0.4. If the expen						
		litions, find the probability							
	(a) 98/125	(b) 27/125	(c) 99/125	(d) 26/125					
146.	Six coins are tossed	once and getting a tail on th							
	getting exactly 4 successes is:								
	(a) 5/32	(b) 27/32	(c) 15/64	(d) 49/64					
147.	The probability that bomb dropped from a plane stirkes the target is 1/5. The probability out of si								
		least 2 bombs striks the ta	A STATE OF THE PARTY OF THE PAR						
	(a) 0.345	(b) 0.246	(c) 0.543	(d) 0.426					
148.	In a binomial distri	bution, $n = 400$ , $p = 1/5$ . Its	standard deviation is:						
	(a) $\sqrt[10]{2}$	(b) 1/800	(c) 4	(d) 8.					
149.	6 dice are thrown 7	29 times. How many times	s do you expect atleast 4	27 A					
	(a) 233	(b) 73	(c) 72	(d) 61					
150.	When 7 coins are toss	sed, the probability of getting	exactly 3 heads is:						
	(a) 35/128	(b) 93/128	(c) 7/128	(d) 21/128					
151.	In a binomial distri	bution, mean is 5 and varia	ances is 4. Then, the num						
19	(a) 20	(b) 30	(c) 25	(d) 35					
152.	A random variable	X takes the values -1, 0, 1.	Its mean is 0.6. If P (X =	0) = 0.2, then $P(X = 1) =$					
	(a) 0.5	(b) 0.7	(c) 0.6	(d) 0.8					
153.	In a binomial distri	bution, $n = 20$ , $q = 0.75$ . Its	mean=						
	(a) 5	(b) 15	(c) 3	(d) none of these					
154.	X is a binomial vari	able such that 2 P (X=2) =	P(X=3) and mean of $X$						
		probability that X assumes							
	(a) 16/81	(b) 17/81	(c) 47/243	(d) 46/243					

155.	What is the probabilit	y of getting 3 heads if 6 u	nbiased coins are tossed	simultaneously?
	(a) 0.50	(b) 0.25	(c) 0.3125	(d) 0.6875
156.	X is a binomial variab	le with $n = 20$ . What is th	e mean of X if it is know	n that X is symmetirc?
	(a) 5	(b) 10	(c) 2	(d) 8
157.	If X is a binomial varia	ble with parameter 15 and	1/3, what is the value of n	node of the distribution
	(a) 5 and 6	(b) 5	(c) 5.50	(d) 6
158.	If $X \sim B$ $(n, p)$ . What	would be the least value	of the variance of X wh	en $n = 16$ ?
	(a) 2	(b) 4	(6)8	(d) $\sqrt{5}$
159.	In a binomial distribu	tion consisting of 5 indepe	endent trials, the prababi	lities of 1 and 2 sucesses
	are 0.4096 and 0.2048	respectively. The value	of the parameter P is:	
	(a) 0.2	(b) 0.3	(6) 0.4	(d) 0.5
160.	If 5% of the electric bu	ılbs manufactured by a c	ompany are defective, us	e Poisson distribution to
	find the probability tl	nat in a sample of 100 bul	lbs, 5 bulbs will be defect	tive. [Given: $e^5 = 0.007$ ]
	(a) 0.1823	(b) 0.1723	(c) 0.1623	(d) 0.1923
161.	If a random variable	X follows Poisson distrib	ution, such that $P(X=1)$	= P(X=2), then the
	mean of the distributi	on is:		
	(a) 1	(b) 2	(c) 3	(d) 4.
162.	If X is a Poisson varia	nte with parameter m = 1	1, then P $(3 < X < 5)$ , [Given the equation of the equation	Ven: $e^{-1} = 0.36783$ ] is:
	(a) 0.01233	(b) 0.01333	(c) 0.01533	(d) 0.2
163.	If 5% of the families i	n Delhi do not use gas as	a fuel, what will be the pr	robability of selecting 10
	families in a random	sample of 100 families w	ho do not use gas as a fu	el? You may assume
	Poisson distribution.	[Given: $e^{-5} = 0.0067$ ]		
	(a) 0.018	(b) 0.028	(c) 0.038	(d) 0.008
164.	If the probability of ge	tting a defective transistor	in a consignment is 0.01, fi	nd the mean and standard
	deviation of the num	ber of defective transisto	rs in a large, consignme	nt of 900 transistors?
	(a) (4, 2)	(b)(9,3)	(b) $(4, 2)$	(d)(2,3)
165.	It is known from past	experience that in a certa	ain plant there are on the	average 4 industrial
	accidents per month.	Then, the probability tha	t in a given year there wi	ll be less than 4 accidents.
	[Given: $e^{-4} = 0.0183$ ]			
	(a) 0.3332	(b) 0.4332	(c) 0.5332	(d) 0.632

(a) 0.082

variance are:

166.

167.

(b) 0.072

If 2% of electric bulbs manufactured by a certain company are defective, find the probability

If a random variable X has a Poisson distribution, such that P(X=1) = P(X=2), its mean and

(c) 0.092

that in a sample of 200 bulbs less than 2 bulbs are defective. [Given :  $e^{-4} = 0.0183$ ]

	(a) 1, 1	(b) 2, 2	(c) $2\sqrt{3}$	(d) 2, 4.
168.	A random variable X has l	Poisson distribution w	ith mean 2. Then , P (X	(> 1.5) equals
	(a) $\frac{2}{e^2}$	(b) 0	(c) $1 - \frac{3}{e^2}$	(d) $\frac{3}{e^{2}}$
169.	If X is a random Poisson v	variate, such that $\alpha =$	P(X=1) = P(X=2), t	then $P(X=4)$ is:
	(a) $2\alpha$	(b) $\alpha/3$	(c) $\alpha e^{-2}$	(d) $\alpha e^2$
170.	If the mean of a Poisson's	distribution is 2, ther	is standard with mea	n m is:
	(a) λ	(b) $\lambda 2$	(c) \sqrt{\lambda}	(d) $\frac{1}{\lambda}$
171.	If the mean of a Poisson v	ariable X is 1, what is	$P(X \neq at lest one)$ ?	
	(a) 0.456	(b) 0.821	(c) 0.632	(d) 0.254
172.	If the standard deviation of	of a Poisson variate X	is 2, what is P (1.5 <x<< th=""><th>2.9) ?</th></x<<>	2.9) ?
	(a) 0.231	(b) 0.158	(c) 0.15	(d) 8e ⁻⁴
173.	A car hire firm has 2 cars w	hich is hired out every	day. The number of de	mands per day for a car
	follows Poisson distribution	n with mean 1.20. Wh	at is the proportion of	days on which some
	demand is refused? (Give	en $e^{1.20} = 3.32$ )		
	(a) 0.25	(b) 0.3012	(c) 0.12	(d) 0.03
174.	The standard deviation of	x where $x$ is a Poiss	on variate satisfying tl	ne condition $P(X=2)=1$
	(X = 3) is:			
	(a) $\sqrt{3}$	(b) 2	(c) $\sqrt{5}$	(d) 1.5
175.	The probability that a rand	lom variable X followir	ng Poisson distribution	would assume a positive
	value $(1 - e^{-27})$ . The mode	of the distribution is:		
	(a) 2	(b) 3	(c) 4	(d) 1
176.	The standard deviation of	a Poisson variate is 1.7	32. What is the probab	oility that the variate lies
	between -2.3 to 3.68?			
	(a) 0.65	(b) 0.75	(c) 0.55	(d) 0.45

177.	A discrete random va	riable X follows Poisson	n distribution. The va	due of P ( $X \le 2/PX \ge 1$ ).
	[Given E (X) = $2.20$ as	nd $e^{-2.20} = 0.1108$ ] is:		
	(a) 0.58	(b) 0.48	(c) 0.68	(d) 0.38
178.	If 2 % of electric bulb	s manufactured by a co	mpany are known to	be defective, what is the
	probability that a samp	ole of 150 electric blubs ta	ken from the producti	on process of that comapny
	would contain more th	nan 2 defective bulbs?		
	(a) 0.48	(b) 0.58	(c) 0.68	(d) 0.42
179.	The manufacturer of a	centrain electric compo	onent is certain that 2	% of his product is defective.
	He sells the componer	nts in boxes of 120 and g	guarantees that not m	ore than two % in any box
	will be defective. Find	the probability that a b	ox, selected at randor	n, would fail to meet the
	guarantee? Given tha	t $e^{-2.40} = 0.0907$		
	(a) 0.48	(b) 0.58	(c) 0.78	(d) 0.40.
180.	If 3% electric bulbs ma	nufactured by a compan	y are defective, find th	e probability that in a sample
	of 100 bulbs, exactly 5	bulbs are defective		
	(a) $9/40 e^2$	(b) 27/40 e ³	(c) $81/40 e^3$	(d) 81/40 e ²
181.	In a certain factory tur	ning out blades, there is	s a 0.2% probability fo	or any blade to be defective.
	Blades are supplied in	packets of 10. Using Pois	sson distribution, find	the approximate number of
	packets containing, or	ne defective blade in a c	onsignment of 20,000	packets:
	[Given: $e^{-0.02} = 0.9802$ ]	is		
	(a) 392	(b) 292	(c) 492	(d) 592
182.	If 2% of electric bulbs	manufactured by a cer	tian company are def	ective, then the probability
	that in a sample of 200	bulbs more than 3 bul	bs are defective. [Giv	ren: $e^{-4} = 0.0183$ ]
	(a) 0.5669	(b) 0.4669	(c) 0.6469	(d) 0.7219
183.	The probability that at	most 5 defective bolts wi	ill be found in a box of 2	200 bolts, if it is known that
	2% of such bolts are	expected to be defective	e. [Take $e^{-4} = 0.0183$ ]	
	(a) 0.6845	(b) 0.5845	(c) 0.7845	(d) 0.5672
184.	X is a Poisson variate	and $P(X = 0) = 0.2$ , then	n the variance of the I	Poisson distribution is:
	$(a)\log(0,2)$	(b) $\log e^5$	(c) log 5	(d) log 10.

185.	The probability that a man aged 45 years will die within a year is 0.012. what is the probability							
	that of 10 such men at le	east 9 will reach their 4	6 th birthday ? [Given	$e^{-0.12} = 0.88692$				
	(a) 0.954	(b) 0.994	(c) 0.924	(d) 0.914				
186.	The number of accident	s in a year attributed to	taxi drivers in a locality	y follows Poisson distribution				
	with an average 2. Out	of 500 taxi direvers of	f that area, what is the	number of drivers with at				
	least 3 accidents in a y	ear?						
	(a) 162	(b) 180	(c) 201	(d) 190				
187.	A book contains 100 mis	prints distributed rando	mly throughout its 100 p	pages. what is the probability				
	that a page. What is the	probability that a page	observed at random co	ntains at least two misprints.				
	Assume Poisson distrib	oution.						
	(a) 0.264	(b) 0.364	(c) 0.164	(d) 0.274				
188.	It is given that 3% of e	lectric bulbs manufac	tured by a company a	re defective. Using the				
	Poisson approximation,	the probability that a san	aple of 100 bulbs will cor	ntain exactly one defective is:				
	(a) 0.25	(b) 0.15	(0) 0.26	(d) 0.36				
189.	It is known from past e	xperience that in a cer	tain plant there are on	the average 4 accidents per				
	month. The probabilit	y that in a given year t	here will be less than 4	4 accidents is :				
	(a) 0.334	(b) 0.434	(c) 0.534	(d) 0.234				
190.	X is a Poisson variate	satisfying the followin	g relation: $P(X=2)=$	= 9 (X = 4) + 90P (X = 6).				
	Then the standard dev	iation of X is:						
	(a) 1	(b) 1.5	(c) 2	(d) 2.5				
191.	If the two quartiles of I	$N(\mu,\sigma^2)$ are 14.6 and 2	25.4 respectively, what	is the standard deviation of				
	the distribution?							
	(a) 9	(b) 6	(c) 10	(d) 8				
192.	If the quartile deviation	n of a normal curve is	4.05, then its mean de	viation is:				
	(a) 5.26	(b) 6.24	(c) 4.24	(d) 4.86				
193.	If the mean deviation of	of a normal variable is	16, what is the quartil	le deviation ?				
	(a) 10.00	(b) 13.34	(c) 15.00	(d) 12.05				
194.	If the 1st quartile and mea	an deviation about media	n of a normal distribution	n are 13.25 and 8 respectively,				
	then the mode of the di	stribution is:						
	(a) 20	(b) 10	(c) 15	(d) 12				

195.	If X and Y are 2 indepe	endent normal variable	es with mean as 10 and 12 a	and S.D. as 3 and 4, then						
	(X+Y) is normally distributed with									
	(a) mean $=$ 22 and S.D.	= 7	(b) mean $= 22$ and S	.D. = 25						
	(c) mean $=$ 22 and S.D.	= 5	(d) mean $=$ 22 and S	.D. = 49						
196.	If the two quartiles of a	normal distribution a	re 47.30 and 52.70 respecti	vely, The mean deviation						
	about median of this d									
	(a) 3.20	(b) 2.40	(c) 0.80	(d) 4.20						
197.	If a random variable x	follows normal distribu	tion with mean as 120 and s	standard deviation as 40,						
			120)? Given that the area							
	between $Z = 0$ to $Z = 0$									
	(a) 0.65	(b) 0.75	(c) 0.55	(d) 0.85						
198.	A sample of 100 dry ba	ttery cells tested to fine	the length of life produce	d the follwoing results:						
	$\overline{X}$ = 12, hours, $\sigma$ = 3 hours. Assuming the data to be normally distributed, what percentage of									
	battery cells are expected to have life less than 6 hours.									
	(a) 2.1%	(b) 2,28%	(c) 3.28%	(d) 4.28%						
199.	Find the probability th	at the standard norma	al variate lies between 0 to	1.5.						
	(a) 0.5332	(b) 0.4332	(c) 0.332	(d) 0.632						
200.	Find the area under th	e nomal curve for Z =	1.64							
	(a) 0.4484	(b) 0.5484	(c) 0.6484	(d) 0.3484						
201.	Find the area to the rig	ght of $Z = 0.25$								
	(a) 0.3013	(b) 0.4013	(c) 0.5023	(d) 0.6023						
202.	A sample of 100 dry ba	ttery cells tested to find	l the lenght of life produce	d the following results :						
	$\overline{X}$ = 12 hours, $\sigma$ = 3 hours, Assuming the data to be normally distributed, what percentage of									
	battery cells are expec									
	(a) 15.87%	(b) 15.27%	(c) 14.87%	(d) 16.87%						
203.	If the weekly wages of	5000 workers in a facto	ory follows normal distrib	ution with mean and						
	S.D. as Rs. 700 and Rs	S.D. as Rs. 700 and Rs. 50 respectively, what is the expected number of workers with wages								
	between Rs. 660 and I									
	(a) 2.050	(b) 2.200	(c) 2.218	(d) 2,300						

204.	In a	sample	of 120 w	orkers	in a fac	tory th	e mean :	and standard	leviation of wages were Rs. 11.35	,
	and	Rs. 3.03	3 respec	tively.	Find th	ie perc	entage o	of workers get	tting wages between Rs. 9 and	
	Rs. 1	7 in the	whole	factory	' assum	ing tha	at the wa	iges are norm	ally distributed.	
	(a) 7	0.1			(b) 7	75.1		(c) 60.1	(d) 65.1	
205.	A di	screte r	andom	variab	le x foll	ows ur	niform d	istribution an	d takes the values 6, 8, 10, 12, 1	8
	The	probab	ility of	P(x<1	2) is[S]	M]				
	(a) 1.	/5			(b) 4	1/5		(c) 3/5	(d) none	
206.	A di	screte r	andom	variab	le x foll	ows un	iform d	istribution an	d takes the values 5, 7, 12, 15, 1	8
	The	probab	ility of	P(x>1	0) is[S]	M]			2/	
	(a) 3.	/5			(b) 2	2/5		(c) 4/5	(d) none	
207.	Ina	discrete	randon	ı variat	ole x foll	lows ur	iform d	istribution and	l assumes only the values 8, 9, 11	,
	15, 1	8, 20. T	Then P(	x = 9) is	s[SM]	10				
	(a) 2	/6			(b) 1	17-	1	(c) 1/5	(d) 1/6	
208.	Ina	discrete	randon	ı variat	le x foll	lows ur	iform d	istribution and	l assumes only the values 8, 9, 11	,
	15, 1	8, 20. T	Then P(	x = 12)	is[SM]	7	9			
	(a) 1	/6			(b) (	5		(c) 1/7	(d) none	
209.	Ina	discrete	randon	n varia	ble x fo	llows u	niform (	listribution ar	nd assumes only the values 8, 9, 1	.1
	15, 1	8, 20. T	Then P(	x < 15)	is[SM]					
	(a) 1	/2		1	(b) 2	2/3		(c) 1	(d) none	
210.	Ina	discrete	randon	n varial	ble x fo	llows u	niform (	listribution ar	nd assumes only the values 8, 9, 1	1
	15, 1	8, 20. T	Then P(	x > 15)	is[SM]					
	(a) 2	/3			(b) 1	/3		(c) 1	(d) none	
211.	Fit a	Binom	ial Dist	ributio	n to the	follow	ing Dat	a		
	X	0	1	2	3	4		X		
	$\mathbf{F}$	28	62	46	10	4		4 4		
	(a) n	n = 4; N	=150; F	$P = \frac{1}{3} q$	$1 = \frac{2}{3}$		£ 8	(b) n = 4; N	$N = 160; P = \frac{1}{3} q = \frac{2}{3}$	
	(c) r	n = 4; N	=170; F	$P = \frac{1}{3} q$	$l = \frac{2}{3}$			(d) n = 4; N	$N = 175; P = \frac{1}{3} q = \frac{2}{3}$	

(a) 80 Rings

						The second secon					
212.	If a b	inomial	distrib	ution i	s fitted	to the fo	ollowing	data:			
	<b>x</b> :	0	1	2	3	4					
	f:	16	25	32	17	10					
	then	the sum	of the o	expect	ed freq	uencies	for x =	2 , 3 an	d 4 would be		
	(a) 58	8			(b) 5	9		(c) 60	)	(d) 61	
213.	А Ту	pist co	mmits	the fo	llowin	g mist	akes pe	r page	in typing 1	00 pages fit	a Poissio
	Disti	ribution	and ca	lculat	e theo	retical	frequen	cies.	2		
	Mist	akes Po	er page	(X)	0	1	2	3	4 5		
	Freq	uencies	s (f)		42	33	14	6	4 1		
	You	are giv	en that	$e^{-1}=0.$	3679			V	1		
	(a) N	o. of mis	s. —	0	1	2/	3	45	5		
	Fre	equencie	es 37	37	18	6	2	0)			
	(b) N	o. of mis	S.	0	1_	2	3	4/	5		
	Fre	equencie	es	37	37_	, 18	5	2	0		
	(c) N	o. of mis		0	1	(2)	3	4	5		
	Fre	equencie	es (	37	)36	18	6	2	0		
	(d) N	o. of mis		0	D	2	3	4	5		
	Fre	equencie	es 37	37	18	6	3	0			
214.	If a P	oisson o	listribu	tion is	fitted to	o the fol	llowing	data:			
	Mist	ake per	page	0	1	2	3	4	5		
	No. o	of pages		76	74	29	17	3	1		
	Then	the sur	n of the	expec	ted fre	quencie	es for x =	= 0 , 1 aı	nd 2 is		
	(a) 15	50		(b)	184		(c) 16	55		(d) 148	
215.	If At	motor	of wines	M C M **	ıfo otu-	ad by	mesk:	mo e wo -	roumalle: di-	tuibutad w.:41	. =
413.										tributed witl	
	and	$\mathbf{S} \cdot \mathbf{D} \cdot = \mathbf{Z}$	cm. rin	uine	numbe	er of rit	IPS NAV	ıng alal	meter netwe	en 4cm and 5	.o cm wne

the total number of rings are 500. 0 < z < 1.5 = .4332 and 0 < z < .75 = .2734

(b) 82 Rings

(c) 81 Rings

(d) 90 Rings

216.	Net profit of 400 companies is normally distributed with a mean profit of Rs. 150 lakhs
	and a standard deviation of Rs. 20 lakhs. Given $0 < z < 1.1 = .3643$ and $0 < z < 1.25 = .3944$ ,
	0 < z < 2.5 = .4938, $0 < z < .6 = .2257$ , area $0 < z < 1.04 = .3508$ Find the number of
	companies whose profits (Rs. lakhs) are

	companies v	vhose profits( Rs. lakl	ns ) are	
<b>(</b> i	i) less than 128	3		
	(a) 54	(b) 55	(c) 56	(d) 57
(i	i) more than 1	75		
	(a) 43	(b) 41	(c) 40	(d) 42
(i	ii) between 10	0 and 138. Also		7
	(a) 103	(b) 102	(c).107	(d) 104
(i	v) find the min	imum profit of top 15	% companies.	
	(a) 175	(b) 171	(c) 174	(d) 172
7.	The mean an	d standard deviation of	a graduation examin	ation following

217. The mean and standard deviation of a graduation examination following normal distribution are 500 marks & 100 marks respectively . If 550 Students are to be passed out of 674 students, what would be the minimum passing marks? 0 < z < .9 = .316

- (a) 415
- (b) 410
- (c)420
- (d) 425

218. The mean and standard deviation of a graduation examination following normal distribution are 250 and 50 respectively. If 275 students are to be passed out of 337 students, what would be the minimum passing marks?

- (a) X = 208
- (b) X = 207
- (c) X = 205
- (d) X = 206

219. The wages of 5000 workers were found to be normally distributed with mean Rs. 2000 p.m. and standard deviation Rs. 120. What was the lowest wages among the richest 500 workers?0 < z < 1.29 = .4

- (a) 1154.80
- (b) 2154.80
- (c) 2254.80
- (d) 2144.80

220. In a normal distribution, 31% of items are under 45 and 8% are over 64, find the mean & S.D. and of the distribution.

(a) 
$$\overline{X} = 40, \ \sigma = 10$$

(b) 
$$\overline{X} = 30$$
,  $\sigma = 10$  (c)  $\overline{X} = 50$ ,  $\sigma = 11$  (d)  $\overline{X} = 50$ ,  $\sigma = 10$ 

In a large group of men, 5% are under 60 inches in height and 40% are between 60 and 65 inches. Assuming a normal distribution, find the mean height and standard deviation.

(a) 
$$\overline{X} = 65.44$$
,  $\sigma = 3.3$ 

(b) 
$$\overline{X} = 62.44$$
,  $\sigma = 3.3$ 

(c) 
$$\overline{X} = 65.34$$
,  $\sigma = 3.1$ 

(d) 
$$\overline{X} = 65.54$$
,  $\sigma = 3.2$ 

222. Assuming that height of a group of men is normal, find the mean and S.D., given that 84% of men have height less than 65.2 inches and 68% have heights between 65.2 and 62.8 inches.

(a) 
$$\overline{X} = 64$$
,  $\sigma = 1.1$ 

(b) 
$$\overline{X} = 34$$
,  $\sigma = 0.2$ 

(c) 
$$\overline{X} = 64$$
,  $\sigma = 1.2$ 

(b) 
$$\overline{X} = 34$$
,  $\sigma = 0.2$   
(d)  $\overline{X} = 64$ ,  $\sigma = 0.2$ 

223. The following data gives the result of students of b.Com Hnd.

Marks	Students
under 35	10
35-50	20
50-60	15
60 and over	5
	N =50

using Normal Distribution, find Mean & S.D.

(a) Mean = 
$$44.93$$
 S.D =  $11.60$ 

(b) Mean = 
$$44.93 \text{ S.D} = 11.61$$

(c) Mean = 
$$44.93 \text{ S.D} = 11.68$$

(d) Mean = 
$$44.93 \text{ S.D} = 11.62$$



	A I I I I I I I I I I I I I I I I I I I								1
200	Additional Question Bank								
1	b	47	d	93	С	139	b	185	b
2	b	48	a	94	a	140	a	186	a
3	a	49	a	95	d	141	b	187	a
4	b	50	С	96	b	142	a	188	b
5	a	51	a	97	С	143	a	189	b
6	a	52	С	98	b	144	С	190	a ·
7	a	53	b	99	С	145	а	191	d
8	b	54	d	100	b	146	d	192	d
9	C ·	55	С	101	С	147	a	193	d
10	a	56	а	102	С	148	C	194	a
11	С	57	b	103	d	149	a	195	C C
12	b	58	С	104	b	150	a	196	a
13	b	59	d	105	a	151	С	197	b
14	b	60	b	106	a	152	b	198	b
15	a	61	b	107	a	153	a	199	b
16	b	62	С	108	a\ (	154	b	200	a
17	С	63	b	109	b	155	С	201	b
18	b	64	a	(110)	b	156	b	202	d
19	b	65	d	111/	a	157	b	203	С
20	a	66	<u>b</u>	112	) a /	158	a	204	d
21	b	67	(a	113	/ c/	159	a	205	С
22	a	68	c	114	Ъ	160	a	206	a
23	a	69	b \	115	a	161	b	207	d
24	c ·	70/	b	116	a	162	С	208	b
25	a	71	) b	<b>117</b>	b	163	a	209	a
26	b	72	C_	118	b	164	b	210	b
27	a	73	b/	119	d	165	b	211	a
28	С	74	la	120	d	166	С	212	b
29	a	75	d	121	d	167	b	213	d
30	a	76	d	122	a	168	С	214	b
31	С	77	a	123	С	169	b .	215	a
32	b	78	С	124	a	170	С	216	(i)a
33	a	79	a	125	b	171	С		(ii)d
34	b	80	a	126	b	172	d		(iii)c
35	С	81	d	127	b	173	d		(iv)b
36	b	82	b	128	a	174	a	217	b
37	b	83	a	129	b	175	a	218	С
38	a	84	b	130	d	176	a	219	b
39	a .	85	a	131	С	177	a	220	d
40	d	86	С	132	d	178	b	221	а
41	b	87	a	133	b	179	b	222	С
42	С	88	С	134	b	180	С	223	С
43	b	89	b	135	а	181	a		
44	a	90	d	136	b	182	a		
45	С	91	a	137	С	183	С		
<u> </u>									

	Space For Notes
7.	
-	
4	
2	

	INSTITUTE OF COMMERCE	-17.26-
	Space For Notes	
	Space For Notes	
	The state of the s	
	A CONTRACTOR OF THE PROPERTY O	
1-1-1	1474	
	The state of the s	
		****
	100	



## **CORRELATION & REGRESSION**

## ADDITIONAL QUESTION BANK

## Part-1

1.	If the coefficient of co	rrelatio	n betwe	en two	variable	s is -0.9	, when the	coefficient of determinat	ion is:	
	(a) 0.9		(b) 0.	81		(c) 0.	1)	(d) 0.19		
2.	If cov $(x, y) = 15$ what	restric	tions sh	ould be	e put for	the sta	indard dev	iations of $x$ and $y$ ?		
	(a) No restrication						)			
	(b) The product of the	(b) The product of the standard deviations should be more than 15.								
	(c) The product of the	(c) The product of the standard deviations should be less than 15.								
	(d) The sum of the star	ndard d	eviation	s should	l be less	than 15	•			
3.	If the rank correlati	on coef	ficient	between	marks	in mar	nagement a	nd mathematics for a g	group	
	of student is 0.6 and the sum of squares of the differences in ranks is 66, what is the number of								er of	
	students in the grou	p?			an a said					
	(a) 10		(b) 9)			(c) 8		(d) 11		
4.	If the sum of square	s of di	fference	e of ran	ks, give	n by tw	o judges A	and B, of 8 students is	s 21,	
	what is the value of	rank co	rrelati	on coef	ficient?					
	(a) 0.7		(b) 0.	.65		(c) 0.	75	(d) 0.8		
5.	For 10 pairs of observations, the number of concurrent deviations was found to be 4. What is the								is the	
	value of the coefficient of concurrent deviation?									
	(a) $\sqrt{0.2}$		(b) –	$\sqrt{0.2}$		(c) 1/	3	(d)-1/3.		
6.	While computing ra	nk cor	relation	coeffic	ient bet	ween p	rofit and in	envestment for the last 6	years	
	of a company, the difference in rank for a year was taken 3 instead of 4. What is the rectified rank								l rank	
	correlation coefficie	nt if it i	s know	n that t	he origi	nal valu	e of rank c	orrelation coefficient wa	ıs 0.4?	
	(a) 0.3		(b) 0	.2		(c) 0.	25	(d) 0.28		
7.	What is the value of ra	nk cor	relation	coefficie	ent betw	een the f	ollowing m	arks in Physics and Chen	nistry:	
	Roll No:	1,	2,	3,	4,	5,	6			
	Marks in Physics:	25,	30,	46,	30,	55,	80			
	Marks in Chemistry	y <b>:</b> 30,	25,	50,	40,	50,	78			
	(a) 0.782		(b) 0	.696		(b) 0	.932	(d) 0.857		

8.	If X and Y are independent variables, then Cov (X,Y) equals:								
	(a) 1	(b) -1	(c) 0	(d) None of these					
9.	The coefficient of correlation	on of $r(x, y)$ , when							
	$\sum dx = 14,  \sum dx^2 = 56,$	$\sum dy = 0 \qquad \sum$	$\sum dy^2 = 84 \qquad \sum dxdy =$	= 0 <b>is:</b>					
	(a) 1	(b) -1	(c) 0	(d) 0.5					
10.	The value of covariance of t	wo variables x an	dy is 148/3 and the va	oriance of $x = 272/3$ and the					
	variance of $y$ is 131/3. The	n the coefficient of	correlation is:						
	(a) 0.78	(b) 0.87	(c) 0.48	(d) None of these					
11.	If the sum of the product of	deviations of <i>x</i> and	d y series from their m	eans is zero, the correlation					
	coefficient will be:								
	(a) 1	(b) -1	(c) 0	(d) None of these					
12.	The coefficient of correlation	between x and y	is 0.28; covariance bet	ween $x$ and $y$ is 7.6 and the					
	variance of $x$ is 9, then the S.D. of $y$ series is:								
	(a) 9.8	(b) 10.1	(c) 9.05	(d) 10.05					
13.	The coefficient of correlation between two variables $x$ and $y$ is 0.5; their covariance is 16 and								
	S.D. of $x$ is 4, then the S.D.								
	(a) 4	(b) 8	(c) 16	(d) 64					
14.	If D is the difference between the corresponding ranks given by two judge in a beauty compeletion of								
	12 contestants and $\Sigma D^2 = 416$ . Then coefficient of rank correlation is :								
	(a) -0.4545	(b) -0.3545	(c) 0.4545	(d) 0.3545					
15.	If the sum of the squares of r	ank difference in tl	he marks of 10 students	s in two subject is 4, then the					
	coefficient of rank correlation is:								
	(a) 0.85	(b) 0.95	(c) 0.75	(d) 0.5					
16.	If $p(X, Y) = 0.5$ , Cov $(X, Y) = 16$ and $\sigma_x = 4$ , then $\sigma_y =$								
	(a) 4	(b) 8	(c) 16	(d) 64					
17.	The coefficient of correlation	on between X and	Y is 0.6 U and V are tw	o variables					
	defined as $U = \frac{X-3}{2}$ ,	$V = \frac{Y-2}{3}$ , then	the coeficient of corre	lation between U and V is:					
	(a) 0.6	(b) 0.3	(c) 0.2	(c) 1					
18.	Two variables $x$ and $y$ are	connected by the	relation $ax + by + c = 0$ , w	where $ab < 0$ , then $p(x, y) =$					
	(a) $\frac{a}{b}$	(b) $\frac{b}{a}$	(c) -1	(d) 1					
19.	If two variables X and Y are	e connected by the	erelation $2x + y = 3$ ,	then $p(X,Y)$ is equal to:					
	(a) 1	(b) -1	(c) -2	(d) none of these					

With usual notation: N = 10, C = 7, then the coefficient of concurrent deviation is:

	(a) 0.75	(b) 0.65	(c) -0.65	(d) -0.75				
21.	If standard deviations fo	or two variables X and	Y are 3 and 4 respective	ly and their covariance i				
	8, then correlation coeff							
	2	8	9	2				
	(a) $\frac{2}{3}$	(b) $\frac{8}{3\sqrt{2}}$	(c) $\frac{9}{8\sqrt{2}}$	(d) $\frac{2}{9}$				
22.	If $x$ and $y$ are related a	as $y-4x=3$ , then the	nature of correlation be	etween x and y is:				
	(a) Perfect positive	(b) Perfect negative	ve (c) No correlation	(d) None of these				
23.	Coefficient of correlation	on between the observ	vation (1, 6), (2, 5), (3, 4),	(4,3), (5,2)(6,1) is:				
	(a) 1	(b)-1	(c) 0	(d) none of these				
24.	The coefficient of rank of	correlation is calculate	ed by the formula:					
	(a) $r = 1 - \frac{2\sum D^2}{n^2 - n}$	(b) $r = 1 - \frac{3\sum D^2}{n^2 - n}$	(b) $r = 1 - \frac{4\sum D^2}{n^3 - n}$	(d) r=1 - $\frac{6\sum D^2}{n^3 - n}$				
25.	If the sum of squares of the	he rank difference in M	lathematics and Physics	marks of 10 students is 22				
	then the coefficient of ran	k correlation is:						
	(a) 0.133	(b) .95	(c) 0.867	(d) none of these				
26.	In a correlation analysis,	the value of the Karl l	Person's coefficient of co	rrelation and its probabl				
	error were found to be (	A LOUIS AND						
	(a) 10	(b) 11	(c) 9	(d) 8				
27.	If $C = 0$ , $N = 7$ , then coef	ficient of concurrent	deviation is:					
	(a) +1	(b) -1	(c) 0.5	(d) -0.5				
28.	The sum of the squares	of difference in the ra	nks of 18 students in tw	o subject is 46, then the				
	value of rank correlation is:							
	(a) 0.62	(b) 0.72	(c) 0.82	(d) 0.52				
29.	The rank according to t	wo atributes in a samp	ole are given below:					
	$R_1: 1 2 3$	4 5						
	$R_2$ : 5 4 3	2 1						
	The Spearman's rank co	orrelation coefficient i	s:					
	(a) 1	(b)-1	(c) 0.5	(d) -0.5				
30.	If the coefficient of correla	ation between $x$ and $y$ i	is $-0.92$ , then the coefficient					
	U = 2x + 6, $V = 3y - 15$							
	(a) - 0.46	(b) -0.92	(c)-0.31	(d) none of these				
31.	If the relation between t	he two variables is 2x -	+3y=4, then the correla	tion coefficient between				
	them is:							
	(a) -1	(b) 1	(c)-2/3	(d) None of these				
	er f	100 CART 200	- N. W.	2/ 3				



32.	For a bivariate data: [(	[(20,5),(21,4),(22)]	, 3)], the correlation co	pefficient between x and y is:					
	(a) 1	(b) $-1$	(c) 0.5	(d) 0.					
33.	The coefficient of con	current deviation is give	en by:						
	(a) $\sqrt{\frac{n+2c}{n}}$	$(b) - \sqrt{\frac{2c-n}{n}}$	(c) $-\sqrt{\frac{n-2c}{n}}$	(d) None of these					
34.	The coefficient of correlation between two variables X and Y is 0.38. Their covariance is 10.2.								
		6. The standard deviati							
	(a) 5.71	(b) 6.71							
35.				I their standard deviation					
	are 2.45 and 2.6 respe	ectively. The coefficient	of correlation between	en them is:					
	(a) 0.94	(b) -0.84	(c) 0.87	(d) -0.94					
36.	Given that the correla	Given that the correlation between x and y is 0.5, then the correlation between $2x-4$ and $3-2y$ is:							
	(a) 0.5	(b) -0.5	(c)+1	(d)-1					
37.	Given the following d	ata: n = number of pair	ts of observations = 1	10; C = Numbers of pairs of					
	deviations having sign = 9. The coefficient of concurrent deviation is:								
	(a) 0.79	(b) -0.79	(c) 0.89	(d) -0.89					
38.	The coefficient of correlation between two varities X and Y is 0.8 and their covariance is 20.								
	Also $\sigma_x = 4$ , Then the	standard deviation of Y	is:						
	(a) 6.25	(b) 2.25	(c) 4.25	(d) 7.25					
39.	Given $C = 9$ , $r = 0.89$ , then the number of pairs of deviation n is:								
	(a) 11	(b) 10	(c) 7	(d) 6					
40.				50, N=6, then the value of r is					
	(a) -0.59	(b) 0.59	(c) -0.47	(d) 0.47					
41.	If $r = 0.3$ , $N = 10$ , then the probable error of r is:								
	(a) 0.194	(b) 0.174	(c) 0.184	(d) 0.124					
42.	If $r = 0.7$ and $n = 5$ , Then the probable error is:								
	(a) 0.25	(b) 0.15	(c) 0.5	(d) 0.10					
43.	If P.E. = $0.2$ , $n = 9$ , the	en the value of r is:							
	(a) 0.332	(b) 0.222	(c) 0.232	(d) zero.					
44.	If the coefficient of co	rrelation between X and	Y is 0.65, then the coe	efficient of determination is:					
	(a) 0.48	(b) 0.52	(c) 0.42	(d) 0.32					
45.	If the coefficient of cor	relation r between X and	Y is 0.25, then the coe	fficient of non-determination					
	between them is:								
	(a) 0.84	(b) 0.94	(c) 0.74	(d) 0.64					
	<u> </u>	13 72	2000						



46.	Given is the followin	g infor	mation	1:							
		X			y						
	Arithmetic mean	6			8						
	Standard deviation	5			40/3.						
	Coefficient of correl	ation b	etween	X and	Y is 8/15	5. The n	nost like	ly valu	e of Yv	vhen X	K = 100  is:
	(a) 140.67		(b) 1	41.67		(c) 2	41.68		(d) 9	4.68	
47.	Given: Unexplained v	ariatio	n=19.2	2, expla	ined vari	iation =	19,70, th	en the c	oefficie	ntofco	rrelation, is
	(a) $\pm 0.71$			0.75		A CONTRACTOR	0.61			0.65	
48.	If $x$ and $y$ are related	ed by y	= mx	+c, ma	nd c be	ing cor	nstants,	then co	efficie	nt of co	orrelation
	between them is:				(1)						
	(a) 1		(b) 0		10	(c) 2	)		(d) N	Vone of	these
49.	If $\sum x = 52$ , $\sum y =$	64, $\sum x_i$	y = 300	), n = 11	, then C	Cov (x	(y) is:				
	(a) - 0.23		(b) <del>/</del>	0.33		(c) -	0.43		(d) -	- 0.53	
50.	The coefficient of co	rrelatio	on bety	ween x	and y wl	here[SI	M]				
	x: 64	60		67		59		69			
	y: 57	60		73)		62		68 is	:		
	(a) 0.655		(b) 0	.68		(c) 0	.73		(d) 0	.758	
51.	What is the coefficien	nt of co	rrelati	) on betw	een the	ages of	husban	ds and	wives f	rom th	e followin
	data ?[SM]	ĬĆ,									
	Age of husband (yea	r):46	45	42	40	38	35	32	30	27	25
	Age of wife (year):	37	35	31	28	30	25	23	19	19	18
	(a) 0.58		(b) (	0.98		(c)0.	89		(d) 0	.75	
52.	The coefficient of co	rrelatio	n betw	veen cos	st of adv	ertisen	nents an	d sales	of a pro	oduct o	on the basi
	of the following data	:[SM]									
	Ad cost (000 Rs):	75	81	85	105	93	113	121	125		
	Sales (000 000 Rs):	35	45	59	75	43	79	87	95		
	(a) 0.85		(b)	0.89		(c) 0	0.95		(d) 0	.98	
53.	The following result	s relate	to biv	ariate o	data on	(x,y):	[SM]				
	$\sum xy = 414, \sum x = 12$	$20, \sum y$	= 90,	$\sum_{x} x^2 =$	600,	$v^2 = 30$	00, n = 3	). Late	r or , i	t was l	known tha
	two pairs of observat										
	being (10, 9) and (8										
	(a) 0.752			0.768			0.846		(d) 0		

What is the value of correlatioin coefficient due to Pearson on the basis of the following data[SM]

x: -5 -2 -1 0 1 2 -3 3 6 3 2 3 6 11 y: 27 18 11 18 27

(b) -1 (c) 0 (a) 1 (d) -0.5



## Part-2

1.	If the line $Y = 13 - 3$	X /2 is the regression (	equation of y on x then byx is	s[SM]
	(a) 2/3	(b) $-2/3$	(c)-3/2	(d) - 3/2
2.	In the line $Y = 19 - 5$	5X/2 is the regresson of	equation <b>x</b> on <b>y</b> then bxy is,[S	SM]
	(a) 19/2	(b) 5/2	(c) $-5/2$	(d) - 2/5
3.	The line $X = 31/6 - Y$	Y/6 is the regression e	quation of[SM]	
	(a) Y on X	(b) X on Y	(c) both	(d) we can not say
4.	In the regression eq	uation x on y, $X = 35/$	8-2Y/5, bxy is equal to [SM]	
	(a) -2/5	(b) 35/8	(c) 2/5	(d) 5/2
5.	The regression equa	ation of Y on X is, 2x -	+3Y+50=0. The value of b,	x is[SM]
	(a) $2/3$	(b) - 2/3	(c) -3/2/	(d) none
6.	In the line $Y = 19 - 6$	(5/2) X, b _{yx} is equal to		
	(a) 5/2	(b) 15/2	(c) -5/2	(d) None of these
7.	In the equation $X =$	$35/8 - (2/5) \text{ Y, b}_{xy}$ is eq	ual to:	
	(a) - 2/5	(b) 2/5	(c) 7/12	(d) 5/2
8.	For the regression e	quation of Yon X, 2X	X + 3Y + 50 = 0. The value of 1	b _{yx} is:
- 2	(a) 2/3	(b) 2/3	(c) -3/2	(d) None of these
9.	If $b_{yx} = 0.8$ , $b_{xy} = 0.46$	then r is:		
	(a) 0.61	(b) 0.51	(c) 0.60	(d) None of these
10.	If the correlation co	efficient between two	variables X and Y is 0.4 and th	ne regression coefficien
	of X on Y is 0.2, then	n the regression coeffi	icient of Y on X is:	
	(a) 0.4	(b) $\pm 0.8$	(c) 0.8	(d) None of these
11.	Reression equation	of Y on X is $8x-10y+$	$-66 = 0$ and $\sigma_x = 3$ . Hence Co	v (X, Y) is equal to:
	(a) 11.25	(b) 7.2	(c) 2.4	(b) None of these
12.	If p $(x, y) = 0.4$ and	$b_{xy} = 0.2$ , then $b_{yx}$ is eq	qual to:	
	(a) -0.8	(b) 0.2	(c) 0.8	(d) $\pm$ 0.8
13.	Out of the two lines	of regression given by	x + 2y - 4 = 0 and $2x + 3y$	y-5=0, the regression
	line of $x$ on $y$ is:		v	
	(a) $2x + 3y - 5 = 0$		(b) $x + 2y = 4$	
	(c) $x + 2y = 0$		(d) The given lines ca	n't be regression lines.

14.	For a bivariate dat	ta, the two lines of regressio	n are $4x - 5y + 33 = 0$ and $2x - 4y - 3y = 0$	9y+127=0. For this data r=				
	(a) 2/9	(b) 4/5	(c) 5/4	(d) $\sqrt{10} / 6$				
15.	If $_{X}^{-} = 10, _{y}^{-} = 50,$	$\sigma_x = 3$ , $\sigma_y = 15$ , p = 0.9, then	n the estimated value of $x$	corresponding to $y = 100$ is:				
	(a) 19	(b) 20	(c) 18	(d) 21				
16.	If $\bar{x} = 15$ , $\bar{y} = 80$ ,	$\sigma_x = 2$ , the $\sigma_y = 16$ , $\rho = 0.75$ ,	hen the estimated value of	y corresponding to $x = 25$ is:				
	(a) 150	(b) 140	(c) 130	(d) 145				
17.	Given the follow	ing data: $b_{xy} = 2.33, b_{yx} =$	0.39, then the value of co	rrelation coefficient r is:				
	(a) 0.39	(b) 0.79	(c) 0.95	(d) 0.85				
18.	Given the followi	ing data of a bivariate dis	stribution: $b_{xy} = 1.36$ , $b_{yx} =$	0.613, then the coefficient				
	of determination	is given by:						
	(a) 0.634	(b) 0.834	(c) 0.734	(d) 0.534				
19.	Given the following	ng data for a bivariate dis	tribution $b_{xy} = 0.756, b_{xy} =$	= 0.659, then the coefficient				
	of non-determination is given by:							
	(a) 0.502	(b) 0.402	(c) 0.602	(d) 0.702				
20.	For the following	data of a bivariate distrib	ution $(x, y) : (\sigma_x / \sigma_y) = 2/3$	3, $b_{xy} = 3/5$ the coefficient of				
	determination is:	THE THEORY AND THE PERSON AND THE PE		<b>V</b>				
	(a) 0.9	(b) 0.79	(c) 0.83	(d) 0.81				
21.	The two lines or r	egression are $x + 2y = 7a$	and $2x + y = 7$ . The regre	ession equation of Y on X is:				
	(a) $2x + y = 7$	The state of the s	= 7   (c) x + 2 y = 0					
22.	The two lines of re			is the correlation coefficient				
	between x and y							
	(a) - 2/7	(b) 2/7	(c) 4/49	(d) None of these				
23.	If the two lines of reg	gression are $3x - y - 5 = 0$	) and $2x - y - 4 = 0$ then	$\frac{1}{v}$ and $\frac{1}{v}$ respectively, are:				
	(a) 1 and –2		(c) $2 \text{ and } -1$	50.				
24.	You are given the			and correlation coefficient				
		is 0.66. Find value of X w		2-1-7-10-10-1				
	(a) 26.53	(b) 25.93	(c) 26.93	(d) 27.93				
25.	The following relsu	ılts were obtained from the	analysis of data on two varia	ables X and Y: $\overline{X} = 20$ ,				
			· ·	efficient of correlation = 0.7.				
		of Y, when $X = 24$ is:	*					
	(a) 17.9	(b) 17.8	(c) 17.1	(d) 16.1				
	-00 900			A CONTRACTOR OF THE PROPERTY O				

PARAS

	INSTIT	TUTE OF COMMERC	E	-18.9-
26.	In a partially destroyed	laboratory record of an	analysis of correlation	data, only the following
	results are legible: Vari			
	Regression equations:			
	8X - 10Y + 66 = 0	(1)		
	40X - 18Y = 214	(2)		
	On the basis of the abov	e information the valu	e of $\sigma_y$ is:	
	(a) 2	(b) 3	(c) 4	(d) 5
27.	From the following data	a: $\sigma_x = 3$ , $b_{xy} = 0.85$ and	$b_{yx} = 0.89$ , the value of	$\sigma_{\nu}$ is:
	(a) 3.57	(b) 3.07	(c) 3.97	(d) 2.07
28.	For some bivariate data,	te following results were	obtained; Mean of vari	iable $X = 53.2$ and of $Y =$
	39.5; Regression coeffic			
	likely value of X when Y			
	(a) 39.21	(b) 49.21	(c) 48.21	(d) 59.21
29.	The lines of regression of	a bivariate distribution	are as follows: 5X-145	=-10Y; $14Y-208=-8X$ .
	The mean values $(\overline{X}\overline{Y})$			
	(a) (5, 12)	(b) (12, 5)	(c) (12, 3)	(d) (3, 12)
30.	The regression coefficien	nt b, between X and Y i	or the following data:	
	$\sum x = 30, \ \sum y = 42,$	$\sum xy = 199, \ \sum x^2 = 184,$	$\sum y^2 = 318, N = 6$ is:	
	$\sum x = 30, \ \sum y = 42,$ (a) 2.2	(b) -1.24	(c) 2.1	(d)-2.4
31.	The regression coefficien			
	$\sum x = 24, \ \sum y = 44,$			
	(a) -0.46	(b) 2.3	(c) 2.1	(d) - 2.1
32.	For the following data, b	$b_{yy} = 1.24 b_{yy} = 0.36, \frac{1}{x} =$	$\frac{1}{5.5}, \frac{1}{v} = 8.8$ , the regre	ession line $y$ on $x$ is:
	(a) $y = 1.24x + 1.98$ (b)			(d) None of these
33.	If $4x + 6y - 1 = 0$ is the		5	
	(a) $-(3/2)$ (b)		(c) $-(2/\sqrt{(13)})$	
34.	For the following data,		1/2	
	(a) $y = 0.48x - 67.72$		2 (c) $y = 0.91y - 41.14$	
35.	If the coefficient of corre			
	the variance of X is 9, th			
	(a) 9.05	(b) 9.1	(b) 9.08	(d) 10.05.
36.	If the two lines of regres	18 18 18 18 18 18 18 18 18 18 18 18 18 1		, ,
	(a) -4	(b) 4	(c) -3	(d) 3

37.	Let $\overline{x} = 15$ , $\overline{y} = 80$ , $\sigma_x = 12$ , $\sigma_y = 12$ , $r = 0.75$ . Then estimated value of y corresponding to $x = 55$								
	(a) 110	(b) 120	(c) 100	(d) none of these					
38.	Two random variables have the regression lines $3x + 2y = 26$ and $6x + y = 31$ . The coefficient								
	of correlation between	$\mathbf{n} x$ and $y$ is given by:							
	(a) -0.5	(b) 0.5	(c) 0.25	(d) None of these					
39.	3x+4y-7=0 and $4x+y-5=0$ are the equations of two regression lines. The correlation coefficient								
	between $x$ and $y$ is:								
	(a) 0.43	(b) -0.43	(c) 0.34	(d) -0.34					
40.	Given $\sigma_x = 3$ , and the two regression lines: $8x-10y+66=0$ , and $40x-18y=214$ then $\sigma_y =$								
	(a) 4	(b) -4	(c) 2	(d) 1					
41.	In a bivariate distribution $b_{xy} = 0.64$ and $b_{yx} = 0.83$ , then the coefficient of determination is given by:								
	(a) 0.413	(b) 0.513	(6) 0.523	(d) 0.423					
42.	In a bivariate data $b_{xy} = 0.24$ and $b_{yx} = 0.58$ , then the coefficient of non-determination is given by:								
	(a) 0.2	(b) 0.02	(c) 0.002	(d) 0.03					
43.	If the two line of regression are $y = 3x - 5$ and $y = 2x - 4$ , then $\rho(X, Y)$ is equal to:								
	(a) $\sqrt{2/3}$	(b) $\sqrt{1/6}$	(c) $\sqrt{3/2}$	(d) None of these					
44.	If b _{yx} and b _{xy} are regression coefficients of Y on X, and X on Y respectively, then which of the								
	following statements i	ACCUPATION - VICTOR ACCUPATION							
	(a) $b_{xy} = 1.5$ , $b_{yx} = 1.4$	(b) $b_{xy} = 1.5$ , $b_{yx} = 0.9$ (c)	c) $b_{xy} = 1.5, b_{yx} = 0.8$	(d) $b_{xy} = 1.5$ , $b_{yx} = 0.6$					
45.	Given the following data,								
	$b_{xy} = -3/2, b_{yx} = -1/2, r$	2 =0.75 then the value of 2	$\sigma_y^2$ is:						
	(a) 2	(b) 4	(c) 9	(d) 12					
46.	If $\sigma_x = 6.4$ , $\sigma_y = 8.0$ and $b_{xy} = 0.4$ , then the value of r is:								
	(a) 0.56	(b) 0.46	(c) 0.36	(d) 0.76					
47.	If $\sigma_x = 6.4$ , $b_{xy} = 0.4$ and $r = 0.56$ , then the value of $\sigma_y^2$ is								
	(a) 56	(b) 49	(c) 64	(d) 36					
48.	If $\sigma_x = 6.4$ , $\sigma_y = 8$ and	r = 0.56, then the value of	of b _{yx} is:						
	(a) 0.7	(b) 0.40	(c)-0.7	(d) 0.49					
49.	The regression line of $y$ on $x$ is:								
	y = 109.21 - 1.245 x. The estimated value of y for $x = 62$ is:								
	(a) 42	(b) 52	(c) 32	(d) 26					
50.	Given the following da	ata for two variables $x$ ar	$1d y : \frac{1}{x} = 25.5, \frac{1}{y} = 40$	0, $\sigma_x = 24$ , $\sigma_y = 6$ , $r = 0.8$ .					
	The regression line of $y$ on $x$ is:								
	(a) $y = 11 + 2x$	(b) $y = 2x - 11$	(c) $x = 11 + 2y$	(d) None					

51.	If $b_{xy} = 4/5$	, r = 0.73	$\sigma_y = 2.$	74, then t	he variance	of $x$ is:	}				
	(a) 3			(b) 6		(c) 9			(d) 12	2	
52.	In a rando	m samp	le of size	28; b _{xy} =	$-1.5$ , $(\sigma_y^2)$	$\sigma_x^2) = 0$	.25, the	n the va	lue of	$r_{xy}$ is:	
	(a) - 0.75			(b) 0.75		(c) 0.	.95		(d) 0.	85	
53.	If $y = 3x$	+ 4 is th	ie regres	sion line o	f y on x a	nd the ar	rithmeti	ic mean	of $x$ is	– 1. What	is the
	arithmetic mean of y?										
	(a) 1			(b) -1		(c) T			(d) no	one of these	,
54.	The two lines of regression are given by $8x+10y=25$ and $16x+5y=12$ respectively. If the variance										riance
	of $x$ is 25, what is the standard deviation of $y$ ?										
	(a) 4			(b) 8	1	(c) 16	5)		(d) 6		
55.	The regression equation of y on x for the following data: [SM]										
	X	41	82	62	37 58	96	127	74	123	100	
	y	28	56	35	17 42	85	105	61	98	73	
	Is given by	7			3//						
	(a) $y = 1.2x$	x - 15		(b) y = 1	.2x + 15	(c) y	= 0.93x	- 14.64	(d) y	= 1.5x - 10	0.89
56.	The following data relate to the heights of 10 pairs of fathers and sons: [SM]										
	(175, 173), (172, 172), (167, 171), (168, 178), (172, 173), (171, 170), (174, 173)										
	(176,175) (169, 170) , (170, 173).										
	The regres	The regression equation of height of son on that of father of given by									
	(a) $y = 100$	+ 5x	(b) y =	= 154.03 +	.1095x	(c) y=	=89.653	+ 0.582	2 (d)y=	88.758+0	.562x
57.	The two re	gression	coeffici	ents for th	e following	g data :[S	SM]				
	x: 38		23	4	13	33		28			
	y: 28		23	4	13	38		8			
	(a) 1.2 and	0.4			(b) 1	.6 and 0	.8				
	(c) 1.7 and	0.8			(d) 1	.8 and 0	.3				
58.	For y = 25	, what is	the estir	nated val	ue of x , fro	m the fo	llowing	data:[	SM]		
	x: 11	12		15	16		18		19	21	
	y: 21	15		13	12		11		10	9	
	(a) 15		(b) 13	.926	(c) 6	.082			(d) 14	1.986	



59. Calculate the (i) two regression coefficient, (ii) coefficient of correlation, and (iii) the two regression equations from the following data: [SM]

regression equations from the following data: [SIV]
$$N = 10, \qquad \sum X = 320, \qquad \sum Y = 380, \qquad (Y - 38) = -93$$

$$\sum (X - 32)$$
(a) bxy = -0.3331, byx = -0.5643
$$r = -0.294$$

$$X_c = 40.981 - 0.13374$$
(b) bxy = -0.2337, byx = -0.6643
$$r = -0.394$$

$$X_c = 40.881 - 0.23374$$

$$Y_c = 59.2576 - 0.6693x$$
  
 $Y_c = 59.2576 - 0.6693x$   
 $Y_c = 59.2576 - 0.6693x$   
 $Y_c = 59.2576 - 0.6693x$   
 $Y_c = -0.8337, byx = -0.6643$   
 $Y_c = -0.8337, byx = -0.6643$   
 $Y_c = -0.8337, byx = -0.6643$ 

$$X_c = 40.881 - 0.23374$$
  $X_c = 40.881 - 0.23374$   $Y_c = 59.2576 - 0.6693x$   $Y = 59.2076 - 0.6693x$ 

60. For a bivariate data, you are given the following information: [SM]

$$\sum (X-44) = -5,$$

$$\sum (Y-26) = -6,$$

$$\sum (X-44)^2 = 255$$

$$\sum (Y-26)^2 = 704$$

Number of pairs of observation = 12

Find out (i) the two regression equations, and (ii) the coefficient of correlation between X and Y-series.

(a) 
$$X_c = 54.80 - 0.44Y$$
  
 $Y_c = 78.67 - 1.219X$   
 $Y_c = 78.67 - 1.209X$   
 $Y_c = 78.67 - 1.209X$ 

61. By using the following data, find out the two lines of regression and from them compute the Karl Pearson's coefficient of correlation.[SM]

$$\sum X = 250, \qquad \sum Y = 300, \qquad \sum XY = 7900$$

$$\sum X^2 = 6500 \qquad \sum Y^2 = 10000 \qquad N = 10$$
(a)  $X_c = 13 + .4Y, \qquad Y_c = -10 + 1.6X, \qquad r = 0.80$ 
(b)  $X_c = 23 + .4Y, \qquad Y_c = -09 + 1.6X, \qquad r = 0.80$ 
(c)  $X_c = 33 + .4Y, \qquad Y_c = -08 + 1.6X, \qquad r = 0.80$ 
(d)  $X_c = 43 + .4Y, \qquad Y_c = -07 + 1.6X, \qquad r = 0.80$ 



		22110 222		COMMINAL					10.10
			Add		uestion B	ank			
				Pa	rt-I				
1	b	12	С	23	b	34	b	45	b
2	b	13	b	24	d	35	а	46	b
3	а	14	а	25	b	36	b	47	a
4	С	15	b	26	а	37	С	48	а
5	d	16	b	27	b	38	a	49	а
6	b	17	а	28	b	. 39	b	50	а
7	d	18	d	29	b	40	а	51	b
8	С	19	b	30	b /	41_	С	52	С
9	C	20	а	31	a (	42	b	53	С
10	а	21	а	32	b	43	а	54	С
11	С	22	а	33	d	44	С		
			Λ	Pa	rt-2		-		
1	d	14	d	27	R	40	а	53	а
2	d	15	а	/ 28	bG	41	b	54	С
3	b	16	b	<b>29</b>	b	42	b	55	С
4	а	17	c (	30	a	43	а	56	b
5	b	18	b	31	c/	44	d	57	а
6	С	19	/ a	32	a	45	b	58	С
7	а	20	d	33	b	46	а	59	b
8	b	21	b./	34	b	47	С	60	а
9	а	/22	b	35	а	48	а	61	а
10	С	23	) a) /	36	b	49	С		
11	b	24	c	37	а	50	а		
12	C	25	) с	38	а	51	С		
13	а	26	C	39	b	52	a		

	INSTITUTE OF COMMERCE	-10.14-
*	Space For Notes	
		14-1
	e ·	
		***
		4
		Fallist Assessment

	INSTITUTE OF COMMERCE	-10.13-
	Space For Notes	
	Space I of Titles	
		*
		- TOTAL
		2.8
V		
	·	
	1	