# CA-FOUNDATION BUSINESS MATHEMATICS, STATISTICS & LOGICAL REASONING

**Revise all Formulas** at a Glance

By :- Prof. Mayank Maheshwari



# **BUSINESS MATHEMATICS CHART BY MAYANK MAHESHWARI**

| INDICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LOGARITHMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RATIO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PROPORTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | EQUATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • a x a x a x upto n terms = a <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • $\log_a 1 = 0$ (where a $\neq 0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • Ratio = $\frac{a}{-}$ or a : b where b $\neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • Equality of two ratios is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • An equation of degree 1 is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| where a = Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • $\log_a a = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | proportion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | linear equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| where n = the index of power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • $\log_a a^x = x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | where, a = First term or Antecedent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | If a. b. c. d are said to be in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • An equation of degree 2 is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • $a^{-m} = 1/a^{m}$ and $1/a^{-m} = a^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\log_a \alpha^x = \chi \log_a \alpha$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b = Second term or Consequent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | proportion then $a \cdot b = c \cdot d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | auadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • $(2^{m})^{n} = 2^{m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • $\log u = x \log a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Both terms of ratio can be multiplied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Here a and d are <b>Extremes</b> : h and c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | quadratic equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| • (d) - d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • $\log_a y = \log y / \log a = 1 / \log_y a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or divided by the same (non-zero)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | are Moons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e.g. $ax^2 + bx + c = 0$ , where, a, b and c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • (a. b) ''' = a '''. b '''                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • $\log_a\left(\frac{1}{m}\right) = -\log_a m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | are constants and a $\neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| • $(a / b)^{n} = a^{n} / b^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • $\log h = \log h / \log a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • If a quantity increases or decreases in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{1}{b} = \frac{1}{d} \rightarrow ad = bc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\circ$ If b = 0, then the equation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $\sqrt[n]{a = a^{1/n}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\log_a b = \log_c b + \log_c a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the ratio a : b then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Product of extremes = Product of</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | called pure quadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • a <sup>m</sup> x a <sup>n</sup> = a <sup>m + n</sup> (base must be same)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • $\log_a b - \log_c b \times \log_a c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | means (Cross product rule)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\circ$ If b ≠ 0, then the equation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| • $a^m / a^n = a^{m-n}$ (base must be same)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • $\log_a y = \log y / \log a =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a a conginal Qty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • If a h c are in continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | called a mixed or affected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| • $a^0 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m log y / m log a = log $y^m$ / log $a^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | The reciprocal of a given ratio is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • If a, b, c are in continuous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | quadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • $a^{x} - a^{y} - b^{x} - y$ (base must be same)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= \log_a m y^m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | called Inverse ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | proportion then a : b = b : c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • A supportion equation has two vests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • $a^{-} = a^{-} = x - y$ (base must be same)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • $\log_{a^n} y^m = \frac{m}{n} \log_a y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • The ratio <b>compounded</b> of the two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • b <sup>2</sup> = a c (by cross product rule)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • A quadratic equation has two roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • $a^{*} = b^{*} \rightarrow a = b$ (power must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • $\log a + \log b = \log a b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ratios a : b & c : d is ac : bd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>a:b=c:d → b:a=d:c (Invertendo)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (i.e. x has two values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| same)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\log a - \log b - \log \frac{a}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • The <b>duplicate ratio</b> of $a : b$ is $a^2 : b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>a:b=c:d → a:c=b:d (Alternendo)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Roots of a quadratic equation ax <sup>2</sup> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • $a^{*} = b^{*} \& a \neq b \rightarrow \text{ when } x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • $\log a = \log b = \log \frac{b}{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • The triplicate ratio of $a \cdot b$ is $a^3 \cdot b^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>a:b=c:d → (a+b):b=(c+d):d</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $bx + c = 0$ , where $a \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • $a^x = y \rightarrow a = y^{1/x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • $\log a + \log b - \log c = \log \frac{a \times b}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The sub-duplicate ratio of a this a this day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Componendo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-h + \sqrt{h^2 - 4ac}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • $\log h \times \log a = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • a:b=c:d → (a-b):b=(c-d):d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $x = \frac{-b + \sqrt{b} - 4uc}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PERMUTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\int \log_a b \times \log_b a = \log_a a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vb or $a^{\overline{2}}$ : $b^{\overline{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Dividendo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2a $-b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • Number of Permutations when r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • $\log_c b \times \log_b a - \log_c a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • The <b>sub-triplicate ratio</b> of a : b is $\sqrt[3]{a}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>a:b=c:d → (a+b):(a-b)=(c+d):(c-d)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Sum of roots $(x_1 + x_2) = \frac{1}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| objects are chosen out of n different                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • II $\log_a x = \log_a y$ , then $x = y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{3}{h}$ or $\frac{1}{h}$ , $h^{\frac{1}{h}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Componendo & Dividendo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Product of roots $(x, x) = \frac{c}{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| abjects Depeted by $^{\text{DD}}$ – $n!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • $a_{\text{log}b} = b_{\text{log}a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| objects. Denoted by $P_r = \frac{1}{(n-r)!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>Log<sub>a</sub>n = x, then a<sup>x</sup> = n</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEQUENCE & SERIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Discriminant (D) = b<sup>2</sup> – 4ac</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • $e^{\log a} = a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ARTHWETIC PROGRESSION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • a:b=c:d → (a-c):(b-d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • If 2 roots of a quadratic equation are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ${}^{n}P_{r} = n (n-1) (n-2) \dots (n-r+1).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | • A sequence $a_1, a_2, a_3, \dots, a_n$ is called                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Subtrahendo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | given, then quadratic equation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| where the product has exactly r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an arithmetic progression when $a_2$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula for inverse variable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X <sup>2</sup> – (Sum of roots) x + Product of roots = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRT = P[1 + RT] = P + C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a_1 = a_3 - a_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | If y is inversely proportional to x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • $1y_1 + 2y_2 + 2y_2 + + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $3I - \frac{1}{100}$ , $A = P \left[ 1 + \frac{1}{100} \right]$ , $A = P + SI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • $t_n = a + (n-1) d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i.e. $y \propto 1/x$ , then, $y = (k/x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nature of Roots:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $= (n+1)   1 c_1 \sum_{n=1}^{n} c_1 \sum_{n=1}^{n} c_n \sum_{n=1}^{n} $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Where, a = first term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Here, K is the constant of proportionality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | If D > 0 but not a perfect square then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $-(n+1) = 1$ or $\sum_{r=1}^{n} r$ . $P_r = \cdots P_{n+1} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COMPOUND INTEREST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n = number of terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LINEAR INEQUALITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the roots are real, irrational and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • (n-1)! = n!/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $A = P \left( 1 + \frac{R}{m} \right)^{T * m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d = common difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • The Inequality is not affected by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | unequal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| • ${}^{n}P_{r} = {}^{n}C_{r} r!$ where, $n \ge r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 * m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $t_n$ = last term/ n <sup>th</sup> term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | adding/subtracting any number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | If D < 0 then the roots are imaginary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| • ${}^{n}P_{r} = {}^{n-1}P_{r} + r. {}^{n-1}P_{r-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $CI = P \left  \left( 1 + \frac{R}{100} \right)^2 - 1 \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $n = \frac{n}{n} \left[ 2 \frac{n}{n} + \frac{n}{n} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The Inequality is not affected by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or not real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The no_of arrangements when things                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Where D-Dringingly D-Dates T-Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • $S = \frac{1}{2} [2a + (n-1) d] \text{ or } \frac{1}{2} [a + t_n]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | multiplying/dividing by a pop zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | If D = 0 then reats are real and equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| can be repeated is n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SI – Simple Interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Where, S = Sum of n terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nositive number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | If D > 0 and perfect severe the other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Linear normutations of a articles have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CI-Compound Interest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a = first term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | When is inequality is multiplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - II D > 0 and perfect square then the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Linear permutations of n articles having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m-No. of conversion pariod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n = number of terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | divided by a nequality is multiplied/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | roots are real, rational and unequal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| some articles of same nature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conversion Period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d = common difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | divided by a negative number the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Arrangements = $\frac{n!}{n!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Compounded deily                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $t = \text{last term}/\text{n}^{\text{th}}$ term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inequality symbol is reversed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Repetition!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Compounded daily 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $t_n = 1$ as the first product numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SETS, RELATIONS & FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INTEGRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sum of all possible arrangements of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Compounded monthly 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Sum Snor the first in natural numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Sub Sets: A subset of a main set is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Integration is the reverse process of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| given digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Compounded quarterly 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = n(n+1)/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | set which is formed by choice of any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | differentiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1111 (no. of digits) x sum of digits x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compounded bi-monthly 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • Sum $S_n$ of first n odd numbers = $n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | number of elements from the main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (no. of digits-1)!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Compounded semi-annually 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • Sum of the Squares of the first n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | set. Number of possible subsets = 2 <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f(x) \rightarrow Differentiate \rightarrow f'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sum of digits containing 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | natural numbers = $S = n(n + 1)(2n + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | where n = no. of elements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f'(x) \rightarrow Integrate \rightarrow f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [1111 (no. of digits) x sum of digits x (no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EFFECTIVE RATE OF INTEREST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1)/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Also, in all possible sets, one is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of digits-1)!] - [111 (no. of digits -1) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Effective Rate = $\left(1 + \frac{R}{100 \times m}\right)^m - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Sum of the cubes of first n natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | improper subset and remaining are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integration Formulas:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| sum of digits x (no. of digits-2)!]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100*///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | numbers = $[n(n+1)/2]^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nroner Subsets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. $\int 1 dx = x + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sum of digits containing repetitive digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FUTURE VALUE (FV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GEOMETRIC PROGRESSION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Therefore Proper subsets = $2^n - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{2} \int \frac{1}{2} dx = 2x + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1111 (no. of digits) x sum of digits x (no.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\Gamma_{V} = DV \left(1 + \frac{R}{R}\right)^{T*m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • A sequence a, ar, $ar^2$ , $ar^3$ , $ar^n$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and improper subset = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2. $\int d dx - dx + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $FV = PV \left[ 1 + \frac{1}{100} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3. $ x'' dx = ((x''^{+1})/(n+1)) + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of digits-1)! / Repetitions!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( 100* <i>m)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | called Geometric Progression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Dewer Cet The collection of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3 ((</b> <i>n</i> <b>(</b> <i>n</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of digits-1)! / Repetitions!<br>• The number of circular permutations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRESENT VALUE (PV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | called Geometric Progression.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • Power Set: The collection of all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. $\int (1/x) dx = \log x + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations<br/>of n different things chosen at a time</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{m}\right)^{T*m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>called Geometric Progression.</li> <li>n<sup>th</sup> term of GP: t<sub>n</sub> = a r<sup>n-1</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • <b>Power Set</b> : The collection of all possible subsets of a given set A is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n = 1)!</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>called Geometric Progression.</li> <li>n<sup>th</sup> term of GP: t<sub>n</sub> = a r<sup>n-1</sup><br/>Where, a = first term</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | • <b>Power Set</b> : The collection of all possible subsets of a given set A is called the power set of A, to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of erronging n</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>called Geometric Progression.</li> <li>n<sup>th</sup> term of GP: t<sub>n</sub> = a r<sup>n-1</sup></li> <li>Where, a = first term</li> <li>n = number of terms</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • <b>Power Set</b> : The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>called Geometric Progression.</li> <li>n<sup>th</sup> term of GP: t<sub>n</sub> = a r<sup>n-1</sup><br/>Where, a = first term<br/>n = number of terms<br/>r = common ratio</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).</li> <li>No of elements in power set =</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$<br>7. $\int a^x dx = (a^x / \log a) + C; a > 0, a \neq 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that a time is in the number of ways of arranges of the number of the number of the number of table so that the number of table so that the number of table so that table so table so that table so table s</li></ul>                                                                                                                                                                                                                                                                                                                                                                                    | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>called Geometric Progression.</li> <li>n<sup>th</sup> term of GP: t<sub>n</sub> = a r<sup>n-1</sup><br/>Where, a = first term<br/>n = number of terms<br/>r = common ratio<br/>t<sub>n</sub> = last term/ n<sup>th</sup> term</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).</li> <li>No of elements in power set = n[P(A)] = 2<sup>n</sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$<br>7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$<br>8. $\int c f(x) dx can be written as$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{a = ar} = \frac{ar}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).</li> <li>No of elements in power set = n[P(A)] = 2<sup>n</sup></li> <li>No. of elements in Power set of a</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$<br>7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$<br>8. $\int c f(x) dx can be written as c f(x) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first$ term<br>n = number of terms<br>r = common ratio<br>$t_n = last$ term/ $n^{th}$ term<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).</li> <li>No of elements in power set = n[P(A)] = 2<sup>n</sup></li> <li>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$<br>7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$<br>8. $\int c f(x) dx can be written as$<br>$c \int f(x) dx$<br>9. $\int f(x) dx \pm g(x) dx can be written$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> <li>Number of necklaces formed with n</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first$ term<br>n = number of terms<br>r = common ratio<br>$t_n = last$ term/ $n^{th}$ term<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{a} = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^{x} + C$<br>6. $\int e^{ax} dx = \frac{e^{ax}}{a} + C$<br>7. $\int a^x dx = \frac{a^x}{\log a} + C; a > 0, a \neq 1$<br>8. $\int c f(x) dx \ can \ be \ written \ as \ c \int f(x) dx \ dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> <li>Number of necklaces formed with n beads of different colours = 1/2 (n-1)!</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^{x} + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$<br>7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$<br>8. $\int c f(x) dx can be written as$<br>$c \int f(x) dx \pm g(x) dx can be written$<br>$as \int f(x) dx \pm \int g(x) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> <li>Number of necklaces formed with n beads of different colours = 1/2 (n-1)!</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = -\frac{c}{b}$ which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = \frac{e^{ax}}{a} + C$<br>7. $\int a^x dx = \frac{a^x}{\log a} + C; a > 0, a \neq 1$<br>8. $\int c f(x) dx can be written as$<br>$c \int f(x) dx$<br>9. $\int f(x) dx \pm g(x) dx can be written$<br>$as \int f(x) dx \pm \int g(x) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> <li>Number of necklaces formed with n beads of different colours = 1/2 (n-1)!</li> <li>Number of combinations of n</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = -\frac{c}{b}$ which<br>gives $h^2 = a c$ ( $h = \sqrt{ac}$ ) h is called the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> </ul> FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) -</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = \frac{e^{ax}}{a} + C$ 7. $\int a^x dx = \frac{a^x}{\log a} + C; a > 0, a \neq 1$ 8. $\int c f(x) dx can be written as$ $c \int f(x) dx = g(x) dx can be written$ $as \int f(x) dx \pm g(x) dx can be written$ $as \int f(x) dx \pm \int g(x) dx$ STANDARD FORMULA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> <li>Number of necklaces formed with n beads of different colours = 1/2 (n-1)! <u>COMBINATIONS</u></li> <li>Number of combinations of n different things taken r at a time.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = -\frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between a $8 c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> </ul> FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(AOB) - n(BOC) - n(COA) +</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x / \log a) + C; a > 0, a \neq 1$ 8. $\int c f(x) dx can be written as$ $c \int f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written$ $as \int f(x) dx \pm \int g(x) dx$ STANDARD FORMULA<br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>of digits-1)! / Repetitions!</li> <li>The number of circular permutations of n different things chosen at a time is (n - 1)!</li> <li>The number of ways of arranging n persons along a round table so that no person has the same two neighbours is = <sup>1</sup>/<sub>2</sub> (n-1)!</li> <li>Number of necklaces formed with n beads of different colours = 1/2 (n-1)! <u>COMBINATIONS</u></li> <li>Number of combinations of n different things taken r at a time. n!</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS -         <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) [Not disjoint sets]</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^{x} + C$<br>6. $\int e^{ax} dx = e^{ax} / a + C$<br>7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$<br>8. $\int c f(x) dx can be written as$<br>$c \int f(x) dx = g(x) dx can be written$<br>$as \int f(x) dx \pm g(x) dx can be written$<br>$as \int f(x) dx \pm \int g(x) dx$<br><b>STANDARD FORMULA</b><br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$<br>$a \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>EV of Annuity (Regular) = $c \left[ (1+r)^n - 1 \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = -\frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS -         <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C)</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as$ $c \int f(x) dx = g(x) dx can be written$ $as \int f(x) dx \pm g(x) dx can be written$ $as \int f(x) dx \pm \int g(x) dx$ 5TANDARD FORMULA<br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is = $\frac{1}{2}$ (n-1)!<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- <sup>n</sup> C <sub>r</sub> = $\frac{n!}{r!(n-r)!}$ & 0 ≤ r ≤ n<br>Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS -         <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c \int f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as f(x) dx \pm \int g(x) dx$ STANDARD FORMULA<br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log  x + \sqrt{x^2 + a^2}  + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = -\frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS -         <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B)</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as \int f(x) dx \pm \int g(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between $a \& c$ .<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS -         <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c \int f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as \int f(x) dx \pm \int g(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, a = first term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS -         <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as f(x) dx \pm f(x) dx$ STANDARD FORMULA<br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int e^x  f(x) + f'(x)  dx = e^x f(x) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}\right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as f(x) dx \pm \int g(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Regular) = C $\left[\frac{1-\frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}\right]}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f(x) dx$ 9. $\int f(x) dx \pm f(x) dx = f(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a+x}{x+a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{x+a} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}(1+r)$<br>where, C = Cash flows per period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/ n^{th} term$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a \neq 1$<br>8. $\int c f(x) dx can be written as c f(x) dx$<br>9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f g(x) dx$<br>9. $\int f(x) dx \pm f g(x) dx$<br>8. $\int c f(x) dx \pm g(x) dx can be written as f(x) dx \pm f g(x) dx$<br>9. $\int f(x) dx \pm f g(x) dx$<br>9. $\int f(x) dx \pm f g(x) dx$<br>8. $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$<br>b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$<br>c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$<br>d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$<br>e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$<br>f) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$<br>g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)$ !<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)$ !<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)$ !<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f g(x) dx$ 5TANDARD FORMULA<br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left  x + \sqrt{x^2 + a^2} \right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 - a^2} \right  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{\sqrt{x^2 - a^2}} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2} (n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{(1-r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Precedin,g Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S \approx = \frac{a}{4 - r}$ , for $r < 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f g(x) dx$ 5. $\int dx = \int f(x) dx \pm f g(x) dx$ 5. $\int dx = \int dx = $ |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]}{r}(1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]}{r}(1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PK of Annuity P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1-r}$ , for $r < 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' ∩ Q'</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4. $\int (1/x) dx = \log x + C$<br>5. $\int e^x dx = e^x + C$<br>6. $\int e^{ax} dx = (a^x/\log a) + C; a > 0, a \neq 1$<br>8. $\int c f(x) dx can be written as c f(x) dx$<br>9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f g(x) dx$<br>9. $\int f(x) dx \pm f g(x) dx can be written as f(x) dx \pm f g(x) dx$<br><b>STANDARD FORMULA</b><br>a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{x + a} + c$<br>b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$<br>c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$<br>d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$<br>e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$<br>f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log(x + \sqrt{x^2 + a^2}) + c$<br>g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$<br>h) $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}$ (1+r)<br>where, C = Cash flows per period<br>$r=Rate/100^*m$<br>$n = T^*m$<br>PERPETUITY<br>PV of perpetuity = C/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1-r}$ , for $r < 1$ .<br>[Sum of infinite terms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>n(A'UB) = n(A) - n(A∩B)</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as c)f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c)f(x) dx \pm f(x) dx$ 9. $\int f(x) dx \pm f(x) dx can be written as f(x) dx \pm f(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 + a^2} \right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 - a^2} \right  + c$ e) $\int e^x  f(x) + f'(x)  dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot r!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}(1+r)$<br>PV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}(1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'∪B') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f(x) dx$ 9. $\int f(x) dx \pm f(x) dx can be written as f(x) dx \pm f(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 + a^2} \right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 - a^2} \right  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ INTEGRATION BY PARTS $\int uv dx = u \left[ v dx - \int \left  \frac{d(u)}{v} \right  v dx \right] dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)$ !<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)$ !<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r}$ .r!<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>• $\frac{d}{dx} (x^n) = nx^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | • <b>Power Set</b> : The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br>No of elements in power set = $n[P(A)] = 2^n$<br>No. of elements in Power set of a power set $n[P(P(A))] = 2^{2^n}$<br>• $n(AXB) = n(A) \times n(B)$<br><b>FORMULAS</b> -<br>1. $n(AUBUC) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) [Not disjoint sets]$<br>2. $n(AUBUC) = n(A) + n(B) + n(C)$ [If A and B are disjoint sets]<br>3. $n(AUB) = n(A) + n(B) - n(A \cap B)$ [If A and B are not disjoint sets]<br>4. $n(AUB) = n(A) + n(B)$<br>[If A and B are disjoint sets]<br>5. $n(A - B) = n(A) - n(A \cap B)$<br>[If A and B are disjoint sets]<br>5. $n(A - B) = n(A) - n(A \cap B)$<br>6. $n(A'UB') = n[(A \cap B)'] = n(S) - n(A \cap B)$<br>7. $n(A' \cap B') = n[(A \cup B)'] = n(S) - n(A \cup B)$<br>8. $(P \cup Q)' = P' \cap Q'$<br>9. $(P \cap Q)' = P' \cup Q'$<br><b>FUNCTIONS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as f(x) dx \pm f(x) dx$ 5TANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 + a^2} \right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 - a^2} \right  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ INTEGRATION BY PARTS $\int uv dx = u \int v dx - \int \left[ \frac{d(u)}{dx} \int v dx \right] dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)$ !<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)$ !<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]}{r}(1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/ n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>• $\frac{d}{dx} (x^n) = nx^{n-1}$<br>• $\frac{d}{dx} (x^n) = nx^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>n(A'∪B') = n[(A∩B'] = n(S) - n(A∩B)</li> <li>n(A'∪B') = n[(AUB)'] = n(S) - n(AUB)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f :</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{ax} / a + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f(x) dx$ 9. $\int f(x) dx \pm f(x) dx can be written as c f(x) dx \pm f(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{a + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left  x + \sqrt{x^2 + a^2} \right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left  x + \sqrt{x^2 - a^2} \right  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$ INTEGRATION BY PARTS $\int uv dx = u \int v dx - \int \left[ \frac{d(u)}{dx} \int v dx \right] dx$ where u and v are two different functions of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -<br>• How to count no. parallelograms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Que (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>DIFFERENTIATION & APPLICATION<br>• $\frac{d}{dx} (x^n) = nx^{n-1}$<br>• $\frac{d}{dx} (e^x) = e^x$<br>$d (e^x) = e^x$                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B']] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(AUB)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as c)f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c)f(x) dx \pm f(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left x + \sqrt{x^2 + a^2}\right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left x + \sqrt{x^2 - a^2}\right  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x [(x) + c]$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ HITEGRATION BY PARTS $\int uv dx = u \int v dx - \int \left[\frac{d(u)}{dx} \int v dx\right] dx$ where u and v are two different functions of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)$ !<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)$ !<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>$^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• $^{n}C_{0} = 1$<br>• $^{n}C_{n} = 1$<br>• $^{n}C_{r} = ^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• $^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>• $^{n}C_{r} + ^{n}C_{r+1} = ^{n+1}C_{r+1}$<br>• $^{n-1}C_{r} + ^{n-1}C_{r-1} = ^{n}C_{r}$<br>• $^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>• $^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ^{n}C_{4} + + ^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Due) = C $\left[\frac{(1 - \frac{1}{(1+r)^n}\right]}{r}$ (1+r)<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between $a \& c$ .<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>• $\frac{d}{dx} (x^n) = nx^{n-1}$<br>• $\frac{d}{dx} (a^x) = a^x \log_e a$                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2(n-1)!$<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = {}^{n1}C_{2} \times {}^{n2}C_{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Que (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity Que (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between $a \& c$ .<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$ ]<br>Sime of infinite terms]<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>DIFFERENTIATION & APPLICATION<br>• $\frac{d}{dx} (x^n) = nx^{n-1}$<br>• $\frac{d}{dx} (a^x) = a^x \log_e a$<br>• $\frac{d}{dx} (constant) = 0$                                                                                                                                                                                                                                                                                                                                          | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx \pm f g(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2(n-1)!$<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = {}^{n1}C_{2} \times {}^{n}C_{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between $a \& c$ .<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>• $\frac{d}{dx} (x^n) = nx^{n-1}$<br>• $\frac{d}{dx} (constant) = 0$<br>• $\frac{d}{dx} (canstant) = 0$                                                                                                                                                                                                                                                                                                                                                                  | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>n(A'∪B') = n[(A∩B)'] = n(S) - n(A∪B)</li> <li>n(A'∩B') = n[(AUB)'] = n(S) - n(AUB)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x+} C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as c f(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as f(x) dx \pm f g(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a+x}{x+a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int e^x f(x) + f'(x) dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ INTEGRATION BY PARTS $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x<br>Application If Marginal cost = C'(x) then Total cost C(x) = $\int C'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = {}^{n1}C_{2} \times {}^{n}C_{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | called Geometric Progression.<br>• $n^{th}$ term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/ n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between $a \& c$ .<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/ n^{th} term$<br>$S_n = Sum of n terms$<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>• $\frac{d}{dx} (x^n) = nx^{n-1}$<br>• $\frac{d}{dx} (e^x) = e^x$<br>• $\frac{d}{dx} (constant) = 0$<br>• $\frac{d}{dx} (e^{\alpha}) = ae^{\alpha x}$<br>• $\frac{d}{dx} (lex) = de^{\alpha x}$                                                                                                                                                                                                                                                                        | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' U Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist</li> </ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as c[f(x) dx 9. \int f(x) dx \pm g(x) dx can be written as c[f(x) dx 9. \int f(x) dx \pm g(x) dx can be written as f(x) dx \pm \int g(x) dx STANDARD FORMULA a) \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c c) \int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c d) \int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c e) \int e^x [f(x) + f'(x)] dx = e^x f(x) + c f) \int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c g) \int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c h) \int \frac{f(x)}{f(x)} dx = \log f(x) + c INTEGRATION BY PARTS \int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx where u and v are two different functions of xApplication If Marginal cost = C'(x) then Total cost C(x) = \int C'(x) If Marginal Revenue = R'(x) then$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2} (n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>$^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• $^{n}C_{0} = 1$<br>• $^{n}C_{n} = 1$<br>• $^{n}C_{n} = 1$<br>• $^{n}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>• $^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>• $^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>• $^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>• $^{n}C_{1} + ^{n-1}C_{r-1} = ^{n}C_{r}$<br>• $^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>• $^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ^{n}C_{4} + + ^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = $^{n1}C_{2} \times ^{n}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Regular (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Regular) = C $\left[\frac{(1-\frac{1}{(1+r)^n}\right]}{r}$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV < 0 Reject the Proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between a & c.<br>$S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>DIFFERENTIATION & APPLICATION<br>$= \frac{d}{dx} (a^n) = nx^{n-1}$<br>$= \frac{d}{dx} (constant) = 0$<br>$= \frac{d}{dx} (logx) = 1/x$                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(A∪B) = n(A) - n(A∩B)</li> <li>n(A'∪B') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as c[f(x) dx 9. \int f(x) dx \pm g(x) dx can be written as c[f(x) dx 9. \int f(x) dx \pm g(x) dx can be written as f(x) dx \pm \int g(x) dx STANDARD FORMULA a) \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c c) \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c c) \int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c d) \int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c e) \int e^x [f(x) + f'(x)] dx = e^x f(x) + c f) \int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c g) \int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c h) \int \frac{f(x)}{f(x)} dx = \log f(x) + c INTEGRATION BY PARTS \int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx where u and v are two different functions of xApplication If Marginal cost = C'(x) then Total cost C(x) = \int C'(x) If Marginal Revenue = R'(x) then Total revenue R(x) = \int R'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2} (n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = $1/2 (n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = $1/2 (n-1)!$<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} . r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between $a \& c$ .<br>$S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>$\frac{d}{dx} (x^n) = nx^{n-1}$<br>$\frac{d}{dx} (e^{\alpha x}) = a^{\alpha} \log_e a$<br>$\frac{d}{dx} (constant) = 0$<br>$\frac{d}{dx} (logx) = 1/x$<br>$\frac{d}{dx} f(x) = f'(x)$                                                                                                                                                                                                                                                                                      | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>n(A'∪B') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be a one-one</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{xx} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cff(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cff(x) dx = fg(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x-a}{x+a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left x + \sqrt{x^2 + a^2}\right  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left x + \sqrt{x^2 - a^2}\right  + c$ e) $\int \sqrt{x^2 + a^2} = \log \left x + \sqrt{x^2 - a^2}\right  + c$ f) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int \left[\frac{d(u)}{dx} \int v dx\right] dx$ where u and v are two different functions of x <b>APPLICATION</b> 9. If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 9. If Marginal profit = P'(x) then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2(n-1)!$<br>• COMBINATIONS<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n(n-1)(n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r}$ . $r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = ${}^{n}C_{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}]}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period<br>$r=Rate/100^*m$<br>$n = T^*m$<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/n^{th} term$<br>Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>$S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/n^{th} term$<br>$S_n = Sum of n terms$<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>$S \approx = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>$\frac{d}{dx} (e^x) = e^x$<br>$\frac{d}{dx} (constant) = 0$<br>$\frac{d}{dx} (logx) = 1/x$<br>$\frac{d}{dx} f(x) = f'(x)$<br>Product Rule: $\frac{d}{dt} f(xn) = u'n + un'$                                                                                                                                                                                                                                                                   | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' U Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cff(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cff(x) dx = fg(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x-a}{x+a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + c$ e) $\int e^x f(x) dx = e^x f(x) + c$ f) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>APPLICATION</b> • If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ • If Marginal profit = P'(x) then Total Profit P(x) = $\int P'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2(n-1)!$<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n(n-1)(n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r}$ . $r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = {}^{n}C_{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100*m}\right)^{T*m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = rIf a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a & c.S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n terms]S \approx = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]S \approx = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]\frac{d}{dx} (e^x) = e^x\frac{d}{dx} (constant) = 0\frac{d}{dx} (logx) = 1/x\frac{d}{dx} f(x) = f'(x)Product Rule: \frac{d}{dx} f(uv) = u'v + uv'$                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(AUB)'] = n(S) - n(AUB)</li> <li>(P U Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be a on into function.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x / a + C$ 6. $\int e^{ax} dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx \pm fg(x) dx$ 9. $\int f(x) dx \pm fg(x) dx can be written as cf(x) dx \pm fg(x) dx$ STANDARD FORMULA a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x + a}{a + c}$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log[x + \sqrt{x^2 + a^2}] + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log[x + \sqrt{x^2 - a^2}] + c$ e) $\int e^x [f(x) + f'(x)] dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log(x + \sqrt{x^2 + a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ INTEGRATION BY PARTS $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x<br>Application If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ If Marginal profit = P'(x) then Total revenue $R(x) = \int R'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r}$ . $r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n}C_{2} \times {}^{n}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points = {}^{n}C_{2}<br>• How to count no. of lines that can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{(1-\frac{1}{(1+r)^n}]}{r}(1+r)\right]$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period r=Rate/100*m n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>DEPRECIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = rIf a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a & c.S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n termsS^{\infty} = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION\frac{d}{dx} (x^n) = nx^{n-1}\frac{d}{dx} (a^x) = a^x \log_e a\frac{d}{dx} (constant) = 0\frac{d}{dx} (logx) = 1/x\frac{d}{dx} f(x) = f'(x)Product Rule: \frac{d}{dx} f(w) = w'v + w'Quotient Rule: \frac{d}{dx} f(\frac{w}{y}) = \frac{w'v - uv'}{v^2}$                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(AUB)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∩ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx \pm fg(x) dx$ 9. $\int f(x) dx \pm fg(x) dx can be written as f(x) dx \pm fg(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x + a}{x + c}$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{x + a}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log (x + \sqrt{x^2 - a^2}) + c$ e) $\int e^x f(x) dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 + a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>APPLICATION</b> 9. If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 9. If Marginal profit = P'(x) then Total revenue $R(x) = \int R'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r}$ . $r!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points = {}^{n}C_{2}<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points = {}^{n}C_{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{(1+r)^n}{r}\right](1+r)}{r}$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{(1+r)^n}{r}\right](1+r)}{r}$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{(1+r)^n}{r}}{r}\right](1+r)$<br>where, C = Cash flows per period r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>DEPRECIATION<br>WDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^{T}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term$<br>Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between $a \& c$ .<br>$S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, a = first term<br>n = number of terms<br>r = common ratio<br>$a_n = last term/nth term$<br>$S_n = Sum of n terms$ ]<br>$S^{\infty} = \frac{a}{1-r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>DIFFERENTIATION & APPLICATION<br>$\frac{d}{ax} (x^n) = nx^{n-1}$<br>$\frac{d}{ax} (constant) = 0$<br>$\frac{d}{ax} (constant) = 0$<br>$\frac{d}{ax} (logx) = 1/x$<br>$\frac{d}{ax} f(x) = f'(x)$<br>Product Rule: $\frac{d}{ax} f(uv) = u'v + uv'$<br>Quotient Rule: $\frac{d}{ax} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}$                                                                                                                                                                                                   | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>f(A and B are disjoint sets]</li> <li>n(A∪B) = n(A) - n(A∩B)</li> <li>n(A'OB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' U Q'</li> </ol></li></ul> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x-a}{a+x} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ e) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>APPLICATION</b> 9. If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or<br>$^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• $^{n}C_{0} = 1$<br>• $^{n}C_{n} = 1$<br>• $^{n}C_{r} = ^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• $^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>• $^{n-1}C_{r} + ^{n-1}C_{r-1} = ^{n-1}C_{r}$<br>• $^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>• $^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ^{n}C_{4} + + ^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = $^{n1}C_{2} \times ^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = $^{n}C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$ (1+r)<br>where, C = Cash flows per period r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>Accept the Prop | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term$<br>Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between $a \& c$ .<br>$S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, a = first term<br>n = number of terms<br>r = common ratio<br>$a_n = last term/nth term$<br>$S_n = Sum of n terms$ ]<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>$\frac{d}{dx} (x^n) = nx^{n-1}$<br>$\frac{d}{dx} (a^x) = a^x \log_e a$<br>$\frac{d}{dx} (constant) = 0$<br>$\frac{d}{dx} (e^{\alpha x}) = ae^{\alpha x}$<br>$\frac{d}{dx} (log x) = 1/x$<br>$\frac{d}{dx} f(x) = f'(x)$<br>Product Rule: $\frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}$<br><b>APPLICATION</b><br>Cost Function =C(x)                                                                                                                                     | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'OB') = n[(AOB)'] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' U Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function.</li> </ul>                                                                                                                                                                                                                                                                                                                       | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{3x} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x-a}{a+x} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a+x}{a-x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int e^x [f(x) + f'(x)] dx = e^s f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> 1 If Marginal Cost = C'(x) then Total cost $C(x) = \int C'(x)$ 1 If Marginal Revenue = R'(x) then Total revenue R(x) = \int R'(x) 1 If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>$^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• $^{n}C_{0} = 1$<br>• $^{n}C_{n} = 1$<br>• $^{n}C_{r} = ^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• $^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>• $^{n-1}C_{r} + ^{n-1}C_{r-1} = ^{n-1}C_{r}$<br>• $^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>• $^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ^{n}C_{4} + + ^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = $^{n1}C_{2} \times ^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = $^{n}C_{2}$<br>• How to count no. of lines that can be<br>made using n points out of which m<br>points lie on the same line (collinear)<br>= $^{n}C_{2} - ^{m}C_{2} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$<br>FV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$ (1+r)<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>DEPRECIATION<br>WDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | called Geometric Progression.<br>n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term$<br>Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , ( $b = \sqrt{ac}$ ), b is called the<br>geometric mean between a & c.<br>$S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/nth term$<br>$S_n = Sum of n terms$ ]<br>Sim of infinite terms]<br>$S^{\infty} = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br>DIFFERENTIATION & APPLICATION<br>$\frac{d}{dx} (a^x) = a^x \log_e a$<br>$\frac{d}{dx} (constant) = 0$<br>$\frac{d}{dx} (constant) = 0$<br>$\frac{d}{dx} (constant) = 1/x$<br>$\frac{d}{dx} f(x) = f'(x)$<br>Product Rule: $\frac{d}{dx} f(u^y) = u'v + uv'$<br>Quotient Rule: $\frac{d}{dx} f(u^y) = u'v + uv'$<br>PLICATION<br>Cost Function =C(x)<br>Average cost (AC) = TC/Output = C(x)/x                                                                                                      | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'∪B') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(AUB)</li> <li>(P ∪ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f: A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the codomain is manned to bu come</li> </ul>                                                                                                                                                                                                                                                                                           | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{x + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> 1 If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 1 If Marginal Revenue = R'(x) then Total revenue R(x) = \int R'(x) 1 If Marginal profit = P'(x) then Total revenue R(x) = \int R'(x) 1 If Marginal profit = P'(x) then Total Profit P(x) = $\int P'(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• COMBINATIONS<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot {}^{r}!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = ${}^{n}C_{2}$<br>• How to count no. of lines that can be<br>made using n points out of which m<br>points lie on the same line (collinear)<br>= ${}^{n}C_{2} - {}^{m}C_{2} + 1$<br>• How to count diagonals in a polygon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$<br>FV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}\right]$ (1+r)<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>If NPC = 0 Accept the Proposal<br>If NPC = 0 Accept the Proposal<br>DEPRECIATION<br>WDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^T$                                                                                                                                                                                               | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If a, b, c are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , b is called the<br>geometric mean between a & c.<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of n terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of n terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term/nth term$<br>$S_n = Sum of n terms$ ]<br>S $\infty = \frac{a}{1 - r}$ , for $r < 1$ .<br>[Sum of infinite terms]<br><b>DIFFERENTIATION &amp; APPLICATION</b><br>• $\frac{d}{dx} (a^x) = a^x \log_e a$<br>• $\frac{d}{dx} (constant) = 0$<br>• $\frac{d}{dx} (constant) = 0$<br>• $\frac{d}{dx} (constant) = 1/x$<br>• $\frac{d}{dx} f(x) = f'(x)$<br>• Product Rule: $\frac{d}{dx} f(w) = w'v + w'$<br>• Quotient Rule: $\frac{d}{dx} f(w) = w'v + w'$<br>PulcATION<br>Cost Function =C(x)<br>Average cost (AC) = TC/Output = C(x)/x<br>Marginal cost = C'(x)                                                                               | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) - n(A∩B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'∩B') = n[(A∪B)'] = n(S) - n(AUB)</li> <li>(P ∪ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f: A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function is mapped to by some element in its chomein.</li> </ul>                                                                                                                                                                                                                                                                                                    | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x + a}{x + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{a + x}{a - x} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> 1 If Marginal cost = C'(x) then 1 Total cost $C(x) = \int C'(x)$ 1 If Marginal Revenue = R'(x) then 1 Total revenue R(x) = $\int R'(x)$ 3 If Marginal profit = P'(x) then 1 Total Profit P(x) = $\int P'(x)$ 3 If Marginal profit = P'(x) then 3 Total Profit P(x) = $\int P'(x)$ 3 If Marginal profit = P'(x) then 3 Total Profit P(x) = $\int P'(x)$ 3 If Marginal profit = P'(x) then 3 Total Profit P(x) = $\int P'(x)$ 3 If Marginal profit = P'(x) then 3 Total Profit P(x) = $\int P'(x)$ 3 If Marginal profit = P'(x) then 3 Total Profit P(x) = $\int P'(x)$ 3 If Marginal profit = P'(x) then 3 Total Profit P(x) = $\int P'(x)$ 3 If Marginal Profit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours $= 1/2 (n-1)!$<br>• COMBINATIONS<br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!} & 0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r} \cdot {}^{r}!$<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = ${}^{n}C_{2}$<br>• How to count no. of lines that can be<br>made using n points out of which m<br>points lie on the same line (collinear)<br>= ${}^{n}C_{2} - {}^{m}C_{2} + 1$<br>• How to count diagonals in a polygon<br>with n sides = ${}^{n}C_{2} - n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 + m}\right)^{T + m}$<br>ANNUITY<br>1. FV of Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>$\checkmark$ Annuity (Regular) = C[ $\frac{(1+r)^n - 1}{r}$ ]<br>FV of Annuity (Due) = C[ $\frac{(1+r)^n - 1}{r}$ ] (1+r)<br>PV of Annuity (Regular) = C[ $\frac{1 - \frac{1}{(1+r)^n}$ ]<br>FV of Annuity (Due) = C[ $\frac{1 - \frac{1}{(1+r)^n}$ ]}{r}(1+r)<br>where, C = Cash flows per period r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>H NDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^T$<br>NOTES:<br>• In Loan Ques use PV of Annuity<br>(Regular) Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term / n^{th} term$<br>• Common ratio $= \frac{Any Term}{Preceding Term} = \frac{ar}{a}$<br>$= \frac{ar^2}{ar} = r$<br>• If $a, b, c$ are in GP we get $\frac{b}{a} = \frac{c}{b}$ which<br>gives $b^2 = a c$ , $(b = \sqrt{ac})$ , $b$ is called the<br>geometric mean between $a \& c$ .<br>• $S_n = a (1 - r^n) / (1 - r)$ when $r < 1$<br>[Sum of GP of $n$ terms]<br>$S_n = a (r^n - 1) / (r - 1)$ when $r > 1$<br>[Sum of GP of $n$ terms]<br>where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$a_n = last term / n^{th} term$<br>$S_n = Sum of n terms]Sime of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (x^n) = nx^{n-1}• \frac{d}{dx} (c^n) = nx^{n-1}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 1/x• \frac{d}{dx} f(x) = f'(x)• Product Rule: \frac{d}{dx} f(uv) = u'v + uv'• Quotient Rule: \frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}APPLICATIONCost Function =C(x)Average cost (AC) = TC/Output = C(x)/xMarginal cost = C'(x)Revenue Function R(x) = px$                                                                          | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> </ul>                                                                                                                                                                                                                               | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x-a}{x+a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{x-a}{a} + c$ c) $\int \frac{dx}{a^2 - x^2} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ e) $\int \sqrt{x^2 + a^2} = \log  x + \sqrt{x^2 - a^2}  + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int \left[\frac{d(u)}{dx} \int v dx\right] dx$ where u and v are two different functions of x <b>STOUTION</b> 4. If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 5. If Marginal profit = P'(x) then Total revenue R(x) = $\int R'(x)$ 5. If Marginal profit = P'(x) then Total Profit P(x) = $\int P'(x)$ 5. The modulate of the moment. Then, whether it fails or succeeds, at least you know you prove the set of the moment. Then, whether it tails or succeeds, at least you know you prove the set of the moment. Then, whether it tails or succeeds, at least you know you prove the set of the s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| of digits-1)! / Repetitions!<br>The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2} (n-1)!$<br>Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>$^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>$^{n}C_{0} = 1$<br>$^{n}C_{n} = 1$<br>$^{n}C_{r} = ^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>$^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>$^{n}C_{r} + ^{n}C_{r-1} = ^{n}C_{r}$<br>$^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>$^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ^{n}C_{4} + + ^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>$^{n}$ How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = $^{n1}C_{2} \times ^{n2}C_{2}$<br>$^{n}$ How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = $^{n}C_{2}$<br>$^{n}$ How to count diagonals in a polygon<br>with n sides = $^{n}C_{2} - n$<br>$^{n}$ How to count Triangles out of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Uue (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = Cost ( $1 - \frac{R}{100}$ ) <sup>T</sup><br>NOTES:<br>• In Loan Ques use PV of Annuity<br>(Regular) Formula<br>Lago Amount is use if $ 1 - \frac{1}{(1+r)^n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term • Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = r• If a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a \& c.• S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of$ terms<br>r = common ratio<br>$a_n = last term/nth term$<br>$S_n = Sum of n terms]S\infty = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (a^n) = nx^{n-1}• \frac{d}{dx} (c^n) = nx^{n-1}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (f(x) = f'(x)• Product Rule: \frac{d}{dx} f(uv) = u'v + uv'• Quotient Rule: \frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}APPLICATIONCost Function =C(x)Average cost (AC) = TC/Output = C(x)/x$<br>Marginal cost = C'(x)<br>Revenue Function R(x) = px<br>Marginal Revenue = R'(x) | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' U Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> <li>Bijection (One-One onto): A mapping which is bath intexition for the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> </ul>    | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^x + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \frac{x-a}{x+a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \frac{x-a}{a + x} + c$ c) $\int \frac{dx}{a^2 - x^2} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ e) $\int \sqrt{x^2 + a^2} = \log  x + \sqrt{x^2 - a^2}  + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int \left[\frac{d(u)}{dx} \int v dx\right] dx$ where u and v are two different functions of x <b>INTEGRATION</b> 4. If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 5. If Marginal profit = P'(x) then Total revenue R(x) = $\int R'(x)$ 5. If Marginal profit = P'(x) then Total Profit P(x) = $\int P'(x)$ 5. The modulate of the moment. Then, whether it fails or succeeds, at least you know you gave all you had."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| of digits-1)! / Repetitions!<br>The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2} (n-1)!$<br>Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>$^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>$^{n}C_{0} = 1$<br>$^{n}C_{r} = ^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>$^{n+1}C_{r} = ^{n}C_{r} + ^{n}C_{r-1}$<br>$^{n}C_{r} + ^{n}C_{r-1} = ^{n}C_{r}$<br>$^{n}P_{r} = ^{n}C_{r} \cdot r!$<br>$^{n}C_{1} + ^{n}C_{2} + ^{n}C_{3} + ^{n}C_{4} + + ^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>$^{n}$ How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = $^{n1}C_{2} \times ^{n2}C_{2}$<br>$^{n}$ How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = $^{n}C_{2}$<br>$^{n}$ How to count diagonals in a polygon<br>with n sides = $^{n}C_{2} - n$<br>$^{n}$ How to count Triangles out of n<br>Points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at<br>the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the<br>beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the<br>end of 1st period)<br>$\checkmark$ Annuity Que (1st Payment at the<br>beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right](1+r)$<br>PV of Annuity (Regular) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period<br>r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV < 0 Reject the Proposal<br>If NPV = 0 Accept the Proposal<br>DEPRECIATION<br>WDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^T$<br>NOTES:<br>• In Loan Ques use PV of Annuity<br>(Regular) Formula<br>Loan Amount = Installment $\frac{\left[1 - \frac{1}{(1+r)^n}\right]}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                   | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term • Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = r• If a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a \& c.• S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n terms]Swe = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (x^n) = nx^{n-1}• \frac{d}{dx} (c^{nx}) = ae^{ax}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (logx) = 1/x• \frac{d}{dx} f(x) = f'(x)• Product Rule: \frac{d}{dx} f(\frac{u}{y}) = \frac{u'v - uv'}{v^2}APPLICATIONCost Function = C(x)Average cost (AC) = TC/Output = C(x)/xMarginal cost = C'(x)Revenue Function R(x) = pxMarginal Revenue = R'(x)Profit Function P(x) = R(x) - C(x)$                                                                                                                                                                  | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∪B)'] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f: A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> <li>Bijection (One-One onto): A mapping which is both injective and ontiper and an and the prime of the set A to the other of the set A to an onto function is mapped to by some element in its domain.</li> </ul> </li> </ul> | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx = f(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log^{\frac{a + x}{x + a}} + c$ b) $\int \frac{dx}{d^2 - x^2} = \frac{1}{2a} \log^{\frac{a + x}{x + a}} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> 1 If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 1 If Marginal Proving = R'(x) then Total revenue R(x) = \int R'(x) 6. If Marginal Proving = R'(x) then Total Proving = P'(x) = \int P'(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| of digits-1)! / Repetitions!<br>• The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>• The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>• Number of necklaces formed with n<br>beads of different colours = $1/2(n-1)!$<br><u>COMBINATIONS</u><br>• Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>• ${}^{n}C_{0} = 1$<br>• ${}^{n}C_{n} = 1$<br>• ${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>• ${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>• ${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>• ${}^{n-1}C_{r} + {}^{n-2}C_{r-1} = {}^{n}C_{r}$<br>• ${}^{n}P_{r} = {}^{n}C_{r}$ .r!<br>• ${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>• How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = {}^{n1}C_{2} \times {}^{n2}C_{2}<br>• How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = {}^{n}C_{2}<br>• How to count no. of lines that can be<br>made using n points out of which m<br>points lie on the same line (collinear)<br>$= {}^{n}C_{2} - {}^{m}C_{2} + 1$<br>• How to count Triangles out of n<br>Points<br>• No 3 are collinear = {}^{n}C_{3}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period $r = Rate/100^*m$ n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period $R = Rate per period$<br>R = Rate per period<br>G = Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV = O Accept the Proposal<br>If NPV = Not cash value = Cost $\left(1 - \frac{R}{100}\right)^T$<br>NOTES:<br>In Loan Ques use PV of Annuity<br>(Regular) Formula<br>Loan Amount = Installment $\frac{\left[1 - \frac{1}{(1+r)^n}\right]}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term • Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = r• If a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a \& c.• S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n terms]Swe = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (x^n) = nx^{n-1}• \frac{d}{dx} (c^{nx}) = ae^{nx}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (logx) = 1/x• \frac{d}{dx} f(x) = f'(x)• Product Rule: \frac{d}{dx} f(uv) = u'v + uv'• Quotient Rule: \frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}APPLICATIONCost Function = C(x)Average cost (AC) = TC/Output = C(x)/xMarginal Revenue = R'(x)Profit Function P(x) = R(x) - C(x)Marginal profit = P'(x)$                                                                                                                                           | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A).<br/>No of elements in power set = n[P(A)] = 2<sup>n</sup><br/>No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f: A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> </ul> </li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> <li>Bijection (One-One onto): A mapping which is both injective and surjective is called a bijection.</li> </ul>                                                                                           | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{x} + C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx \pm fg(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log^{\frac{x-a}{x}} + c$ b) $\int \frac{dx}{d^2 - x^2} = \frac{1}{2a} \log^{\frac{x}{x} + a} + c$ c) $\int \frac{dx}{\sqrt{x^2 + a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 - a^2}  + c$ e) $\int c^x (f(x) + f'(x)) dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 + a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> I f Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 6. If Marginal Revenue = R'(x) then Total cost $C(x) = \int R'(x)$ 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = \int P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = f P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = f P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = f P'(x) 6. If Marginal profit = P'(x) then Total Profit P(x) = f P'(x) 6. If Marginal Profit P(x) = f P'(x) 6. If Marginal Profit P(x) = f P'(x) 6. If Marginal Profit P(x) = f P'(x) = f(x) 6. If Marginal Profit P(x) = f(x) = f(x) 6. If Marginal Profit P(x) = f(x) = f(x) 6. If Marginal Profit P(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| of digits-1)! / Repetitions!<br>The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2} (n-1)!$<br>Number of necklaces formed with n<br>beads of different colours = 1/2 (n-1)!<br><u>COMBINATIONS</u><br>Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>${}^{n}C_{0} = 1$<br>${}^{n}C_{r} = {}^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>${}^{n+1}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>${}^{n-1}C_{r} + {}^{n-2}C_{r-1} = {}^{n}C_{r}$<br>${}^{n}P_{r} = {}^{n}C_{r} \cdot {}^{r}!$<br>${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br>Some Important Tricks -<br>How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = ${}^{n1}C_{2} \times {}^{n2}C_{2}$<br>How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = ${}^{n}C_{2}$<br>How to count diagonals in a polygon<br>with n sides = ${}^{n}C_{2} - n$<br>How to count Triangles out of n<br>Points<br>${}^{n}N_{0}$ are collinear = ${}^{n}C_{3} - {}^{m}C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>4. Annuity Due (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$<br>FV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period $r = Rate/100^*m$ n = T*m<br>PERPETUITY<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period $R = Rate$ per p                                                                                                                                                                      | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term • Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = r• If a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a \& c.• S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n terms]Sime \frac{a}{1-r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (x^n) = nx^{n-1}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (logx) = 1/x• \frac{d}{dx} f(x) = f'(x)• Product Rule: \frac{d}{dx} f(uv) = u'v + uv'• Quotient Rule: \frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}APPLICATIONCost Function = C(x)Average cost (AC) = TC/Output = C(x)/xMarginal cost = C'(x)Marginal Revenue = R'(x)Profit Function P(x) = R(x) - C(x)$                                                                                                                                                                                 | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) x n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'UB') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' U Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f: A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> <li>Bijection (One-One onto): A mapping which is both injective and surjective is called a bijection.</li> </ul> </li> </ul>                                                                                                                                                              | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{xx} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx \pm fg(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{a^2-a^2} = \frac{1}{2a} \log \frac{a+x}{x+a} + c$ b) $\int \frac{dx}{a^2-x^2} = \frac{1}{2a} \log \frac{a+x}{a+x} + c$ c) $\int \frac{dx}{dx^2-a^2} = \log  x+\sqrt{x^2+a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2-a^2}} = \log  x+\sqrt{x^2-a^2}  + c$ e) $\int \sqrt{x^2+a^2} dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2} \log (x+\sqrt{x^2+a^2}) + c$ g) $\int \sqrt{x^2+a^2} dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2} \log (x+\sqrt{x^2-a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> 1 If Marginal cost = C'(x) then Total cost C(x) = $\int C'(x)$ 1 If Marginal Revenue = R'(x) then Total cost C(x) = $\int C'(x)$ 1 If Marginal Profit = P'(x) then Total revenue R(x) = $\int R'(x)$ 1 If Marginal profit = P'(x) then Total Profit P(x) = $\int P'(x)$ 2 "Don't settle for average. Bring your best to the moment. Then, whether it fails or succeeds, at least you know you gave all you had." ALL THE BESTI!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| of digits-1)! / Repetitions!<br>The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>Number of necklaces formed with n<br>beads of different colours = 1/2 $(n-1)!$<br><u>COMBINATIONS</u><br>Number of combinations of n<br>different things taken r at a time.<br>Denoted by- ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>${}^{n}C_{r} = [n (n-1) (n-2)(n-r+1)]/r!$<br>${}^{n}C_{0} = 1$<br>${}^{n}C_{n} = 1$<br>${}^{n}C_{r} = {}^{n}C_{r} + {}^{n}C_{r-1}$<br>${}^{n}C_{r} + {}^{n}C_{r+1} = {}^{n+1}C_{r+1}$<br>${}^{n-1}C_{r} + {}^{n-1}C_{r-1} = {}^{n}C_{r}$<br>${}^{n}P_{r} = {}^{n}C_{r} \cdot {}^{r!}$<br>${}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + {}^{n}C_{4} + + {}^{n}C_{n}$ equals<br>to $(2^{n} - 1)$<br><b>Some Important Tricks</b> -<br>How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = {}^{n1}C_{2} \times {}^{n2}C_{2}<br>How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = {}^{n}C_{2}<br>How to count Triangles out of which m<br>points lie on the same line (collinear)<br>$= {}^{n}C_{2} - {}^{m}C_{2} + 1$<br>How to count Triangles out of n<br>Points<br>${}^{n}N_{0}$ are collinear = {}^{n}C_{3} - {}^{m}C_{3}<br>${}^{n}N_{0}$ are collinear = {}^{n}C_{3} - {}^{m}C_{3}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Due (1st Payment at the beginning of 1st period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Que (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{(1+r)^n - 1}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>PV of Annuity (Due) = C $\left[\frac{1 - \frac{1}{(1+r)^n}}{r}\right]$ (1+r)<br>where, C = Cash flows per period r=Rate/100*m<br>n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash flows per period<br>R=Rate per period<br>G=Growth rate<br>NET PRESENT VALUE (NPV)<br>NPV = PV of cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV < 0 Reject the Proposal<br>If NPV = 0 Accept the Proposal<br>DEPRECIATION<br>WDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^T$<br>NOTES:<br>• In Loan Ques use PV of Annuity<br>(Regular) Formula<br>Loan Amount = Installment $\frac{\left[1 - \frac{1}{(1+r)^n}\right]}{r}$<br>• In Sinking Fund ques use FV of Annuity<br>Formula<br>• In valuation of bond ques use PV & PV                                                                                                                                                                                                                                                                                                                                                        | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term • Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = r• If a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a & c.• S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n terms]S\infty = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (x^n) = nx^{n-1}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (logx) = 1/x• \frac{d}{dx} f(x) = f'(x)• Product Rule: \frac{d}{dx} f(uv) = u'v + uv'• Quotient Rule: \frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv'}{v^2}APPLICATIONCost Function = C(x)Average cost (AC) = TC/Output = C(x)/xMarginal cost = C'(x)Marginal Revenue = R'(x)Profit Function P(x) = R(x) - C(x)$                                                                                                                                                                           | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B)</li> <li>[If A and B are disjoint sets]</li> <li>n(A'UB') = n[(A∩B)'] = n(S) - n(A∩B)</li> <li>n(A'OB') = n[(AUB)'] = n(S) - n(A∪B)</li> <li>(P U Q)' = P' U Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f: A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> <li>Bijection (One-One onto): A mapping which is both injective and surjective is called a bijection.</li> </ul> </li> </ul>                                                                                                                                                              | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{xx} C$ 6. $\int e^{ax} dx = e^{ax} / a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a \neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx \pm \int g(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{dx}{a^2 - a^2} = \frac{1}{2a} \log \frac{a + x}{a + a} + c$ b) $\int \frac{dx}{a^2 - x^2} = \log  x + \sqrt{x^2 + a^2}  + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log  x + \sqrt{x^2 + a^2}  + c$ e) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} + \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log (x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int u v dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> 1 If Marginal cost = C'(x) then Total cost $C(x) = \int C'(x)$ 6. If Marginal Revenue = R'(x) then Total cost $C(x) = \int C'(x)$ 6. If Marginal profit = P'(x) then Total revenue $R(x) = \int R'(x)$ 7. If Marginal profit = P'(x) then Total rotal PARTS 7. Total revenue R(x) = \int R'(x) 7. If Marginal profit = P'(x) then Total PARTS 7. Total revenue R(x) = \int R'(x) 7. The BEST III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| of digits-1)! / Repetitions!<br>The number of circular permutations<br>of n different things chosen at a time<br>is $(n - 1)!$<br>The number of ways of arranging n<br>persons along a round table so that<br>no person has the same two<br>neighbours is $= \frac{1}{2}(n-1)!$<br>Number of necklaces formed with n<br>beads of different colours = 1/2 $(n-1)!$<br><u>COMBINATIONS</u><br>Number of combinations of n<br>different things taken r at a time.<br>Denoted by- $C_r = \frac{n!}{r!(n-r)!}$ & $0 \le r \le n$<br>Or<br>$C_r = [n (n-1) (n-2)(n-r+1)]/r!$<br>$^{n}C_n = 1$<br>$^{n}C_r = ^{n}C_{n-r}$ Where, $0 \le n - r \le n$<br>$^{n+1}C_r = ^{n}C_r + ^{n}C_{r-1}$<br>$^{n}C_r + ^{n}C_{r+1} = ^{n+1}C_{r+1}$<br>$^{n-1}C_r + ^{n-2}C_{r-1} = ^{n}C_r$<br>$^{n}P_r = ^{n}C_r \cdot r!$<br>$^{n}C_1 + ^{n}C_2 + ^{n}C_3 + ^{n}C_4 + + ^{n}C_n$ equals<br>to $(2^n - 1)$<br><b>Some Important Tricks</b> -<br>How to count no. parallelograms<br>using n1 & n2 parallel lines<br>intersecting each other = $^{n1}C_2 \times ^{n2}C_2$<br>How to count no. of lines that can be<br>made using n points (no 3 or more<br>points are collinear) Or How to find<br>no. of chords in a circle having n<br>points = $^{n}C_2$<br>How to count diagonals in a polygon<br>with n sides = $^{n}C_2 - n$<br>How to count Triangles out of n<br>Points<br>No 3 are collinear = $^{n}C_3 - ^{m}C_3$<br>where, m = points lie on the same<br>line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT VALUE (PV)<br>PV = FV / $\left(1 + \frac{R}{100 * m}\right)^{T * m}$<br>ANNUITY<br>1. FV of Annuity<br>$\checkmark$ Annuity Regular (1 <sup>st</sup> Payment at the end of 1 <sup>st</sup> period)<br>$\checkmark$ Annuity Due (1 <sup>st</sup> Payment at the beginning of 1 <sup>st</sup> period)<br>2. PV of Annuity<br>$\checkmark$ Annuity Regular (1st Payment at the end of 1st period)<br>$\checkmark$ Annuity Que (1st Payment at the beginning of 1st period)<br>FV of Annuity (Regular) = C $\left[\frac{(1+r)^n-1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{(1+r)^n-1}{r}\right](1+r)$<br>PV of Annuity (Due) = C $\left[\frac{1-\frac{1}{(1+r)^n}}{r}\right](1+r)$<br>where, C = Cash flows per period r=Rate/100*m n = T*m<br>PERPETUITY<br>PV of perpetuity = C/R<br>PV of growing perpetuity = C/(R-G)<br>where, C = Cash inflow – PV of cash outflow<br>Decision Rule:<br>If NPV > 0 Accept the Proposal<br>If NPV > 0 Accept the Proposal<br>If NPV = 0 Accept the Proposal<br>DEPRECIATION<br>WDV/Scrap value = Cost $\left(1 - \frac{R}{100}\right)^T$<br>NOTES:<br>• In Loan Ques use PV of Annuity<br>(Regular) Formula<br>Loan Amount = Installment $\frac{\left[1 - \frac{1}{(1+r)^n}\right]}{r}$<br>• In Sinking Fund ques use FV of Annuity<br>Formula<br>• In valuation of bond ques use PV & PV<br>of annuity(regular) formula                                                                                                                                                                                                                                                                                                                                                                     | called Geometric Progression.<br>• n <sup>th</sup> term of GP: $t_n = a r^{n-1}$<br>Where, $a = first term$<br>n = number of terms<br>r = common ratio<br>$t_n = last term/nth term • Common ratio = \frac{Any Term}{Preceding Term} = \frac{ar}{a}= \frac{ar^2}{ar} = r• If a, b, c are in GP we get \frac{b}{a} = \frac{c}{b} whichgives b^2 = a c, (b = \sqrt{ac}), b is called thegeometric mean between a \& c.• S_n = a (1 - r^n) / (1 - r) when r < 1[Sum of GP of n terms]S_n = a (r^n - 1) / (r - 1) when r > 1[Sum of GP of n terms]where, a = first termn = number of termsr = common ratioa_n = last term/nth termS_n = Sum of n terms]S^{\infty} = \frac{a}{1 - r}, for r < 1.[Sum of infinite terms]DIFFERENTIATION & APPLICATION• \frac{d}{dx} (a^n) = nx^{n-1}• \frac{d}{dx} (c^n) = nx^{n-1}• \frac{d}{dx} (constant) = 0• \frac{d}{dx} (logx) = 1/x• \frac{d}{dx} f(x) = f'(x)• Product Rule: \frac{d}{dx} f(uv) = u'v + uv'• Quotient Rule: \frac{d}{dx} f(\frac{u}{v}) = \frac{u'v - uv}{v^2}APPLICATIONCost Function =C(x)Average cost (AC) = TC/Output = C(x)/xMarginal Revenue = R'(x)Profit Function P(x) = R(x) - C(x)Marginal profit = P'(x)$                                                                                                                                                                     | <ul> <li>Power Set: The collection of all possible subsets of a given set A is called the power set of A, to be denoted by P(A). No of elements in power set = n[P(A)] = 2<sup>n</sup> No. of elements in Power set of a power set n[P(P(A))] = 2<sup>2<sup>n</sup></sup></li> <li>n(AXB) = n(A) × n(B)</li> <li>FORMULAS - <ol> <li>n(AUBUC) = n(A) + n(B) + n(C) - n(A∩B) - n(B∩C) - n(C∩A) + n(A∩B∩C) [Not disjoint sets]</li> <li>n(AUBUC) = n(A) + n(B) + n(C) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are not disjoint sets]</li> <li>n(AUB) = n(A) + n(B) - n(A∩B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(AUB) = n(A) + n(B) [If A and B are disjoint sets]</li> <li>n(A∪B) = n(A) - n(A∩B)</li> <li>n(A'OB') = n[(A∪B)'] = n(S) - n(A∪B)</li> <li>(P ∪ Q)' = P' ∩ Q'</li> <li>(P ∩ Q)' = P' ∪ Q'</li> </ol> </li> <li>FUNCTIONS <ul> <li>One-One Function (Injective): Let f : A → B. If different elements in A have different images in B, then f is said to be a one-one or an injective function or mapping</li> <li>Into function: If in A → B, there exist even a single element in B having no pre-image in A, then f is said to be an into function.</li> <li>Onto function (Surjective): A function f defined from the set X to set Y (i.e. f : X → Y) is said to be an onto function if every element in the co-domain is mapped to by some element in its domain.</li> <li>Bijection (One-One onto): A mapping which is both injective and surjective is called a bijection.</li> </ul></li></ul>                                                                                                                                                                   | 4. $\int (1/x) dx = \log x + C$ 5. $\int e^x dx = e^{xx} C$ 6. $\int e^{ax} dx = e^{ax}/a + C$ 7. $\int a^x dx = (a^x/\log a) + C; a>0, a\neq 1$ 8. $\int c f(x) dx can be written as cf(x) dx$ 9. $\int f(x) dx \pm g(x) dx can be written as cf(x) dx \pm fg(x) dx$ <b>STANDARD FORMULA</b> a) $\int \frac{d^x}{x^2 - a^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ b) $\int \frac{d^x}{d^2 - x^2} = \frac{1}{2a} \log \frac{x - a}{x + a} + c$ c) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log [x + \sqrt{x^2 + a^2}] + c$ d) $\int \frac{dx}{\sqrt{x^2 - a^2}} = \log [x + \sqrt{x^2 - a^2}] + c$ e) $\int e^x (f(x) + f'(x)) dx = e^x f(x) + c$ f) $\int \sqrt{x^2 + a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ g) $\int \sqrt{x^2 - a^2} dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log(x + \sqrt{x^2 - a^2}) + c$ h) $\int \frac{f'(x)}{f(x)} dx = \log f(x) + c$ <b>INTEGRATION BY PARTS</b> $\int uv dx = u \int v dx - \int [\frac{d(u)}{dx} \int v dx] dx$ where u and v are two different functions of x <b>INTEGRATION BY PARTS</b> of the moment. Functions of x <b>INTEGRATION BY PARTS</b> if Marginal profit = P'(x) then Total cost $C(x) = \int C'(x)$ if Marginal profit = P'(x) then Total revenue $R(x) = \int R'(x)$ if Marginal profit = P'(x) then Total revenue $R(x) = \int R'(x)$ if Marginal profit = P'(x) then Total PARTS $\frac{POU' f(x)}{P'(x)} = \int P'(x) = \int P'(x)$ if Marginal profit = P'(x) then Total PARTS = C = R + R + R + R + R + R + R + R + R + R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

BUSINESS MATHEMATICS CHART FOR CA FOUNDATION BY MAYANK MAHESHWARI

# **STATISTICS CHART BY MAYANK MAHESHWARI**

#### STATISTICAL DESCRIPTION OF DATA

#### I. BASIC

- Meaning
- The Word "Statistics" has different meanings when used in "Singular" and "Plural" Senses.
- In **Plural sense** Statistics refers to the **data**, qualitative as well as quantitative.
- In Singular sense Statistics refers to the scientific method
- **Applications of Statistics**
- Economics
- Business Management
- Commerce and Industry
- **Characteristics (Attributes)**
- Aggregate of facts
- Affected to marked extent by large number of causes
- Expressed Numerically
- Reasonable percent of assurance
- Systematic manner
- Pre-defined purpose
- Limitations of Statistics
- It ignores the quality aspect
- No importance to an individual data
- Does not reveal real story
- Data should uniform and homogeneous

### II. DATA

- Types of data Primary and Secondary Data
- Data which is collected & used for the first time is known as **Primary Data**
- Data as being already collected, is used by a different person or agency is secondary data
- Methods of collecting data
  - Interview Method
    - ✓ Personal Interview quick, accurate
    - Indirect Interview problem in reaching  $\checkmark$
    - ✓ Telephone Interview less consistent,
  - wide coverage, non responses are high • Mailed Questionnaire – wide coverage, maximum
    - non-responses
  - Observation Method best accuracy, time consuming, laborious, best
    - method
  - Questionnaires used for larger enquiries
  - International sources
  - Government sources
  - Private and quasi-government Secondary Sources sources
  - Unpublished sources
- **Classification of data** 
  - Chronological or Temporal or Time Series Data data are classified in respect of successive time points or intervals
  - Geographical or Spatial Series data Data arranged region wise
  - o Qualitative or Ordinal Data Data classified in respect of an attribute
  - **Quantitative or Cardinal Data** When the data is classified in respect of a variable
  - Frequency and Non-Frequency group ✓ Frequency – Qualitative & Quantitative
    - ✓ Non-frequency Chronological & Geographical
      - **III. PRESENTATION OF DATA**

- Line Diagram: When the data vary over time, we take recourse to line diagram.
  - ✓ Logarithmic and Ratio Charts: When the time series exhibit a wide of fluctuations.
  - ✓ Multiple line and Multiples Axis charts: Multiple line charts are used for representing two or more related time series data expressed in the same unit, and multiple - axis chart in somewhat similar situations if the variables are expressed in different units.
- Graphical Presentation The various types of graphical representation of a Frequency Distribution are as follows -
- Histogram or Area Diagram It is the most convenient way to represent a Frequency Distribution. With a Histogram, an idea of the Frequency Curve of the Variable under study can be obtained. A comparison among the frequencies for different Class Intervals is possible with Histograms
- Frequency Polygon A Frequency Curve can be regarded as 0 a limiting form of Frequency Polygon & Histogram.
  - Area of Histogram = Area of Polygon
- Ogives or Cumulative Frequency Graphs There are two types of Ogives –
  - ✓ **Less than type Ogives**: Plotting less than Cumulative Frequency
  - ✓ **More than type Ogives**: Plotting more than Cumulative Frequency
- Ogives may be considered for obtaining median, quartiles, deciles & percentiles graphically. Ogives are used for making short term projections

| Particulars | Histogram         | Bar diagram                  |  |  |  |
|-------------|-------------------|------------------------------|--|--|--|
| Space       | No                | Yes                          |  |  |  |
| Mode        | Yes               | No                           |  |  |  |
| Variable    | Continuous series | Discrete & continuous series |  |  |  |
| Width       | Important         | Not Important                |  |  |  |

#### **IV. FREQUENCY DISTRIBUTION**

- Meaning: Frequency Distribution is a Tabular Representation of Statistical Data that distributes the total frequency to a number of classes.
- Width or Size or length of a Class Interval: The width of a Class Interval is the difference between the UCB and the LCB of that Class Interval. [Class Interval = UCB – LCB]
- Class Limit inclusive & exclusive series
- **Class Boundary** exclusive series only Mid-Point or Class Mark

Mid-Point = 
$$\frac{UCL+LCL}{2}$$
 or  $\frac{UCB+LCB}{2}$ 

- Frequency Density = Frequency of Given Class / Class width
- **Relative Frequency** = Class Frequency / Total Frequency **Percentage Frequency** = Relative Frequency x 100

# THEORETICAL DISTRIBUTIONS

Discrete Probability Distributions – Binomial, Poisson distributions Continuous Probability Distribution – Normal distribution **BINOMIAL DISTRIBUTION** 

 $P(x) = {}^{n}C_{x} p^{x} q^{n-x}$  where, n = no. of trials (n = 0, 1, 2, ..., n) x = Success required (x = 0, 1, 2, 3, ... n) p = Probability of success of single event

q = Probability of Failure of single event

## **Properties:**

Primary

Ces

- Binomial distribution is bi-parametric. 2 parameters are (n and p)
- Mean =  $\mu$  = np; Variance =  $\sigma^2$  = npq; SD =  $\sigma = \sqrt{npq}$
- Variance is always less than Mean
- Variance will be highest when p = q (i.e. p = q = 1/2) = n/4Mode = (n+1)p; if (n+1)p is non integer then mode = highest integer value. (i.e. Uni-modal); if (n+1)p is integer then Mode =

#### **MEASURES OF CENTRAL TENDENCY**

- Types of Continuous Series Types of Series • Individual Series • Inclusive Series
- Discrete Series • Exclusive Series • Continuous Series

 $\overline{x} = \frac{\Sigma x}{\Sigma}$ 

 $\overline{x} = \frac{\Sigma f x}{\Sigma f x}$ 

**Properties of Mode** 

**Individual series** 

**Properties of GM** 

i.e. a

○ GM<AM

of index numbers

Harmonic Mean (HM)

**Discrete & Continuous Series** 

• Combined HM =  $\frac{n_1 + n_2}{\frac{n_1}{11} + \frac{n_2}{12}}$ 

• Weighted HM =  $\frac{\Sigma w}{\Sigma^{\frac{w}{2}}}$ 

are covered.

QUARTILES

Quartiles divide the set

of observations into 4

equal parts

 $Q_1, Q_2, Q_3$ 

There are 3 Quartiles

'EQUAL' amount is invested

**Other Partitional Values** 

set of observations.

0

Geometric Mean (GM)

**Discrete or Continuous Series** 

• Change of Origin & Scale: If x and y are 2 variables related

Geometric Mean is the n<sup>th</sup> root of n terms. It is the best measure of

central tendency for ascertaining rate of change over a period of time

 $GM = (X_1 \times X_2 \times X_3 \times \dots \times X_n)^{1/n}$ 

 $GM = (X_1^{f1} \cdot X_2^{f2} \cdot X_3^{f3} \dots X_n^{fn})^{1/n}$ 

If all the observations are same, say a, then GM is also same.

GM of the product of 2 variables is the product of their GM.

i.e. if z = xy, then GM of Z = GM of x. GM of y

 $\circ$  GM of the ratio of 2 variables is the ratio of the GM's of 2

• It is the best measure of central tendency for ascertaining the

• It is the most appropriate average to be used for construction

o It is the most suitable average to be used when it is desired

It is defined as the reciprocal of the AM of the reciprocals of a given

HM =  $\frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$  OR HM =  $\frac{n}{\sum_{x_1}^{1}}$ 

 $HM = \frac{1}{\sum_{i=1}^{f}}$ 

the harmonic mean of the observations is also same, i.e. k

• The harmonic mean has the least value when compared to the

• It is used primarily in averaging speeds when 'EQUAL' distances

• It is also used in averaging cost of commodity/ securities when

DECILES

Deciles divide the set of

observations into 10

equal parts.

Quartiles  $(Q_k) - (Q_1, Q_2, Q_3)$ 

...., D9

There are 9 Deciles There are 99 Percentiles

D<sub>1</sub>, D<sub>2</sub>, D<sub>3</sub>, .....

PERCENTILES

Percentiles divide the

set of observations into

100 equal parts.

P<sub>1</sub>, P<sub>2</sub>, P<sub>3</sub>, ...., P<sub>99</sub>

geometric mean and the arithmetic mean (i.e. AM > GM > HM)

If any one observation is 0, then HM is 'not defined'

average rate of change over a period of time

to give more weightage to smaller items

variables i.e. if z = x/y then GM of z = GM of x/GM of y

If any observation is zero (0) then GM is not defined

as y = a + bx, then Y<sub>(mo)</sub> = a + b.X<sub>(mo)</sub>

Mode = 3 Median – 2 Mean

Central tendency is an average which represent the characteristics of the entire data and help us to compare the given data with another data. This average has a tendency to be somewhere at the centre and hence called Measure of Central Tendency.

# **DIFFERENT MEASURES OF CENTRAL TENDENCY**

| Arithmetic Mean (AM) |  |
|----------------------|--|
| Individual Series:   |  |

**Discrete or Continuous Series:** 

# **Properties of AM**

- $\circ$  If all the observations are same, say 'k', then the AM is also 'k'
- The algebraic sum of deviations of the given set of observations taken from the AM is always **ZERO.** i.e.  $\sum f(x - \bar{x}) = 0$
- o (Change of Origin) If each observation of a data is increased or decreased by a constant 'k', then the AM of new data also gets increased or decreased by 'k'
- (Change of Scale) If each observation of a data is multiplied or divided by a constant 'k', then the AM of new data also gets by multiplied or divided by 'k'
- (Change of Origin & Scale) AM is affected due to change of origin and/or scale which implies that if the original variable 'x' is changed to another variable 'y' by affecting a change of origin, say a, and change of scale, say b, of x, i.e. y = a + bx, then AM of y is given by  $\overline{y} = a + b\overline{x}$
- The sum of Square of deviations of given set of observations is minimum when taken from **AM**. i.e.  $\sum (x - \bar{x})^2$  is minimum **Individual Series** Correcting incorrect mean 0
- Step 1: Calculate wrong total ( $\bar{x} \times n$ ) Step 2: Calculate correct total = Wrong total - wrong
- observations + correct observations Step 3: Correct mean =  $\frac{correct correct}{no. of observations}$
- If there are two groups containing  $n_1$  and  $n_2$  observations and  $\bar{x}_1$ Properties of HM and  $\bar{x}_2$  as the respective arithmetic means, then the **combined** • If all the observation taken by a variable are same, say k, then **AM** is given by

$$\bar{x} = \frac{\bar{x}_1 n_1 + \bar{x}_2 n_2}{n_1 + n_2}$$

• Weighted AM = 
$$\bar{x}_w = \frac{w_i x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$
 or  $\bar{x}_w = \frac{\Sigma w x}{\Sigma w}$ 

# Median (Positional Average)

Median in case of Discrete Series

**Median in case of Continuous Series** 

class is called median class.

Step 1: Prepare 'less than' c.f. distribution

Step 2: Find n/2, where n = no. of observations

Step 1: Prepare 'less than' c.f. distribution

Step 2: Find (n+1)/2, where n = no. of observations

- Median in case of Individual Series
- In case of odd observations, Median = Middle Value or (n+1)/2 observation

In case of even observations, Median = Average of Middle two

Step 3: See the c.f. just greater than equal to  $(n+1)/2^{th}$  observation.

Values or Average of n/2 and n/2+1 observation

Step 4: The variable corresponding to the c.f. is the median.

Step 3: See the c.f. just greater than equal to n/2<sup>th</sup> observation.

Step 4: Find the class corresponding to the c.f. obtained in Step 3. This

- Textual Presentation This method comprises presenting data with the help of a paragraph or a number of paragraphs. This type of presentation can be taken as the first step towards the other methods of presentation. It is dull, monotonous and comparison between different observations is not possible
- **Tabular Presentation** There are two types of table Simple & Complex.

The Table under consideration should be divided into Caption, Box-head, Stub and Body. Caption is the upper part of the table, describing the columns and sub-columns, if any. The Box-head is the entire upper part of the table which includes columns and subcolumn numbers, unit(s) of measurement along with caption. Stub is the left part of the table providing the description of the rows. The body is the main part of the table that contains numerical figures.

• It facilitates comparison between rows and columns.

• Complicated data can also be represented using tabulation.

• It is a must for diagrammatic representation.

- Without tabulation, Statistical Analysis of data is not possible
- Diagrammatic Presentation An attractive representation of statistical data is provided by Charts, Diagrams and Pictures. Unlike the first two methods of representation of data, diagrammatic representation can be used for both the educated section and uneducated section of the society. Furthermore, any • hidden trend present in the given data can be noticed only in this mode of representation. Diagrams can be (B.P.L) - Bar Diagram, Pie Chart and Line Diagram

• Bar Diagram: Rectangle of equal width & usually of varying Properties: length. Bar Diagrams may be -(a) Horizontal Bar Diagram (used for qualitative data or data varying over space), or (b) Vertical Bar Diagram (used for quantitative data or time series data).

• Pie diagram: This type of diagram shows the components of a variate as parts of a Circle.

(n+1)p & (n+1)p – 1 (i.e. Bi-modal) **POISSON DISTRIBUTION**  $P(x) = \frac{e^{-m} m^x}{x!}$ ; where, e = exponential function (e = 2.71828) m = Average or mean = np =  $\mu$ x = no. of success required  $(0,1,2,3,...,\infty)$ **Properties:** 

It is Uni-parametric. 1 parameter is m Mean =  $\mu$  = m; Variance =  $\sigma^2$  = m; SD =  $\sigma = \sqrt{m}$ Mode = m, if m integer, then mode = m, m-1 (bi-modal); if m non-integer, then mode = m (uni-modal) NORMAL DISTRIBUTIONS  $F(x) = \frac{1}{\sigma\sqrt{2\mu}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \text{ for } -\infty < x < \infty, \text{ where, } \sigma = \text{S.D., } \mu = \text{mean}$ 

A function f(x) is Probability Density Function (PDF) if –

 $F(x) \ge 0, -\infty < x < +\infty$ ii.  $\int_{-\infty}^{\infty} f(x) \, dx = 1$ 

The normal distribution curve is a bell-shaped curve.

At the center of the curve lies Mean, Median & Mode (i.e.  $\mu$  = Mean, Median & Mode)

Normal distribution curve is Uni-modal

The curve never touches the x-axis

The total area under the curve = 1 or 100%

The point of inflection are  $\mu + \sigma \& \mu - \sigma$ 

For a standard normal variate, value of Mean = 0, SD = 1

The skewness of the normal distribution curve is zero

The normal distribution has 2 parameters i.e.  $\mu \& \sigma$ 

• Q1 =  $\mu$  - 0.675  $\sigma$ ; Q3 =  $\mu$  + 0.675  $\sigma$ 

QD : MD : SD = 10 : 12 : 15; MD = 0.8  $\sigma$ ; QD = 0.675  $\sigma$ 

If X and Y are 2 independent normal variables with mean as a &

b and SD as x & y, then normal distribution (X+Y) is distributed Mean = a+b & SD =  $\sqrt{x^2 + y^2}$ with

Step5: Apply the following formula Median =  $l + \frac{2}{2} \times h$ Where, I = lower limit of median class

> c = c.f. of the class preceding the median class f = frequency of the median class h = size or width of the median class

#### **Properties of Median**

- The sum of absolute deviations is minimum when the deviations are taken from the **median.** i.e.  $\sum |x - A|$  is minimum, where A = median
- (Change of Origin & Scale) If x and y are two variables, to be related by y = a + bx for any two constants a and b, then the median of y is given by  $y_{me} = a + bx_{me}$

• Mode

Mode is the value which occurs maximum number of times. Therefore, it is also called as fashionable average **Individual Series** An observation repeated maximum number of times. **Discrete Series** Observation having Highest frequency. **Continuous Series** Step 1: Find Modal Class (i.e. Class with highest frequency) Step 2: Apply following formula: Mode =  $l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$ Where, I = lower limit of modal class.

 $f_1$  = frequency of modal class  $f_0$  = preceding frequency  $f_2$  = Succeeding frequency, h = height of modal class

**Computation: Individual Series** Step 1: Arrange data in order Step 2: Find the rank of  $\frac{K(n+1)}{4}$ Step 3: Corresponding Variable is Quartile. **Discrete Series** Step 1: Arrange data in order Step 2: Prepare c.f. distribution Step 3: Find the rank of  $\frac{K(n+1)}{4}$ Step 4: Then find the c.f. just greater than equal to  $\frac{K(n+1)}{k}$ Step 5: Corresponding Variable is Quartile. **Continuous Series** Step 1: Prepare c.f. distribution Step 2: Find  $\frac{\kappa n}{\kappa}$ Step 3: See the c.f. just greater than equal to  $\frac{\kappa n}{r}$ Step 4: Find the Quartile class Step 5: Apply the formula:

Where, I = lower limit of Quartile class c = c.f. of the class preceding the Quartile class f = frequency of the Quartile class h = size or width of the Quartile class Note: For computation of Deciles, use same steps as used in Quartile calculation, just replace 4 with 10. Note: For computation of Percentiles, use same steps as used in Quartile calculation, just replace 4 with 100. Relationship between AM, GM & HM • When observations are unequal, positive & greater than zero,

AM > GM > HM always.

- If all the observations are equal, AM = GM = HM
- $\circ$  AM x HM = (GM)<sup>2</sup>

STATISTICS CHART FOR CA FOUNDATION BY MAYANK MAHESHWARI

| MEASU                                                           | RES O           | F DISPERSION                                     |          | IV. S                         |
|-----------------------------------------------------------------|-----------------|--------------------------------------------------|----------|-------------------------------|
| The degree to which numer                                       | ical da         | ta tend to spread about an                       | It is de | efined as the roo             |
| average value is called the d                                   | are ta          | ken from A.M.                                    |          |                               |
| High variation/Dispersion -                                     |                 | Variance                                         |          |                               |
| Low variation/ Dispersion -                                     | G               | OOD                                              | Calcu    | lation:                       |
| Absolute Measure                                                |                 | Relative Measure                                 |          |                               |
| Absolute measures are depe                                      | ndent           | Relative measure of dispersion are               |          | $\sum (x - x)$                |
| on the unit of the variable                                     | under           | unit free.                                       | 3        | S.D. or $o = \sqrt{-n}$       |
| consideration                                                   |                 |                                                  |          |                               |
| Absolute measures are                                           | not             | For comparing 2 or more                          |          | D                             |
| considered for comparison.                                      |                 | distributions, relative measures are             | сг       | $\sum f(x-x)$                 |
| Absolute measures are ea                                        | sv to           | Relative measures are difficult to               | 5.6      | $\sqrt{n}$                    |
| compute and understand.                                         | <i>Sy</i> 10    | compute and understand                           |          |                               |
| Types of Measures of Dispersi                                   | <b>~</b>        | · ·                                              |          | Coef                          |
| Absolute Measure                                                |                 | Relative Measure                                 |          |                               |
| Range                                                           | •               | Coefficient of Bange                             |          |                               |
| Quartile Deviation                                              | •               | Coefficient of Quartile Deviation                | Prone    | erties of S.D.                |
| Mean Deviation                                                  | •               | Coefficient of Mean Deviation                    | liope    |                               |
| Standard Deviation                                              | •               | Coefficient of Variation                         | 0 5      | 5.D. of first n nat           |
|                                                                 | D۸              | NGE                                              |          | $D = \frac{2}{\sigma} M D$    |
| Range is the simplest metho                                     | d of c          | omputing the dispersion                          |          | 3 10.0                        |
| Range is the simplest metho                                     | Range           | = 1 - S                                          | 0 5      | S.D. of 2 number              |
| where I = Larg                                                  | est val         | lue. S = Smallest value                          |          | Combined S.D                  |
| Coefficier                                                      | nt of P         | $\frac{L-S}{S} \times 100$                       |          | Johnbined S.D                 |
|                                                                 |                 | L+S 100                                          | ۱<br>۱   | where, $d_1 = \bar{x}_1$      |
| Properties of Range:                                            |                 |                                                  | 9        | $S_1 = S.D. of 1^{st} Gr$     |
| <ul> <li>Range is based on 2 ex</li> <li>ill defined</li> </ul> | treme           | values of the observation & hence                | r        | $n_1$ , $n_2$ = No. of ob     |
| $\sim$ It is not possible to con                                | onuto           | range in case of open-ended                      |          |                               |
| distribution                                                    | ipute           | range in case of open-ended                      | Merit    | s of S.D.                     |
| Merits of Bange:                                                |                 |                                                  |          | t is the best me              |
| $\circ$ It is easy to calculate a                               | nd und          | lerstand                                         |          | t considers all o             |
| $\circ$ It requires minimum ti                                  | me to           | calculate                                        |          | t is rigidly define           |
| De-merits of Range:                                             |                 |                                                  |          | t is useful for tu            |
| $\circ$ It is not based on all ob                               | servat          | ions                                             | De-m     | erits of S.D.                 |
| <ul> <li>Range is a poor measu</li> </ul>                       | re of d         | ispersion                                        |          | t cannot ha corr              |
|                                                                 |                 | ·······                                          |          | listributions                 |
| II. QUARTILE DEVIATIO                                           | N (SEN          | AI INTER QUARTILE RANGE)                         | Comn     | non properties                |
| QUA                                                             | RHLES           | $(Q_1, Q_2, Q_3)$                                |          | MOD are LINAFF                |
| It is defined as half of the de                                 | eviatio         | n between the upper Quartile &                   |          | They CHANGE in                |
| Lower Quartile of the distric                                   | oution.         | $0_{2} = 0_{2}$                                  |          | f all the observa             |
|                                                                 | Q.D. =          | $=\frac{\sqrt{3}}{2}$                            |          | f any 2 constant              |
| Coefficien                                                      | t of Q.         | $D_{-} = \frac{Q_3 - Q_1}{Q_1 + Q_2} \times 100$ | t        | hen.                          |
|                                                                 | C               | $Q_3 + Q_1$                                      | Comp     | utation is as fol             |
|                                                                 |                 | $\frac{Q_3 - Q_1}{Q_3 - Q_1}$                    |          | M                             |
| Coefficient c                                                   | of Q.D.         | $=\frac{2}{Median/Q_2} \times 100$               |          | Range                         |
| Coefficient o                                                   | of O.D.         | $= \frac{QD}{2} \times 100$                      |          | Quartile Deviat               |
| Inter Ou                                                        | artila          | $Median/Q_2$                                     |          | Mean Deviation                |
|                                                                 | $-\Omega_{a} =$ | $a_{1}g_{2} = Q_{3} = Q_{1}$                     |          | Standard Devia                |
| Properties of Q.D.                                              | <b>4</b> 2      | ¥2 ¥1                                            |          |                               |
| <ul> <li>It is best suited measure</li> </ul>                   | re of d         | ispersion for an open-end                        | Proba    | bility of n even              |
| distribution.                                                   |                 |                                                  | event    | in a Random Ex                |
| • It is based on middle 5                                       | 0% of t         | the values of the distribution                   |          | $D(\Lambda) = \frac{Occi}{C}$ |
| • First 25% & last 25% va                                       | lues a          | re left out.                                     |          | F(A)                          |
| Merits of Q.D.                                                  |                 |                                                  | Prope    | rty & Formulas                |
| o It is simple to understa                                      | nd and          | d calculate                                      | • P(     | A) + $P(A') = 1, or$          |
| • It is superior to Range                                       |                 |                                                  | • P(     | AUB) = P(A) + P(A)            |
| <ul> <li>It can be computed for</li> </ul>                      | distri          | oution with Open-end classes                     | • P(     | AUB) = P(A) + P(A)            |
| <ul> <li>Q.D. is not affected by</li> </ul>                     | extren          | ne values                                        | • P(     | AUBUC) = P(A) -               |
| De-merits of Q.D.                                               |                 |                                                  | P(       | A∩B∩C) [not m                 |
| <ul> <li>It is not based on all th</li> </ul>                   | • P(            | AUBUC) = P(A) -                                  |          |                               |

**IV. STANDARD DEVIATION** (
$$\sigma$$
)  
the root mean square deviation when the deviations  
A.M.  
iance is Square of S.D. (i.e. Variance =  $\sigma^2$ )  
Individual Series  
 $\sqrt{\frac{Y(x-X)^2}{n}} OR = \sqrt{\frac{xx^2}{n} - (\frac{x}{n})^2} OR = \sqrt{\frac{xx^2}{n} - (\bar{x})^2}$   
Discrete & Continuous series  
 $\frac{Y(x-X)^2}{n} OR = \sqrt{\frac{xx^2}{n} - (\frac{x}{n})^2} OR = \sqrt{\frac{xx^2}{n} - (\bar{x})^2}$   
Coefficient of Variation =  $\frac{S.D}{A.M.}$   
D.  
Coefficient of Variation =  $\frac{S.D}{A.M.}$   
D.  
Coefficient of S.D. =  $\frac{S.D}{A.M.}$   
D.  
Coefficient of S.D. =  $\frac{S.D}{A.M.}$   
D.  
Coefficient of S.D. =  $\frac{S.D}{A.M.}$   
D.  
 $M.D. = \frac{4}{5}\sigma$   
 $S.D. = \sqrt{\frac{\pi^2-1}{122}}$   
 $M.D. = \frac{4}{5}\sigma$   
 $S.D. = \sqrt{\frac{\pi^2-2}{n}},$   
 $r_1 = \pi^2, d_2 = \frac{x_2 - \bar{x}}{n},$   
 $r_1 = \frac{x}{n}, d_2 = \frac{x_2 - \bar{x}}{n},$   
 $r_1 = \frac{x}{n}, d_2 = \frac{x}{2} - \bar{x},$   
 $r_1 = x^2, d_2 = \frac{x}{2} - \bar{x},$   
 $r_2 = Combined mean$   
 $r_2 = Combined mean$   
 $r_2 = 1 = \frac{1}{\sqrt{\frac{2C-\pi}{n}}}$   
Where,  $c = no.$  of baservations = 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \pm \sqrt{\frac{2C-\pi}{n}}$   
Where,  $c = no.$  of playervations - 1  
**Property of Correlation**  
 $r_c = \frac{1}{|m|/|d|}$ ,  $r_{xy}$   
Note: Coefficient of correlation between  $x \leq y$   
 $r_{ca} = \frac{1}{|m|/|d|}$ ,  $r_{xy}$   
Note: Coefficient of ordetermination  
 $1-r^2$  coefficient of non-determination  
 $1-r^2$  coefficient of non-determin

| utation is as follows:                                                                                                                                                                                                                                                |                                      |                                                                                          | REGRESSION                                                                               |                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|--|
| MOD                                                                                                                                                                                                                                                                   | Value                                |                                                                                          | Regression is concerned with estimating the value of DEPE                                |                          |  |
| Range                                                                                                                                                                                                                                                                 | $R_y =  b $ . $R_x$                  |                                                                                          | Variable Corresponding to a known INDEPENDENT Variab                                     |                          |  |
| Quartile Deviation                                                                                                                                                                                                                                                    | $QD_y =  b . QD_x$                   |                                                                                          | In other words, known variable is independent variable and                               |                          |  |
| Mean Deviation                                                                                                                                                                                                                                                        | $MD_y =  b  \cdot MD_x$              |                                                                                          | unknown variable is dependent variable.                                                  |                          |  |
| Standard Deviation                                                                                                                                                                                                                                                    | $SD_y =  b .SD_x$                    |                                                                                          | Regression Coefficient are byx, bxy                                                      |                          |  |
| DDODAD                                                                                                                                                                                                                                                                |                                      |                                                                                          | b <sub>YX</sub>                                                                          | b <sub>XY</sub>          |  |
| <b>PROBABILITY</b><br>bility of n events refers to the chance of occurrence of such<br>in a Random Experiment.<br>$P(A) = \frac{Occurrence of favourable event A}{OR} = \frac{n(A)}{n(A)}$                                                                            |                                      | $\mathbf{b}_{YX} = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{n\Sigma X^2 - (\Sigma X)^2}$ | $\mathbf{b}_{XY} = \frac{n\Sigma XY - (\Sigma X)(\Sigma Y)}{n\Sigma Y^2 - (\Sigma Y)^2}$ |                          |  |
|                                                                                                                                                                                                                                                                       |                                      | $\mathbf{b}_{YX} = r \frac{\sigma_y}{\sigma_x}$                                          | $\mathbf{b}_{XY} = r \frac{\sigma_x}{\sigma_y}$                                          |                          |  |
| P(A) – Total outcom                                                                                                                                                                                                                                                   | $\frac{1}{nes}$ OR $-\frac{1}{n(S)}$ |                                                                                          | here, r = Coefficient of                                                                 | here, r = Coefficient of |  |
| rty & Formulas –                                                                                                                                                                                                                                                      |                                      |                                                                                          | correlation                                                                              | correlation              |  |
| A) + P(A') = 1,  or  P(A') = 1 - P(A)                                                                                                                                                                                                                                 |                                      | $\mathbf{b}_{YX} = \frac{Cov(x,y)}{(\sigma x)^2}$                                        | $\mathbf{b}_{XY} = \frac{Cov(x,y)}{(\sigma y)^2}$                                        |                          |  |
| AUB) = $P(A) + P(B)$ [mutually exclusive events]<br>AUB) = $P(A) + P(B) - P(A \cap B)$ [not mutually exclusive events]                                                                                                                                                |                                      |                                                                                          | Regression Equation                                                                      |                          |  |
|                                                                                                                                                                                                                                                                       |                                      |                                                                                          | Y depends on X                                                                           | X depends on Y           |  |
| $A \cup B \cup C = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + A \cap B \cap C$<br>$A \cap B \cap C = P(A) + P(B) + P(C) $ $A \cup B \cup C = P(A) + P(B) + P(C) $ $A \cup B \cup C = P(A) + P(B) + P(C) $ $A \cup B \cup C = P(A) + P(B) + P(C) $ |                                      | Y on X                                                                                   | X on Y                                                                                   |                          |  |
|                                                                                                                                                                                                                                                                       |                                      |                                                                                          | General Form:                                                                            | General Form:            |  |
|                                                                                                                                                                                                                                                                       |                                      |                                                                                          | Y = a + bX                                                                               | X = a + bY               |  |

LALYSISINDEX NUMBERpetween 2 variables.  
retween 2 variables.  
tween 2 variables.  
tween 2 variables.  
tween 2 variables.  
tween 2 variables.  
treated to production, etc.  
Expressed in Percentage, Measures of Net Changes, Measure  
change over a period of time  
What are the types of Index Numbers?ammatic method to  
o measure the extent  
o measure the extent• Price Index Numbers - Shows movement in price levels  
between 2 periods- It is also known as  
o measure the extent  
o measure the extent  
(
$$\overline{y}$$
)• Quantity Index Numbers - Shows movement in Value levels  
between 2 periods- It is also known as  
( $\overline{y}$ )• Origonal to the price index for time 1 on 0.  
Here,  $P_0$  = Base year price,  $P_1$  = Current year price  
 $P_0$ : 5 Current year price / Base year price,  $P_1$  = Current year price  
 $P_0$ : 5 Current year price / Base year price,  $P_1$  = Current year price  
 $P_0$ : 5 Current year price / Base year price,  $P_1$  = Value Index  
Numberswpiled to identify the  
 $(\overline{y})^{2^2}$   
 $(\overline{y})^{2^2}$ • The ratio of the price of a single commodity in a given period to  
its price in other period is called the Price Relative.  
Price relative =  $P_1/P_0^{+100}$   
• Index Numbers are constructed from the sample  
• Weights play an important part in construction of Index  
Numbersnumbers  
on of the 2 variables.  
the best average for construction of Index Number is GM. But in  
general practice AM is used.  
• GM makes index number time reversable  $P_{01} \rightarrow P_{10}$   
• Pure numbers are used to measure economic strength  
• Purchaing power of Money =  $1/Price Index$   
• Cost of Living index is Price Index  
• Cost of Living index is Price Index  
• Cost of Living index is Price Index  
• Drice Index Poin =  $\frac{2P_0}{R_0} \times 100$   
here,  $\sum P_1 = Sum of all commodit$ 

✓ Fisher's Ideal Price Index → 
$$P_{01} = \sqrt{\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0} \times \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1}} \times 100$$

OR 
$$P_{01} = \sqrt{L * P}$$

- ✓ Dorbish & Bowley's Price Index  $P_{01} = \left[\frac{\Sigma p_1 q_0}{\Sigma p_0 q_0} + \frac{\Sigma p_1 q_1}{\Sigma p_0 q_1}\right]/2 * 100 \text{ OR } P_{01} = \frac{L+P}{2}$
- Note: - The result obtained by Marshall Edgeworth method is closest to Fisher's Index
  - Fisher's Ideal Index is GM of Laspeyre's & Paasche's Index

**III. MEAN DEVIATION (AVERAGE DEVIATION)** • P(. Mean Deviation is the A.M. of the absolute deviation of the • P( observations from an appropriate measure of central tendency (i.e. Types Mean, Median or Mode)

M.D. = 
$$\frac{\sum |x-A|}{n} = \frac{\sum |D|}{n}$$
 (Individual Series

• It is not suitable for further mathematical treatment

M.D. =  $\frac{\sum f |x-A|}{n} = \frac{\sum f |D|}{n}$  (Discrete & Continuous Series) Where, A = Mean, Median or Mode D = X - A

Coefficient of M.D. =  $\frac{MD}{A} \times 100$ 

Property of M.D.

• The M.D. is minimum when the deviations are taken from Median.

#### Merits of M.D.

- It is based on each and every observation
- It is rigidly defined
- It is easy to calculate and understand
- As compared with S.D., it is less affected by extreme observations

# De-merit of M.D.

- Algebraic signs are ignored
- o It is not suitable for further mathematical treatment
- It cannot be computed for distributions with open ended classes

All birds find shelter during the rain. But eagle avoids the rain by flying above the clouds. Be an Eagle **ALL THE BEST!!** 

**CHART PREPARED BY MAYANK MAHESHWARI** 

| • $P(B-A) = P(B) - P(A \cap B)$ [Probability of only B]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ner                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • $P(A \cap B) = P(AB) = P(A \text{ and } B)$ all are same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Poir                                                                                                                                                                                                                                       |
| • $P(AUB) = P(A \text{ or } B) = P(A+B)$ all are same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $y - \overline{y} =$                                                                                                                                                                                                                       |
| Types of events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Properties of R                                                                                                                                                                                                                            |
| <ul> <li>Independent Event – If outcome of one event does not influence</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Coefficien</li> </ul>                                                                                                                                                                                                             |
| the occurrence of the other event.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of ORIGIN                                                                                                                                                                                                                                  |
| $P(A \cap B) = P(A) \times P(B); P(A \cap B') = P(A) \times P(B'); P(A' \cap B) = P(A') \times P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chang                                                                                                                                                                                                                                      |
| $P(A' \cap B') = P(A') \times P(B')$ ; $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chai                                                                                                                                                                                                                                       |
| • <b>Mutually exclusive events</b> – If occurrence of one event prevents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                            |
| the occurrence of the other events.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |
| Therefore, $P(A \cap B) = 0$ ; $P(A \cap B \cap C) = 0$ ; $P(A \cup B) = P(A) + P(B)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                            |
| • <b>Mutually exhaustive events</b> – It means that the events together                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Relationsl</li> </ul>                                                                                                                                                                                                             |
| make up everything that can happen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                            |
| P(AUB) = 1; P(AUBUC) = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\circ$ r, b <sub>yx</sub> , b <sub>xy</sub>                                                                                                                                                                                               |
| Mutually exclusive & exhaustive events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Both regret</li> </ul>                                                                                                                                                                                                            |
| P(AUBUC) = P(A) + P(B) + P(C) [when exclusive]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | their MEA                                                                                                                                                                                                                                  |
| P(AUBUC) = 1 [when exhaustive]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                            |
| $P(\Lambda) + P(R) + P(C) = 1$ [when exclusive & expansion]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                            |
| F(A) + F(B) + F(C) = 1 [when exclusive & exhaustive]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CALCULATOR I                                                                                                                                                                                                                               |
| Odd in Favour & Odd against                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Find a <sup>n</sup>                                                                                                                                                                                                                        |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Find a <sup>n</sup><br>Steps                                                                                                                                                                                                               |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Find a <sup>n</sup><br>Steps<br>- type a                                                                                                                                                                                                   |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×                                                                                                                                                                                      |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1                                                                                                                                                                    |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1                                                                                                                                                                    |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1                                                                                                                                                                    |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = F(x) = \Sigma P(X) X \text{ or } \Sigma B_{x} X_{y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1                                                                                                                                                                    |
| Odd in Favour & Odd against<br>Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X$ or $\Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f: Variable = X = X_i$                                                                                                                                                                                                                                                                                                                                                                  | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1<br>Find a <sup>n</sup> where r<br>integer                                                                                                                          |
| Odd in Favour & Odd against<br>Odd in Favour & Odd against<br>Odd against = Unfavourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X$ or $\Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f;$ Variable = $X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i) X_i^2$                                                                                                                                                                                                                                                                                       | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1)<br>Find a <sup>n</sup> where r<br>integer<br>Steps                                                                                                                |
| Odd in Favour & Odd against<br>Odd in Favour & Odd against<br>Odd against = Unfavourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X$ or $\Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f;$ Variable = $X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i).X_i^2$<br>Variance = $\sigma^2 = E(x_i - \mu)^2 = E(x_i^2) - \mu^2 = \Sigma P(X_i).X_i^2 - \mu^2$                                                                                                                                                                                            | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1)<br>Find a <sup>n</sup> where r<br>integer<br>Steps<br>- type a                                                                                                    |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X$ or $\Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f;$ Variable = $X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i).X_i^2$<br>Variance = $\sigma^2 = E(x_i - \mu)^2 = E(x_i^2) - \mu^2 = \Sigma P(X_i).X_i^2 - \mu^2$<br>Properties                                                                                                                                                                                                             | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1<br>Find a <sup>n</sup> where r<br>integer<br>Steps<br>- type a<br>- Press V 12 times                                                                               |
| Odd in Favour & Odd against<br>Odd in Favour & Odd against<br>Odd against = Unfavourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X \text{ or } \Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f; Variable = X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i).X_i^2$<br>Variance = $\sigma^2 = E(x_i - \mu)^2 = E(x_i^2) - \mu^2 = \Sigma P(X_i).X_i^2 - \mu^2$<br>Properties<br>• $E(x + y) = E(x) + E(y); E(x - y) = E(x) - E(y); E(xy) = E(x) \times E(y)$                                                                                         | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1)<br>Find a <sup>n</sup> where r<br>integer<br>Steps<br>- type a<br>- Press √ 12 tin<br>- Minus 1 =                                                                 |
| Odd in Favour & Odd against<br>Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}$ ; $P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X \text{ or } \Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f$ ; Variable = $X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i).X_i^2$<br>Variance = $\sigma^2 = E(x_i - \mu)^2 = E(x_i^2) - \mu^2 = \Sigma P(X_i).X_i^2 - \mu^2$<br>Properties<br>• $E(x + y) = E(x) + E(y); E(x - y) = E(x) - E(y); E(xy) = E(x) \times E(y)$<br>• $E(k.x) = k.E(x)$ [Change of scale]                                          | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1)<br>Find a <sup>n</sup> where r<br>integer<br>Steps<br>- type a<br>- Press V 12 tin<br>- Minus 1 =<br>- × n =<br>- Add 1 -                                         |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}$ ; $P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X) \cdot X$ or $\Sigma R_f \cdot X_i$<br>Probability = $P(X) = P(X_i) = R_f$ ; Variable = $X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i) \cdot X_i^2$<br>Variance = $\sigma^2 = E(x_i - \mu)^2 = E(x_i^2) - \mu^2 = \Sigma P(X_i) \cdot X_i^2 - \mu^2$<br>Properties<br>• $E(x + y) = E(x) + E(y)$ ; $E(x - y) = E(x) - E(y)$ ; $E(xy) = E(x) \cdot x E(y)$<br>• $E(k.x) = k \cdot E(x)$ [Change of scale]<br>• Variance of a constant k is V(k) = 0 | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = (n-1)<br>Find a <sup>n</sup> where r<br>integer<br>Steps<br>- type a<br>- Press V 12 tin<br>- Minus 1 =<br>- × n =<br>- Add 1 =<br>- Press × 12 tin<br>- Press × 12 tin |
| Odd in Favour & Odd against<br>Odd in favour = Favourable outcomes : Unfavourable outcomes<br>Odd against = Unfavourable outcomes : Favourable outcomes<br>Total outcomes = Favourable + Unfavourable<br>Conditional Probability<br>$P(B/A) = \frac{P(A \cap B)}{P(A)}; P(A/B) = \frac{P(A \cap B)}{P(B)}$<br>Statistical Definition of Probability<br>Mean = Expected Value = $\mu = E(x) = \Sigma P(X).X \text{ or } \Sigma R_f.X_i$<br>Probability = $P(X) = P(X_i) = R_f; Variable = X = X_i$<br>Expected value of $x^2$ in given by: $E(X_i^2) = \Sigma P(X_i).X_i^2$<br>Variance = $\sigma^2 = E(x_i - \mu)^2 = E(x_i^2) - \mu^2 = \Sigma P(X_i).X_i^2 - \mu^2$<br>Properties<br>• $E(x + y) = E(x) + E(y); E(x - y) = E(x) - E(y); E(xy) = E(x) x E(y)$<br>• $E(k.x) = k.E(x)$ [Change of scale]<br>• Variance of a constant k is V(k) = 0                                          | Find a <sup>n</sup><br>Steps<br>- type a<br>- Press ×<br>- Press = $(n-1)^{n-1}$<br>Find a <sup>n</sup> where r<br>integer<br>Steps<br>- type a<br>- Press $\sqrt{12}$ tin<br>- Minus 1 =<br>- × n =<br>- Add 1 =<br>- Press ×= 12 tin     |

•  $P(A-B) = P(A) - P(A \cap B)$  [Probability of only A]

| here b = byxPoint Form: $y - \overline{y} = b_{yx}(x)$ Properties of Regression $\circ$ Coefficient of Regression $\circ$ Relationship betw $\circ$ r, byx, bxy all 3 beat | $\frac{x}{2} = \overline{x}$ on gression rem ANGES due f gin $\rightarrow$ No Ch cale $\rightarrow$ Char buv = bvu = veen r, b <sub>YX</sub> , b r <sup>2</sup> = ars the same | $x - \frac{1}{2}$ hains UNCH<br>to change of<br>hange in Regrine<br>by $\frac{M_x}{M_y}$<br>= $b_{XY} \cdot \frac{M_y}{M_x}$<br>by (Most Im<br>by $x \cdot b_{XY}$<br>e sign. | here b = $b_{XY}$<br>Point Form:<br>$\overline{x} = b_{Xy}(y - \overline{y})$<br>IANGED due to change<br>of SCALE.<br>gression Coefficient<br>ession Coefficient | <ul> <li>Fisher</li> <li>We</li> <li>Us</li> <li>Methods of</li> <li>All methods</li> <li>Just interch</li> <li>Value Index</li> <li>two periods</li> <li>Note: It is u</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Both regression li<br>their MEANS. i.e.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                    |
| Find a <sup>n</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Find 1/(a <sup>n</sup> )                                                                                                                                                       |                                                                                                                                                                               | Find a <sup>1/n</sup>                                                                                                                                            | Test of Ade                                                                                                                                                                        |
| Steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Steps                                                                                                                                                                          |                                                                                                                                                                               | Steps                                                                                                                                                            | There are fo                                                                                                                                                                       |
| - type a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - type a                                                                                                                                                                       |                                                                                                                                                                               | - type a                                                                                                                                                         | Unit T                                                                                                                                                                             |
| - Press ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Press÷                                                                                                                                                                       |                                                                                                                                                                               | <ul> <li>Press √ 12 times</li> </ul>                                                                                                                             | formu                                                                                                                                                                              |
| - Press = (n-1) times                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Press =                                                                                                                                                                      | (n times)                                                                                                                                                                     | - Minus 1 =                                                                                                                                                      | Time                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                               | - ÷ n =                                                                                                                                                          | Paasc                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                               | - Auu I –<br>- Press x= 12 times                                                                                                                                 | Factor                                                                                                                                                                             |
| Find a <sup>n</sup> where n is non                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Find Scrap y                                                                                                                                                                   | alue in                                                                                                                                                                       | Find log                                                                                                                                                         | satisfi                                                                                                                                                                            |
| integer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | depreciatio                                                                                                                                                                    | n ques.                                                                                                                                                                       | Ŭ                                                                                                                                                                | Circul                                                                                                                                                                             |
| Steps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Steps                                                                                                                                                                          |                                                                                                                                                                               | Steps                                                                                                                                                            | or Paa                                                                                                                                                                             |
| - type a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - (1-Dep %                                                                                                                                                                     | )                                                                                                                                                                             | - Enter number                                                                                                                                                   | mean                                                                                                                                                                               |
| <ul> <li>Press V 12 times</li> <li>Minus 1 –</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Press ×                                                                                                                                                                      | t of                                                                                                                                                                          | <ul> <li>Press V 13 times</li> <li>Minus 1</li> </ul>                                                                                                            | Tixed                                                                                                                                                                              |
| - x n =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - Type cos<br>machine                                                                                                                                                          |                                                                                                                                                                               | - willius 1<br>- x 3558                                                                                                                                          | Othor imp                                                                                                                                                                          |
| - Add 1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Press = (r                                                                                                                                                                   | n times)                                                                                                                                                                      | × 3330                                                                                                                                                           | other imp.                                                                                                                                                                         |
| <ul> <li>Press ×= 12 times</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (,                                                                                                                                                                             | ,                                                                                                                                                                             |                                                                                                                                                                  | CPI, CII, RPI                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |                                                                                                                                                                               |                                                                                                                                                                  | Real Wages                                                                                                                                                                         |

OR

 $\sigma_x \sigma_y$ 

|2c - n|

+ bx & v = c + dy

 $r_{xy} = \frac{b \times d}{|b| \times |d|} \cdot r_{xy}$ 

eighted average of price/quantity relative Using AM  $\rightarrow$  P<sub>01</sub> =  $\frac{\Sigma WP}{\Sigma W}$  where P =  $\frac{P_1}{P_0} \times 100$ Using GM  $\rightarrow$  P<sub>01</sub> =  $AL \left[ \frac{\Sigma W \log P}{\Sigma W} \right]$  where P =  $\frac{P_1}{P_0} \times 100$ f constructing Index Numbers (Quantity Index Q<sub>01</sub>) s and formulas are same to determine Q<sub>01</sub> nange p with q and q with p. x Numbers (V<sub>01</sub>) numbers shows the movement in value levels between Value = Price x Quantity used for computing growth rate in the economy. Value Index  $\rightarrow V_{01} = \frac{\Sigma p_1 q_1}{\Sigma p_0 q_0} \times 100$  $V_{01} = \frac{OR}{\frac{\Sigma V_1}{\Sigma V_0}} \times 100$ Here,  $V_1 = \Sigma p_1 q_1 \& V_0 = \Sigma p_0 q_0$ equacy our tests of adequacy: **Fest** - Except for the simple average method all other ulae satisfy this test reversal test -  $P_{01} \times P_{10} = 1 - Laspeyre's$  method and che's method do not satisfy this test **r Reversal test** -  $P_{01} \times Q_{01} = V_{01}$  - Only Fisher's Index ies Factor Reversal test lar test -  $P_{01} \times P_{12} \times P_{20} = 1$  - This test is not met by Laspeyres, asche's or the Fisher's ideal index. The simple geometric of price relatives and the weighted average method with weights meet this test. This test is extension of Time sal Test. Formulas-Consumer Price Index (CPI),  $=\frac{\Sigma p_1 q_0}{1} \times 100,$ Cost of Living Index (CII),  $= \frac{\sum p_0 q_0}{\sum p_0 q_0} \times 100,$  $= \frac{\text{Money wages}}{2} \times 100$ Real Price Index (RPI) CII