CA- FOUNDATION

BUSINESS MATHEMATICS, STATISTICS \& LOGICAL REASONING

Revise all Formulas at a Glance

By :- Prof. Mayank Maheshwari

STATIITICAL DESCRIPTION OF DATA

I. BASIC

Meaning

The Word "Statistics" has different meanings when used in
"Singular" and "Plural" Senses.
In Plural sense statistics refers to the data, qualitative as well as auantitative.
In Singular sense Statistics refers to the scientific method Applications of Statistics

Economic
Business Management
Commerce and Industry
Characteristics (Attributes)

- Aggregate of facts

Affected to marked
Expressed Numerically
Reasonable percent of assurance
Systematic manner
Pre-defined purpose
Limitations of Statistics

- It ignores the quality aspect

No importance to an individual data
Does not reveal real story
Data should uniform and homo
Types of data - Primary and Secondary Data
Data which is collected \& used for the first time is known
Primary Data
Data as being already collected, is used by a different person
or agency is secondary data

- Interview Method
$\begin{array}{lll}\checkmark & \text { Personal Interview } & \text { - quick, accurate } \\ \checkmark & \text { Indirect Interview } & \text { - problem in reachin }\end{array}$ Telephone Interview - less consistent, wide coverage, non - responses are high Mailed Questionnaire - wide coverage, maximun
Observation Method - bestaccuracy tim best accuracy, time
consuming, laborious, best consuming, laborious
method
Questionnaires - used for larger
International sources
Government sources
Private and quasi-government Secondary Sources sources
Classification of data
Chassification of dat
Chronological
Chronological or Temporal or Time Series Data - data are
classified in respect of successive time points or intervals Geographical or Spatial Series data - Data arranged regio

Geogra
wise
Qualit
Qualitative or Ordinal Data - Data classified in respect of an attribute
Quantitative or Cardinal Data - When the data is classified in respect of a variable
Frequency and Non-Frequency group
\checkmark Frequency - Qualitative \& Quantitative
\checkmark Non-frequency-Chronological \& Geographical

III. PRESENTATION OF DATA

Textual Presentation - This method comprises presenting data with the help of a paragraph or a number of paragraphs. This type of presentation can be taken as the first step towards the other methods of presentation. It is dull, monotonous and comparison between different observations is not possible

Complex.
The Table under consideration should be divided into Caption, Box-head, Stub and Body. Caption is the upper part of the table, describing the columns and sub-columns, if any. The Box-head is the entire upper part of the table which includes columns and subcolumn numbers, unit(s) of measurement along with caption. Stub is the left part of the table providing the description of the rows. The body
numerical figures
It facilitates comparison between rows and columns.
Complicated data can also be represented using tabulatio
It is a must for diagrammatic representation.
Without tabulation, Statistical Analysis of data is not possible Diagrammatic Presentation - An attractive representation of statistical data is provided by Charts, Diagrams and Pictures. Unlike the first two methods of representation of data diagrammatic representation can be used for both the educated section and uneducated section of the society. Furthermore, any hidden trend present in the given data can be noticed only in this mode of representation. Diagrams can be (B.P.L) - Bar Diagram Pie Chart and Line Diagram

Bar Diagram: Rectangle of equal width \& usually of varying
length. Bar Diagrams ngth. Bar Diagrams may be
a) Horizontal Bar Diagram (used for qualitative data or data varying over space), or
(b) Vertical Bar Diagram (used for quantitative data or time series data). a variate as parts of a Circle.
recourse to line diagram.
Logarithmic and Ratio Charts: When the time series exhibit a wide of fluctuations.
Multiple line and Multiples Axis charts: Multiple line charts are used for representing two or more related time series data expressed in the same unit, and the variables are expressed in different units.
Graphical Presentation - The various types of graphical representation of a Frequency Distribution are as follows

Histogram or Area Diagram - It is the most convenient way to represent a Frequency Distribution. With a Histogram, an idea of the Frequency Curve of the Variable under study can e obtained. A comparison among the frequencies
requency Poly
frequency Polygon - A Frequency Curve can be regarded Area of Histogram = Area of Polygon Area of histogram = Area of Polygon
gives or Cumulative Frequency Graphs - There are two \checkmark Less than type Ogives: Plotting less than Cumulative Frequency
More than type Ogives: Plotting more than Cumulative Frequency
Ogives may be considered for obtaining median, quartiles, deciles \& percentiles graphically. Ogives are used for

making short term projections.

MEASURES OF CENTRAL TENDENCY

Types of Series
Types of Continuous S $\begin{array}{lll}\text { Individual Series } & \circ & \text { Inclusive Series } \\ \text { Discrete Series } & \circ & \text { Exclusive Series }\end{array}$
Continuous Series
Exclusive Series

Central tendency is an average which represent the characteristics of the entire data and help us to compare the given data with another data. This average has a tendency to be somewhere at the centre an

rithmetic Mean (AM)

DIFFERENT MEASURES OF CENTRAL TENDENCY
Individual Series:
$\bar{x}=\frac{\Sigma x}{n}$
$\bar{x}=\frac{\Sigma f x}{n}$

Properties of AM

If all the observations are same, say ' k ', then the $A M$ is also ' k ' The algebraic sum of deviations of the given set of observations taken from the AM is always ZERO. i.e. $\sum f(x-\bar{x})=0$ (Change of Origin) If each observation of a data is increased or decreased by a constant ' k ', then the AM of new data also gets icreased or dectused by
divided by a constant ' k ' observation of a data is multiplied or divided by a constant ' k ', then the AM of new data also gets by (Change of Origin \& Scal
origin and/or scale which implies that if the due to change of is changed to another variable ' y ' by affecting a change of origin say a, and change of scale, say b, of x, i.e. $y=a+b x$, then AM of y is given by $\bar{y}=a+b \bar{x}$
The sum of Square of deviations of given set of observations is minimum when taken from AM. i.e. $\sum(x-\bar{x})^{2}$ is minimum Correcting incorrect mean
Step 1: Calculate wrong total $(\bar{x} \times n)$
Step 2: Calculate correct total
Step 2: Calculate correct total = Wrong total - wrong observations + correct observations
correct total
Step 3: Correct mean $=\frac{\text { correct total }}{\text { no. of observations }}$
If there are two groups containing n_{1} and n_{2} observations and \bar{x}_{1} and \bar{x}_{2} as the respective arithmetic means, then the combined

$$
\begin{aligned}
& \text { AM is given by } \\
& \text { Weighted AM }=\bar{x}_{w}=\frac{\bar{x}=\frac{\bar{x}_{1} n_{1}+\bar{x}_{2} n_{2}}{n_{1}+n_{2}}}{\frac{w}{x_{1}+w_{2} x_{2}+\cdots+w_{n} x_{n}}} \\
& w_{1}+w_{2}+\cdots+w_{n}
\end{aligned}
$$

Median (Positional Average)

in case of Individual Seri

In case of odd observations, Median = Middle Value or ($n+1$)/2 observation
In case of even observations, Median = Average of Middle two Values or Average of $n / 2$ and $n / 2+1$ observation

Step 1: Prepare 'less than' c.f. distrib

Step 2: Find ($n+1) / 2$, where $n=$ no of observation
Step 3: See the c.f. just greater than equal to $(\mathrm{n}+1) / 2^{\text {th }}$ observation Step 4: The variable corresponding to the c.f. is the median. Median in case of Continuous Series
Step 1: Prepare 'less than' c.f. distribution
Step 2: Find $\mathrm{n} / 2$, where $\mathrm{n}=\mathrm{no}$. of observation
Step 3: See the c.f. just greater than equal to $\mathrm{n} / 2^{\text {th }}$ observation. Step 4: Find the class corresponding to the c.f. obtained in Step 3. This class is called median class. Step5: Apply the following formula

Median $=l+\frac{\frac{N}{2}-c}{f} \times h$

Where, $I=$ lower limit of median class
$c=$ c.f. of the class preceding the median class $f=$ frequency of the median class $h=$ size or width of the median class
It is Uni-parametric. 1 parameter is m
Mean $=\mu=m$; Variance $=\sigma^{2}=m ; S D=\sigma=\sqrt{n}$
Mode $=m$, if m integer, then mode $=m, m-1$ (bi-modal) if m non-integer, then mode $=m$ (uni-modal) NORMAL DISTRIBUTIONS
$F(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$ for $-\infty<x<\infty$, where, $\sigma=$ S.D., $\mu=$ mean
sity Function (PDF) if
A function $f(x)$ is Probability Density Function (PDF) if

$\mathrm{F}(\mathrm{x}) \geq 0,-\infty<\mathrm{x}<+\infty$ $\int_{-\infty}^{\infty} f(x) d x=1$

The normal distribution curve is a bell-shaped curve. At the center of the curve lies Mean, Median \& Mode (i.e. $\mu=$ Mean, Median \& Mode)
Normal distribution curve is Uni-modal
The curve never touches the x -axis
The total area under the curve = 1 or 100%

- The point of inflection are $\mu+\sigma \& \mu-\sigma$

For a standard normal variate, value of Mean $=0, S D=$
The skewness of the normal distribution curve is zero

perties

The normal distribution has 2 parameters i.e. $\mu \& \sigma$ $\mathrm{Q} 1=\mu-0.675 \sigma ; \mathrm{Q} 3=\mu+0.675 \sigma$
$\mathrm{QD}: \mathrm{MD}: S D=10: 12: 15 ; \mathrm{MD}=0.8 \sigma ; \mathrm{QD}=0.675 \sigma$
If X and Y are 2 independent normal variables with mean as a \& b and $S D$ as $x \& y$, then normal distribution $(X+Y)$ is distributed with

Mean $=\mathrm{a}+\mathrm{b} \& \mathrm{SD}=\sqrt{x^{2}+y^{2}}$

Change of Origin \& Scale: If x and y are 2 variables related $s y=a+b x$, then $Y_{(m)}=a+b . X_{(m)}$
Mode $=\mathbf{3}$ Median $\mathbf{~} \mathbf{2}$ Mean

Geometric Mean (GM)

eometric Mean is the $\mathrm{n}^{\text {th }}$ root of n terms. It is the best measure of central tendency for ascertaining rate of change over a period of time Individual series
$G M=\left(X_{1} \times X_{2} \times X_{3} \times \ldots \ldots \times X_{n}\right)^{1 / n}$
Discrete or Continuous Series
Properties of GM
If any observation is zero (0) then GM is not defined
If all the observations are same, say a, then GM is also same.
GM of the product of 2 variables is the product of their GM . i.e. if $z=x y$, then $G M$ of $Z=G M$ of x. GM of y

GM of the ratio of 2 variables is the ratio of the GM's of 2 variables i.e. if $\mathrm{z}=\mathrm{x} / \mathrm{y}$ then GM of $\mathrm{z}=\mathrm{GM}$ of x / GM of y GM<AM
It is the best measure of central tendency for ascertaining the average rate of change over a period of time
It is the most appropriate average to be used for construction of index numbers
It is the most suitable average to be used when it is desired to give more weightage to smaller items

Harmonic Mean (HM)

It is defined as the reciprocal of the AM of the reciprocals of a given set of observations.
Individual Series

HM $=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}+\cdots+\frac{1}{x_{n}}}$ OR HM $=\frac{n}{\sum_{\bar{x}}^{1}}$
Discrete \& Continuous Series

$H M=\frac{n}{\sum_{x}^{f}}$

Properties of HM

If all the observation taken by a variable are same, say k, then the harmonic mean of the observations is also same, i.e. k If any one observation is $\mathbf{0}$, then $\mathbf{H M}$ is 'not defined' The harmonic mean has the least value when compared to the geometric mean and the arithmetic mean (i.e. $A M>G M>H M$)
Combined $\mathrm{HM}=\frac{n_{1}+n_{2}}{\frac{n_{1}}{H_{1}+\frac{n}{2}}}$
Weighted HM $=\frac{\Sigma^{\frac{L_{1}}{w}}}{\Sigma^{\underline{w}}}$
It is used primarily in averaging speeds when 'EQUAL' distances are covered.
It is also used in averaging cost of commodity/ securities when 'EQUAL' amount is invested

- Other Partitional Values

QUARTLLES	DECILES	PERCENTILES
Quartiles divide the set of observations into 4 equal parts	Deciles divide the set of observations into 10 equal parts	Percentiles divide the set of observations into 100 equal parts
$\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$	$\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{3}, \ldots \ldots \ldots . \ldots, \mathrm{D}_{9}$	$\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots \ldots$
3 Q	There are 9 Deciles	here are

Computation:
Computation:
Step 1: Arrange data in order
Step 2: Find the rank of $\frac{K(n+1)}{4}$
Step 3: Corresponding Variable is Quartile.
Discrete Series
Step 1: Arrange data in order
Step 2: Prepare c.f. distribution
Step 3: Find the rank of $\frac{K(n+1)}{4}$
Step 4: Then find the c.f. just greater than equal to $\frac{K(n+1)}{4}$
Step 5: Corresponding Variable is Quartile.
Continuous Series
Step 1: Prepare c.f. distribution
Step 2: Find $\frac{K n}{4}$
Step 3: See the c.f. just greater than equal to $\frac{K n}{4}$
Step 4: Find the Quartile class
Step 5: Apply the formula:
$\mathrm{a}_{\mathrm{k}}=\boldsymbol{=}+\frac{\frac{k N}{4}-c}{f} \times h$
Where, $I=$ lower limit of Quartile class
f. of the class preceding the Quartile class
$f=$ frequency of the Quartile class
$h=$ size or width of the Quartile class
Note: For computation of Deciles, use same steps as used in Quartile calculation, just replace 4 with 10 .
Nourt Fops as used i
Quartile calculation, just replace 4 with 100
Relationship between AM, GM \& HM
equal, positive \& greater than zero,
$A M>G M>H M$ always.
ions are equal, $\mathrm{AM}=\mathrm{GM}=\mathrm{HM}$
$A M \times H M=(G M)^{2}$

The degree to which MeASURERES OF DISPERSION average value is coll numerical data tend to spread about an High variation/Dispersion - dispersion of da Low variation/ Dispersion--
Absolute $\quad \begin{aligned} & \text { BAD } \\ & \text { GOO }\end{aligned}$ Absolute measures are dependent on the unit of the variable under ons
consideration
Absolute measures are not
considered for comparison.
Absolute measures are easy to
compute and understand.

\section*{| Types of Measures of Dis |
| :--- |
| Absolute Measure |}

	Absolute Measure
-	Range
- Quartile Deviation	
-	Mean Deviation

- Standard Deviation

Relative Measure
- \quad Coefficient of Range
-
Coefficient of Quartile Deviation
- Coefficient of Mean Deviation
-

I. RANGE

Range is the simplest method of computing the dispersion. Range $=\mathrm{L}-\mathrm{S}$
where, $\mathrm{L}=$ Largest value, $\mathrm{S}=$ Smallest value Coefficient of Range $=\frac{L-S}{L+S} \times 100$
Properties of Range:
Range is based on 2 extreme values of the observation \& hence ill-defined.
It is not possible to compute range in case of open-ended distribution

- It is easy to calculate and understand
- It requires minimum time to calculate

De-merits of Range:

- It is not based on all observations

Range is a poor measure of dispersion

II. QUARTILE DEVIATION (SEMI INTER QUARTILE RANGE)

QUARTILES: Q_{1}, Q_{2}, Q_{3}
It is defined as half of the deviation between the upper Quartile \& Lower Quartile of the distribution.

$$
\text { Q.D. }=\frac{Q_{3}-Q_{1}}{2}
$$

Coefficient of Q.D. $=\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}} \times 100$
Coefficient of Q.D. $=\frac{\frac{Q_{3}-Q_{1}}{}}{\text { Median } / Q_{2}} \times 100$
Coefficient of Q.D. $=\frac{Q D}{\text { Median } / Q_{2}} \times 100$

$$
\begin{gathered}
\text { Inter Quartile range }=Q_{3}-Q_{1} \\
Q_{3}-Q_{2}=Q_{2}-Q_{1}
\end{gathered}
$$

Properties of Q.D.
It is best suited measure of dispersion for an open-end distribution.
It is based on middle 50% of the values of the distribution

- First 25% \& last 25% values are left out.

Merits of Q.D.
II is simple to understand and calculate
It is superior to Range
Itan be computed for distribution with Open-end classes

- Q.D. is not affected by extreme values

De-merits of Q.D.

- It is not suitable for further observations
III. MEAN DEVIATION (AVERAGE DEVIATION) Mean Deviation is the A.M. of the absolute deviation of the observations from an appropriate measure of central tendency (i.e. Mean, Median or Mode)
M.D. $=\frac{\Sigma|x-A|}{n}=\frac{\Sigma|D|}{n} \quad$ (Individual Series)
M.D. $=\frac{\Sigma f|x-A|}{n}=\frac{\Sigma f|D|}{n}$ (Discrete \& Continuous Series) Where, $\mathrm{A}=$ Mean, Median or Mode
$\mathrm{D}=\mathrm{X}-\mathrm{A}$
Coefficient of M.D. $=\frac{M D}{A} \times 100$
Property of M.D.
The M.D. is minimum when the deviations are taken from Median.
Merits of M.D.
It is rigidly defined
is easy to calculate and understand
As compared with S.D., it is less affected by extreme
observations
De-mertit N.D.
- Algebraic signs are ignored
It is not suitable for further mathematical treatment It cannot be computed for distributions with open ended classes

All birds find shelter during the rain.
gle avoids the rain by flying above the clouds. But eagle avoids the rain by flying above the clouds.
Be an Eagle
AII THE BESTI!
IV. STANDARD DEVIATION $(\boldsymbol{\sigma})$ are taken from A.M.

Variance is Square of S.D. (i.e. Variance $=\sigma^{2}$)
Calculation
S.D. or $\sigma=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n}}$ Individual Series $\sqrt{\frac{\Sigma x^{2}}{\frac{\Sigma x}{n}}-\left(\frac{\Sigma x}{n}\right)^{2}}$ OR $=\sqrt{\frac{\Sigma x^{2}}{n}-(\bar{x})^{2}}$

Discrete $\&$ Continuous series
S.D. or $\sigma=\sqrt{\frac{\Sigma f(x-\bar{x})^{2}}{n}}$ OR $=\sqrt{\frac{\Sigma f x^{2}}{n}-\left(\frac{\Sigma f x}{n}\right)^{2}}$ OR $=\sqrt{\frac{\Sigma f x^{2}}{n}-(\bar{x})^{2}}$

Coefficient of Variation $=\frac{S . D .}{A . M .} \times 100$
Coefficient of S.D. $=\frac{\text { S.D. }}{\text { A.M. }}$
Properties of S.D.

- S.D. of first n natural numbers $=\sqrt{\frac{n^{2}-1}{12}}$
- Q.D. $=\frac{2}{3} \sigma$ M.D. $=\frac{4}{5} \sigma \quad$ Q.D. $=\frac{5}{6} M D$
- S.D. of 2 numbers $=\frac{L-S}{2} \quad O R=\frac{|a-b|}{2}$

Combined S.D. $=\sqrt{\frac{n_{1} s_{1}^{2}+n_{2} s_{2}^{2}+n_{2} d_{1}^{2}+n_{2} d_{2}^{2}}{n_{1}+n_{2}}}$
where, $d_{1}=\bar{x}_{1}-\bar{x}, d_{2}=\bar{x}_{2}-\bar{x}$,
$S_{1}=$ S.D. of $1^{\text {st }}$ Group, $S_{2}=$ S.
$S_{1}=$ S.D. of st $^{\text {st }}$ Group, $S_{2}=$ S.D. of $2^{\text {nd }}$ Group;
$\mathrm{n}_{1}, \mathrm{n}_{2}=$ No. of observatios in ${ }^{\text {st }}$
$\mathrm{n}_{1}, \mathrm{n}_{2}=$ No. of observations in $1^{\text {st }}$ and $2^{\text {nd }}$ group respectively

Merits of S.D.

- It is the best measure of Dispersion

It considers all observations
It is rigidly defined
De-merits of S.D.

- Not that easy to calculate and understand

It cannot be computed for distribution having open end class distributions
Common properties of measures of dispersion

- MOD are UNAFFECTED by CHANGE OF ORIGIN

They CHANGE in the same ratio as CHANGE OF SCALE.
If all the observations are same or zero than MOD is zero.
If any 2 constants a, b and 2 variables are related by $y=a+b x$,
then then

MOD	Value
Range	$\mathrm{R}_{y}=\|\mathrm{b}\| \cdot \mathrm{R}_{x}$
Quartile Deviation	$\mathrm{Q} D_{y}=\|\mathrm{b}\| \cdot Q \mathrm{QD}_{x}$
Mean Deviation	$M D_{y}=\|\mathrm{b}\| \cdot M D_{x}$
Standard Deviation	$S D_{y}=\|\mathrm{b}\| \cdot \mathrm{SD}_{x}$

PROBABILITY
Probability of n events refers to the chance of occurrence of such event in a Random Experiment.
$P(A)=\frac{\text { Occurrence of favourable event } A}{\text { Total outcomes }} O R=\frac{n(A)}{n(S)}$

Property \& Formulas -

- $\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1$, or $\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1-\mathrm{P}(\mathrm{A})$
- $P(A \cup B)=P(A)+P(B)[$ mutually exclusive events]
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$ [not mutually exclusive events]
- $P(A \cup B U C)=P(A)+P(B)+P(C)-P(A \cap B)-P(B \cap C)-P(A \cap C)+$
$P(A \cap B \cap C)$ [not mutually exclusive events]
- $P(A \cup B U C)=P(A)+P(B)+P(C)$ [mutually exclusive events]
- $P(A-B)=P(A)-P(A \cap B)[P r o b a b i l i t y ~ o f ~ o n l y ~ A] ~$
- $P(B-A)=P(B)-P(A \cap B)[P r o b a b i l i t y ~ o f ~ o n l y ~ B] ~]$ $P(A \cap B)=P(A B)=P(A$ and $B)$ all are same
- $P(A \cup B)=P(A$ or $B)=P(A+B)$ all are same

ypes of events

Independent Event - If outcome of one event does not influence the occurrence of the other event
$P(A \cap B)=P(A) \times P), P\left(A \cap B^{\prime}\right)=P(A) \times P\left(B^{\prime}\right) ; P\left(A^{\prime} \cap B\right)=P\left(A^{\prime}\right) \times P(B)$ $P\left(A^{\prime} \cap B^{\prime}\right)=P\left(A^{\prime}\right) \times P\left(B^{\prime}\right) ; P(A \cap B \cap C)=P(A) \times P(B) \times P(C)$
Mutually exclusive events - If occurrence of one event prevents the occurrence of the other events.
Therefore, $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0 ; \mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0 ; \mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
Mutually exhaustive events - It means that the events togethe
make up everything that can happen.
$P(A \cup B)=1 ; P(A \cup B U C)=1$
$P(A \cup B U C)=P(A)+P(B)+P(C) \quad$ [when exclusive]
$P(A \cup B U C)=1 \quad$ [when exhaustive] $P(A)+P(B)+P(C)=1 \quad$ [when exclusive \& exhaustive] Odd in Favour \& Odd against
Odd in favour = Favourable outcomes : Unfavourable outcomes Odd against $=$ Unfavourable outcomes : Favour
Total outcomes $=$ Favourable + Unfavourable
Conditional Probability
$P(B / A)=\frac{P(A \cap B)}{P(A)} ; P(A / B)=\frac{P(A \cap B)}{P(B)}$
Statistical Definition of Probability
Mean $=$ Expected Value $=\mu=E(X)=\Sigma P(X) . X$ or $\Sigma R_{f} . X_{i}$
Pr
Probability $=P(X)=P\left(X_{i}\right)=R_{f} ;$ Variable $=X=X_{i}$
Expected value of x^{2} in given by: $E\left(X_{i}^{2}\right)=\Sigma P\left(X_{i}\right) \cdot X_{i}^{2}$
Variance $=\sigma^{2}=E\left(X_{i}-\mu\right)^{2} E E\left(x_{i}^{2}\right)-\mu^{2}=\operatorname{EP}\left(X_{i}\right) . X_{i}^{2}-\mu^{2}$

roperties

$E(x+y)=E(x)+E(y) ; E(x-y)=E(x)-E(y) ; E(x y)=E(x) x E(y)$
$E(k . x)=K . E(x)$ [Change of scale]

CORRELATION \& REGRESSION ANALYSIS

CORRELATION
Correlation analysis determines the relation between 2 variables. Also, it measures the extent of relationship between 2 variables by

$$
-1 \leq r \leq+1
$$

Methods of finding correlation coefficient (r)

Scatter Diagram - It is a simple diagrammatic method to establish correlation between a pair of variables. It can be used to find linear \& non-linear relation. It fails to measure the extent of relationship between the variables.
Product Mon's Coefticerelation.

$$
r=\frac{N \Sigma x y-\Sigma x \Sigma y}{\sqrt{N \Sigma x^{2}-\left(\sum x\right)^{2}} \sqrt{N \Sigma y^{2}-(\Sigma y)^{2}}}
$$

$$
r=\frac{\operatorname{Cov}(x, y)}{\sigma x \sigma y} \text { OR } r=\frac{\Sigma(x-\bar{x})(y-\bar{y})}{\sigma_{x} \sigma_{y}}
$$

Rank Correlation - Rank correlation is applied to identify the correlation between the Qualitative Characteristics.

Rank correlation $(r)=1-\frac{6 E D^{2}}{n\left(n^{2}-1\right)}$
$D=$ Difference of Ranks
$\mathrm{n}=\mathrm{no}$. of Observations

- This method does not take into account the magnitude of deviations of the 2 variables.

$$
r_{C}= \pm \sqrt{\left|\frac{2 c-n}{n}\right|}
$$

Where, $\mathrm{c}=$ no. of pairs of concurrent deviations (i.e. no. of + sign) $n=n o$. of observations -1

Property of Correlation

The correlation coefficient (r) is independent of change of origin and
.e. if $u=a+b x \& v=c+d y$
then, $r_{u v}=\frac{b \times d}{|b| \times|a|} \cdot r_{x y}$
Note: Coefficient of correlation between $\mathrm{x} \& \mathrm{y}$ and $\mathrm{u} \& \mathrm{v}$ will always remain equal. They would have opposite signs only when b \& d differs insign.
Note: $r^{2}=$ coefficient of determination
Note: The coefficient of determination is such that $0 \leq r^{2} \leq 1$

REGRESSION

Regression is concerned with estimating the value of DEPENDENT Variable Corresponding to a known INDEPENDENT Variable. In other words, known variable is independent variable and unknown variable is dependent variable.

$b_{\text {rx }}$	b_{xy}
$b_{r X}=\frac{n \Sigma X Y-\left(\sum X\right)(\Sigma Y)}{n \Sigma X^{2}-(\Sigma X)^{2}}$	$\mathrm{b}_{\mathrm{XY}}=\frac{n \Sigma X Y-\left(\sum X\right)(\Sigma Y)}{n \Sigma Y^{2}-(\Sigma Y)^{2}}$
$\begin{aligned} & \mathbf{b}_{\mathrm{yx}}=r \boldsymbol{\sigma}_{\frac{\sigma_{y}}{\sigma_{x}}} \\ & \text { here, } \mathrm{r} \text { coerrficient of } \\ & \text { correlation } \end{aligned}$	$\begin{aligned} & \mathrm{b}_{\mathrm{xy}}=\boldsymbol{r} \frac{\sigma_{x}}{\sigma_{y}} \\ & \text { here, } \mathrm{r}=\text { Coefficient of } \\ & \text { correlation } \end{aligned}$
$\mathrm{b}_{\mathrm{rx}}=\frac{\operatorname{Cov}(x, y)}{(\sigma x)^{2}}$	$\mathrm{b}_{\mathrm{xy}}=\frac{\operatorname{Cov}(x, y)}{(\sigma y)^{2}}$
Regression Equation	
$Y \text { depends on } X$ $\mathrm{Y} \text { on } \mathrm{X}$	$\begin{gathered} X \text { depends on } Y \\ X \text { on } Y \end{gathered}$
General Form: $\begin{gathered} Y=a+b X \\ \text { here } b=b_{y x} \end{gathered}$	General Form: $\begin{gathered} X=a+b Y \\ \text { here } b=b_{X Y} \end{gathered}$
Point Form: $y-\bar{y}=b_{y x}(x-\bar{x})$	Point Form: $x-\bar{x}=b_{x y}(y-\bar{y})$

erties of Regression

- Coefficient of Regression remains UNCHANGED due to change
of ORIGIN but CHANGES due to change of SCALE.
Change of Origin \rightarrow No Change in Regression Coefficient

$$
\text { Change of Scale } \boldsymbol{\rightarrow} \text { Change in Regression Coefficient }
$$

Change of Scale $\boldsymbol{\rightarrow}$ Change in Regression Coefficient
$b_{\text {uv }}=b_{x y} \cdot \frac{M_{x}}{M y}$
$b_{v u}=b_{v x} \cdot \frac{M_{y}}{M x}$
$b_{x x,}, b_{x y}($ Most
$r^{2}=b_{y x}, b_{x y}$
Relationship between $r, b^{2}=b_{y x} . b_{x y}$
r_{1}
$r, b_{r x}, b_{x y}$ all 3 bears the same sign. Both regression lines i.e. X
their MEANS. i.e. on $\bar{x} \& \bar{y}$

CALCULATOR TRICKS:		
Find $\mathrm{a}^{\text {n }}$	Find 1/(an)	Find $\mathrm{a}^{1 / n}$
Steps - type a - Press x - Press $=(n-1)$ times	Steps - typea - Press - - Press = (n times)	Steps - typea - Press v 12 times - Minus $1=$ - $-\mathrm{n}=$ - Add $1=$ - Press $x=12$ times
Find a^{n} where n is non integer	Find Scrap value in depreciation ques.	Find log
Steps - type a - Press v 12 times - Minus $1=$ - $\times n=$ - - Add $1=$ - Press $x=12$ times	Steps - (1-Dep \%) - Press x - Type cost of machine - Press = (n times)	Steps - Enter number - Press v 13 times - Minus 1 - $\times 3558$
AVJ ACADEMY		

Index number shows movement of a variab
Ind
The base value of the index number is usually 100 and indicates either to price, date, a level of production, etc.
Expressed in Percentage, Measures of Net Changes, Measure
change over a period of time

號

Price Index Number between 2 periods

Quantity Ind
Quantity Index Numbers - Shows movement in quantity levels Value Index Numb
between 2 periods
Some other points on index Numbers
P_{01} is the price index for time 1 on 0
Here, $\mathrm{P}_{0}=$ Base year price, $\mathrm{P}_{1}=$ Current year price

- $\mathrm{P}_{01}=$ Current year price / Base year price * $100 \mathrm{OR} \Sigma \mathrm{P}_{1} / \Sigma \mathrm{P}_{0} * 100$ - $\mathrm{P}_{01}=$ Price Index, $\mathrm{Q}_{01}=$ Quantity Index, $\mathrm{V}_{01}=$ Value Index The ratio of the price of a single commodity in a given period to its price in other period is called the Price Relative.
Price relative $=P_{1} / P_{0}{ }^{*} 100$
Index Numbers are constructed from the sample
Weights play an important part in construction of Index
Numbers
The best average for construction of Index Number is GM. But in general practice AM is used.
- Gure numbers
- Price inder are used to measure
- Purchasing power of Money = 1 /Price Index
- Cost of Living index is Price Index

Methods of constructing Index Numbers (Price Index P_{01})
Simple Method/ Unweighted Method

- Simple Average Method
$\mathrm{P}_{01}=\frac{\sum P_{1}}{\Sigma P_{0}} \times 100$
here, $\Sigma P_{1}=$ Sum of all commodity prices in current year
$\Sigma P_{0}=$ Sum of all commodity prices in Base year
Simple Average of price/quantity relative
Using AM $\rightarrow \mathrm{P}_{01}=\frac{1}{n} \Sigma\left(\frac{P_{1}}{p_{0}} \times 100\right) \mathrm{OR}=\frac{1}{n} \Sigma P$
Using GM $\rightarrow \mathrm{P}_{01}=A L\left[\frac{1}{n} \Sigma \log \left(\frac{P_{1}}{P_{0}} \times 100\right)\right]$

Weighted Method

General Form $=P_{01}=\frac{P_{1} w}{P_{0} w} \times 100$
Where, $w=$ weight
Laspeyre's Price Index $\rightarrow \mathrm{P}_{01}=\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{0}} \times 100$
Paasche's Price Index $\rightarrow \mathrm{P}_{01}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}} \times 100$
Fisher's Ideal Price Index $\rightarrow \mathrm{P}_{01}=\sqrt{\frac{\sum p_{1} q_{0}}{\Sigma p_{0} q_{0}} \times \frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{1}}} \times 100$

$$
\text { OR } \quad \mathrm{P}_{01}=\sqrt{L * P}
$$

Dorbish \& Bowley's Price Index

Note
The result obtained by Marshall Edgeworth method is closest to Fisher's Index
Fisher's Ideal Index is GM of Laspeyre's \& Paasche's Index eighted average of price/quantity relative
Using $\mathrm{AM} \rightarrow \mathrm{P}_{01}=\frac{\Sigma W P}{\Sigma W}$ where $\mathrm{P}=\frac{P_{1}}{P_{0}} \times 100$
Using GM $\rightarrow \mathrm{P}_{01}=A L\left[\frac{\Sigma W \log P}{\Sigma W}\right]$ where $\mathrm{P}=\frac{P_{1}}{P_{0}} \times 100$
Methods of constructing Index Numbers (Quantity Index Q_{01})
All methods and formulas are same to determine Q_{01}
Just interchange p with q and q with p.
Value Index Numbers (V_{01})
Value Index n
two periods.
Note: It is \quad Value $=$ Price \times Quantity
Note: It is used for computing growth rate in the economy.
Value Index $\rightarrow \mathrm{V}_{01}=\frac{\Sigma p_{1} q_{1}}{\Sigma p_{0} q_{0}} \times 100$
$V_{01}=\frac{\Sigma V_{1}}{\Sigma V_{0}} \times 100$
Here, $V_{1}=\Sigma p_{1} q_{1} \& V_{0}=\Sigma p_{0} q_{0}$

Test of Adequac

There are four tests of adequacy:
Unit Test - Except for the simple average method all other formulae satisfy this test
Time reversal test - $\mathrm{P}_{01} \times \mathrm{P}_{10}=1$ - Laspeyre's method and Time reversal test $-\mathrm{P}_{01} \times \mathrm{P}_{10}=1-$ Last
Paasche's method do not satisfy this test
Factor Reversal test - $\mathrm{P}_{01} \times \mathrm{Q}_{01}=\mathrm{V}_{01}$ - Only Fisher's Index
satisfies Factor Reversal test
Circular test - $\mathrm{P}_{01} \times \mathrm{P}_{12} \times \mathrm{P}_{20}=1$ - This test is not met by Laspeyres, or Paasche's or the Fisher's ideal index. The simple geometric mean of price relatives and the weighted average method with fixed weights meet this test. This test is extension of Time Reversal Test.
Other imp. Formulas-
$\mathrm{CPI}, \mathrm{CII}, \mathrm{RPI}=\frac{\Sigma p_{1} q_{0}}{\Sigma p_{0} q_{0}} \times 100$,
Real Wages $=\frac{\Sigma \text { Money wages }}{\text { CII }} \times 100$

Consumer Price Index (CPI),
Cost of Living Index (CII),
Real Price Index (RPI)

cy:

