Chapter 1 – Ratio, Proportion, Indices, Logarithms

Unitary Method

Suppose I tell you that 10 Apples cost ₹100 and ask you how much will 7 Apples Cost?

You would ordinarily do the following:

Step 1 –		10	Apples	Cost			₹	100
Step 2 – =	⇒	1	Apple	Costs	₹100 10	=	₹	10
Step 3 –	÷	7	Apples	Cost	₹10×7	=	₹	70

Now, let us do the same thing in just two steps:

Step 1 -10ApplesCost₹100Step 2 - \therefore 7ApplesCost₹?

Always proceed with the calculation as shown below:

A point to be noted here is that the **requirement** of the question should be placed on the righthand side while forming the structure shown above. In the above example, we were supposed to calculate the amount, and therefore, we placed the amount on the right-hand side while forming the structure. If we were supposed to calculate how many apples can be bought with, say $\gtrless 60$, we would place Apples on the right-hand side while forming the structure, as now the requirement of the question is no. of apples. The process is shown below:

Ratio

A ratio is a comparison of two quantities of the same kind and of same units. If a and b are two quantities of the same kind, then the fraction a/b is called the ratio of a to b. It is written as a: b. The quantities a and b are called terms of the ratio; a is called the first term or the "antecedent" and b is called the second term or the "consequent". Usually, a ratio is expressed in its simplest form.

Exercise 1A – Question 2

The ratio of two quantities is 3 : 4. If the antecedent is 15, the consequent is:

(a) 16 (b) 60 (c) 22 (d) 20

Solution (d)

Points to Remember

- 1. Ratio exists only between quantities of same kind.
- 2. Quantities to be compared must be in the same units.

Page 1.2 – Illustration IV (1)

What is the ratio between 150 gm and 2 kg?

(a) 150 : 2 (b) 75 : 1 (c) 3 : 40 (d) Both (a) and (b)

Solution (c)

Page 1.2 – Illustration IV (2)

What is the ratio between 25 minutes and 45 seconds?

(a) 25 : 45 (b) 5 : 9 (c) 100 : 3 (d) Both (a) and (b)

Solution (c)

Points to Remember (Contd.)

3. To compare ratios, use calculator as is explained in the class.

Page 1.2 – Illustration VI

Which ratio is greater: $2\frac{1}{3}: 3\frac{1}{3}, 3.6: 4.8?$ (a) $2\frac{1}{3}: 3\frac{1}{3}$ (b) 3.6: 4.8 (c) Can't Say

(d) None

Solution (b)

Points to Remember (Contd.)

4. If a quantity increases or decreases in the ratio a : b, then new quantity = b of the original quantity/a.

The fraction by which the original quantity is multiplied to get a new quantity is called the factor multiplying ratio. (This is basically unitary method.)

Page 1.3 – Illustration VII

Rounaq weighs 56.7 kg. If he reduces his weight in the ratio 7 : 6, find his new weight.

() 10 c1	(1) 10 (1)	() 50 1	(1))]
(a) 48.6 kgs	(b) 49.6 kgs	(c) 50 kgs	(d) None

Solution (a)

Inverse Ratio

The inverse ratio of a/b is b/a.

Exercise 1A – Question 1

The inverse ratio of 11:15 is:

(a) 15:11	(b) $\sqrt{11}:\sqrt{15}$	(c) 121:225	(d) None

Solution (a)

Exercise 1A – Question 3

The ratio of the quantities is 5 : 7. If the consequent of its inverse ratio is 5, the antecedent is:

(a) 5 (b) $\sqrt{5}$ (c) 7 (d) None

Solution (c)

Duplicate Ratio

A ratio compounded of itself is called a Duplicate Ratio. The duplicate ratio of a : b is $a^2 : b^2$.

Exercise 1A – Question 5

The duplicate ratio of 3 : 4 is:

(a) $\sqrt{3}:2$ (b) 4:3 (c) 9:16 (d) None

Solution (c)

If 2s: 3t is the duplicate ratio of 2s - p: 3t - p, then:

(a)
$$p^2 = 6st$$
 (b) $p = 6st$ (c) $2p = 3st$ (d) None

Solution (a)

Sub-Duplicate Ratio

The sub-duplicate ratio of a: b is $\sqrt{a}: \sqrt{b}$

Exercise 1A – Question 6

The sub-duplicate ratio of 25 : 36 is:

(a) 6:5 (b) 36:25 (c) 50:72 (d) 5:6

Solution (d)

Exercise 1A – Question 20

If p:q is the sub duplicate ratio of $p-x^2:q-x^2$, then x^2 is:

(a)
$$\frac{p}{p+q}$$
 (b) $\frac{q}{p+q}$ (c) $\frac{pq}{p+q}$ (d) None

Solution (c)

Triplicate Ratio

The triplicate ratio of a : b is $a^3 : b^3$.

Exercise 1A – Question 7

The triplicate ratio of 2 : 3 is:

(a) 8.27 (b) 0.9 (c) 3.2 (d) Not	(a) 8 : 27	(b) 6 : 9	(c) 3 : 2	(d) Non
-------------------------------------	------------	-----------	-----------	---------

Solution (a)

Sub-Triplicate Ratio

The sub-triplicate ratio of a : b is $\sqrt[3]{a} : \sqrt[3]{b}$

Exercise 1A – Question 8

The sub triplicate ratio of 8 : 27 is:

(a) 27 : 8	(b) 24 : 81	(c) 2 : 3	(d) None
------------	-------------	-----------	----------

Solution (c)

Compound Ratio

The multiplication of two or more ratios is called compound ratio. The compound ratio of a : b and c : d is ac : bd.

Exercise 1A – Question 4

The ratio compounded of 2 : 3, 9 : 4, 5 : 6 and 8 : 10	is:
--	-----

(a) 1 : 1 ((b) 1 : 5	(c) 3 : 8	(d) None
-------------	-----------	-----------	----------

Solution (a)

Exercise 1A – Question 9

The ratio compound	ed of 4 : 9 and the	e duplicate ratio of 3 : 4 is:	

(a) 1 : 4	(b) 1 : 3	(c) 3 : 1	(d) None

Solution (a)

Exercise 1A – Question 10

The ratio compounded of 4:9, the duplicate ratio of 3:4, the triplicate ratio of 2:3 and 9:7 is:

(a) 2 : 7 (b) 7 : 2 (c) 2 : 21 (d) None

Solution (c)

Exercise 1A – Question 11

The ratio compounded of duplicate ratio of 4:5, triplicate ratio of 1:3, sub duplicate ratio of 81:256 and sub-triplicate ratio of 125:512 is:

(a) 4 : 512	(b) 3 : 32	(c) 1 : 12	(d) None
-------------	------------	------------	----------

Solution (d)

If $a:b=3:4$, the value of	of $(2a+3b):(3a+4)$	b) is:	
(a) 54 : 25	(b) 8 : 25	(c) 17 : 24	(d) 18 : 25

Solution (d)

Exercise 1A – Question 19

If x: y = 3:4, the value of $x^2y + xy^2: x^3 + y^3$ is: (a) 13:12 (b) 12:13 (c) 21:31 (d) None

Solution (b)

Exercise 1A – Question 22

If	p:q=2:3 and	x: y = 4:5, t	then the va	alue of 5	px + 3qy:10	px + 4qy is:
----	-------------	---------------	-------------	-----------	-------------	--------------

(a) 71 : 82	(b) 27 : 28	(c) 17 : 28	(d) None
		. ,	. ,

Solution (c)

Word Problems

Page 1.3 – Example 2

The ratio of the number of boys to the number of girls in a school of 720 students is 3:5. If 18 new girls are admitted in the school, find how many new boys may be admitted so that the ratio of the number of boys to the number of girls may change to 2:3.

(a) 24 (b) 42 (c) 36 (d) None

Solution (b)

Page 1.4 – Example 1

The monthly incomes of two persons are in the ratio 4:5 and their monthly expenditures are in the ratio 7:9. If each saves 350 per month, find their monthly incomes.

	(a) ₹400; ₹500	(b) ₹800; ₹1,000	(c) ₹40; ₹50	(d) None
--	----------------	------------------	--------------	----------

Solution (a)

Page 1.5 – Example 2

The ratio of the prices of two houses was 16: 23. Two years later when the price of the first has increased by 10% and that of the second by ₹477, the ratio of the prices becomes 11: 20. Find the original prices of the two houses.

(a) $\gtrless 848$, $\gtrless 1,219$ (b) $\gtrless 838$, $\gtrless 1,119$ (c) $\gtrless 828$, $\gtrless 1,219$ (d) $\gtrless 848$, $\gtrless 1,229$

Solution (a)

Page 1.5 – Example 3

Find in what ratio will the total wages of the workers of a factory be increased or decreased if there be a reduction in the number of workers in the ratio 15 : 11 and an increment in their wages in the ratio 22 : 25.

(a) 8:7 (b) 7:6 (c) 6:5 (d) None

Solution (c)

Exercise 1A – Question 13

Two numbers are in the ratio 2:3. If 4 be subtracted from each, they are in the ratio 3:5. The numbers are:

(a) (16, 24) (b) (4, 6) (c) (2, 3) (d) None

Solution (a)

Exercise 1A – Question 14

The angles of a triangle are in ratio 2:7:11. The angles are:

(a) (20°, 70°, 90°)	(b) (30°, 70°, 80°)
(c) $(18^\circ, 63^\circ, 99^\circ)$	(d) None

Solution (c)

Exercise 1A – Question 15

Division of ₹324 between X and Y is in the ratio 11 : 7. X & Y would get Rupees:

(a) 204, 120 (b) 200, 124 (c) 180, 144 (d) None

Solution (d)

Anand earns ₹80 in 7 hours and Promode ₹90 in 12 hours. The ratio of their earnings is:

(a) 32 : 21 (b) 23 : 12 (c) 4	8:9 (d) None
-------------------------------	--------------

Solution (a)

Exercise 1A – Question 17

The ratio of two numbers is 7 : 10 and their difference is 105. The numbers are:

(a) (200, 305)	(b) (185, 290)	(c) (245, 350)	(d) None
----------------	----------------	----------------	----------

Solution (c)

Exercise 1A – Question 18

P, Q and R are three cities. The ratio of average temperature between P and Q is 11 : 12 and that between P and R is 9 : 8. The ratio between the average temperature of Q and R is

	(a) 22 : 27	(b) 27 : 22	(c) 32 : 33	(d) None
--	-------------	-------------	-------------	----------

Solution (b)

Exercise 1A – Question 23

The number which when subtracted from each of the terms of the ratio 19 : 31 reducing it to 1 : 4 is

(a) 15 (b) 5 (c) 1 (d) None

Solution (a)

Exercise 1A – Question 24

Daily earnings of two persons are in the ratio 4:5 and their daily expenses are in the ratio 7: 9. If each saves ₹50 per day, their daily earnings in ₹ are:

(a) (40, 50) (b) (50, 40) (c) (400, 500) (d) None

Solution (c)

The ratio between the speeds of two trains is 7 : 8. If the second train runs 400 kms. in 5 hours, the speed of the first train is

(a) 10 km/hr	(b) 50 km/hr	(c) 70 km/hr	(d) None
Solution (c)			
Page 1.3 – Examp	le 1		
Simplify the ratio $(a) 3:4:8$	(b) 8 : 3 : 4	(c) 5 : 9 : 12	(d) None

Solution (b)

Proportion

- An equality of two ratios is called Proportion.
- The quantities a, b, c, and d are said to be in proportion if a : b = c : d.
- It is also written as a : b :: c : d.
- The quantities *a*, *b*, *c*, and *d* are called the terms of the proportion; *a*, *b*, *c*, and *d* are called the first, second, third and fourth terms respectively.
- They are also called "first proportional", "second proportional", "third proportional", and "fourth proportional" respectively.
- The terms *a* and *d* are called "Extremes" and the terms *b* and *c* are called "Means".
- Note In a ratio *a* : *b*, both the quantities *a* and *b* should be of the same kind. However, this is not true in case of proportion. In proportion *a* : *b* :: *c* : *d*, the quantities *a* and *b* should be of the same kind, and quantities *c* and *d* should be of the same kind.
- Cross-Product Rule Clearly, if a : b = c : d, then by cross multiplication ad = bc. Therefore, product of means = product of extremes. This is called the cross-product rule.

Page 1.9 – Example 2

Find the value of *x* if 10/3: x:: 5/2: 5/4.

(a) 5/3	(b) 3/5	(c) 2/9	(d) None

Solution (a)

Exercise 1B – Question 4

The number which has the same ratio to 26 that 6 has to 13 is:

	(a) 11	(b) 10	(c) 21	(d) None
--	--------	--------	--------	----------

Solution (d)

Exercise 1B – Question 6

If four numbers 1/2, 1/3, 1/5, 1/x are proportional then x is:

(a) 6/5	(b) 5/6	(c) 15/2	(d) None

Solution (c)

Exercise 1B – Question 23

12, 16, *, 20 are in proportion. Then * is:

(a) 25	(b) 14	(c) 15	(d) None
Solution (c)			
Exercise 1B –	Question 24		
4, *, 9, 13½ ar	e in proportion. The	n * is:	
(a) 6	(b) 8	(c) 9	(d) None
Solution (a)			
Page 1.9 – Ex	ample 3		
Find the fourth	n proportional to $2/3$,	3/7, 4.	
(a) 5/2	(b) 7/8	(c) 18/	7 (d) None
Solution (c)			
Exercise 1B –	Question 1		
The fourth pro	portional to 4, 6, 8 is	5:	
(a) 12	(b) 32	(c) 48	(d) None
Solution (a)			
Exercise 1B –	Question 5		
The fourth pro	portional to $2a$, a^2 ,	<i>c</i> is:	
(a) <i>ac</i> /2	(b) <i>ac</i>	(c) 2/	ac (d) None
Solution (a)			
Exercise 1B –	Question 18		

The numbers 14, 16, 35, 42 are not in proportion. The fourth term for which they will be in proportion is:

(a) 45	(b) 40	(c) 32	(d) None
Solution (b)			

Continuous Proportion

- The quantities a, b, and c are said to be in continuous proportion if a : b = b : c.
- In such case, the middle term *b* is called the mean proportional.
- Obviously, $b^2 = ac$ or $b = \sqrt{ac}$.

Page 1.9 – Example 4

Find the third	proportion to 2.4 kg, 9.6	kg.	
(a) 38	(b) 38.4	(c) 39	(d) None
Solution (b)			
Exercise 1B -	- Question 2		
The third prop	portional to 12, 18 is:		
(a) 24	(b) 27	(c) 36	(d) None
Solution (b)			
Exercise 1B -	- Question 3		
The mean pro	portional between 25, 81	is:	
(a) 40	(b) 50	(c) 45	(d) None
Solution (c)			
Exercise 1B -	- Question 7		
The mean pro	portional between $12x^2$ ar	nd $27y^2$ is	
(a) 18 <i>xy</i>	(b) 81 <i>xy</i>	(c) 8 <i>xy</i>	(d) None
Solution (a)			
Exercise 1B -	Question 25		
The mean pro	portional between 1.4 gm	s and 5.6 gms is:	

(a) 28 gms	(b) 2.8 gms	(c) 3.2 gms	(d) None
Solution (b)			

Page 1.10 – Example 5

Find the mean proportion between 1.25 and 1.8.

(a) 1.5 (b) 2.5 (c) 3.9 (d) None

Solution (a)

Exercise 1B – Question 13

If A : B = 3 : 2 and B : C = 3 : 5, then A : B : C is: (a) 9 : 6 : 10 (b) 6 : 9 : 10 (c) 10 : 9 : 6 (d) None

Solution (a)

Exercise 1B – Question 15

If $x : y = 2 : 3, y : z$	= 4 : 3 then $x : y : z$ is:		
(a) 2 : 3 : 4	(b) 4 : 3 : 2	(c) 3 : 2 : 4	(d) None

Solution (d)

Page 1.11 – Example 1

If $a: b = c: d = 2.5$: 1.5, what are the values	s of $ad: bc$ and $a + c: b$	b + d?
(a) 1:3; 5:1	(b) 1:1; 5:3	(c) 5:3; 1:1	(d) None

Solution (b)

Page 1.11 – Example 2

If $\frac{a}{3} = \frac{b}{4} = \frac{c}{7}$, then find the value of $\frac{a+b+c}{c}$. (a) 1 (b) 3 (c) 2 (d) None

Solution (c)

Exercise 1B – Question 8

If A = B/2 = C/5, then A : B : C is:

(a) 3 : 5 : 2	(b) 2 : 5 : 3	(c) 1 : 2 : 5	(d) None
---------------	---------------	---------------	----------

Solution (c)

Exercise 1B – Question 9

If
$$a/3 = b/4 = c/7$$
, then $a + b + c/c$ is
(a) 1 (b) 3 (c) 2 (d) None

Solution (c)

Exercise 1B – Question 10

If $p/q = r/s = 2.5$	5/1.5, the value of $ps: q$	<i>qr</i> is	
(a) 3/5	(b) 1 : 1	(c) 5/3	(d) None

Solution (b)

Exercise 1B – Question 11

If
$$x: y = z: w = 2.5:1.5$$
, the value of $(x + z): (y + w)$ is:
(a) 1 (b) 3/5 (c) 5/3 (d) None

Solution (c)

Exercise 1B – Question 14

If x/2 = y/3 = z/7, then the value of (2x-5y+4z)/2y is:

(a) 6/23	(b) 23/6	(c) 3/2	(d) None

Solution (d)

Exercise 1B – Question 26

If
$$\frac{a}{4} = \frac{b}{5} = \frac{c}{9}$$
, then $\frac{a+b+c}{c}$ is:
(a) 4 (b) 2 (c) 7 (d) None
Solution (b)

If
$$a:b=4:1$$
, then $\sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}}$ is:
(a) 5/2 (b) 4 (c) 5 (d) None

Solution (a)

Exercise 1B – Question 16

Division of ₹750 into 3 parts in the ratio 4 : 5 : 6 is:

(a) (200, 250, 300)	(b) (250, 250, 250)
(c) (350, 250, 150)	(d) None

Solution (a)

Continued Proportion

When 3 or more numbers are related such that a/b = b/c = c/d = d/e... the numbers *a*, *b*, *c*, *d*, and *e* are said to be in continued proportion.

Properties of Proportion

- 1. Cross Product Rule If $\frac{a}{b} = \frac{c}{d}$, then ad = bc. 2. Invertendo If $\frac{a}{b} = \frac{c}{d}$, then $\frac{b}{a} = \frac{d}{c}$. 3. Alternendo If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a}{c} = \frac{b}{d}$, or, $\frac{d}{b} = \frac{c}{a}$ 4. Componendo If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+b}{b} = \frac{c+d}{d}$ 5. Dividendo If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a-b}{b} = \frac{c-d}{d}$
 - 6. Componendo and Dividendo If $\frac{a}{b} = \frac{c}{d}$, then $\frac{a+b}{a-b} = \frac{c+d}{c-d}$
 - 7. Addendo

If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$$
, then each of these ratios is equal to $\frac{a+c+e+\dots}{b+d+f+\dots}$, i.e.,
 $\frac{a}{b} = \frac{a+c+e+\dots}{b+d+f+\dots}$; $\frac{c}{d} = \frac{a+c+e+\dots}{b+d+f+\dots}$; $\frac{e}{f} = \frac{a+c+e+\dots}{b+d+f+\dots}$
8. Subtrahendo
If $\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \dots$, then each of these ratios is equal to $\frac{a-c-e-\dots}{b-d-f-\dots}$, i.e.,
 $\frac{a}{b} = \frac{a-c-e-\dots}{b-d-f-\dots}$; $\frac{c}{d} = \frac{a-c-e-\dots}{b-d-f-\dots}$; $\frac{e}{f} = \frac{a-c-e-\dots}{b-d-f-\dots}$

If x / y = z / w implies y / x = w / z, this process is called:

(a) Dividendo	(b) Componendo	(c) Alternendo	(d) None
---------------	----------------	----------------	----------

Solution (d)

Exercise 1B – Question 20

If $p/q = r/s = p - r/q - s$, the process is called:				
(a) Subtrahendo	(b) Addendo	(c) Invertendo	(d) None	

Solution (a)

Exercise 1B – Question 21

If a/b = c/d implies (a+b)/(a-b) = (c+d)/(c-d), the process is called:

(a) Componendo	(b) Dividendo
(c) Componendo and Dividendo	(d) None

Solution (c)

Exercise 1B – Question 28

If
$$\frac{a}{4} = \frac{b}{5}$$
, then
(a) $\frac{a+4}{a-4} = \frac{b-5}{b+5}$ (b) $\frac{a+4}{a-4} = \frac{b+5}{b-5}$ (c) $\frac{a-4}{a+4} = \frac{b+5}{b-5}$ (d) None

Solution (b)

Exercise 1B – Question 22

If u/v = w/p, then (u-v)/(u+v) = (w-p)/(w+p). The process is called:

(a) Invertendo	(b) Alternendo	(c) Addendo	(d) None
(,	(-)	(-)	()

Solution (d)

Exercise 1B – Question 17

The sum of the ages of 3 persons is 150 years. 10 years ago, their ages were in the ratio 7 : 8 : 9. Their present ages are:

(a) (45, 50, 55) (b) (40, 60, 50) (c) (35, 45, 70) (d) None

Solution (a)

Exercise 1B – Question 27

Two numbers are in the ratio 3:4; if 6 be added to each terms of the ratio, then the new ratio will be 4:5, then the numbers are:

(a) 14, 20	(b) 17, 19	(c) 18, 24	(d) None
			())))

Solution (c)

Exercise 1B – Question 12

If (5x-3y)/(5y-3x) = 3/4, then the value of x: y is:

(a) 2:9 (b) 7:2 (c) 7:9 (d) None

Solution (d)

Alligation

- This rule is used in mixing of two varieties of the same kind.
- If two varieties of, say, tea with rate ₹x per kg and ₹y per kg (where x < y) are mixed to make a third variety of tea with rate ₹z per kg, the ratio in which these two varieties are mixed is: (₹y ₹z) : (₹z ₹x).
- Remember
 - If x represents cost, then y and z must also be cost.

 \circ If *x* represents selling price, then *y* and *z* must also be selling price.

Page 1.11 – Example 3

A dealer mixes tea costing ₹6.92 per kg. with tea costing ₹7.77 per kg and sells the mixture at ₹8.80 per kg and earns a profit of 17.5% on his sale price. In what proportion does he mix them?

(a) 6:4 (b) 3:2 (c) 5:6 (d) Both (a) and (b)

Solution (d)

Scanner – Question 80 (June, 2015)

A dealer mixes rice costing ₹13.84 per kg. with rice costing ₹15.54 per kg. and sells the mixture at ₹17.60 per kg. So, he earns a profit of 14.6% on his sale price. The proportion in which he mixes the two qualities of rice is:

(a) 3:7 (b) 5:7 (c) 7:9 (d) 9:11

Solution (a)

Indices

- The word "Indices" is the plural of "Index".
- When a number is expressed in the form of a^n , a is called the base, and n is called the index/exponent/power.

Integral Components of a Real Number

Positive Integral Power

For any real number a and a positive integer n, a^n is defined as

$$a^n = a \times a \times a \times a \times \dots \times a$$
 (*n* times)

Negative Integral Power

For any real number *a* and a negative integer *n*, a^{-n} is defined as

$$a^{-n} = \frac{1}{a^n}$$

Zero Power

For any real number a, a^0 is defined as

$$a^0 = 1$$

Laws of Indices

- 1. First Law
- 2. Second Law

$$\frac{a^m}{a^n} = a^{m-n}$$

 $a^m \times a^n = a^{m+n}$

3. Third Law

4. Fourth Law

$$\left(a^{m}\right)^{n}=a^{mn}=\left(a^{n}\right)^{m}$$

$$\left(ab\right)^{n} = a^{n}b^{n}$$
$$\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$$

5. Fifth Law

$$a^{m/n} = (a^m)^{1/n}$$
, i.e., $a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$

Page 1.16 – Example 1

Simplify $2x^1$	$^{/2}3x^{-1}$ if $x = 4$.		
(a) 3	(b) 4	(c) 5	(d) None

Solution (a)

Page 1.16 – Example 2

Simplify $6ab^2c^3 \times 4b^{-2}c^{-3}d$. (a) 42ad (b) 24ad (c) 52bc (d) None

Solution (b)

Page 1.17 – Example 3

Find the value of $\frac{4x^{-1}}{x^{-1/3}}$. (a) $\frac{2}{x^{3/2}}$ (b) $\frac{4}{x^{3/2}}$ (c) $\frac{4}{x^{2/3}}$ (d) None

Solution (c)

Page 1.18 – Example 4

Simplify
$$\frac{2a^{\frac{1}{2}} \times a^{\frac{2}{3}} \times 6a^{-\frac{7}{3}}}{9a^{-\frac{5}{3}} \times a^{\frac{3}{2}}}$$
 if $a = 4$.
(a) 1/3 (b) $\frac{1}{2}$ (c) 2/3 (d) None

Solution (a)

Page 1.19 – Example 5

Simplify
$$(x^{a}.y^{-b})^{3}.(x^{3}y^{2})^{-a}$$

(a) $\frac{1}{y^{3b+2a}}$ (b) $\frac{1}{y^{3b+3a}}$ (c) $\frac{1}{y^{2b+2a}}$ (d) None

Solution (a)

Page 1.19 – Example 6

$$\sqrt[6]{a^{4b}x^6} \cdot (a^{2/3}x^{-1})^{-b}$$

(a) x^{1+b} (b) x^{c+b} (c) x^{2+b} (d) None

Solution (a)

Page 1.19 – Example 7

Find <i>x</i> , if x	$\overline{x} = \left(x\sqrt{x}\right)^x$		
(a) 3	(b) 1	(c) 2	(d) None

Solution (b)

Page 1.20 – Example 8

Find the value of k from $\left(\sqrt{9}\right)^{-7} \times \left(\sqrt{3}\right)^{-5} = 3^{k}$			
(a) 2/3	(b) 18/7	(c) -19/2	(d) None

Solution (c)

Exercise 1C – Question 1

 $4x^{-1/4}$ is expressed as: (a) $-4x^{1/4}$ (b) x^{-1} (c) $4/x^{1/4}$ (d) None

Solution (c)

Exercise 1C – Question 2

The value	of	8 ^{1/3}	is:
-----------	----	------------------	-----

(a) $\sqrt[3]{2}$	(b) 4	(c) 2	(d) None
	· · /		· · ·

Solution (c)

Exercise 1C -	- Question 3		
The value of	$2 \times (32)^{1/5}$ is:		
(a) 2	(b) 10	(c) 4	(d) None
Solution (c)			
Exercise 1C -	- Question 4		
The value of	$4/(32)^{1/5}$ is:		
(a) 8	(b) 2	(c) 4	(d) None
Solution (b)			
Exercise 1C -	- Question 5		
The value of	$(8/27)^{1/3}$ is:		
(a) 2/3	(b) 3/2	(c) 2/9	(d) None
Solution (a)			
Exercise 1C -	- Question 6		
The value of	$2(256)^{-1/8}$ is:		
(a) 1	(b) 2	(c) 1/2	(d) None
Solution (a)			
Exercise 1C -	– Question 7		
$2^{\frac{1}{2}}.4^{\frac{3}{4}}$ is:			
(a) a fraction (c) a negative	e integer	(b) a po (d) Non	sitive integer e
Solution (b)			

$$\left(\frac{81x^4}{y^{-8}}\right)^{\frac{1}{4}}$$
 has simplified value equal to:
(a) xy^2 (b) x^2y (c) $9xy^2$

Solution (d)

Exercise 1C – Question 9

$$x^{a-b} \times x^{b-c} \times x^{c-a}$$
 is equal to:
(a) x (b) 1 (c) 0 (d) None

Solution (b)

Exercise 1C – Question 10

The value of
$$\left(\frac{2p^2q^3}{3xy}\right)^0$$
 where $p, q, x, y \neq 0$ is equal to:
(a) 0 (b) 2/3 (c) 1 (d) None

Solution (c)

Exercise 1C – Question 11

$$\left\{ \left(3^{3}\right)^{2} \times \left(4^{2}\right)^{3} \times \left(5^{3}\right)^{2} \right\} / \left\{ \left(3^{2}\right)^{3} \times \left(4^{3}\right)^{2} \times \left(5^{2}\right)^{3} \right\} \text{ is:}$$
(a) ³/₄ (b) 4/5 (c) 4/7 (d) 1

Solution (d)

Exercise 1C – Question 12

Which is true?

(a)
$$2^{0} > (1/2)^{0}$$
 (b) $2^{0} < (1/2)^{0}$ (c) $2^{0} = (1/2)^{0}$ (d) None

Solution (c)

(d) None

If $x^{1/p} = y^{1/q} = z^{1/r}$ and xyz = 1, then the value of p+q+r is: (a) 1 (b) 0 (c) 1/2 (d) None

Solution (b)

Exercise 1C – Question 14

The value of $y^{a-b} \times y^{b-c} \times y^{c-a} \times y^{-a-b}$ is: (a) y^{a+b} (b) y (c) 1 (d) $1/y^{a+b}$

Solution (d)

Exercise 1C – Question 15

The true option is:

(a) $x^{2/3} = \sqrt[3]{x^2}$ (b) $x^{2/3} = \sqrt{x^3}$ (c) $x^{2/3} > \sqrt[3]{x^2}$ (d) $x^{2/3} < \sqrt[3]{x^2}$

Solution (a)

Exercise 1C – Question 16

The simplified value of $16x^{-3}y^2 \times 8^{-1}x^3y^{-2}$ is: (a) 2xy (b) xy/2 (c) 2 (d) None

Solution (c)

Exercise 1C – Question 17

The value of $(8/$	$(27)^{-1/3} \times (32/243)^{-1/3}$	⁵ is:	
(a) 9/4	(b) 4/9	(c) 2/3	(d) None

Solution (a)

The value of
$$\{(x+y)^{2/3}(x-y)^{3/2} / \sqrt{(x+y)} \times \sqrt{(x-y)^3}\}^6$$
 is:
(a) $(x+y)^2$ (b) $(x-y)$ (c) $x+y$ (d) None

Solution (c)

Exercise 1C – Question 19

Simplified value of $(125)^{2/3} \times \sqrt{25} \times \sqrt[3]{5^3} \times 5^{1/2}$ is: (a) 5 (b) 1/5 (c) 1 (d) None

Solution (d)

Exercise 1C – Question 20

$\left[\left\{\left(2\right)^{1/2}.\left(4\right)^{3/4}.\left(8\right)^{5/6}.\right.\right.$	$(16)^{7/8} \cdot (32)^{9/10} \Big\}^4 \Big]^{3/25}$ is:		
(a) a fraction	(b) an integer	(c) 1	(d) None

Solution (b)

Exercise 1C – Question 21

Solution (a)

Exercise 1C – Question 22 $\left[\left(x^{n} \right)^{n-\frac{1}{n}} \right]^{\frac{1}{n+1}} \text{ is equal to:}$ (a) x^{n} (b) x^{n+1} (c) x^{n-1} (d) None

Solution (c)

Exercise 1C – Question 23

If
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$
, then the simplified form of
 $\left[\frac{x^l}{x^m}\right]^{l^2 + lm + m^2} \times \left[\frac{x^m}{x^n}\right]^{m^2 + mn + n^2} \times \left[\frac{x^n}{x^l}\right]^{l^2 + ln + n^2}$
(a) 0 (b) 1 (c) x (d) None

Solution (b)

Exercise 1C – Question 24

Using $(a-b)^3 = a^3 - b^3 - 3ab(a-b)$, tick the correct of these when $x = p^{1/3} - p^{-1/3}$.

(a) $x^3 + 3x = p + 1/p$	(b) $x^3 + 3x = p - 1/p$
(c) $x^3 + 3x = p + 1$	(d) None

Solution (b)

Exercise 1C – Question 25

On simplification, $1/(1+a^{m-n}+a^{m-p})+1/(1+a^{n-m}+a^{n-p})+1/(1+a^{p-m}+a^{p-n})$ is equal to: (a) 0 (b) a (c) 1 (d) 1/a

Solution (c)

Exercise 1C – Question 26

The value of
$$\left(\frac{x^a}{x^b}\right)^{a+b} \times \left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a}$$

(a) 1 (b) 0 (c) 2 (d) None

Solution (a)

If
$$x = 3^{\frac{1}{3}} + 3^{-\frac{1}{3}}$$
, then $3x^3 - 9x$ is:
(a) 15 (b) 10 (c) 12 (d) None

Solution (b)

Exercise 1C – Question 28

If
$$a^x = b$$
, $b^y = c$, $c^z = a$, then xyz is:
(a) 1 (b) 2 (c) 3 (d) None

Solution (a)

Exercise 1C – Question 29

The value of
$$\left(\frac{x^a}{x^b}\right)^{\left(a^2+ab+b^2\right)} \times \left(\frac{x^b}{x^c}\right)^{\left(b^2+bc+c^2\right)} \times \left(\frac{x^c}{x^a}\right)^{\left(c^2+ca+a^2\right)}$$

(a) 1 (b) 0 (c) -1 (d) None

Solution (a)

Exercise 1C – Question 30

If
$$2^{x} = 3^{y} = 6^{-z}$$
, $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is:
(a) 1 (b) 0 (c) 2 (d) None

Solution (b)

Exercise 1B – Question 30

If
$$\frac{x}{b+c-a} = \frac{y}{c+a-b} = \frac{z}{a+b-c}$$
, then $(b-c)x + (c-a)y + (a-b)z$ is:
(a) 1 (b) 0 (c) 5 (d) None

Solution (b)

Logarithms

- Logarithms are used to simplify huge calculations.
- $2^3 = 8$ is expressed in terms of Logarithms as $\log_2 8 = 3$.
- It is read as log 8 to the base 2 is 3.
- Notes
 - For any positive real number, *a*, we know that $a^0 = 1$ and $a^1 = a$. Therefore, $\log_a 1 = 0$ and $\log_a a = 1$.
 - \circ If, in a question, the base is not mentioned, it is considered to be 10.

Practice Question 1

 $2^3 = 8$ is written as:

(a) $\log_2 8 = 3$ (b) $\log_8 2 = 3$ (c) $\log_3 2 = 8$ (d) None

Solution (a)

Practice Question 2

$2^4 = 16$ is written as			
(a) $\log_4 16 = 2$	(b) $\log_2 16 = 4$	(c) $\log_{16} 4 = 2$	(d) None

Solution (b)

Practice Question 3

 $x^{y} = z$ is written as

(a) $\log_z y = x$	(b) $\log_x y = z$	(c) $\log_x z = y$	(d) None

Solution (c)

Practice Question 4

$5^2 = 25$ is written as			
(a) $\log_{25} 5 = 2$	(b) $\log_5 25 = 2$	(c) $\log_2 5 = 25$	(d) None

Solution (b)

Practice Question 5

 $\log_2 256 = 8$ is written as (a) $8^2 = 256$ (b) $2^{256} = 8$ (c) $2^8 = 256$ (d) None **Solution** (c) **Practice Question 6** $\log_3 81 = 4$ is written as (b) $2^4 = 81$ (c) $\sqrt{81} = 3^3$ (a) $3^4 = 81$ (d) None **Solution** (a) **Practice Question 7** $\log_a c = b$ is written as (b) $a^{c} = b$ (c) $a^{b} = c$ (a) $b^{c} = a$ (d) None **Solution** (c) Page 1.24 – Illustration 1 If $\log_a \sqrt{2} = \frac{1}{6}$, find the value of *a*. (a) 8 (b) 9 (c) 10 (d) None

Solution (a)

Page 1.24 – Illustration 2

Find the logar	rithm of 5832 to the	base $3\sqrt{2}$.	
(a) 6	(b) 7	(c) 8	(d) None

Solution (a)

Page 1.25 – Ill	ustration I		
log ½ can be w	ritten as:		
(a) log 1	(b) log 2	(c) –log 2	(d) None
Solution (c)			
Page 1.26 – Ill	ustration II – 1 (a)		
Find the logarit	thm of 1728 to the base	$2\sqrt{3}$.	
(a) 5	(b) 6	(c) 7	(d) None
Solution (b)			
Page 1.29 – Ex	cample 1		
Find the value	of log 5 if log 2 is equa	1 to .3010.	
(a) .6990	(b) .7890	(c) .7489	(d) None
Solution (a)			
Page 1.31 – Ex	xample 1		
Find the logarit	thm of 64 to the base 2	$\sqrt{2}$.	
(a) 4	(b) 5	(c) 6	(d) None
Solution (a)			
Exercise 1D –	Question 2		
$\log_2 8$ is equal	to		
(a) 2	(b) 8	(c) 3	(d) None
Solution (c)			

The value of log 0.0001 to the base 0.1 is:

(a) –4	(b) 4	(c) 1/4	(d) None
Solution (b)			
Exercise 1D –	Question 7		
$\log_{\sqrt{2}} 64$ is equ	ual to:		
(a) 12	(b) 6	(c) 1	(d) None
Solution (a)			
Exercise 1D –	Question 8		
$\log_{2\sqrt{3}} 1728$ is	equal to:		
(a) $2\sqrt{3}$	(b) 2	(c) 6	(d) None
Solution (c)			
Exercise 1D –	Question 9		
$\log(1/81)$ to the	ne base 9 is equal to:		
(a) 2	(b) ½	(c) –2	(d) None
Solution (c)			
Exercise 1D –	Question 10		
log 0.0625 to t	he base 2 is equal to:		
(a) 4	(b) 5	(c) 1	(d) None
Solution (d)			
Exercise 1D –	Question 13		
The value of lo	bg $1/3$ to the base 9 is:		
(a) –½	(b) ½	(c) 1	(d) None

Solution (a)

Exercise 1D – Question 24

The logarithr	m of 64 to the base $2\sqrt{2}$ is	5:		
(a) 2	(b) $\sqrt{2}$	(c) ¹ / ₂	(d) No	ne
Solution (d)				
Laws of Lo	ogarithms			
First Law				
$\log_a(mn) = 1$	$\log_a m + \log_a n$			
Exercise 1D	– Question 1			
$\log 6 + \log 5$	is expressed as:			
(a) log 11	(b) log 30	(c) log 5/	6	(d) None
Solution (b)				
Exercise 1D	– Question 4			
$\log (1 \times 2 \times 3)$	3) is equal to:			
(a) log 1 + l	$\log 2 + \log 3$	(b) log 3	(c) log 2	(d) None
Solution (a)				
Exercise 1D	– Question 11			
Given log 2 =	$= 0.3010$ and $\log 3 = 0.477$	71 the value of log	6 is:	
(a) 0.9030	(b) 0.9542	(c) 0.77	81	(d) None
Solution (c)				

Exercise 1D – Question 14

If $\log x + \log y = \log (x + y)$, y can be expressed as:

(a) <i>x</i>	(b) <i>x</i>	(c) $x/x - 1$	(d) None

Solution (c)

Exercise 1D – Question 17

Given that $\log_{10} 2 = x$ and $\log_{10} 3 = y$, the value of $\log_{10} 60$ is expressed as:

(a) x - y + 1 (b) x + y + 1 (c) x - y - 1 (d) None

Solution (b)

Second Law

$$\log_a\left(\frac{m}{n}\right) = \log_a m - \log_a m$$

Practice Question 8

log 3 is written as

$(a) \log 12 - \log 4 \qquad (b) \log 4 - \log 12 \qquad (c) \log 4 - \log 8$.0g 4	$(0) \log 4 - \log 12$	$(C) \log 4 - \log 6$	(u) None
---	-------	------------------------	-----------------------	----------

Solution (a)

Practice Question 9

log 1.5 is written as	
(a) $\log 6 - \log 9$	(b) $\log 6 + \log 6$
(c) $\log 9 - \log 6$	(d) None

Solution (c)

Exercise 1D – Question 3

log 32/4 is equal to:			
(a) log 32/log 4	(b) log 32 – log 4	(c) 2^3	(d) None

Solution (b)

Given that $\log_{10} 2 = x$ and $\log_{10} 3 = y$, the value of $\log_{10} 1.2$ is expressed in terms of x and y as:

(a) $x + 2y - 1$	(b) $x + y - 1$	(c) $2x + y - 1$	(d) None
Solution (c)			
Third Law $\log_a(m^n) = n \log_a m$			
Practice Question 10	1		
4log 2 is written as:			
(a) $\log 2^4$	(b) $\log 4^2$	(c) $2^{3}\log 4$	(d) None
Solution (a)			
Practice Question 11			
log a^b is written as			
(a) <i>a</i> log <i>b</i>	(b) $b^c \log a^b$	(c) <i>b</i> log <i>a</i>	(d) None

Solution (c)

Page 1.26 – Illustration II – 1 (b)					
Solve $\frac{1}{2}\log_{10}$	$_{0}25 - 2\log_{10}3 + \log_{10}1$	8.			
(a) 5	(b) 6	(c) 1	(d) None		

Solution (c)

Exercise 1D – Question 6

If $2\log x = 4\log 3$, then x is equal to:

(a) 3	(b) 9	(c) 2	(d) None

Solution (b)

Exercise 1D – Question 12

The value of $\log_2 \log_2 \log_2 16$ is:

(a) 0 (b) 2 (c) 1 (d) None

Solution (c)

Exercise 1D – Question 15

The value of $\log_2 \left[\log_2 \left\{ \log_3 \left(\log_3 27^3 \right) \right\} \right]$ is equal to: (a) 1 (b) 2 (c) 0 (d) None

Solution (c)

Exercise 1D – Question 19

Given that $\log x = m + n$ and $\log y = m - n$, the value of $\log \frac{10x}{y^2}$ is expressed in terms of *m* and *n* as:

(a) 1 - m + 3n (b) m - 1 + 3n (c) m + 3n + 1 (d) None

Solution (a)

Exercise 1D – Question 20

The simplified value of $2\log_{10} 5 + \log_{10} 8 - \frac{1}{2}\log_{10} 4$ is: (a) $\frac{1}{2}$ (b) 4 (c) 2 (d) None

Solution (c)

Fourth Law (Base Change Formula) $\log_a m = \frac{\log_b m}{\log_b a}$

Practice Question 12

 $\log_2 4$ is written as

(c) $\frac{\log_{10} 2}{\log_{10} 4}$ (a) $\frac{\log 2}{\log 4}$ (b) $\frac{\log_{10} 4}{\log_{10} 2}$ (d) None

Solution (b)

Practice Question 13

 $\log_4 10$ is written as

(a) $\frac{\log 4}{\log 4}$	(b) $\frac{\log 2^2}{\log 2}$	(c) $\frac{\log 10}{\log 10}$	(d) Nona
log10	$\log 10$	$\log 4$	(u) None

Solution (c)

Practice Question 14

$\log_4 2 \times \log_2 4 =$			
(a) 1	(b) 2	(c) 3	(d) None

Solution (a)

Practice Question 15

 $\log_b a \times \log_a b =$ (a) 2 (b) 1 (c) 3 (d) None

Solution (b)

Page 1.26 – Example 1

Change the base of $\log_5 31$ into the common logarithmic base.

$\log_{31} 10$	(b) $\log_{10} 31$	$\log_{10} 31$	(1) NT
$\frac{(a)}{\log_{10} 5}$	$\frac{(0)}{\log_{10} 5}$	$\frac{1}{\log_5 10}$	(d) None

Solution (b)

Page 1.31 – Example 3

If $a = \log_{24} 12$, $b = \log_{36} 24$, $c = \log_{48} 36$, then find the value of 1 + abc(a) 2ac (b) 2ab (c) 2bc (d) None

Solution (c)

Exercise 1D – Question 23

The value of $(\log_b a \times \log_c b \times \log_a c)^3$ is equal to:

(a) 3 (b) 0 (c) 1 (d) None

Solution (c)

Fifth Law

 $\frac{1}{\log_a m} = \log_m a$

Practice Question 16

$$\frac{1}{\log_{57} 49} =$$
(a) $1 \times \log_{57} 49$ (b) $\log_{57} 49$ (c) $\log_{49} 57$ (d) None

Solution (c)

Practice Question 17

 $\log_{99} 67 =$

(a)
$$\frac{1}{\log_{99} 67}$$
 (b) $\frac{1}{\log_{67} 99}$ (c) $\frac{1}{\log_{9} 67}$ (d) None

Solution (b)

Page 1.31 – Example 2

If $\log_a bc = x$, $\log_b ca = y$, $\log_c ab = z$, then $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1} = ?$

(a) 1	(b) 2	(c) 3	(d) None
Solution (a)			
Sixth Law $a^{\log_a n} = n$			
Practice Que	stion 18		
$4^{\log_4 20} =$			
(a) 20	(b) 4	(c) 24	(d) None
Solution (a)			
Practice Que	stion 19		
$10^{\log 49} =$			
(a) 10	(b) 49	(c) 49 <i>x</i>	(d) None

Solution (b)

Seventh Law

$$\log_{a^q} n^p = \frac{p}{q} \log_a n$$

Practice Question 20

 $\log_{4^2} 5^9 =$ (a) $\frac{9}{2} \log_4 5$ (b) $\frac{5}{4} \log_2 9$ (c) $\frac{5}{2} \log_4 9$ (d) None

Solution (a)

Practice Question 21

 $\log_{x^2} y^z =$ (a) $\frac{x}{2} \log_y z$ (b) $\frac{z}{2} \log_y x$ (c) $\frac{z}{2} \log_x y$ (d) None

Solution (c)

Page 1.27 – Example 2

Solve: $\frac{\log_3 8}{\log_9 16 \log_4 10}$ (a) $2\log_3 10$ (b) $2\log_{10} 3$ (c) $3\log_{10} 2$ (d) None

Solution (c)

Exercise 1D – Question 16

If
$$\log_2 x + \log_4 x + \log_{16} x = 21/4$$
, then x is equal to:
(a) 8 (b) 4 (c) 16 (d) None

Solution (a)

Exercise 1D – Question 21

$$\log \left[1 - \left\{ 1 - \left(1 - x^2 \right)^{-1} \right\}^{-1} \right]^{-\frac{1}{2}}$$
 can be written as:
(a) $\log x^2$ (b) $\log x$ (c) $\log 1/x$ (d) None

Solution (b)

Exercise 1D – Question 22

The simplified value of $\log \sqrt[4]{729.\sqrt[3]{9^{-1}.27^{-4/3}}}$ is: (a) log 3 (b) log 2 (c) log $\frac{1}{2}$ (d) None **Solution** (a)

Exercise 1D – Question 25

The value of $\log_8 25$ given $\log 2 = 0.3010$ is:

(a) 1 (b) 2 (c) 1.5482 (d) None **Solution** (c)