Attempt	Easy	Moderate	Advance Level	Total
May 2018	4	1	1	6
Nov 2018	4	1	0	5
Jun 2019	4	1	0	5
Nov 2019	4	2	0	6
Nov 2020	5	1	1 (o/s)	7
Jan 2021	3	0	1 (o/s)	4
Jul 2021	3	2	0	5
Dec 2021	3	2	1	6
Jun 2022	3	0	0	3
Dec 2022	3	1	0	4

Past Trends

Modern Probability

Function	Discrete Continuous Probability Mass Function Probability Density Function					
Probability	Types of Probability Function					
	Probability = f(X) where X is a random variable					
Probability	Probability is calculated by using a function	on defined on random variable				
Modern	Unlike other, here probability is not calcu	llated by a simple ratio				
Probability	Modern Probability (Axiomatic)	Modern Probability (Axiomatic)				
Approaches of	Set Based Probability	Set Based Probability				
	Classical Probability					

Binomial Distribution

When to use	 When random variable is discrete 		
	 Probability is not very low (like 1/2, 2/3, 1/4 around) 		
Binomial	X ~ B(n,p)		
Variate	Number of Parameters: 2		
	Binomial Distribution: bi-parametric discrete probability distribution		
Probability	$f(x) = P(X = x) = {}^{n}C_{x}p^{x}q^{n-x}$		
Mass Function	X can take whole number value from 0 to n		
Mean	$\mu = np$		
	$\sigma^2 = npq$		
Variance	Mean is always more than variance		
	• Maximum Value of Variance $=\frac{n}{4}$		

		+1)p	
Mode	If result is integer, $\mu_0=$	then there are two = (n + 1)p	If result is non-integer, then there is only one mode
	modes. $\mu_0 =$	= (n + 1)p - 1	Largest integer contained in (n+1)p
Additive Property	If $X \sim B(n_1, p)$ and	$Y \sim B(n_2, p)$ then X	$X + Y \sim B(n_1 + n_2, p)$

PYQ May18	The variance of bind a. $np^2(1-p)$	mial distribution wit b. $\sqrt{np(1-p)}$	h parameters n and p is c. nq(1-q)	d. n²q²(1-q)
Ans: c				
PYQ May 18	An example of bi-p a. Binomial	arametric discrete pr b. Poisson	obability distribution c. Normal	d. a and b
Ans: a				
PYQ May 18	Probability Distribu a. discrete	tion may be b. continuous	c. infinite	d. a or b
Ans: d				
PYQ Nov 18	The mean of binor	nial distribution $X \sim I$	$B(4,\frac{1}{3})$ is equal to	
	a. 3/5	b. 8/3	c. 3/4	d. 4/3
Ans: d			<u>.</u>	
PYQ Nov18	The probability that of five students four $(a)^4$ 1	a student is not a sw are swimmer is $(1)^4 A$	vimmer is 1/5, then the pr $(\mathbf{A})^4 (1)^1$	obability that out
	a. $\left(\frac{4}{5}\right)\frac{1}{5}$	b. ${}^{5}C_{1}\left(\frac{1}{5}\right)\frac{4}{5}$	c. ${}^{5}C_{4}\left(\frac{4}{5}\right)\left(\frac{1}{5}\right)$	d. None
Ans: c				
	If mean and varian	ce are 5 and 3 respe	ctively then the relation b	oetween p and q is
PYQ June 19	a. p>q	b. p <q< td=""><td>c. p=q</td><td>d. p is symmetric</td></q<>	c. p=q	d. p is symmetric
Ans: b				<i></i>
	Find mode when n	-15 and $n = \frac{1}{-1}$ in bi	nomial distribution?	
PYQ Nov 19		$-13 and p = -\frac{1}{4}$		d 275
Ans: b	d. 4	D. 4 and 5	L. 4.Z	u. 5.75
		1		
PYO Jul 21	If x is a binomial va	irlate with p = - for 3	the experiment of 90 tria	is, then the SD is
	equal to a. $\sqrt{5}$	b. –√5	c. 2√5	d. $\sqrt{15}$
Ans: c				

PYQ Dec 21	Four unbiased of a. 1	coins are tossed sim b. 2	ultaneously. The expec c. 3	ted number of heads is d. 4
Ans: b				
PYQ Dec 22	Standard Devia a. npq	tion of Normal Distr b. √npq	ibution is c. np	d. \sqrt{np}
Ans: b				

Poisson Distribution

When to use	When random variable is discrete				
when to use	Probability is very low (like 1%, 2% around)				
	Poisson distribution has only one	e parameter			
Poisson	 Denoted by m 				
Parameter	 It can either be given in question 	n or can be calculated using formula			
	m=	=np			
Poisson	X~	P(m)			
Variate					
Duchability	$e^{-m}.m^{x}$				
Probability	T(X) = P(X = X) =				
Wass Function	X can take whole number value from 0 to n				
Maan	<i>µ</i> =m				
wean	μ-111				
Variance	$\sigma^2 = m$				
	Fine	d m			
	If result is integer, then there are two	If result is non-integer, then there is			
Mode	$\mu_0 = m$	only one mode			
	modes. $\mu_0 = m - 1$	Largest integer contained in M			
Additive	If $X \sim P(m)$ and $Y \sim P(m)$ then $X + Y \sim P(m)$	2(m + m)			
Property	$n \times 1(n_1)$ and $1 \times 1(n_2)$ then $\times 1^{-1}$	\'' <u>1</u> ' '' <u>2</u> /			

PYQ Nov 18	For a Poisson var	iate X, P(X = 2) = 3	P(X = 4), then t	he SD of X is		
PYQ Jun 19						
PYQ Nov 19	2 2	h 1		5	Ч	2
PYQ Nov 20	d. 2	D. 4	C. 🔨	[Ζ	u.	5
PYQ Dec 21						
Ans: c						
	For a Poisson dist	ribution				
	a. Mean an	d SD are equal				
PYQ Nov 19	b. Mean an	d Variance are equ	Jal			
	c. SD and V	ariance are equal				
	d. Both a ar	nd b				

Ans: b

PYQ Nov 20If the parameter of Poisson distribution is m and (Mean + SD) = 6/25 then find m a. $3/25$ b. $1/25$ c. $4/25$ d. $3/5$ Ans: bIf x is a Poisson Variable and P(X=1) = P(X=2), then P(X=4) is a. $\frac{2}{3}e^{-2}$ b. $\frac{2}{3}e^4$ c. $\frac{3}{2}e^{-2}$ d. NonePYQ Jan 21If x is a Poisson Variable and P(X=1) = P(X=2), then P(X=4) is a. $\frac{2}{3}e^{-2}$ b. $\frac{2}{3}e^4$ c. $\frac{3}{2}e^{-2}$ d. NoneAns: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1}	PYQ Nov 20 PYQ Jan 21 Ans: a	Which of the follow a. Poisson	wing is uni-parametr b. Normal	ic distribution? c. Binomial	d. Chi
Ans: bPYQ Jan 21If x is a Poisson Variable and P(X=1) = P(X=2), then P(X=4) is a. $\frac{2}{3}e^{-2}$ b. $\frac{2}{3}e^4$ c. $\frac{3}{2}e^{-2}$ d. NoneAns: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: aIf the average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: aIf the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1}	PYQ Nov 20	If the parameter o a. 3/25	f Poisson distributio b. 1/25	n is m and (Mean + SD c. 4/25) = 6/25 then find m d. 3/5
PYQ Jan 21If x is a Poisson Variable and P(X=1) = P(X=2), then P(X=4) is a. $\frac{2}{3}e^{-2}$ b. $\frac{2}{3}e^4$ c. $\frac{3}{2}e^{-2}$ d. NoneAns: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? 	Ans: b				
Ans: a The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ Ans: a The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ Ans: a The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ Ans: a If 6D = 6D is particular is defined by indicating the particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹	PYQ Jan 21	If x is a Poisson Va a. $\frac{2}{3}e^{-2}$	riable and P(X=1) = F b. $\frac{2}{3}e^4$	P(X=2), then P(X=4) is c. $\frac{3}{2}e^{-2}$	d. None
PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ Ans: aThe average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ Ans: aIf CD = (D bis particular bis is the probability that in a particular page zero number of advertisements 	Ans: a				
Ans: a PYQ Dec 21 The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e ⁻³ b. e ⁰ c. e ³ d. e ⁻¹ Ans: a	PYQ Dec 21	The average numb What is the proba are there? a. e ⁻³	ber of advertisement bility that in a partic b. e ⁰	s per page appearing i ular page zero number c. e ³	n a newspaper is 3. of advertisements d. e^{-1}
PYQ Dec 21The average number of advertisements per page appearing in a newspaper is 3. What is the probability that in a particular page zero number of advertisements are there? a. e^{-3} b. e^0 c. e^3 d. e^{-1} Ans: a	Ans: a				
Ans: a	PYQ Dec 21	The average numb What is the proba are there? a. e ⁻³	ber of advertisement bility that in a partic b. e ⁰	s per page appearing i ular page zero number c. e ³	n a newspaper is 3. of advertisements d. e^{-1}
	Ans: a				
PYQ Jun 22 If SD of Poisson Variable is 1.732 then what is the value of P(-2.48 < X < 3.54) is	PYQ Jun 22	If SD of Poisson Va a. 0.73	ariable is 1.732 then b. 0.65	what is the value of P(c. 0.86	–2.48 < X < 3.54) is d. 0.81

Normal Distribution

When to use	 When random variable is continuous It is bi-parametric continuous probability distribution 				
Normal Variable	$X \sim N(\mu, \sigma^2)$				
Special Point about Mean	Mean = Median = Mode = μ (symmetric distribution)				
Variance	Here σ^2 is a parameter and will be given in question				
Mean Deviation	0.8σ				
	$Q_1 = \mu - 0.675\sigma$				
Quartiles	$Q_{3} = \mu + 0.675\sigma$				
Quartile Deviation	$QD = 0.675\sigma$				
Ratio between QD:MD:SD	10:12:15				
Probability Density Function	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(\frac{x-\mu}{\sigma})^2\times\frac{1}{2}}$ This is used only for the purpose of obtaining mean and SD comparing the function given in question with this function.				

Normal Curve	Curve for	Curve formed by normal distribution. It is also called as Probability Curve				
Shape of Normal Curve	Bell Shap	Bell Shaped				
Points of Inflexion	$\mu-\sigma$ a	nd $\mu + \sigma$				
Area under Normal Curve	The total to be uni	area of th ty i.e. one	e normal curve or fo	r that any probability curve is taken		
Tails of Normal Curve	the two t curve and	ails of the	e normal curve exter e left and right tails n	nd indefinitely on both sides of the never touch the horizontal axis.		
Symmetric	The line o	drawn thr	ough $x = \mu$ has divid	ed the normal curve into two parts		
Distribution	which are	e equal in	all respect.			
	From	То	Area/ Probability			
	μ	$\mu + \sigma$	34.135%			
	$\mu + \sigma$	$\mu + 2\sigma$	13.59%	Equal Halves		
	$\mu + 2\sigma$	μ+3σ	2.14%	99.7%		
Popular Probability	μ +3 σ	∞	0.135%	← / →		
		•		95.5%		
Cuive	From	То	Area/ Probability	68.3%		
	$\mu - \sigma$	$\mu + \sigma$	68.27%	2.13% 13.60% 34.13% 34.13% 13.60% 2.13%		
	$\mu - 2\sigma$	$\mu + 2\sigma$	95.45%	-3α -2α -1σ μ +1σ +2α +3α		
	$\mu - 3\sigma$	μ +3 σ	99.73%			

Standard Normal Distribution

	 When probability calculation is outside the popular intervals
When to use	Normal Distribution is converted to Standard Normal Distribution
	so that Z Table Table can be used for probability calculation
Conditions	Normal Distribution where $\mu = 0$ and $\sigma = 0$
	Х-и
Convert X to Z	$Z = \frac{1}{2} $
	σ
μ	Mean = Median = Mode = 0
Variance	$\sigma^2 = 1$ and $\sigma = 1$
Points of Inflexion	-1 and +1
Mean Deviation	0.8
Quartile Deviation	0.675
Use of Z Table	This table gives us the probability of values from z = 0 to any value of z.
	(Area from center)
Cumulative	$\varphi(k) = P(X \le k)$
Distribution Function	$oldsymbol{arphi}$ (k) gives the area from $-\infty$ to point k in a standard distribution

PYQ May 18	If the area of stavalue of $\varphi(1)$ is	ndard normal curve b	etween z = 0 to z = 1	is 0.3413, then the
	a. 0.5	b. 0.8413	c0.5	d. 1
Ans: b				

	What is the first quartile of x having the following probability density function: $f(x) = \frac{1}{\sqrt{72\pi}} e^{\frac{-(x-10)^2}{72}}$								
PYQ May 18 PYQ Nov 18									
	a. 4	b.	5	c.	5.95	d.	6.75		
Ans: c									
PYQ Nov 18	If for a normal dist distribution is a. 12.17	ributio	n $Q_1 = 54.52$ and 39.43	Q ₃ =	=78.86 , then the n 66.69	nedi d.	an of the None		
Ans: c									
PYQ Jun 19	Area between $\mu-$ a. 95.45%	1.96σ a b.	and $\mu+1.96\sigma$ is 95%	c.	96%	d.	99%		
Ans: b									
PYQ Jun 19	If points of inflexic deviation is	n of a r	normal curve are 4	0 ar	nd 60 respectively,	ther d	n mean		
Ans: a	a. o	D.	45	L.	50	u.	00		
PYQ Nov 19	Area under $\mu \pm 3\sigma$ a. 99.73%	b.	99%	c.	100%	d.	99.37%		
Ans: a					·				
PYQ Nov 20	If we change the parameter of a distribution the shape of probability curve does not change.								
Ans: a	a. Normai	D.	DITIOTITIA	ι.	PUISSUII	u.	None		
PYQ Nov 20	The quartile deviation 4 is	tion of a	a normal distributi	ion	with mean 10 and s	stan	dard		
Ans: d	d. 54.24	D.	23.20	ι.	0.275	u.	2.70		
PYQ Jul 21	In normal distribut a. Zero	ion Me b.	an, Median and M Equal	lode c.	e are Not Equal	d.	Can't Say		
Ans: b									
PYQ Jun 22	In a normal distrib a. 4.2	ution, v b.	variance is 16 then 3.2	the c.	value of mean dev 4.5	viatio d.	on is 2.5		
Ans: b									