

Probability | Past Trends

Attempt	Easy	Moderate	Advance Level	Total
May 2018	6	1	0	7
Nov 2018	3	3	0	6
Jun 2019	3	1	1 (Bayes')	5
Nov 2019	4	1	0	5
Nov 2020	3	1	0	4
Jan 2021	5	1	0	6
Jul 2021	4	3	0	7
Dec 2021	4	2	1	7
Jun 2022	5	1	1	7
Dec 2022	6	1	0	7

Probability - Basics

		ation of probability was	s made by a group of mathe	ematicians			
History	in Europe						
		 about three hundred years back 					
	 to enhance 	their chances of winn	ing				
	 in different 	games of gambling					
	 Subjective 	Probability					
	– per	sonal judgement					
	– exp	perience					
Types	•		al belief, attitude, and bias				
	 of the person applying it 						
	Objective Probability						
	Based on Rules and Maths						
	 This is what we are going to discuss 						
	Experiment	A performance that p	produces certain results				
Random	Random	An experiment is defined to be random if the results of the					
Experiment	Experiment	experiment depend o	on chance only.				
	Examples Tossing a coin, throwing a dice, drawing cards from a			om a pack			
	The results or outco	omes of a random exp	eriment are known as Even	ts			
		at its simplest form	Simple Event or]			
Events	Lvent	at its simplest form	Elementary Event				
LVCIILS	Fyont	that can be sub-	•				
			Composite Event or				
	divide	d into further events	Compound Event				

Classical Probability

General	 Also called Prior Definition of Probability, this formula is Event (Result) Based. It is given by Bernoulli and Laplace.
Formula of Probability	$P(A) = \frac{\text{no. of favorable outcomes}}{\text{total number of outcomes}}$

~	
V	

Formula to	Total number of possible outcomes: p ^q							
obtain total outcomes	where, $p = no.$ of events in one trial, $q = no.$ of trials							
outcomes	•							
Conditions	• If	P(A) = 1	1, A is	a sure	event			
	 If P(A) = 0, A is an impossible event 							
Committee	● Pr	obabili	ty of ı	non-oc	currence	of an eve	ent A is denoted	by $P(A')$ or $P(\overline{A})$
Complimentary Probability	is	called a	as con	nplime	ntary eve			
Probability					P()	Ā)=1−	P(A)	
Odds in Favour				numbe	er of favo	orable ev	ents to A	
of an Event A			n	umber	of unfa	vorable e	events to A	
Odds against an			1	numbei	r of unfa	vorable e	events to A	
Event A				numb	er of favo	orable ev	ents to A	
	Suites	Spade	s He	earts	Diamono	Clubs		
	Symbol	•		Q	♦	•		
	Count	13		13	13	13		
Playing Cards					1			1
	Ranks		King	Quee	_		lumbers	_
	Symbol	A	K	Q	J 4	10, 9, 8,	, 7, 6, 5, 4, 3, 2	-
	Count	4	4	4			4	<u></u>
11		•					and are equally	•
Limitations		mited a irds etc		ation of	tnis defi	inition lik	e in tossing coir	n, throwing dice,

Two broad divisions of probability are

PYQ May 18

a. Subjective, Mathematical

b. Deductive, Mathematical

c. Subjective, Objective

d. Deductive, Objective

Ans: c

PYQ May 18

The term chance and probability are synonyms

a. True

b. False

c. Both

d. None

Ans: a

PYQ Nov 18

Two dices are thrown simultaneously, then the probability that the sum of two numbers appearing on the top of dice is 9 is

a. 8/9

b. 1/9

c. 7/9

d. None

Ans: b

PYQ Jun 19

If a coin is tossed 5 times, then the probability of getting Tail and Head occurs alternatively

a. 1/8

b. 1/16

c. 1/32

d. 1/64

Ans: b

PYQ Jun 19 PYQ Jan 21

Two dices are thrown simultaneously, then the probability of getting at least one 5 is

PYQ Jun 22

a. 11/36

b. 5/36

c. 8/15

d. 1/7

Ans: a

PYQ Nov 19

A bag contains 15 one-rupee coins, 25 two rupee coins and 10 five rupee coins if a coin is selected at random than probability for not selecting a one rupee coin is:

- a. 0.30
- b. 0.20
- c. 0.25
- d. 0.70

Ans: d

PYQ Nov 20

When 2 fair dice are thrown what is the probability of getting a sum which is multiple of 3?

- a. 4/36
- b. 13/36
- c. 2/36
- d. 12/36

Ans: d

PYQ Nov 20 PYQ Jan 21

When two coins are tossed simultaneously the probability of getting at least one

- a. 1
- b. 0.75
- c. 0.5
- d. 0.25

Ans: b

PYQ Jan 21

An event that can be sub-divided into further events is called as

- a. Composite
- b. Complex
- c. Mixed
- d. Simple

Ans: a

PYQ Jan 21

Three identical and balanced dice are rolled. The probability that the same number will appear on each of them is

- a. 1/6
- b. 1/18
- c. 1/36
- d. 1/24

Ans: c

PYQ Jan 21

If an unbiased coin is tossed three times, what is the probability of getting more than one head?

- a. 1/2
- b. 3/8
- c. 7/8
- d. 1/3

Ans: a

PYQ Jun 22

PYQ Jun 22

A dice is rolled twice. Find the probability of getting numbers multiple of 3 or 5?

- a. 1/3
- b. 1/4
- c. 1/2
- d. 1/6

Ans: c

If two dice are rolled and one of the dice shows 1 at a point then how many such outcome can be done where it is known that its probability is $\frac{x}{36}$ where x = ____

- b. 7
- c. 8

Ans: a

PYQ Jun 22

If $\frac{p}{}$ are odds in favor of an event, then probability of that event is

a. 11

- b. $\frac{p}{p+q}$ c. $\frac{q}{p+q}$

Ans: b

Usage of Combinations in Probability

Criteria	If only one object is to be selected	No need to use combination
Criteria	If more than one object is to be selected	Use combinations to calculate both favorable outcome and total outcome

PYQ Nov 19

Two letters are chosen from the word HOME. What is the probability that the letters chosen are not vowels.

- a. 1/2
- b. 1/6
- c. 2/3
- d. 0

Ans: b

PYQ Nov 19

A basket contains 15 white balls, 25 red balls and 10 blue balls. If a ball is selected at random, the probability of selecting not a white ball.

- a. 0.20
- b. 0.25
- c. 0.60
- d. 0.70

Ans: d

PYQ Jul 21

If there are 16 phones, 10 of them are Android and 6 of them are of Apple IOS, then the probability of 4 randomly selected phones to include 2 Android and 2 Apple phone is

- a. 0.47
- b. 0.51
- c. 0.37
- d. 0.27

Ans: c

Set Based Probability

	T					
	Term in	Term in Sets	Explanation			
	Probability					
	Sample	Universal Set	Set all the possible events for a random			
	Space		experiment			
	Sample	Elements	Each event of a Random experiment is			
Terms	Points		termed as Sample Point			
	Event Set A	Ordinary Set A	Event Set A which is under consideration			
		which is a	for probability calculations is defined as a			
		subset of	non-empty subset of Set S (Sample Space)			
		Universal Set	containing all favorable sample points for			
			Α			
	P(A) = number of sample points is Set A					
Formula of	number of sample points is Sample Space S					
Probability	n(A)					
Event A	$P(A) = \frac{n(A)}{n(S)}$					
Why Cata?	To use concept of union, intersection in probability					
Why Sets?	 To use 	Sets formula for co	mplicated Probability Questions			
2-Sets Formula		n(A ∪ B) =	$=$ n(A)+n(B)-n(A \cap B)			
3-Sets Formula	$n(A \cup B \cup C) =$	= n(A) + n(B) + n(C) -	$-n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C)$			

_	•	_		
			١.	
. `				
М		_		

Types of Sets of Events	Exhaust Equally like	Exclusive or tible Events ive Events elly or Equi-	Events are exclusive if they cannot occur simultaneously Events are exhaustive if one of them must necessarily occur Events are equally likely if all of them have same probability (also called mutually symmetric events)			
	Theorem		Formula	Applicable for		
Addition Theorem of	1		$P(A \cup B) = P(A) + P(B)$	For two mutually exclusive events		
	2	$P(A_1 \cup A_2 \cup A_3)$	$A_3 \cup$ = $P(A_1) + P(A_2) + P(A_3) +$	For any number of mutually exclusive events		
Probability	3	P(A C	$V(B) = P(A) + P(B) - P(A \cap B)$	For any two events		
	4	P(A∪B∪	For any three			
		–P(B ∩ C) -	events			
Expected Frequency of occurrence of an event	Expected Frequency of Event A = $P(A) \times N$ (total number of outcomes)					
Probability of A – B or B – A		Probability of Only A $P(A-B)$ $P(A\cap B')$ $P(A)-P(A\cap B)$ Probability of Only B $P(B-A)$ $P(A'\cap B)$ $P(B)-P(A\cap B)$				

PYQ May 18

Sum of all probabilities mutually exclusive and exhaustive events is equal to

a. 0

b. 1/2

c. 1/4

d. 1

Ans: d

PYQ Nov 18 If P(A) = 1/2, P(B) = 1/3, $P(A \cap B) = 1/4$, then $P(A \cup B)$ is

a. 11/12

b. 10/12

c. 7/12

d. 1/6

Ans: c

PYQ Nov 18 The probability that a leap year has 53 Wednesdays is

PYQ Jun 22

PYQ Nov 19

a. 2/7

b. 3/5

c. 2/3

d. 1/7

Ans: a

PYQ Nov 18 If $P(A \cup B) = 0.8$ and $P(A \cap B) = 0.3$, then P(A') + P(B') is equal to

a. 0.3

b. 0.5

c. 0.7

d. 0.9

Ans: d

If A, B and C are three mutually exclusive and exhaustive events such that P(A) = 2P(B) = 3P(C), what is P(B)?

a. 6/11

b. 3/11

c. 1/6

d. 1/3

Ans: b

Conditional Probability

Dependent	If occurrence of one event is influenced by						
Events	two events are dependent. Conditional Probability is applicable only for dependent events						
Independent	•	d to be independent if occurrence of one event do not					
Events	influence the occurrence of other. Condition						
Formula for Conditional	Conditional Probability event B given that event A has already been occurred	$P(B/A) = \frac{P(B \cap A)}{P(A)} \text{ where } P(A) \neq 0$					
Probability	Conditional Probability event B given that event A has already been occurred	$P(A/B) = \frac{P(A \cap B)}{P(B)}$ where $P(B) \neq 0$					
Compound	$P(A \cap B) = P(A / B) \times P(B)$						
Theorem for	$P(A \cap B) = P(B / A) \times P(A)$						
Dependent Events	Joint Probability = Unconditional Probability of one event × Conditional Probability of another event						
	In case of independent events, Conditional and Unconditional are same						
	$P(A \cap B) = P(A) \times P(B)$						
Compound Theorem for	If A and B are independent events, then their complementary events are also						
Independent	independent and same theorem can be applied						
Events	$P(A' \cap B) = P(A') \times P(B)$						
	$P(A \cap B') = P(A) \times P(B')$						
	$P(A' \cap B') = P(A')$						
D. Mannania	$P(A \cup B \cup C) = 1 - P(A$	•					
De-Morgan's Law Application	$P(A \cup B \cup C) = 1 - P(A$.'∩B'∩C')					
Law Application	$P(A \cup B \cup C) = 1 - P(A$	$P(A \cup B \cup C) = 1 - P(A') \times P(B') \times P(C')$					

The theorem of compound probability states that for any two events A and B is

a. $P(A \cap B) = P(A / B) \times P(B)$ PYQ May 18

b. $P(A \cup B) = P(A/B) \times P(B)$

c. $P(A \cap B) = P(A) \times P(B)$

d. None

Ans: a

Ram is known to hit a target in 2 out of 3 shots whereas Shyam is known to hit the same target in 5 out of 11 shots. What is the probability that target would hit if **PYQ Nov 18** they both try?

a. 9/11

b. 3/11 c. 10/33 d. 6/11

Ans: a

If A speaks 75% truth and B speaks 80% truth. In what % both are likely contradict each other in narrating the same question?

a. 0.60 b. 0.45 c. 0.65

d. 0.35

Ans: b

PYQ Nov 20

PYQ Jul 21

The probability that a football team losing a match at Kolkata is 3/5 and winning a match at Bengaluru is 6/7, the probability of the team winning at least one match

- a. 3/35
- b. 18/35
- c. 32/35
- d. 17/35

Ans: c

Random Variable | Probability Distribution

Random	It is a variable defined on Sample Space of a random experiment that can take						
Variable	any value (Real Number)						
	It is defined as the statement/ table that shows						
Probability	no. of different value taken by Random Variable and						
Distribution	their corresponding probabilities						
	Sum of all probabilities of distribution will always be equal to 1						
	It is also mean of probability distribution.						
Expected Value	$\mu = E(X) = \sum PX$						
	$\sigma^{2} = E(X^{2}) - [E(X)]^{2}$ $\sigma^{2} = \sum PX^{2} - [\sum PX]^{2}$						
Variance							
	$\sigma^2 = \sum PX^2 - \left[\sum PX\right]^2$						

PYQ May 18

Variance of a random variable x is given by

- a. $E(X-\mu)^2$
- b. $E[X-E(X)]^2$
- d. a or b

Ans: d

PYQ Nov 19

PYQ Jul 21

PYQ Dec 21

What is the probability of occurring 4 or more than 4 accidents

What is the probability of occurring 4 of more than 4 accidents.								
No.	0	1	2	3	4	5	6	7
Freq.	36	27	33	29	24	27	18	9
a. 2	4	b. 69)	c.	78		d. 80	

Ans: c

The value of k for the below probability distribution of X is

X	0	1	2	3	4	5	6
P(X)	> 5k	3k	4k	6k	7k	9k	11k
a. 39		b. 1/40		c. 1/49		d. 1/45	

Ans: d

Assume that a probability for rain in a day is 0.4. An umbrella salesman can earn ₹400 per day in case of rain on that day and will lose ₹100 per day if there is no rain. The expected earnings in ₹ per day of the salesman is

- a. 400
- b. 200
- c. 100
- d. 0

Ans: c

Find SD for probability distribution given below:

Χ 1 2 5 6 PYQ Dec 21 0.25 0.2 0.3 0.15 0.1 b. 1.56 a. 1.49 c. 1.69 d. 1.72

Ans: c