

Permutations and Combinations | Past Trends

Attempt	Easy	Moderate	Advance Level	Total
May 2018	2	0	0	2
Nov 2018	2	2	0	4
Jun 2019	2	1	1	4
Nov 2019	3	2	0	5
Nov 2020	2	2	0	4
Jan 2021	3	2	2	7
Jul 2021	2	2	0	4
Dec 2021	4	1	0	5
Jun 2022	6	2	0	8
Dec 2022	4	0	0	4

Combinations – Basics

Meaning	 The number of ways in which smaller or equal number of things are selected from a collection of things where the order of selection or arrangement is not important, are called combinations.
Theorem	Number of Combinations when r objects are chosen out of n different objects ${}^nC_r = \frac{n!}{(n-r)!r!}$ Conditions: $n \ge r$ and n is a positive integer
Linkage with Permutations	$^{n}C_{r} = \frac{^{n}P_{r}}{r!}_{or}^{n}P_{r} = ^{n}C_{r} \times r!$
Standard Result	${}^{n}C_{0} = 1$ ${}^{n}C_{n} = 1$
Complimentary Combinations	${}^{n}C_{r} = {}^{n}C_{n-r}$
Combination	Combinations of n different things taking one or more out of n things at a time:
to choose one	2 ⁿ –1
or more objects	2 -1
Number of	If a task is to be done n times with r choices for every task, then total ways of
ways to do	doing task = n^r
things with	
choices	
Special Formula	${}^{n+1}C_r = {}^{n}C_r + {}^{n}C_{r-1}$ ${}^{n}C_2$
Number of	n _
handshakes	C_{C}

PYQ May 18

$$_{\text{lf}}\ ^{1000}\text{C}_{98}={}^{999}\text{C}_{97}+{}^{\text{x}}\text{C}_{901}\,\text{find}\,\text{x}$$

- a. 999
- c. 997
- d. 1000

Ans: a

PYQ Nov 18

If ${}^{n}P_{r} = 720$ and ${}^{n}C_{r} = 120$, then r is

- a. 3
- b. 4
- c. 5
- d. 6

Ans: a

PYQ Nov 18

If there are 40 guests in a party. If each guest takes a handshake with all the remaining guests. Then the total number of handshakes is ____

- a. 1600
- b. 840
- c. 1560
- d. 780

Ans: d

PYQ Nov 18 PYQ Jun 22

- If ${}^{n}C_{x} = {}^{11}C_{2x-4}$ and $x \neq 4$ then the value of ${}^{7}C_{x} =$ a. 20
 - b. 21
- c. 22
- 23

Ans: b

PYQ Nov 19

How many different groups of 3 people can be formed from a group of 5 people?

- b. 6
- c. 10

Ans: c

PYQ Nov 19

In how many ways can 4 people be selected at random from 6 boys and 4 girls if there are to be exactly 2 girls?

- a. 90
- b. 360
- c. 92
- d. 480

Ans: a

PYQ Jan 21

A business house wishes to simultaneously elevate two of its six branch heads. In how many ways can these elevations take place?

- a. 12
- b. 3
- c. 6
- d. 15

Ans: d

Example 3 **ICAI**

PYQ Jun 22

An examination paper with 10 questions consists of 6 questions in Algebra and 4 questions in Geometry. At least one question from each section is to be attempted. In how many ways this can be done?

- a. 1023
- b. 945
- c. 1718
- d. 816

Ans: b

There are 5 questions each having four options. Then in how many different ways can we answer the questions?

- a. 20
- b. 120
- c. 1024
- d. 60

Ans: c

Geometry Based Formulas

No. of Straight Lines with the given n points	ⁿ C ₂ 2 is used as we need to select two points to make a line
No. of Triangles with the given $oldsymbol{n}$ points	${}^{\rm n}{\rm C}_3$ 3 is used as we need to select two points to make a line

4		•			
О)	
`	,		/	۰	

No. of Straight Lines with the given n points where m points are collinear	$^{n}C_{2} - ^{m}C_{2} + 1$
No. of Triangles with the given n points where m points are collinear	$^{n}C_{3}-^{m}C_{3}$
No. of Parallelogram with the given one set of <i>m</i> parallel lines and another set	$^{n}C_{2} \times ^{m}C_{2}$
of n parallel lines	Selecting 2 lines from each set of parallel lines
No. of Diagonals with n sides	ⁿ C ₂ -n

PYQ May 18

The number of triangles that can be formed by choosing the vertices from a set of 12 points, seven of which lie on the same straight line is

- a. 185
- b. 175
- c. 115
- d. 105

Ans: a

PYQ Jun 22

If there are 6 points in a line and 4 points in another line. Find the number of parallelograms formed?

- a. 80
- b. 70
- c. 90
- d. 100

Ans: c

MTP Nov 19

The number of diagonals in a polygon of 6 sides

- a. 9
- b. 8
- c. 6
- d. 12

Ans: a

Exercise 5C Q 21 The Supreme Court has given a 6 to 3 decision upholding a lower court, the number of ways it can give a majority decision reversing the lower court is

- a. 256
- b. 276
- c. 245
- d. 226

Ans: