Permutations and Combinations	Past Trends
-------------------------------	-------------

Attempt	Easy	Moderate	Advance Level	Total
May 2018	2	0	0	2
Nov 2018	2	2	0	4
Jun 2019	2	1	1	4
Nov 2019	3	2	0	5
Nov 2020	2	2	0	4
Jan 2021	3	2	2	7
Jul 2021	2	2	0	4
Dec 2021	4	1	0	5
Jun 2022	6	2	0	8
Dec 2022	4	0	0	4

Permutations – Basics

	Multiplication Rule Ways of doing things together =	7
Rules of	/ AND Rule m×n ways	
Counting	Addition Rule/ OR Ways of either one or other thing =	
	Rule m+n ways	

PYQ Jan 21 PYQ Jun 22	There a which a.	are then f a person 90	flights o _l can trav b.	peratin el from 95	g betv n A to	veen (B and	City / retu c.	A and rn by 80	City B. The number of ways in different flight? d. 78
Ans: a									

PYQ Jul 21	A pers return entire	on can to A by journe	go from / mode / can be	n A t oth e coi	o B by 11 er than ea mpleted is	different rlier. The	: mo e nui	des of nber o	transport but is allowed to f different ways in which the
	a.	110		b.	10 ¹⁰		c.	9 ⁵	d. 10 ⁹

Ans: a

		Symbol	n! or <u>n</u>				
		Calculation	n!=n(n-1)(n-2)3×2×1 or				
Factorial			$n!=1\times2\times3(n-2)\times(n-1)\times n$				
	Special Trick	n!=n(n-1)!					
			n!=n(n-1)(n-2)!				
	Meaning	The ways	of arranging or selecting + arran	iging			
		• smaller or equal number of persons or objects					
		• from a group of persons or collection of objects					
		• with due regard being paid to the order of arrangement					
Permutations		or selection are called PERMUTATIONS					
		Number of Permutations when r objects are chosen out of n					
	Theorem	different objects ${}^{n}P_{r} = \frac{n!}{(n-r)!}$ Condition: $n \ge r$					

Shortcut of Theorem	To find ${}^{n}P_{r}$ do reverse multiplication of n for r times. No. of Factors in ${}^{n}P_{r} = r$
Special Formula	(n+1)!-n!=n.n!

PYQ Nov 18	The value of N in a. 81	$\frac{1}{7!} + \frac{1}{8!} = \frac{N}{9!}$ is b. 78	c. 89	d. 64
Ans: a				
PYQ Jun 19	Which of the follo a. ${}^{n}P_{n} = {}^{n}P_{n-}$ b. ${}^{n}P_{n} = {}^{2n}P_{n-}$ c. ${}^{n}P_{n} = {}^{3n}P_{n-}$ d. ${}^{n}P_{n} = {}^{n(n-1)}$	owing statement is 1 -2 -3 P _{n-1}	s correct:	
Ans: a				
PYQ Nov 19	${}^{n}P_{3}:{}^{n}P_{2}=2:1$. Fir a. 5	nd n b. 7/2	c. 4	d. 2/7
Ans: a				
PYQ Nov 20 PYQ Jul 21	If ${}^{n}P_{4} = 20^{n}P_{2}$ where a. 4	ere p denotes the r b. 2	number of permutations, t c. 5	hen n is. d. 7
Ans: d				
PYQ Dec 21	If ${}^{n}P_{2} = 12$, then t a. 2	he value of n is b. 3	c. 4	d. 6
Ans: c				
PYQ Jun 22	If $\frac{n!}{10} = \frac{(n-1)!}{(n-1-n+1)!}$	3)! then find n b. 5	c. 6	d. 7
Ans: b				

Number Formations

Why	 Any number is formed by arranging the given digits
VVIIy	• So for the purpose of calculating number of possible numbers formed,
Permutations	we use permutations.
Assumation	• When question is silent, we assume that digits will not be repeated in
Assumption	forming number
Condition 1	• If there is a zero, it cannot come to first place of the number
Condition 2	• If there is a restriction that the numbers formed should be larger than a
condition 2	particular value, then we will use counting rules to find solution
Problem on	Use below Steps:
Summation of	1. Find the number of numbers that can be formed

Show your love by using code **CAPRANAV** while taking Unacademy Subscriptions

all possible	2. Find repetition value of each digit
numbers	3. Repetition of each digit = $\frac{\text{Value of Step 1}}{\text{no. of different digits}}$
	4. Find sum of digits
	5. Sum of digits x Repetition
	6. Multiply value of step 4 by 1111, 111, etc. in case of four-digit numbers
	and three-digit numbers respectively

PYQ Nov 19 PYQ Jul 21	How many numbers divisible by 5, given a. 600	can be formed with that it is a five-digit n b. 400	the help of 2, 3, 4, 5, umber and digits are c. 1200	6, 1 which are not not repeating? d. 1400
Ans: a				
PYQ Jan 21	How many four-digit a. 150	t odd numbers can be b. 300	e formed with digits (c. 120), 1, 2, 3, 4, 7 and 8? d. 210
Ans: b				
Exercise 5A Que 19	The sum of all 4-diginal a. 133330	t number containing b. 122220	the digits 2, 4, 6, 8 w c. 213330	ithout repetitions is d. 133320
Ans: d				
Exercise 5B Que 10	The number of num 2, 3, 4, 0, 8, 9 is a. 124	bers lying between 1	0 and 1000 can be fo	rmed with the digits
Ans: c	u. 121	5. 125	0. 125	u. None
PYQ Dec 22	How many 3 digit oc digits can be repeate a. 55	ld numbers can be fo ed? b. 75	rmed using the digits	s 5, 6, 7, 8, 9 if the d. 85
Ans: b				

Word Formations

Why Permutations	 Any arrangement of letters as a word, Meaning or Pronunciation is irrelevant 			
Words always Together/ Not Together	Total ways when some letters are together	 Group of things which are together should be counted as one thing only Things within group can change their place within themselves, their arrangements also need to be considered. If based on information in questions, things in the group cannot change their places, ignore their arrangement 		
	Total ways when some letters are not	Total ways – Ways of always together = Ways of Never Together		
	together			

|--|

PYQ Jan 21 PYQ Dec 21	In how many wa vowels occupy o a. 32	ays can the letters of only the odd position b. 36	the word "DETAIL" be a s? c. 48	rranged so that d. 60
Ans: b				
PYQ Dec 21	The number of v such that the wo a. 720	words that can be for ords do not have P in b. 120	rmed using the letters o the first position is c. 600	f the word "PETROL" d. 540
Ans: c				
PYQ Jun 22	If four letters ar without repetiti a. 5040	e taken with or with on, how many words b. 2520	out meaning from the w s will be formed? c. 120	ord "LOGARITHAM" d. 40320
Ans: b				▼

Circular Permutations

Meaning	if we arrange the objects along a closed curve viz., a circle, the permutations are		
	known as circular permutations		
Theorem	The number of circular permutations of n different things chosen all at a time is		
	(n-1)!		
	(This theorem applies only when we choose all of n things)		
Circular	number of ways of arranging n persons along a closed curve so that no person		
	has the same two neighbours is		
	1		
	-(n-1)!		
туреп	2 ` '		
	Examples: Garlands, Necklaces		

PYQ Jul 21 Ans: b	The number of wa boys are adjacent a. 2550	ays 5 boys and 5 girl is b. 2880	s can be seated at a ro c. 625	und table, so no two d. 2476
Exercise 5B	If 50 different jew	els can be set to for	m a necklace, then the	e number of ways is
Que 3	a. 50! / 2	b. 49!/2	c. 49!	d. None

Miscellaneous Problems

	The number of v	vays 4 boys and 3 girl	s can be seated in a rov	w so that they are
PYQ Dec 22	alternate is:	h 299	c 144	
	d. 12	D. 288	l. 144	u. 250

Show your love by using code **CAPRANAV** while taking Unacademy Subscriptions

Ans: c

PYQ Nov 19	Three girls and five boys are to be seated in a row so that no girls sit together. Total number of ways of this arrangement are			
	e. 120	f. 14400	g. [°] P ₃	h. 3!×5!
Ans: b				
PYQ Dec 21	Six boys and five girls sit together, this can be done a. 74200	girls are to be seated and no two boys sit b. 96900	d for a photograph in a together. Find the nur c. 45990	row such that no two nber of ways in which d. 86400
Ans: d				
PYQ Jun 22	8 people are sear president are to a. 7! 2!	ted in a row in a mee be seated always in t b. 6! 2!	ting among them the he centre. What is the c. 6!	president and vice arrangement? d. 1!
Ans: b				