PART (B) GEOMETRIC PROGRESSION (GP)

- Geometric progression \rightarrow

In this progression, ratio between two consecutive terms is constant.

Where $\mathrm{a}=1^{\text {st }}$ term

$$
r=\text { common ratio }=t_{2} / t_{1}=t_{3} / t_{2}=t_{4} / t_{3}=\ldots \ldots .
$$

Useful formula:

- nth term of series is given by:

$$
t_{n}=a \cdot r^{n-1}
$$

- Sum of n terms is given by:

$$
S_{n}=a \frac{\left(r^{n}-1\right)}{r-1}
$$

- Sum of infinite no. of terms is given by:

$$
S_{\infty}=\frac{a}{1-r}
$$

Do you know this:-

- Sum of n natural numbers is-

$$
\sum n=\frac{n(n+1)}{2}
$$

- Sum of squares of n natural numbers is-

$$
\sum n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

- Sum of cubes of n natural numbers is-
$\sum n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$

1. The $4^{\text {th }}$ term of the series $0.04,0.2,1, \ldots$ is
a. 0.5
(b) $1 / 2$
(c) 5
(d) none of these
2. For series $2,6,18,54, \ldots$ find $8^{\text {th }}$ term
a) 4374
b) 3455
c) 1255
d) none
3. The last term of series $1,-3,9,-27$, up to 7 term is
(a) 297
(b) 729
(c) 927
(d) None of these
4. The last term of series $125,-25,5,-1$,, up to 8 term is
(a) $1 / 625$
(b) -625
(c) 625
(d) None of these

* PROBLEMS of Sn

5. The sum of 6 term of the G.P. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$, \qquad is
(a) $\frac{83}{64}$
(b) $\frac{63}{64}$
(c) $\frac{1,023}{512}$
(d) $\frac{63}{32}$
6. Sum of series $1+3+9+27+$ \qquad is 364 the number of term
a. 5
(b) 6
(c) 11
(d) none
7. The sum of how many terms of the sequence $256,128,64$ \qquad is 511 .
a) 8
b) 9
c) 7
d) None of these.

WORD PROBLEMS :

8. Find three numbers in G.P. such that their sum is 21 , and the sum of their squares is 189 :
a) $5,7,9$
b) $3,7,11$
c) $3,6,12$
d) $4,8,9$
9. Three numbers are in A.P.\& their sum is 15 . if $8,6,4$ be added to them respectively the numbers are in G.P. then numbers are
a. $2,6,7$
(b) $4,6,5$,
(c) $3,5,7$
(d) none
10. The sum of four numbers in G.P is 60 \& the A.M. of the $1^{\text {st }} \&$ the last is 18 .the number are
a. $4,8,16,32$
(b) $8,4,32,16$
(c) $4,16,8,32$
(d) none
11. A man borrows Rs. 8,190 \& repays the loan in 12 months installment. If each installment is double than the preceding one, then the first \& last installment are (in rupees)
(a) $5 \& 1200$
(b) $2 \& 4096$
(c) $3 \& 7200$
(d) none of these
12. A man saves 1 paise today, 2 paise next day then 4 paise and say on.... Find his total saving in a week
a) 2.27 Rs
b) 1.27 Rs
c) 5
d) none
13. The first, second and seventh term of A.P. are in G.P. and the common difference is 2 , the $2^{\text {nd }}$ term of A.P. is:
a) $5 / 2$
b) 2
c) $3 / 2$
d) $1 / 2$

* PROBLEMS OF SUM UPTO INFINITY:

14. Sum of infinite GP $3,1,1 / 3,--\cdots--$
b) $2 / 9$
b) $9 / 2$
c) 12
d) none
15. Sum of infinite GP $\quad 20,-10,5, \ldots$.
a) $3 / 40$
b) 40
c) $40 / 3$
d) none
16. The sum of the infinite GP $14-2+2 / 7-2 / 49+\ldots$ is
a. $4 \frac{1}{12}$
(b) $12 \frac{1}{4}$
(c) 12
(d) none
17. Find the sum to infinity of the following series:

$$
1-1+1-1+1-1+\ldots \infty
$$

a) 1
b) ∞
c) $1 / 2$
d) Does not exist
18. The sum of terms of an infinite GP is 15. And the sum of the squares of the infinite term is 45 . Find the common ratio.
a) $3 / 2$
b) 1
c) $5 / 2$
d) $2 / 3$
19. If $x=1+\frac{1}{3}+\frac{1}{32}$: \qquad $\infty y=1+\frac{1}{4}+\frac{1}{42}+$ \qquad ∞ Find $x y$.
a) 2
b) 1
c) $8 / 9$
d) $1 / 2$

OTHER PROBLEMS :

20. Find the sum to n terms of the series: 7+77+777+ \qquad To n terms :
a) $\frac{7}{9}\left(10^{n+1}-10\right)-\frac{7 n}{9}$
b) $\frac{7}{9}\left(10^{n+1}-10\right)+\frac{7 n}{9}$
c) $\frac{7}{81}\left(10^{n+1}-10\right)-\frac{7 n}{9}$
d) $\frac{7}{81}\left(10^{n+1}-10\right)+\frac{7 n}{9}$
21. Four geometric means between $4 \& 972$ are
a. $12,30,100,324$
(b) $12,24,108,320$
(c) $10,36,108,320$
(d) none
22. If $\mathrm{p}, \mathrm{q} \& \mathrm{r}$ are in A.P. $\& \mathrm{x}, \mathrm{y}, \mathrm{z}$ are in G. P then $\mathrm{x}^{q-r}{ }_{. \mathrm{y}}{ }^{r-p_{.}}{ }^{p-q}$ is equal to
a. 0
(b) -1
(c) 1
(d) none
23. The sum of the series : $0.5+0.55+0.555+$ \qquad To n terms is :
a) $\frac{5 n}{9}+\frac{5}{9}\left[1-(0.1)^{n}\right]$
b) $\frac{5 n}{9}-\frac{5}{81}\left[1-(0.1)^{n}\right]$
c) $\frac{5 n}{9}+\frac{5}{81}\left[1-(0.1)^{\mathrm{n}}\right]$
d) $\frac{5 n}{9}+\frac{5}{81}\left[1+(0.1)^{n}\right]$
