

Last 6 attempts Weightage of Theory in Statistics

Attempt	Туре	Chp13	Chp14	Chp15	Chp16	Chp17	Chp18	Total
	Theory	9	3	0	1	4	6	23
Jun 22	Practical	0	6	7	2	2	0	17
	Total	9	9	7	3	6	6	40
	Theory	3	5	0	0	2	4	14
Dec 21	Practical	4	6	7	6	2	1	26
	Total	7	11	7	6	4	5	40
	Theory	6	1	0	0	1	0	8
Jul 21	Practical	2	10	7	4	4	5	32
	Total	8	11	7	4	5	5	40
	Theory	10	5	1	2	2	4	24
Jan 21	Practical	0	4	5	2	3	2	16
	Total	10	9	6	4	5	6	40
	Theory	8	5	0	4	3	6	26
Dec 20	Practical	1	4	4	3	1	1	14
	Total	9	9	4	7	4	7	40
	Theory	1	7	0	2	2	5	17
Nov 19	Practical	0	10	5	4	3	1	23
	Total	1	17	5	6	5	6	40

THEORY SUMMARY

Statistical Description of Data – Basics of Statistics

Definition of Statistics	 Plural Sense: Any data – quantitative or qualitative used for statistical analysis. Singular Sense: Scientific method of collecting, analyzing, and presentil data to draw statistical inferences. It is also called as Science of Averag or Science of Counting 			
Origin of Word	Language Latin Italian German French	Actual Word Status Statista Statistic Statistique	Memorize by Latus Pasta Breadstick Barbeque	
Publication	Abu Fezal's Ain-i-Akbari First Census	 Chandragup 4th Century E 	B.C griculture A.D.	
Application of Statistics	Economics: Demand And	,	n etc.	

	•	•	
ĸ)	
◥	٠.	_	

	 Business Management: Decision making using quantitative techniques not intuition Industry and Commerce: Profit maximization using business data – sales, 					
	purchase, market etc. by consulting experts					
	It deals with aggregate data and not individual data					
	• Quantitative data can only be used, however for qualitative – it needs to					
limitation of	be converted into quantitative					
Limitation of Statistics	 Projections are based on conditions/ assumptions and any change in 					
Statistics	that will change the projection. Example: Future projections of sales					
	Sampling based conclusions are used, improper sampling leads to					
	improper results. Random Sampling is must.					
	Quantitative Information shown as number					
Data	Primary: first time collected by agency/ investigator					
	Secondary: collected data used by different person/ agency					
	Measurable Data – Value can vary					
	Discrete • When a variable assumes a finite or count					
	Variable ably infinite isolated values.					
	Example: no. of petals in a flower, no. of					
Variable	road accident in locality					
	• When a variable assumes any value from the					
	Variable given interval (can also be in decimals,					
	fractions).					
	Example: height, weight, sale, money					
Attribute	Qualitative Characteristics. Example: gender of a baby, the nationality of a parson, the colour of a flower etc.					
	a person, the colour of a flower etc.					
	Method Details					
	Personal • Where data is collected directly from					
	Personal Interview • Where data is collected directly from respondents.					
	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage					
Collection of	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey					
Primary Data –	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect • When reaching respondent is difficult, data is					
Primary Data – Interview	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect • When reaching respondent is difficult, data is collected by contacting associated persons.					
Primary Data –	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage					
Primary Data – Interview	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident					
Primary Data – Interview	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone • Data is collected over phone					
Primary Data – Interview	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Quick and non-expensive method					
Primary Data – Interview	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone • Data is collected over phone					
Primary Data – Interview Method Collection of	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage					
Primary Data – Interview Method Collection of Primary Data –	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire,					
Primary Data – Interview Method Collection of Primary Data – Mailed	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire, • covering all the important aspects of the data requirement is sent to					
Primary Data – Interview Method Collection of Primary Data – Mailed Questionnaire	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire,					
Primary Data – Interview Method Collection of Primary Data – Mailed	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire, • covering all the important aspects of the data requirement is sent to respondent for filling.					
Primary Data – Interview Method Collection of Primary Data – Mailed Questionnaire Method	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire, • covering all the important aspects of the data requirement is sent to respondent for filling. • Here coverage is wide but amount of non-responses will be maximum • In this method data is collected by direct observation or using					
Primary Data – Interview Method Collection of Primary Data – Mailed Questionnaire Method Collection of	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire, • covering all the important aspects of the data requirement is sent to respondent for filling. • Here coverage is wide but amount of non-responses will be maximum • In this method data is collected by direct observation or using instrument.					
Primary Data – Interview Method Collection of Primary Data – Mailed Questionnaire Method	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect Interview • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone Interview • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire, • covering all the important aspects of the data requirement is sent to respondent for filling. • Here coverage is wide but amount of non-responses will be maximum • In this method data is collected by direct observation or using instrument. • For example: data on height and weight for a group of students.					
Primary Data – Interview Method Collection of Primary Data – Mailed Questionnaire Method Collection of Primary Data –	Personal Interview • Where data is collected directly from respondents. • Highly Accurate – Low Coverage • Example: Natural Calamity, Door to Door Survey Indirect • When reaching respondent is difficult, data is collected by contacting associated persons. • Highly Accurate – Low Coverage • Example: Rail accident Telephone • Data is collected over phone Interview • Quick and non-expensive method • Low Accuracy – High Coverage • In this method well drafted and soundly sequenced questionnaire, • covering all the important aspects of the data requirement is sent to respondent for filling. • Here coverage is wide but amount of non-responses will be maximum • In this method data is collected by direct observation or using instrument.					

_	_
6	
()	
\sim	

Collection of				
Primary Data –	 Mix of Interview 	w and Mailed Que	estionnaire	
Questionnaire	Enumerator means a Person who directly interacts with respondent and			
Filled and sent	fills the questionnaire.			
by	•		vevs and Census	
Enumerators	 It is generally used in case of Surveys and Census. 			
Enamerators				1
		_	anization (WHO), International	
			MF), International Labor	
		Organization (ILO), World Bank	
Sources of	Government	In India – Central	Statistics Office (CSO), Indian	
Secondary	Sources	Agricultural Statis	tics by the Ministry of Food and Agr	i,
Data		National Sample S	Survey Office- NSSO, Regulators –	
		RBI, SEBI, RERA, II	RDA	
			nstitute (ISI), Indian Council of	
	,	Agriculture, NCER		
		acy and consisten		
Scrutiny of			apply his intelligence, patience and	
Data	experience wh	ile scrutinizing the	given information.	
Data	 Internal Consis 	tency: When two	or more series of related data are g	iven,
	we should check consistency among them.			
	Classification or Organ	isation: putting da	ata in a neat, precise, and condense	d
	form, making it compa	rable, suitable for	analysis, more understandable.	
	Chronological/ • Data arranged based on Time			
	Temporal/ Time		ole: Revenues YoY i.e year on year	
Presentation Series Data			, , , , , , , ,	
of Data –	Geographical or	Arrans	gement based on regions	
Classification /	Spatial Series Data • Example: Country wise Revenue of a global			al
Organization	company			
of Data	Qualitative or Ordinal Based on some attribute			
	Data		nality Wise Medal Winners in Olymp	ics
	Quantitative or • Based on some variable			7.03
	Cardinal Data • Example: Frequency Distribution of a Data			,
Mada of				
Mode of			ng data with the help of a paragraph	ı or
Presentation	several paragra	•		
of Data –	This is not a suitable mode of presentation as it is dull, monotonous and			and
Textual	non-comparable.			
		hown in the form	of Table .	
Mode of	 Useful in easy of 	•		
Presentation	Complicated data can be presented			
of Data –	Table is must to create a diagram			
Tabular Form	No analysis possible without table			
	 Components of 	f Table		
	Description		Name of Component of Table	
	Entire Upper Par	t	Box Head	
	Upper Part desci		Caption	
Components of	and sub-columns	_		
Table	Left part of the t		Stub	
	rows		5.552	
	Main Data of Tal	hle	Body	
	i iviaili vala VI Tdi	VIC	Бойу	

	Source of Data at the bottom of Table Footnote
Mode of Presentation of Data – Diagrams	 Can be used by educated and uneducated section of society Hidden trend can be traced If priority is accuracy, then tabulation is better
Line Diagram	 Time Series is generally in x axis For wide fluctuation – log chart or ratio chart is used Two or more series of same unit – Multiple Line Chart Two or more series of different unit – Multiple Axis Chart
Bar Diagram	 Bar means rectangle of same width and of varying length drawn horizontally or vertically For comparable series – multiple or grouped bar diagrams can be used For data divided into multiple components – subdivided or component bar diagrams For relative comparison to whole, percentage bar diagrams or divided bar diagrams Horizontal Bar Diagram: Useful for Data varying over Time and Quantitative Data Vertical Bar Diagram: Useful for Data varying over Space and Qualitative Data
Pie Chart	 Used for circular presentation of relative data (% of whole) Summation of values of all components/segments are equated to 360 Degree (total angle of circle) Segment angle = (segment value x 360°) (total value)

Statistical Description of Data – Frequency Distribution

	 Frequency means number of times a particular observation is repeated. Frequency Distribution is table which contains observation or class intervals in one column and corresponding frequency in the other.
Frequency and	Definition: A frequency distribution may be defined as a
Distribution	 tabular representation of statistical data, usually in an ascending order, relating to a measurable characteristic according to individual value or a group of values of the characteristic under study.

	4		
^			
V		_	

Types of Frequency Distribution	Simple Frequency	When there are limited number of distinct observations, frequency can be assigned to each one of them. This distribution is simple When there are large no. of observations, grouping is done among them (generally in ascending order). Each group is called as class interval and frequency is assigned to group and not individual values, this is called Grouped Frequency Distribution
Class Limit	interval may cor • Minimum Value	val CL is the minimum and maximum value the class ntain - Lower Class Limit - Upper Class Limit Frequency LCL 10 10 10 19 5 20 29 8 30 39
Classification of Grouped of Frequency Distribution	Mutually Exclusive / Overlapping Classification Class LCL UCL 10-20 10 20 20-30 20 30 30-40 30 40 Mutually Inclusive / No Overlapping Classification Class LCL UCL 10-20 10 20 20-30 20 30 30-40 30 40	 Here UCL an interval and LCL of next interval are same This is usually applicable for continuous variable. An observation which is equivalent to common class limit is excluded from the class interval where it is UCL and taken in the class where it is LCL. There is no common class limits between two intervals. This is usually applicable to discrete variable. All observation including UCL and LCL will be taken in the same class interval as there is no confusion.
Class Boundary	In case of Exclusive / Overlapping Classification In case of Inclusive / Overlapping Classification	Class Boundary = Class Limit Class LCL UCL LCB UCB 10-20 10 20 10 20 20-30 20 30 20 30 30-40 30 40 30 40 Lower Class Boundary LCB = LCL - 0.5 UCB = UCL + 0.5 Class LCL UCL LCB UCB 10-19 10 19 9.5 19.5 20-29 20 29 19.5 29.5 30-39 30 39 29.5 39.5
Mid-Point / Class Mark / Mid Value of Class Interval	LCL+UCL 2	LCB+UCB 2

Histogram ■ It is useful to calculate mode also ■ Usually preferable for ungrouped frequency distribution	Useful in calculation of AM, GM, HM, SD in case of grouped frequency distribution								
Class Freq. UCB Less than More than Total of type CF type CF both CF	UCB – LCB only				_				
Interval 44-48 3 48.5 3 33 36									
	-			UCB	Freq.				
S4-58 5 58.5 12 24 36	5	33 36	3	48.5	3	44-48	Cumulative		
S9-63 7 63.5 19 17 36	5	29 36	7	53.5	4	49-53	Frequency		
G4-68 9 G8.5 28 8 36	5	24 36	12	58.5	5	54-58			
G9-73 8 73.5 36 0 36 Total 36	5	17 36	19	63.5	7	59-63			
Total 36 Class Frequency Class Length of class	5	8 36	28	68.5	9	64-68			
Frequency Density Class Frequency Class Length of class Relative Frequency Frequency Percentage Frequency Total Frequency Class frequency Total Frequency Total Frequency Frequency It is a convenient way to represent FD Comparison between frequency of two different classes possil It is useful to calculate mode also Frequency Usually preferable for ungrouped frequency distribution	5	0 36	36	73.5	8	69-73			
Class Length of class					36	Total			
Frequency Percentage Frequency Total Frequency Class frequency Total Frequency Total Frequency Total Frequency Total Frequency * 100 Frequency Dist. Diagram – Histogram Comparison between frequency of two different classes possil It is useful to calculate mode also Frequency Usually preferable for ungrouped frequency distribution									
Frequency Total Frequency Percentage Frequency Class frequency Total Frequency × 100 Frequency Dist. Diagram − Histogram • It is a convenient way to represent FD • Comparison between frequency of two different classes possile • It is useful to calculate mode also • Usually preferable for ungrouped frequency distribution							Relative		
Frequency Frequency Dist. Diagram – Histogram Frequency Usually preferable for ungrouped frequency distribution Total Frequency × 100 Total Frequency × 100 Total Frequency × 100 Comparison between frequency of two different classes possilent to calculate mode also Usually preferable for ungrouped frequency distribution									
Diagram − • Comparison between frequency of two different classes possil Histogram • It is useful to calculate mode also Frequency • Usually preferable for ungrouped frequency distribution	× 100								
Histogram ■ It is useful to calculate mode also ■ Usually preferable for ungrouped frequency distribution			represent	ient way t	s a conven	• It is	Frequency Dist.		
Frequency • Usually preferable for ungrouped frequency distribution	Comparison between frequency of two different classes possible					Diagram –			
						Histogram			
Can be used for grouped also but only if class lengths are ever	Usually preferable for ungrouped frequency distribution					Frequency			
	 Can be used for grouped also but only if class lengths are even 					Polygon			
• This graph can be made by both type of Cumulative Frequency	uency and	f Cumulative Frequenc	y both typ	n be mad	s graph ca	• Thi	•		
Cumulative called as Less than Ogive or More than Ogive		~		_					
• It can be used for calculating quartiles, median							Frequency		
Frequency Curve It is a limiting form of Area Diagram (Histogram) or Frequency It is obtained by drawing smooth and free hand curve though points Most used curve is Bell Shaped		•	smooth ar	by drawii	s obtained ints	• It is	Frequency Curve		

Index Numbers

Practical Examples of Index Numbers	 Index numbers are convenient devices for measuring relative changes (generally in %) of differences from time to time or from place to place Series of numerical figures which show relative position Index Numbers show percentage changes rather than absolute amounts of change
Data Selection	 It depends on the purpose for which the index is used. Index numbers are often constructed from the sample. Random sampling, and if need be, a stratified random sampling can be used to ensure that sample is representative.

	~	•	
v		,	
◥	٠.	_	

	Data should be comparable by ensuring consistency in selection
	 method. It is a point of reference in comparing various data.
	Standard point of comparison.
Base Period	The period should be normal .
	It should be relatively recent
	Choice of suitable base period is a temporary solution
	The geometric mean is better in averaging relatives,
Use of Averages	But for most of the index's arithmetic mean is used because of its
	simplicity
5: /6 /	For Individual Commodity,
Price/ Quantity/	Current Period Price/ Quantity/ Value
Value Relative	Base Period Price/ Quantity/ Value
	P_1 P_2 P_3 P_n
Link Relative	$\frac{P_1}{P_0}, \frac{P_2}{P_1}, \frac{P_3}{P_2}, \dots, \frac{P_n}{P_{n-1}}$
	Same can be created for quantities also
	When the above relatives are in respect to a fixed base period these are also
	called the chain relatives
Chain relatives	$\frac{P_1}{P_0}, \frac{P_2}{P_0}, \frac{P_3}{P_0}, \dots, \frac{P_n}{P_0}$
	$\overline{P_0}'\overline{P_0}'\overline{P_0}'\overline{P_0}'\cdots'\overline{P_0}$
Farmenta for	Link relative of current year × Chain Index of previous year
Formula for Chain Index	100
(when direct	
data is not	The chain index is an unnecessary complication unless of course where data
available)	for the whole period are not available or where commodity basket or the
,	weights have to be changed.
Limitations of	 Chances of errors due to Sampling It gives broad trend not real picture
Index Numbers	Due to many methods, at times it creates confusion
	Index numbers are very useful in deflating (eg. Nominal wages into
	real)
Usefulness of	Framing suitable policies in economics and business
Index Numbers	They reveal trends and tendencies in making important conclusions
	They are used in time series analysis to study long-term trend,
	seasonal variations and cyclical developments
Formula for	Current Value Deflated Value =
Deflated Value	Price Index of the current year
Chifted Drice	Original Price Index
Shifted Price Index	Price Index of the year on which it has to be shifted
Muck	·
	This test requires that the formula should be independent of the unit in which as for which prices and quantities are quoted.
Unit Test	in which or for which prices and quantities are quoted.
	 Except for the simple (unweighted) aggregative index all other formulae satisfy this test.
	It is a test to determine whether a given method will work both ways
	in time, forward and backward.
Time Reversal	 P₀₁ × P₁₀ = 1
Test	 Laspeyres' method and Paasche's method do not satisfy this test, but
	Fisher's Ideal Formula does.

_		_
п	~	
S		_
`		

Factor Reversal Test	 This holds when the product of price index and the quantity index should be equal to the corresponding value index. Symbolically P₀₁ × Q₀₁ = V₀₁ Fisher's Index Number is ideal as it satisfies Unit, Time Reversal and Factor Reversal Test
Circular Test	 This property therefore enables us to adjust the index values from period to period without referring each time to the original base. It is an extension of time reversal test The test of this shiftability of base is called the circular test. This test is not met by Laspeyres, or Paasche's or the Fisher's ideal index. The weighted GM of relative, simple geometric mean of price relatives and the weighted aggregative with fixed weights meet this test. (These methods are not in syllabus)
Cost of Living Index (also called General Index)	 CLI is defined as the weighted AM of index numbers of few groups of basic necessities. AM of group indices gives the General Index Generally, for calculating CLI; food, clothing, house rent, fuel & lightning and miscellaneous groups are taken into consideration. Examples of CLI: WPI, CPI, etc.
Symbol	 P₀₁ is the index for time 1 on 0 P₁₀ is the index for time 0 on 1

Measures of Central Tendency

Arithmetic Mean

Property 1	If all the observations are constant, AM is also constant		
Property 2	the algebraic sum of deviations of a set of observations from their AM is zero		
Property 3	AM is affected both due to change of origin and scale If $y = a + bx$ then $\overline{y} = a + b\overline{x}$		
Property 4	Combined AM $\overline{x}_c = \frac{n_1 \overline{x}_1 + n_2 \overline{x}_2}{n_1 + n_2}$		
General Review	 AM is best measure of central tendency AM is based on all observations AM is affected by sampling fluctuations AM is amenable to mathematical property AM cannot be used in case of open end classification 		

Median

Property 1	For a set of observations, the sum of absolute deviations is minimum, when the deviations are taken from the median. $\sum \left x_i-Me\right $
Property 2	Median is also affected by both change of origin and scale.
	 Median is also called as positional average
	 Median is not based on all observations
General Review	 Median is not affected by sampling fluctuations
	 Median is best measure of central tendency in case of open
	end classification

Partition Values

	observationWhen we we equal parts	 These may be defined as values dividing a given set of observations into number of equal parts When we want to divide the given set of observations into two equal parts, we consider median, similarly there are quartiles, deciles, percentiles 			
	Name of PV	No. of	No. of PVs	Symbol	
Meaning		equal parts			
J	Median	2	1	Ме	
	Quartile	4	3	Q_1,Q_2,Q_3	
	Decile	10	9	$D_1, D_2,, D_9$	
	Percentile	100	99	$P_1, P_2,, P_{99}$	

Mode - Concept/ Formula

Meaning	Mode is the value that occurs the maximum number of times	
Special Thing about Mode	 If two or more observations are having maximum frequency then there are multiple modes [multimodal distribution] If there are exactly two modes then distribution is called as Bimodal Distribution If all observations are having same frequency then distribution has no mode We can say that Mode is not rigidly defined 	
Property 1	If all the observations are constant, mode is also constant	
Property 2	Mode is also affected both due to change of origin and scale	
General Review	 Mode is not based on all observations Mode is not rigidly defined Mode is not amenable to Mathematical Property 	

Relationship between Mean, Median and Mode

In case of Symmetric Distribution	Mean = Median = Mode
In case of Moderately	
Skewed Distribution	Mean – Mode = 3 (Mean – Median)
(Empirical relationship)	

Geometric Mean

Definition	For a given set of n positive observations , the geometric mean is defined as the n^{th} root of the product of the observations	
Property 1	Logarithm of G for a set of observations is the AM of the logarithm of $\log G = \frac{1}{n} \sum \log x$ the observations	
Property 2	If all the observations are constant, GM is also constant	
Property 3	$GM of z = GM of x \times GM of y$	
Property 4	$GM \text{ of } z = \frac{GM \text{ of } x}{GM \text{ of } y}$	

Harmonic Mean

Definition	For a given set of non-zero observations, harmonic mean is defined as the reciprocal of the AM of the reciprocals of the observation
Property 1	If all observations are constant HM is also constant

Use of GM and HM

Both	Both are used for calculating average rates
GM	Appropriate for rates having percentages
HM	Appropriate for rates other than percentages

Measures of Dispersion

Meaning of Measure of Dispersion	 Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency 	
Types of Measure of Dispersion	Absolute Measures of Dispersion Relative Measures of Dispersion	 These are with units These are not useful for comparison of two variables with different units. Example: Range, Mean Deviation, Standard Deviation, Quartile Deviation These are unit free measures These are useful for comparison of two variables with different units. Example: Coefficient of Range, Coefficient of Mean Deviation, Coefficient of quartile Deviation

Range

Property 1	 Not affected by change of origin Affected by change of scale (only value) No impact of sign of change of scale
	 Note: Measure of Dispersion can never be negative
General Review	Not Based on All Observations
	Easy to Compute

Mean Deviation

Meaning	Mean deviation is defined as the		
	arithmetic mean of the		
Wicailing	absolute deviations of the observations		
	 from an appropriate measure of central tendency 		
Droporty 1	Mean Deviation takes its minimum value when deviations are taken		
Property 1	from Median		
Droporty 2	Change of Origin – No Affect, Change of Scale – Affect of value not		
Property 2	sign		
	Based on all observations		
General Review	Improvement over Range		
	Difficult to compute		
	Not amenable to Mathematical Property because of usage of		
	Modulus		

Standard Deviation

Meaning	 Improvement over Mean Deviation It is defined as the root mean square deviation when the deviations are taken from the AM of the observations
Coefficient of Variation	$\frac{SD_x}{\overline{x}} \times 100$
SD for any two numbers	$SD = \frac{ a-b }{2}$
SD for first n natural numbers	$s = \sqrt{\frac{n^2 - 1}{12}}$
Property 1	If all the observations are constant, SD is ZERO
Property 2	No effect of change of origin but affected by change of scale in the magnitude (ignore sign)
Property 3	$SD_c = \sqrt{\frac{n_1 s_1^2 + n_2 s_2^2 + n_1 d_1^2 + n_2 d_2^2}{n_1 + n_2}}$ $d_1 = \overline{x}_c - \overline{x}_1$

1	_	
\mathcal{A}	$-\mathbf{r}$	$-\mathbf{r}$
u_{2}	$-\lambda_{c}$	λ_{2}

Quartile Deviation

Meaning	It is semi-inter quartile range	
Committee	It is the best measure of dispersion for open-end classification It is also best measure of dispersion for open-end classification	
General Review	 It is also less affected due to sampling fluctuations Like other measures of Dispersion, QD is also not affected by 	
	change of origin but affected by scale ignoring sign	

Correlation and Regression

Bivariate Data

Definition	 When data are collected on two variables simultaneously, they are known as bivariate data and the corresponding frequency distribution, derived from it, is known as Bivariate Frequency Distribution
Marginal Distribution	 It is the frequency distribution of one variable (x or y) across the other variable's full range of values Number of Marginal Distribution = 2
Conditional Distribution	 It is the frequency distribution of one variable (x or y) across a particular sub-population of the other variable. No. of Conditional Distributions = m + n m = no. of class interval of x n = no. of class interval of y

Scatter Diagram

	It helps us to find Nature and Relative Strength of Correlation
Concept Boints	It is useful for Non-Linear Correlation also
	It cannot be used to determine value
	Diagrams are time taking

Karl Pearson's Correlation Coefficient

How to Calculate	Correlation Coefficient is the ratio of covariance with product of standard deviations	
Property 1	The Coefficient of Correlation is a unit-free measure	
Property 2	Value lies from -1 to +1	
Property 3	Change of Origin Change of Scale	No impact No impact of value, but if change of scale of both variables are of different sign then sign of r will also change

	Value of r	Interpretation
	-1	Perfect Negative
	Between -1 and 0	Negative
	Closer to -1	Strong Negative
Interpretation of Value of r	Far from -1	Weak Negative
	0	No Correlation
	Between 0 and 1	Positive
	Far from +1	Weak Positive
	Near to +1	Strong Positive
	+1	Perfect Positive

Spearman's Rank Correlation Coefficient

Usage	 find the level of agreement (or disagreement) between two judges so far as assessing a qualitative characteristic (attribute) is concerned Use in case of ranks 	
Ranking in case of Tie	In case of tie, simple average of ranking should be assigned to tied values	

Coefficient of Concurrent Deviations

Heaga	A very quick, simple and casual method of finding correlation when		
Usage	we are not serious about the magnitude of the two variables		

Regression Basics

Meaning	Estimation of one variable for a given value of another variable on the basis of an average mathematical relationship between the two variables		
Requirements	Estimation of Y when X is givenEstimation of X when Y is given		
General Points	Perfect Correlation	 When linear relationship exists between two variables, correlation is perfect. Perfect Correlation is represented by a linear equation and this equation can be used for regression purpose directly. Same equation can be used in both ways 	
	Imperfect Correlation	 In case of imperfect correlation there is no definite line and equation We will use method of least square to estimate both regression lines 	

а	٧		
١.		•	
		_	

Formula of Regression	Estimation of Y • Use Regression line of Y on X • Equation Format:		
	$Y - \overline{Y} = b_{vx}(X - \overline{X})$		
	$ b \rangle$		
	is regression coefficient of Y on X		
Equations/ Lines	Estimation of X • Use Regression line of X on Y		
	when Y is given • Equation Format:		
	$X - \overline{X} = b_{xy}(Y - \overline{Y})$		
	b_{xy} is regression coefficient of X on Y		
	is regression coefficient of X on Y		
	Change of Origin and Scale		
Property 1	Origin: No Impact		
	 Scale: If original pair is x, y and modified pair is u, v 		
	, change of scale of v		
	$b_{yu} = b_{yx} \times \frac{change \ of \ scale \ of \ y}{change \ of \ scale \ of \ x}$		
	$b_{uv} = b_{xy} \times \frac{\text{change of scale of } x}{\text{change of scale of } y}$		
	Two regression lines (if not identical) will intersect at the point		
Property 2	[means]		
	$(\overline{x},\overline{y})$		
	Relation between Correlation and Regression Coefficients		
Property 3	$r_{xy} = \pm \sqrt{b_{xy} \times b_{yx}}$		
	b_{xy} , b_{yx} and r will always have same sign		

Probable Error

Use	 Correlation is calculated using sample, value for sample may differ from population, this difference is probable error If there is significant probable error, there is no evidence of real correlation 		
Limits of Sample		DD	
Correlation Coefficient	$r \pm PE$		
How to check evidence of Correlation using PE		Case	Conclusion
		If r is less than PE	There is no evidence of
			correlation
		If r is greater than six	The presence of correlation is
		times of PE	certain
		Since r lies from -1 to	PE can never be negative
		+1	

Coefficient of Determination and Non-Determination

Coefficient of Determination Accounted Variance/ Explained Variance	r^2
Coefficient of Non-Determination	$1 - r^2$
Unaccounted Variance/ Unexplained Variance	$1 - \gamma$

About CA. Pranav Popat Sir

- He is a Chartered Accountant (Inter and Final Both Groups in First Attempt) with 5+ years of experience.
- He is an Educator by Passion and his Choice (Dil Se 💜)
- He teaches subjects of Maths, LR and Stats (Paper 3) at CA Foundation Level and Cost & Management Accounting (Paper 3) at CA Intermediate Level.

Hope these theory notes are helpful to you during exam time, I made this with my whole heart, make best use of it and I just want one thing in return - share these notes to every student who really needs this.

Wishing you ALL THE BEST for upcoming examinations, see you soon in Inter Costing!!!

Rukenge Nahi!! Darenge Nahi!! Bas Fodenge !!

With Lots of Love

CA. Pranav Popat

(P^2 SIR)