Central Tenden	су		
Meaning	Central Tendency is the tendency of a given set of observations to cluster around a single central or middle value and the single value that represents the given set of observations is described as a measure of central tendency or, location, or average.		
	Definition	the sum of all the observations divided by the number of observations	
	Formula for discrete distribution	$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \text{or } \frac{\Sigma x}{n}$	
Arithmotic	Formula for frequency distribution	$\bar{x} = \frac{\Sigma f x}{N}$ N = Σf , x = mid-point in case of grouped frequency distribution	
Mean	Deviation Method	$\bar{x} = A + \frac{\Sigma f d}{N} \times C$, where $d = \frac{(x-A)}{C}$ A = assumed mean, C = class length	
	Properties	 → If all the observations are constant, AM is also constant → the algebraic sum of deviations of a set of observations from their AM is zero → AM is affected both due to change of origin and scale → Combined Mean: x	
	Definition	the middle-most value when the observations are arranged either in an ascending order or a descending order of magnitude	
	For Discrete Distribution	Step 1: Arrange data in ascending (or descending) order Step 2: Use the formula $\left[\frac{n+1}{2}\right]^{th}$ term	
		Step 1 : Prepare a less than type cumulative frequency distribution with Class boundaries as base.	
Median (one of the partition values)	For Frequency Distribution (refer example 15.1.6 – Page	Step 2: Calculate N/2 and check between which class boundaries it falls. Mark LCB as l_1 and l_2 and corresponding cumulative FD as N_l and N_u	
	15.8 Study Mat)	Step 3 : Apply the below formula $Me = l_1 + \left[\frac{\frac{N}{2} - N_l}{N_u - N_l}\right] \times Class \ length$	
	Properties	 → Median is affected by both change of origin and scale → For a set of observations, the sum of absolute deviations is minimum, when the deviations are taken from the median. 	

	Meaning	values dividing a given set of observations into a number of equal parts		
	Median	Median is also a quartile that divides the set of observations into two equal parts.		
	Quartiles	Number of equal partsFour (4)Number of QuartilesThree (3)Denoted by0, 0, 0		
		Number of equal parts Tap (10)		
	Deciles	Number of PecilesNine (9)Denoted by $D_1, D_2, D_3, \dots, D_9$		
Partition Values	Percentiles	Number of equal partsHundred (100)Number of PercentilesNinety Nine (99)Denoted by $P_1, P_2, P_3, \dots, P_{99}$		
	How to calculate Partition Values	P^{th} Quartile $(n+1)P^{th}term,$ here $p = \frac{1}{4}, \frac{2}{4}, \frac{3}{4},$ P^{th} Decile $(n+1)P^{th}term,$ here $p = \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{9}{10},$ P^{th} Decile $(n+1)P^{th}term,$ here $p = \frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{9}{10},$ P^{th} Percentile $(n+1)P^{th}term,$ here $p = \frac{1}{100}, \frac{2}{100}, \frac{3}{100}, \dots, \frac{99}{100}$		
	Definition	Mode is the value that occurs the maximum number of times		
	Type of Mode	A distribution can be uni-modal, bi-modal or multi-modal		
Mode	For Frequency Distribution	$Mode = l_1 + \left[\frac{f_0 - f_{-l}}{2f_0 - f_{-l} - f_1}\right] \times Class \ length$ Here, $f_0 = frequency \ of \ the \ modal \ class,$ $f_{-1} = frequency \ of \ the \ post \ modal \ class,$ $f_1 = frequency \ of \ the \ post \ modal \ class$		
Empirical Relationship	For a moderately skewed distribution, $Mean - Mode = 3 \times (Mean - Median)$			
	Definition	For a given set of n positive observations, the geometric mean is defined as the n^{th} root of the product of the observations		
	Formula	$G = (x_1 \times x_2 \times x_3 \dots \times x_n)^{1/n}$		
Geometric Mean	Properties	$ \rightarrow \log G = \frac{1}{n} \Sigma \log x \rightarrow \text{ If all observations are constant GM is also constant} \rightarrow GM \text{ of } xy = GM \text{ of } x \times GM \text{ of } y \rightarrow GM \text{ of } \frac{x}{y} = \frac{GM \text{ of } x}{GM \text{ of } y} $		

	Definition	For a given set of non-zero observations, harmonic mean is defined as the reciprocal of the AM of the reciprocals of the observation		
Harmonic	Formula	$H = \frac{n}{\Sigma(1/\chi)}$		
Mean	Properties	→ If all observations are constant HM is also constant → Combined HM: $\bar{x}_{C} = \frac{n_1 + n_2}{\frac{n_1}{H_1} + \frac{n_2}{H_2}}$		
When to use GM and HM	In case of rates like speed, hours per day, etc. In case of % and ratios		HM is used GM is used	
Relationship between AM, GM and HM	General When all the observations are same When all the observations are distinct		$AM \ge GM \ge HM$ $AM = GM = HM$ $AM > GM > HM$	
Ideal Measure of Central Tendency	Best Measure – Overall Best Measure for Open End Class Based on all observations Based on 50% values Not affected by Sampling fluctuations Rigidly defined, easy to comprehend No Mathematical Property		AM Median AM, GM, HM Median Median AM, Median, GM, HM Mode	

Dispersion

Definition	Dispersion for a given set of observations may be defined as the amount of deviation of the observations, usually, from an appropriate measure of central tendency		
Types of Dispersion	Absolute Measures of Dispersion Relative Measures of Dispersion	These are with units and not useful for comparison of two variables with different units. Example: Range, Mean Deviation, Standard Deviation, Quartile DeviationThese are unit free measures and useful for comparison of two variables with different units. Example: Coefficient of Range, Coefficient of Mean Deviation, Coefficient of variation, Coefficient of Quartile Deviation	
Range	Definition Formula Relative Measure Properties	Difference between the largest and smallest of observations. Range = L - S Coefficient of Range = $\frac{L-S}{L+S} \times 100$ \rightarrow No effect of change of origin but affected by change of scale in the magnitude (ignore sign).	
Mean Deviation	Definition Formula Relative Measure Properties	Mean deviation is defined as the arithmetic mean of the absolute deviations of the observations from an appropriate measure of central tendency $MD_A = \frac{1}{n}\Sigma x-A $ Here A is mean or median as given in question Coefficient of Mean Deviation = $\frac{\text{Mean Deviation about A}}{A} \times 100$ \rightarrow No effect of change of origin but affected by change of scale in the magnitude (ignore sign).	
	Definition Formula	It is defined as the root mean square deviation when the deviations are taken from the AM of the observations $SD_x \text{ or } \sigma_x = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}} \text{ or } \sqrt{\frac{\Sigma x^2}{n} - (\bar{x})^2}$	
Standard Deviation	Standard Result	Coefficient of Variation = $\frac{SD}{AM} \times 100$ For any two numbers, a and b $SD = \frac{ a-b }{2}$ SD of first n natural numbers $\sqrt{\frac{(n^2-1)}{12}}$	
	Properties of SD	→ If all the observations are constant, SD is Zero → No effect of change of origin but affected by change of scale in the magnitude (ignore sign) → Combined SD = $\sqrt{\frac{n_1s_1^2 + n_2s_2^2 + n_1d_1^2 + n_2d_2^2}{n_1 + n_2}}$	

	Definition	Definition It is defined as the semi-inter quartile range		
Quartile Deviation	Formula	$Q_d = \frac{Q_3 - Q_1}{2}$		
	Relative Measure	Coefficient of Quartile Deviation = $\frac{Q_3 - Q_1}{Q_3 + Q_1} \times 100$		
	Best Measure – O	verall	SD	
	Best Measure for	Open End Class	QD	
	Quickest to compute		Range	
Ideal Measure	Not based on all o	bservations	Range	
of Dispersion	Difficult to comprehend and less		Mean Deviation	
	Mathematical			
	Rigidly defined, easy to comprehend		Mean Deviation, SD, QD	
	Not affected by Sa	mpling fluctuations	QD	

E Learn with CA. Pranav Mansforming students to Professionals

CORRELATIO	Ν
-------------------	---

Bi-Variate Data	When data are collected on two discrete variables simultaneously, they are known as Bi-Variate data		
Bi-Variate Distribution	Distribution of Bi-Variate data is called as Bivariate Distribution		
Bi-Variate Frequency Distribution	MeaningFrequency distributionMarginalIf we make a sepDistributiondistribution whetime.Total no. oConditionalIf we make a sepDistributiondistribution wheinterval of anddistributions = 1	bution involving two discrete variables. parate distribution from bi-variate frequency re we take aggregate of only one variable at a f marginal distributions = 2 parate distribution from bi-variate frequency ere we take one variable related one class other variable. Total no. of conditional m + n ($m = no. of rows, n = no. of columns$)	
Correlation	While studying two variables at the same time, if it is found that the change in one variable leads to change in the other variable either directly or inversely, then the two variables are known to be associated or correlated. Positive Correlation If two variables move in the same direction Negative Correlation If two variables move in the opposite direction No Correlation If no change due to each other		
Measure of Correlation	A measurement or formula magnitude of correlation. Method Scatter Diagram Karl Pearson's Product moment correlation coefficient Spearman's rank correlation co-efficient Co-efficient of concurrent deviations	that represents the nature/ direction and/or Helps in obtaining Only direction of correlation Direction as well as strength of correlation. Best Method – Most accurate Direction as well as strength of correlation. Useful for attributes. Direction as well as strength of correlation. Only preferred for direction and not magnitude. Quickest method.	
Scatter Diagram	Perfect Positive Correlation Perfect N Correlation Positive Correlation Positive Correlation Positive Correlation Positive Correlation Negative Correlation	egative n x x x x x x y x	

	Defined as	the ratio of covariance between the two variables to the
	Main Formula	$r_{xy} = \frac{Cov(x, y)}{\sigma_x \cdot \sigma_y}$
	Formula for Covariance	$Cov(x,y) = \frac{\Sigma(x-\bar{x})(y-\bar{y})}{n} or \frac{\Sigma xy}{n} - \bar{x}.\bar{y}$
Karl Pearson's Product moment correlation coefficient	Formula for Standard Deviation σ_x or σ_y	$\sigma_x = \sqrt{\frac{\Sigma(x-\bar{x})^2}{n}} or \sqrt{\frac{\Sigma x^2}{n} - (\bar{x})^2}$
	Properties	$ \begin{array}{l} \rightarrow & \text{It is a unit-free measurement} \\ \rightarrow & \text{Value of r lies from -1 to +1 both inclusive} \\ \rightarrow & \text{Change of origin or Scale} \\ \hline \\ $
	Applied to	find the level of agreement (or disagreement) between two judges so far as assessing a qualitative characteristic is concerned
Spearman's	Main Formula	$r_R = 1 - \frac{6\Sigma d^2}{n(n^2 - 1)}$, here d means difference in ranks
Rank Correlation coefficient	Adjustment Value in case of Tie Rank	$\Sigma \frac{(t^3-t)}{12}$ here t is a tie length and we need to do summation of all ties
	Formula in case of Tie length	$r_R = 1 - \frac{6(\Sigma d^2 + \text{value of adjustment})}{n(n^2 - 1)}$
	Use	A very simple and casual method of finding correlation when we are not serious about the magnitude of the two variables
Co-efficient of concurrent deviations	Steps in this method	This method involves in attaching a positive sign for a x-value (except the first) if this value is more than the previous value and assigning a negative value if this value is less than the previous value. Applies to both variable and then these signs are compared. If signs match – pair is counted as concurrent deviation.
	Formula	$r_{c} = \pm \sqrt{\pm \frac{2c - m}{m}}$ Here, m = total no. of deviations (it is one less than total no. of pairs under observation i.e m=n-1), c = no. of concurrent deviations, r_{c} also lies between -1 and 1 incl.

REGRESSION				
Regression Analysis	Estimation of one va average mathematica	riable for a given va al relationship betwe	lue of another variable on the basis of an en the two variables	
	Line	R	egression line of Y on X	
Estimation of Y (when it is	Regression Regression Coefficient		oefficient of Y on X denoted by \boldsymbol{b}_{yx}	
dependent on X)	Form \overline{X} and \overline{Y} are		$Y - \overline{Y} = \boldsymbol{b}_{yx} (X - \overline{X}),$ we means of X series and Y series	
	Line	R	egression line of X on Y	
(when it is	Coefficient	Regression C	oefficient of X on Y denoted by b_{xy}	
dependent on T	Form	\overline{X} and \overline{Y} are	$X - X = b_{xy}(Y - Y),$ the means of X series and Y series	
Important Theory Points	Whenlinearrelationshipexistsbetween two variables (i.e. correlationis perfect, $r_{xy} = -1 \text{ or } + 1$)Whennolinearrelationshipexistbetween two variablesTo derive regression line of y on xTo derive regression line of x on y		The linear equation so arrived can be used both ways for Y on X and X on Y. It means regression lines are identical. In that case, we need to estimate the regression lines with the help of Method of Least Squares The minimisation of vertical distances in the scatter diagram is to be done The minimisation of horizontal distances in the scatter diagram is to	
	Defined as the ratio of		be done Covariance between two variables	
	Defined as the fatto of		Variance of Independent variable	
Regression Coefficient	Regression Coefficient of Y on X		$b_{y\chi} = r. \frac{\sigma_y}{\sigma_\chi}$ or $b_{y\chi} = \frac{Cov(x,y)}{\sigma_\chi^2}$	
	Regression Coefficient of X on Y		$b_{xy} = r.rac{\sigma_x}{\sigma_y}$ or $b_{xy} = rac{Cov(x,y)}{{\sigma_y}^2}$	
	r used here is Karl Pearsc		n's Correlation Coefficient	
	Change of origin		The regression coefficients remain unchanged	
	Change of scale		: If original pair is X, Y and modified pair is U, V where	
Properties of Regression lines and coefficient			$U = \frac{X-m}{p} \text{ and } V = \frac{Y-n}{q}, \text{ then}$ $b_{vu} = b_{yx} \frac{q}{p}, b_{uv} = b_{xy} \frac{p}{q}$	
	Intersection of tw	o regression lines	Two regression (if not identical) will intersect at the point (\bar{x}, \bar{y}) [means]	
	Relation between correlation and regression coefficients		$r = \pm \sqrt{\pm b_{xy} \times b_{yx}}$	
			b_{xy} , b_{yx} and r all will have same sign	

Coefficient of Determination	Coefficient of Determination		r^2 (square of correlation coefficient)	
	Interpretation of value of r^2		It explains th in dependent in ind	ne percentage of variation t variable due to variation ependent variable
	Example: if $r_{xy} = 0.8$, then $r^2 = 0.64$		It means 64 ⁴ to variation due to oth reliability o	% of variation in x is due in y and remaining 36% er factors. It shows the of correlation coefficient.
	Formula	Probable Error [P.E] = $\frac{2}{3}$ × Standard Error [/ ₃ × Standard Error [S.E.]
	Standard Error		$\frac{1}{v}$	$-\frac{r^2}{\overline{n}}$
	Use	Probable Error is used		to test the reliability of <i>r</i>
Probable Error	e Error Test		ess than PE eater than six es of PE	The value of r is not significant. Not reliable The value of r is significant and there is evidence of correlation
O=Learn with CA. Pranav				
M Transforming students to Professionals				

TIME VALUE OF MONEY

Basics	 → The sum of money red → Rs. 100 Note given to later due to various red Risk Factor Liquidity Preference Inflation Opportunity Cost 	ceived in future is less valuable than it is today oday is more valuable than Rs. 100 note given a year easons: Risk that payer will not give money Cash given today will be immediately available for spending, hence more valuable In general, as the time goes on purchasing power of the money gets reduced Cash given today could be invested to a better investment that could appreciate its value
Partied involved in Financial Transaction	Name of Parties Lender Borrower Investor Investee	Treatment of InterestIncomeExpenseIncomeExpense
Simple Interest	Formula P Princi r L Accumulated Amount under SI	$S.I. = \frac{P.r.t}{100}$ pal means amount of money invested or loan taken Rate of simple interest per annum Time of loan / investment in years mount under SI = Principal + Simple Interest (amount is also called as Balance)
Compound Interest vs. Simple Interest	 Simple Interest → Interest earned is wirevery time it is earned → No re-investment of earned in earlier per → Amount includes Print 	Compound Interestithdrawn ed→ Interest earned is not withdrawn till maturityinterest riods→ Re-investment of interest earned will be donencipal and cipal→ Amount includes Principal and interest on that Principal and interest on interest earned in the earlier periods
Effective Rate of Interest	Meaning Higher the compounding for a rate of interest Formula <i>n</i>	The rate of interest stated in question does not always mean that effectively interest charged/ received will be same % when compared at annual level. Effectiveness depends on Compounding. Higher the effective rate for the year $E = [(1 + i)^n - 1]$ here n means no. of periods in one years considering the compounding

	_			
		It means no. of times interest is compounded in a year or no. of conversions in a year. Compounding means calculation of interest by bank. For e.g.		
		Conversion Deriod		
	Compounding	Conversion Period Compounding Frequency		
	Frequency and	Yearly 1		
	Conversion	Half-yearly 2		
	Desirale	Quarterly 4		
	Periods	Monthly 12		
		Daily 365		
		While calculating compound interest we need to adjust		
		interest rate and time period using compounding frequency.		
	Formula for			
	Assumulated	A = D(1 + i)n		
	Accumulated	$A = P(1+l)^{*}$		
	Amount of CI			
	A	Accumulated amount as per CI		
	Р	Principal means amount of money invested or loan taken		
Compound Interest	Ellear	Interest rate (adjusted as per compounding) e.g. If rate of interest given is $r=10\%$ and if compounding is half- yearly, $i = \frac{10\%}{2} = 5\% = 0.05$		
M	Transform	It means no. of periods (not necessarily no. of years). It depends on type of compounding. E.g. if compounding is quarterly and $t = 2$ years, it means we will have $2 \times 4 = 8$ no of periods. $n=8$		
	Shortcut in calculator to	Example: $P=1000$, $i = 10\%$, $n=3$ then Calculator Steps: Write P i.e 1000 then press		
	calculate amount	+ 10 % + 10 % + 10 % (three times because n=3)		
	Direct Formula of	Example: $P=1000$, $i = 10\% = 0.1$, $n=3$ then Calculator Steps: $1 + 0.1$ $[X] = [=]$ (first equal will be considered		
	Amount in			
	Lalculator	as power 2, second as 3 and so on $J[\times]$ 1000 (Principal)		
	How to calculate	$A = P + CI \Rightarrow CI = A - P$ $CI = P(1 + i)^{n} = P$		
	CI?	$CI = P(1+i)^{n} - P$ $CI = P[(1+i)^{n} - 1]$		
	Definition	→ Sequence of periodic payments (installment)		
		\rightarrow Same amount		
A		\rightarrow Regularly		
Annuity		\rightarrow For a specified period of time		
	Annuity Docula	r Installment commensing from the end of the neriod		
		Installment common sing from the heritarian of the rest in the		
	Annuity Due	installment commencing from the beginning of the period		
Future Value	Future value is the cash value of an investment at some time in the future. It is tomorrow's value of today's money compounded at the rate of interest.			
Present Value	Present value is today's value of tomorrow's money discounted at the interest rate.			

	Particulars	Application	Remark
	Sinking Fund	Future Value of Annuity is the amount which is required in future and annuity amounts are the regular savings required for creation of fund	Sinking fund means a fund created for specific purpose where a big amount of money is required at any specific point in future. An annuity is set aside and invested so that it will mature on that specific date giving the required amount.
	Leasing	Present Value of Annuity (Lease Rentals) are compared with Asset Cash down	LessorOwner of Asset, who gives asset on rent. Lease Rentals are income for LessorUser of the asset who has token agent on rent Lease
		price	Rentals are expense for Lessee
Applications of Time Value of Money	Capital Expenditure	Present value of savings and benefits are compared with	Capital ExpenditureExpenditure on capital assets in anticipation of future benefits
	or Investment Decision	purchase value of asset, to decide whether asset to purchase or not	FutureContribution from salesFutureand other benefits orBenefitssavings derived from a capital investment
EV 7	ransforv	ning stude	Bond It is a debt security. Type of loan taken by company from public. Like debentures
	Valuation of Bond	Present value of interest income and maturity value is compared with the issue price of bond	ValuewrittenontheFacedocument of bond. This valueValueis used to calculate InterestAmount
			Issue Actual payment made to Price purchase the bond
			Maturity value Amount to be received on redemption or maturity of bond
	Meaning	An annuity that con	tinues till infinite period of time is called as Perpetuity.
Perpetuity	Formula Perpetuity	Present Value of Perpetuity = $\frac{A_I}{i}$	
	Formula Growing Perpetuity	Present Value of Growing Perpetuity = $\frac{A_I}{(i-g)}$ g is constant growth rate	
Net Present Value	NPV = P	NPV = Present Value of Cash Inflows – Present Value of Cash Outflows	
Nominal Rate of Return	Real Rate of Return = Nominal Rate of Return – Rate of Inflation		
CAGR	Compounded Annual Growth rate is the interest rate we used in Compound Interest. It is used to see returns on investment on vearly basis		

RATIO

Meaning of Ratio	Division of two quantities a and b of same units. Denoted by a:b
Inverse Ratio	b:a is inverse ratio of a:b
Compound Ratio	Compound ratio of a:b and c:d is ac:bd
Duplicate Ratio	Duplicate ratio of a:b is a ² :b ²
Sub-duplicate Ratio	Duplicate ratio of a:b is $\sqrt[2]{a}:\sqrt[2]{b}$
Triplicate Ratio	Triplicate ratio of a:b is a ³ :b ³
Sub-triplicate Ratio	Triplicate ratio of a:b is $\sqrt[3]{a}$: $\sqrt[3]{b}$
Commensurate	If ratio can be expressed in the form of integers
Incommensurate	If ratio cannot be expressed in the form of integers
Continued Ratio	Ratio of three or more quantities e.g. a:b:c

PROPORTION

a,b,c,d are in proportion if a:b = c:d [it is an equality of two ratios]	
first = a, second = b, third =c, fourth = d	
In a continued proportion a:b=b:c, b ² =ac, b is called mean proportional	
If a:b=c:d, then ad = bc	
If a:b=c:d, then b:a = d:c	
If a:b=c:d, then a:c = b:d	
If a:b=c:d, then $(a+b):b = (c+d):d$	
If a:b=c:d, then $(a-b)$:b = $(c-d)$:d	
If a:b=c:d, then (a+b):(a-b) = (c+d):(c-d) or (a-b):(a+b) = (c-d):(c+d)	
por ming sindenis io rrojessionais	
If a:b = c:d = e:f = = k, then also (a+c+e+):(b+d+f+) = k	

INDICES

Index / Indices	Here in 4 ² , 4 is base and 2 is power or index. Plural of index is indices
Basic 1	a^{0} = 1, any number raised to power zero equals to 1
Basic 2	$\sqrt{a} = a^{1/2}, \sqrt[3]{a} = a^{1/3}$
Law 1	$a^m \times a^n = a^{(m+n)}$
Law 2	$a^m / a^n = a^{(m-n)}$
Law 3	$a^{(m)^n} = a^{m \times n} = (a^m)^n$
Law 4	$(ab)^n = a^n b^n$

LOG

Basic	If $2^4=16$ [2 is base, 4 is power], then $\log_2 16 = 4$ (i.e log of 16 base 2)
How to remember?	2 should be raised to what power so that it becomes 16
	2 ka kitna power karne wo 16 ho jaye, ans is 4
Standard Result	$\log_a a = 1, \log_a 1 = 0$
Law 1	$\log_a(mn) = \log_a m + \log_a n$
Law 2	$\log_a(\frac{m}{n}) = \log_a m - \log_a n$
Law 3	$\log_a m^n = n \log_a m$
Change of Base	$\log_b m = \frac{\log_a m}{\log_a b}$
EQUATIONS - BASICS	

14 YouTube: Learn with CA. Pranav, Instagram: @learnwithpranav, Telegram: pranavpopa

Equation Means	mathematical statement of equality	
Identity Equation	If equality is true for all the values of variable, ex. $2x + 3 = x + x + 3$	
Conditional Equation	n If the equality is true for certain value of the variable ex. $2x + 1 = 3$	
Solution or Root	It is the value of variable that satisfies the equation	
Degree	Highest power of variable in equation	

SIMPLE EQUATION

Tuno	Linear equation with	Linear equation with	Quadratic	Cubic
Туре	one unknown	two unknowns	Equation	Equation
Form	ax + b = 0, where a and b are constants	ax + by + c = 0 a,b,c are constants	$ax^{2} + bx + c = 0$ a,b,c are constants with a≠0	$ax^3 + bx^2 + cx + d = 0$
Degree	1 (One)	1	2	3
Roots	1 (One)	1 each for both	2 (α, β)	3
Remarks	NA	Need minimum two equations to get roots	Trial Error/ Formula based	Trial and Error
Methods for solution	NA	1. Elimination 2. Cross Multiplication	$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	NA

- 1 LINEAR EQUATIONS WITH TWO UNKNOWNS

Elimination	Eliminate one variable by algebraic operations on given equations, and
F Transt	then calculate the value of variable that remains. Using this value, find
	out the value of other root.
Cross Multiplication	$a_1x + b_1y + c_1 = 0$, $a_2x + b_2y + c_2 = 0$
	Solution is given by:
	x = y = 1
	$b_1c_2 - b_2c_1 - c_1a_2 - c_2a_1 - a_1b_2 - a_2b_1$

LL

QUADRATIC EQUATION

Formula	$-b \pm \sqrt{b^2 - 4ac}$		
	2a		
Sum of Roots	$\alpha + \beta = -\frac{b}{a} = \frac{\text{coefficient of } x}{\text{coefficient of } x^2}$		
Product of Roots	$\alpha \times \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coefficient of } x^2}$		
How to construct a quadratic equation	x^2 – (sum of roots: $\alpha + \beta$) x + Product of Roots: $\alpha \times \beta = 0$		
	Condition	Nature of Roots	
	$b^2 - ac = 0$	Real and Equal (α = β)	
Nature of Doots	$b^2 - ac > 0$	Real and Unequal	
Nature of Roots	$b^2 - ac < 0$	Imaginary	
	$b^2 - ac$ is a perfect square	Real, Unequal and Rational	
	$b^2 - ac > 0$ but not perfect square	Real, Unequal and Irrational	
Irrational Roots	If one root is $(m + \sqrt{n})$, then other root will be $(m - \sqrt{n})$		
MATRICES			

Matrix	A rectangular array of numbers (real/complex) with m rows and n columns		
Order of Matrix	Order is m × n where m= no. of rows and n = no. of columns		
Row Matrix	Matrix having only one row [1 4 2]		
Column Matrix	Matrix having only one column $\begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$		
Zero/ Null Matrix	If all the elements of matrix (any order) are zero $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$		
Square Matrix	If in a matrix, no. of columns = no. of rows $\begin{bmatrix} 1 & 3 \\ 9 & 2 \end{bmatrix}$		
Rectangular Matrix	If in a matrix, no. of columns \neq no. of rows $\begin{bmatrix} 1 & 3 & 2 \\ 9 & 2 & 5 \end{bmatrix}$		
Leading Diagonal	Diagonal elements starting from top left to bottom right		
Diagonal Matrix	A square matrix where all the elements except leading diagonal elements are zero. $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$		
Scalar Matrix	A diagonal square matrix where all the leading elements are equal $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$		
Unit Matrix V	A scalar matrix whose leading diagonal elements are equal to $1 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$		
Upper Triangle Matrix	A matrix whose all the elements below the leading diagonal are zero $\begin{bmatrix} 3 & 4 & 5 \\ 0 & 1 & 9 \\ 0 & 0 & 5 \end{bmatrix}$		
Lower Triangle Matrix	A matrix whose all the elements above the leading diagonal are zero $\begin{bmatrix} 3 & 0 & 0 \\ 5 & 1 & 0 \\ 2 & 8 & 5 \end{bmatrix}$		
Sub Matrix	The matrix obtained by deleting one or more rows or columns or both of a matrix is called its sub matrix.		
Equal Matrices	Two matrices are are equal matrices if order of both is same and corresponding elements are same		
Addition/ Subtraction	All the corresponding elements will be added/ subtracted to make a new matrix. (only possible when both matrix are of same order)		
Properties of Addition/ Subtraction	a . $A+B = B+A$ [Commutative], b . $(A+B)+C = A+(B+C)$ [Associative], c . $k(A+B) = kA + kB$, k is constant		
Multiplication	Multiplication of two matrices is possible only when no. of columns of first matrix = no. of rows of second matrix. <i>[To understand how to do multiplication – refer page 2.40 Example 3]</i>		
Properties of Multiplication	a. In general, $A \times B \neq B \times A$, b. $(A \times B) \times C = A \times (B \times C)$ if defined, c. $A(B+C) = AB + AC$ also, $(A+B)C = AC+BC$, d. if $AB = AC$ then $B \neq C$ in general, e. $A \times O = O$ [O means null matrix], f. $A \times I = IA = O$ [I means Unit Matrix].		
Transpose of a Matrix	A matrix obtained by changing rows and columns of a matrix A is called as Transpose Matrix of A . It is denoted by - A^T or A'		

Properties of Transpose	a. $A = (A')'$ b. $(A+B)' = A' + B'$ c. $(KA)' = K.A'$ d. $(AB)' = B' \times A'$	
Symmetric Matrix	If after transposing also there is no change in matrix. A'=A	
Skew Symmetric	If after transposing a matrix, it becomes its negative. A'=–A	

DETERMINANTS

Determinants	It is a valuation of a matrix using some rules. It only applies for square matrix		
Denote	It is denoted by det A or A or Δ		
2 × 2 Matrix	$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = (ad - bc)$		
3 × 3 Matrix	$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1(b_2c_3-b_3c_2)-a_2(b_1c_3-b_3c_1)+a_3(b_1c_2-b_2c_1)$		
Minor	M _{ij} =Minor of the element located in i th row and j th column. It is equal to determinant of sub matrix obtained after i th row and j th column		
Cofactor	$C_{ij} = (-1)^{i+j} M_{ij}$		
3 × 3 Formula using Cofactors	ansforming $sa_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}c_{13}$		
Properties	a. Δ remains unaltered if its rows or columns are interchanged.b. Δ change its sign if two rows or columns interchangesc. If any two rows or columns of a determinant are identical, then $\Delta = 0$ b. Δ change its sign if two rows or 		
Singular Matrix	if det A = 0, then singular matrix otherwise non-singular matrix		
Adjoint Matrix	Adjoint of A Matrix is the transpose of the Cofactor Matrix		
Inverse Matrix	If A is a square matrix, and det A \neq 0 (non-singular), then $A^{-1} = \frac{1}{ A } \times Adj. A$		
Cramer's rule to find solution of linear eq. in 3 variables	$x = \frac{\Delta x}{\Delta}$, $y = \frac{\Delta y}{\Delta}$, $z = \frac{\Delta z}{\Delta}$, provided $\Delta \neq 0$ [Δx means determinant of matrix by replacing first column of matrix with RHS values of equations] See Example		
Properties of Cramer's	a. If $\Delta \neq 0$, the system has unique solutionb. If $\Delta = 0$ and atleast one of $\Delta x, \Delta y, \Delta z \neq 0$, then system has no solution and it is inconsistentc. If $\Delta = 0$ and all of $\Delta x, \Delta y, \Delta z \neq 0$, then system may or may not have solution,. If it has solution, equations are dependent and there will be infinite no. of solutions. If it doesn't have solution, equations are inconsistent.		

Set means	Collection of well-defined distinct objects. It is usually denoted by capital letter		
Element	Each object of set is called as element. It is usually denoted by small letter		
Braces Form	When set shown as a list of elements within braces { } e.g. A = {1,3,5,7}		
Descriptive Form	Set can be presented in statement form e.g. A = set of first four odd numbers		
Set-Builder or Algebraic form	Here Set is written in the algebraic form in this format – $\{x: x \text{ satisfies some properties or rule}\}$. The method of writing this form is called as Property or Rule method		
Belongs to	It is denoted by ' \in ', a \in A means that element a is one of the element of Set A. \notin used for do not belongs to.		
Subset	Set A is a subset of Set B if all the elements of Set A also exist in Set B. It i denoted as - $A \subset B$		
Proper Subset	A is a proper subset of B if A is a subset of B and $A \neq B$		
Improper Subset	Two equal sets are improper subsets of each other		
Null Set	A set having no elements is called as Null or Empty Set. It is denoted by $oldsymbol{\varphi}$		
No. of subsets	Formula: no. of subsets = 2^n , no. of proper subsets = 2^{n-1}		
Intersection	Intersection set of A and B is a set that contains common elements between		
denoted by [A∩B]	both of the sets		
Union	Union set of A and B is a set that contains all the elements contained in both the		
denoted by [AUB]	sets without repeating the common elements		
Universal Set	The set which contains all the elements under consideration in a particula		
	problem is called the universal set generally denoted by S		
Complement Set	A complement set of set P is a set that contains all the elements contained in the universe other than elements of P. It is denoted by P' or P ^c		
Set (A-B)	A-B is a set that contains elements of A other than those which are common in		
	A and B. [A-B = A-AOB] udents to Protessionals		
De Morgan's Law	1. $(P \cup Q)' = P' \cup Q'$ 2. $(P \cap Q)' = P' \cup Q'$		
	Universal Set		
Venn Diagrams	Union Set AUB		
venn blagi anis	Intersection Set $A \cap B$		
	Set A-B		
2 sets – Formula	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$		
3 sets - Formula	$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(C \cap A) + n(A \cap B \cap C)$		
5 Jets i Villiulu	$\mathbf{n}(\mathbf{n} = \mathbf{n}(\mathbf{n}) + \mathbf{n}$		

	A or B , atleast A or B, either A or B	A∪B	
Venn Diagram	A and B, Both A and B	A∩B	
related some	Only A means	A–B	
basics	Only B means	B-A	
	Neither A nor B	(A∪B)′	
Cardinal Number	No. of distinct elements contained in a	finite Set A is called Cardinal Number.	
	For Set $A = \{4, 6, 8, 3\}$,	cardinal no. $n(A) = 4$	
Equivalent Set	Two sets A and B are equi	ivalent sets if $n(A) = n(B)$	
Power Set	Collection of all possible subsets of a given set A is called Power set of Set A. It		
	is denoted by P(A)		
Ordered Pair	Pair of two elements both taken from different Sets. E.g. if $a \in A$ and $b \in B$ then		
	ordered pair is (a,b) where first element will always from A and second always		
	from B in every pair		
Product of Sets	Also called as Cartesian Product. If A and B are two non-empty sets, then set of		
	all the ordered pairs such that $a \in A$ and $b \in B$ is called as Product Set. It is		
	denoted by $A \times B$. [$A \times B = \{(a:b): a \in A \text{ and } b \in B\}$]		
Why Product?	$n(A \times B) = n(A) \times n(B)$ i.e. cardinal no. of product set is equal to product of		
	cardinal no. of each set		

FUNCTION

Relation	Any subset of product set is called $A \times B$ is said to define relation from A to B.				
α -	It's any coll	ection of ordered pairs taken from a product set.			
Function (set	A relation where no ordered pairs have same first elements is called Function.				
based definition)	First element of the ordered should not be repeated in the relation set. (a,b) all				
	a should be	unique for different values of b			
Function (non set	A rule whic	h associate all elements of A to B is called function from A to B. It is			
based definition)	denoted by	$f: A \to B \text{ or } f(x) \text{ of } B$			
Image, Pre-image	f(x) is called	ed the image of x and x is called the pre-image of $f(x)$			
	Pre-image i	s input and Image is output			
Domain, Co-	Let $f: A \to A$	B, then A is called domain of <i>f</i> and B is called the co-domain of <i>f</i> .			
domain, Range	Set of all t	he images (contained in B) of pre-images taken from A is called			
	Range. Don	nain is a set of all pre-images and Range is a set of all images. Also			
	Range is a s	ubset of Co-domain.			
Types of	One-One	Let $f: A \to B$ if different elements in A have different images in B			
Functions	Function	then f is one-one or injective function or one-one mapping			
	Onto	Let $f: A \rightarrow B$, if every element in B has at least one pre-image in			
	Function	A, then <i>f</i> is an onto or surjective function			
	Into	Let $f: A \rightarrow B$, if even a single element in B is not having pre-image			
	Function	Function in A, then it is said to be into function			
	Bijection If a function is both one-one and onto it is called as Bijection				
	Function	Function Function			
	Identity	Identity If domain and co-domain are same then function is identity			
	Function	function Let $f: A \to A$ and $f(x) = x$			
	Constant	If all pre-images in A will have a single constant value in B then			
	Function	the function is constant function			
Faual Function	Two function	Two functions f and a are said to be equal function if both have some domain			
Equal Function	and same range				
Inverse Function	Let $f \cdot A \rightarrow B$ is a one-one and onto function. Every value of r (preimage) will				
inverse i uncelon	give unique image $f(x)$ using f If there is a function that takes value of images				
	as input and gives pre-images as output, such function is called inverse				

	function. It is denoted as $f^{-1}: B \to A$.
Composite	A function of function is called composite function. Example: if
Function	<i>f</i> and <i>g</i> are functions, then $f[g(x)]$ and $g[f(x)]$ are composite functions. Also
	called as <i>fog or gof</i>

RELATION

Relations	Any subset of product set is called $A \times B$ is said to define relation from A to B.			
	It's any collection of ordered pairs taken from a product set.			
Domain and	If R is a relat	If R is a relation from A to B, then set of all first elements of ordered pairs is		
Range	domain and s	et of all second elements of ordered pairs is range.		
Types of Relation	Reflexive Symmetric Transitive	ReflexiveIf S is a universal set, S = {a,b,c} then R is a relation from S to S. If this R contains all the ordered pairs in the form (a,a) in S×S, then it is a reflexive relationSymmetricIf (a,b) \in R, then if (b,a) \in R then R is called SymmetricTransitiveIf (a,b) \in R and also (b,c) \in R, then if (a,c) \in R such relation is Transitive. [if in a relation only (a,b) is present but (b,c) is not present we will consider it as transitive relation]		
Equivalence Relation	If a relation is Reflexive, Transitive and Symmetric as well, then it is called as Equivalence Relation			

E Transforming students to Professionals

Permutations and Combinations

Fundamental Principles of	Multiplication Rule AND → Multiply	If one thing can been done, anot ways then the to things simultan	be done in 'm' ways and when it has ther thing can be done in 'n' different that number of ways of doing both the neously = $m \times n$	
Counting	Addition Rule OR \rightarrow Add	If two alternativ respectively the in (m+n) ways	re jobs can be done in 'm' and 'n' way n either of the two jobs can be done	
Factorial	It is written as n! or n $0! = 1, 1! = 1, 2! = 2 \times 1,$	= n(n-1)(n-2) $3! = 3 \times 2 \times 1, 4! = 4$	2) 3 × 2 × 1 × 3 × 2 × 1	
Permutations means	It is the ways of arran regard being paid to o	nging or selecting order of the arran	g things from a group of things with due gement or selection.	
Basic Example 1	Arranging three pers ACB, BAC, BCA, CAB, C	ons A,B,C for a g BA}, thus total no	roup photograph can be done as {ABC, . of ways is 6	
Basic Example 2	Selecting two person participants P,Q,R,S ca SR}, thus total no. of w winner and second is t	ns as Winner ar an be done as {PQ vays is 12 (here ir runner up)	nd Runner-up for a contest having 4 9, PR, PS, QP, QR, QS, RP, RQ, RS, SP, SQ, 1 the set of arrangement first element is	
Theorem for Permutations	The number of perm ${}^{n}P_{r} = \frac{n!}{n-r!} \text{ or } n(n+1)$	The number of permutations of n things chosen r at a time is given by ${}^{n}P_{r} = \frac{n!}{n-r!}$ or $n(n-1)(n-2) \dots (n-r+1)$		
Basic Example 3	${}^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1} = 5 \times 4 \times 3 = 60$ Or simply here r = 3, so do reverse multiplication of 5 up to three terms so it will be $5 \times 4 \times 3 = 60$			
Use of Theorem	We are able to find no. of ways manually also (as done in Basic Example 1 and 2) but that is easy for lower values of n and r. When there is a higher value of n, manually creating the set of arrangements will be tedious which requires the need of this theorem. Check Basic Example 1 and Example 2 using theorem			
Why 0! = 1	${}^{n}P_{n} = \frac{n!}{(n-n)!} = \frac{n!}{0!}$ also, ${}^{n}P_{n} = n!$, thus $\frac{n!}{0!} = n!$, $0! = \frac{n!}{n!} = 1$			
Special Formula	$(n + 1)! - n! = n \cdot n!$	(for proof – refer	Example 10 Study Mat Page 5.6)	
	Type Calculate No. of wor of a particular word	rds using letters	Remark Simple ${}^{n}P_{r}$ Note: Meaning of words has no relevance	
	Group Photograph	cond third atc	n_{P_n}	
Question Patterns with remarks	Theorem based calculation of n or n data	questions,	P_r here r is no. of ranks Directly apply theorem	
	Selection of dif designations/ positions/ positions/ persons	ferent unique ons from a group	${}^{n}P_{r}$ here r is no. of unique designations/positions	

Circular Permutations	Above discussion was relevant for things that are arranged in a row. However when the things are arranged in a circle, the permutation is termed as circular.		
Theorem: Circular Permutations	The number of circular permutations of n different things chosen all at a time is (n-1) !		
Standard Results	number of ways of arranging n persons along a round table so that no person has the same two neighbors is $\frac{1}{2}(n-1)!$ the number of necklaces formed with n beads of different colors $\frac{1}{2}(n-1)!$		
Permutation with Restrictions Note: These two theorems are useful for formula based questions. For practical questions we will use logic.	Theorem 1Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is $(n-1)P_r$ Theorem 2Number of permutations of r objects out of n distinct objects when a particular object is always included in any $(n-1) =$		
(explained in example)	arrangement is (n) $P_{(r-1)}$		
Some tips useful while solving problems having restrictions	Requirement of Que.TipsCalculate permutation when two or more objects are always togetherIn that case consider that group of objects as 1 object for the purpose of ${}^{n}P_{r}$ formula, then multiply factorial of no. of objects in the groupCalculate permutation when two or more objects will never come togetherStep 1: Calculate the no. of ways without restriction using ${}^{n}P_{r}$ When there are two types of objects and ask is to calculate the ways in which no two objects of one the category will be togetherIn that case, that particular group of objects can be arranged in the alternate places as a neighbor of each object of other category Refer Example 10 Study Mat Page 5.13SS		
Standard Results	Permutations when some of the things are alike, taken all at a time $p = \frac{n!}{n_1! \times n_2! \times n_3!}$ Dermutations when each thing may		
	be repeated once, twice, upto r times n^r in any arrangement.		

Combinations	The number of ways in w or selected from a colle arrangement is not imp	which smaller or equal number of things are arranged ection of things where the order of selection or ortant , are called combinations. It is just a GROUPING	
Basic Example 1	Grouping of two persons out of three persons A,B,C for a group photograph can be done as {AB, BC, AC}, thus total no. of ways is 3. Here AB and BA are same group and will be counted once only, even though the sequence is not same. Sequence has no relevance while finding combinations.		
Basic Example 2	Selection of persons for a committee of 2 out of total 4 applicants P,Q,R,S can be done in {PQ, QR, RS, PS, PR, QS} – total 6 ways. Here we used combinations because in the committee of two there is no designations all are same so sequence of selection does not matter.		
Theorem of Combinations	ⁿ C ₂	$r = \frac{n!}{r!(n-r)!}$ or ${}^nC_r = \frac{n_{P_r}}{r!}$	
Standard Results		${}^{n}C_{0}=1$, ${}^{n}C_{n}=1$	
Complimentary Combinations	${}^{n}C_{r} =$	${}^{n}C_{(n-r)}$ example: ${}^{5}C_{3} = {}^{5}C_{2}$	
Special Formulas	${}^{n+1}C_r = {}^{n}C_r + {}^{n}C_{r-1}$ <u>Memorize:</u> Combination of (n+1) things when one thing is always included [${}^{n}C_r$]+ Combination of (n+1) things when one thing is always excluded [${}^{n}C_{r-1}$]		
Permutation Special formula	<i>MSTOYMING Sⁿ</i> Memorize in the same wa	$P_r = e^{n-1}B_r + r \cdot n - P_r = 1$ Sionals y as above	
Standard Results	Combinations of n different things taking some or all of n things at a time $2^n - 1$ [1 is subtracted because we are removing all rejection case]		
	Type	Remark	
	Different pocker hands in a pack of cards	When we play Poker, Teen Patti etc. only group of 5 cards, sequence in which it is picked does not matter hence we take combinations	
	Formation of triangles when vertices (corner points) are given	We need three vertices to make a triangle. Now with group of three points to make a triangle and sequence of points does not matter, hence will use combination. Example: Using eight points how many triangle can be formed - ${}^{8}C_{3} = 56$	
Question Patterns with remarks	No. of ways of invitation	Here also sequence does not matter, hence will use combination	
	Selection of color balls from box	Here combination is used assuming that balls are of identical color	
	No. of ways of forming words from n letter taking few letters and the letter are not unique	Refer Example 6 – Page 5.25 Study Mat	
	Number of diagonals of a polygon	${}^{n}C_{2} - n$, here n means no. of side of polygon (refer Q.10 Exercise 5C)	

Probability				
Know about Probability	 → First use of Probability was made 300 years back in Europe by a group of mathematicians to enhance their chances of winning in gambling → It is a full-fledged subject and become an integral part of statistics → Theories of Testing Hypothesis and Estimation are based on probability 			
Types	SubjectiveIProbabilityIObjective'ProbabilityI	Dependent on personal judgment, useful in decision making.It is out scope of our syllabusThis is based on Mathematical Rules and not judgmentbased. We will study this section in our chapter.		
Random Experiment	ExperimentARandomAExperimentCExamples7	A performand An experime experiment d Tossing a coi	ce that produces certain results nt is defined to be random if the results of the lepend on chance only. n, throwing a dice, drawing cards from a pack	
Events	The results or o u	itcomes of a	random experiment are known as events	
Types of Events	Based on Combin Simple or Eleme Composite or Co Based on nature Mutually Exc Incompatible Ev Exhaustive Even Equally Likely Durkelly Exc	nation of Eve ntary mpound of occurren lusive or ents ts or Equi-	If the event cannot be decomposed into further events An event that can be decomposed into two or more simple events ce (applicable for set of events) A set of events A1, A2 is said to be mutually exclusive if they cannot occur simultaneously. Occurrence of one implies non occurrence of other. A set of events A1, A2 is said to be exhaustive if one of these must necessarily occur on a random experiment If it is evident that from the set of events,	
Classical Definition of Probability	InductionInductionInductionInductionMutually Symmetricfrequently than others.Also called Prior Definition of Probability, this formula is Event (Result) Based.It is given by Bernoulli and Laplace. $P(A) = \frac{\text{no. of events favorable to A}}{\text{model to A}}$			
	Demerits or Limitations	$ \rightarrow \text{Applicab} \\ \text{likely} \\ \rightarrow \text{Limited a} \\ \text{throwing} \\ 0 < P(A) $	be only when events are finite and are equally application of this definition like in tossing coin, g dice, cards etc.	
More about Classical Probability	other notes	$ → 0 ≤ P(A) ≤ 1, P(A) = 1 means sure event, P(A) = 0 means impossible event → Probability of non-occurrence of an event A is denoted by P(A') or P(\overline{A}) is called as complimentary event of A P(A') = 1-P(A) $		
	Odds in Favor of an Event Odds Against	no. no.	of favorable events of unfavorable events of unfavorable events	
1				

Special Formula	If an experiment results in p outcomes and if it is repeated q times then Total no. of outcomes $= p^q$			
Terms used in 52 Cards Deck	Suits (four)	Spades -	\bigstar Hearts - \heartsuit Diamond - \diamondsuit Clubs - \bigstar	
	(13)	A (Ace), K	(King), Q (Queen), J (Jack), 10, 9, 8, 7, 6, 5, 4, 3, 2	
Relative Frequency	Relative Freque	$ency = \frac{no.6}{2}$	$\frac{\text{of times the event occured during experimental trials}}{\text{total no.of trials}} = \frac{f_A}{n}$	
Definition of Probability	Probability by t	his metho	d is defined as $P(A) = \lim_{n \to \infty} \frac{f_A}{n}$	
	(Relative Frequ	ency on in	finite no. of trials is equal to probability)	
	Sample Space	(denoted	a non-empty set containing all the elementary	
	by S or Ω -ome	ga)	events of a random experiment as sample points	
Set Based Probability	Event A		Event which is under consideration for probability calculations is defined as a non empty subset of Set S (Sample Space)	
	Probability Fo	rmula	$P(A) = \frac{\text{no. of sample points in A}}{\text{no. of sample points in S}} = \frac{n(A)}{n(S)}$	
Axiomatic Or Modern Definition of Probability	This definition is also based on Sets Concepts. Here Probability is not a simple ratio like above, but can be said as function P defined on S known as Probability Measure. P(A) is defined as the probability of A as per this function only if below conditions are satisfied: Condition 1 $P(A) \ge 0$, for every $A \subseteq S$ Condition 2 $P(S) = 1$ Condition 3 For any sequence of mutually evolutive events A1 A2 A2			
		$P(A_1 \cup$		
	Theorem 1	P(2	$A \cup B$ = $P(A + B) = P(A \text{ or } B) = P(A) + P(B)$ If A and B are mutually exclusive events	
Addition	Theorem 2	For set of mutually exclusive events A_1, A_2, A_3, \dots $P(A_1 \cup A_2 \cup A_2 \cup \dots) = P(A_1) + P(A_2) + P(A_2) + \dots$		
Theorems	Theorem 3 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ For any two events A and B			
	Theorem 4	P(A	$(B \cup C) = P(A) + P(B) + P(C) - P(A \cap B)$	
	$-P(B \cap C) - P(A \cap C) + P(A \cap B \cap C)$			
Expected Frequency	No. of sample p	No. of sample points n(S) × P(A)		
	Dependent Events Independent Events	If oc anot Two one	ccurrence of one event is influenced by occurrence of ther event, then two events are dependent. o events are said to be independent if occurrence of event do not influence the occurrence of other.	
Conditional	Probability in	case Conc	litional Probability of B/A: means probability of event B	
Probability or of Dependent given that event		n that event A has already been occurred $(B) = P(B \cap A)$		
Compound			$P\left(\frac{B}{A}\right) = \frac{P(B + A)}{P(A)}$, provided $P(A) > 0$	
ineorem		Simi	larly, Conditional Probability of A/B:	
			$P\left(\frac{A}{B}\right) = \frac{P(B \cap A)}{P(B)}$, provided $P(B) > 0$	
		Com	pound Theorem: $P(A \cap B) = P(B) \times P(A/B)$ or	
		P(Ar	TB) = $P(A) \times P(B/A)$	

	Probability in case of	Since there is no dependency, Conditional Probability = Normal Probability
	Events	i.e. $P(B/A) = P(B)$ and $P(A/B) = P(A)$ Here, $P(A \cap B) = P(A) \times P(B)$
		And for three events, A, B, C $P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$
		Also, if A and B are independent, then below are also independent : A and B' A' and B A' and B'
		Hand D, H and D, H and D
	Random Variable	It is a function defined on Sample Space of a random experiment that can take any value (Real Number)
	Variable Continuous	RV that can take only discrete values. RV on a discrete sample space RV that can take any values within an interval. [infinite
Random Variable:	Random Variable	no. of sample points in a sample space]
Distribution	Probability	If is defined as the statement/ table that shows no. of
	Distribution	different value taken by Random Variable and their
$O \equiv I$	Conditions o	f If X (a random variable) takes n finite values like
	Probability Dist.	$X_1, X_2, X_3, \dots, X_n$ and probabilities are
E Tra	nsforming	$P_1, P_2, P_3, \dots, P_n$ then, $P_i \ge 0$ for every <i>i</i> and $\sum P_i = 1$
	Expected It Value	is defined as the sum of products of different values taken by Random Variable and corresponding probabilities.
	E(z)	$(x) = \sum p_i x_i$ (this formula is similar to AM of frequency distribution)
	Mean of Sir	ce this is mean, we can say that Expected value is equal to
	Probability a	rithmetic mean of probability distribution. Here mean is
D . 1 V 1	Distribution	denoted by μ , hence $\mu = E(x) = \sum p_i x_i$
Expected Value	Variance of	
	Probability	$V(x) = \sigma^2 = E(x - \mu)^2 = E(x)^2 - \mu^2$
	Properties	\rightarrow E.V. of a constant is constant
	of E.V.	$\rightarrow E(x+y) = E(x) + E(y)$
		$\rightarrow E(k.x) = E(x).k$
		$\rightarrow E(x, y) = E(x) \cdot E(y)$

Theoretical Distribution

	Bernoulli's Trial Binomial	 → Each trial is associated with two mutually exclusive and exhaustive outcomes [one is success and other one is failure] → Trials are independent → Probability of success (p) and failure (q=1-p) will remain unchanged throughout the process → No. of trials is a positive integer It is a discrete random variable X that follows binomial
	Variable	distribution and is denoted by $X \sim B(n, n)$
Binomial	Probability	$f(x) = P(X = x) = {}^{n}C n^{x} a^{n-x}$
Distribution	Mass Function	for $r = 0.123$ <i>n</i> and $f(r) = 0$ if r is otherwise
(bi-parametric discrete	Mean	u = nn
probability	Varianco	$\frac{\mu - hp}{r^2 - ma}$
distribution)	Variance	$b^{-} = npq$, also variance is always less than mean, maximum value of variance is $n/4$
	Mode	Calculate $(n + 1)p$,
		if the resulting value is $\mu_0 = (n+1)p$ andinteger then Bi-modal $[(n+1)p - 1]$
	Learn	If the resulting value is non- integer then Uni-modal μ_0 = largest integer contained in $(n + 1)p$
	Additive	If X and Y are two independent variables such that
Ω_{τ}	Property	$X \sim B(n_1, p)$ and $Y \sim B(n_2, p)$, then $(X + Y) \sim B(n_1 + n_2, p)$
• <i>Ira</i>	nstormin	g students to Professionals
	History	Simon Denis Poisson of France introduced this distribution way back in the year 1837
	Conditions	It is a limiting form of Binomial Distribution, where $n \rightarrow \infty$, $p \rightarrow 0$. It is also a discrete distribution
	Poisson Variable	It is a discrete random variable that follows Poisson Distribution denoted as $X \sim P(m)$
Poisson Distribution	Probability Mass Function	$f(x) = P(X = x) = \frac{(e^{-m} \cdot m^x)}{x!}$ for $x = 0, 1, 2, \infty$
(uni-parametric	Mean	$\mu = m$
discrete probability	Variance	$\sigma^2 = m$
	Mode	Calculate m
		if the resulting value is integer then Bi-modal $\mu_0 = m$ and $[m-1]$ If the resulting value is non- integer then Uni-modal μ_0 = largest integer contained in m
	Additive Property	If X and Y are two independent variables such that $X \sim P(m_1)$ and $Y \sim P(m_2)$, then $(X + Y) \sim P(m_1 + m_2)$
Normal Distribution	Basics	Various Mathematical experiments have proved that most of the continuous random variables will follow normal distribution. It is universally accepted distribution
Distribution (bi-parametric continuous probability distribution)	Probability Density Function	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \times e^{-(\frac{x-\mu}{\sigma})^2 \times \frac{1}{2}}$ It is defined for $-\infty < x < \infty$

	Mean = Median = Mode	μ		
	Standard Deviation	σ		
	Mean Deviation	$\sigma \times \sqrt{2/\pi} = 0.8 \sigma$		
	Quartile Deviation	$0_1 = \mu - 0.675\sigma$ and $0_2 = \mu + 0.675\sigma$		
	Shape of Normal Curve	$\frac{Q_1 - \mu}{Bell Shaped}$		
	Normal Variable	$X \sim N(\mu \sigma^2)$		
Normal		Only applicable when two different random		
Distribution		variables are independent. Assume we have two		
Properties	Additive Property	variables X and Y such that $X \sim N(\mu_1, \sigma_1^2)$,		
		$Y \sim N(\mu_2, \sigma_2^2)$ then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$		
	Normal Curve is	$x = \mu$		
	symmetrical at			
	Points of Inflexion	$\mu - \sigma \& \mu + \sigma$		
	Ratio between QD:MD:SD	10:12:15		
	Conditions	Parameter Value		
		$\frac{\text{Mean}\mu}{1} = 0$		
		Standard Deviation $\sigma = 1$		
	Standard Normal Variate	The variable used in this distribution is called		
		as Standard Normal Variate and is denoted by		
	learn	Z-[Striked Z]		
	Area from X=-3 σ to X=3 σ	99.73%		
Δ	Z Table	This table gives us the probability of values		
F Tra	nstormina stua	from $x = \mu = 0$ to $x = any$ value up to 3 $x = \mu$		
Standard Normal	z score	$Z = \frac{\pi - \mu}{\sigma}$		
Distribution	Cumulative Distribution			
	Function	$\phi(x) = P(X \le x)$		
	Probability Function	$f(z) = \frac{1}{\sqrt{2\pi}} e^{-(z)^2 \times \frac{1}{2}}$ for $-\infty < z < \infty$		
	Mean, Median, Mode	μ=0		
	SD, Variance	$\sigma=1, \sigma^2=1$		
	Points of Inflexion	-1, 1		
	Mean Deviation	0.8		
	Quartile Deviation	0.675		
	Probability Function	$f(z) = \frac{1}{\sqrt{2\pi}} e^{-(z)^2 \times \frac{1}{2}}$ for $-\infty < z < \infty$		
Area under	·	~		
Normal Curve	Enome To Arres (Deck 1.11)			
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
	μ +0 34.13370 + σ +2 σ 1359%	MIT6		
	$+2\sigma$ $+3\sigma$ 2.14%	200 1200 1200 200		
	3σ ∞ 0.135%	por pre p pre pro-		
	i			
	From To Area/Probabilit	· · · · · · · · · · · · · · · · · · ·		
	$-\sigma$ $+\sigma$ 68.39	<u>/0</u>		
	-20 $+20$ 95.59 -3σ $+3\sigma$ 90.70			
	50 150 53.77	<u> </u>		
		-30 -10 u 10 20 10		

SEQUENCE AND SERIES

Sequence	An ordered collection of numbers arranged as per some definite rule or pattern. $a_1, a_2, a_3,, a_n$ is a sequence if you are able to identify pattern and there by the value of a_n (n th term)						
Examples of Sequence	Collection 1, 4, 9, 17, 18, 20, 17, 4, 3, 1, 1, 4, 7, 10, 13, 20, 10, 5, 5/2,	Ordered Yes Yes Yes Yes	Rule/ Pattern No No Yes +3 on each term Yes ÷2 on each term	Conclusion Not a sequence Not a sequence Yes Sequence Yes Sequence			
Terms	$a_1, a_2, a_3, \dots, a_n$ are respectively	called as	1 st Term, 2 nd Term, 3 rd	Termnth term			
General Term	a_n is called as the n th	term of the s	sequence or General Term				
Types of sequence	Finite Sequence – seq Infinite Sequence – se	Finite Sequence – sequence having finite elements $\{a_i\}_{i=1}^n$ Infinite Sequence – sequence having infinite elements $\{a_i\}_{i=1}^\infty$					
Series	Sum of the elements of the sequence is called as Series. $S_n = \sum_{i=1}^n a_i$ $S_n = a_1 + a_2 + a_3 + \dots + a_n$ $S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3$						
Arithmetic Progression (A.P.)	AP is a sequence in which each next term is obtained by adding a constant 'd' to the preceding term. This constant 'd' is called as common difference. Let say $a =$ first term and $d =$ common difference, then AP can be written as – $a, a+d, a+2d, a+3d \dots a+(n-1)d$						
Common Difference 'd'	d = any term – preced	ling term or	$\{t_n - t_{n-1}\}$ Vofessu	onals			
n th term of an AP	$t_n = a + (n-1)d$						
Insert AMs between two numbers	If there is a problem to find out AMs between two number, consider it as an AP with first number as first term of AP and other number as last term of AP. Number of AMs required = no. of terms between first term and last term Example: If 3 AMs between a and b is asked, form an AP as below: $a, _, _, _, b$						
Sum of first n terms of an AP	$S_n = \frac{n(a+t_n)}{2}$ or $S_n = \frac{n}{2} \{2a + (n-1)d\}$						
Other Useful Formulas	Sum of first n natura Sum of first n odd nu Sum of squares of natural numbers Sum of cubes of firs numbers	l numbers imbers of first n t n natural	$ \frac{n(n+1)}{2} \\ n^{2} \\ \frac{n(n+1)(2n-1)}{6} \\ \left\{\frac{n(n+1)}{2}\right\} $	+ 1)			

Geometric

GP is a sequence of terms where each term is a constant multiple of preceding

Progression (G.P.)	term. This constant multiplier is called as common ratio.
	Let say <i>a</i> = first term and <i>r</i> = common ratio then GP can be written as
	$a, ar, ar^2, ar^3, \dots, ar^{n-1}$
n th term of a GP	$t_n = ar^{(n-1)}$
Common Ratio 'r'	$r = \frac{\text{any term}}{\text{preceding term}} = \frac{t_n}{t_{n-1}}$
Insert GMs between two numbers	If there is a problem to find out GMs between two number, consider it as a GP with first number as first term of GP and other number as last term of GP. Number of GMs required = no. of terms between first term and last term Example: If 3 GMs between a and b is asked, form an GP as below: $a, _, _, _, _, b$
Sum of first n terms of a GP	$S_n = \frac{a(1-r^n)}{(1-r)}$ when r<1, $\frac{a(r^n-1)}{(r-1)}$ when r>1
Sum of infinite GP	$\boldsymbol{S}_{\infty} = rac{a}{(1-r)}$ [only possible when r<1]

E Learn with CA. Pranav Mansforming students to Professionals

A. INTRODUCTION TO STATS

Definition

Singular Sense:

- Scientific method that is used for collecting, analyzing and presenting data
- Used to draw statistical inferences
- Inferences means conclusion reached on the basis of evidence and reasoning

Example:

After applying statistical methods we have arrived at a conclusion that in last 5 years crime rate is reduced.

Plural Sense:

• Data qualitative or quantitative collected to do statistical analysis

Example: Based on Cricket Match statistic of this stadium, chasing team wins mostly

History of Stats

- Word Origin
 - ✓ Latin word Status
 - ✓ Italian word Statista
 - ✓ German word statistic
 - ✓ French word statistique
- Publication:
 - ✓ Koutilya's book Arthashastra
 - ✓ Stat records on Agriculture found in Ain-i-Akbari (author Abu Fezal)

with CA. Pranav

• Census: First ever census done in Egypt (300 years BC to 2000 BC)

Application of Stats

There are various but we will confine to below:

- 1. Economics: Time Series analysis, index, demand analysis, econometrics, regression analysis
- 2. Business Management: business decisions rely upon QT
- 3. Commerce/ Industry: Sales, Purchase, RM, Salary Wages etc. data are analyze for business decisions and policy making

Limitation of Stats:

- 1. Relevant for aggregate data and not individual data
- 2. Quantitative data can only be used, however for qualitative it needs to be converted into quantitative
- 3. Projections are based on conditions/ assumptions and any change in that will change the projection
- 4. Sampling based conclusions are used, improper sampling leads to improper results

B. COLLECTION OF DATA

Data and Variable

- Variable = measurable quantity
 - Discrete variable: when a variable assumes a finite or count ably infinite isolated values.
 Example: no. of petals in a flower, no. of road accident in locality
 - Continuous variable: when a variable assumes any value from the given interval (can also be in decimals, fractions). Example: height, weight, sale, profit
 - Attribute: qualitative characteristics. Example: Gender of a baby, nationality of a person
 - Data = quantitative information shown as number. These are of two types:
 - Primary : first time collected by agency/ investigator
 - Secondary: collected data used by different person/ agency

How to collect Primary Data?

1. Interview Method:

- a. Personal Interview: directly from respondents. Example: Natural Calamity, Door to Door Survey
- b. Indirect Interview: when reaching to person difficult, contact associated persons. Example: Rail accident
- c. Telephone Interview: over phone, quick and non-responsive

	Type of Interview/ Parameters	Personal	Indirect	Telephone	Prana
	Accuracy	High	Low	Low	1 1 9/19
α	Coverage	Low	Low	High 🚬	A . /
EĽ /	Non Response	LowStu	Low	High PY	otessionals

2. Mailed Questionnaire Method:

- a. Mailed means by Post or Email
- b. Well drafted + properly sequenced + with guidelines
- c. Non Response is Maximum

3. Observation Method:

- a. Data collected by direct observation or using instrument
- b. Example: Height check, Weight check,
- c. Although more accurate but it is time consuming, low coverage and laborious

4. Questionnaire filled and sent by Enumerators

- a. Enumerator: Person who directly interact with respondent and fill the questionnaire
- b. Generally used in Surveys

Sources of Secondary Data

- 1. International sources like World Health Organization (WHO), International Monetary Fund (IMF), International Labor Organization (ILO), World Bank
- 2. Government Sources In India Central Statistics Office (CSO), National Sample Survey Office- NSSO, Regulators RBI, SEBI, RERA, IRDA
- 3. Private or Quasi-government sources like Indian Statistical Institute (ISI), Indian Council of Agriculture, NCERT
- 4. Research Papers and other unpublished sources

Scrutiny of Data

1. Scrutiny – checking accuracy and consistency of data

- 2. Finding of errors by enumerators while filling or receiving questionnaire
- 3. Internal consistency check: when two or more series of related data are given check each other
- 4. Consider enumerators' bias while using data

C. PRESENTATION OF DATA

Classification and organization of Data:

- means process of arranging data based on some logic •
- there are four types of classification of data
 - a. Chronological/Temporal/Time Series Data (ex. Profit YoYi.e year on year)
 - b. Geographical or Spatial Series Data (ex. Weather in North India and South India)
 - c. Qualitative or Ordinal Data (ex. Rating Top 20 songs by Radio Mirchi)
 - d. Quantitative or Cardinal Data (no. of left handed batsmen in cricket teams playing CWC19)

Mode of Presentation

1. **Textual:** where text is used in the form of para or sentence. Example: Height of A,B and C is 160cm, 165cm, 175cm respectively

2. Tabular/ Tabulation:

- Data shown in the form of table
- Some important terms about Table (we will understand by example next page figure)
- It is preferred over textual form because
- Useful in easy comparison
 Complicated data can be presented
 - > Table is must to create a diagram
 - \geq No analysis possible without diagram

Product			2.0	361	Total		
N X	Total	Ν	х	Total	N	х	Total
Unit KL KL	KL	KL	KL	KL	KL	KL	KL
Session Year (1) (2)	(3) = (1) + (2)	(4)	(5)	(6) = (4) + (5)	(4)	(5)	(6) = (4) + (5
2017-18 80 40	120	25	35	60	105	75	180
2018-19 70 50	120	20	40	60	90	90	180
	10				N		

3. Diagrammatic representation of data

- Can be helpful for layman (without having much knowledge of numbers)
- Hidden trend can be traced

- Table is more accurate than diagrams
- Types of Diagram below:

Line Diagram/Histogram:

- plotting points in graph and join them to make a line
- used generally for time series (variable y is plotted against time t)
- for wide fluctuation, log chart or ratio chart is used (log v is plotted against t)
- for two or more series of same unit multiple line chart is used •
- for two or more series of distinct unit multiple axes chart is used
- **Refer Material for Diagram**

Bar Diagram

- Bar means rectangle of same width and of varying length drawn horizontally or • vertically
- For comparable series multiple or grouped bar diagrams can be used
- For data divided into multiple components subdivided or component bar diagrams
- For relative comparison to whole, percentage bar diagrams or divided bar diagrams

Pie Chart

- Used for circular presentation of relative data (% of whole) 🗋 📂 🗩
- Summation of values of all components/segments are equated to 360 Degree (total angle of circle) segment value x 360° total value ents to Professionals
 - Segment angle =

D. FREQUENCY DISTRIBUTION

What is Frequency Distribution?

Frequency means number of times a particular observation is repeated. This applies to both variable and attribute. It is shown in tabular form with class interval or the observation in one column and its frequency in the other.

These are of two types

- Ungrouped/ Simple Frequency Distribution
- **Grouped Frequency Distribution** •

Important Terms

1. **Mutually exclusive classification or Overlapping Classification**: This is usually applicable for continuous variable. An observation as UCL is excluded from the class interval and taken in the class where it is LCL.

Example: in the below class interval where will the observation 20 fall?

Class	Class where 20 will fall
10-20	No – excluded
20-30	Yes
30-40	No

2. Mutually inclusive classification or Non Overlapping Classification: This is usually applicable to discrete variable. All observation including UCL and LCL will be taken in the same class interval as there is no confusion. Example:

Class	Class where 20 will fall
10-19	No
20-29	Yes
30-39	No

3. Class Limit: for a class interval CL is the minimum and maximum value the class interval may contain. Minimum = Lower Class Interval (LCL) and Maximum = Upper Class Interval (UCL) Example:

Class	Туре	LCL	UCL	Class	Туре	LCL	UCL
10-19	Mutually Inclusive	10	19	10-20	Mutually Exclusive	10	20
20-29	Mutually Inclusive	20	29	20-30	Mutually Exclusive	20	30
30-39	Mutually Inclusive	30	39	30-40	Mutually Exclusive	30	40

4. Class Boundary: These are actual class limits of a class interval

_

- **a.** For Mutually Exclusive / Overlapping : Class Boundary = Class Limit LCL = LCB, UCL = UCB
- **b.** For Mutually Inclusive / Non Overlapping: Mid of the two class limits LCB = LCL D/2, UCB = UCL + D/2
- Example:

		\frown			109						
Class	Туре	LCL	UCL	LCB	UCB	Class	Туре	LCL	UCL	LCB	UCB
10-19	Mutually Inclusive	10	19	9.5	19.5	10-20	Mutually Exclusive	10	20	10	20
20-29	Mutually Inclusive	20	29	19.5	29.5	20-30	Mutually Exclusive	20	30	20	30
30-39	Mutually Inclusive	30	39	29.5	39.5	30-40	Mutually Exclusive	30	40	30	40

IL CA D.

5. Mid Point/ Mid Value of Class / Class Mark

$$\frac{\text{LCL+UCL}}{2} \text{ or } \frac{\text{LCB+UCB}}{2}$$

6. Width / Size of Class Interval UCB - LCB

7. Cumulative Frequency

Class	Frequency	Less than type CF	More than type CF
10-20	5	5	18
20-30	2	7	13
30-40	8	15	11
40-50	3	18	3
Total	18		

8. Frequency Density

Frequency of class

Class length of that class

9. Relative Frequency or % Frequency

Frequency of class Total Frequency of table

Class	Englionau	Class	Frequency	Relative	Percent
Class	Frequency	Length	Density	Frequency	Frequency
10-20	5	10	0.5	5/18	27.7%
20-30	2	10	0.2	2/18	11.11%
30-40	8	10	0.8	8/18	44.44%
40-50	3	10	0.3	3/18	16.67%
Total	18				

Graphical Presentation of Frequency Distribution

- 1. **Histogram/ Area Diagram** [refer study material page 14.20 for diagram]
 - a. It is a convenient way to represent FD
 - b. Comparison between frequency of two different classes possible
 - c. It is useful to calculate mode also
 - d. Steps to create
 - Covert CL into CB and plot in x axis
 - Form rectangles taking class interval as base (x axis)
 - And frequency as length (y axis) | Use frequency density in case of uneven length

2. Frequency Polygon

- a. Usually preferable for ungrouped frequency distribution
- b. Can be used for grouped also but only if class lengths are even
- c. Steps to create
 - Plot (x_i, f_i) where x_i = class value (in case of ungrouped), mid value (in case of grouped) and f_i = frequency
 - Join all plotted points to make line segments which eventually will become a polygon (a shape with multiple number of line segments)

3. Ogives/ Cumulative Frequency Graph

- a. Create a table where cumulative frequency is mapped against each CB (Class Boundary) and make a curve by plotting and joining points by line segments. (curve is called Ogive)
- b. This graph can be made by both type of Cumulative Frequency and called as Less than Ogive or More than Ogive
- c. It can be used for calculating quartiles also
- d. If we plot both ogives in same graph, perpendicular line drawn from their intersection towards x axis is cutting axis at Median

4. Frequency Curve

- a. It is a limiting form of Area Diagram (Histogram) or frequency polygon
- b. It is obtained by drawing smooth and free hand curve though the mid points
- c. These are of below four types:
 - Bell Shaped
 - U-Shaped
 - J-Shaped
 - Combination of Curves as Mixed Curve