

Some important definitions:-

- (i) Experiment:- Performance that produces certain results.
- (ii) Trial:- No. of times an experiment is repeated is known as trial.
- (iii) Random Experiment:- Known after experiment is done, Experiment which can result in a several possible outcome.
- (iv) Sample Space:- Set of all possible outcomes associated with random experiment.
- (v) Event: Any subset of sample space is known as event.
- (vi) Simple Event:- Event having only one sample point is known as simple event.
- (vii) Compound Event (Composite Event):
 Combination of two or more simple event is known as compound event.
- (viii) Mutually Exclusive Event:-

When two or more events cannot occur simultaneously is known as mutually Exclusive event.

(ix) Exhaustive Events:-

All the outcomes of the experiment put together are called exhaustive events as no other result outside this can happen as a result of this experiment.

(x) Equally Likely Event:-

If any outcome of the experiment is not favoured or disfavoured compared to other outcomes they are called equally likely events.

(xi) Complementary Event:-

All the sample point of U other than A and is denoted by A'. Event A will not occur.

Definition of probability:-

(i) Classical Definition (Prior Definition):- $P(A) = \frac{\text{No.of favourable events}}{\text{Total No. of events}}$

Limitations: - (a) Total No. of outcomes finite and known.

- (b) Every outcome is equally likely, mutually exclusive and exhaustive.
- (ii) Statistical Definition (Emperical Definition):-
 - (a) Limiting case of classical definition.
 - (b) Also known as posterior definition.

$$P(A) = \lim_{n \to \infty} \frac{F_A}{n}$$

(iii) Modern Definition (Advance and updated Definition) Also known as Axiomatic definition.

Axioms: (a) $O \le P(A) \le 1$

- (b) P(S) = 1
- (c) A_1, A_2, A_3 Exhaustive and exclusive then union is equal to sample space.

Two Important Theorems

1. Addition theorem:- For happening of either A or B.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
.

Note: If A and B are mutually exclusive then $P(A \cap B) = 0$ i.e. $P(A \cup B) = P(A) + P(B)$.

2. Multiplication theorem:- If A and B are two independent events then the probability of simultaneous occurance is given as:- $P(A \cap B) = P(A)$. P(B).

Conditional Probability:- It is the probability of the happening of one event with an assumption that another event has already happened.

$$P(A/B) = \frac{P(A \cap B)}{P(B)}. \quad P(B/A) = \frac{P(A \cap B)}{P(A)}.$$

Law of total Probability:- If E_1 , E_2 E_n are n mutually exclusive events and A is any event associated with E_1 or E_2 or E_n then.

$$P(A) = P(E_1). P(A/E_1) + P(E_2). P(A/E_2) + \dots + P(E_n). P(A/E_n)$$

Mathematical Expectations of a Random Variable: - If x is a random variable which can takes value

 x_1, x_2, \dots, x_n whose probabilities are P_1, P_2, \dots, P_n respectively, then

 $E(x) = \mu = \Sigma P. x = Mean.$ (i).

(ii).
$$E(x^2) = \sigma^2 = \Sigma P x^2 - \mu^2 = E[x - E(x)]^2 = E(x-\mu)^2$$

Note: Variance in random variable $\Sigma P = 1$

Properties of Expected Value:-

- Expectation of a constant K is K. E(K) = K. (i)
- E(x + y) = E(x) + E(y)(ii)
- E(kx) = k.E(x)(iii)
- (iv) E(ax + b) = a E(x) + b
- (v) E(ax + by) = a E(x) + b E(y)
- (vi) E(x.y) = E(x). E(y)
- (vii) E(x y) = E(x) E(y),

1.	When the number of cases favourable to the event A is none then P(A) is equal to [SM]					
	(a) 1	(b) 0	(c) 1	(d) none		
2.	If P(A) = 7/8	then P $({\mathscr{A}}^{\!$				
	(a) 0	(b) 1/2	(c) 7/6	(d) 1/8		
3.	The probabil	ity that exactly one hea	d appears in a single thro	w of two fair coins is[SM]		
	(a) $3/4$	(b) 1/2	(c) 1/4	(d) none		
4.	The probabil	ity that at least one hea	d appears in a single thro	ow of three fair coins is[SM]		
	(a) 1/8	(b) 7/8	(c) 1/3	(d) none		
5.	Two unbiased	l coins are tossed. The _l	probability of obtaining 'l	ooth heads' is[SM]		
	(a) 1/4	(b) 2/4	(c) 3/4	(d) none		
6.	Two unbiased	d coins are tossed. The	probability of obtaining o	ne head and one tail is[SM]		
	(a) 1/4	(b) 2/4	(c) 3/4	(d) none		
7.	Two unbiased	l coins are tossed. The	probability of obtaining b	oth tail is[SM]		
	(a) $2/4$	(b) 3/4	(c) 1/4	(d) none		
8.	Two unbiased	d coins are tossed. The	probability of obtaining a	at least one head is[SM]		
	(a) 1/4	(b) 2/4	(c) 3/4	(d) none		
9.	When two un	biased coins are tossed	l, the probability of obtain	ning 3 heads is[SM]		
	(a) $2/4$	(b) 1/4	(c) 3/4	(d) 0		
10.	When two un	biased coins are tossed,	the probability of obtaining	g not more than 3 heads is[SM]		
	(a) $3/4$	(b) 1/2	(c) 1	(d) 0		
11.	When two un	biased coins are tossed,	the probability of getting b	oth heads or both tails is [SM]		
	(a)1/2	(b)3/4	(c)1/4	(d)none		
12.	Three coins a	re tossed together. The	e probability of getting th	ree tails is[SM]		
	(a) $5/8$	(b) 3/8	(c) 1/8	(d) none		
13.	Three coins are tossed together. The probability of getting exactly two heads is [SM]					
	(a) $5/8$	(b) 3/8	(c) 1/8	(d) none		
14.	Three coins a	re tossed together. Th	e probability of getting at	t least two heads is [SM]		
	(a) 1/2	(b) 3/8	(c) 1/8	(d) none		
15.	Three coins a	are tossed together. The	e probability of getting th	ree tails is:		
	(a) $3/8$	(b) 6/8	(c) 1/8	(d) None of these		
16.	Three coins	are tossed simultaneo	usly. What is the probab	ility that they will fall 2 heads		
	and 1 tail?					
	(a) $3/7$	(b) 3/8	(c) 5/8	(d) None of these		

17.	4 coins are tossed.	The probability tha	it there are 2 h	eads is
	(a) 1/2	(b) 3/8	(c) 1/8	(d) none
18.	If 4 coins are tosed	d. The chance that th	iere should be	two tails is
	(a) 1/2	(b) 3/8	(c) 1/8	(d) none
19.	In a single throw wi	ith two dice the proba	bility of getting a	a sum of five on the two dice is[SM]
	(a)1/9	(b)5/36	(c)5/9	(d) none
20.	In a single throw w	ith two dice, the proba	bility of getting	a sum of six on the two dice is [SM]
	(a)1/9	(b)5/36	(c) 5/9	(d) none
21.	The chance of getti	ng a sum of 10 in a sir	ngle throw with	two dice is [SM]
	(a) 10/36	(b) 1/12	(c) 5/36	(d) none
22.	The chance of getti	ng a sum of 6 in a sing	gle throw with t	wo dice is[SM]
	(a) $3/36$	(b) 4/36	(c) 6/36	(d) 5/36
23.	Two dice with face	marked 1, 2, 3, 4, 5, 6	are thrown sim	ultaneously and the points on the
	dice are multiplied	together. The probab	ility that produ	ct is 12 is[SM]
	(a) 4/36	(b) 5/36	(c) 12/36	(d) none
24.	When a die is tosse	ed, the sample space	is[SM]	
	(a) $S = \{1,2,3,4,5\}$	(b) $S = \{1, 2, 3, 4\}$	(c) $S = \{1, 2, 3\}$	(d) none
25.	Two dice are throv	vn at a time. The pro	bability that th	e numbers shown are equal is[SM]
	(a) $2/6$	(b) 5/6	(c) 1/6	(d) none
26.	Two dice are throw	n at a time. The proba	bility that 'the d	ifference of numbers shown is 1' is $[SM]$
	(a) 11/18	(b) 5/18	(c) 7/18	(d) none
27.	Two dice are thrown	together: The probability	y that 'the event th	te difference of numbers shown is 2' is [SM]
	(a) $2/9$	(b) 5/9	(c) 4/9	(d) 7/9
28.	Two dice are throw	n together. The proba	ability of the eve	ent that the sum of numbers shown
	is greater than 5 is	[SM]		
	(a) 13/18	(b) 15/18	(c) 1	(d) none
29.	The probability of	throwing more than 4	in a single thro	w from an ordinary die is [SM]
	(a) $2/3$	(b) 1/3	(c) 1	(d) none
30.	Probability of thro	wing an odd no with a	n ordinary six f	aced die is[SM]
	(a) 1/2	(b) 1	(c) $-1/2$	(d) 0
31.	Two dice are throw	n at a time. The prob	ability that the r	numbers shown are equal is:
	(a) $5/6$	(b) 2/6	(c) 1/6	(d) None of these

P	ARAS	INSTITUTE OF C	OMMERCE	-16.6-
32.	When two un	biased coins are tossed	. The probability of	getting both heads or both tails is
	(a) 1/4	(b) 1/2	(c) 1/3	(d) None of these
33.	Two unbiased	l coins are tossed. The	probability of obtair	ning at least one head is:
	(a) 1/2	(b) 1/4	(c) 3/4	(d) None of these
34.	What is the p	robability of getting a	n odd number in a t	throw of an unbiased die?
	(a) 1/2	(b) 1/3	(c) 1/5	(d) None of these
35.	Find the prob	oability of getting a nu	mber	
	(i) greater than	2,		
	(a) 1/3	(b) 4/3	(c) 2/3	(d) None of these
	(ii) less than 4,			
	(a) 1/2	(b) 1/4	(c) 4/3	(d) None of these
	(iii) even numbe	er		
	(a) 1/3	(b) 1/2	(c) 2/3	(d) None of these
	(iv) at the most	4 with an ordinary die	e .	
	(a) 1/3	(b) 4/3	(c) 2/3	(d) None of these
36.	A die is tosse	d, find the probability	y of getting	
	(i) even number	•		
	(a) 1/2	(b) 4/3	(c) 2/3	(d) None of these
	(ii) number over	r 4		
	(a) 1/2	(b) 1/4	(c) 1/3	(d) None of these
((iii) number und	er 4		
	(a) 1/3	(b) 1/2	(c) 2/3	(d) None of these
	(iv) number at l	least 3.		
	(a) 1/3	(b) 4/3	(c) 2/3	(d) None of these
37.	Three die are	e rolled simultaneousl	y. Find the probabi	lity of getting a total of
	(i) not more tha	n 5,		
	(a) 5/108	(b) 6/108	(c) 7/108	(d) None of these
	(ii) atleast 15, a	nd		
	(a) 3/54	(b) 5/54	(c) 7/54	(d) None of these
	(iii) exactly 8.			
	(a) 6/72	(b) 7/72	(c) 5/72	(d) None of these
38.	What is the p	orobability of getting	two 'fives' if we thre	ow 2 dice simultaneously?
	(a) 2/36	(b) 5/36	(c) 1/36	(d) None of these

39.	A die is tossed to	wice, Find the proba	ability of getting a	difference of three.	
	(a) 1/3	(b) 1/2	(c) 2/3	(d) 1/6	
40.	If two unbiased	dice are rolled toge	ther , what is the p	robability of getting no diff	ference
	of points ?(SM)				
	(a) 1 / 2	(b) 1 / 3	(c) 1 / 5	(d) 1 / 6	
41.	Two dice are thi	rown together. The p	orobability that 'th	e event the difference of nu	ımbers
	shown is 2' is(S)	M)			
	(a) $2/9$	(b) 5/9	(c) 4/9	(d) 7/9	
42.	A die is tossed t	hrice, Find the prob	oability of getting	a sum of over 14 in three to	sses.
	(a) 5/54	(b) 7/74	(c) 7/54	(d) 8/54	
43.	Two dice with fa	ace marked 1,2,3	, 4 , 5 , 6 are throw	n simultaneously and the p	oints
	on the dice are r	nultiplied together.	The probability th	at product is 12 is	
	(a) 4/36	(b) 5/36	(c) 12/36	(d) none	
44.	Two dice are thro	own at a time. The pro	obability that 'the d	fference of numbers shown i	s 1' is
	(a) 11/18	(b) 5/18	(c) 7/18	(d) none	
45.	Find the probab	bility of getting 4 at	least once in 2 toss	es of a fair die. (SM)	
	(a) 5/6	(b) 7/6	(c) 1/6	(d) None	
46.	If an unbiased o	lie is rolled once, th	e odds in favour of	getting a point which is a n	nultipl
	of 3 is (SM)				
	(a) 1:2	(b) 2:1	(c)1:3	(d) 3:1	
47.	A card is drawn fr	om a well-shuffled pac	k of playing cards. Tl	e probability that it is a spade is	s[SM]
	(a) 1/13	(b) 1/4	(c) $3/13$	(d) none	
48.	A card is drawn f	rom a well-shuffled pa	ck of playing cards. T	The probability that it is a king	is[SM]
	(a) 1/13	(b) 1/4	(c) 4/13	(d) none	
49.	A card is drawn	from a well-shuffled j	oack of playing card	s. The probability that it is th	e ace
	of clubs is[SM]				
	(a)1/13	(b) 1/4	(c)1/52	(d) none	
50.	If probability of d	rawing a spade from a	well-shuffled pack of	olaying cards is 1/4 then the pro	bability
	that of the card dr	awn from a well-shuff	led pack of playing ca	rds is 'not a spade' is[SM]	
	(a) 1	(b) 1/2	(c) 1/4	(d) 3/4	
51.	A card is drawn	form a well-shuffled _l	pack of playing card	s. The probability that it is th	e ace
	of clubs is:				
	(a) 1/7	(b) 1/4	(c) 1/52	(d) None of these	

-16.8-INSTITUTE OF COMMERCE A card is drawn from a well-shuffled pack of playing cards. The probability that it is a king is: 52. (b) 1/4(c) 1/2(d) None of these (a) 1/13Find the chance of getting an ace in a draw from a pack of 52 cards. 53. (b) 3/52(c) 7/52 (a) 4/52What is the probability of getting a king card in draw from a pack of 52 cards? 54. (c) 7/13(d) None of these (b) 1/13What is the probability of getting a spade card in a draw from the pack of 52 cards? 55. (c) 1/5(d) None of these (b) 1/2(a) 1/4 There are 10 balls numbered from 1 to 10 in a box. If one of them is selected at random, 56. what is the probability that the number printed on the ball would be an odd number greater that 4 ?(SM) (c) 0.60(d) 0.30(a) 0.50(b) 0.40Find the probability that a four digit number comprising the digits 2,5,6 and 7 would be 57. divisible by 4. (c) 1/4(d) 1/6(b) 1/3 (a) 1/5Four digits 1, 2, 4 and 6 are selected at random to form a four digit number. What is the **58.** probability that the number so formed, would be divisible by 4 ?(SM) (c) 1 / 4(d) 1/3(a) 1/2 (b)1/5A single letter is selected at random from word 'PROBABILITY'. What is the probability 59. that it is a vowel? (d) 6/11(b) 4/11(c) 5/11(a) 3/11What is the chance that a leap year selected at random will contain 53 Sundays?(SM) 60. (d) 6/7(c) 3/7(a) 2/7(b) 1/7 A bag contains 4 red and 5 green ball is drawn at random. What is the probability that it 61. is red in colour? (d) None of these (a) 4/9(b) 5/9(c) 7/9

A bag contains 10 white and 10 black balls A ball is drawn from it. The probability that it

(c) 1/2

random from the bag, then the probability of not selecting a one rupee coin is:(SM)

A bag contains 15 one rupee coins, 25 two rupee coins and 10 five rupee coins. If a coin is selected at

(c) 0.25

(d) none

(d) 0.20

62.

63.

will be white is

(a) 1/10

(a) 0.30

(b) 1

(b) 0.70

64.	Following are the	wages of 8 v	vorkers ii	Rs.: 50,	62,40,70	, 45 , 50	5,32,45	
	If one of the workers is selected at random, what is the probability that his wage would							
	be lower than the average wage ?(SM)							
	(a) 0.625	(b) 0.500		(c) 0.375		(d) 0.4	150	
65.	A traffic census sh	ow that out	of 1000 v	ehicles pas	sing a junc	tion poi	nt on a hi	ghway 600
	turned to the right.	The proba	bility of a	automob	ile turning	the righ	nt is	
	(a) 2/5	(b) 3/5		(c) 4/5		(d) no	ne	
For C	Q.No. 66 to 69							
	The following tabl	e gives distr	ibution o	fwages of	100 worke	rs -		
	Wages(in Rs.)	120-140	140-160	160-180	180-200	200-220	220-240	240-260
	No. of workers:	9	20	0	10	~8 /	35	18
66.	The probability th	at his wage	s are und	er Rs. 140 i	is			
	(a) 20/100	(b) 9/100		(c) 29/100	igl(igr)	(d) no:	ne	
67.	An individual is se	lected at rai	ndom fro	u the abov	e gruop. T	he proba	ability tha	t his wage
	are under Rs. 160	is:			44			
	(a) 9/100	(b) 20/100		(c) 29/100)/ /	(d) no	ne	
68.	For the above tabl	e the proba	bility tha	this wage:	s are above	e Rs. 200) is.	
*	(a) 43/100	(b) 35/100		(c) 53/100	Ď	(d) 61	/100	
69.	For the above tabl	e the proba	bility tha	t his wages	s between l	Rs. 160 a	and 220 is	
	(a) 30/100	(b) 10/100		(c) 38/100)	(d) 18	/100	
70.	The table below shows the history of 1000 men:							
	(a) Life (in years)	:	60	70	80	90	0	
	No. survived:		1000	500	100	6	0	
	The probability that a man will survived to age 90 is							
	(a) 60/1000°	(b) 160/10	000	(c) 660/10	000	(d) no	ne	
71.	If $P(A) = 3/8$, $P(B)$) = 1/3 then	$P(B^{C})$ is	equal to				
	(a) 1	(b) 1/3		(c) $2/3$	(0	d) none		
72.	If on an average 9	ships out o	f 10 retur	n safely to	a port ,the	probab	ility of on	e ship
	returns safely is							
	(a) 1/10	(b) 8/10		(c) 9/10		(d) no	ne	
73.	A bag contain 6 wh	ite and 5 bla	ck balls. C	ne ball is d	lrawn. The	probabi	lity that it	is white
	is[SM]							
	(a) 5/11	(b) 1		(c) 6/11		(d) 1/	11	

74.	A bag contain	s 10 white and 10 black bal	lls A ball is drawn fro	om it. The probability that it
	will be white i	s[SM]		
	(a) 1/10	(b) 1	(c) 1/2	(d) none
75.	The probabili	ty of drawing a white ball fi	rom a bag containing	3 white and 8 Red balls is [SM]
	(a) $3/5$	(b) 3/11	(c) 8/11	(d) none
76.	A traffic censu	us show that out of 1000 ve	ehicles passing a jund	ction point on a highway 600
	turned to the 1	right. The probability of an	automobile turning	the right is[SM]
	(a) $2/5$	(b) 3/5	(c) 4/5	(d) none
77.	In a non-leap	year, the probability of g	etting 53 Sundays o	r 53 Tuesdays or 53 Thurdays is
	(a) 1/7	(b) 2/7	(c) 3/7	(d) 4/7
78.	A man can k	ill a bird once in three sl	hots. The probabil	ities that a bird is not killed is:
	(a) 1/3	(b) $2/3$	(c) 1	(d) 0.
79.	Let a sample s	pace be $S = \{X_{1}, X_{2}, X_{3}\}$ which	ch of the fallowing de	fines probability space on S ?[SM]
	(a) $P(x_1) = 1/4$	$P(x_2) = 1/3, P(x_3) = 1/3$	(b) $P(x_1)$	$= 0, P(x_2) = 1/3, P(x_3) = 2/3$
	(c) $P(x_1) = 2/3$	$P(x_2) = 1/3, P(x_3) = 2/3$	(d) None	
80.	LetPbea prob	ability function on S={X ₁	X_{2}, X_{3} if $P(X_{1}) = 1/4$ and	$P(X_3) = 1/3$ then $P(X_2)$ is equal to [SM]
	(a) 5/12	(b) 7/12	(c) 3/4	(d) none

Exercise-II

1.	A card is draw	n from a pack of card	s. Find the probabi	lity that it is		
1	(i) either an ace o	or a jack card				
	(a) 3/14	(b) 2/13	(c) 7/12	(d) None		
	(ii) a red card					
	(a) 1/2	(b) 1/3	(c) 1/4	(d) 1/5		
	(iii) either a spad	e or a heart card				
	(a) 1/3	(b) 1/5	(c) 1/3	(d) 1/2		
	(iv) either a club	card or a queen of he	art or a king of spa	ide.		
	(a) 15/52	(b) 15/53	(c) 15/64	(d) 15/54		
2.	A bag contains	4 white, 2 black, 3 yell	ow and 3 red balls.	What is the probability of	getting a	
	white or a red b	all drawn at random?	•			
	(a) 7/13	(b) 7/12	(c) 7/15	(d) Nøne		
3.	A card is draw	n from a pack of 52 c	ards. Calculate the	probability of getting eit	her a	
	king or a queen card.					
	(a) 7/13	(b) 2/13	(c) 7/15	(d) None		
4.	What is the pr	obability of drawing		card from a pack of card	ls?	
	(a) $4/13$	(b) 5/13	(e) 2/13	(d) None		
5.	From 25 ticke	ts marked with first	25 numerals, a ticl	cets is drawn. What is the	e	
	probability th	at a drawn ticket is a	multiple of 3 or 5?			
	(a) 12/35	(b) 13/35	(c) 12/25	(d) None		
6.	A card is draw	vn out of a pack of car	ds. Find the proba	bility that a card is an ac	e, a king,	
	a queen or a c	ard of club.	P			
	(a) 11/26	(b) 13/26	(c) 16/26	(d) None		
7.	Find the proba	bility of getting a king	or an ace card in si	igle draw from a pack of c	ards.	
	(a) 2/13	(b) 10/26	(c) 11/26	(d) None		
8.	From a pack o	of 52 cards, one card is	drawn at random	What is the probability t	hat it will	
	be a queen of clubs or king of diamond?					
	(a) 1/26	(b) 11/26	(c) 15/26	(d) None		
9.	Thirty tickets	of a cinema are mark	ed with first 30 nu	nerals. A ticket is drawn	at random	
	find the proba	bility that it is a mult	iple of 5 or 7.			
	(a) 1/3	(b) 2/3	(c) $5/3$	(d) None		
10.	Find the prob	ability of getting a su	m of 8 or 10 or 11 i	n a single throw of 2 dice.		
	(a) 5/18	(b) 7/18	(c) 9/18	(d) None		
11.	Find the prob	ability of getting a kir	ng or a queen or a j	ack card in a single draw	from pack	
	of cards.					
	(a) 7/13	(b) 3/13	(c) 1/13	(d) None		

		MBILLOID OF CO.				
12.	An urn contains	4 red, 5 black and 6 v	white balls. What is t	the probability that a ball drawn		
	is either red or b	lack in colour?				
	(a) 9/15	(b) 11/15	(c) 5/15	(d) None		
13.	Find the probabi	ility of drawing a car	d of club or a queen	from a pack of cards.		
	(a) 11/13	(b) 4/13	(c) 14/26	(d) None		
14.	A bag contains 5	0 balls numbered fro	om 1 to 50. One ball i	is drawn at random. Find the		
	probability that	a drawn ball is a mul	tiple of 5 or 7.			
	(a) 8/25	(b) 9/25	(c) 10/25	(d) None		
15.	A card is drawn	at random from a pa	ck of cards. Find the	probability that drawn card is		
	either a club car	d or a king card or a	queen card.			
	(a) 5/52	(b) 19/52	(c) 7/52	(d) None		
16.	A card is drawn	from a pack of cards	, find the probability	that drawn card is a red in		
	colour or an ace.					
	(a) 7/13	(b) 5/13	(c) 3/13	(d) None		
17.	A book containi	ng 100 pages numbe	red from 1 to 100 nu	ımerals. A page is opened and		
	selected, find the	probability that op	ened page is a multi	ple of either 9 or 10.		
	(a) 1/5	(b) 3/5	(c) 7/5	(d) None		
18.	A number is selected at random from the first 1000 natural numbers. What is the probability					
	that the number	so selected would be	a multiple of 7 or 11 '	?		
	(a) 0.25	(b) 0.32	(c) 0.22	(d) 0.33		
19.	A, B and C are tl	ree mutually exclusi	ve and exhaustive ev	ents such that $P(A) = 2 P(B) = 3F$		
	(C). What is P (B) ?(SM)					
	(a) 6 / 11	(b) 3 / 11	(c) 1/6	(d) 1 / 3		
20.	If $P(A) = a, P(B) =$	b and $P(A \cap B) = c$ the	en the expression of P ($\mathbf{A'} \cap \mathbf{B'}$) in terms of a , b and c		
	is(SM)					
	(a) 1 - a - b - c	(b) $a + b - c$	(c) $1 + a - b - c$	(d) $1 - a - b + c$		
21.	For two events A	and B, $P(B) = 0.3$, P	P(A but not B) = 0.4 a	and $P(\text{not }A) = 0.6$. The events A		
	and B are(SM)					
	(a) exhaustive	(b) independent	(c) equally likely	(d) mutually exclusive		

Exercise-III

1.	A student is try	ing to seek admission	in either of the two	colleges. The probability that he is
	admitted in firs	t college is 3/5 and th	at in second college is	1/3. Find the probability that he is
	admitted in atle	east one of the college.		
	(a) 0	(b) 0	(c) $\frac{11}{15}$	(d) None of these
2.	The odds in fav	vour of solving quest	10	odds against B in solving the same
	question are 11 :	8. If a question is give	n to both of them, find	the probability that question will be
	solved.	101		
	(a) 0	(b) $\frac{181}{247}$	(c) 0	(d) None of these
3.	A person is know		out of 4 shorts where	as another person is known to hit the
	target in 2 out o	f 3 shots. Find the pro	bability of the target	being hit at all when they both try.
	(a) 0	(b) 11/12	(c) 0	(d) None of these
4.	A person is know	wn to hit the target in	3 out of 4 shots where	as another persons is known to hit 4
	out of 5 shots. F	ind the probability of	the target being hit w	hen they both try.
	(a) $20/19$	(b) 18/20	(c) 19/20	(d) None of these
5.	A problem of p	robability is given to	3 teachers A, B and C	C whose changes of solving it are 2/
	3, 3/4 and 4/5 re	espectively. Find the	probability that the	problem will be soloved.
	(a) 60/60	(b) 59/60	(c) 59/60	(d) None
6.	A problem is gi	ven to three students	,A,B and C whose cl	nances of solving are 1/3, 1/4 and 1/
	5. Find the pro	bability that the prob	lem will be solved.	
	(a) 3/5	(b) 4/5	(c) 2/5	(d) None
7.	A problem in st	tatistics is given to for	ır students A,B,C and	d D Whose chances of solving it are
	½,1/3,1/4 and ½	4. Find the probabili	ty that question is sol	ved.
	(a) 12/16	(b) 13/16	(c) 15/16	(d) None
8.	What is the pro	bability of having at l	east one 'six' from 3 t	hrows of a perfect die ?
	(a) $5/6$	(b) $(5/6)^3$	$(c)1 - (1/6)^3$	(d) $1 - (5/6)^3$
9.	A problem in pr	obability was given to t	three CA students A, B	and C whose chances of solving it are
	1/3,1/5 and 1	/2 respectively. What	is the probability that	the problem would be solved ?(SM)
	(a) 4 / 15	(b) 7 / 8	(c) 8 / 15	(d) 11 / 15

1.	Find the probab	•		here are two children in a family on
	(a) $2/4$	` '	(c) 7/4	
2.	What is the pro	bability of getting he	eads in two throws of	a coin?
	(a) $\frac{2}{4}$	(b) $\frac{1}{4}$	(c) $\frac{3}{4}$	(d) None of these
3	Find the probab	ility of throwing three	ace in three throws of	an unbiased die.
	(a) $\frac{3}{216}$	(b) $\frac{5}{216}$	(c) $\frac{1}{216}$	(d) None of these
4.	A coin and 2 di	e are tossed. Find th	e probability that co	in will fall head and die will show
	even number.			
	(a) $\frac{3}{8}$	(b) $\frac{1}{8}$	(c) $\frac{5}{8}$	(d) None of these
5.	A person itend	s to marry a girl who	is beautiful, gradua	te and employed. The probability
	of getting a be	autiful girl is 30%,	that of a graduate i	is 60% and that of a employed is
	20%. Find the	probability that he i	s married to a girl of	his wisdom.
	(a) $\frac{9}{250}$	(b) $\frac{7}{250}$	(c) $\frac{5}{250}$	(d) None of these
6.	Three ships A,	B and C sail from In	dia to London. Odd	s in favour of their arriving safely
	are 2:5, 3:8 a	and 4 : 7 respectively	y. Find the probabili	ity that they all arrive safely.
	(a) $\frac{27}{887}$	(b) $\frac{24}{847}$	(c) $\frac{25}{887}$	(d) None of these
7.	Find the proba	ability of drawing a l	king, a queen and a l	knave in this order from a pack of
	cards in three s	successive draws pres	suming that cards dr	awn are not replaced.
	(a) $\frac{8}{16575}$	(b) $\frac{3}{16575}$	(c) $\frac{2}{16575}$	(d) None of these
8.	In an urn, ther	e are 12 red and 8 gro	een balls. Two balls a	re drawn at random
	one after anoth	er without being rep	lacing the first. Find	the probability that
	(i) both drawn ball	ls are red,		
	(a) 32/95	(b) 35/33	(c) 33/95	(d) None of these
	(ii) both drawn ba	lls are green, and		
	(a) 14/95	(b) $5/19$	(c) 8/19	(d) None of these
	(iii) first drawn ba	ll is red and second d	rawn ball is green.	
	(a) $\frac{23}{95}$	(b) $\frac{25}{95}$	(c) $\frac{24}{95}$	(d) None of these
9.	Find the proba	bility of throwing two	o ace in two throws of	f an unbaised die.
	(a) 2/36	(b) 5/36	(c) 3/36	(d) 1/36

10.	Find the probab	ility of getting 3 tai	ls in 3 tosses of a coin	l•	
	(a) 3/8	(b) 1/8	(c) 5/8	(d) None	
11.	Two cards are dr	awn from a pack of	cards in succession w	ith replacement of firs	t card. Find
	the probability t	hat both are the car	d of 'heart'.		
	(a) 3/16	(b) 7/16	(c) 1/16	(d) None	
12	A class consists	of 30 boys and 20 gi	rls. 10 of the students	are rich and only 20 s	tudents are
	fair complexione	ed. Find the probabi	llity of selecting a fair	complexioned rich bo	y .
	(a) 8/125	(b) 6/125	(c) 8/125	(d) 4/125	
13	The odds in favou	ar of passing driving t	est by Ram is 3:5 and o	dds in favour of passing	the same test
	by Sohan is 3:2. W	Vhat is the probability	that both will pass the	test?	
	(a) 9/40	(b) 7/40	(c) 5/40	(d) None	
14	Find the probab	ility of drawing a k	ing and an ace in this	order from a pack of o	ards in two
	successive draw	s presuming that fir	st card drawn is not i	eplaced.	
	(a) 6/663	(b) 8/663	(c) 4/663	(d) None	
15.	Two cards are di	rawn from a pack of	cards in succession w	rithout replacing first o	ne. Find the
	probability that l	both are the cards of			
	(a) 3/17	(b) 1/17	(c) 5/17	(d) None	
16.	An article consi	sts of two parts 9 ou	t of 100 are likely to	be defective in first pa	rt and 5 out
	of 100 are likely	to be defective in se	cond part. Find the p	robability that assemb	led part will
	not be defective	/ / / · · · · · · · · · · · · · · · · ·			
	(a) 0.8645	(b) 0.8646	(c) 0.8645	(d) None	
17.	If $P(\overline{A} \cup \overline{B}) = 5$		$(\overline{B}) = 2/3$, what is P (
	(a) 1/3	(b) 5 / 6	` *	(d) 4 / 9	
18.	What is the probabilities 364×363×362		lected at random would	have different birthdays?	(SM)
	(a) $\frac{304\times303\times302}{(365)^3}$	(b) $\frac{6 \times 5 \times 4}{7^3}$	(c) 1/365	(d) $(1/7)^3$	
19.	The odds in fav	our of one student p	passing a test are 3:7.	The odds against ano	ther student
	passing at are 3:	5. The probability th	at both pass is		
	(a) 7/16	(b) 21/80	(c) 9/80	(d) 3/16	
20.	The odds in aga	inst of one student	passing a test are 3:7	. The odds favour ano	ther student
	passing at are 3:	5. The probability th	at both pass is		
	(a) 7/16	(b) 21/80	(c) 9/80	(d) 3/16	
21.	A speaks truth	in 60% cases and	B in 70% cases. In v	what percentage of ca	ses are they
	likely to contrac	dict each other in st	ating the same fact?		
	(a) 48%	(b) 45%	(c) 46%	(d) None	

		VSIIIUIE OF C			
22.	A bag contains 5	red and 3 black ba	alls. Another bag cont	ains 6 red and 4 black balls. If	one
	ball is drawn from	m each bag, find tl	ne probability that on	e is red and other is black ball.	
	(a) 19/40	(b) 17/40	(c) 15/40	(d) None	
23.	A bag contains 10	red and 5 white b	oalls. Four balls are d	rawn one by one without repla	cing
	the previous one.	. Find the probab	ility that they are alto	ernatively of different colour.	
	(a) $\frac{12}{91}$	(b) $\frac{10}{91}$	(a) 8	(d) NOne	
	<i>7</i> 1	71	71	(d) NOne	
24.	The odds against	a certain event ar	e 5 : 2 and odds in fav	our of another event are 7 : 3. I	ind
	the probability th	at			
(i) only one event w	ill take place			
	(a) 39/17	(b) 41/70	(c) 39/70	(d) None of these	
(ii) atleast one even	t will take place.			
	$(a) \frac{13}{}$	(b) $\frac{9}{14}$	(c) $\frac{11}{}$	(d) None	
	7.4	11			•
25.			_	nst Pakistan is 1/3. If they pl	ay 3
		e probability that-	. -		
(1	i) India will win all		(a) 9/27	(d) None	
	()	(b) 1/27	(c) 8/27	(d) None	
(1	i) India will lose al		(a) 9/27	(d) None	
<i>(</i> :	` '	(b) 19/27	(c) 8/27	(d) None	
()	iii) India will win at	(b) 19/27	(c) 8/27	(d) None	
6	(a) 17727 iv) India will win at	` ,	(C) 8/21	(d) None	
ζ.	,		(c) 5/27	(d) None	
26.	` '	` '	` '	dom from each group. The gro	ouns
20.	_			l girl and 3 boys. Find the probab	
		ildren consist of 1		1	v
	(a) $\frac{13}{32}$	(b) $\frac{11}{32}$	(c) $\frac{15}{32}$	(d) None	
27.	A bag contains 5			tains 4 red and 6 green balls. A	ball
	is drawn from fir	st bag and is place	ed in second. A ball is	then drawn from second bag. V	Vhat
	is the probability	y that it is red?			
	(a) $\frac{43}{99}$	(b) $\frac{45}{99}$	$(a) \frac{41}{}$	(d) None	
		,,		•	
28.				uming that drawn cards are repla	aced.
	•	•	awn cards are of the sa		
	(a) $3/4$	(b) 1/4	(c) 5/4	(d) None	

(d) None

(b) 5/20

A husband and a wife appear in an interview for 2 vacancies for the same post. The probability

of selection of husband is 4/5 and that of wife is 3/4. Find the probability that only one of them is

(c) 3/20

selected. (a) 7/20

29.

30.	A bag contains 4	red and 5 green balls.	Another bag contain	is 5 red and 7 green balls. If one ball
	is drawn from ea	ch bag, find the proba	ability that one is red	and one is green ball.
	(a) 51/108	(b) 55/108	(c) 53/108	(d) None
31.	Two balls are dra	awn from a bag conta	aining 5 white and 7	black balls at random. What is the
	probability that t	hey would be of differ	ent colours?	
	(a) 35/66	(b) 30/66	(c) 12 / 66	(d) none of these
32.	What is the chand	ce of getting at least on	ie defective item if 3 i	tems are drawn randomly from a lot
	containing 6 item	ns of which 2 are defe	ctive item ?	
	(a) 0.30	(b) 0.20	(c) 0.80	(d) 0.50
33.	A box contains 5	white and 7 black b	alls. Two successive	drawn of 3 balls are made (i) with
	replacement (ii) v	vithout replacement.	The probability that	the first draw would produce white
	balls and the seco	ond draw would prod	uce black balls are r	espectively.(SM)
	(a) 6 / 321 and 3 /	926	(b) 1/20 and 1	/ 30
	(c) 35 / 144 and 3	5 / 108	(d) 7/968 and	5 / 264
34.	There are three b	oxes with the following	ng composition :(SM	I)
	Box I : 5 Red + 7	White + 6 Blue balls	Box II: 4 Red	+ 8 White + 6 Blue balls
	Box III: 3 Red +	4 White + 2 Blue bal	D	
	If one ball is draw	vn át random from ea	ch box, then what is	the probability that they would be of
	same colour?			
	(a) 89 / 729	(b) 97 / 729	(c) 82 / 729	(d) 23 / 32
35.	A bag contains 8	3 red and 5 white ba	lls. Two successive	draws of 3 balls are made without
	· · · •		e probability that the	e first draw will produce 3 white balls
	and the second 3	red balls is (SM)		
	(a) 5 / 223	(b) 6 / 257	(c) 7 / 429	(d) 3 / 548
36.	There are two b	oxes containing 5 wl	nite and 6 blue balls	s and 3 white and 7 blue balls and
				d a ball is drawn from it, then the
	probability that t	the ball is blue is (SM))	
	(a) 115 / 227	(b) 83 / 250	(c) 137/220	(d) 127/250
37.	•	ě ,	·	survival probabilities for these three
	•	•	-	ely. What is the probability that at
	least two of them	would survive anoth	er five years ?(SM)	
	(a) 0.425	(b) 0.456	(c) 0.392	(d) 0.388

38.	Tom speaks truth	Tom speaks truth in 30 percent cases and Dick speaks truth in 25 percent cases. What is the						
	probability that th	ey would contradict ea	ch other ?(SM)					
	(a) 0.325	(b) 0.400	(c) 0.925	(d) 0.075				
39.	An urn contains 8 re	d,3 white and 9 blue balls.	If 3 balls are drawn at r	andom, determine the probability that				
(i) all 3 are red							
	(a) 14/285	(b) 3/95	(c) 7/95	(d) None				
(ii) all 3 are white							
	(a) 5/98	(b) 1/1140	(c) 7/95	(d) None				
(iii) 2 are red and 1 blu	ie ball						
	(a) 5/98	(b) 21/95	(c) 7/95	(d) None				
(iv) one of each colour	is drawn						
	(a) 5/98	(b) 3/95	(c) 18/95	(d) None				
(v) balls are drawn in o	order red, white and blu	e.					
	(a) 5/98	(b) 3/95	(c) 7/95	(d) None				
40.	From a pack of 52	cards, two cards are d	rawn at random. Fir	nd the chances that one is king and				
	other is jack.							
	(a) 7/663	(b) 5/663	(c) 8/663	(c) None				
41.	Find the probabil	ity of drawing 4 cards	of different suits in	4 successive draws from a pack of				
	cards.							
	(a) 2197/20825	(b) 2199/20825	(c) 2196/20825	(d) None				
42.	An urn contains 4	red, 5 green and 6 bl	ack balls. Three bal	ls are drawn at random. Find the				
	probability that th	ey will be of black colo	urs.					
	(a) 5/93	(b) 4/91	(c) 3/93	(d) None				
43.	A bag contains 4 v	white. 5 red and 6 gree	n balls. Three balls :	are drawn at random. What is the				
	chance that a whit	te, a red and a green ba	ıll is drawn?					
	(a) 23/91	(b) 21/91	(c) 24 / 91	(d) None				
44.	From a pack of car	rds, 4 cards are drawn,	, find the probability	that				
	(i) they are different	suit.						
	(a) $\frac{2197}{20825}$,	(b) $\frac{1}{270725}$,	(c) $\frac{44}{4165}$.	(d) None				
(ii) the are all king,an		4103					
	(a) 1/270725	(b) 2175/270725	(c) 44/4165	(d) None				
((iii) they are of same	suit						
	(a) 1/270725	(b) 2175/270725	(c) 44/4165	(d) None				

45. A packet of 10 electronic components is known to include 2 defectives. If a sample of 4 components is selected at random from the packet, what is the probability that the sample does not contain more than 1 defective?

(a) 1/3

(b) 2/3

(c) 13 / 15

(d) 3 / 15

		IL.	Axer cise - v		
1.	In connection wi	ith a random experim	ent, it is found that (S	SM)	
	P(A) = 2/3,	P(B)=3/5 and P($(\mathbf{A} \ \mathbf{or} \ \mathbf{B}) = 5/6$		
	Evaluate the foll	owing probabilities:			
	(i) P (A / B)				
	(a) 13/18	(b) 13 / 60	(c) 31/60	(d) 0.775	
	(ii) P (B/A)				
	(a) 13/20	(b) 13 / 60	(c) 31/60	(d) 0.775	
	(iii) P(A'/B)				
	(a) 0.655	(b) 13 / 60	(c) 31/60	(d) 5/18	
	(iv) P (A / B ')				
	(a) 0.655	(b) 13 / 60	(c) 31/60	(d) 7/12	
	(v) P(A'/B')				
	(a) $5/12$	(b) 13 / 60	(c) 31/60	(d) 0.775	
2.	Given that for two	o events A and B , $P(A) =$		$P(A \cup B) = 3/4$, what is	P(A/B)?(SM)
	(a) 0.655	(b) 13 / 60		(d) 0.775	
3.	If $P(A) = 2/3$,	P(B) = 3/4, P(A/B) =	2/3, then what is P	(B/A) ?(SM)	
	(a) 1 / 3	(b) 2 / 3	(c) $3/4$	(d) 1 / 2	
4.	It is given that a	family of 2 children h	as a girl, what is the	probability that the oth	er child is also
	a girl ?(SM)				
	(a) 0.50	(b) 0.75	(c) 1/3	(d) 2 / 3	
5.	Two coins are to	ossed simultaneously.	What is the probabil	lity that the second coin	would show a
	tail given that t	he first coin has show			
	(a) 0.50	(b) 0.25	(c) 0.75	(d) 0.125	
6.				Physics, Chemistry and	
	*	_		random, what is the pr	obability that
	he passed in Ph	ysics if it is known tha			
	(a) 1 / 2	(b) 1 /3	(c) $1/4$	(d) 1 / 6	
7.	Given that P (A			what is P(A'/B')(SM)	
	(a) 1 / 2	(b) 7 / 8	(c) 5 / 8	(d) 2 / 3	
8.	In formula $P(\frac{B}{2})$	B/A), $P(A)$ is(SM)			
	(a) greater than z	ero	(b) less than ze	ero	
	(c) equal to zero		(d) greater than	•	
9.	A family has 2 c	hildren. The probabil	ity that both of them	are boys if it is known th	at one of them
	is a boy				
	(a) 1	(b) 1/2	(c) 3/4	(d) none	

10.	The Probability o	f the occurrence of a 1	number greater then 2	in a throw of a die if it is	known that
	only even numbe	rs can occur is :			
	(a) 1/3	(b) 1/2	(c) 2/3	(d) none	
11.	There are two uri	ns. The first urn conta	ins 3 red and 5 white	oalls whereas the second	urncontains
	4 red and 6 whit	e balls. A ball is take	n at random from th	e first urn and is transf	erred to the
	second urn. Now	another ball is selecte	d at random from the	second urn. The probab	ility that the
	second ball woul	d be red is :(SM)			
	(a) 7 / 20	(b) 35 / 88	(c) 17 / 52	(d) 3 / 20	
12.	Consider Urn 1:2	2 white balls, 3 black	balls		
	Urn II : 4 white b	alls, 6 black balls one	ball is randomly tran	sferred from first to seco	nd urn, then
	one ball is drawn	from II Urn. The pro	bability that drawn k	pall is white is	
	(a) 22/65	(b) 22/46	(c) 22/55	(d) 21/45	
13.	An urn contains	2 red and 1 green balls	s. Another urn contain	ns 2 red and 2 green balls	. An urn was
	selected at rando	m and then a ball was	drawn from it. If it wa	s found to be red then the	probaibility
	that it has been d	lrawn from urn one is			
	(a) 4/7	(b) 3/7	(c) 2/3	(d) 7/12.	
14.	A bag contains 4	white and 5 red balls	and another bag con	ains 4 red and 5 white ba	alls. One bag
	is chosen at rand	om and a draw of 2 ba	ills is then made. Find	the probability that one	is white and
	other is red.		y.		
	(a) 3/9	(b) 7/9	(c) 5/9	(d) None	
15.	A bag contains 5	red and 3 black ball	s and second bag con	tains 4 red and 5 black	balls. One of
	these bag Is selec	ted at random and a d	lraw of 2 balls is mad	e from it. What is the pro	bability that
	one of them is re	d and other is black?	•		
	(a) 275/503	(b) 275/504	(c) 275/507	(d) None	
16.	8 balls are placed	d at random in three k	oags. What is the pro	oability that the first bag	will contain
	3 balls ?(SM)				
	(a) 0.2731	(b) 0.3256	(c) 0.1924	(d) 0.3443	
17.	X and Y stand i	n a line with 6 other	people. What is the	probability that there a	re 3 persons
	between them ?((SM)			
	(a) 1 / 5	(b) 1/6	(c) 1 / 7	(d) 1/3	

						CISC - V				
1.	What i	s the ex	pectation	ı of getti	ng a su	m of less t	han 4 in	a throw o	of 2 dice in 600 t	rials?
	(a) 48		(b)) 50		(c) 47		(d) No	one	
2.	If the p	robabil	ity of a p	erson sel	ected fo	r the post	of a lectu	arer with	Ph.D.is 0.4 and	0.6 if he/
	she has	she has previous experience. The probability is 0.2 if he/she has both. Out of 200 applicants,								plicants,
	what is	the exp	ected nu	mber tha	at select	ed candid	ate is eith	ner Ph.D.	or has some exp	erience?
	(a) 160		(b)) 159		(c) 157		(d) No	one	
3.	A and I	3 play fo	r a prize	of Rs. 99	. The pr	ize is to be	won by a	player w	ho first throws 6	with one
	die. A f	irst thro	ws and i	f he fails	B throv	vs and if h	e fails A a	again thro	ows and so on. F	ind their
	respect	tive exp	ectations	,						
	(a) 54,4	45	(b) 44, 55		(c) 43,	56	(d) No	one	
4.	An unb	oiased co	in is toss	ed three	times. Fi	ind the exp	ected val	lue of the	number of heads	and also
	its stan	dard de	viation.(S	SM)						
	(a) 1.2	; 0.86	(b)1.3; 0.8	5	(c)1.5;	0.87	(d) No	one	
5.	In a bu	siness v	enture, a	man car	ı make a	a profit of	Rs. 50,00	00 or incu	r a loss of Rs.20,	000. The
	probab	oilities of	making	profit or	incurrin	ng loss , fro	m the pa	st expe	rience, are kno	wn to be
	0.75 an	d 0.25 r	espective	ly. What	is his e	xpected pr	ofit ?(SM	1)		
	(a) Rs.	32,400	(b) Rs. 32,	500	(c) Rs.	32,600	(d) No	one	
6.	A box	contain	s 12elect	ronic la	mps of	which 5 a	re defecti	ives. A m	an selects three	lamps at
	randor	n.What	is the exp	ected nu	ımber of	f defective	lamps in	his selecti	ion?(SM)	
	(a) 1.24	1	(b	1.25		(c) 1.20	5	(d) No	one	
7.	Moidu	l draws :	2 balls fr	om a bag	g contair	ning 3 whi	te and 5 r	ed balls. l	He get Rs. 500	if he
	draws	a white	ball and l	Rs. 200 if	f he drav	ws a red b	all. What	is his exp	ectation? If he is	asked to
	pay Rs	. 400 for	paticipa	ting in th	e game,	would he	consider	it a fair ga	me and particip	ate?(SM)
	(a) Rs.	624	(b) 623		(c) Rs.	625	(d) No	one	
8.	A num	ber is sel	lected at 1	andom f	rom a se	et containi	ng the firs	st 100 natı	ıral numbers and	d another
	numbe	r is selec	ted at rai	ıdom fro	m anoth	er set cont	aining the	e first 200	natural numbers	s. What is
	the exp	ected va	alue of th	e produc	t?(SM)					
	(a) 507	3.25	(b) 5075.25	5 .	(c) 507	6.00	(d) N	one	
9.	A dice	is throv	vn repea	tedly till	a 'six' a	appears. V	Vrite dov	vn the sai	nple space. Also	find the
	expect	ed numb	er of thr	ows.(SM))					
	(a) 5		(c) 4		(c) 6		(d) N	one	
10.	A rand	lom vari:	able x has	the follo	wing pro	obability d	istributio	n. What is	the value of k.(S	M)
	X :	0	1	2	3	4	5	6	7	
	P(X) :	0	2k	3k	k	2k	$\mathbf{k}^{^{2}}$	$7k^2$	$2k^2+k=1$	
	(a) 2/10)	(b) 1/10		(c) $3/1$	0	(d) N	one	

11.	The probability of winning of a person is $6/11$ and at a result he gets Rs. $77/=$. The exp				
	of this person is				
	(a) Rs. $35/=$	(b) Rs. $42/=$	(c) Rs. $58/=$	(d) none	
12.	If x and y are inde	ependent, then			
	(a) $E(xy) = E(x) \times I$	E(y)	(b) $E(xy) = E(x) +$	-E(y)	
	(c) E (x - y) = E(x)	+E(y)	(d) E(x - y) = E(x))+x E(y)	
13.	If a random varia	ble x assumes the valu	$\cos x_1, x_2, x_3, x_4$ with col	rresponding probabilities p_1, p_2, p_3 ,	
	p ₄ then the expec	ted value of x is			
	(a) $p_1 + p_2 + p_3 + p_4$		(b) $x_1 p_1 + x_2 p_3 + x_3$	$x_{3}p_{2}+x_{4}p_{4}$	
	(c) $p_1 x_1 + p_2 x_2 + p$	$p_3 x_3 + p_4 x_4$	(d) none of these		
14.	f(x), the probabil		random variable x sa		
	(a) f(x) > 0	(b) $\sum_{x} f(x) = 1$	(c) (a) or (b) (d)	$f(x) \ge 0 \text{ and } \sum_{x} f(x) = 1$	
15.		dom variable x is giv	en by (SM)		
	(a) $E(x-\mu)^2$	(b) $E[x-E(x)]^2$	(c) $E(\chi^2 - \mu)$	(d) (a) or (b)	
16.	If x and y are rar	idom variables havir	g expected values as	4.5 and 2.5 respectively, then the	
	expected value of	f(x - y) is			
	(a) 2	(b) 7	(c) 6	(d) 0	
17.	If a random varia	ble x assumes the val	ues 0, 1 and 2 with pro	obabilities 0.30, 0.50 and 0.20, then	
	its expected valu	e is (SM)			
	(a) 1.50	(b) 3	(c) 0.90	(d) 1	
18.	The probability d	istribution of a rando	m variable x is given l	below:	
	x: 1	2) 4	5	6	
	$y: \qquad 0.15$	0.25	20 0.30	0.10	
	What is the stand	lard deviation of x ?(SM)		
	(a) 1.49	(b) 1.56	(c) 1.69	(d)1.72	
19.	A packed of 10 e	lectronic component	s is known to include	e 3 defectives. If 4 components are	
	selected from the	packet at random , wh	at is the expedted valu	ue of the number of defective ?(SM)	
	(a) 1.20	(b) 1.21	(c) 1.69	(d) 1.72	
20.	The probability t	hat there is at least on	e error in an account	statement prepared by 3 persons A	
	, B and C are 0.2,	0.3 and 0.1 respective	ely. If A , B and C prep	oare 60, 70 and 90 such statements,	
	then the expected	l number of correct s	tatements(SM)		
	(a)170	(b) 176	(c)178	(d) 180	
21.	A bag contains 6	white and 4 red balls	. If a person draws 2 b	oalls and receives Rs. 10 and Rs. 20	
	_		then his expected am		

(c) Rs. 29

(d) Rs. 28

(b) Rs. 26

(a) Rs. 25

22. The probability distribution of a random variable is as follows:				lows:					
	x :	1	2	4	6	8			
	p :	k	2k	3k	3k	k			
	The	varian	ce of x is	S					
	(a) 2	.1		(b) 4	.41		(c) 2.32	(d) 2.47	
23.	The	expect	ed numl	ber of h	ead in 1	100 tos	ses of an unbiase	d coin is	
	(a) 1	00		(b) 5	0		(c) 25	(d) none	
24.	Whe	en expe	ected val	lue is no	egative	the res	sult is		
	(a) fa	vourab	le	(b) uı	nfavoura	able	(c) both	(d) none to these	
25.	The	expect	ed value	e of X,	the sum	of the	scores , when tw	o dice are rolled is	
	(a) 9			(b) 8			(c) 6	(d) 7	

Addition Theorem of Probability states that for any two events A and B,

B: Peter is a voter of Kolkata.

(d) $P(A \cup B) = P(A) \times P(B)$

(b) $P(A \cup B) = P(A) + P(B) + P(A \cap B)$

(d) A: Peter is under 15 years of age.

(c) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(a) $P(A \cup B) = P(A) + P(B)$

10.

11.	If two events cannot occur	r simultaneous	ly in the sam	ie trial then t	hey are			
	(a) mutually exclusive even	ts (b) simple of	events (c)	favourable e	vents	(d) none		
12.	If for two events A and B	$P(A \cup B) = 1,$	then A and	B are				
	(a) Mutually exclusive even	ts (b) Equally l	ikely events	(c) Exhausti	ve events	(d) Dependent		
13.	If an unbaised coin is toss	ed once, then	the two ever	nts Head and	l Tail are			
	(a) Mutually exclusive	(b) Exhaustiv	e (c) Equal	lly likely	(d) All these	e(a),(b) and (c)		
14.	For two events A and B, I	$P(A \cup B) = P(A)$	A + P(B) onl	y when				
	(a) A and B are equally likely	events	(b) A and B	are exhaustiv	e events			
	(c) A and B are mutually ind	ependent	(d) A and B	are mutually	exclusive			
15.	For any two events A and B, (SM)							
	(a) $P(A) + P(B) > P(A \cap B)$	$(b) P(A) + P(B) < P(A \cap B)$						
	(c) $P(A) + P(B) \ge P(A \cap A)$	B)	(d) $P(A) \times$	$P(B) \le P(A)$	∩ B)			
16.	If A and B mutually exclu	sive events , th	en(SM)					
	(a) $P(A) = P(A - B)$ (b) 1	P(B) = P(A - B)	(c) P(A	$= P(A \cap B)$) (d) P	$P(B) = P(A \cap B)$		
17.	If A, B and C are mutual	y exclusive an	d exhaustiv	e events then	what is the	probability that		
	they occur simultaneousl	y ?						
	(a) 1 (b) 0	.50	(c) 0		(d) any value	between o and 1		
18.	All possible outcomes of	random expe	iment form	s the[SM]				
	(a) events (b)	sample space	(c) both		(d) none			
19.	If one of outcomes canno	t be expected to	occur in pi	reference to 1	the other in a	ın experiment		
	the events are[SM]							
	(a) simple events (b)	compound event	ts (c) favou	rable events	(d) equally li	kely events		
20.	If two events cannot occu	r simultaneous	sly in the sar	ne trial then	they are[SM	[]		
	(a) mutually exclusive event	s (b) simple e	vents (c) favourable	events	(d) none		
21.	The definition of probabili	ty fails when the	no of possibl	e outcomes of	f the experime	ent is infinite[SM]		
	(a) True	(b) false	(c) both		(d) none		
22.	The terms "chance" and	probability are	synonymou	ıs[SM]				
	(a) True	(b) false	(c) both		(d) none		
23.	Probability of the sample	e space is[SM]						
	(a) 0	(b) 1/2	(c) 1		(d) none		
24.	Sum of all probabilities of	of mutually exc	lusive and e	xhaustive ev	ents is equal	to[SM]		
	(a) 0	(b) $1/2$	(c) 3/4		(d) 1		

25.	P(B/A) defines the pr	obability that ev	ent B occurs	on the assumption tha	tAhas happened[SM]
	(a) Yes	(b) no		(c) both	(d) none
26.	The complete group	of all possible ou	itcomes of a r	andom experiment giv	ven an set of events.[SM]
	(a) mutually exclusive	(b) exl	naustive	(c) both	(d) none
27.	When the event is 'c	ertain' the pro	bability of it	is[SM]	
	(a) 0	(b) 1/2	2	(c) 1	(d) none
28.	The classical definit	ion of probabil	lity is based o	on the feasibility at su	bdividing the possible
	outcomes of the exp	eriments into[S	SM]		
	(a) mutually exclusive	and exhaustive	(b) mutually	exclusive and equally l	ikely
	(c) exhaustive and equ	ally likely	d) mutually	exclusive, exhaustive ar	id equally likely cases.
29.	Probability of occur	rrence of at lea	st one of the	events A and B is der	ioted by[SM]
	(a) P(AB)	(b) $P(A+B)$		(c) P(A/B)	(d) none
30.	Probability of occu	rrence of A as v	well as B is d		
	(a) P(AB)	(b) $P(A+B)$		(c) P(A/B)	(d) none
31.	Which of the follow	ing relation is t			
	(a) $P(A) - P(A^{C}) = 1$	` ´ ` ` ` ` ` ` ` ` ` ` `	<u></u>	(c) $P(A) P(A^c) = 1$	
32.	If events A and B are I	mutually exclusi	ve, the proba	bility that either Aor B	occurs is given by [SM]
	(a) $P(A+B) = P(A) - 1$	P(B)	-	(b) P (A+B)=P(A))+ P(B)- P(AB)
	(c) $P(A+B) = P(A)$ -			(d) P (A+B) = P(A	
33.	-			f the 2 events A and B	(which may not be
	mutually exclusive)	is given by[SM	1]		
	(a) $P(A+B)=P(A)-P(A)$			(b) P(A+B) = P(A))+ P(B)- P(AB)
	(c) P(A+B)= P(A)-F			(d) P(A+B) = P(A)	
34.			-		well as B is given by [SM]
	(a) $P(AB) = P(A/B)$	• • • • • • • • • • • • • • • • • • • •	, , , ,	(c) P(AB) = P(A)P	
35.				A and B are said to be	
	(a) dependent	(b) independe		(c) equally like	(d) none
36.	~	•	ent B on the a	ssumption that anoth	er event A has actually
	occurred is given by				
	(a) $P(B/A) = P(AB)/P$	(A)		(b) $P(A/B) = P(AB)$	
	(c) $P(B/A) = P(AB)$			(d) P(A/B) = P(AB)	s)/P(A)P(B)
37.	If $P(A)=1/3$, $P(B)=$				
	(a) not equally likely	(b) mutually ex	kclusive	(c) equally likely	(d) none

38.	If events A and B are independent then[SM]								
	(a) A ^C and B ^C are de	pendent	(b) A ^c and B are dependent						
	(c) A and B^{C} are dependent	endent	$(d) A^{C}$ and	B ^C are also indepe	endent				
39.	Probability mass fur	nction is always[SM]							
	(a)0	(b) greater than 0	(c) greater than ec	d) less than (
40.	The sum of probabi	lity mass function is e	qual to[SM]						
	(a) -1	(b) 0	(c) 1		(d) none				
41.	When X is a continuous function f(x) is called [SM]								
	(a) probability mass f	unction	(b) probab	ility density function	on				
	(c) both		(d) None					
42.		dependent then[SM]	(1) 7 (7) (4)) P(4P)P(P)					
	(a) $P(B/A) = P(AB) I$	P (A))=P(AB)P(B)					
40	(c) P(B/A) = P(B)		(d) P(B/A))P(A)					
43.	•	ue is negative the resu) none to the char					
4.4	(a) favourable	(b) unfavourable	(c) both (d) none to the above	C				
44.	In formula P(B/A),		(c) equal to zero	(d) greater ther	agual ta zero				
4.5	(a) greater than zero	(b) less than zero	. , .	, , •	requar to zero				
45.		are mutually exclusi							
4.6	(a) not disjoint	(b) disjoint	(c) equally likely	(d) none					
46.		nce in tossing two coin	-	(TI) (TT)					
	(a) {(H,H),(H,T),(T,H		, , , , ,	(T,H),(T,T)					
	(c) {(H,H),(H,T),(T.H		(d) none	& .					
47.		A ^C its a complementa		_	(4)				
		(b) $P(A^{C})=1-P(A)$		1 + P(A°)	(d) none				
48.		vere S is the sample sp			(1)				
	(a) -1	(b) 0	(c) 1		(d) none				
49.		is certain, P(A) is eq			/ 1 \				
	(a) 1	(b) 0	(c) -1		(d) none				
50.		outcomes is favourabl							
	(a) certain	(b) sample	(c) imposs		(d) none				
51.		om a well shuffled dec		$rac{1}{2}$: "a king or a $f q$	ueen is				
	_	en or a jack is drawn",							
	(a) E_1 and E_2 are exclu		•	E ₂ are independen	ıt				
	(c) E, and E, are not in	ndependent	(d) none of these						

52.	Initially, probability	was a branch of [SM]					
	(a) Physics	(b) Statistics	(c) Mathematics	(d) Economics.			
53.	Two broad divisions	of probability are [SI	M]				
	(a) Subjective probabil	lity and objective proba	ability				
	(b) Deductive probability and non-deductive probability						
	(c) Statistical probabili	ty and Mathematical pr	obability				
	(d) None of these.						
54.	Subjective probabili	ity may be used in [SI	M]				
	(a) Mathematics	(b) Statistics	(c) Management	(d) Accountancy.			
55.	An event that can be	split into further ev	ents is known as [SM				
	(a) Complex event	(b) Mixed event	(c) Simple event	(d) Composite event.			
56.	If $P(A \cap B) = 0$, then	the two events A and	l B are [SM]				
	(a) Mutually exclusive	(b) Exhaustive	(c) Equally likely	(d) Independent			
57.	If for two events A a	nd B, P(AUB) = 1, th	ien A and B are [SM]				
	(a) Mutually exclusive	events (b) Equally li	kely events (c) Exhaus	stive events (d) Dependent events.			
58.	If an unbiased coin	is tossed once, then t	he two events Head a	nd Tail are [SM]			
	(a) Mutually exclusive	(b) Exhaustiv	ve (c) Equally likely	(d) All these (a), (b) and (c).			
59.	If $P(A) = P(B)$, then	the two events A and	l B are [SM]				
	(a) Independent	(b) Dependent	(c) Equally li	kely (d) Both (a) and (c).			
60.	If for two events A a	$\mathbf{nd} \ \mathbf{B}, \mathbf{P}(\mathbf{A} \cap \mathbf{B}) \neq \mathbf{P}$	$(A) \times P(B)$, then the t	wo events A and B are [SM]			
	(a) Independent		(b) Dependent				
	(c) Not equally likely		(d) Not exhaustive.				
61.	If $P(A/B) = P(A)$, the	en [SM]					
	(a) A is independent of	of B (b) B is independent	ndent of A (c) B is dep	pendent of A (d) Both (a) and (b).			
62.	If two events A and	B are independent, t	hen [SM]				
	(a) A and the complen	nent of B are independent	ent				
	(b) B and the compler	ment of A are independ	ent				
	(c) Complements of A	A and B are independen	nt				
	(d) All of these (a), (b) and (c).					
63.	If two events A and	B are independent, t	hen [SM]				
	(a) They can be mutua	lly exclusive	(b) They can not be r	nutually exclusive			
	(c) They can not be ex	thaustive	(d) Both (b) and (c)	•			

64.	64. If two events A and B are mutually exclusive, then [SM]					
	(a) They are always in	dependent	(b) They may be inde	pendent		
	(c) They can not be inc	dependent	(d) They can not be e	ey can not be equally likely.		
65.	If a coin is tossed tw	rice, then the events 'oo	ccurrence of one hea	d', 'occurrence of 2 heads'		
	and 'occurrence of r	no head' are [SM]				
	(a) Independent	(b) Equally likely	(c) Not equally likely	(d) Both (a) and (b).		
66.	If $P(A) = 0$, then the	e event A [SM]				
	(a) will never happen	(b) will always happen	(c) may happen	(d) may not happen		
67.	If $P(A) = 1$, then the	e event A is known as [SM]			
	(a) symmetric event	(b) dependent event	(c) improbable event	(d) sure event.		
68.	If p: q are the odds	in favour of an event,	then the probability	of that event is [SM]		
	(a) p/q	(b) $p/p+q$	(c) $q/p+q$	(d) None		
69.	If $P(A) = 5/9$, then the	he odds against the ev	ent A is [SM]			
	(a) 5:9	(b) 5:4	(c) 4:5	(d) 5:14		
70.	If A, B and C are m	utually exclusive and e	exhaustive events, th	$\operatorname{en} P(A) + P(B) + P(C)$ equals		
	to [SM]					
	(a)1/3	(b) 1	(c) 0	(d) any value between 0 and 1.		
71.	If A denotes that a s	tudent reading in a sch	ool and B denotes th	nat he playing cricket, then [SM]		
	(a) $P(A \cap B) = 1$	(b) $P(A \cup B) = 1$	(c) $P(A \cap B) = 0$	(d) $P(A) = P(B)$.		
72.	P(B/A) is defined or	nly when [SM]				
	(a) A is a sure event		(b) B is a sure	event		
	(c) A is not an impossi	ble event	(d) B is an ir	npossible event.		
73.	P(A/B') is defined of	only when [SM]				
	(a) B is not a sure eve	ent	(b) B is a sur	re event		
	(c) B is an impossible	event	(d) B is not an impossible event.			
74.	For two events A an	$dB, P(A \cup B) = P(A) +$	P(B) only when [SN	M]		
	(a) A and B are equall	y likely events	(b) A and B	are exhaustive events		
	(c) A and B are mutua	lly independent	(d) A and B a	are mutually exclusive.		
75.	For any two events	s A and B, [SM]				
	(a) $P(A-B) = P(A) -$	P(B)	(b) P(A-B)	$= P(A) - P(A \cap B)$		
	(c) P(A-B) = P(B) -	$P(A \cap B)$	(d) P(B-A)	$= P(B) + P(A \cap B).$		
76.	The number of con-	ditions to be satisfied b	y three events A, B a	nd C for complete independence		
	is [SM]					
	(a) 2	(b) 3	(c) 4	(d) any number.		
	• •	•				

77. Values of a random variable are [SM]

(a) always positive numbers.

(b) always positive real numbers.

(c) real numbers

(d) natural numbers.

78. Expected value of a random variable [SM]

(a) is always positive

- (b) may be positive or negative
- (c) may be positive or negative or zero
- (d) can never be zero.

79. If all the values taken by a random variable are equal then [SM]

(a) its expected value is zero

- (b) its standard deviation is zero
- (c) its standard deviation is positive
- (d) its standard deviation is a real number

The probability of an event can assume any value between:

Question Bank

1.	The probability	of an event can assum	e any value betwee	en: [F-08]
	(a) 0 and 1	(b) -1 and 0	(c) -1 and 1	(d) None of these
2.	In a pack of play	ing cards with two jok	kers probability of	getting king of spade is [J-10]
	(a) 4/13	(b) 4/52	(c) 1/52	(d) 1/54
3.	Three identical d	ice are rolled. The pro	bability that the sa	me number will appear on each of
	them is:			[N-07]
	(a)1/6	(b) 1/12	(c) 1/36	(d) 1
4.	The limiting rela	ative frequency of pro	obability is:	[D-08]
	(a) Axiomatic	(b) Classical	(c) Statistical	(d) mathematical
5.	If x be the sum of to	wo numbers obtained wl	hen two die are throw	on simultaneously then $P \geq 7$ is [J-10]
	(a) 5/12	(b) 7/12	(c)11/15	(d)3/8
6.	If two dice are th	rown together then tl	ne probability of ge	etting multiple of 3 on one die and
	multiple of 2 on o	ther die is :		[D-12]
	(a) $2/3$	(b) 1/6	(c) 1/3	(d) none
7.	Two coins are tos	sed simultaneously. Fir	nd the probability o	of getting exactly one head [D-13]
	(a) $3/4$	(b) 2/3	(c) 1/4	(d) 1/2
8.	An unbiased die	is thrown twice. The p	robability of the su	m of numbers obtained on the two
	faces being divis	ible by 4 is:		[D-14]
	(a) 7/36	(b) 1/3	(c) 11/36	(d) ¹ / ₄
9.	In a non-leap year	; the probability of getti	ing 53 Sundays or 53	Tuesdays or 53 Thursdays is: [F-07]
	(a) $\frac{4}{7}$	(b) $\frac{2}{}$	(c) $\frac{3}{7}$	$(d) \frac{1}{-}$
1.0	,	,	,	• •
10.		-		e is 70 and 8:6 against a person who
	_		•	em will be alive after 20 years:[F-08]
	(a) $\frac{11}{14}$	(b) $\frac{22}{49}$	(c) $\frac{31}{49}$	$(d)\frac{35}{49}$
11.				0.8. The probability that an employee
	•			oility that an employee, who was a
		•	•	re than R. 20,000 per month is 0.9.
		-	•	Rs. 20,000 per month given that he is
		yed with the company		[J-08]
	(a) 5/8	(b) 3/8	(c) 1/8	(d) 7/8
12.	` '		` '	gainst B solving the same problem is
		robability that if both		•
	(a) 117/180	(b) 181/200	(c) 147/180	(d) 119/180
13.	$If P(A \cup B) = P(A$	` '		[J-11]
·		(b) $P(A) + P(B)$	(c) 0	(d) P(B)
	(4) - (1 -) - (1-)		(-) ~	(=) = (=)

P	ADA2	INSTITUTE OF CO	OMMERCE		-16.33-
14.	The probability	of Girl getting scholar	ship is 0.6 and the san	ne probability for Boy i	s 0.8. Find th
	probability tha	t at least one of the cat	tegories getting schol	arship.	
	(a) 0.32	(b) 0.44	(c) 0.92	(d) None of the above	
15.	One Card is dra	awn from pack of 52, v	what is the probabilit	y that it is a king or a qu	ueen? [D-11]
	(a) 11/13	(b) 2/13	(c) 1/13	(d) None of these	
16.	A card is drawn	out of a standard pac	k of 52 cards. What is	the probability of draw	ving a king o
	red colour?				[J-12]
	(a) $\frac{1}{4}$	(b) 4/13	(c) 7/13	(d) 1/2	
17.	The odds again	st A solving a problen	n are 4 to 3. And the o	odds in favour of B solv	ving the sam
	problem are 7 to	5. What is the probab	oility that the problem	will be solved if they bo	oth try?[D-12
	(a) $\frac{15}{21}$	(b) $\frac{16}{21}$	(c) $\frac{17}{21}$	$(d) \frac{13}{2}$	
	21	21			
18.				is 2/5 and losing match	at Delhi is 1/
		pability of the team wir		<i>T</i>	
	(a) 3/35	(b) 32/35	(c) 18/35		
19.			/ / / / / / / / / / / / / / / / / / /	ced before the second i	is drawn. Th
	chance that the	first is a diamond and	d the second is king is	: [M-07]	
	(a) $\frac{1}{52}$	(b) $\frac{3}{2704}$	$(c) \frac{4}{13}$	(d) $\frac{3}{52}$	
	32	2,0.	- 17	32	
20.	· ·	ompound probability			
	$(a) P(A \cap B) = P$		$(b) P(A \cap B) =$		
	$(c) P(A \cup B) = P$		*/ ` ` ` ` ` ` `	$P(A) + P(B) - P(A \cap B)$	
21.			-	f the probability of occu	
	-			en the probability of no	n-occurrenc
	of at least one o	of the events E and F i	is: [A-07]		
	(a) $\frac{1}{50}$	(b) $\frac{2}{25}$	(c) $\frac{13}{50}$	$(d)\frac{49}{50}$	
	(a) 50	25	50	(4) 50	
22.		•		ing process of each par	
	probability of d	lefect in A is 0.08 and	that B is 0.05. What i	s the probability that t	he assemble
	product will no	t have any defect?		[N-07]	
	(a) 0.934	(b) 0.864	(c) 0.85	(d) 0.874	
23.	If $P(A) = p$ and	P(B) = q, then:		[J-08]	
	(a) $P(A/B) \le q/p$		(b) $P(A/B) \ge p/c$	l	
	$(c) P(A/B) \le p/q$		$(d) P(A/B) \ge q/p$)	
24.	If A and B are t	wo independent event	ts and $P(A \cup B) = 2/5$;	P(B) = 1/3. Find $P(A)$.	[J-09]
	(a) $2/9$	(b) -1/3	(c) 2/10	(d) 1/10	

25.	A bag contains 12 b	alls of which 3 are red	l 5 balls are drawn at	t random. Find th	e probability that
	in 5 balls 3 are red.				[J-09]
	(a) 3/132	(b) 5/396	(c) 1/36	(d) 1/22	
26.	P(A) = 2/3; P(B) = 3	$8/5$; $P(A \cup B) = 5/6$ Fin	nd P(B/A)		[D-09]
	(a) 11/20	(b) 13/20	(c) 13/18	(d) None	
27.	If $P(A \cap B) = P(A)$	x P(B), then the even	its are:		[D -09]
	(a) Independent even	nts	(b) Mutually exclu	sive events	
	(c) Exhaustive events	}	(d) Mutually inclus	sive events	
28.	Consider two event	s A and B not mutuall	y exclusive, such tha	at $P(A) = \frac{1}{4}, P(B) =$	$2/5, P(A \cup B) = \frac{1}{2}$
	then $P(A.\overline{B})$ is			[J-10]	
	(a) $3/7$	(b) 2/10	(c)1/10	(d) None of the al	oove
29.	If $P(A/B) = P(A)$, the	nen A and B are			[D-10]
	(a) Mutually exclusi	ve events (b) Depend	dent events (c) Indepe	endent events (d)	Composite events
30.	A bag contains 3 wl	nite and 5 black balls a	and second bag conta	ains 4 white and 2	black balls. If one
	ball is taken from e	each bag, the probabi	lity that both the bal	lls are white is	[D-10]
	(a) 1/3	(b) ½	(c) $\frac{1}{2}$	(d) None of th	ese
31.	Let A and B two ev	(b) ½ rents in a sample spac	ee S such that P(A) =	$=\frac{1}{2}$; P(\bar{B})= $\frac{3}{8}$, P($\mathbf{A} \cup \mathbf{B} = \frac{3}{4}$; Find
	$P(\bar{A} \cap \bar{B})$			-	[J-12]
	$(a)^{3/4}$	(b) ½	(c) 3/18	(d) None of th	ese.
32.	Find the probabili	ty of drawing a spade	on each of two cons	ecutive draws fro	om a well shuffled
	pack of cards, with	out replacement :			[J-12]
	(a) $2/51$	(b) 1/17	(c) 4/51	(d) 5/51	
33.	If $P(A) = 0.45$, $P(B)$	(B) = 0.35 and P(A & B)	(3) = 0.25, then $P(A/I)$	3) ?	[D-13]
	(a) 1.4	(b) 1.8	(c) 0.714	(d) 0.556	
34.	Let the distribution	ı function of a randon	n variable X be F(x) :	$= P(X \le x)$. Then I	F(5) - F(2) is: [J-14]
	(a) $P(2 < X < 5)$	(b) $P(2 \le X \le 5)$	(c) $P(2 \le X \le 5)$	(d) $P(2 \le X \le X)$	≤ 5)
35.	An urn contains 9 b	oalls two of which are	red, three blue and f	our black. Three	balls are drawn at
	random. The prob	ability that they are o	of same colour is:	[N-06]	
	2	20	5		
	(a) $\frac{3}{27}$	(b) $\frac{20}{31}$	(c) $\frac{3}{84}$	(d) None	1
36.	The probability of	getting qualified in I	IT - JEE and AIEEI	E by a students ar	re respectively $\frac{1}{5}$
	and $\frac{3}{5}$. The proba	bility that the student	t gets qualified for at	least one of the th	ese tests is;[M-07]
	17	22	8	3	
	(a) $\frac{17}{25}$	(b) ${25}$	(c) $\frac{8}{25}$	(d) $\frac{3}{25}$	

37.	A bag contains 8 r	ed and 5 white balls. Two	successive draws of 3	3 balls are made wit	hout replacement.
	The probability t	that the first draw will pr			alls is: [A-07]
	(a) $\frac{6}{255}$	(b) $\frac{5}{548}$	(c) $\frac{7}{429}$	$(d)\frac{3}{233}$	
38.	255	2 white balls, 3 black ba		2 00	[D-10]
	Urn II : 4 white b	oalls, 6 black balls one ba	ll is randomly trans	ferred from first to	second urn, then
	one ball is drawn	n from II Urn. The proba	bility that drawn b	all is white is	
	(a) $22/65^{\circ}$	(b) 22/46	(c) 22/55	(d) 21/45	
39.	A bag contains	5 Red balls, 4 Blue bal	lls and 'm' Green I	Balls. If the rando	om probability of
	picking two gree	en balls is 1/7. Find the v	value of m		[J-11]
	(a) 5	(b) 7	(c) 6	(d) none of the al	oove
40.	Four married co	ouples have gathered in	a room. Two perso	ns are selected at	random amongst
	them, find the pr	obability that selected pe	rsons are a gentlema	ın and a lady but n	ot a Couple.[D-11]
	(a) 1/7	(b) 3/7	(c) 1/8	(d) 3/8	
41.	Arun & Tarun a	ppear for an interview fo	or two vacancies. Th	e probability of Ar	un's selection is 1/
	3 and that of Tari	un's selection is 1/5 Find t	he probability that o	nly one of them wil	l be selected.[J-12]
	(a) $2/5$	(b) 4/5	(c) 6/5	(d) 8/5	
42.	A bag contains 6	red balls and some blue	balls. If the probab	oility of drawing a	blue ball from the
	bag is twice that	of drawing red ball, Fir	nd the no. of blue ba	lls in the bag :	[D-12]
	(a) 10	(b) 12	(c) 14	(d) 16	
43.	A box contains	2 red, 3 green and 2 bl	ue balls. Two balls	are drawn at ran	dom. What is the
	probability that	none of the balls drawn	is blue ?		[J-13]
	(a) 10/21	(b) 11/21	(c) 2/7	(d) $5/7$	
44.	The odds that a	book will be favourably	y received by 3 inde	ependent reviewer	rs are 5 to 2, 4 to 3
	and 3 to 4 respecti	vely. What is the probabili	ty that out of 3 reviewe	ers a majority will be	e favourable ?[J-13]
	(a) 209/343	(b) 209/434	(c) 209/443	(d) 209/350	
45.	An urn contains	2 red and 1 green balls.	Another urn contain	s 2 red and 2 green	balls. An urn was
	selected at rando	m and then a ball was dr	awn from it. If it was	s found to be red th	en the probaibility
	that it has been d	lrawn from urn one is _	•		[J-14]
	(a) 4/7	(b) 3/7	(c) 2/3	(d) 7/12.	
46.	A letter is taken	out at random from the	word RANGE and	another is taken o	out from the word
	PAGE. The prol	bability that they are th	e same letters is:		[N-06]
	(a) 1/20	(b) 3/20	(c) 3/5	(d) 3/4	

47.	Among the examine	ees in an e	xaminat	ion 30%,	35% and	45% failed in statist	tics, in Mathematics
	and in at least one	of the su	ıbjects r	espectivel	y. An exa	aminee is selected a	t random Find the
	probability that the	failed in	mathema	atics only;	;	[N	[-07]
	(a) 0.15	(b) 0.2	5	(c)	0.254	(d) 0.55	
48.	If 10 men, among v	vhom are	A and B	, stand in	a row, w	hat is the probabili	ty that there will be
	exactly 3 men betw	een A and	d B?				[F-08]
	(a) 11/15	(b) $4/1$	5	(c)	1/15	(d) 2/15	
49.	The probability of	selecting	a sample	of size 'n	' out of a	population of size N	l by simple
	random sampling v	vith repla	cement is	s:			[J-13]
	(a) 1/N	(b) 1/N	Ţn	(c)	$1/N_{C_n}$	(d) $\frac{1}{N_{C_n}n!}$	
50.	There are six slips	in a box a	nd num	bers 1, 1, 1	2, 2, 3, 3 a	are written on these	slips. Two slips are
	-					sum of numbers on t	
	(a) 5	(b) 3	•	(c)		(d) 7	, ,
51.	. ,	at there is	at least o	ne error	in an acco	ount statement prep	ared by A is 0.3 and
	•					d C prepared 20, 10	·
	respectively. The ex	xpected n	umber o	f correct	statemen	t in all is: [F-07]	
	(a) 32	(b) 45		(c) 42	(d) 44	
52.	Amitabh plays a g	ame of to	ssing a d	ice. If the	number	less than 3 appears	, he is getting Rs. a,
	otherwise he has to	pay Rs.	10. If the	game is t	fair, find	a:	[M-07]
	(a) 25	(b) 20		(c)) 22	(d) 18	
53.	A box contains 12 e	lectric lar	nps of wl	hich 5 are	defective	es. A man selects thro	ee lamps at random.
	What is the expect	ed numbe	er of defe	ctive lam	ps in his s	selection? [A-07]	
	(a) 1.25	(b) 2.5	0	(c)	1.05	(d) 2.03	
54.	Daily demand for c	alculator	s is havin	ng the follo	owing pro	obability distributio	n: [N-07]
	Demand: 1	2	3	4	5	6	
	Probability: 0.10	0.15	0.20	0.25	0.18	0.12	
	Determine the vari	ance of th	ie deman	ıd.			
	(a) 2.54	(b) 2.9	3	(c)	2.22	(d) 2.19	
55.	An urn contain 6 w	white and	4 black l	balls. 3 ba	lls are dr	awn without replac	ement. What is the
	expected number o	f white ba	alls.				
	(a) 1.8	(b)	1.2		(c) 1.1	(d) None	
56.	A random variable	x hs the fo	ollowing	probabili	ty distrib	ution [J-08]	
	x: -2 3	1					
	P(X = x) 1/3 1/3	2 1/6					
	Find $E(x^2)$ and $E(2^2)$	2x+5)					
	(a) 6 and 7 resp.	(b) 5 aı	nd 7 resp	. (c)	7 and 5 re	esp. (d) 7 and 6 i	esp

57.	${f A}$ random variable ${f X}$ has the following probability distribution												
	X	0	1	2	3								
	P(x)	0	2k	3k	k								
	Then P	(X <	(3) w	ould	l be								
	(a) $1/6$				(b) 1/	3		(c) $2/3$		(d) $5/6$			
58.	E (XY)	is a	lso k	now	s as:							[D-09]	
	(a) E(X)) + E	E(Y)		(b) E	(X) E (Y)	()	(c) E(X)	-E (Y)	(d) E(X)	$\div E(Y)$)	
59.	E (13x+	⊦9) =	=		_•							[J-10]	
	(a) 13x				(b) 13	SE(x)		(c) $13E(x)$)+9	(d) 9			
60.	A dice i	s th	rowr	onc	e. Wha	t is the	mathem	atical exp	ectation o	f the num	ber on t	he dice?[D-1	0]
	(a) 16/6	•			(b) 13	3/2		(c) 3.5	69	(d) 4.5			
61.	Two un	bias	ed di	ce ar	e throw	n. The E	Expected	value of th	e sum of n	umberson	the upp	er side is; [D-	11]
	(a) 3.5				(b) 7			(c) 12		(d)6			
62.	A playe	er to	sses	two	fair coi	ins, he w	vins Rs :	5 if 2 head	s appear,	Rs 2 if one	e head a	ppears and	Rs
	1 if no l	1ead	occi	ars. l	Find his	s expect	ed amou	ınt of wint	ning/	7		[J-12]	
	(a) 2.5				(b) 3.	5		(c) 4.5		(d) 5.5			
63.	Find th	e ex	pecto	ed va	lue of t	he follo	wing pro	bability d	listributio	n:		[D-12]	
	X		: -2	20	-10	30	75	80					
	P(x=x	()	: 3	/20	1/5	1/2	1/10	1/20					
	(a) 20.5	;			(b) 22	2.5		(c) 21,5		(d) 24.5			
64.	A playe	er to	sses	3 fai	r coins	. He wir	is Rs. 5 i	f three he	ads appea	ır, Rs. 3 if	two hea	ds appear , l	Rs.
	1 if one	hea	d oc	curs	. On th	ie other	hand, l	ie losses R	ks. 15 if 3 t	tails occur	. Find e	xpected gain	of
	the play	yer:		([J-13]	
	(a) 0.15	5			(b) 0.	25		(c) 0.35		(d) 0.45			
65.	Find th	e ex	pect	ed va	lue of t	he follo	wing pr	obability d	listributio	n:		[D-13]	
	X	:	-20		-10	30	75	80	•				
	P(x)	:	3/20		1/5	1/2	1/10	1/20					
	(a) 20.5	5			(b) 22	1.5		(c) 22.5		(d) 24.5			
66.	A discr	ete	rand	lom '	variabl	le X tak	es three	values -1,	, 2 and 3 v	vith proba	bilities		
	p(-1) =	$\frac{1}{3}$,	p(2)	$=\frac{1}{3}$,	p(3) =	$\frac{1}{3}$ then	E (X) i	s:				[D-1	4]
	(a) $3/2$				(b) $5/$			(c) 2		(d) $9/2$			
67		an u	nbia	sed o			nd the o		our of get	ting of mu	ltiple of	f3. [D-14]	
(0	(a) 1/6		4		(b) 1		£. 11	(c) 1/2	324	(d) 1/3			
68								uniform (uistributi	on and as	sumes (only the valu	ıes
	0,7,11,1	13,10	U,4U	1 116		_	•	2		2		[J-16]	
	(a) $\frac{1}{2}$				(b)	$\frac{1}{3}$		(c) $\frac{2}{3}$		(d) $\frac{2}{5}$			

69	A bag contains 6 w	hite and 5 red balls. O	ne ball is drawn.	The probability that it	t is red is : [D-16]
	(a) 5/11	(b) 6/11	(c) 1/11	(d) None of the these	
70	Three coins are ro	lled, what is the proba	bility of getting	exactly two heads :	[D-15]
	(a) 1/8	(b) 3/8	(c) 7/8	(d) 5/8	
71	If two unbiased dice	e are rolled, what is the p	robability of gett	ing points neither sum 3	3 nor 6? [J-16]
	(a) 0.25	(b) 0.50	(c) 0.75	(d) 0.80	
72	Two dice are tossed	d. What is the probabil	lity that the total	l is divisible by 3 or 4.	[J-16]
	(a) $\frac{20}{36}$	(b) $\frac{21}{36}$	(c) $\frac{14}{36}$	(d) None of th	ese.
73	$P(A_1) = 3/8$; $P(A_2)$ (a) Mutually exclusive (c) Independent but it	•		will be but not independent	[J-15]
74				e probability that there is	* -
	(a) 5/6	(b) 1/6	(c) $1/3$	(d) None of th	
75				s and 10 five rupee co Inot selecting a one ruj	
	(a) 0.30	(b) 0.70	(c) 0.25	(d) 0.20	pee com is .
	` '	` '	` '	` '	
76	If $P(A) = \frac{2}{3}$, $P(B)$	$= \frac{3}{5} \text{ and } P(A \cup B) = \frac{3}{6}$	$\frac{S}{S}$ then $P\left(\frac{A}{B'}\right)$ is	s	[J-16]
	(a) $\frac{7}{12}$	(b) $\frac{5}{12}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$	
77	•	and 8 negative numbers. nd the probability tha		e selected at random with positive.	out replacement [J-15]
	(a) $\frac{420}{1001}$	(b) $\frac{409}{1001}$	(c) $\frac{70}{1001}$	(d) $\frac{505}{1001}$	
78	ŭ		•	ains 5 Red and 3 Black at one Red and one Blac	
		_		i.	
	(a) $\frac{12}{72}$	(b) $\frac{25}{72}$	(c) $\frac{37}{72}$	(d) $\frac{13}{72}$	
70	, =	72	1 4	, =	XX71 4 * 41
79	probability that a	specific player gets all	the four kings?	equally among four pla [J-16]	•
	(a) $\frac{{}^{13}C_4 \times {}^{48}C_{12}}{{}^{52}C_{13}}$	(b) $\frac{{}^{4}C_{4} \times {}^{48}C_{9}}{{}^{52}C_{13}}$	(c) $\frac{{}^{13}C_4 \times {}^{52}C_4}{{}^{52}C_{13}}$	(d) $\frac{{}^{4}C_{4} \times {}^{39}C_{5}}{{}^{52}C_{13}}$	9
80	An unbiased coin is	s tossed 3 times, the exp	ected value of th	e number of heads is[J	-15]
	(a) 2.5	(b) 1.0	(c) 1.5	(d) 2	-
81.		getting atleast one 6 f	rom 3 throws of	a perfect die is [J-17]	
	(a) $\frac{5}{6}$	(b) $\left(\frac{5}{6}\right)^3$	2		
	` ′ 6	` (\6)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\"' \ \ 6 \	

82.	For any two e	events A and B	01 001/1111111			J-17	10.55-
	(a) $P(A-B) = P$	P(A)-P(B)	(b)	P(A-B) = F	$P(A) - P(A \cap$	nB)	-
	(c) P(A-B) = P	$P(B) - P(A \cap B)$	(d)	P(B-A) = P	(B) - P(A∩I	3)	
83.	If $P(A) = \frac{2}{3}$, I	$P(\mathbf{B}) = \frac{1}{4}, P(\mathbf{A} \cap \mathbf{B})$	$S = \frac{1}{12}$ then P	$\frac{\mathbf{B}}{\mathbf{A}}\Big) =$	[-	J-17]	
	(a) 1/8	(b) 7/8	(c)	8/7	(d) Non	e	
84.	For the events	s A & B if P (A) =	$\frac{1}{2}, P(B) = \frac{1}{3} ar$	nd P(A∩B)	$=\frac{1}{4}$ then P	$\left(\frac{A}{B}\right) = [\mathbf{D}-1]$	17]
	(a) 1/2	(b) 1/6	(c)	2/3	(d) 3/4		
85.	If A & B are tv	vo mutually exclu	sive events such	that P(A	$\mathbf{B}) = \frac{2}{3}, \mathbf{P}($	$\mathbf{A}) = \frac{2}{5}, \text{ the}$	n P (B) :[D-17]
	(a) 4/15	(b) 4/9		5/9	(d) 7/15	<i>}</i>	
86.		and a sister are a		Carried Samuel Contract	7	_	•
		elect is 1/7 and the	.uel War.		400	that (i) Both	will select (ii)
		select, (iii) None	francis -		[D-17]		
	(a) $\frac{1}{35}$, $\frac{10}{35}$, $\frac{24}{35}$	(b) $\frac{27}{35}, \frac{7}{3}$	$(\frac{7}{5}, \frac{14}{35})$	$\frac{3}{35}$, $\frac{24}{35}$, $\frac{11}{35}$	(d) $\frac{24}{35}$,	$\frac{6}{35}, \frac{20}{35}$	
87.	The distributi	on of demand is a	s follows:			[D-17]
	Demand	5 6	7.7.	8	9	10	
	Probability	0.05	0.3	0.4	0.1	0.05	
	The mean is g	iven by					
	(a) 7.55	(b) 7.85	(c)	1.25	(d) 8.35		
88.	What is the pr	robability of havi	ng at least one s	ix from 3 th	rows of a p	erfect die?	(J-18)
	(a) $\frac{5}{6}$	(b) $\left(\frac{5}{6}\right)^3$	(c)	$1-\left(\frac{1}{6}\right)^3$	(d) 1	$1 - \left(\frac{5}{6}\right)^3$	
89.	The probabili	ty of winning the	game of a team i	s 2/3. What	is the prob	ability of w	nning more
		ımes in four game				(J-18)	J
	(a) 16/27	(b) 27/64	(c)	19/81	(d) 8	3/64	
90.	A coin is tossed	d six times, then th	ie probability of	obtaining l	neads and ta	ails alternat	ively is (N-18)
0.4	(a) 1/2	(b) 1/64	` /	1/32	(d) 1		
91.		to hit a target in					
		of 11 shots. What is					th try? (N-18)
92.	(a) 9/11 Two different	(b) 3/11	` /	10/33	(d) 6		,, .
74.		dice are thrown si		ien tne prot	pability, tha	t the sum of	two numbers
	(a) 8/9	the top of dice is 9 (b) 1/9	` ,	7/0	/.f\ 3	Inna - Cd	_
	(a) 0/3	(0) 1/9	(c) '	117	(a) N	None of thes	e

			011101							
93.	If $P(A \cup$	(B) = 0.8	8 and $P($	$A \cap B$	=0.3, th	en $P(\overline{A})$	$+P(\overline{B})$	is equal to (N	-18)	
	(a) 0.3		(b) 0	5		(c) 0 .	7	(d) (.9	
94.	The proba	ability th	at a stude	nt is no	ot a swim	ımer is	1/5, the	n the probabli	ty that out o	f 5 students
	four are s	wimmer	is. (N-18))						
	(a) $\left(\frac{4}{5}\right)^4$	$\left(\frac{1}{5}\right)$		(b) 5	$C_1 \left(\frac{1}{5}\right)^4 \left(\frac{1}{5}\right$	$\left(\frac{4}{5}\right)$	(c) 5	$C_4 \left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)$	(d) None	of these
5.	If a coin is	Tosssed 5	times th	en the	probabili	ty of ge	etting Tai	il and Head oc	urs alternati	ively is [J-19]
	(a) $\frac{1}{8}$		(b) $\frac{1}{16}$	_		(a) 1	·	(d) -	1_	
	o		10	,		(c) 3:	2	(u)	54	
6.	According	_		-	-					
	$P(E_k / A)$	$=\frac{p(E)}{E}$	P(A/A)	$\left(\frac{\Sigma_k}{L}\right) = h$	ere					
	$1 \left(\frac{1}{2} k \right)^{-1}$	$\sum_{n=1}^{\infty} P$	(E)P(A	/ E.)						
		$\sum_{i=l}^{2}$	$(\Delta_i)^{\perp}$	- $ i$ j						
	(a) $E_{1}E_{2}$	are	mutually	exclus	sive			·		
	(b) $P(E/$					o 1				
	(c) $P(A_{ij})$		-,							
	(d) A & E_1	, ,	,			-				
7.	•			ndom t	from tha	word l	HOME	what is the Pr	ohohility th	at none of the
/ •	letters wo					WUIUI	11011112,	what is the 1 i	obability til	at none of the
	(a) 1/6		(b) 1/2	1	(0	e) 1/3		(d) 1/4		
8.	A bag cor	ntains 15	one rup	ee coi	ns, 25 tv	wo rup	ee coin	s and 10 five	rupee coin	s. If a coin is
	selected a	t random	from the	e bag, t	then the	probal	oility of	not selecting a	one rupee	coin is:[N-19]
	(a) 0.30		(b) 0.70	•	(0	2) 0.25		(d) 0.20		
9.	The chan	ce of gett		l1 in a			is [N-1	9]		
0.0	(a) 7/9		(b) 5/9	70 / /*	`	2/9		` '	e of these	
00.								mes, In what e incident ? [N		of times are
	$\begin{array}{ccc} \text{(a)} & 0.6 \end{array}$		0.6	(c)	0.65	ating	(d)	0.35	(-20]	
01.								s. If a fruit is	selected at r	andom from
						_		e is- [N-20]		
02.	(a) 0.2 If an unbi	· /				(d) shbillit	0.70 v of obt	aining at leas	t one tail is	IN-201
, 	(a) 1	(b)	0.5	(c)		(d)	0.25	amme at icas	one talk is -	[14-20]
)3.								ne probability		number on
								the first two d		1
)4.	` /	/216 lice are re	(b) olled sim	24/21 ultane		(c) hat is t	36/21 he prob	6 (d) ability of gett	None of t	
- *	comes fro				-		P. O.O			. viit vat
	(a) 4/3	6 (b)	12/36	(c)	6/36	(d)	9/36			

		1110111	UIE OF	COMME	RCE			•	·16.41-
	···	9500.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	[1	CH16] [PF	ROBABILIT	Y]			
				EXER	CISE - I		,		
1	b	19	a	35 (iii)	b	47	b	65	b
2	d	20	b	35 (iv)	С	48	a	66	b
3	b	21	b	36 (i)	a	49	c	67	С
4	b	22	d	36 (ii)	С	50	d	68	d
5	a	23	a	36 (iii)	b	51	С	69	d
6	b	24	С	36 (iv)	С	52	a	70	a
7	С	25	С	37 (i)	a	53	a	71	С
8	С	26	b	37 (ii)	b	54	b	72	С
9	d	27	a	37 (iii)	b	55	a	73	С
10	С	28	a	38	С	56	d	74	С
11	a	29	b	39	d	57	b	75	b
12	С	30	a	40	đ	58	, d	76	b
13	b	31	С	41	a	59 🌘	b [']	77	С
14	a	32	b	42	á	60	а	78	b
15	С	33	С	43	a) 61 /	а	79	b
16	b	34	a	44	b	62	С	80	a
17	b	35 (i)	С	45⁄	d	63	b		
18	b	35 (ii)	a	46) / a	64	b		
				EXER	CISE-II	//	V 44400		•
1	(i) b	3	b	- 8	a a	13	b	18	С
	(ii) a	4	a	9	a /	14	а	19	b
	(iii) d	5	с	10	a	15	b	20	d
	(iv) a	6	à	11	b	16	а	21	d
2	b	7_	а	12	а	17	а		
				Exerc	ica-III				
			 	EACIU	196-111			1	

				Exerc	ise-III				
1	С	3	b /	5	b	7	b	9	· d
2	b	4	c	6	a	8	d		

		1140111	OIL OF	COMME	ACE				10.72
				Exerc	ise-IV				
1	b	12	b	24 (ii)	С	34	а	43	С
2	b	13	a	25 (i)	b	35	С	44 (i)	a
3	С	14	С	25 (ii)	С	36	С	44 (ii)	a
4	b	15	b	25 (iii)	b	37	d	44 (iii)	c
5	a	16	a	25 (iv)	a	38	b	45	c
6	b	17	С	26	a	39 (i)	а		
7	a	18	a	27	С	39 (ii)	b		
8 (i)	С	19	d	28	b	39 (iii)	b		
8 (ii)	a	20	b	29	a	39 (iv)	С		
8 (iii)	С	21	С	30	С	39 (v)	b		
9	d	22	a	31	a	40	С		
10	b	23	b	32	С	41	a		
11	c	24 (i)	b	33	d	42	b		
		Z T (L)			cise-V	72	U		
1 (3)	а	2	d	7	c c	12	l _	17	
1 (i)		3	 	8			С	1/	С
1 (ii)	a		С		a	13	a		
1 (iii)	d	4	С	9	d	14	C .		
1 (iv)	d	5	a	10	С	15	b		
1 (v)	a	6	a	11	b	16	a		
	T	T		Exerc	cise-VI	1	1		
1	b	6	b	11	√b	16	а	21	d
2	а	7	С	12	а	17	С	22	b
3	а	8	b	13	С	18	С	23	b
4	С	9	С	14	d	19	а	24	b
5	b	10	b	15	d	20	С	25	d
	<u> </u>			Exerc	ise-VII				
1	d	18	b	35	b	52	С	69	С
2	a	19	d	36	а	53	a	70	b
3	d	20	a	37	a	54	С	71	С
4	С	21	a	38	d	55	d	72	С
5	a	22	a	39	С	56	a	73	a
6	С	23	c	40	С	57	С	74	d
7	b	24	d	41	b	58	d	75	b
8	d	25	a	42	С	59	С	76	с
9	d	26	b	43	b	60	b	77	С
10	С	27	С	44	a	61	d	78	С
11	a	28	d	45	b	62	d	79	b
12	С	29	b	46	С	63	b		
13	d	30	а	47	b	64	С		
14	d	31	b	48	С	65	С		
15	С	32	d	49	a	66	a		
16	a	33	b	50	С	67	d		
17	С	34	С	51	С	68	b		

				QUESTIC	ON BANK	***************************************			
1	d	22	d	43	a	64	b	85	a
2	d	23	С	44	a	65	b	86	a
3	С	24	d	45	a	66	С	87	a
4	С	25	d	46	b	67	С	88	d
5	b	26	b	47	a	68	С	89	a
6	d	27	a	48	d	69	a	90	С
7	d	28	С	49	b	70	b	91	a
8	d	29	С	50	С	71	d	92	b
9	С	30	b	51	С	72	a	93	d
10	С	31	b	52	b	73	С	94	С
11	b	32	b	53	a	74	b	95	b
12	a	33	С	54	С	75	b	96	a
13	d	34	d	55	a	76	.∕ `` a ./	97	a
14	С	35	С	56	a	77 🤇	ď	98	b
15	b	36	a	57	ď	78	C	99	С
16	С	37	С	58	b \	79	b	100	d
17	b	38	С	59	c C	(80)	С	101	d
18	b	39	С	60	Ç.	81	d	102	С
19	a	40	b	<i>6</i> 1) / b	82	b	103	d
20	b	41	a	62	/ (a/	,83	a	104	b
21	d	42	, b	63	C C	/ 84	d		

PARA	Space For Notes	-16.44-
	Space For Notes	
	<u>-</u>	
		. ,
	·	
		,
		The state of the s

Space For Notes

6			
•			
* * * * * * * * * * * * * * * * * * *			
• .			
* *			
,			
ř			
1 4			
**** *********************************			
**** *********************************			
ar edi e			
ar edi e			