ALL FORMULAS

CA FOUNDATION MATHEMATICS

(II2 formulas)

Use this PDF with Formula Revision Marathon

Marathon Link: https://youtu.be/SRMg3Yh3kNE

CA. PRANAV POPAT

- Chartered Accountant by Qualification
- Educator Dil Se \heartsuit
- Qualified all CA levels in very first attempt
- My Aim is to remove Maths Phobia from commerce background students and make Stats and Maths as their strength to crack CA Exam
- Educator at Unacademy for CA Foundation Maths, LR and Stats and CA Intermediate Cost and Management Accounting

IMPORTANT NOTE FOR JULY 202I EXAM STUDENTS

- I. To Watch Any Fastrack Lectures of CA. Pranav Popat Sir for Free, use the links given in the next page.
- 2. To access those links you just have to download Unacademy App and Login, If any unlock code is asked then use my code CAPRANAV
- 3. After step 2 is done just click the link for the topics you want to watch.
- 4. Live Marathon just before EXAM is also going on by Pranav Popat Sir at Unacademy CA Foundation YouTube Channel (starting at 7.15 PM on 26th July, 2021) <u>Link</u>
- 5. If you find the content useful, share with all the other students in need.
- Telegram Link: <u>https://t.me/learnwithpranav</u>

Fastrack Lectures (FREE on APP)

MATHEMATICS

Time Value of Money Part I	<u>PLAY</u>	Arithmetic Progression	<u>PLAY</u>
Time Value of Money Part II	<u>PLAY</u>	Geometric Progression	<u>PLAY</u>
Time Value of Money Part III	<u>PLAY</u>	AP and GP - Advance Problems	<u>PLAY</u>
Quiz - Time Value of Money	<u>PLAY</u>	AP and GP - Complete Quiz	<u>PLAY</u>
Ratio	<u>PLAY</u>	Quadratic Equation	<u>PLAY</u>
Proportion	<u>PLAY</u>	Other Equations	<u>PLAY</u>
Indices and Log (1.5 hrs)	<u>PLAY</u>	Matrices and Determinants	<u>PLAY</u>
Quiz - Ratio, Proportion, Indices, Log	<u>PLAY</u>	Quiz - Equations and Matrices	<u>PLAY</u>

Permutations and Combinations Part I	<u>PLAY</u>	Sets	<u>PLAY</u>
Permutations and Combinations Part II	<u>PLAY</u>	Relations and Functions	<u>PLAY</u>
Permutations and Combinations Part III	<u>PLAY</u>		
Permutations and Combinations Part IV	<u>PLAY</u>		

STATISTICS

Central Tendency Part I	<u>PLAY</u>	Quiz II	PLAY
Central Tendency Part II	<u>PLAY</u>	Quiz III	<u>PLAY</u>
Central Tendency Part III	<u>PLAY</u>	Probability Part I	<u>PLAY</u>
Disperion Part I	<u>PLAY</u>	Probability Part II	<u>PLAY</u>
Disperion Part II	<u>PLAY</u>	Probability Part III	<u>PLAY</u>
Quiz I	<u>PLAY</u>	Probability Part IV	<u>PLAY</u>
Correlation Part I	<u>PLAY</u>	Quiz IV	<u>PLAY</u>
Correlation Part II	<u>PLAY</u>	Theoretical Distribution Part I	<u>PLAY</u>
Regression Part I	<u>PLAY</u>	Theoretical Distribution Part II	<u>PLAY</u>
Regression Part I	PLAY	Quiz V	PLAY

> If a quantity increases or decreases in the ratio a:b then

new quantity $= \frac{D}{-X}$ original quantity a

The fraction by which the original quantity is multiplied to get a new quantity is called the **factor multiplying ratio**.

FORMULA MARATHON

Inverse Ratio: One ratio is the inverse of another if their product is
 1. Thus b : a is the inverse of a : b and vice-versa.

2

FORMULA MARATHON

- > The ratio **compounded** of the two ratios a : b and c : d is ac : bd.
- > Compounding two or more ratios means multiplying them.

FORMULA MARATHON

> A ratio compounded of itself is called its duplicate ratio.

 $a^2:b^2$

is the duplicate ratio of a:b

 $a^3:b^3$ is the triplicate ratio of a:b

FORMULA MARATHON

FORMULA MARATHON

- Continued Ratio: is the relation or comparison between the magnitudes of three or more quantities of same kind.
- > The continued ratio of three similar quantities a, b, c can be written as a:b:c

π

FORMULA MARATHON

Product of extremes = Product of means

Continuous Proportion: Three quantities a, b, c of the same kind (in same units) are said to be in continuous proportion if a : b = b : c

$$\frac{a}{b} = \frac{b}{c} \qquad b^2 = ac$$

here, a = first proportional, c = third proportional and b is mean proportional (because b is GM of a and c)

FORMULA MARATHON

\mathcal{T}

> Invertendo

If a : b = c : d, then

b: a = d: c

8

FORMULA MARATHON

> Alternendo

If a : b = c : d, then

a:c=b:d

9

FORMULA MARATHON

\mathcal{T}

> Componendo

If a : b = c : d, then

a+b:b=c+d:d

1(

FORMULA MARATHON

\mathcal{T}

> Dividendo

If a : b = c : d, then

$$a-b:b=c-d:d$$

11

FORMULA MARATHON

If a : b = c : d, then

$$\frac{a+b}{a-b} = \frac{c+d}{c-d}$$

$$\frac{a-b}{a+b} = \frac{c-d}{c+d}$$

12

FORMULA MARATHON

 $\pi \rightarrow$

> Addendo

If a:b = c:d = e:f = ... = k

 $\frac{a+c+e+\dots}{b+d+f+\dots}$

=k

then

13

FORMULA MARATHON

π

> Subtrahendo

If a:b = c:d = e:f = ... = k

 $\frac{a-c-e+\dots}{b-d-f+\dots}$

=k

then

14

FORMULA MARATHON

Indices – Standard Results

> Any base raised to the power zero is defined to be 1

> Roots can also be expressed in the form of power.

$$\sqrt[r]{a} = a^{\frac{1}{r}}$$

15

FORMULA MARATHON

Law 1

 $a^m \times a^n = a^{m+n}$

If two or more terms with same base are multiplied, we can make them one term having the same base and power as sum of all powers.

FORMULA MARATHON

Law 2

$$\frac{a^m}{a^n} = a^{m-n}$$

If two or more terms with same base are in division, we can make them one term having the same base and power as difference of power.

FORMULA MARATHON

CA Foundation Paper 3

 π

Law 3

 $a^{m \times n}$ $(a^m)'$

If a term having power is raised to another power, we can do product of powers to simplify the expression

FORMULA MARATHON

 $(a \times b)^n = a^n \times b^n$

If a product of two or more terms is raised to power, we can split the two terms with same individual power to each one of them.

FORMULA MARATHON

CA Foundation Paper 3

 π

 \mathcal{T}

FORMULA MARATHON

Calculator Trick for Reciprocal

21

FORMULA MARATHON

Calculator Trick for any root $\sqrt{12 \text{ times} -1}$ Base n... 12 *times* $\times = |$

FORMULA MARATHON

π

Calculator Trick for any power (including non integer)

Base $\sqrt{\sqrt{\sqrt{\sqrt{1}}}}$...12 times $-1 \times n$ +1 $\times = \times = \times = \ldots$

23

FORMULA MARATHON

Log Conditions

> The logarithm of a number to a given base is the **index or the power** to which the **base must be raised** to **produce** the **number**, i.e. to make it equal to the given number.

$$3^4 = 81 \log_3 81 = 4$$

> If
$$a^x = n$$
 then $\log_a n = x$

- > Conditions:
 - Number should be positive
 - Base should be positive
 - Base cannot be equal to one

 $n > 0, a > 0, a \neq 1$

FORMULA MARATHON

CA Foundation Paper 3

 π

 \mathcal{T}

Standard Results of Log

> Log of a number with same base as number is equal to 1

$$\log_a a = 1$$

> Log of 1 (one) for any base is equal to zero

$$\log_a 1 = 0$$

25

FORMULA MARATHON

π

Law 1

 Logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers to the same base

 $\log_a mn = \log_a m + \log_a n$

FORMULA MARATHON

 \mathcal{T}

Law 2

 The logarithm of the quotient of two numbers is equal to the difference of their logarithms to the same base

$$\log_a \frac{m}{n} = \log_a m - \log_a n$$

27

FORMULA MARATHON

Law 3

 Logarithm of the number raised to the power is equal to the index of the power multiplied by the logarithm of the number to the same base.

 $\log_a m^n = n \log_a m$

FORMULA MARATHON

Change of Base Theorem

If the logarithm of a number to any base is given, then the logarithm of the same number to any other base can be determined from the following relation

$$\log_b m = \frac{\log m}{\log b} = \frac{\log_a m}{\log_a b}$$

 $\log_b a \times \log_a b = 1$

29

FORMULA MARATHON

Base of Log Common Log's Base Natural Log's Base

e

30

FORMULA MARATHON

Quadratic Equation

- > Equation having **degree = 2** is called as Quadratic Equation
- > QE will have two roots/ solutions usually denoted by lpha,eta
- > Equation Format $ax^2 + bx + c = 0$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

31

FORMULA MARATHON

Solution of Quadratic Equation

$$ax^2 + bx + c = 0$$

> Formula to calculate roots:

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

where, a is coefficient of x^2 b is coefficient of x c is constant $a \neq 0$

32

FORMULA MARATHON

FORMULA MARATHON

> Construction of Quadratic Equation

If sum of roots and product of roots are given, equation can be constructed in the below manner:

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

FORMULA MARATHON

> Concept of discriminant – to get nature of roots

Discriminant of QE is the mathematical expression which is used to understand nature of roots of QE, it is expressed as below:

b^2	-4ac	

Condition	Nature of Roots
$b^2 - 4ac = 0$	Real and Equal
$b^2 - 4ac < 0$	Imaginary
$b^2 - 4ac > 0$	Real and Unequal
$b^2 - 4ac > 0$ and a perfect square	Real, Unequal and Rational
$b^2 - 4ac > 0$ & not a perfect square	Real, Unequal and Irrational

FORMULA MARATHON

CA Foundation Paper 3

 \mathcal{T}

> Conjugate Pairs

- If one root of the equation is

 $m + \sqrt{n}$

- The other one is surely

 $m - \sqrt{n}$

- This pair is called as conjugate pairs

36

FORMULA MARATHON

Simple Equation

- Equation of one degree and having one unknown variable is simple.
- > A simple equation has only one root.
- > Form of Equation:

ax + b = 0

where,
 a is coefficient of x
 b is constant
 a ≠ 0
 > Solution Method - Direct basic algebra

37

FORMULA MARATHON

Simultaneous Linear Equations (two unknowns)

- Here we always deal with two equations as it consist of 2 unknowns
- > Form:

$$a_1 x + b_1 y + c_1 = 0$$

 $a_2 x + b_2 y + c_2 = 0$

where, a is coefficient of x b is coefficient of y c is constant $a \neq 0$

38

FORMULA MARATHON

Methods of Solution Simultaneous Linear Equations

- > Elimination Method: In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.
- > **Substitution Method:** equation is written in the form of one variable in LHS and that value is substituted in other equation.
- > Cross Multiplication Method: Formula based method

 $a_1 x + b_1 y + c_1 = 0$ $a_2 x + b_2 y + c_2 = 0$

$$\frac{x}{b_1c_2 - b_2c_1} = \frac{y}{c_1a_2 - c_2a_1} = \frac{1}{a_1b_2 - a_2b_1}$$

FORMULA MARATHON

Cubic Equation

> Form:

$ax^3 + bx^2 + cx + d = 0$

where, a is coefficient of x^3 b is coefficient of x^2 c is coefficient of x d is constant $a \neq 0$

> Method of solution: Trial and Error

40

FORMULA MARATHON

Addition/Subtraction of Matrices > Property - Commutative Law: A + B = B + A

- Associative Law: (A+B)+C = A+(B+C)

- Distributive Law: k(A+B) = kA + kB

41

FORMULA MARATHON

Multiplication of Matrices

- > Condition
 - The product A x B of two matrices A and B is defined only if the number of columns in Matrix A is equal to the number of rows in Matrix B.

 $\times B_{n \times p} = AB_{m \times p}$ *m×n*

FORMULA MARATHON

FORMULA MARATHON

Determinant – 3x3

> If a square matrix of order 3 x 3 is given

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \quad \det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\det A = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

FORMULA MARATHON

Minors and Cofactors

Minor of the element of a determinant is the determinant of M_{ij} by deleting ith row and jth column in which element is existing.

 $C_{ij} = \left(-1\right)^{i+1}$

Inverse of Matrix

FORMULA MARATHON

FORMULA MARATHON

Simple Interest

P = principal value r = rate of interest per annum t = time period in years

FORMULA MARATHON

Simple Interest

> Amount as per SI

 $A = P + SI = P + \frac{P.r.t}{}$ 100

FORMULA MARATHON

Conversion Period

Conversion period	Description	Number of conversion period in a year	
1 day	Compounded daily	365	
1 month	Compounded monthly	12	
3 months	Compounded quarterly	4	
6 months	Compounded semi annually	2	
12 months	Compounded annually	1	

50

FORMULA MARATHON

Compound Interest Amount

- Calculation of Accumulated Amount under CI denoted by A

$$A = P(1+i)^n$$

$$\mathbf{C}i = \frac{r\%}{nocppy}$$

$$n = t \times noccpy$$

51

FORMULA MARATHON

Compound Interest Amount by Trick

- Calculator Tricks for Amount as per CI
 - Example: *P*= 1000, *i* = 10%, *n* = 3 then

Calculator Steps to obtain A:

FORMULA MARATHON

Compound Interest

- > Formula for Compound Interest
 - Calculation of Compound Interest Value denoted by CI

$$CI = P[(1+i)^n - 1]$$

- where,

P = Initial Principal i = adjusted interest rate n = no. of periods

$$=\frac{r^{0}/_{0}}{nocppy} \qquad n=t \times noccpy$$

FORMULA MARATHON

Effective Rate of Interest

 $E = [(1+i)^n - 1]$

where,

i = adjusted interest rate *n* = no. of periods in a year

54

FORMULA MARATHON

Future Value - Single Cashflow

$FV = CF(1+i)^n$

where,

CF = *Single Cashflow of which FV is to be calculated i* = *adjusted interest rate n* = *no. of periods*

55

FORMULA MARATHON

Future Value – Annuity Regular

 $FVAR = A_i \times FVAF(n,i)$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

$$FVAR = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\}$$

where,

FVAR = Future Value of Annuity Regular
A_i = Annuity Value (Installment)
FVAF = Future Value Annuity Factor
i = adjusted interest rate
n = no. of periods

56

FORMULA MARATHON

Future Value – Annuity Due

> Formula:

$$FVAD = A_i \times FVAF(n,i) \times (1+i)$$

$$FVAD = A_i \times \left\{ \frac{\left[(1+i)^n - 1 \right]}{i} \right\} \times (1+i)$$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

where,

FVAD= Future Value of Annuity Due A_i = Annuity Value (Installment) **FVAF** = Future Value Annuity Factor i = adjusted interest rate n = no. of periods

57

FORMULA MARATHON

Present Value – Single Cashflow

$$PV = \frac{CF}{\left(1+i\right)^n}$$

where,

CF = Single Cashflow for which PV is to be calculated i = adjusted interest rate n = no. of periods

58

FORMULA MARATHON

Compounding and Discounting Factor

- > Compounding
 - Finding Future Value of any Cashflow
 - Compounding Factor.

- > Discounting
 - Finding Present Value of any Cashflow

 $(1+i)^{n}$

- Discounting Factor:

59

FORMULA MARATHON

Present Value – Annuity Regular

 $PVAR = A_i \times PVAF(n,i)$

$$PVAR = A_i \times \left[\frac{1}{i} \times \left\{1 - \frac{1}{(1+i)^n}\right\}\right]$$

Present Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Present Value

where,

PVAR = Present Value of Annuity Regular A_i = Annuity Value (Installment) **PVAF** = Present Value Annuity Factor i = adjusted interest rate n = no. of periods

60

FORMULA MARATHON

Calculator trick of PVAF

 $\div \parallel = \parallel = \mid ...n - times \mid GT$

61

FORMULA MARATHON

Present Value – Annuity Due

$PVAD = \left[A_i \times PVAF\left\{(n-1), i\right\}\right] + A_i$

where,

PVAD = Present Value of Annuity Due
A_i = Annuity Value (Installment)
PVAF = Present Value Annuity Factor
i = adjusted interest rate
n = no. of periods
n-1 = one lesser period

62

FORMULA MARATHON

Perpetuity

 $PVP = \frac{A_i}{i}$ where, PVP = Present Value of Perpetuity $A_i = Annuity Value (Installment)$ i = adjusted interest rate

63

FORMULA MARATHON

Growing Perpetuity

PVGP g

where,

PVGP = Present Value of Growing Perpetuity
A_i = Annuity Value (Installment)
i = adjusted interest rate
g = growth rate

FORMULA MARATHON

Net Present Value

- > Formula
 - NPV = Present Value of Cash Inflows Present Value of Cash Outflows
- > Decision Base:
 - If NPV \geq 0, accept the proposal, If NPV \leq 0, reject the proposal

65

FORMULA MARATHON

Real Rate of Return

- > Meaning:
 - The real interest rate is named so to show what a lender or investor receives in real terms after inflation is factored in.
- > Formula:
 - Real Rate of Return = Nominal Rate of Return Rate of Inflation

FORMULA MARATHON

CAGR

- > Compounded Annual Growth rate is the interest rate we used in Compound Interest.
- > It is used to see returns on investment on yearly basis

FORMULA MARATHON

Rules of Counting

- Multiplication Rule
 - If certain thing may be done in 'm' different ways and when it has been done, a second thing can be done in 'n ' different ways then total number of ways of doing both things simultaneously is (m x n) ways
- > Addition Rule
 - It there are two alternative jobs which can be done in 'm' ways and in 'n' ways respectively then either of two jobs can be done in (m + n) ways

Word Used	Use
OR	+ Plus
AND	× Product

FORMULA MARATHON

> $n! = n(n - 1)(n - 2) \dots 3.2.1$ > $n! = 1.2.3 \dots (n - 2)(n - 1)n$ > n! = n(n - 1)!> n! = n(n - 1)(n - 2)!> 0! = 1

69

FORMULA MARATHON

Factorial Values

Value of n	Value of n!
1	1
2	2
3	6
4	24
5	120
6	720
7	5040
	×

Value of n	Value of n!	
8	40320	
9	362880	
10	3628800	
11	39916800	
12	479001600	
13	6227020800	
14	871178291200	

70

FORMULA MARATHON

Theorem of Permutations

Number of Permutations when r objects are chosen out of n different objects

 ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

Few Observations: $n \ge r$ n is a positive integer

FORMULA MARATHON

Particular Case of theorem (n = r)

Number of Permutations when *n* objects are chosen out of *n* different objects ${}^{n}P_{n} = n!$

72

FORMULA MARATHON

Special Formula (Must Remember) (n + 1)! - n! = n.n!

73

FORMULA MARATHON

Circular Permutations

- > Theorem:
 - The number of circular permutations of n different things chosen at a time is (n-1)!
 - Note: this theorem applies only when we choose all of n things

FORMULA MARATHON

Circular Permutations (Type II)

 number of ways of arranging n persons along a closed curve so that no person has the same two neighbours is

FORMULA MARATHON

Permutation with Restriction : Theorem 1

 Number of permutations of n distinct objects taken r at a time when <u>a particular object is not taken</u> in any arrangement is

Permutations with Restrictions : Theorem 2

 Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement is

FORMULA MARATHON

CA Foundation Paper 3

π

No. of ways when things are never together

Ways of Never Together =

Total ways – Ways of always together

79

FORMULA MARATHON

Theorem of Combinations

Number of Combinations when *r* objects are chosen out of *n* different objects

$${}^{n}C_{r} = \frac{n!}{(n-r)!\,r!}$$

Few Observations:

 $> n \ge r$

> n is a positive integer

FORMULA MARATHON

Linkage of PNC Theorems nn nFew Observations: $> n \ge r$ > n is a positive integer

81

FORMULA MARATHON

Special Result of Combinations

 n_{C} 1 n 1

FORMULA MARATHON

Complimentary Combinations

 ${}^{n}C_{r}$

83

FORMULA MARATHON

Special Formula of Combination

 $^{n+1}C_r = {}^nC_r + {}^nC_{r-1}$

Combinations of one or more

Combinations of n different things taking **one or more** out of n things at a time

85

FORMULA MARATHON

Geometry in PNC

Particulars	Tips to Solve
No. of Straight Lines with the given n points	${}^{n}C_{2}$ 2 is used as we need to select two points to make a line
No. of Triangles with the given n points	${}^{n}C_{3}$ 3 is used as we need to select two points to make a line
Adjustment of Collinear Points	If there are collinear points in any problem, no. of lines or triangles formed using those points should be deducted from total no. of lines/ triangles
No. of Parallelogram with the given one set of m parallel lines and another set of n parallel lines	${}^{n}C_{2} \times {}^{m}C_{2}$ Selecting 2 lines from each set of parallel lines
No. of Diagonals	${}^{n}C_{2}-n$ 86

FORMULA MARATHON

CA Foundation Paper 3

FORMULA MARATHON

CA Foundation Paper 3

 \mathcal{T}

General Term of an AP

 $t_n = a + (n-1)d$

where, *a* = first term *d* = common difference *n* = position number of term

FORMULA MARATHON

FORMULA MARATHON

Sum of first n terms of an AP

$$S_n = \frac{n}{2} \{ 2a + (n-1)d \}$$

where, a = first term d = common difference n = position number of term $t_n = nth term of AP$

90

FORMULA MARATHON

FORMULA MARATHON

Sum of first n natural or counting numbers

n(n+1)

92

FORMULA MARATHON

Sum of first n odd numbers

S = n

93

FORMULA MARATHON

Sum of the squares of first n natural numbers

n(n+1)(2n+1)C 6

94

FORMULA MARATHON

Sum of the cubes of first n natural numbers

n(n+1)S 5

95

FORMULA MARATHON

FORMULA MARATHON

CA Foundation Paper 3

96

General Term of an GP

 $=ar^{n-1}$ n

where, *a = first term r = common ratio n = position number of term*

97

FORMULA MARATHON

General Term of an AP $=ar^{n-1}$ t_n Calculator Trick: n

FORMULA MARATHON

Sum of first n terms of a GP

Use when r < 1

 S_n r

Use when r > 1

where, *a = first term r = common ratio n = position number of term*

99

FORMULA MARATHON

FORMULA MARATHON

101

FORMULA MARATHON

Subset

> No. of possible subset of any set

Total = 2^n

Proper= 2^{n} -1

102

FORMULA MARATHON

De Morgan's Law

 $(P \cup Q)' = P' \cap Q'$

 $(P \cap Q)' = P' \cup Q'$

103

FORMULA MARATHON

2 Set Operations Formulas

 $> n(A \cup B) = n(A) + n(B) - n(A \cap B)$

- Proof:
 - > Example: A = {6, 2, 4, 1} B = {2, 4, 3}

104

FORMULA MARATHON

3 Set Operations Formula \rightarrow n(AUBUC) = $n(A) + n(B) + n(C) - n(A \cap C) + n(B \cap C) \cap C) +$ $n(A \cap B \cap C)$

105

FORMULA MARATHON

Composition of Functions $\rightarrow fog = fog(x) = f[g(x)]$ $\Rightarrow gof = gof(x) = g[f(x)]$

106

FORMULA MARATHON

Step Method of finding inverse of f

- 1. Write your function in the form of y - y = f(x)
- 2. From above expression, find the value of x- x =
- 3. Interchange value of x and y, now the RHS is Inverse function

107

FORMULA MARATHON

- *y* =

FORMULA MARATHON

Basic Laws of Differentiation

Function	Derivative of the Function
$m{h}(x)=c.f(x)$ where c is a real constant, scalar multiplication of function	$\frac{d}{dx}\{h(x)\} = c \cdot \frac{d}{dx}\{f(x)\}$
$h(x) = f(x) \pm g(x)$ sum/ difference of function	$\frac{d}{dx}\{h(x)\} = \frac{d}{dx}\{f(x)\} \pm \frac{d}{dx}\{g(x)\}$
h(x) = f(x).g(x) Product of functions	$\frac{d}{dx}\{h(x)\} = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$
$h(x) = \frac{f(x)}{g(x)}$ Quotient of Function	$\frac{d}{dx}\{h(x)\} = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{\{g(x)\}}$

FORMULA MARATHON

CA Foundation Paper 3

Cost and Revenue Functions

Cost Function	y = C(x)	
Average Cost	$A(x) = \frac{C(x)}{x}$	
Average Cost is minimum or maximum when	A'(x) = 0	
Marginal Cost	$M(x) = \frac{dC}{dx}$	
Marginal Cost is minimum or maximum when	M'(x) = 0	
Marginal Revenue	$MR(x) = \frac{dR}{dx}$	11

FORMULA MARATHON

CA Foundation Paper 3

 \mathcal{T}

Integration – Basic Formulas i) $\int x^n dx = \frac{x^{n+1}}{n+1} + c, n \neq -1$ (If $n = -1, \frac{x^{n+1}}{n+1} = \frac{1}{0}$ which is not defined) ii) $\int dx = x + c$, since $\int 1 dx = \int x^{\circ} dx = \frac{x1}{1} = x + c$ iii) $\int e^x dx = e^x + c$, since $\frac{d}{dx}e^x = e^x$ iv) $\int e^{ax} dx = \frac{e^{ax}}{a} + c$, since $\frac{d}{dx} \left(\frac{e^{ax}}{a} \right) = e^{ax}$ v) $\int \frac{dx}{x} = \log x + c$, since $\frac{d}{dx} \log x = \frac{1}{x}$ vi) $\int a^x dx = a^x / \log_e a + c$, since $\frac{d}{dx} \left(\frac{a^x}{\log^a} \right) = a^x$

111

FORMULA MARATHON

Integration by Parts – ILATE Rule

$$\int uv \, dx = u \int v \, dx - \int \left[\frac{d(u)}{dx} \int v \, dx\right] \, dx$$

where u and v are two different functions of x

Guidelines for Selecting u and dv:

(There are always exceptions, but these are generally helpful.)

"L-I-A-T-E" Choose 'u' to be the function that comes first in this list:

- L: Logrithmic Function
- I: Inverse Trig Function
- A: Algebraic Function
- T: Trig Function
- E: Exponential Function

112

FORMULA MARATHON