ALL FORMULAS

CA FOUNDATION MA THEMA TICS

(II2 formulas)
Use this PDF with Formula Revision Marathon Marathon Link: https://youtu.be/SRMg3Yh3kNE

IMPORTANT NOTE FOR JULY 202I EXAM STUDENTS

I. To Watch Any Fastrack Lectures of CA. Pranav Popat Sir for Free, use the links given in the next page.
2. To access those links you just have to download Unacademy App and Login, If any unlock code is asked then use my code CAPRANAV
3. After step 2 is done just click the link for the topics you want to watch.
4. Live Marathon just before EXAM is also going on by Pranav Popat Sir at Unacademy CA Foundation YouTube Channel (starting at 7.I5 PM on $26^{\text {th }}$ July, 202I) Link
5. If you find the content useful, share with all the other students in need.

Telegram Link: https://t.me/learnwithpranav

Fastrack Lectures (FREE on APP)

MATHEMATICS

| Time Value of Money Part I | $\underline{\text { PLAY }}$ | Arithmetic Progression | $\underline{\text { PLAY }}$ |
| :--- | :--- | :--- | :--- | :--- |
| Time Value of Money Part II | $\underline{\text { PLAY }}$ | Geometric Progression | $\underline{\text { PLAY }}$ |
| Time Value of Money Part III | $\underline{\text { PLAY }}$ | AP and GP - Advance Problems | $\underline{\text { PLAY }}$ |
| Quiz - Time Value of Money | $\underline{\text { PLAY }}$ | AP and GP - Complete Quiz | $\underline{\text { PLAY }}$ |
| Ratio | $\underline{\text { PLAY }}$ | Quadratic Equation | $\underline{\text { PLAY }}$ |
| Proportion | $\underline{\text { PLAY }}$ | Other Equations | $\underline{\text { PLAY }}$ |
| Indices and Log (1.5 hrs) | $\underline{\text { PLAY }}$ | Matrices and Determinants | $\underline{\text { PLAY }}$ |
| Quiz - Ratio, Proportion, Indices, Log | $\underline{\text { PLAY }}$ | Quiz - Equations and Matrices | $\underline{\text { PLAY }}$ |

Permutations and Combinations Part I	$\underline{\text { PLAY }}$	Sets	$\underline{\text { PLAY }}$
Permutations and Combinations Part II	$\underline{\text { PLAY }}$	Relations and Functions	$\underline{\text { PLAY }}$
Permutations and Combinations Part III	$\underline{\text { PLAY }}$		
Permutations and Combinations Part IV	$\underline{\text { PLAY }}$		

STATISTICS

Central Tendency Part I	$\underline{\text { PLAY }}$	Quiz II	$\underline{\text { PLAY }}$
Central Tendency Part II	$\underline{\text { PLAY }}$	Quiz III	$\underline{\text { PLAY }}$
Central Tendency Part III	$\underline{\text { PLAY }}$	Probability Part I	$\underline{\text { PLAY }}$
Disperion Part I	$\underline{\text { PLAY }}$	Probability Part II	$\underline{\text { PLAY }}$
Disperion Part II	$\underline{\text { PLAY }}$	Probability Part III	$\underline{\text { PLAY }}$
Quiz I	$\underline{\text { PLAY }}$	Probability Part IV	$\underline{\text { PLAY }}$
Correlation Part I	$\underline{\text { PLAY }}$	Quiz IV	$\underline{\text { PLAY }}$
Correlation Part II	$\underline{\text { PLAY }}$	Theoretical Distribution Part I	$\underline{\text { PLAY }}$
Regression Part I	$\underline{\text { PLAY }}$	Theoretical Distribution Part II	$\underline{\text { PLAY }}$
Regression Part I	$\underline{\text { PLAY }}$	Quiz V	$\underline{\text { PLAY }}$

, If a quantity increases or decreases in the ratio $a: b$ then

new quantity $=-\times$ original quantity
 a

The fraction by which the original quantity is multiplied to get a new quantity is called the factor multiplying ratio.
, Inverse Ratio: One ratio is the inverse of another if their product is 1. Thus $\mathrm{b}: \mathrm{a}$ is the inverse of $\mathrm{a}: \mathrm{b}$ and vice-versa.
, The ratio compounded of the two ratios $\mathrm{a}: \mathrm{b}$ and $\mathrm{c}: \mathrm{d}$ is $\mathrm{ac}: \mathrm{bd}$. , Compounding two or more ratios means multiplying them.

```
\(\pi \quad\), A ratio compounded of itself is called its duplicate ratio.
```

$$
a^{2}: b^{2} \text { is the duplicate ratio of a:b }
$$

$$
a^{3}: b^{3} \text { is the triplicate ratio of a:b }
$$

$\sqrt{a}: \sqrt{b}$ is the sub-duplicate ratio of $a: b$
$\sqrt[3]{a} \cdot \sqrt[3]{b}$ is the sub-triplicate ratio of a:b
5
, Continued Ratio: is the relation or comparison between the magnitudes of three or more quantities of same kind.
, The continued ratio of three similar quantities a, b, c can be written as a:b:c
, Cross Product Rule: If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$ are in proportion then $\mathrm{ad}=\mathrm{bc}$

Product of extremes $=$ Product of means

, Continuous Proportion: Three quantities a, b, c of the same kind (in same units) are said to be in continuous proportion if $\mathrm{a}: \mathrm{b}=\mathrm{b}: \mathrm{c}$

$$
\frac{a}{b}=\frac{b}{c} \quad b^{2}=a c
$$

here, $a=$ first proportional, $c=$ third proportional and b is mean proportional (because b is GM of a and c)
$\pi>$ Invertendo

If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, then

$$
b: a=d: c
$$

, Alternendo

If $\mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d}$, then

$$
a: c=b: d
$$

$$
a+b: b=c+d: d
$$

10

$$
a-b: b=c-d: d
$$

11
π, Componendo and Dividendo

If $a: b=c: d$, then

$$
\frac{a+b}{a-b}=\frac{c+d}{c-d}
$$

$$
\frac{a-b}{a+b}=\frac{c-d}{c+d}
$$

12

13
, Subtrahendo
If $a: b=c: d=e: f=\ldots=k$
then $\frac{a-c-e+\ldots}{b-d-f+\ldots}=k$

Indices - Standard Results
, Any base raised to the power zero is defined to be 1

$$
a^{0}=1
$$

> Roots can also be expressed in the form of power.

$$
\sqrt[r]{a}=a^{\frac{1}{r}}
$$

Law 1

$$
a^{m} \times a^{n}=a^{m+n}
$$

, If two or more terms with same base are multiplied, we can make them one term having the same base and power as sum of all powers.

, If two or more terms with same base are in division, we can make them one term having the same base and power as difference of power.

17

Calculator Trick for any root

$$
\begin{aligned}
& \text { Base } \sqrt[V]{\checkmark} \sqrt{ } \ldots 12 \text { times }-1 \div n \\
& +1 \quad x=\quad x=x=\text {... } 12 \text { times }
\end{aligned}
$$

Calculator Trick for any power (including non integer)

$$
+1 \quad x=\quad x=\quad x=\ldots
$$

Log Conditions

, The logarithm of a number to a given base is the index or the power to which the base must be raised to produce the number, i.e. to make it equal to the given number.

$$
3^{4}=81 \quad \log _{3} 81=4
$$

, If $a^{x}=n$ then $\log _{a} n=x$
, Conditions:

- Number should be positive
- Base should be positive
- Base cannot be equal to one
$n>0, a>0, a \neq 1$

Standard Results of Log

, Log of a number with same base as number is equal to 1

$$
\log _{a} a=1
$$

> Log of 1 (one) for any base is equal to zero

$$
\log _{a} 1=0
$$

Law 1

> Logarithm of the product of two numbers is equal to the sum of the logarithms of the numbers to the same base

$$
\log _{a} m n=\log _{a} m+\log _{a} n
$$

Law 2

, The logarithm of the quotient of two numbers is equal to the difference of their logarithms to the same base

$$
\log _{a} \frac{m}{n}=\log _{a} m-\log _{a} n
$$

Law 3

, Logarithm of the number raised to the power is equal to the index of the power multiplied by the logarithm of the number to the same base.

$$
\log _{a} m^{n}=n \log _{a} m
$$

28

Change of Base Theorem

, If the logarithm of a number to any base is given, then the logarithm of the same number to any other base can be determined from the following relation

$$
\log _{b} m=\frac{\log m}{\log b}=\frac{\log _{a} m}{\log _{a} b}
$$

$$
\log _{b} a \times \log _{a} b=1
$$

Quadratic Equation

, Equation having degree $=2$ is called as Quadratic Equation
, QE will have two roots/ solutions usually denoted by α, β
, Equation Format $a x^{2}+b x+c=0$

```
where,
a is coefficient of }\mp@subsup{x}{}{2
b \text { is coefficient of } x
c is constant
a\not=0
```


Solution of Quadratic Equation

$$
a x^{2}+b x+c=0
$$

, Formula to calculate roots:

$$
\begin{aligned}
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \text { where, } \\
& \text { a is coefficient of } x^{2} \\
& b \text { is coefficient of } x \\
& \text { cis constant } \\
& a \neq 0
\end{aligned}
$$

32

Sum and Product of Roots of QE

$$
a x^{2}+b x+c=0
$$

, Sum of roots

$$
\alpha+\beta=-\frac{b}{a}
$$

, Product of roots $\alpha \beta=\frac{c}{a}$
33

, Construction of Quadratic Equation

If sum of roots and product of roots are given, equation can be constructed in the below manner:

$$
x^{2}-(\alpha+\beta) x+\alpha \beta=0
$$

34

, Concept of discriminant - to get nature of roots

Discriminant of QE is the mathematical expression which is used to understand nature of roots of QE , it is expressed as below:

$$
b^{2}-4 a c
$$

Condition	Nature of Roots
$b^{2}-4 a c=0$	Real and Equal
$b^{2}-4 a c<0$	Imaginary
$b^{2}-4 a c>0$	Real and Unequal
$b^{2}-4 a c>0$ and a perfect square	Real, Unequal and Rational
$b^{2}-4 a c>0$ \& not a perfect square	Real, Unequal and Irrational

35

Simple Equation

> Equation of one degree and having one unknown variable is simple.
, A simple equation has only one root.
, Form of Equation:

$$
\begin{aligned}
& a x+b=0 \\
& \text { where, } \\
& \text { a is coefficient of } x \\
& b \text { is constant } \\
& a \neq 0
\end{aligned}
$$

, Solution Method - Direct basic algebra
37

Simultaneous Linear Equations (two unknowns)

, Here we always deal with two equations as it consist of 2 unknowns
, Form:

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

where,
a is coefficient of x
b is coefficient of y
c is constant
$a \neq 0$
38

Methods of Solution Simultaneous Linear Equations

, Elimination Method: In this method two given linear equations are reduced to a linear equation in one unknown by eliminating one of the unknowns and then solving for the other unknown.
> Substitution Method: equation is written in the form of one variable in LHS and that value is substituted in other equation.
, Cross Multiplication Method: Formula based method

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

$$
\frac{x}{b_{1} c_{2}-b_{2} c_{1}}=\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

Cubic Equation

π, Form:

$$
\begin{aligned}
& a x^{3}+b x^{2}+c x+d=0 \\
& \text { where, } \\
& \text { a is coefficient of } x^{3} \\
& b \text { is coefficient of } x^{2} \\
& \text { cis coefficient of } x \\
& d \text { is constant } \\
& a \neq 0
\end{aligned}
$$

> Method of solution: Trial and Error

Addition/Subtraction of Matrices

, Property

- Commutative Law: $A+B=B+A$
- Associative Law: $(A+B)+C=A+(B+C)$
- Distributive Law: $k(A+B)=k A+k B$

41

Multiplication of Matrices

, Condition

- The product $A \times B$ of two matrices A and B is defined only if the number of columns in Matrix A is equal to the number of rows in Matrix B.

$A_{m \times n} \times B_{n \times p}=A B_{m \times p}$

Determinant - 2×2

π, If a square matrix of order 2×2 is given

$$
\begin{aligned}
A= & {\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \quad \operatorname{det} A=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| } \\
& \operatorname{det} A=a_{11} \times a_{22}-a_{12} \times a_{21}
\end{aligned}
$$

43

Determinant -3×3

π, If a square matrix of order 3×3 is given

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad \operatorname{det} A=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \\
& \operatorname{det} A=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Minors and Cofactors

> Minor of the element of a determinant is the determinant of $M_{i j}$ by deleting $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column in which element is existing.

$$
C_{i j}=(-1)^{i+j} M_{i j}
$$

Inverse of Matrix

$$
A^{-1}=\frac{1}{\operatorname{det} A} \times \operatorname{adj} . A
$$

46

47

Simple Interest

PT P.r.t 100
 $P=$ principal value
 $r=$ rate of interest per annum
 $t=$ time period in years

Simple Interest

, Amount as per S/

$$
A=P+S I=P+\frac{P . r . t}{100}=P\left(1+\frac{r t}{100}\right)
$$

Conversion Period

Conversion period	Description	Number of conversion period in a year
1 day	Compounded daily	365
1 month	Compounded monthly	12
3 months	Compounded quarterly	4
6 months	Compounded semi annually	2
12 months	Compounded annually	1

FORMULA MARATHON

Compound Interest Amount

- Calculation of Accumulated Amount under Cl denoted by A

$A=P(1+i)^{n}$

where,
$P=$ Initial Principal
$i=$ adjusted interest rate
$n=n o$. of periods

$$
i=\frac{r \%}{\text { nocppy }}
$$

$$
n=t \times n o c c p y
$$

Compound Interest Amount by Trick

, Calculator Tricks for Amount as per Cl

- Example: $P=1000, i=10 \%, n=3$ then

Calculator Steps to obtain A:
$1000+10 \%+10 \%+10 \%$

Compound Interest

, Formula for Compound Interest

- Calculation of Compound Interest Value denoted by CI

$$
C I=P\left[(1+i)^{n}-1\right]
$$

- where,

53

Effective Rate of Interest

$$
E=\left[(1+i)^{n}-1\right]
$$

where,
$i=$ adjusted interest rate
$n=$ no. of periods in a year

FORMULA MARATHON

Future Value - Single Cashflow

π

$$
F V=C F(1+i)^{n}
$$

where,
CF = Single Cashflow of which FV is to be calculated $i=$ adjusted interest rate
$n=n o$. of periods

Future Value - Annuity Regular

$$
F V A R=A_{i} \times F V A F(n, i)
$$

Future Value Annuity Factor:
It is a multiplier for Annuity Value to obtain Final Future Value

$$
F V A R=A_{i} \times\left\{\frac{\left[(1+i)^{n}-1\right]}{i}\right\}
$$

where,
FVAR = Future Value of Annuity Regular
$A_{i}=$ Annuity Value (Installment)
FVAF = Future Value Annuity Factor
$i=$ adjusted interest rate
$n=n o$. of periods

Future Value - Annuity Due

, Formula:

$$
\begin{aligned}
& F V A D=A_{i} \times F V A F(n, i) \times(1+i) \\
& F V A D=A_{i} \times\left\{\frac{\left[(1+i)^{n}-1\right]}{i}\right\} \times(1+i) \\
& \text { where, } \\
& \quad \text { FVAD= Future Value of Annuity Due } \\
& \begin{array}{l}
A_{i}=\text { Annuity Value (Installment) } \\
F V A F=\text { Future Value Annuity Factor } \\
i=\text { adjusted interest rate } \\
n=\text { no. of periods }
\end{array}
\end{aligned}
$$

Future Value Annuity Factor: It is a multiplier for Annuity Value to obtain Final Future Value

Present Value - Single Cashflow

$$
P V=\frac{C F}{(1+i)^{n}}
$$

where,
CF = Single Cashflow for which PV is to be calculated
$i=$ adjusted interest rate
$n=n o$. of periods

Compounding and Discounting Factor

, Compounding

- Finding Future Value of any Cashflow
- Compounding Factor.

$$
\times(1+i)^{n}
$$

> Discounting

- Finding Present Value of any Cashflow
- Discounting Factor:

Present Value - Annuity Regular

$$
P V A R=A_{i} \times P V A F(n, i)
$$

where,

$$
\begin{aligned}
& \text { PVAR = Present Value of Annuity Regular } \\
& A_{i}=\text { Annuity Value (Installment) } \\
& \text { PVAF = Present Value Annuity Factor } \\
& i=\text { adjusted interest rate } \\
& n=\text { no. of periods }
\end{aligned}
$$

Calculator trick of PVAF
 π $1+i \backsim=\ldots . . n-$ times $G T$

Present Value - Annuity Due

$$
P V A D=\left[A_{i} \times P V A F\{(n-1), i\}\right]+A_{i}
$$

where,
PVAD = Present Value of Annuity Due
$A_{i}=$ Annuity Value (Installment)
PVAF = Present Value Annuity Factor
$i=$ adjusted interest rate
$n=n o$. of periods
n-1 = one lesser period

Perpetuity

$P V P=\frac{A_{i}}{i}$

where,
PVP = Present Value of Perpetuity $A_{i}=$ Annuity Value (Installment)
$i=$ adjusted interest rate

Growing Perpetuity

$P V G P=\frac{A_{i}}{i-g}$

where,
PVGP = Present Value of Growing Perpetuity
$A_{i}=$ Annuity Value (Installment)
$i=$ adjusted interest rate
$g=$ growth rate

64

Net Present Value

, Formula

- NPV = Present Value of Cash Inflows - Present Value of Cash Outflows
, Decision Base:
- If $N P V \geq 0$, accept the proposal, If $N P V<0$, reject the proposal

FORMULA MARATHON

Real Rate of Return

> Meaning:

- The real interest rate is named so to show what a lender or investor receives in real terms after inflation is factored in.
, Formula:
- Real Rate of Return = Nominal Rate of Return - Rate of Inflation

CAGR

, Compounded Annual Growth rate is the interest rate we used in Compound Interest.
) It is used to see returns on investment on yearly basis

FORMULA MARATHON

Rules of Counting

, Multiplication Rule

- If certain thing may be done in ' m ' different ways and when it has been done, a second thing can be done in 'n' different ways then total number of ways of doing both things simultaneously is $(m \times n)$ ways
, Addition Rule
- It there are two alternative jobs which can be done in ' m ' ways and in ' n ' ways respectively then either of two jobs can be done in $(m+n)$ ways

FORMULA MARATHON
CA Foundation Paper 3

Factorial

$$
\begin{aligned}
& \pi>n! \\
& \quad>n!=n(n-1)(n-2) \ldots 3.2 .1 \\
&>n!=n(n-1)(n-2)(n-1) n \\
&>n!=n(n-1)(n-2)! \\
&>0!=1
\end{aligned}
$$

Factorial Values

Value of n	Value of n !
1	1
2	2
3	6
4	24
5	120
6	720
7	5040

Value of \boldsymbol{n}	Value of $\mathrm{n}!$
8	40320
9	362880
10	3628800
11	39916800
12	479001600
13	6227020800
14	871178291200

70

Theorem of Permutations

Number of Permutations when r objects are chosen out of n different objects

$$
{ }^{n} P_{r}=\frac{n!}{(n-r)!}
$$

Few Observations:

$$
n \geq r
$$

n is a positive integer

Particular Case of theorem $(n=r)$

Number of Permutations when n objects are chosen out of n different objects

$$
{ }^{n} P_{n}=n!
$$

Circular Permutations

, Theorem:

- The number of circular permutations of n different things chosen at a time is $(n-1)$!
- Note: this theorem applies only when we choose all of n things

Circular Permutations (Type II)

> number of ways of arranging n persons along a closed curve so that no person has the same two neighbours is

$$
\frac{1}{2}(n-1)!
$$

, Same formula will apply if ask is to find number of different forms of necklaces/ garlands

75
FORMULA MARATHON

Permutation with Restriction : Theorem 1

, Number of permutations of n distinct objects taken r at a time when a particular object is not taken in any arrangement is

$$
n-1 P_{r}
$$

Permutations with Restrictions : Theorem 2

, Number of permutations of r objects out of n distinct objects when a particular object is always included in any arrangement is

$$
r \cdot{ }^{n-1} P_{r-1}
$$

77
FORMULA MARATHON

No. of ways when things are never together

Ways of Never Together =

Total ways - Ways of always together

79

Theorem of Combinations

Number of Combinations when r objects are chosen out of n different objects

$$
{ }^{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Few Observations:
> $n \geq r$
> n is a positive integer

Linkage of PNC Theorems

$$
{ }^{n} C_{r}=\frac{{ }^{n} P_{P_{r}}}{0!}
$$

Few Observations:
> $n \geq r$
> n is a positive integer

Special Result of Combinations

$$
\begin{aligned}
{ }^{n} C_{0} & =1 \\
{ }^{n} C_{n} & =1
\end{aligned}
$$

Combinations of one or more

Combinations of n different things taking one or more out of n things at a time

$$
2^{n}-1
$$

Geometry in PNC

Particulars	Tips to Solve
No. of Straight Lines with the given n points	n 2 is used as we need to select two points to make a line
No. of Triangles with the given n points	n 3C_{3}
3 is used as we need to select two points to make a line	

Common Difference of AP

$$
d=t_{2}-t_{1}=t_{3}-t_{2}=\ldots=t_{n}-t_{n-1}
$$

General Term of an AP

$$
t_{n}=a+(n-1) d
$$

where,
a $=$ first term
$d=$ common difference
$n=$ position number of term

General Term of an AP

$$
t_{n}=a+(n-1) d
$$

Calculator Trick:

89

Sum of first n terms of an AP

$$
S_{n}=\frac{n}{2}\left(a+t_{n}\right) \quad S_{n}=\frac{n}{2}\{2 a+(n-1) d\}
$$

```
where,
a = first term
d = common difference
n = position number of term
t
```

Sum of first n terms of an AP

$$
S_{n}=\frac{n}{2}\left(a+t_{n}\right) \quad S_{n}=\frac{n}{2}\{2 a+(n-1) d\}
$$

Calculator Trick

Common Ratio of GP

$$
r=\frac{t_{2}}{t_{1}}=\frac{t_{3}}{t_{2}}=\frac{t_{n}}{t_{n-1}}
$$

General Term of an AP

$$
t_{n}=a r^{n-1}
$$

Calculator Trick:

98

Sum of first n terms of a GP

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& \text { Use when r<1 } \\
& \text { where, } \\
& \begin{array}{l}
\text { a first term } \\
r=\text { common ratio } \\
n=\text { position number of term }
\end{array}
\end{aligned}
$$

Sum of first n terms of a GP

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}
$$

Calculator Trick

Sum of Infinite Geometric Series

$$
\left.S_{\infty}=\frac{a}{1-r} \quad \begin{array}{c}
\text { Can be used only } \\
\text { if }-1<r<1
\end{array}\right)
$$

```
where,
a = first term
r = common ratio
n = position number of term
```

101

Subset

, No. of possible subset of any set

Total $=2^{n}$

Proper $=2^{n}-1$

102

Composition of Functions

$\pi>f \circ g=f \circ g(x)=f[g(x)]$

$$
\operatorname{gof}=\operatorname{gof}(x)=g[f(x)]
$$

106

Step Method of finding inverse of f

1. Write your function in the form of y

- $y=f(x)$

2. From above expression, find the value of x
$-x=\square$
3. Interchange value of x and y, now the RHS is Inverse function $-y=\square$

Differentiation Basic Formulas

$\boldsymbol{f}(x)$	$\boldsymbol{f}^{\prime}(x)$
$\frac{d}{d x}\left(x^{n}\right)$	$n x^{n-1}$
$\frac{d}{d x}\left(e^{x}\right)$	e^{x}
$\frac{d}{d x}\left(a^{x}\right)$	$a^{x} \log _{e} a$
$\frac{d}{d x}($ constant $)$	0
$\frac{d}{d x}\left(e^{a x}\right)$	$a e^{a x}$
$\frac{d}{d x}(\log x)$	$\frac{1}{x}$

Basic Laws of Differentiation

Function	Derivative of the Function
$h(x)=$c. $f(x)$ where c is a real constant, scalar multiplication of function	$\frac{d}{d x}\{h(x)\}=c \cdot \frac{d}{d x}\{f(x)\}$
$h(x)=f(x) \pm g(x)$	$\frac{d}{d x}\{h(x)\}=\frac{d}{d x}\{f(x)\} \pm \frac{d}{d x}\{g(x)\}$
sum/ difference of function	$\frac{d}{d x}\{h(x)\}=f(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} f(x)$
$h(x)=f(x) . g(x)$	
Product of functions	
$h(x)=\frac{f(x)}{g(x)}$	
Quotient of Function	$\frac{d}{d x}\{h(x)\}=\frac{g(x) \frac{d}{d x} f(x)-f(x) \frac{d}{d x} g(x)}{\{g(x)\}}$

Cost and Revenue Functions

 110

Integration - Basic Formulas

i) $\int \mathrm{x}^{\mathrm{n}} \mathrm{dx}=\frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}+\mathrm{c}, \mathrm{n} \neq-1 \quad$ (If $\mathrm{n}=-1, \frac{\mathrm{x}^{\mathrm{n}+1}}{\mathrm{n}+1}=\frac{1}{0}$ which is not defined)
ii) $\int d x=x+c$, since $\int 1 d x=\int x^{\circ} d x=\frac{x 1}{1}=x+c$
iii) $\int e^{x} d x=e^{x}+c$, since $\frac{d}{d x} e^{x}=e^{x}$
iv) $\int e^{a x} d x=\frac{e^{a x}}{a}+c$, since $\frac{d}{d x}\left(\frac{e^{a x}}{a}\right)=e^{a x}$
v) $\int \frac{d x}{x}=\log \mathrm{x}+\mathrm{c}$, since $\frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}=\frac{1}{\mathrm{x}}$
vi) $\int \mathrm{a}^{\mathrm{x}} \mathrm{dx}=\mathrm{a}^{\mathrm{x}} / \log _{\mathrm{e}} \mathrm{a}+\mathrm{c}$, since $\frac{\mathrm{d}}{\mathrm{dx}}\left(\frac{\mathrm{a}^{x}}{\log _{e}^{a}}\right)=\mathrm{a}^{x}$

Integration by Parts - ILATE Rule

$$
\int u v d x=u \int v d x-\int\left[\frac{d(u)}{d x} \int v d x\right] d x
$$

where u and v are two different functions of x

Guidelines for Selecting \mathbf{u} and dv:

(There are always exceptions, but these are generally helpful.)
"L-I-A-T-E" Choose 'u' to be the function that comes first in this list:
L: Logrithmic Function
I: Inverse Trig Function
A: Algebraic Function
T: Trig Function
E: Exponential Function

